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Abstract

Empirical likelihood methods are widely used in different settings to construct

the confidence regions for parameters which satisfy the moment constraints.

However, the empirical likelihood ratio confidence regions may have poor ac-

curacy, especially for small sample sizes and multi-dimensional situations. In

this paper, we propose a novel Mean Empirical Likelihood (MEL) method. This

new method constructs a new pseudo dataset using the means of observation

values to define the empirical likelihood ratio and we prove that this MEL ratio

satisfies the Wilks’ theorem. Simulations with different examples are given to

assess its finite sample performance, which shows that the confidence regions

constructed by Mean Empirical Likelihood is much more accurate than that of

the other Empirical Likelihood methods.

Keywords: Confidence interval; Empirical likelihood; Exponentially tilted likelihood;

Two sample comparison

1 Introduction

Empirical likelihood (EL) method proposed by Owen (1990) is a very powerful tool

in non-parametric and semi-parametric statistics Qin and Lawless (1994); Newey and
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Smith (2004). In particular, the confidence regions based on EL method are more

appealing than those constructed based on asymptotic normality; not requiring the

calculation of variance estimates, providing natural shape for the confidence regions

and so on.

Suppose that we have independent and identically distributed random vectors X1,

X2, · · · ,Xn, with an unknown distribution function F (x). We are interested in the

estimation problem for a d-dimensional parameter θ = θ(F ). The true parameter value

θ0 is a unique solution of a system of equations E g(X,θ) = 0 for some d-dimensional

function g. The original Empirical Likelihood (OEL) is defined as

RO(θ) = sup

{
n∏
i=1

npi
∣∣ n∑
i=1

pig(X i,θ) = 0,
n∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, · · · , n

}
. (1.1)

Assume g(X,θ0) has a finite covariance matrix of rank d > 0, Owen (1990) proved

that

LO(θ0) = −2 logRO(θ0)→ χ2(d), in dist. (1.2)

Therefore, the (1 − α) confidence region can be constructed as IO = {θ : LO(θ) <

χ2
α(d)}, where χ2

α(d) is such that P (χ2(d) ≤ χ2
α(d)) = 1− α.

Although EL method has found its application in many statistical areas, its finite

sample properties may not work well because of low precision of χ2 approximation.

Hall and La Scala (1990), DiCiccio et al. (1991) and Tsao (2004) showed that empirical

likelihood ratio confidence regions could have poor accuracy, especially in small sample

and multi-dimensional situations. Many methods have been proposed to improve the

performance of the EL approach in the literature. For parameters defined by standard

estimating equations, the Bartlett correction Empirical Likelihood (BEL) (DiCiccio et

al., 1991) achieves the second order accuracy, which is substantially more accurate than

the original EL approach. An alternative method is to add a pseudo-observation to the

sample. This leads to the adjusted Empirical Likelihood (AEL) (Chen et al., 2008) and

it also achieves the second order accuracy. Recently, Tsao and Wu (2013) developed an

extended Empirical Likelihood method (EEL), attaining the second order accuracy as

well. However, all the above-mentioned methods require the calculation of the Bartlett

correction constant, which has no analytical formula since it depends on the moments of
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g(X,θ). In practice, using a
√
n-consistent estimator for Bartlett correction constant is

feasible, but it may be difficult to calculate the estimator in certain practical scenarios

(Liu and Chen, 2010). Apart from the practical estimation challenge for Bartlett

correction constant, Jing (1996) proved that exponentially tilted likelihood is actually

not Bartlett correctable and all existing methods only have the first order accuracy.

Therefore, all the above practical and theoretical challenges motivate us to search new

EL approaches.

In this paper, we will present a new method, named Mean Empirical Likelihood

(MEL). It constructs an empirical likelihood function based on a set of pseudo data and

it is easy to compute (not requiring the calculation of the Bartlett correction constant).

The large sample properties of MEL are presented. This new MEL is particularly more

important for exponentially tilted likelihood, where Bartlett correction is not available.

In the simulation studies, we find that the confidence intervals constructed by MEL

is much more accurate than those found by the other Empirical Likelihood methods

with second order accuracy, such as BEL and AEL. In particular, MEL outperforms

all other methods for heavy-tail or highly-skewed distributions and for exponentially

tilted likelihood.

This paper is constructed as follows. In Section 2, we present the MEL methodolo-

gies in different settings: standard estimating equation framework, two sample mean

comparison problem, exponentially tilted likelihood and generalised empirical likeli-

hood framework, with all theoretical proofs provided in Appendix. Simulation studies

are presented in Section 3 and they demonstrate that MEL outperforms all other ex-

isting methods. Section 4 provides a real data analysis and the paper concludes with

a discussion in Section 5.
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2 Methodology

2.1 Mean Empirical Likelihood for standard Estimating Equa-

tions

We here follow notations in the previous section and for simplicity we denote V i(θ) =

g(X i,θ), i = 1, 2, ..., n and further denote the pairwise-mean dataset as follows,

W =

{
V i(θ) + V j(θ)

2
: 1 ≤ i ≤ j ≤ n

}
, (2.1)

which can also be written asW = {W 1(θ),W 2(θ), · · · ,WN(θ)} with N = n(n+1)/2.

Based on this pairwise-mean dataset, the empirical likelihood ratio for θ is defined as

RM(θ) = sup

{
N∏
k=1

Npk

∣∣∣∣∣
N∑
k=1

pkW k(θ) = 0,
N∑
k=1

pk = 1, pk ≥ 0, k = 1, 2, · · · , N

}
,

which is named as mean empirical likelihood ratio. It follows that

RM(θ) =
N∏
k=1

Npk =
N∏
k=1

1

1 + λ′W k(θ)
,

where λ satisfying

1

N

N∑
k=1

W k(θ)

1 + λ′W k(θ)
= 0,

and

pk =
1

N(1 + λ′W k(θ))
.

Denote θ0 as the unknown true parameter value. Then the mean empirical log-

likelihood ratio is given by

LM(θ0) = −2 logRM(θ0)/(n+ 1).

Now we have the following main theorem.

Theorem 2.1. Under the conditions that Cov(V i(θ0)) = Σ exists and rank(Σ) =

d, we have

LM(θ0)→ χ2(d), in dist.
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Proof. See Appendix A.

Following Theorem 2.1, a confidence region for the parameter θ with asymptotic

coverage probability 1− α can be defined as

IM = {θ : LM(θ) ≤ χ2
α(d)}.

2.2 Mean Empirical Likelihood for Two-Sample Comparison

In this section, we consider applying the Mean Empirical Likelihood idea to a two-

sample problem. To be specific, let U 1, U 2, · · · , Un1 be a d-dimensional i.i.d. random

sample from distribution F , and V 1, V 2, · · · , V n2 be a d-dimensional i.i.d. random

sample from distribution G. We want to construct confidence regions for θ ∈ Rd,

θ =

∫
g(u) dF (u)−

∫
g(v) dG(v),

where g(·) is a known d-dimensional function. For instance, g(x) = x, then θ stands

for the difference between two distributions.

Let θ0 be the true value, X i = g(U i) and Y i = g(V i) − θ0. Denote the ele-

ments in the dataset {(X i +Xj)/2, 1 ≤ i ≤ j ≤ n1} by WX
1 , W

X
2 , · · · , WX

N1
, where

N1 = n1(n1 + 1)/2, and the elements in the dataset {(Y i + Y j)/2, 1 ≤ i ≤ j ≤ n2} by

W Y
1 , W

Y
2 , · · · , W Y

N2
, where N2 = n2(n2 + 1)/2. Then the mean empirical likelihood

for θ, evaluated at θ0, is defined as

lM2 (θ0) = sup
{ N1∏
s=1

ps

N2∏
t=1

qt
∣∣ N1∑

s=1

ps
(
WX

s − µ
)

= 0,

N2∑
t=1

qt
(
W Y

t − µ
)

= 0,

N1∑
s=1

ps = 1,

N2∑
t=1

qt = 1, ps ≥ 0, qt ≥ 0
}
,

and the mean empirical likelihood ratio for θ0 is

RM
2 (θ0) =

lM2 (θ0)

lM2 (θ̂)
,

where lM2 (θ̂) = N−N1
1 N−N2

2 .

Let N = N1 +N2, δ = N1/N . The Lagrange multiplier method leads to

ps =
1

Nδ

1

1 + δ−1λ′1(W
X
s − µ)

, qt =
1

N(1− δ)
1

1 + (1− δ)−1λ′2(W Y
t − µ)

,
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and the maximum log-likelihood ratio

log(RM
2 (θ0)) = −

[
N1∑
s=1

ln (1 + δ−1λ′1(W
X
s − µ)) +

N2∑
t=1

ln (1 + (1− δ)−1λ′2(W Y
t − µ))

]
,

where (λ1, λ2, µ) satisfies the following equations

1

Nδ

N1∑
s=1

WX
s − µ

1 + δ−1λ′1(W
X
s − µ)

= 0,

1

N(1− δ)

N2∑
t=1

W Y
t − µ

1 + (1− δ)−1λ′2(W Y
t − µ)

= 0,

λ1 + λ2 = 0.

Thus the corresponding mean empirical log-likelihood ratio is defined as

LM2 (θ0) = −2 log(RM
2 (θ0))/n.

Theorem 2.2. Let n = n1 + n2, ∆ = n1/n. Assume that ∆ → ∆0 ∈ (0, 1)

as n → ∞, Cov(X) = ΣX and Cov(Y ) = ΣY exist, and rank(ΣX) = rank(ΣY ) = d.

Then, mean empirical log-likelihood ratio LM2 (θ0) converges in distribution to a weighted

sum of independent standard chi-square random variables, each with one degree of

freedom and weight rk. That is

LM2 (θ0)→
d∑

k=1

rkηk, in dist., ηk ∼ χ2(1)

where rk are the eigenvalues of (RM)−1R,

R =
1

∆0

ΣX +
1

1−∆0

ΣY , RM =
1

∆2
0

ΣX +
1

(1−∆0)2
ΣY .

Proof. See Appendix B.

Theorem 2.2 is the MEL version of Wilks’ theorem in the two-sample problem. For

computational simplicity, we can consider the following adjusted statistic in practice.

Let r = d/tr((RM)−1R) with tr(·) denoting the trace operator. Then, following Rao

and Scott (1981) and Xue and Wang (2012), the distribution of r
∑d

k=1 rkηk can be

approximated by a standard chi-square distribution with d degrees of freedom χ2(d).
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Motivated by this approach, we now define an adjusted mean empirical log-likelihood

L̂M2 (θ0) whose asymptotic distribution is approximately χ2(d),

L̂M2 (θ0) = r̂LM2 (θ0), (2.2)

where r̂ = d/tr((R̂
M

)−1R̂), R̂
M

and R̂ are the estimators of RM and R, respectively.

Hence, a simple approach to construct an α-level confidence region for θ, based on

(2.2), is

IM2 = {θ : L̂M2 (θ) ≤ χ2
α(d)}.

2.3 Mean Empirical Likelihood for Exponentially Tilted Like-

lihood

Exponentially tilted (ET) likelihood is a useful nonparametric approach to evaluate es-

timates and confidence regions of parameters θ. In this section, we develop a Mean ET

likelihood procedure for parameter estimation, and prove this likelihood ratio statis-

tic is asymptotically distributed as the chi-squared distribution (the Wilks’ theorem

holds), which can be used to construct confidence regions of parameters of interest.

Suppose that X1,X2, · · · ,Xn are i.i.d. random vectors from an unknown distri-

bution F (x). Using the same notations as Section 2.1, i.e. V i(θ) = g(X i, θ), i =

1, 2, · · · , n, the ET likelihood for θ ∈ Rd can be defined as

H(θ) = sup

{
−

n∏
i=1

wi log(wi) :
n∑
i=1

wiV i(θ) = 0,
∑
i=1

wi = 1, wi ≥ 0, i = 1, 2, · · · , n

}
,

which is maximized at

wi =
exp {λ′V i(θ)}∑n
j=1 exp {λ′V j(θ)}

.

Note that, the function −
∏n

i=1wi log(wi) attains its maximum value log(n) at wi =

n−1. Therefore existing methods use the empirical entropy difference

∆H(θ) = H(θ)− log(n)

to derive the empirical confidence regions. Newey and Smith (2004) and Jaynes (1982)

proposed two adjusted empirical entropy differences, respectively, the adjusted Newey-

Smith empirical entropy difference:

T1(θ) = −2n {exp (∆H(θ))− 1},
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and the adjusted Jaynes empirical entropy difference:

T2(θ) = −2n∆H(θ).

Both T1(θ0) and T2(θ0) converge in distribution to a χ2(d) distribution.

We can also extend the above empirical entropy difference idea by using the mean

exponentially tilted likelihood for θ, i.e.

HM(θ) = sup

{
−
∏
i≤j

wij log(wij) :
∑
i≤j

wij (V i(θ) + V j(θ)) = 0,
∑
i≤j

wij = 1, wij ≥ 0

}
.

Under some regularity conditions, it is easily to show that the mean empirical entropy

difference can be expressed as

∆HM(θ) = HM(θ)− log(N) = log

{
1

N

∑
i≤j

exp {−λ′ (V i(θ) + V j(θ))}

}
,

where N = n(n+ 1)/2 and λ satisfies

1

N

∑
i≤j

(V i(θ) + V j(θ)) exp{−λ′ (V i(θ) + V j(θ))} = 0.

By defining two adjusted mean empirical entropy differences

T M1 (θ) = −2N{exp (∆HM(θ))− 1}/(n+ 1),

T M2 (θ) = −2N ∆HM(θ)/(n+ 1),

we get the following theorem.

Theorem 2.3. Assume Cov(V 1(θ0)) = Σ exists, rank(Σ) = d. Then both mean

empirical entropy differences T M1 (θ0) and T M2 (θ0) are asymptotically a chi-square ran-

dom variable, that is

T M1 (θ0)→ χ2(d), in dist. T M2 (θ0)→ χ2(d), in dist.

Proof. The proof is similar to the proof of Theorem 2.1 and therefore it is omitted.

Based on Theorem 2.3, the α-level confidence region for θ can be constructed by

IM4,1 =
{
θ : −n {exp (∆HM(θ))− 1} ≤ χ2

α(d)
}
,

IM4,2 =
{
θ : −n∆HM(θ) ≤ χ2

α(d)
}
.
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2.4 Generalized Mean Empirical Likelihood

In this subsection, we make some further extensions to generalized empirical likeli-

hood(GEL) inference. Suppose that we have d-dimensional independent and iden-

tically distributed random vectors X1, X2, · · · ,Xn with an unknown distribution

function F (x). We are still interested in the estimation problem for a d-dimensional

parameter θ = θ(F ). The estimating equations for θ is E g(X,θ) = 0, where g is an

m-dimensional function with m ≥ d.

If we denote h(p) as a convex function of a scalar p, the minimum discrepancy(MD)

estimators, first discussed by Corcoran (1998), can be calculated as

θ̂MD = argθ∈Θ min
n∑
i=1

h(pi),

subject to
n∑
i=1

pi g(X i, θ) = 0,
n∑
i=1

pi = 1.

Newey and Smith (2004) explained that for each MD estimators there is a dual GEL

estimator when h(p) is a member of Cressie and Read family of discrepancies in which

h(p) =
(np)γ+1 − 1

nγ(γ + 1)
.

With these notations, we can introduce the GEL estimators as follows. Let

ρ(v) = −(1 + γv)(γ+1)/γ

γ + 1

be a function of a scalar v that is concave on its domain V , an open interval containing

0. Let Λ̂n(θ) = {λ : λTg(X i, θ) ∈ V , i = 1, 2, · · · , n}, then

θ̂GEL = arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

n∑
i=1

ρ(λTg(X i, θ)).

From Theorem 2.2 in Newey and Smith (2004), λ̂GEL = arg supλ∈Λ̂n(θ)

∑n
i=1 ρ(λTg(X i, θ))

exists and θ̂MD = θ̂GEL.

EL is a special case with h(p) = − ln p, ρ(v) = ln(1− v), and ET is another special

case when h(p) = p ln p, ρ(v) = −ev.
Denote V i(θ) = g(X i, θ), i = 1, 2, · · · , n, and denote the pairwise-mean equation

as W k(θ) with k = 1, 2, · · · , N = n(n+ 1)/2. It is easy to see that

Λ̂N(θ) = {λ : λTW k(θ) ∈ V , k = 1, 2, · · · , N} = Λ̂n(θ).
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Then the Generalized Mean Empirical Likelihood (GMEL) estimator can be defined

as

θ̂GMEL = arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

N∑
k=1

ρ(λTW k(θ)).

For simplicity, we denote θ̂GMEL as θ̂, and the corresponding λ̂GMEL as λ̂. Assume

that θ0 is the true value of the parameter θ, and

Σ0 = E
(
g(X, θ0) g

T (X, θ0)
)
, Γ0 = E

(
∂g(X, θ)

∂θT

∣∣∣
θ=θ0

)
.

Under the following assumptions we have the main result Theorem 2.4.

A1. θ0 ∈ Θ is the unique solution to E g(X, θ) = 0.

A2. Θ is compact.

A3. g(x, θ) is continuous at each θ ∈ Θ, continuously differentiable in a neighbor-

hood Nθ0 of θ0.

A4. For some α > 2,

E

(
sup
θ∈Θ
||g(X, θ)||α

)
<∞, E

(
sup

θ∈Nθ0

||∂g(X, θ)/∂θT ||

)
<∞.

A5. Σ0 is nonsingular and rank(Γ0) = d (definitions see (C.2)).

Theorem 2.4. Under the assumptions A1-A5, let ρ0 = ρ(0), we have

n

(
1

N

N∑
k=1

ρ(λ̂
T
W k(θ̂))− ρ0

)
→ χ2

(m−d), in dist.

Proof. See Appendix C.

If we consider ρ(v) = ln(1 − v), then Theorem 2.4 is an MEL version of Corollary

4 in Qin and Lawless (1994).
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3 Simulation

We present four simulation studies in this section, which correspond to the finite sam-

ple performance of different MEL methods in Section 2. We will compare the MEL

confidence regions with AEL and BEL results. For one dimensional estimating equa-

tion g(X, θ), we use the theoretical Bartlett correction b and a = b/2 for constructing

the BEL and AEL confidence regions, respectively. In Section 3.1 and 3.2, we will also

compare our method with EEL confidence regions, which are built with the first order

of EEL expansion factor Tsao and Wu (2013).

3.1 Example I: Single Parameter Model

Suppose that g(x, θ) = x− θ is the estimating equation for θ. We aim to compare the

different confidence intervals derived from MEL(IM), OEL(IO), BEL(IB), AEL(IA)

and EEL(IE), for a given sample size n. We consider different scenarios by generate

observations X1, X2, · · · , Xn from Norm(0, 1), t(5), χ2(1) and LogNorm(0, 1), respec-

tively. Based on 10, 000 replicates, the coverage proportions were calculated. The

simulation results are summarized in Table 1.

We noticed that MEL confidence intervals are easy to calculate, just as the first

order method of OEL. However, the second order methods BEL and AEL need to

evaluate the theoretical Bartlett correction factors, which is difficult to estimate. The

method EEL, the most accurate method in Tsao and Wu (2013), needs to solve an

equation to obtain the extended parameter. Therefore, from the aspects of computa-

tional efficiency, MEL method is recommended.

(1) Comparison for different sample sizes. For small sample size n, MEL is much bet-

ter than OEL, and it is a little better than EEL. All of the coverage probabilities

are close to the nominal levels when the sample size increase.

(2) Comparison for different methods. In fact, for most cases, MEL has the simi-

lar coverage probabilities as EEL. However, BEL and AEL use the theoretical

Bartlett correction factors, which is not available in practice. In practice, we

have to estimate the Bartlett correction factor, therefore we cannot achieve such

good performance for BEL and AEL.
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Table 1: Coverage probabilities for the mean parameter.

OEL MEL BEL AEL EEL OEL MEL BEL AEL EEL

n 1− α Norm(0, 1) t (5)

20 0.90 0.8805 0.9039 0.8935 0.8942 0.9018 0.8621 0.8883 0.9041 0.9109 0.8891

0.95 0.9327 0.9536 0.9430 0.9434 0.9538 0.9221 0.9419 0.9487 0.9556 0.9447

0.99 0.9804 0.9904 0.9834 0.9841 0.9912 0.9763 0.9881 0.9876 0.9953 0.9908

40 0.90 0.8908 0.9052 0.8979 0.8979 0.9025 0.8801 0.8957 0.9005 0.9005 0.8932

0.95 0.9433 0.9538 0.9476 0.9477 0.9526 0.9357 0.9472 0.9474 0.9474 0.9458

0.99 0.9858 0.9917 0.9872 0.9871 0.9917 0.9832 0.9895 0.9873 0.9873 0.9895

100 0.90 0.8969 0.9021 0.8998 0.8998 0.9017 0.8924 0.8975 0.9000 0.9000 0.8968

0.95 0.9481 0.9527 0.9501 0.9501 0.9524 0.9449 0.9501 0.9503 0.9503 0.9499

0.99 0.9900 0.9919 0.9906 0.9906 0.9915 0.9886 0.9918 0.9904 0.9904 0.9910

n 1− α χ2(5) LogNorm(0, 1)

20 0.90 0.8273 0.8538 0.8745 0.8840 0.8511 0.8064 0.8359 1.0000 1.0000 0.8323

0.95 0.8858 0.9156 0.9256 0.9359 0.9138 0.8680 0.8957 1.0000 1.0000 0.8941

0.99 0.9512 0.9692 0.9667 0.9841 0.9671 0.9373 0.9618 1.0000 1.0000 0.9599

40 0.90 0.8643 0.8828 0.8874 0.8890 0.8753 0.8489 0.8671 1.0000 1.0000 0.8601

0.95 0.9228 0.9397 0.9370 0.9383 0.9333 0.9027 0.9195 1.0000 1.0000 0.9153

0.99 0.9745 0.9852 0.9808 0.9818 0.9815 0.9615 0.9759 1.0000 1.0000 0.9712

100 0.90 0.8919 0.8988 0.8994 0.8995 0.8957 0.8695 0.8795 0.9413 0.9627 0.8755

0.95 0.9428 0.9502 0.9486 0.9491 0.9473 0.9231 0.9335 0.9728 0.9923 0.9292

0.99 0.9861 0.9913 0.9887 0.9889 0.9892 0.9784 0.9854 0.9948 1.0000 0.9819

The boldface results are the most accurate coverage probabilities among EL methods.
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Table 2: Numerical characteristics of different EL methods.
t(5) LogNorm(0, 1)

n OEL MEL BEL AEL EEL OEL MEL BEL AEL EEL

mean 20 1.2379 1.0670 0.7635 0.6381 1.0597 2.4854 1.8078 -1.8998 0.0062 1.5666

40 1.1074 1.0193 0.8952 0.8607 1.0288 1.5087 1.3013 0.1777 0.2345 1.3590

100 1.0577 1.0190 0.9766 0.9734 1.0264 1.2132 1.1301 0.7851 0.7008 1.1721

median 20 0.5410 0.5089 0.3337 0.3459 0.5269 0.6528 0.6078 -0.4990 0.0057 0.6310

40 0.4958 0.4803 0.4008 0.4036 0.4898 0.6135 0.5911 0.0723 0.1668 0.6046

100 0.4613 0.4553 0.4259 0.4262 0.4592 0.5334 0.5261 0.3452 0.3562 0.5307

variance 20 3.9691 2.4035 1.5098 0.5643 2.0427 314.4747 83.2156 187.7386 0.0000 6.6908

40 2.6470 1.9846 1.7298 1.3644 1.9754 7.0534 3.8520 0.0979 0.0492 4.3292

100 2.3290 2.0207 1.9856 1.9498 2.0743 3.2536 2.4522 1.3625 0.7679 2.8476

(3) Comparison for different distributions. Under Norm, t and χ2 distributions,

about a third of the cases, MEL performs best among these five EL methods.

Under logNorm distribution, AEL and BEL give coverage probabilities larger

than nominal, but MEL and EEL perform much better. Note that for heavy

tail distributions, the large kurtosis leads to a large negative theoretical Bartlett

correction b and further leads to smaller values for LE(θ0), thus the coverage

probabilities of BEL is much larger than nominal levels. This explains, for log-

normal distribution, why MEL is much better than other methods.

Table 2 shows the basic numerical characteristics of different log-EL ratio statistics,

such as expectations, variances and medians. Since all these asymptotically equivalent

statistics converges in distribution to χ2(1), the true mean and variance should be 1

and 2. From this table, we can see that

(1) Compared with other EL methods, OEL log-likelihood ratios are much larger. It

leads to the lower coverage proportions showed in Table 1.

(2) The results of BEL and AEL are similar. BEL has some negative values while

AEL has many 0s.

(3) MEL and EEL are similar. Meanwhile the mean and variance of MEL are closer

to true values than those of EEL.
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Table 3: The comparison between MEL and other EL methods.

Norm(0, 1) t(5) LogNorm(0, 1)

n proportion mean var proportion mean var proportion mean var

OEL−MEL 20 1 0.1680 0.1916 1 0.1798 0.2098 1 0.6728 8.0499

40 1 0.0825 0.0703 1 0.0902 0.0645 1 0.2084 0.5278

100 1 0.0312 0.0106 1 0.0382 0.1768 1 0.0901 0.1362

BEL−MEL 20 0.3173 0.0783 0.0940 0.0225 -0.0997 0.0202 0 -4.1773 836.7197

40 0.3243 0.0429 0.0460 0.0416 -0.0314 0.0155 0 -1.2584 3.4900

100 0.3210 0.0160 0.0075 0.0405 -0.0077 0.0085 0 -0.3949 0.2585

EEL−MEL 20 0.9146 0.0516 0.0209 0.8770 -0.0073 0.0379 0.8236 -0.2445 7.1008

40 0.9409 0.0117 0.0037 0.9186 0.0121 0.0060 0.8559 0.0635 0.0820

100 0.9065 0.0035 0.0016 0.9079 0.0082 0.0045 0.8657 0.0467 0.0550

The ”proportion” shows the proportion of positive difference. OEL is LO(θ0), BEL is LB(θ0), MEL

is LM (θ0) and EEL is LE(θ0)

For further study of the difference of these EL method, we get the following Table 3,

which shows the difference of log-empirical likelihood ratio between MEL and other EL

methods. From this table, we can further understand the reason why MEL performs

similar as EEL. The difference, LE(θ0) − LM(θ0), is very small (see the last row and

the column ‘mean’ for all three distributions; the mean differences are very small). For

the heavy tail distribution LogNorm(0, 1), we clearly have (see the column ‘proportion

- proportion of positive difference’)

LB(θ0) < LM(θ0) < LO(θ0).

It implies that for large kurtosis, MEL will correct the empirical likelihood automati-

cally, but BEL makes the empirical likelihood too small due to a large Bartlett correc-

tion factor b.

3.2 Example II: Regression Models

In this section, we consider the linear regression model Yi = β0+β1xi+εi, where εis are

independent random variables with mean zero and finite variance and the parameters

of interest are (β0, β1). Therefore the estimating equations are

g1(x, Y, β0, β1) = Y − β0 − β1x, g2(x, Y, β0, β1) = (Y − β0 − β1x)x.

14



Table 4: Coverage probabilities for regression parameters with homoscedastic error ε.

ε ∼ Norm(0, 1) ε ∼ t(5)

n 1− α OEL MEL BEL AEL EEL OEL MEL BEL AEL EEL

20 0.90 0.7992 0.8446 0.8490 0.8766 0.8528 0.7826 0.8314 0.9482 1.0000 0.8456

0.95 0.7296 0.9100 0.9074 0.9396 0.9186 0.8506 0.8906 0.9700 1.0000 0.9132

30 0.90 0.8324 0.8662 0.8618 0.8686 0.8656 0.8176 0.8536 0.9192 1.0000 0.8584

0.95 0.8894 0.9204 0.9124 0.9190 0.9212 0.8832 0.9134 0.9578 1.0000 0.9198

50 0.90 0.8702 0.8970 0.8896 0.8908 0.8920 0.8574 0.8822 0.9154 0.9366 0.8794

0.95 0.9234 0.9454 0.9384 0.9406 0.9430 0.9174 0.9394 0.9558 0.9812 0.9368

100 0.90 0.8818 0.8948 0.8890 0.8888 0.8912 0.8712 0.8868 0.8986 0.9028 0.8820

0.95 0.9378 0.9496 0.9440 0.9440 0.9470 0.9254 0.9366 0.9428 0.9468 0.9346

Two different scenarios are considered here: the homoscedastic case and the het-

eroscedastic case.

SCENARIO 1: Homoscedasticity

The true parameter values are β0 = 1, β1 = 2 and x is generated from standard

uniform distribution. We consider two different types of errors εi, one is drawn from

Norm(0, 1) and the other is a heavy tail distribution t(5). Table 4 shows the coverage

probabilities of confidence intervals derived from MEL, OEL, BEL , AEL and EEL

under different sample sizes n = 20, 30, 50. Each entry in the Table 4 is based on 5000

random replicates of size n.

SCENARIO 2: Heteroscedasticity

In this scenario, we explore the performance of MEL ratio statistics under het-

eroscedasticity. We choose the true parameter values β0 = 3, β1 = 2, and generate x

from Norm(2, 3) distribution. We set εi = x2i ∗ ξi, and generate ξi from Norm(0, 1)

and heavy tail distribution t(5), respectively. Similarly as Scenario 1, we still use the

theoretical Bartlett correction constant b to construct confidence regions. In this simu-

lation, we choose n = 50, 200, 500 respectively and all results are based on 5000 Monte

Carlo replications. The simulation results are summarized in Table 5.

Apart from the similar observations as Example I, we can also get the following

observations based on Table 4 and 5,

(1) Homo case: The AEL statistic suffers from a boundedness problem which may

lead to 100% confidence regions. For the heavy tail distribution t(5), the BEL
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Table 5: Coverage probabilities for regression parameters with heteroscedastic error

ε = x2ξ.

ξ ∼ Norm(0, 1) ξ ∼ t(5)

n 1− α OEL MEL BEL AEL EEL OEL MEL BEL AEL EEL

50 0.90 0.7450 0.7864 0.8986 0.9874 0.7766 0.7234 0.7618 0.9978 1.0000 0.7594

0.95 0.8212 0.8644 0.9422 0.9972 0.8562 0.8046 0.8498 0.9998 1.0000 0.8496

200 0.90 0.8324 0.8600 0.8950 0.9238 0.8392 0.8218 0.8472 0.9702 0.9978 0.8284

0.95 0.9016 0.9258 0.9434 0.9678 0.9082 0.8890 0.9100 0.9868 1.0000 0.8928

500 0.90 0.8730 0.8952 0.8994 0.9064 0.8752 0.8598 0.8798 0.9412 0.9748 0.8618

0.95 0.9288 0.9460 0.9504 0.9568 0.9308 0.9230 0.9370 0.9746 0.9944 0.9246

and AEL coverage probabilities are much larger than nominal levels when sample

size is small. MEL has the similar performance as EEL, but the coverage errors

of MEL is smaller than EEL when sample size increases to n = 50.

(2) Hetero case: All of the coverage probabilities slowly converge to the nominal

levels. When sample size n = 500, the coverage probabilities of OEL are still

smaller than nominal levels. Under Norm distribution, theoretical BEL performs

best; but for the same reason as Example I, under t distribution, both BEL and

AEL are much larger. In this case, MEL performs better than EEL uniformly,

especially for t distribution.

3.3 Example III: Two Sample Comparison

In this section, we report a simulation study designed to evaluate the performance

of the MEL confidence regions proposed in Section 2.2. For simplicity, we consider

d = 1 and g(x) = x. Simulated data sets of various n1 and n2 are generated under the

following two scenarios: (1) X drawn from the standard exponential distribution and

Y from χ2(3) distribution; (2) X from t(5) distribution and Y from Log-Norm(0, 1)

distribution. The nominal coverage levels under consideration are α = 0.90, 0.95.

Table 6 shows the coverage percentage comparisons for constructing the confidence

intervals, where all results are based on 5000 Monte Carlo replicates. In all cases, the

MEL works uniformly better than OEL, and it is much more accurate when sample

sizes are small.
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Table 6: Coverage probabilities for two sample comparison.

X ∼ Exp(1), Y ∼ χ2(3) X ∼ t(5), Y ∼ LogN(0, 1)

0.90 0.95 0.90 0.95

(n1, n2) OEL MEL OEL MEL (n1, n2) OEL MEL OEL MEL

(10, 10) 0.8459 0.8836 0.8993 0.9356 (20, 20) 0.8586 0.8793 0.9238 0.9376

(10, 20) 0.8659 0.8835 0.9177 0.9357 (20, 50) 0.8670 0.9123 0.9270 0.9582

(10, 30) 0.8791 0.9074 0.9308 0.9580 (20, 100) 0.8799 0.9253 0.9219 0.9627

(20, 10) 0.8376 0.8903 0.8973 0.9440 (50, 20) 0.8417 0.8806 0.8988 0.9312

(20, 20) 0.8752 0.8976 0.9321 0.9491 (50, 50) 0.8490 0.8800 0.9120 0.9350

(20, 30) 0.8823 0.8936 0.9307 0.9429 (50, 100) 0.8810 0.8878 0.9330 0.9389

(30, 10) 0.8378 0.8921 0.8976 0.9432 (100, 20) 0.8298 0.8718 0.8859 0.9354

(30, 20) 0.8737 0.9023 0.9249 0.9454 (100, 50) 0.8430 0.8758 0.9050 0.9343

(30, 30) 0.8782 0.8942 0.9344 0.9466 (100, 100) 0.8770 0.8840 0.9310 0.9350

(50, 20) 0.8573 0.8931 0.9195 0.9458 (200, 50) 0.8450 0.8756 0.9050 0.9455

(50, 30) 0.8810 0.9030 0.9332 0.9513 (200, 100) 0.8860 0.9013 0.9470 0.9587

(50, 50) 0.8878 0.8987 0.9388 0.9479 (200, 200) 0.8970 0.8990 0.9490 0.9510

3.4 Example IV: Exponentially Tilted Empirical Likelihood

To assess the performance of MEL based on Theorem 2.3, we first carry out the fol-

lowing simulation study. We fixed the nominal level α = 0.95 and sample size n = 100.

The following distributions are considered, Normal(0, 1), Weibull(2, 1), Generalized

Pareto(1/4, 1, 0) and LNi for LogNorm(0, i2/4), i = 1, 2, 3. The skewnesses of these

distributions are: 0, 2, 7.07, 1.75, 6.18 and 33.47. Under all these distributions, we

implement the following six different methods, (1) OEL, (2) ETL-1: the Newey-Smith

empirical entropy difference T1(θ), (3) ETL-2: Jaynes empirical entropy difference

T2(θ), (4) MEL, (5) METL-1: the Newey-Smith mean empirical entropy difference

T M1 (θ) and (6) METL-2: the Jaynes mean empirical entropy difference T M2 (θ).

The results of coverage probabilities based on 5000 Monte Carlo replicates are

shown in Figure 3.4 (details can be found in the supplementary file). For all cases,

the performance of MEL is the best. Also note that as the skewness increases, MEL

becomes much better than other methods. Since Exponential Tilted EL is not Bartlett

correctable, see Jing (1996). MEL provides a good way to improve the accuracy of

coverage probabilities.

17



●
●

●

●
●

●

0 10 20 30 40

0.
86

0.
88

0.
90

0.
92

0.
94

skewness

N
om

in
al

 le
ve

l =
 9

5%

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

OEL
ETL1
ETL2
MEL
METL1
METL2

Figure 1: Coverage probabilities of mean under different distributions when sample

size is 100. Notation ◦ stands for EL-type coverage probabilities and M for MEL-type

coverage probabilities.
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Table 7: Boston Housing Study: confidence intervals for the mean parameter

OEL ETL-1 ETL-2 MEL METL-1 METL-2

(2.9611, 4.4970) (2.9211, 4.4188) (2.9204, 4.4197) (2.9599, 4.5343) (2.9205, 4.4198) (2.9193, 4.4215)

4 Real Data Analysis

In this section, we compare our proposed methods with existing methods using a

real dataset. This example is taken from the Boston Housing Study, to illustrate

our proposed MEL for Exponentially Tilted Likelihood method in Section 2.3. The

distribution of per capita crime rate by town (CRIM) in the dataset follows an unknown

heavy-tailed distribution. The data set, which has even been analyzed by Harrison and

Rubinfeld (1978), consists of 506 observations. We are interested in the mean of CRIM,

θ. A comparison of OEL, ETL-1, ETL-2, MEL, METL-1 and METL-2 was carried out.

The 95% confidence intervals are list in Table 7., which show similar performance of

our proposed methods and other existing methods.

5 Conclusion

This paper developed a mean empirical likelihood approach, which gives much more

accurate confidence region estimates and coverage probabilities. We presented the

method and proved its large sample properties under different application problems,

regression models, two-sample comparisons and exponentially tilted likelihood. This

new approach outperforms existing methods, in particular for heavy-tail or highly-

skewed distributions.

The new method gains its advantage by using the pairwise-mean data and is

equivalent to using each data point more than once. A well-known example is the

Hodges-Lehmann sign-based estimator, see Hodges and Lehmann (1963), using a sim-

ilar mean-pair data idea, which provides much more reliable nonparametric estimators

than standard median estimator. Such mean-pair data approach will not be very useful

for standard estimation approaches where observations have the same weights, how-

ever, it brings new insights to the area of empirical likelihood which assigns different

weights for observations. We are currently working on a more general approach of con-
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structing such pseudo dataset, which can determine the percentage of pairwise mean

data and the percentage of multiple mean data in the pseudo dataset and provide an

optimum solution.

Note that Wood et al. (1996) proposed a novel sequential linearization method

for empirical likelihood with nonlinear constraints, which can be applied to solve the

U-statistics problem in OEL. But from the practical viewpoint, this method typically

requires iterations to get satisfactory results. The Jackknife Empirical Likelihood(JEL)

method (Jing et al., 2009) can improve the computational efficiency for the sequential

linearization method in some degree, but it still needs bootstrap calibrations to improve

the performance on coverage probabilities. Our MEL approach uses U-statistics as well,

however, it is actually different from the sequential linearization method. In our MEL

approach, each pair-wise mean data point Wk = (Vi + Vj)/2 corresponds to a weight

pk, k = 1, · · · , N . On the contrary, in the sequential linearization method, each pair-

wise mean data point (Vi +Vj)/2 corresponds to the product pipj, i, j = 1, · · · , n. This

is why the sequential linearization method has non-linear constraints and involves a

heavier computational cost. It is interesting to study how well MEL performs for EL

with non-linear constraints and we left this to future research.

A Proof of Theorem 2.1

Denote V i = V i(θ0) and W i = W i(θ0). We shall introduce the following lemma,

which is a key for the proof of Theorem 2.1.

Lemma A.1. Under the condition Cov(V 1) = Σ exists, rank(Σ) = d, we have

(i) max
1≤k≤N

‖W k‖ = op(n
1/2),

(ii) e′

(
1

N

N∑
k=1

W k

)
= Op(n

−1/2), where e is any unit vector in Rd,

(iii)
1

N

N∑
k=1

W kW
′
k =

1

2
Σ + op(1),

(iv)
1

N

N∑
k=1

W ′
kW k = Op(1).
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Proof. (i) Since Cov(V i) = Σ exists, we immediately have maxi ‖V i‖ = op(n
1/2) and

max
1≤k≤N

‖W k‖ = max
i≤j

∥∥∥∥V i + V j

2

∥∥∥∥ ≤ 1

2

(
max
i
‖V i‖+ max

j
‖V j‖

)
= op(n

1/2).

(ii) Noticing

1

N

N∑
k=1

W k =
1

2N

(
n∑
i=1

n∑
j=1

V i + V j

2
+

n∑
i=1

V i

)
=
n+ 1

2N

n∑
i=1

V i = V̄ n,

and following the assumption Cov(V 1) = Σ, we can obtain e′V̄ n = e′( 1
n

∑n
i=1 V i) =

Op(n
−1/2). Therefore

e′

(
1

N

N∑
k=1

W k

)
= Op(n

−1/2).

(iii)

1

N

N∑
k=1

W kW
′
k =

1

2N

(
n∑
i=1

n∑
j=1

(
V i + V j

2

)(
V i + V j

2

)′
+

n∑
i=1

V iV
′
i

)

=
1

2(n+ 1)

(
1√
n

n∑
i=1

V i

)(
1√
n

n∑
i=1

V ′i

)
+

n+ 2

2(n+ 1)

(
1

n

n∑
i=1

V iV
′
i

)
=

1

2
Σ + op(1).

(iv)

1

N

N∑
k=1

‖W k‖2 =
n+ 2

2(n+ 1)

(
1

n

n∑
i=1

V ′iV i

)
+

1

2(n+ 1)

(
1√
n

n∑
i=1

V ′i

)(
1√
n

n∑
i=1

V i

)
= Op(1).

Now we can prove Theorem 2.1.

Proof. According to Lemma 11.1 in Owen (2001), with probability tending to 1, 0 is

inside the convex hull of W k, k = 1, 2, · · · , n. By using the Lagrange multiplier, we

have

pk =
1

N(1 + λ′W k)
> 0,

where λ satisfies the equation
∑
pkW k = 1. Then applying Lemma A.1, we have

‖λ‖ = Op(n
−1/2). (A.1)
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On the other hand, with following equation

0 =
1

N

N∑
k=1

W k

1 + λ′W k

=
1

N

N∑
k=1

W k −
1

N

(
N∑
k=1

W kW
′
k

)
λ+

1

N

N∑
k=1

W k(λ
′W k)

2

1 + λ′W k

,

equation((A.1)) and Lemma A.1, we get

λ =

(
N∑
k=1

W kW
′
k

)−1( N∑
k=1

W k

)
+ op(n

−1/2).

Using Taylor’s expansion, we can write

LM(θ0) =
2

n+ 1

N∑
k=1

log(1+λ′W k) =
2

n+ 1

N∑
k=1

(
λ′W k −

1

2
(λ′W k)

2

)
+

rN
n+ 1

, (A.2)

where

‖rN‖ ≤ C‖λ‖3 max
1≤k≤N

‖W k‖
N∑
k=1

‖W k‖2 = Op(n
−3/2)op(n

1/2)Op(n
2) = op(n).

Substitute λ into ((A.2)), we obtain

LM(θ0) =
1

n+ 1

(
N∑
k=1

W k

)(
N∑
k=1

W kW
′
k

)−1( N∑
k=1

W k

)
+ op(1)

=
2N

n+ 1
V̄
′
nΣ
−1V̄ n + op(1) = nV̄

′
nΣ
−1V̄ n + op(1)→ χ2(d), in dist.

B Proof of Theorem 2.2

The notations follow that in Section 2.2. First we shall introduce the following Lemma

giving the relation of λ1, λ2 and µ.

Lemma B.1. Assume ΣX := Cov(X) and ΣY := Cov(Y ) exist and rank(ΣX) =

rank(ΣY ) = d. Denote µ0 as the mean of X and

V X =
1

2δ
ΣX , V Y =

1

2(1− δ)
ΣY , CX =

1

Nδ

N1∑
s=1

(WX
s −µ0), CY =

1

N(1− δ)

N2∑
t=1

(W Y
t −µ0).

Then we have

(i) λ1 = (V X)−1(CX − µ) + op(n
−1/2), λ2 = (V Y )−1(CY − µ) + op(n

−1/2),
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µ = V X (V X + V Y )−1 V Y

(
V −1X CX + V −1Y CY

)
= µ0 +Op(n

−1/2),

(ii) SX =
1

N1

N1∑
s=1

(WX
s − µ)(WX

s − µ)T =
1

2
ΣX + op(1),

SY =
1

N2

N2∑
t=1

(W Y
t − µ)(W Y

t − µ)T =
1

2
ΣY + op(1).

The proof of Lemma B.1 is similar to Liu et al. (2008) and is omitted here. Now

we provide the proof of Theorem 2.2.

Proof. Using Taylor’s expansion, we can write

LM2 (θ0) =
2

n

N1∑
s=1

log
[
1 + δ−1λ′1(W

X
s − µ)

]
+

2

n

N2∑
t=1

log
[
1 + (1− δ)−1λ′2(W Y

t − µ)
]

+
rN
n
,

With a similar argument as that in Theorem 2.1, we know that rN is of order op(n
−1).

Therefore we have

LM2 (θ0) =
2

n

N1∑
s=1

δ−1λ′1(W
X
s − µ)− 1

n

N1∑
s=1

[
δ−1λ′1(W

X
s − µ)

]2
+

2

n

N2∑
t=1

(1− δ)−1λ′2(W Y
t − µ)− 1

n

N2∑
t=1

[
(1− δ)−1λ′2(W Y

t − µ)
]2

+ op(1)

=
2N1

n
δ−1λ′1(CX + µ0 − µ)− N1

n
δ−1λ′1SXδ

−1λ1

+
2N2

n
(1− δ)−1λ′2(CY + µ0 − µ)− N2

n
(1− δ)−1λ′2SY (1− δ)−1λ2 + op(1).

Substituting (λ1, λ2) into LM2 (θ0) and with some simple calculations, we further obtain

LM2 (θ0) = 2n−1Nδ(CX − µ)′Σ−1X (CX − µ) + 2n−1N(1− δ)(CY − µ)′Σ−1Y (CY − µ)

+n−1N
[
(CX − µ)′V −1X + (CY − µ)′V −1Y

]
µ0 + op(1).

Since (CX − µ)′V −1X + (CY − µ)′V −1Y = 0, we can rewrite the above LM2 (θ0) as

LM2 (θ0) = 2n−1Nδ(CX − µ)′Σ−1X (CX − µ) + 2n−1N(1− δ)(CY − µ)′Σ−1Y (CY − µ) + op(1)

= n−1N(CX −CY )′(V X + V Y )−1(CX −CY ) + op(1)

= n(CX −CY )′
(

1

∆2
ΣX +

1

(1−∆)2
ΣY

)−1
(CX −CY ) + op(1). (B.1)

Noting that CX − CY = X̄ − Ȳ , we then apply the Central Limit Theorem and

have

(CX −CY )′
(

1

n1

ΣX +
1

n2

ΣY

)−1
(CX −CY )
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= n(CX −CY )′
(

1

∆
ΣX +

1

1−∆
ΣY

)−1
(CX −CY )→ χ2(d). (B.2)

The theorem is then proved by the fact that equations ((B.1)) and ((B.2)) together

imply

n−1LM2 (θ0)→
d∑

k=1

rk χ
2
k(1), in dist.

where χ2
k(1) are standard χ2 distribution, and rk are the eigenvalues of (RM)−1R,

R =
1

∆0

ΣX +
1

1−∆0

ΣY , RM =
1

∆2
0

ΣX +
1

(1−∆0)2
ΣY .

C Proof of Theorem 2.4

Proof. Denote ρ1 = d ρ(v)/d v, ρ2 = d2 ρ(v)/d v2, and Γk(θ) = ∂W k(θ)/∂θ.

Under the assumptions A1-A5, similarly as proof of Theorem 2.2 and 3.1 in Newey

and Smith (2004), GMEL estimator θ̂ and the corresponding λ̂ = λ̂(θ̂) satisfy

N∑
k=1

ρ1(λ̂
T
W k(θ̂))

(
∂W k(θ)

∂θ

∣∣∣
θ=θ̂

)T
λ̂ = 0,

N∑
k=1

ρ1(λ̂
T
W k(θ̂))W k(θ̂) = 0,

and

θ̂ → θ0, λ̂ = Op(n
−1/2).

By Taylor expansion for (θ̂
T
, λ̂

T
)T at (θT0 , 0)T , 0

0

 =

 0

− 1
N

∑N
k=1W k(θ0)

+ ΨN

 θ̂ − θ0
λ̂− 0

 , (C.1)

where ΨN is a (d+m) ∗ (d+m) matrix,

ΨN =
1

N

 0,
∑N

k=1 ρ1(λ̃
T
W k(θ̃))ΓT

k (θ̃)∑N
k=1 ρ1(λ̃

T
W k(θ̃))Γk(θ̃)

∑N
k=1 ρ2(λ̃

T
W k(θ̃))W T

k (θ̃)W k(θ̃)

 ,
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θ̃ and λ̃ are vectors between (θ̂
T
, λ̂

T
)T and (θT0 , 0)T . Since ρ1(0) = −1, ρ2(0) = −1,

together with Lemma A1 in Newey and Smith (2004), we get

max
k
|ρ1(λ̃

T
W k(θ̃) + 1| → 0, in pr.

max
k
|ρ2(λ̃

T
W k(θ̃) + 1| → 0, in pr.

Further, using the similar proof as Lemma A.1 in Appendix A, we have

1

N

N∑
k=1

ρ1(λ̃
T
W k(θ̃))Γk(θ̃) = −Γ0 + op(1),

1

N

N∑
k=1

ρ2(λ̃
T
Wk(θ̃))W T

k (θ̃)W k(θ̃) = −1

2
Σ0 + op(1). (C.2)

Hence

ΨN → Ψ =

 0, −ΓT
0

−Γ0 −1
2
Σ0

 , Ψ−1 =

 1
2
K, −L
−LT −2H

 ,

where

K = (ΓT
0 Σ−10 Γ0)

−1, L = KΓT
0 Σ−10 , H = Σ−10 −Σ−10 Γ0KΓT

0 Σ−10 .

Denote W̄ (θ) = N−1
∑N

k=1W k(θ). Since W̄ (θ0) = n−1
∑n

i=1 V i(θ0) = Op(n
−1/2),

after solving equation (C.1), we get

√
n

 θ̂ − θ0
λ̂− 0

 = −Ψ−1N
√
n

 0

−W̄ (θ0)

 = Ψ−1

 0
√
nW̄ (θ0)

+ op(1)

=

 −L
√
nW̄ (θ0)

−2H
√
nW̄ (θ0)

+ op(1).

Therefore(
1

N

N∑
k=1

W k(θ̂)

)
=

(
1

N

N∑
k=1

W k(θ0)

)
−

(
1

N

N∑
k=1

Γk(θ̃)

)
(θ̂ − θ0)

= (I − Γ0L)

(
1

N

N∑
k=1

W k(θ0)

)
= −1

2
Σ0 λ̂+ op(n

−1/2). (C.3)

Using Taylor expansion,

1

N

N∑
k=1

ρ(λ̂
T
W k(θ̂)) = ρ0 − λ̂

T

(
1

N

N∑
k=1

W k(θ̂)

)
+

1

2
λ̂
T

(
1

N

N∑
k=1

ρ2(λ̃
T
W k(θ̂))W k(θ̂)W T

k (θ̂)

)
λ̂
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where λ̃ is between λ̂ and 0, and (C.2), we have

1

N

N∑
k=1

ρ(λ̂
T
W k(θ̂)) = ρ0 − λ̂

T
W̄ (θ̂)− 1

4
λ̂
T
Σ0λ̂+ op(n

−1)

= ρ0 + W̄
T

(θ̂)Σ−10 W̄ (θ̂) + op(n
−1)

= ρ0 +

(
1

n

n∑
i=1

V i(θ̂)

)T

Σ−10

(
1

n

n∑
i=1

V i(θ̂)

)
+ op(n

−1).

It follows Newey and Smith (2004) that

n

(
1

n

n∑
i=1

V i(θ̂)

)T

Σ−10

(
1

n

n∑
i=1

V i(θ̂)

)
→ χ2

(m−d), in dist.

Hence

n

(
1

N

N∑
k=1

ρ(λ̂
T
W k(θ̂))− ρ0

)
→ χ2

(m−d), in dist.
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