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Abstract

Developments in laser technology over the past 60 years have enabled experimentalists

to study a number of interesting processes that can occur during laser-molecule interac-

tions. Study of such processes can help to shed light on ultrafast electronic and molec-

ular processes, and aid with the development of a range of technologies. However, the-

oretically describing interactions of molecules with intense laser pulses is challenging.

Traditionally, describing such interactions requires the solution of the time-dependent

Schrödinger equation, but this approach is only feasible for the smallest molecular

systems. An alternative approach is to use time-dependent density functional theory

(TDDFT). In this thesis we report on calculations of ionization and high harmonic gen-

eration (HHG) in a number of small molecules, using the EDAMAME code, which com-

bines a TDDFT description of electronic dynamics with a classical treatment of ionic

dynamics. The work is divided into two main areas.

In the first area, we study the response of acetylene to a linearly polarized, mid infrared

(mid-IR) laser pulse. The alignment of the molecule relative to the laser polarization

direction is shown to have a large influence on HHG in the system. With the molecular

axis aligned parallel to the laser polarization direction, we observe a double plateau in

the harmonic spectrum, with an inner plateau that arises due to ionization from and

recombination back to an excited state. This mechanism is investigated through use of

a pump-probe scheme, in which the molecule is excited by a vacuum ultraviolet (VUV)

pump pulse before HHG is driven by the mid-IR probe pulse. With the wavelength

of the pump pulse suitably chosen, we observe a dramatic enhancement of the inner

plateau harmonics, while the outer plateau is relatively unaffected.

In the second area of work, we study the interaction of a mid-IR pulse with three biolog-

ically relevant molecules: the nucleobases uracil and thymine, and the radiosensitiser
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molecule 5-fluorouracil. We firstly compare differences in ionization and HHG between

the two nucleobases, and between different molecular orientations relative to the laser

polarization direction. On average we observe greater ionization from thymine than

from uracil, but comparable HHG. Comparing the responses of the nucleobase thymine

and the radiosensitiser 5-fluorouracil, we again see greater ionization from thymine,

but larger differences in HHG between thymine and 5-fluorouracil than between uracil

and thymine. In all three molecules we find that ionization and HHG are significantly

reduced when the laser is polarized perpendicular to the plane of the molecule.
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Introduction

Effective design or control of any system requires an understanding of the dynamic

response of individual components of the system to changing conditions. At the atomic

and molecular scale, these dynamics can occur on extremely short timescales. Un-

derstanding such dynamics is important for scientific and technological advancement

in a number of areas, for example for the development of more efficient solar cells,

more sensitive electronic devices, and more effective radiotherapy treatments. Due to

the extremely short timescales of electronic processes in molecules (on the order of

attoseconds to femtoseconds), their study requires the use of specialized techniques.

Intense, ultrashort, laser pulses are an effective tool for studying such processes, al-

lowing for sufficient precision and sufficiently short temporal resolution. Since the

demonstration of the first working laser in 1960, laser technology has improved radi-

cally thanks to a number of important innovations. Some of these developments were

recently recognised in the 2018 Nobel Prize in Physics, which was awarded “for ground-

breaking inventions in the field of laser physics”. As the maximum intensity of laser

pulses has increased dramatically, so too has the minimum pulse duration decreased.

State of the art laser systems can now produce controlled pulses with durations com-

parable to the characteristic timescales of electronic motion. Such short pulses are

essential for imaging, and potentially controlling, the dynamics of electrons, for exam-

ple during chemical reactions.

The huge increase in laser intensities in recent years has allowed experimentalists to

study a number of interesting physical processes that do not occur in laser-molecule

interactions when lower intensity pulses are used. One such process is high harmonic

generation (HHG). In this process, an electron is ionized from an atom or molecule by
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an intense laser field, and can gain a large amount of kinetic energy while propagating

in the presence of the field, before returning to the parent system when the direction

of the applied field reverses. Upon return, the ionized electron may recombine with

the atom or molecule, with the kinetic energy gained in the field emitted as a high

energy photon. This kinetic energy can be substantial, and so the emitted photon can

have an energy many times the energy of a photon in the applied laser field. HHG

is a particularly interesting process due to its applications as both a sensitive probe

of electronic and molecular dynamics and a means of producing attosecond duration

pulses.

While the improvements in laser technology have enabled the study of interesting pro-

cesses such as HHG, they have also made the description of laser-molecule interactions

more complicated, and the interpretation of experimental results more challenging.

For this reason, new theoretical approaches are required to model the interactions of

molecules with high intensity laser fields, in order to aid the interpretation of the ex-

perimental results, and to study systems and regimes that are difficult to realise exper-

imentally.

The electronic and ionic dynamics of a non-relativistic molecular system exposed to

an intense laser pulse can in principle be obtained through direct solution of the time-

dependent Schrödinger equation (TDSE). In practice however, this approach is only

feasible for the smallest molecular systems, due to the dramatic increase in computa-

tional cost as the system size is increased. Alternative approaches are therefore required

in order to study strong-field dynamics in molecules more generally. A common simpli-

fication is to separate the dynamics of the electrons and ions, since the electrons will

in general adapt to changes on a much faster timescale than the ions. Even with this

approximation however, we still require the solution of the TDSE for a many-electron

system; an impossible task for all but the simplest of systems.

An alternative to solving the TDSE directly is to use time-dependent density functional

theory (TDDFT). While in the TDSE the evolving state of the electronic system can be

completely described by the time-dependent electronic wavefunction, in TDDFT the

state of the system is instead described in terms of the time-dependent single-particle

electronic density. Based on the ideas of density functional theory (DFT), which has be-
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come one of the most widely used methods for electronic structure calculations, TDDFT

was shown in 1984 to be in principle an exact theory. While in practice this exactness

is unachievable due to the necessity of invoking several approximations, TDDFT has

grown in popularity over the past 20 years due to its useful balance between accuracy

and efficiency.

The general aim of this project is to use TDDFT to study the interaction of intense, short

laser pulses with a number of small molecules. Of particular interest will be the degree

to which HHG varies between molecules and between molecular orientations relative

to the applied laser field. In the work described in this thesis, four molecules are stud-

ied using the EDAMAME (Ehrenfest DynAMics on Adaptive MEshes) code. Written in

Fortran2008, this is a highly parallelized computer code suitable for large-scale calcu-

lations on supercomputers, making use of thousands of processors. EDAMAME em-

ploys a mixed quantum-classical description of laser-molecule interactions, in which

the electronic dynamics are described using TDDFT, while the motion of the ions is

treated classically. Using EDAMAME, we are able to study the interaction of a range

of molecules with intense laser pulses, and can investigate, for example, the effect of

molecular orientation, ionic motion, and choice of laser parameters on the response of

the molecule. The project is divided into two main areas of work.

In the first area of work, the molecule of interest is acetylene, which is a small, linear,

hydrocarbon. The relative simplicity of acetylene, along with the fact that it is cheaply

available in the gas phase at room temperature, has made it a popular molecule for

both experimental and theoretical studies for many years. In recent years, a number

of experimental studies have studied HHG in acetylene, investigating how the HHG

signal varies as the molecule is rotated, as well as how the maximum energy of the

emitted harmonics can be increased by using longer wavelength laser pulses. Theoret-

ically however, studies of HHG in acetylene have been much more limited. This is due

in part to the fact that accurately describing HHG theoretically is a challenging task.

The difficulty arises from the fact that although the HHG process occurs over a very

short timescale, the ionized electron can travel a large distance away from the atom or

molecule during that time. As such, accurately describing HHG requires calculations

with both large spatial extents and fine temporal resolution. Taken together these two

requirements make the theoretical description of HHG in molecules computationally
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demanding. The purpose of this area of work is to perform one of the first in-depth

theoretical studies of HHG in acetylene, using a mid-infrared driving laser pulse, as

was used in recent experimental HHG studies in acetylene. Of particular interest in

this study will be the effect of the alignment of the molecule (relative to the laser po-

larization direction) on both the ionization and HHG in the molecule, and the effect

that exciting the molecule ahead the application of the driving laser pulse has on the

response of the system (i.e. the effect of different pump-probe laser pulse setups).

The other three molecules studied in this thesis are uracil, thymine and 5-fluorouracil,

which are of interest due to their biological relevance. Thymine and uracil are nucle-

obases in DNA and RNA respectively, while 5-fluorouracil is a radiosensitiser molecule,

which can be used in radiotherapy treatments to enhance lethal damage to cancerous

cells. These three molecules are much more complex than acetylene, and more chal-

lenging to work with both experimentally and computationally. A number of previous

studies on these molecules have focused on the fragmentation and relaxation dynam-

ics of the molecules, following interaction with a low intensity, high frequency, pump

pulse. Studies of the interaction of these molecules with intense laser pulses, how-

ever, are few in number, especially in terms of HHG studies. On the experimental side,

this is due in part to technical challenges in preparing a suitable gas-phase sample of

molecules, since uracil, thymine and 5-fluorouracil are all solid at room temperature.

From a theoretical point of view, describing the interaction of these molecules with an

intense laser pulse raises the same challenges that describing such an interaction for

acetylene does, but these are exasperated due to the significantly larger size and com-

plexity of these biological molecules. This area of work has three main aims. Firstly, to

determine the extent to which EDAMAME can accurately and efficiently describe larger

and more complicated molecules than those previously studied with the code. Sec-

ondly, to perform the first calculations of HHG in these biologically-relevant molecules,

and investigate the effect of the molecular alignment relative to the laser polarization

direction on the harmonic response. Thirdly, to compare ionization and HHG in uracil

and thymine on the one hand (and how the calculated harmonic responses compare

with the results of the only experimental study of HHG in these molecules to date),

and in thymine and 5-fluorouracil on the other (and whether there are significant dif-

ferences between the responses of the nucleobase and the radiosensitiser).
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Thesis structure

This thesis is arranged as follows. We begin, in Chapter 1, by introducing a number of

key aspects of strong-field physics, with a focus on the ionization and harmonic genera-

tion processes that can occur during the interaction of a molecule with a short, intense,

applied laser field. In Chapter 2 we introduce a number of the theoretical approaches

used to describe such an interaction, with a particular focus on the time-dependent

density functional theory (TDDFT) and quantum-classical molecular dynamics meth-

ods used in the work described in this thesis. These methods are implemented in a

Fortran2008 code called EDAMAME, which is the subject of Chapter 3. This code is

used to study the interaction of a number of different molecules with intense laser

pulses; the results of these calculations are presented in Chapters 4 and 5.

In Chapter 4, we investigate the response of acetylene to mid-infrared (mid-IR) laser

pulses. In this study we focus on the high harmonic spectra produced during inter-

actions with various choices of laser parameters and molecular orientations (relative

to the laser polarization direction). Of particular interest is the presence of a double

plateau structure in the high harmonic spectrum when the molecular axis is aligned par-

allel to the laser polarization direction. We investigate the origin of the inner plateau

region in this spectrum, and propose that it arises due to ionization from and recom-

bination back to an excited state. This mechanism is investigated using a pump-probe

laser setup, in which we excite the molecule with a lower intensity, higher frequency,

pump pulse before applying the mid-IR probe pulse.

In Chapter 5, we compare the responses of uracil, thymine and 5-fluorouracil to a mid-

IR laser pulse, as well as the effect of the molecular orientation relative to the laser

polarization direction. The more complicated structure of these molecules compared

to acetylene required the implementation of new finite difference methods into the

EDAMAME code. Using these new methods, we study ionization and high harmonic

generation in the three molecules, for three different orientations of each. Firstly we

compare the responses of the two nucleobases, uracil and thymine, and consider how

our results compare with a previous experimental study of HHG in ablation plumes

of uracil and thymine. We then consider differences between the responses of the

nucleobase in DNA, thymine, and its radiosensitising replacement, 5-fluorouracil. To
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conclude the thesis, we summarise the main results of Chapters 4 and 5, and outline a

number of possible directions for future work.

Unless otherwise stated, atomic units will be used throughout this thesis. In this system

of units, the electronic mass, electronic charge and reduced Planck constant are defined

as me = e = ~ = 1. Some important conversions between atomic units and other

common units are given in Table 1.

Quantity Name/Symbol Value in SI units Value in common units

Length Bohr radius (a0) 5.29177×10-11 m 0.529177 Å
Energy Hartree (Ha) 4.35975×10-18 J 27.2114 eV
Time 2.41888×10-17 s 2.41888×10-2 fs

Velocity 2.18769×106 ms-1 (1/137) c
E-field 5.14221×1011 V/m 5.14221×109 V/cm
B-field 2.35371×105 T 2.35371×109 G

Intensity 3.50945×1020 W/m2 3.50945×1016 W/cm2

Table 1: A number of important conversion factors for switching between atomic units,
SI units, and other common units. In the entry for velocity, c is the speed of light in
ms-1 (c = 2.99792×108 ms-1).
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Chapter 1

Strong-field laser-matter

interactions

1.1 Introduction

The series of photographs shown in Fig. 1.1 are iconic in the history of photography, and

were made into one of the earliest examples of a motion picture. Produced in 1878,

these photos were the result of a photographic experiment that aimed to determine

whether a galloping horse ever completely lifts all four of its feet off the ground; this

involves motion that is too fast for the human eye to resolve. In order to answer this

question, Eadweard Muybridge set up a series of cameras, each connected to a tripwire

that would trigger the camera when the horse galloped past. The resulting photographs

showed that all four feet do indeed leave the ground at once.

While having a large number of cameras spread out along the path of the horse al-

lowed Muybridge to photograph the horse at different stages of its gallop, resolving the

motion of the horse at all required cameras with fast shutter speeds. Without this, the

rapid movement of the horse and its hooves would have been blurred out in every pho-

tograph. The importance of the shutter speed is illustrated in Fig. 1.2. In Fig. 1.2(a), a

slow shutter speed is used, and the resulting photograph is so blurry that the subjects

(pigeons) are almost unrecognisable. In Fig. 1.2(b), the shutter speed is increased, and
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Figure 1.1: Series of photographs by Eadweard Muybridge: The Horse in motion. “Sallie

Gardner,” owned by Leland Stanford; running at a 1:40 gait over the Palo Alto track, 19th

June 1878. Figure reproduced from the Library of Congress Prints and Photographs
Division repository [1].

the birds on the ground are well imaged, but the wings of those in flight are still blurry.

Finally, in Fig. 1.2(c) the shutter speed is increased further still, and the motions of all

the birds are well resolved, with the blurring that was seen with slower shutter speeds

eliminated.

In the years since Muybridge’s experiment, improvements in camera technology have

made photographing fast motion in everyday life an almost trivial task, for example in

sports or wildlife photography. The crucial point here is that obtaining a sharp image

that is free from blurring requires the ability to probe the system with controllable

temporal resolution that is at least as fast as the duration of the process being imaged.

This same principle applies to the study of processes in atoms, molecules and nanos-

tructures. The processes occurring in these systems are orders of magnitude faster than

the motions captured in Figs. 1.1 and 1.2 however, as illustrated in Fig. 1.3. The spatial

extent of structures on the molecular scale is connected, through quantum mechanics,

to the speed of the dynamics occurring, with the oscillation period of a wavepacket in

a superposition of states being inversely proportional to the energy separation between

the states. In other words, the larger the gap between energy levels, the faster the

motion of a particle in the superposition state [3]. In a molecule there are three main

types of motion; in order of increasing speed these are molecular rotations, molecular
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(a) Slow shutter speed
(1/8 s)

(b) Medium shutter speed
(1/125 s)

(c) Fast shutter speed
(1/500 s)

Figure 1.2: Effect of camera shutter speed on resolving fast motion. (a) The shutter
speed (1/8 s) is too slow to capture the birds in flight. (b) With a faster shutter speed
(1/125 s), the birds on the ground are now recognisable, but the wings of those in flight
are still blurry. (c) With an even fast shutter speed (1/500 s), the motion of the birds is
completely frozen, and the wings are sharply defined. Figure adapted from [2].

vibrations, and electronic motion.

Generally speaking, the separation between electronic energy levels is on the order of

1 eV, while between vibrational energy levels the separation is ≈ 1meV, and ≈ 1µeV

for rotational energy levels. The associated timescales for these three types of motion

are:

• rotational motion: nanosecond–picosecond (10−9 – 10−12 s),

• vibrational motion: picosecond–femtosecond (10−12 – 10−15 s), and

• electronic motion: femtosecond–attosecond (10−15 – 10−18 s).

To put these timescales in context, note that light travels approximately 0.3 mm in

1 picosecond (ps), 0.3µm in 1 femtosecond (fs), and 0.3 nm in 1 attosecond (as).

In the Bohr model of the atom, the orbital period of an electron in the ground state

of hydrogen is around 150 as. The ratio of an attosecond to one second is roughly

the same as the ratio of one second to the age of the universe (∼ 13.8 billion years

∼ 4× 1017 s).

With timescales as short as these, sophisticated techniques are clearly required to cap-

ture, and ultimately control, the ultrafast processes occurring in molecules. An effec-
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Figure 1.3: Characteristic length and time scales for a range of structures and dynamics.
Figure adapted from [3].

tive way to do this is through the use of intense, ultrashort, laser pulses. As we will

see in the next section, since its invention in the 1960s, laser technology has advanced

dramatically, with orders of magnitude improvements in the maximum achievable in-

tensity and minimum achievable duration. Considering pulse duration in particular, in

recent years the use of a non-linear process known as high harmonic generation (HHG)

has enabled the production of laser pulses with durations < 1 fs, i.e. attosecond pulses.

These developments brought with them their own ongoing challenges (such as the need

for methods to accurately measure the duration of attosecond pulses, and technical

refinements to enable production of pulses of sufficient intensity to perform attosecond-

pump-attosecond-probe experiments [4]), but have enabled the production of pulses as

short as 43 as [5]. With time resolution as short as this, experimentalists are beginning

to be able to directly observe electronic dynamics, and even exert some control over

them [3, 6, 7]. For such experiments to be successful, and the results understandable,

advancements in the theoretical description of molecules under the influence of strong

laser fields are also required; this will be the topic of Chapter 2.

Before that however, in this chapter we will introduce some of the main aspects of laser-

molecule interactions, with a particular focus on the physical processes that can occur
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Figure 1.4: Increase in focused laser intensity since 1960. Three significant advances
in laser technology (described in main text) are indicated with arrows. Figure adapted
from [9].

when high intensity laser pulses are used. The chapter is arranged as follows. In Section

1.2 we provide a brief overview of the development of laser technology over the past

60 years, by highlighting three key advances that have enabled tabletop femtosecond

laser sources to become readily available in university laboratories. Widespread access

to these intense, ultrashort sources of light has allowed researchers to study a range

of strong-field phenomena; we introduce a number of these in Sections 1.3 and 1.4.

Section 1.3 is concerned with ionization processes, and how the transition from a low

intensity, high frequency laser field to a high intensity, low frequency field is associated

with a change in the dominant ionization mechanism. In Section 1.4 we discuss the

topic of high harmonic generation, showing how the mechanism can be described by

a semiclassical three-step model. Finally, in Section 1.5, we introduce a number of

important applications of HHG, as well as some experimental considerations.

1.2 Femtosecond laser technology

The basic physics behind the operation of a laser can be found in any undergraduate

physics textbook. Put simply, a laser enables the production of a beam of coherent light,
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Figure 1.5: Developments in laser technology from 1960 to the early 2000s and the
associated reductions in the shortest achievable pulse duration. Some important ad-
vancements (described in main text) and contributors are marked with arrows and
circles. Figure reproduced from [10].

through population inversion and subsequent stimulated emission in a lasing medium.

However, since the discussion of the concept in the late 1950s and the subsequent

demonstration of the first working laser by Theodore Maiman in 1960 [8], laser tech-

nology has made great advances. Since that time, the maximum power that can be

produced by a laser has increased by many orders of magnitude (Fig. 1.4), while the

shortest laser pulse duration has decreased by similarly impressive amounts (Fig. 1.51).

Several technological developments have been central to these advancements; these

will be briefly outlined below. The general aim of all these advances was to squeeze

increasingly large amounts of energy into increasingly short periods of time, therefore

increasing the intensity of the laser pulse. Considering a laser system as consisting of

an optical resonator (surrounding the lasing medium) and an amplifier [11], the first

two developments we consider are related to the resonator, while the third is related to

the amplifier.

1Note that this figure does not show the more recent reductions in pulse duration achieved through the
use of high harmonic generation, which enabled the production of pulses of sub-femtosecond duration;
these are discussed in Section 1.5.4.
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1.2.1 Q-switching

A laser operating in its most basic form is known as a continuous wave laser, in which

the output power remains almost constant over time. This is in contrast to a pulsed

mode of operation, in which the power is released as a series of finite duration pulses.

While continuous wave lasers find many applications in industry, for example, for the

purposes of ultrafast laser spectroscopy, pulsed lasers are the tool of choice. One of

the first major developments in pulsed laser technology was the development of Q-

switching in the late 1950s and early 1960s [12]. The Q value of a laser refers to

the quality factor of the optical resonator, and is a measure of the resonator losses per

oscillation. With Q-switching, a low Q value is used while the laser medium is being

pumped, to suppress stimulated emission and the lasing process. In this way the level

of population inversion, and consequently the energy stored, in the medium increases,

until some maximum level is reached. At this point the Q value is quickly switched from

low to high, allowing stimulated emission to begin. The energy gained in the medium

is released in a short period of time, resulting in a short, intense laser pulse.

With Q-switching, pulses on the order of a few nanoseconds can be produced [11].

The production of sub-ns pulses would require a further technological development:

mode-locking.

1.2.2 Mode-locking

In a standard laser cavity setup of two mirrors on either side of the laser gain medium,

interference between the light waves that are reflecting back and forth in the cavity will

give rise to a number of modes with discrete frequencies that are supported by the laser

cavity. In general these modes will oscillate independently of each other with different

phases, which can lead to fluctuations in output as the different modes constructively

and destructively interfere with each other. The goal of mode-locking is to create a

fixed phase between the modes, using one of a number of techniques [13]. The effect

of this is that the modes will constructively interfere with each other periodically, and

interfere destructively the rest of the time, resulting in a series of short, intense pulses.

The development of mode-locking technology in the 1960s, and subsequently Kerr-lens

mode-locking (KLM) in the early 1990s [14], enabled laser pulses with durations of
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Figure 1.6: Schematic representation of the chirped pulse amplification technique.
Starting in the upper left corner of the diagram, an ultrashort pulse is produced by
the oscillator, and is passed through a pair of diffraction gratings. These add a “chirp”
to the pulse, increasing the pulse duration and reducing the pulse intensity to a level
at which it can safely pass through the amplifiers. The amplified pulse is then recom-
pressed by another pair of diffraction gratings, resulting in a high intensity, ultrashort
pulse. Figure reproduced from Wikipedia [17], and adapted from [18].

picoseconds down to 10s of femtoseconds to be routinely produced.

Both Q-switching and mode-locking are improvements that reduce the duration of out-

put pulses. However, in order to reach high intensities, a reduction in pulse duration

must be accompanied by an increase in the energy per pulse. Amplifying the energy of

short pulses is the purpose of the next technological advancement we consider: chirped

pulse amplification.

1.2.3 Chirped Pulse Amplification (CPA)

The pulses produced by a typical laser oscillator are capable of delivering a relatively

small amount of energy. In order to produce large intensity pulses, the energy of each

pulse must be increased by many orders of magnitude; i.e. the pulses must be ampli-

fied. This is done by passing the pulses through some amplification medium, of which

there are multiple options, including gases, dyes and solid state media [13]. Intense,

short pulses, however, can cause serious damage to the amplification medium. One

method of avoiding such damage is to increase the diameter of the laser beam, to re-

duce the pulse intensity prior to amplification. A significant drawback of this approach
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however is that a large beam requires large optical components (mirrors, amplification

media etc.) which would be prohibitively expensive to all except large, specialist, laser

facilities. The route to affordable tabletop laser systems capable of producing intense,

femtosecond pulses therefore required a different approach: chirped pulse amplifica-

tion (CPA) [15, 16].

With CPA the short pulse is expanded in time rather than in space. This is achieved

by using, for example, two diffraction gratings as shown in Fig. 1.6. The diffraction

gratings separate out different frequency components of the short pulse to produce a

“chirped” pulse (one that is stretched in time, with long wavelength components of the

pulse arriving ahead of short wavelength components). This lower intensity pulse can

then be safely amplified, before passing through another set of diffraction gratings to

remove the chirp (i.e., recompress the pulse in time), resulting in a short, high intensity

laser pulse.

Using chirped pulse amplification, femtosecond pulses with peak intensities of 1018

W/cm2 and beyond became accessible in university laboratories. This opened up the

field of femtochemistry, for which Ahmed Zewail would go on to win the Nobel Prize in

Chemistry in 1999 [19]. More recently, Gérard Mourou and Donna Strickland shared

in the Nobel Prize in Physics in 2018 for the development of CPA itself [20].

1.2.4 Summary

In this section we have highlighted three key developments in laser technology over

the past 60 years. The invention of Q-switching and mode-locking led to a massive

reduction in the duration of easily producible pulses, while chirped pulse amplifica-

tion overcame difficulties with amplifying short pulses. Together these developments

have allowed femtosecond pulses with electric fields comparable to (or larger than)

the Coulomb field in atoms and molecules to become readily available in laboratories

around the world. Such high intensity pulses allow experimentalists to study the range

of processes that can occur when molecules are driven far from equilibrium.

Breaking the “femtosecond barrier” would require yet another development: harness-

ing the potential of high harmonic generation to produce attosecond pulses. This tech-

nique, and the high harmonic generation process itself, will be discussed later in this
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chapter. Before that however, in the next section we will introduce the ionization pro-

cesses that can occur in molecules exposed to the intense laser pulses discussed above.

1.3 Ionization processes

In the picture of ionization introduced by Einstein to describe the photoelectric effect

[21], an electron can only be ionized from a system exposed to light if the energy of

individual incident photons is greater than the ionization potential of the system. When

the intensity of the incident light is high however, it was predicted as early as the 1930s,

and later observed experimentally, that ionization is possible via other processes. In this

section we introduce and discuss these processes.

1.3.1 Multiphoton ionization (MPI) and above-threshold ionization (ATI)

We begin by considering ionization of atoms or molecules in the presence of laser

fields of moderate intensity, i.e., not large enough to significantly perturb the Coulomb

potential felt by bound electrons.

The idea of multiphoton ionization (MPI) was first proposed by Maria Goeppert-Mayer

(who later went on to become a Nobel laureate for her work on nuclear shell structure)

in her 1931 PhD thesis [22], in which she demonstrated how time-dependent pertur-

bation theory predicts the possibility of a two-photon absorption process. MPI more

generally is the process in which an electron is ionized by a number of photons, each

of which would have insufficient energy to cause ionization by itself (Fig. 1.7(a)). In

other words, ionization can occur provided that

nωL ≥ Ip, (1.1)

where n is the number of absorbed photons, ωL is the frequency of the laser pulse

(which is equal to the photon energy when working in atomic units), and Ip is the ion-

ization potential of the system. Multiphoton ionization is a highly non-linear process;

by using lowest-order perturbation theory (LOPT) it can be shown that, assuming the

laser intensity I is low enough and that resonance effects aren’t at play, the n-photon

ionization rate, Γn, scales as

Γn ∝ In. (1.2)
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(a) Multiphoton ionization (MPI) (b) Above-threshold ionization (ATI)

(c) Tunnel ionization (TI) (d) Over-the-barrier ionization (OTBI)

Figure 1.7: Schematic diagram showing different ionization regimes, for increasing
intensity of applied field. (a) MPI: absorption of four photons of individual energy
ωL < Ip is large enough to ionize an electron (i.e., 4ωL ≥ Ip). (b) ATI: as MPI,
but the escaping photoelectron absorbs an extra three photons as it is ionizing, gain-
ing kinetic energy. (c) TI: at higher intensities, the applied electric field distorts the
Coulomb potential enough that a potential barrier is formed, through which an elec-
tronic wavepacket can tunnel ionize. (d) OTBI: at even higher intensities, the applied
field is strong enough that the potential barrier is suppressed to such a degree that the
electron is free to ionize without tunnelling. Figure adapted from [11].

When MPI was first proposed, there were no light sources of sufficient intensity avail-

able to test Goeppert-Mayer’s theory. However, experimental validation did come sev-

eral decades later [23, 24], following the invention of the laser. Subsequent measure-

ments of multiphoton ionization rates across a range of intensities showed that the

simple relationship given in Eq. (1.2) holds for a range of intensities, but breaks down

if the laser intensity is increased beyond a certain limit, known as the saturation in-

tensity. Beyond this point, further increases in intensity produce smaller increases in

ionization rate, due to saturation as the ionization probability approaches 1 throughout

the sample.

The simple scaling of Eq. (1.2) also becomes more complicated if there exists an excited

state in the system that is in resonance with some multiple of the photon energy. In
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this situation, one may observe resonantly-enhanced multiphoton ionization (REMPI),

in which the multiphoton transition from the initial state to the final (continuum) state

is mediated by a transition to an excited state, resulting in an increased ionization rate.

The description of MPI (and REMPI) can be further complicated by the onset of ac-

Stark shifts at higher intensities. The ac-Stark shift is an effect in which the energies of

the states of the system are shifted due to the strong oscillating electric field of the laser

pulse. At low laser intensities these shifts are small, but as the intensity increases the

energy shifts become so large that they can no longer be described by LOPT (although

they can be included at higher orders of perturbation theory [11]). The ac-Stark shift

can lead to increases in the ionization potential, as well as shifts away from resonant

transitions. This is due to the difference in the Stark shift felt by different states. The

level of Stark shifting caused by an applied field can be described in terms of the so-

called ponderomotive energy, Up, associated with the laser field. A free electron in a

laser field will oscillate in time. The ponderomotive energy is the cycle-averaged kinetic

energy of this electron, and is given by

Up =
E2

0

4ω2
L

, (1.3)

where E0 is the peak electric field strength of the laser pulse, and ωL is the laser

frequency. A related quantity to the ponderomotive energy is the quiver amplitude.

This is the amplitude of the oscillations of a free electron in a laser field, and is given

by

α0 =
E0

ω2
L

. (1.4)

Both the quiver amplitude and the ponderomotive energy are important quantities in

strong-field physics, and will be referred to throughout this thesis.

Returning now to ac-Stark shifts, in the presence of a strong field, loosely bound states

(highly excited, Rydberg and continuum states) will experience an energy shift very

close to the ponderomotive energy. Conversely, the tightly bound states will experience

a negligible shift in energy. Therefore the effective ionization potential is increased, by

approximately Up [11].

So far we have considered MPI in which the system absorbs just enough energy from
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incoming photons to overcome the ionization potential. We can also consider the situa-

tion in which the system absorbs more photons than necessary, resulting in an emitted

photoelectron with some amount of kinetic energy, which can be much greater than

zero. This process is known as above-threshold ionization (ATI), and can be considered

at the perturbative level as MPI by more photons than the minimum number required

for ionization (Fig. 1.7(b)) [11]. ATI was first observed experimentally by Agostini et

al. in 1979 [25], with a perturbative theory to describe the experimental observations

developed shortly after [26]. As with MPI, a perturbative approach can be used to

determine an expression for the ionization rate as a function of intensity, namely

Γn+s ∝ In+s, (1.5)

where n is the minimum number of photon required for ionization (as before), and s

is the number of excess photons absorbed. The energy of the emitted photoelectron is

then simply given by

Eelec = (n+ s)ωL − Ip. (1.6)

A typical ATI spectrum in the perturbative regime will therefore consist of a series of

peaks separated by the photon energy ωL, decreasing in intensity with increasing s.

At higher intensities, the perturbative picture begins to break down, and additional

features appear in the ATI spectrum, such as suppression of low-order peaks due to the

ac-Stark shifting of energy levels.

While various orders of perturbation theory can be used to describe MPI, REMPI, ac-

Stark shifts, and ATI spectra in the perturbative regime, as the laser intensity is in-

creased further the perturbative picture of Goeppert-Mayer breaks down, and ioniza-

tion no longer proceeds via multiphoton ionization. Instead, a process known as tunnel

(or tunnelling) ionization becomes the dominant mechanism.

1.3.2 Tunnel ionization

Shortly after laser sources were developed to the point that the predictions surrounding

multiphoton ionization could be experimentally tested, it was observed that ionization

rates did not always follow the power law dependence of Eq. (1.2); instead an expo-

nential dependence was observed. These observations led Leonid Keldysh to propose
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an alternative ionization mechanism to the perturbative MPI theory described previ-

ously. This mechanism is based on the distortion of the Coulombic potential by the

strong electric field of the applied laser pulse, as shown in Fig. 1.7(c). This distortion

causes the formation of a potential barrier, through which the electron will have some

probability of tunnelling.

In Keldysh’s 1965 paper [27], he postulated that as the frequency of an applied field

decreases (or as the field strength increases), there is a transition from the multiphoton

regime to the so-called tunnelling regime, in which the ionization probability has an

exponential dependence on the strength of the applied field. The transition between

these two regimes is characterised by the ratio

γ =

√

Ip
2Up

, (1.7)

where Ip is the ionization potential and Up the ponderomotive energy. This ratio, de-

rived by considering the ratio of the optical frequency to the tunnelling frequency, is

known as the Keldysh parameter. The value of γ indicates which ionization mechanism

is dominant. In the tunnelling regime, γ ≪ 1; this is the case for an intense applied

field with a low frequency. At the other extreme, in the multiphoton regime γ ≫ 1; this

is the case for a relatively low intensity, high frequency field.

To derive an expression for the tunnelling ionization rate, Keldysh’s theory makes two

key assumptions: (i) the frequency of the field is low enough that it can be considered

as a dc-field; (ii) the final state of the electron can be described as a Volkov state [28]

(i.e., the final state takes into account the interaction of the electron with the field only,

not with the ion). In the limiting case of tunnelling ionization, the rate derived by

Keldysh can be expressed as [29]

Γ ∝ exp

[

− 2γ

3ωL

]

. (1.8)

Subsequent works by other authors derived more generally applicable expressions for

the tunnelling ionization rate. See for example, the Keldysh-Faisal-Reiss (KFR) approx-

imation [30, 31], the Ammosov-Delone-Krǎınov (ADK) model for atoms [32], and the

extension of the ADK model to molecules (the MO-ADK model) [33]. Due to the strong
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dependence of the ionization rate on the electric field strength, ionization due to an os-

cillating laser pulse is highly localised around the peaks and troughs of the laser field,

resulting in short bursts of ionization, as will be evident in the results presented in this

thesis.

From the schematic representation of tunnelling ionization shown in Fig. 1.7(c), it

is clear that increasing the applied field strength will eventually lead to a point in

which the potential barrier is reduced so much that the electron is no longer bound

(Fig. 1.7(d)). An electron escaping in this manner is known as over-the-barrier ioniza-

tion (OTBI).

As will be seen in the next subsection and in Section 1.4, Keldysh’s picture of ionization

proceeding via tunnelling is an essential first step towards understanding a number of

other non-perturbative processes that can occur during strong-field laser-matter inter-

actions.

1.3.3 ATI and the three-step recollision model

In Section 1.3.1 we introduced ATI as MPI by more photons than required for ioniza-

tion, with the resulting ATI spectra consisting of a series of peaks separated by the pho-

ton energy, ωL, whose intensity decreases rapidly with increasing peak energy. Later

experiments involving higher intensity fields measured ATI spectra with shapes similar

to those shown in Fig. 1.8, consisting of two distinct regions. The first of these is a

series of low energy peaks, with a cutoff around 2Up. This region is then followed by

a plateau region of peaks with higher energy but lower intensity, which extends to a

cutoff around 10Up. This is the typical structure of ATI spectra. Significantly, the in-

tensities of the peaks in the plateau region decrease much more slowly with increasing

energy than predicated by the perturbative description. A number of non-perturbative

pictures were produced to explain this observed structure of ATI spectra. The most no-

table of these was the semiclassical three-step recollision model, introduced by Corkum

in 1993 [35].

In the first step of this model, an electron is tunnel ionized, with a probability given by

the ADK model [32]. Once the electron is ionized, it is treated as a classical particle

in the presence of the laser field. In the original formulation of the recollision model,
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Figure 1.8: Above-threshold ionization (ATI) spectra of argon for different pulse dura-
tions, with a laser intensity of 0.8×1014 W/cm2. Each spectrum consists of a low energy
region extending to 2Up in which the number of counts decreases sharply with energy,
followed by a plateau region in which the number of counts decrease slowly with en-
ergy. The plateau regions extends to a cutoff around 10Up. Note that the spectra have
been separated from each other vertically for clarity. Figure adapted from [34].

the effect of any Coulomb potential from the parent ion (also referred to as the core)

is neglected in this second step. Additionally, it is assumed that the electron is “born”

into the continuum at the origin and with zero initial velocity (i.e., x(t0) = v(t0) = 0 in

a one-dimensional picture, where t0 is the time at which the electron tunnel ionizes).

In the final step the electron can either be driven back towards the parent ion and

recollide in some way, or propagate away from the parent ion without recollision. For

the case of ATI in this three-step model, the recolliding electron elastically scatters from

the core.

This three-step model allows us to explain the origin of the 2Up and 10Up cutoffs in

the ATI spectra. The trajectory of an electron in the continuum under the influence

of a strong laser field is strongly dependent on the laser phase at which it is tunnel

ionized. By considering the different possible classical trajectories, it can be shown

that for electrons that drift away from the core without recollision (so-called “direct

electrons”), the maximum kinetic energy that can be gained is 2Up. On the other hand,

considering the trajectories in which the ionized electron is driven back towards the

core and backscatters, it can be shown that electrons can gain up to as much as 10Up
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in kinetic energy [29, 35].

As we will see in Section 1.4, the three-step recollision model is not limited to describ-

ing ATI. By considering recollision processes other than elastic scattering, the three-step

model can be applied to other non-perturbative processes; most notably, high harmonic

generation.

1.3.4 Summary

In this section we have given a brief introduction to a number of ionization processes

that can occur during the interaction of a strong laser field with an atomic or molec-

ular system. At low intensities (< 1014 W/cm2), perturbation theory can be used to

describe ionization, in the form of MPI and ATI. At higher intensities, the perturbative

picture breaks down, and Keldysh’s tunnelling model of ionization becomes more ap-

plicable. The transition between the perturbative regime and the tunnelling regime can

be understood in terms of the Keldysh parameter.

The semiclassical three-step recollision model of Corkum was introduced, which has

been used to explain experimental observations of features in ATI spectra that cannot

be explained with a perturbative description. In the next section we will see how the

three-step recollision model can also be applied to another process, and the one of the

most interest in this thesis: high harmonic generation.

1.4 Harmonic generation and high harmonic generation

In the previous section we introduced a number of ionization mechanisms, in which the

interaction of a laser pulse with a system (e.g., a molecule) leads to the emission of one

or more electrons. Harmonic generation, in basic terms, is an alternative process that

results in the emission of photons rather than electrons, whose energy is higher than

that of the photons of the incident laser field. As with ionization, there are different

mechanisms for the production of harmonics with different intensities of laser pulse. In

this section we will describe the two separate processes of harmonic generation (HG)

and high harmonic generation (HHG), and discuss how HHG can be described in terms

of the three-step recollision model.
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Figure 1.9: Schematic diagram of the harmonic generation process. In this example
the system is excited from some initial state, |i〉, to some final (excited) state, |f〉, by
the absorption of three photons, each of energy ωL. The system then relaxes back to its
initial state, resulting in the emission of a single photon of energy 3ωL.

1.4.1 Harmonic generation at low intensities

In the perturbative regime, harmonic generation (HG) proceeds via the mechanism

shown in Fig. 1.9, in which the absorption of N photons of energy ωL leads to the

emission of a single photon of energy NωL. For media that possess inversion symmetry

(for example, noble gases, which are commonly used in experiments), conservation

of parity means that only odd harmonics (harmonics with frequencies that are odd

multiples of the incident laser frequency) are produced. This is due to the fact that

in systems with inversion symmetry the eigenstates have a defined parity, and the de-

excitation of the system that leads to the emission of a single photon of energy NωL

must be a transition between two states of different parity. Consequently, the excitation

of the system cannot be due to absorption of an even number of photons [36].

The conversion efficiencies of the emitted harmonics in this process are strongly depen-

dent on laser intensity, since the probability of absorbing N photons decreases rapidly

as N increases. As was the case with MPI and ATI, the development of higher intensity

lasers led to the experimental observation in the 1980s of the production of harmonics

which could not be explained by this perturbative description.
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(a) Experimental HHG spectrum (b) Typical structure of a HHG spectrum

Figure 1.10: Typical structure of high harmonic spectra. Note that the energy of emitted
photons is given as a harmonic order; i.e., harmonic number = 1 means that emitted
photons have the same energy as incident photons. (a) Harmonics generated in Ar
with a 30 ps, infrared laser of intensity 3×1013 W/cm2. Figure reproduced from [38].
(b) General structure of a high harmonic spectrum (harmonic intensities plotted on a
logarithmic scale). Figure adapted from [39].

1.4.2 High harmonic generation (HHG): the three-step model

Measuring the intensity of photons produced in a harmonic generation experiment

as a function of photon energy allows one to plot a harmonic spectrum. The harmonic

spectra obtained in early experiments involving high intensity (1013–1014 W/cm2) laser

pulses [37, 38], such as the spectrum shown in Fig. 1.10(a), exhibited a dependence

of harmonic intensity on harmonic order that did not fit with the perturbative picture.

Subsequent measurements confirmed that the general shape of such harmonic spec-

tra is that of Fig. 1.10(b). These spectra have three main features. Firstly, there are

a number of low-order harmonics, whose intensity decreases rapidly with increasing

harmonic order. These peaks arise from transitions between bound levels (described

within the perturbative picture), with a rapid decrease in intensity with increasing har-

monic order, as expected from the perturbative description. This region of low-order

harmonics is followed by a (potentially extensive) plateau region in which the intensity

varies little between harmonic order. Finally, there is a sharp cut-off at the end of the

plateau region, beyond which no harmonics are emitted. The peaks in this plateau

region are produced by an altogether different mechanism than the lowest-order har-

monics; this process is known as high harmonic generation (HHG). We also note from

Fig. 1.10 that, in general, HHG results in the emission of odd harmonics only, for the
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reasons of parity conservation described in Section 1.4.1 above.

In Section 1.3.3, the non-perturbative aspect of ATI with intense laser pulses was un-

derstood in terms of the semiclassical three-step recollision model of Corkum et al.,

with the recolliding electron scattering elastically from the core. This three-step model

has also been applied to explain the HHG process [35], in which the recolliding elec-

tron recombines to the parent atom or molecule, emitting a high energy photon in the

process. For HHG, the three steps of this semiclassical model, illustrated in Fig. 1.11,

can be summarised as

1. An electron is ionized via tunnel ionization and appears in the continuum with

zero velocity;

2. The free electron is then accelerated by the electric field of the laser pulse, fol-

lowing a classical trajectory;

3. Depending on the polarization of the laser field and the ionization time of the

electron, the oscillating electric field may then cause the accelerated electron to

return to the parent ion, where it can recombine to the ground state, giving up

the kinetic energy it gained in the continuum in the form of a high energy photon

(a high-order harmonic).

Just as with ATI spectra, the position of the cutoff in the harmonic spectrum can be

estimated by solving classical equations of motion for an electron in the presence of the

oscillating laser field. For a monochromatic, linearly polarized laser field described by

E(t) = E0 cos(ωLt), (1.9)

where E0 and ωL are the amplitude and frequency of the field respectively, the equation

of motion of the electron following ionization is

d2x

dt2
= ẍ(t) = E0 cos(ωLt), (1.10)

where we have assumed that the motion of the electron is entirely along the laser

polarization direction, since the field is linearly polarized. Integrating this equation

and applying the the initial condition v(t0) = 0 (i.e., the electron has zero velocity
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Figure 1.11: Schematic representation of the three-step model of high harmonic gen-
eration. In the first step, the applied laser field distorts the Coulomb potential enough
that a potential barrier is formed, through which an electron tunnel ionizes. In the
second step, the newly ionized electron is accelerated by the applied laser field, gain-
ing kinetic energy. When the sign of the applied field reverses, the electron is driven
back to the parent ion. Recombination can then occur (step three), with the electron’s
kinetic energy being emitted in the form of a high energy photon. Figure reproduced
from [40].

immediately following ionization), the velocity of the electron at time t is given by

ẋ(t) =
E0

ωL

[

sin(ωLt)− sin(ωLt0)
]

, (1.11)

where t0 is the time at which the electron ionizes (t > t0). The position of the electron

at time t is then given by a further integration, namely

x(t) = −E0

ω2
L

[

cos(ωLt)− cos(ωLt0) + ωL(t− t0) sin(ωLt0)
]

, (1.12)

where we have assumed that the position of the electron immediately following ioniza-

tion is x(t0) = 0. The recollision times may be found by solving Eq. (1.12) for x(t) = 0,

for which there are no analytical solutions. Solving this equation numerically, it can be

shown that the kinetic energy of the electron upon recollision, given by

Ek =
1

2
ẋ2(t) = 2Up [sin(ωLt)− sin(ωLt0)]

2 , (1.13)

has a maximum value of 3.17Up. The recolliding electron may scatter off the core, or
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it may recombine, giving up its kinetic energy in the form of a high energy photon. In

the case of recombination, the maximum energy of emitted photons is therefore

Ec = ncωL ≃ Ip + 3.17Up, (1.14)

where nc is the maximum (cutoff) harmonic produced and Ip is the ionization poten-

tial of the system. This prediction from the semiclassical approximation of Corkum

et al. was in good agreement with empirical scaling laws from earlier experimental

works [41, 42], and Eq. (1.14) is now widely used to calculate expected HHG cutoffs

(although an alternative cutoff law, based on a fully quantum treatment, also exists;

this will be introduced below).

1.4.3 Electron trajectories

One advantage of working with the semiclassical three-step model of HHG is the con-

ceptual and mathematical simplicity of associating the energy of emitted harmonics

with the trajectories taken by the ionized electrons. Solution of the classical equations

of motion given above allows the trajectories of electrons ionized at different phases

of the laser field to be investigated. For a number of these possible trajectories, the

electron will in fact never return to the core; in the following discussion it should be

assumed that we are only interested in those trajectories that do result in a recollision.

For each electron recollision energy (with the exception of the cutoff energy), there

are two possible trajectories that will result in a recolliding electron with that energy:

these trajectories are referred to as either short or long trajectories. As illustrated in

Fig. 1.12, electrons ionized within the first ∼ 1/20 of a laser cycle after the peak of the

laser field will follow a so-called long trajectory, and recombine with the core > 2/3

of a laser cycle after ionization. On the other hand, electrons ionized between ∼ 1/20

and ∼ 1/4 of a laser cycle after the peak will follow a short trajectory, spending much

less time in the continuum, and recombining within 2/3 of a laser cycle. As indicated

by the shading in Fig. 1.12(a), and shown more explicitly in Fig. 1.12(b), the shortest

short trajectories and the longest long trajectories will have very little kinetic energy

on recollision. The short and long trajectories overlap for electrons ionized ∼ 1/20 of

a cycle after the peak. This cutoff trajectory leads to recombination at ∼ 2/3 of a cycle
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(a) Electron trajectories
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(b) Electron recollision energies

Figure 1.12: Relationship between an electron’s ionization phase and its recollision en-
ergy in the semiclassical three-step model. (a) Electron trajectories following ionization
in the presence of an 800 nm laser field with intensity 2×1014 W/cm2. The electric field
of the laser is indicated by the dashed black line, and is defined to peak at t = 0. The
electron’s displacement is plotted on the vertical scale, while the shading indicates the
electron’s kinetic energy upon recollision. The dotted white line indicates the trajec-
tory associated with the highest recollision energy (i.e., the trajectory associated with
the cutoff harmonic). Figure reproduced from [43]. (b) Electron recollision energy
as a function of ionization time. The red dashed line indicates the electric field of the
laser, which is defined to peak at t = 0. The vertical dashed line indicates the ioniza-
tion phase that results in the maximum recollision energy of 3.17Up, at the crossover
between long and short trajectories.

after the peak, with the maximum possible recollision energy of 3.17Up.

As a final point regarding HHG trajectories, it should be noted that in the discussion so

far we have assumed that the laser field is linearly polarized, meaning that an electron

ionized in one direction will be driven back along the same direction when the sign of

the laser field changes. If instead the field is elliptically or circularly polarized, HHG

will generally be suppressed compared to the linearly polarized case. This suppression

can be understood in terms of the electron trajectories: with an elliptically or circularly

polarized laser field, the ionized electron will trace out a spiral-like trajectory, possibly

missing the core and therefore avoiding recombination. Clearly this is particularly rele-

vant for the description of HHG from atoms and small molecules; with larger molecules

in non-linearly polarized fields there is the possibility of ionization from one atomic site

on the molecule and recombination at a different site [44–46]. As we will see in Sec-

tion 1.5.4, the strong dependence of HHG on the ellipticity of the laser field has been

exploited to enable the production of isolated attosecond pulses [47].

While the three-step model described above is invaluable as a conceptual description
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of high harmonic generation, describing the ionized electron’s motion in the laser field

by classical mechanics is of course an approximation, and one that neglects several

important features. For this reason, a number of other models have been developed

that aim to improve upon the semiclassical three-step model while still retaining its

conceptual attractiveness. We shall introduce two of these models below.

1.4.4 Beyond the semiclassical three-step model

Shortly after the introduction of the semiclassical three-step model by Corkum and oth-

ers, a fully quantum model along the same lines was developed based on the strong-

field approximation (SFA) of Keldysh, Faisal and Reiss [27, 30, 31] (the KFR theory for

strong-field ionization). This approximation was extended to describe high harmonic

generation by Lewenstein et al. [48], with the main assumptions being that the dynam-

ics of a continuum electron are dominated by the laser field, and that the only bound

state involved in the dynamics of the system is the ground state. These assumptions

are generally most valid when the Keldysh parameter γ ≪ 1, i.e., in the tunnelling or

over-the-barrier ionization regimes [48].

The Lewenstein model is closely related to the semiclassical three-step model (indeed,

in their original paper Lewenstein et al. make a point of showing how their model jus-

tifies the assumptions at the heart of the semiclassical model), but captures additional

features such as wavepacket diffusion. In addition, the SFA-based model leads to an

altered version of the cutoff law derived with the three-step model, namely

Eq
c = ncωL = 3.17Up + IpF (Ip/Up), (1.15)

where the factor F (Ip/Up) = 1.32 for Ip ≪ Up and decreases slowly towards 1 as Ip

grows. The difference between the two cutoff laws is due to two effects. Firstly, in

the Lewenstein model, the electron cannot appear at the origin after tunnel ionization

as is assumed in the three-step model, but can recombine at the origin. Therefore

the electron is able to gain additional kinetic energy as it travels this extra distance

before recombination. Secondly, this gain of kinetic energy in the Lewenstein model is

decreased for larger values of Ip due to diffusion effects [48].

The Lewenstein model has proven to be a very successful model of HHG, and has been
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invaluable in comparing with and interpreting experimental results [49–51]. How-

ever, it too contains a number of striking approximations. These include the neglect of

electron-electron interactions, as well as ignoring laser-induced depletion of the ground

state population. The use of plane waves to describe the continuum wavepacket also

neglects the effect that the Coulomb potential has on it.

Various modifications to the SFA have been proposed since the original 1994 paper; an

overview of some of these can be found in a recent review [52]. Here we highlight

just one of the most successful extensions to the SFA: quantitative rescattering theory

(QRS) [53]. The central idea of this theory is the replacement of the plane-wave ap-

proximation normally used in the recombination step of the SFA by scattering waves.

In the QRS, HHG spectra are expressed in terms of the product of a returning elec-

tron wavepacket and the exact photorecombination transition dipole. In essence the

QRS keeps an SFA description of the ionization and propagation steps of the three-step

model (which the Lewenstein model describes fairly accurately), while treating the re-

combination step more accurately. In this way the QRS offers a compromise between

the efficiency of the SFA on one hand, and the accuracy of ab initio approaches (see

Chapter 2) on the other. For further discussion around the QRS, see [52–54].

The SFA and the QRS are powerful techniques, which have provided qualitative and

quantitative understanding of HHG in many systems. However, they are based on the

single active electron approximation, and as such are unsuited to general application

to multielectron systems where a number of orbitals contribute to the dynamics. For

these systems, more computationally demanding, ab initio theoretical treatments are

required; we will introduce some of these in Chapter 2.

1.4.5 Summary

In this section we have introduced the key concepts around high harmonic generation.

We have seen how the typical shape of a harmonic spectrum for a strong-field laser-

molecule interaction consists of several distinct regions, originating from a combination

of bound-bound and bound-continuum transitions. The semiclassical three-step model

of HHG (and its fully quantum analogue based on the SFA) were introduced, and the

link between harmonic orders and electron trajectories was discussed.
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The production of high harmonics has attracted much interest in recent years, largely

due to the potential of HHG in a number of applications. In the final section of this

chapter, we will briefly highlight two of these applications, as well as noting some of

the experimental techniques and challenges associated with HHG.

1.5 Applications of HHG and experimental considerations

To conclude this chapter, we wish to briefly highlight two of the most exciting ap-

plications of HHG in recent years, namely the use of HHG for attosecond pulse pro-

duction and for imaging molecular orbitals (with the possibility of dynamic probing

of molecular structure). Firstly though, we will briefly mention a few experimental

considerations related to HHG. These are important to be aware of when considering

comparisons between experimental and theoretical results.

1.5.1 HHG in experiments

The description of HHG given in the previous section is based on experiments involv-

ing gas or plasma HHG targets. As well as allowing for samples to be studied free from

any effects from the environment, these types of targets have the advantage over solid

targets that the atoms or molecules in the interaction area can be replenished more

easily. Performing HHG experiments on molecules that only occur naturally as solids

therefore requires specialised techniques to produce samples suitable for HHG studies,

for example heating of the solid sample [55, 56] or laser ablation [57, 58]. A chal-

lenge with these techniques is getting the correct balance between producing a high

enough sample density to give a measurable HHG signal, and minimising the amount

of molecular fragmentation that occurs during the creation of the sample; a prepared

sample containing too large a number of fragments of the parent molecule could lead

to misleading results.

In the three-step model introduced in Section 1.4.2, HHG is described in terms of the

single-atom (or microscopic) response. This will also be what is considered in the

results presented in Chapters 4 and 5. In experiments, on the other hand, the mea-

sured harmonics are the result of both the microscopic and macroscopic responses of

the sample. Capturing macroscopic (propagation) effects in theoretical descriptions of
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HHG is challenging, and will not be attempted in the work described in this thesis. For

this reason, direct quantitative comparison of experimental results with the results pre-

sented in later chapters is difficult. While some comparisons with experimental results

are possible (for example considering how HHG efficiency changes as the molecular

alignment is varied, as will be seen in Chapter 4, or considering the relative intensities

of HHG in different molecules, as in Chapter 5), making quantitative comparisons with

experimental results more generally would require several additional non-trivial steps

[59]; two of these are highlighted below.

Firstly, in our calculations the molecule under investigation is initially aligned in one

of several ways with respect to the laser polarization direction. In experiments, the

sample gas is made up of a large number of molecules, each with their own alignment.

Comparison with experiment would in general require the use of some type of orien-

tation averaging technique [60–62] to account for the random alignment of molecules

in the experimental sample (this is less of an issue when making comparisons with ex-

periments employing one of the alignment techniques that will be described in Section

1.5.2). Such averaging techniques require single-molecule calculations to be performed

for a relatively large number of different molecular alignments, which would be time-

consuming and computationally expensive for calculations of the type presented in

Chapters 4 and 5.

Secondly, since HHG is a non-linear, coherent process, obtaining a strong harmonic

signal depends strongly on how well in phase the harmonic emission is throughout the

whole interaction volume. Experiments studying HHG have to deal with a number of

effects that contribute to phase mismatch in the sample, which can significantly reduce

the efficiency of HHG in the system. A microscopic phase (also known as an atomic

or dipole phase) arises from the fact that a specific harmonic can be produced by an

electron following one of two possible trajectories (long or short). Since the kinetic

energy gained by the ionized electron is dependent on Up, which is proportional to

the laser intensity, there will also be a phase associated with variations in the laser

intensity throughout the interaction volume (due to the necessity of focusing the laser

beam). Macroscopic effects associated with the propagation of the driving laser beam

and the high harmonic beam also introduce potential phase mismatch. These include

gas and plasma dispersion effects (changes of refractive index with wavelength), and
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the geometric Guoy phase arising from focusing of the driving laser beam. For further

details on all of these effects, as well as the techniques used to reduce phase mismatch,

the reader is referred to relevant reviews found in, for example, [13, 63, 64]. By their

very nature, these macroscopic phase-matching effects do not enter in to the single-

molecule calculations presented in later chapters. They are simply mentioned here

to make the reader aware of some of the differences between HHG calculations and

experiments, and consequently some of the effects that would need to be included in a

calculation of HHG if detailed quantitative comparison with experiment was required.

1.5.2 Molecular alignment

Unlike HHG in atoms, HHG in molecules can exhibit a strong dependence on the ori-

entation of the molecule with respect to the laser polarization direction [65–68]. This

alignment-dependence is essential for some of the applications of HHG highlighted in

Section 1.5.3. In these applications, and more generally, interpreting the results of a

molecular HHG experiment often requires some knowledge of the molecular alignment

with respect to the field. Therefore it is often beneficial to attempt to create some

degree of uniform alignment throughout the sample of molecules.

Alignment can be induced in a sample of molecules using one of a number of tech-

niques. For polar molecules (molecules with a permanent dipole moment), a degree of

alignment can be induced by applying a static electric field. For molecules more gen-

erally, if the applied field is strong enough (∼1012–1013 W/cm2) an induced dipole mo-

ment can be set up in the molecule, and alignment can be achieved via either adiabatic

alignment or non-adiabatic (impulsive) alignment. In the adiabatic case, the applied

pulse has a duration that is longer than the rotational period of the molecule, mean-

ing that the molecule has time to come into equilibrium with the laser field. Typically

nano–picosecond duration pulses are used for adiabatic alignment. In non-adiabatic

alignment, a laser pulse with duration much shorter than the rotational period of

the molecule is applied, giving the system a “kick”, which creates a superposition of

rotational states in the molecule. The subsequent (field-free) evolution of this rota-

tional wavepacket results in periodic transitions between alignment and anti-alignment

within the sample. Non-adiabatic alignment requires the use of femtosecond pulses,

and has the advantage that the resulting system can be be studied in field-free condi-
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Figure 1.13: Examples of the difference between adiabatic and non-adiabatic align-
ment. Calculated values for the degree of alignment in N2 at 50 K with different pulse
durations T and peak intensities I0 (pulse profile indicated by dotted curves). (a)
T = 50 fs, I0 = 2.5×1013 W/cm2: non-adiabatic alignment. Following a short aligning
pulse, the molecules are brought into alignment. Due to the number of rotational states
excited by the pulse however, they quickly de-phase and alignment is lost. Beating be-
tween rotational states causes revivals of alignment every ∼ 4 ps. (b) T = 1 ps, I0 =
2.5×1012 W/cm2: intermediate case between non-adiabatic and adiabatic alignment.
(c) T = 50 ps, I0 = 2.5×1012 W/cm2: adiabatic alignment. The degree of alignment
increases and decreases in line with changes in the pulse intensity. Once the pulse
has ended there are no revivals of alignment (i.e., the molecules revert to a random
distribution). Figure reproduced from [69].

tions (which is not the case if a static field or adiabatic alignment is used).

The degree of alignment obtained is generally given in terms of the parameter 〈cos2 θ〉,
where θ is the angle between the molecular symmetry axis and the laser polariza-

tion direction. A value of 〈cos2 θ〉 = 1/3 represents a randomly orientated sample of

molecules, while values of 1 and 0 indicates perfect alignment and anti-alignment re-

spectively. The difference between adiabatic and non-adiabatic alignment is illustrated

in Fig. 1.13. A detailed review of aligning molecules with strong laser pulses can be

found in [70].
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Figure 1.14: Schematic representation of a technique for using HHG to probe molecular
structure. By treating a CO2 molecule as an elongated diatomic molecule, with the two
O nuclei (red spheres) acting as point emitters, a two-centre interference model can
be applied. Here λ is the de Broglie wavelength of the recolliding electron, θ is the
angle between the molecular axis and the laser polarization direction, and R is the
separation between the two O atoms. Depending on the values of these parameters,
destructive or constructive interference may occur during the recombination step of
HHG. Measurement of the harmonic spectra at a range of values of θ then in principle
allows R to be determined using the interference conditions given in the text. Figure
adapted from [72].

The alignment techniques described above are essential for experiments studying the

orientation-dependence of ionization and HHG in molecules, as well as for the first

application of HHG we will consider: HHG as a tool for imaging molecular structure

and dynamics.

1.5.3 HHG for ultrafast imaging

The recolliding electron in HHG has two characteristics that make it a potentially pow-

erful probe of molecular structure and dynamics. Firstly, depending on the laser pa-

rameters, the returning electron may have gained substantial kinetic energy during

its excursion in the laser field, and therefore have a correspondingly short de Broglie

wavelength (≈1 Å). Secondly, since the entire HHG process takes place in less than

one optical cycle of the driving laser pulse, the recolliding electron can act as a probe

pulse of very short duration (≈1 fs). These two properties, combined with sophisticated

experimental techniques, mean that use of HHG offers the potential for imaging molec-

ular structure and dynamics with sub-angstrom spatial resolution and sub-femtosecond

temporal resolution [43, 71].
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Some of the earliest experimental studies on the use HHG for imaging were those of

Kanai et al. [72] and Itatani et al. [73]. Kanai et al. reported in 2005 on the first exper-

imental confirmation of intramolecular two-centre interference, which they measured

in aligned samples of CO2. By simultaneously measuring the ionization yield and the

harmonic intensity, the authors were able to show that in CO2 HHG is enhanced when

ionization is suppressed due to molecular alignment, and vice versa. The consequence

of this observation is that observed minima in the HHG spectra of CO2 must be due to

interference during the recombination step, rather than any effect during the ionization

step. Since the rotational period of the molecule is known, measurement of the har-

monic intensity as a function of time (i.e., as a function of orientation angle, θ, for an

aligned sample of molecules; see Fig. 1.14) allows the distance between oxygen atoms

to be determined using simple interference conditions [72, 74]

R cos θ = nλ (destructive interference), (1.16)

R cos θ = (n− 1/2)λ (constructive interference). (1.17)

Two-centre interference has since been observed in a number of other molecules, in-

cluding H2 [75], N2O [76] and C2H2[68]. A challenging aspect of this technique how-

ever is that the derivation of the simple interference formulae above requires that the

initial state of the molecule can be approximated by a linear combination of atomic

orbitals (LCAO), with one atomic orbital per site. When this is not the case, the inter-

pretation of the observed interferences is not obvious.

As well as measuring bond lengths, HHG can also be used to image the structure of

molecular orbitals, as demonstrated by Itatani et al. in 2004 [73]. In the tomographic

reconstruction method employed in this experiment, the high harmonic spectrum was

measured from an aligned sample of N2 molecules, for 19 different alignments. Tomo-

graphic inversion of these spectra then allowed the highest occupied molecular orbital

(HOMO) of N2 to be reconstructed (Fig. 1.15(a)), in good agreement with ab initio

calculations (Figs. 1.15(b), 1.15(c)). This technique takes advantage of the fact that

harmonic generation is highly sensitive to both the alignment angle and the spatial

structure of the electronic wavefunction, as well as the fact that in N2, tunnel ion-

ization occurs predominantly from the HOMO (the orbital with the lowest ionization
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(a) Experimental reconstruction (b) ab initio calculation

(c) Cuts along x-axis for (a) and (b)

Figure 1.15: Wavefunction of the highest occupied molecule orbital of N2. (a) Recon-
struction of the wavefunction, obtained through tomographic inversion of experimental
HHG spectra taken at 19 different molecular alignment angles. (b) ab initio calculation
of the wavefunction. (c) Cuts along the internuclear axis for the reconstructed (dashed
blue curve) and ab initio (solid red curve) wavefunctions. Figure adapted from [73].

potential). Although this was a reconstruction of a static molecular orbital, it was envis-

aged that the concept could be extended to image dynamics using a pump-probe setup

(i.e., a pump pulse initiates some dynamics, and a subsequent probe pulse generates

harmonics which are measured; the pump-probe delay then gives information about

the dynamics).

The experiment and analysis of Itatani et al. worked from the assumption that the

harmonic spectra contained information about the structure of the HOMO alone. Sub-

sequent experiments however showed that orbitals below the HOMO also contribute to

HHG [77, 78]. In experiments on aligned CO2 molecules, Smirnova et al. demonstrated

that measurement of both the phases and amplitudes of high harmonics allows for

study of these multielectron dynamics [79].

Rather than using two time-delayed laser pulses as is usual for pump-probe schemes, it

is also possible to conduct pump-probe experiments using HHG itself as both the pump

and the probe. This is the technique used in the PACER (probing attosecond dynamics

by chirp encoded recollision) method [49, 80, 81], in which the tunnel ionization step

of HHG acts as the pump and the recollision of the electron acts as the probe. By first
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Figure 1.16: Principle behind the PACER technique. Electrons ionized at different
phases of the laser field follow different trajectories (1, 2, 3) after ionization, and rec-
ollide with the core after different time delays (∆t1, ∆t2, ∆t3). The different kinetic
energies (E1, E2, E3) associated with these trajectories result in the emission of differ-
ent harmonic orders when the electron recombines. This allows a range of pump-probe
delays to be accessed from the measurement of a single harmonic spectrum. Measur-
ing the ratio of harmonics generated in different isotopes (in this case H2 and D2) then
allows the effect of nuclear dynamics to be isolated. Figure reproduced from [49].

filtering out the long trajectory contributions to HHG, the PACER method takes advan-

tage of the one-to-one mapping between the duration of short electron trajectories and

the associated high harmonic order (Fig. 1.16). This allows a range of pump-probe de-

lays to be studied by measuring the harmonic spectrum from a single laser pulse. The

PACER technique has been experimentally demonstrated by studying nuclear motion

in H2 and D2 molecules approximately 1 fs after ionization, with a temporal resolution

of ≈ 100 as [49].

The examples given here are just a sample of the applications of HHG for imaging.

More comprehensive reviews of the subject can be found in [43, 71, 82, 83].
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Figure 1.17: Train of attosecond pulses produced via HHG. The dashed line represents
the IR probe field, which has a period equal to twice the delay time between successive
attosecond pulses. Note that this reconstruction of temporal intensity profiles for the
attosecond pulses is based on the assumption that all pulses are identical; in reality
there may be some variation between the pulses. Figure reproduced from [84].

1.5.4 HHG for attosecond pulse production

Since the period of an electromagnetic field is inversely proportional to the associated

photon energy, producing increasingly short pulses will clearly require higher frequency

radiation. By filtering a high harmonic spectrum to select only a small number of

the highest energy harmonics, it is possible to produce attosecond duration pulses.

As was seen in Fig. 1.12, in HHG the most energetic harmonics are emitted in very

narrow windows of time due to ionization near the peak field strengths of the driving

laser pulse. For a multicycle driving pulse, this results in the production of a train

of attosecond pulses; one produced every half cycle of the driving pulse (Fig. 1.17)

[84–86].

To facilitate a greater degree of control in observing or controlling ultrafast processes,

a single, isolated, attosecond pulse would be preferable to an attosecond pulse train.

This requires high harmonics to only be emitted in a single half-cycle of the driving

pulse. While reducing the duration of the driving pulse to just a few cycles will reduce

the number of attosecond pulses in the pulse train, it will not, by itself, enable the

production of an isolated attosecond pulse, since the shortest possible driving pulse

duration is one cycle, which will result in two attosecond pulses. Therefore one of a

number of techniques, known as gating techniques, must be employed to preferentially

select the high harmonics produced in a single half cycle.
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Figure 1.18: Schematic of the polarization gating technique used for producing isolated
attosecond pulses. A right circularly polarized pulse and a left circularly polarized pulse
are combined, with some delay time ∆t between them, with the resulting pulse having
an ellipticity that varies over time. Initially, the ellipticity is high, and no HHG can
occur. In the middle of the pulse, the ellipticity drops to near zero for a very short time
(less than half a pulse cycle), during which time HHG can occur. The ellipticity quickly
increases again following this, and HHG is suppressed once more. Figure reproduced
from [87].

One such technique is polarization gating, illustrated in Fig. 1.18. In this technique,

the driving pulse is composed of a right circularly polarized pulse and a left circularly

polarized pulse. When these two circularly polarized pulses are brought together with

a suitable time delay, the resulting pulse has an ellipticity that varies over time: at the

beginning and end of the pulse it is circularly polarized, but linearly polarized at some

time in the middle. Crucially, the duration of the linear polarization region can be

made shorter than one cycle by varying the durations of the circularly polarized pulses

and the delay between them [87]. Due to the strong dependence of HHG on ellipticity

referenced in Section 1.4.3, emission of harmonics is suppressed during the circularly

polarized regions, and only allowed when the ellipticity briefly drops to near zero (the

linearly polarized region). In this way HHG can be confined to a single half-cycle of the

driving pulse, enabling the production of an isolated attosecond pulse.

Using polarization gating and other gating techniques [88], experimentalist have man-

aged to produced isolated attosecond pulses as short as 47 as [5, 47, 89, 90], approach-

ing one atomic unit of time (24 as). For more details on attosecond pulse production

techniques, as well as the techniques required to characterize such short pulses, the

reader is referred to [91, 92] and the references within.
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1.5.5 Summary

In this section we have looked at HHG from a practical perspective. A number of

experimental techniques and considerations have been introduced, and the differences

between microscopic and macroscopic harmonic response have been highlighted. Two

areas in which HHG has found practical applications were also discussed, namely the

production of attosecond pulses and the use of HHG for imaging molecular structure

and dynamics.

1.6 Conclusions

In this chapter we have given a brief overview of some of the aspects of strong-field

physics that are most relevant to the work presented in this thesis. By analogy with

photography of fast moving objects, we discussed how the study of processes occurring

on the fast timescales of motion at the molecular scale requires specialised techniques.

Lasers were then introduced as a tool that provided the necessary temporal resolution.

By highlighting a few specific examples, we have seen how improvements to laser tech-

nology over the past half a century have greatly reduced the minimum duration of laser

pulses while increasing the maximum pulse intensity. The resulting femtosecond and

attosecond duration pulses, with electric field strengths comparable to or greater than

the Coulomb field in molecules, led to the emergence of the fields of femtochemistry

and, more recently, attoscience.

With such intense laser fields, a range of physical processes can occur in the atom,

molecule or nanostructure under investigation. A number of these processes were in-

troduced in this chapter, beginning with ionization mechanisms in Section 1.3. The

transition from multiphoton ionization in low intensity fields to tunnelling ionization

in high intensity fields was described, as well as how this transition can be under-

stood in terms of the Keldysh parameter. The semiclassical three-step recollision model

was then introduced, which can be used to explain experimental observations of non-

perturbative effects in above-threshold ionization.

In Section 1.4 we introduced high harmonic generation, and discussed how it can be

described by the semiclassical three-step model or its quantum analogue. The relation-
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ship between electron trajectories and harmonic order was also discussed. In the final

section of this chapter, we briefly introduced a number of challenges and considerations

associated with HHG experiments, as well as two interesting applications of HHG.

The strong-field processes introduced in this chapter are challenging to describe theo-

retically, since a perturbative approach can in general no longer be applied. Approxi-

mations such as the SAE and SFA have enjoyed a great deal of success and popularity,

but are challenging to apply to accurately describe multielectron effects in strong-field

laser-molecule interactions. Describing such effects in general requires a full, multi-

electron, ab initio description. A number of the methods available for applying such a

description will be discussed in the next chapter.



Chapter 2

Theoretical descriptions of

strong-field laser-molecule

interactions

2.1 Introduction

The improvements in laser technology over the past half a century that were outlined in

the previous chapter brought with them a serious theoretical challenge: namely, how to

accurately (quantum mechanically) describe the dynamics of molecules exposed to in-

tense laser pulses, when the strength of the laser field renders a perturbative approach

inadequate. Accurately and efficiently describing the dynamics of molecules during in-

teractions with these new generations of laser pulses has required both the tailoring of

existing theoretical methods as well as the development of new techniques. As we shall

see in this chapter, describing the interaction of molecules with strong laser pulses is

no easy task, and certain assumptions or restrictions almost always have to be made.

One such assumption, the single active electron (SAE) approximation, is assumed in

both the three-step and Lewenstein models described in the previous chapter. This ap-

proximation, as the name implies, assumes that only one electron is involved in the

dynamics of the system. While these SAE-based models have been hugely successful in
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providing qualitative understanding, a number of results demonstrating the role of sev-

eral electrons, in high harmonic generation for example [78, 79, 93], have made clear

the need to go beyond the SAE approximation. In this chapter we will introduce some

of the most commonly used theoretical methods for treating multielectron systems, and

highlight their relative advantages and disadvantages.

The chapter is arranged as follows: in Section 2.2 we will introduce how laser-matter

interactions are described by theory in the most general sense, followed by a brief

description of a number of the most widely used approximations and most popular the-

oretical methods used to describe time-dependent laser interactions with multielectron

systems. In Section 2.3 we present the theory that is the basis of the work presented

in this thesis: time-dependent density functional theory (TDDFT). The key concepts

behind TDDFT, as well as its strengths and limitations, will be outlined in this section.

In Section 2.4 we show how the electronic description provided by time-dependent

density functional theory can be supplemented with a classical treatment of nuclear

motion, in a quantum-classical molecular dynamics method. Finally in Section 2.5 we

show how laser fields can be incorporated semi-classically into the theory described in

the previous sections.

2.2 Describing the dynamics of multielectron systems

In this section we will discuss how the dynamics of a general multielectron system can

be described theoretically. We begin by introducing the time-dependent Schrödinger

equation, and then show how a number of approximations can reduce the complexity

of the problem to a manageable level. Finally we introduce a number of the most com-

monly used wavefunction-based theoretical approaches to treating the time-dependent

electronic structure problem. Note that since we are interested in studying systems

interacting with very short laser pulses (≈ 25 fs and shorter), we focus only on time-

dependent methods; time-independent methods such as Floquet theory [94–96] will

not be discussed since they are not applicable for describing such short pulses. In

addition, it is assumed throughout that we are interested in describing a highly per-

turbed system (i.e., one in which perturbative approaches cannot be applied), since

the intensities of the laser pulses considered in Chapters 4 and 5 are well outside the

perturbative regime [97].
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2.2.1 Time-Dependent Schrödinger Equation for molecular systems

The dynamics of any non-relativistic system are described by the time-dependent Schödinger

equation (TDSE)

H(t)Ψ(t) = i
∂

∂t
Ψ(t), (2.1)

where Ψ and H are the wavefunction and Hamiltonian of the system, respectively. For

a general system of Ne electrons with positions vectors denoted by r = {r1, . . . , rNe
},

and Nn ions with position vectors denoted by R = {R1, . . . ,RNn
}, the TDSE is

H(r,R, t)Ψ(r,R, t) = i
∂

∂t
Ψ(r,R, t). (2.2)

The Hamiltonian of the system, H(r,R, t), can be written as a sum of kinetic and

potential terms, as

H(r,R, t) = Te(r, t) + TN (R, t) + V (r,R, t) + U(r,R, t), (2.3)

where Te(r, t) and TN (R, t) are the kinetic energies of the electrons and ions of the

system respectively, and V (r,R, t) is the total potential energy of the system. Any

time-dependent external potential (e.g., an applied laser field) is introduced through

the general term U(r,R, t), the form of which is assumed to be known. The other three

terms in the Hamiltonian are given by

Te(r, t) = −
Ne
∑

i=1

1

2
∇2

i , (2.4)

TN (R, t) = −
Nn
∑

I=1

1

2MI
∇2

I , (2.5)

and

V (r,R, t) =
1

2

Ne
∑

i=1

Ne
∑

j=1
j 6=i

1

|ri − rj |
−

Ne
∑

i=1

Nn
∑

J=1

ZJ

|ri −RJ |
+

1

2

Nn
∑

I=1

Nn
∑

J=1
J 6=I

ZIZJ

|RI −RJ |
, (2.6)

where MK and ZK are respectively the mass and charge of ion K. The three terms

on the right hand side of Eq. (2.6) correspond to electron-electron, electron-ion, and
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ion-ion interactions respectively.

In principle, the full dynamics of the system could be found by solving Eq. (2.2), with

the Hamiltonian defined in Eqs. (2.3) – (2.6), and assuming the initial state of the

system is known (which could be found by solving the time-independent Schödinger

equation, HΨ = EΨ). However, in practice solving Eq. (2.2) directly is impossible for

all but the simplest of systems, as we will see below.

The simplest molecular system is the hydrogen molecular ion, H+
2 . For this system,

Eq. (2.2) becomes

H(r,R1,R2, t)Ψ(r,R1,R2, t) = i
∂

∂t
Ψ(r,R1,R2, t), (2.7)

where r and R1, R2 are the vector positions of the single electron and the two ions

respectively. Here we have a system with just one electron and two protons, and al-

ready an analytical solution is impossible, meaning that numerical methods must be

employed. Attempting to solve this problem directly using numerical methods is a very

computationally demanding task, due to the dimensionality of this equation. As it is

written here, Eq. (2.7) would in essence be a (9 + 1)-dimensional TDSE in Cartesian

coordinates (3 spatial coordinates for each particle, plus time). In practice this di-

mensionality can be reduced considerably if only the vibrational motion of the nuclei

is taken into account. Examples of this approach for describing the dynamics of H+
2

include references [98–101].

Even for small systems however, solving the TDSE directly with electronic and ionic

degrees of freedom treated equally is prohibitively expensive (extending the approach

used in the works referenced above to the hydrogen molecule would be approaching

the limit of what is possible with current supercomputing facilities). Therefore some

approximations are generally made to enable easier study of the dynamics of multi-

electron systems. In the next section we will introduce two of the most widely used

approximations, which take advantage of the difference in masses between electrons

and ions, and the consequent difference in their characteristic timescales.
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2.2.2 Separating the electronic and nuclear degrees of freedom

One of the most commonly used approximations in simplifying the solution of the

TDSE is the Born-Oppenheimer (BO) approximation [102], in which the motions of

the electrons and ions are separated. In the BO approximation, the wavefunction is

recast as

Ψ(r1, . . . , rNe
,R1, . . . ,RNn

, t) =
∑

n

χn(R1, . . . ,RNn
, t)Φn(r1, . . . , rNe

,R1, . . . ,RNn
),

(2.8)

where χn and φn are nuclear and electronic wavefunctions respectively, with n indicat-

ing the electronic state. The dynamics of the system are then studied by first solving

the time-independent Schödinger equation for the electronic part of the wavefunction,

for a number of different nuclear configurations, i.e., different R1, . . . ,RNn
. The re-

sult is a set of potential energy surfaces (PES), along which the nuclei can then evolve

over time. The idea behind the Born-Oppenheimer approximation stems from the large

difference in mass between nuclei and electrons (the mass of the lightest nucleus, a pro-

ton, is 1836 times that of an electron) and consequently the difference in the timescales

of nuclear and electronic motion, meaning that the electrons can be considered to re-

spond instantaneously to any changes in the arrangement of the nuclei. In the original

work by Born and Oppenheimer, the (time-independent) Hamiltonian was studied per-

turbatively, obtaining a perturbation series defined in terms of powers of the mass ratio

κ = (m/M)1/4, where m is the mass of the electron (m = 1 in atomic units) and M

is the average value of MK . Following through the derivation, the Born-Oppenheimer

approximation then involves neglecting off-diagonal terms in the resulting equations.

It can be shown that the error in the BO approximation from neglecting these terms

is proportional to κ4 = m/M [114]. Examples of the BO approximation applied to

describe small molecules include those in references [103–106]. The highly success-

ful RMT (R-matrix with time-dependence) method for describing strong-field effects in

atoms [107–110] has also recently been extended to describe the hydrogen molecular

ion within the BO approximation [111, 112]. The Born-Oppenheimer approximation

is now ubiquitous in the vast majority of static and dynamic molecular structure calcu-

lations, and is inherently assumed in the majority of the theoretical methods described

in the remainder of this chapter.



2.2. DESCRIBING THE DYNAMICS OF MULTIELECTRON SYSTEMS 50

In the Born-Oppenheimer picture the nuclei are described quantum mechanically, as

wavepackets evolving along sets of potential energy surfaces. We can draw a connec-

tion between the evolution of these nuclear wavepackets and the (Newtonian) motion

of classical nuclei using Ehrenfest’s theorem [113], which relates the expectation val-

ues of the position and momentum operators with the expectation value of the force.

Ehrenfest’s theorem implies that in cases in which the ionic density matrix is localised

(approximating a δ-function), the average values of the position and momentum of

the ion will be approximately the same as those of a classical particle located at the

centre of the approximate δ-function. Identifying the mean values of the position and

momentum operators with the position and momentum of a classical particle in this

way is known as the classical nuclei approximation. Since nuclear wavepackets are in

general fairly localised (i.e., approaching δ-like) functions, provided that the curvature

of the potential in which they move is sufficiently large [114], this classical nuclei ap-

proximation is a valid approximation in many situations, especially when considering

heavy nuclei.

Even when the Born-Oppenheimer or classical nuclei approximations are employed, de-

scribing the dynamics of a many-electron system is still a formidable challenge. There-

fore a wide range of theoretical techniques have been developed over the years in an

attempt to accurately and efficiently describe the electronic dynamics. In the next sec-

tion we will give a brief overview of some of these. As these are not the techniques

implemented in the work presented in this thesis (Sections 2.3 – 2.5 of this chapter are

dedicated to describing these techniques), this overview is not intended to provide a

comprehensive description of each of the theoretical approaches mentioned. Instead,

the aim is to provide the reader with a general idea of some of the alternative methods

available.

2.2.3 Approximate solutions to the electronic wavefunction

One of the simplest approximations for describing a system of many interacting elec-

trons is the Hartree-Fock approximation. This approximation is a more complete ver-

sion of the self-consistent field approach developed by Hartree and Slater in 1928

[115, 116], in which the assumption is that the many-electron wavefunction, Φ(r, t),



2.2. DESCRIBING THE DYNAMICS OF MULTIELECTRON SYSTEMS 51

can be written simply as a product of one-electron orbitals, φi(ri, t), [114], i.e.

Φ(r, t) =

Ne
∏

i=1

φi(ri, t), (2.9)

where Ne is the number of electrons as before. Applying a variational principle then

leads to a set of coupled one-electron equations, the solution of which yields the

Hartree wavefunctions and energies. A major failing of the Hartree approximation

is that it treats electrons as distinguishable rather than indistinguishable particles. The

consequence of this is that a wavefunction of the form given in Eq. (2.9) does not sat-

isfy Pauli’s exclusion principle, since such a wavefunction is not antisymmetric upon

particle exchange, as Pauli’s principle requires.

Introducing the required antisymmetry can be achieved by replacing the wavefunction

proposed by Eq. (2.9) with one in the form of a Slater determinant

ΦHF(x1,x2, . . . ,xNe
, t) =

1√
Ne!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1, t) φ2(x1, t) . . . φNe
(x1, t)

φ1(x2, t) φ2(x2, t) . . . φNe
(x2, t)

...
...

. . .
...

φ1(xNe
, t) φ2(xNe

, t) . . . φNe
(xNe

, t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.10)

where the spatial and spin coordinates have been written as a single variable xi =

(ri, σi) and the φi (i = 1, . . . , Ne) are therefore one-electron spin orbitals, composed of

both spatial and spin components. This theoretical framework is known as the (time-

dependent) Hartree-Fock approximation, and provides an attractive and intuitive pic-

ture of electrons as one-electron wavefunctions in the mean field of all other electrons.

The dynamics of the system are then described by the time-dependent Hartree-Fock

(TDHF) equations

i
∂

∂t
φi(xi, t) =F (t)φi(xi, t),

=

[

−1

2
∇2

i −
Nn
∑

J=1

ZJ

|xi −RJ |
+ 2J −K + U(xi, t)

]

φi(xi, t), (2.11)

for i = 1, . . . , Ne, where F (t) is the time-dependent Fock operator, and J and K are the
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Coulomb and exchange operators respectively, defined as [117]

Jφi(xi, t) =
∑

j

[∫ |φj(xj , t)|2
|xj − xi|

dxj

]

φi(xi, t), (2.12)

and

Kφi(xi, t) =
∑

j

[∫

φ∗j (xj , t)φi(xj , t)

|xj − xi|
dxj

]

φj(xi, t). (2.13)

The Hartree-Fock approximation can provide a reasonable description of many systems,

but does have a serious failing, namely that it does not include electronic correlation.

This is due to the fact that the true electronic wavefunction may not be well repre-

sented by a single Slater determinant. Use of a single configuration can also lead to

an unrealistic inhibition of autoionization from doubly excited states. In addition, and

importantly, the dependence of both the Coulomb and exchange operators on differ-

ent orbitals (φi, φj) means that, unlike the TDSE, the TDHF equations are nonlinear,

which in turn means that the principle of superposition is no longer valid, and the

TDHF wavefunction is in essence an averaged representation of the exact wavefunction

[118]. Despite these failings, the time-independent Hartree-Fock approximation has

enjoyed a great deal of popularity within the quantum chemistry community, through

its implementation in various software packages. Time-dependent Hartree-Fock has

been applied to the study of ionization mechanics in atoms [118–120] and molecules

[121, 122], although it is increasingly being supplanted by more sophisticated meth-

ods, including those discussed below.

A large number of methods exist that aim to improve upon the approximation given

by Hartree-Fock; these are often referred to as post-Hartree-Fock (post-HF) methods.

These methods seek to address the issue of electronic correlation being missing from

the standard HF picture in one of a number of ways. Broadly speaking, this issue is

addressed by either a perturbative approach (e.g., coupled cluster [114, 123], Møller-

Plesset perturbation theory [114, 124]) or by combining several Slater determinants.

We will not discuss the first of these approaches any further (the interested reader is

referred to the references provided) but will briefly consider the second approach in

more detail, and provide some examples of its use in calculations of laser-molecule

interactions.
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Perhaps the most intuitive approach for moving beyond HF is to describe the wave-

function not just as a single Slater determinant, as in Eq. (2.10), but instead as a linear

combination of Slater determinants

Ψ(t) =
∑

k

ck(t)Φk, (2.14)

where the expansion coefficients ck are such that
∑

k c
2
k = 1. This method is known as

the configuration interaction (CI) method [125, 126]. Here, Φ0 is usually chosen to be

the HF ground state Slater determinant, ΦHF, since this is the best single determinant

that can be obtained [114]. Additional Slater determinants then correspond to different

excitations of the system, and are normally grouped into singly excited determinants

(for a single electron excited from an occupied to an unoccupied orbital), doubly ex-

cited determinants (two electrons excited from occupied to unoccupied orbitals), and

so on.

For performing practical time-dependent calculations, the number of additional Φk

terms used in the above expansion, Eq. (2.14), and how these determinants are con-

structed, is the crux of the problem and the matter of much debate. Ideally all avail-

able determinants would be used in a CI calculation; this type of calculation is known

as “full-CI”, and is exact within the chosen basis set. In practice however this is only

possible for the smallest systems, since the number of possible determinants depends

on the factorials of both the number of electrons and the number of orbitals [114],

and can reach as many as a million in systems with just tens of electrons and orbitals.

Instead of full-CI, a cutoff on the number of determinants used is usually chosen so that

all the singly, and possibly doubly, excited determinants are included in the calculation,

while higher-order excitations are neglected (or included perturbatively). These type

of calculations are referred to as configuration interaction singles (CIS/TD-CIS) or con-

figuration interaction singles and doubles (CISD/TD-CISD) calculations (where “TD” ≡
“time-dependent”). In the time-dependent examples referenced below, the number of

determinants included is typically on the order of hundreds or thousands.

Since the number of available states grows rapidly with the size of a system, CI calcu-

lations including higher than double excitations are limited to the very smallest of sys-

tems. A number of groups have however performed simulations at the level of single or
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double excitations (TD-CIS, TD-CISD) to calculate, for example, dipole response [127–

129], high harmonic spectra [130–132], and photoelectron spectra [132]. However,

use of time-dependent configuration interaction methods is not without its challenges.

Ensuring that enough determinants are included to accurately describe the system can

be challenging, and is exasperated by the need to include continuum or pseudocon-

tinuum states in order to model ionization. The poor scaling of CI with system size

drove the search to develop alternative methods which require the inclusion of smaller

numbers of determinants; we will highlight a number of such methods below.

In the CI method, the additional Slater determinants, Φk, used in the expansion are

constructed from the occupied and unoccupied one-electron orbitals of the HF Hamilto-

nian [114], and are fixed while the coefficients are variationally optimized to minimize

the total energy of the system. An alternative approach is to allow both the deter-

minants and the expansion coefficients to be optimized; such an approach is known

as a multi-configuration method. Typically such an approach requires a much smaller

number of determinants to be included than in a CI calculation. One of the most popu-

lar multi-configuration approaches is the multi-configuration time-dependent Hartree-

Fock (MCTDHF) method [133–135]. In this method the wavefunction is given by

Ψ(t) =
∑

k

ck(t)Φk(t). (2.15)

A review of the MCTDHF method, and how it relates to other theoretical methods,

can be found in [136]. MCTDHF has been successfully applied to describe a number

of systems and processes, such as photoionization in atoms, diatomic molecules and

model linear molecules [137–140], as well as photoexcitation, in lithium hydride and

methane molecules [141] and in sodium clusters [142]. A limited number of HHG

studies using MCTDHF have also been carried out [143–145], and extensions of the

method beyond the Born-Oppenheimer approximation have been investigated [146,

147].

The closely related multi-configuration time-dependent Hartree (MCTDH) method [148,

149], in which the wavefunction is expressed by a superposition of time-dependent

Hartree products (Eq. (2.9)) rather than Slater determinants [136], has also proven to

be a highly successful approach for describing a range of physical processes. Exam-
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ple applications include photodissociation of a range of small molecules such as NO2

[150], vibrational predissociation dynamics of molecules and clusters [151], and in-

tramolecular vibrational energy redistribution in small molecules [152]. A review of

the MCTDH approach can be found in [153].

Another wavefunction-based approach that is typically more compact than configura-

tion interaction is the algebraic diagrammatic construction (ADC) method [154, 155].

This approach involves the construction of so-called correlated excited states (CES) by

applying a set of excitation operators (representing different physical excitations) to

the exact correlated ground state of the system. The ADC method has the advantage

that ground state correlation (described via Møller-Plesset perturbation theory) is built

into every basis vector. Following on from a number of calculations of photoionization

and X-ray cross sections [156, 157], this method has recently been applied to study

HHG in aligned CO2 molecules, focusing on the effect of multi-channel contributions

to the harmonic response [158].

A number of other time-dependent post-HF methods exist, but these are beyond the

scope of this thesis. The interested reader will find a review of some of these methods

in [159]. As mentioned previously however, the scaling of these methods with system

size presents a significant challenge to applying them more generally to time-dependent

studies of laser-molecule interactions.

2.2.4 Summary

In this section we have shown how the dynamics of a general system are described

by the time-dependent Schrödinger equation, but how solution of this is impossible in

practice for all but the smallest of systems. Some of the approximations required to

study the dynamics of larger systems have been introduced, as well a number of the

most popular approaches to describing the electronic dynamics of molecular systems.

The approaches discussed in this section are all wavefunction methods; in other words,

the wavefunction is the key quantity that needs to be calculated, with all observables

expressed in terms of the wavefunction. In the next section we will see how an alter-

native approach exists in the form of density functional theory and its time-dependent

analogue, in which the electronic density replaces the electronic wavefunction as the
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basic variable.

2.3 Time-dependent density functional theory (TDDFT)

In the previous section we saw a number of methods for describing the dynamics of a

multielectron system in the presence of a strong laser field. An alternative approach

to these methods is time-dependent density functional theory (TDDFT). This is the

time-dependent extension of an older theory, density functional theory (DFT), which

we will refer to on occasion as “static” or “ground state” DFT. In (TD)DFT, the (time-

dependent) many-body wavefunction is replaced as the central quantity of interest by

the (time-dependent) single-particle electronic density. This change in focus allows a

huge increase in the maximum system size that can be reasonably studied in a calcula-

tion.

In this section we will introduce the basic theorems and principles underlying TDDFT,

state some of the central equations, and then present some successful applications

of the theory, as well as some of its shortcomings and outstanding limitations. First

however, we will briefly introduce the more mature ground state density functional

theory, since the two theories share many of the same underlying principles.

2.3.1 Density functional theory (DFT)

Since its development more than 50 years ago, density functional theory (DFT) has

grown in popularity amongst physicists, chemists and material scientists, and is now

one of the most widely used methods for electronic structure calculations. One of the

leading figures in the development of the theory, Walter Kohn, was jointly awarded

the 1998 Nobel Prize in Chemistry for his work [160]. As a well-established theory,

there are a number of excellent reviews of the history of DFT, its formalism, and its

nuances, such as [114, 161, 162]. In the following we do not seek to provide an in-

depth description of DFT; for this the reader is referred to one of these reviews, and

the references therein.

At the heart of density functional theory are the two Hohenberg-Kohn theorems [163].

The first theorem states that there is a one-to-one correspondence between the poten-

tial and the single-particle electronic density of a given system. This density, n(r), is
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related to the many-body electronic wavefunction Ψ through

n(r) = Ne

∫

Ψ∗(r, r2, . . . , rNe
)Ψ(r, r2, . . . , rNe

)dr2 . . . drNe
. (2.16)

As a consequence of this one-to-one correspondence, all properties of the system (in-

cluding the energy) are completely determined by the electronic density alone. This

vital result allows a many-body problem with Ne electrons to be reduced from one

with 3Ne coordinates to one with only 3. The second Hohenberg-Kohn theorem (some-

times called the Hohenberg-Kohn Variational Principle) defines an energy functional,

which is minimized when the density is the ground state density of the system.

While the Hohenberg-Kohn theorem proves that a system can be described solely by

its density, it provides no procedure for actually determining the ground state density.

In their seminal paper in 1965 [164], Walter Kohn and Lu Jeu Sham developed a

framework that overcame this deficiency and established DFT as a practical tool for

tackling electronic structure problems.

In the Kohn-Sham picture, we consider a fictitious system of non-interacting electrons

whose electronic density is identical to that of the system of interacting electrons. The

advantage of working with this non-interacting auxiliary system is that the problem is

reduced from dealing with an Ne-electron Schrödinger equation to a set of Ne one-

electron Schrödinger-like equations, which we refer to as the Kohn-Sham equations.

We will deal with the exact form of these Kohn-Sham equations in the next section, in

the context of TDDFT.

Due to the enormous computational advantage associated with working with a non-

interacting rather than an interacting system, density functional theory has been, and

continues to be, an enormously successful theory, finding applications in a wide range

of disciplines, from solid state physics [165] to biological science [166]. Like all meth-

ods it has its challenges and failings, many of which also affect TDDFT and will be dis-

cussed shortly. However, a search for publications involving DFT or a look through one

of the many reviews of the current state of the field [167–169] will make it apparent

how, despite its problems, DFT has become one of the most important computational

tools available for modelling electronic structure.
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2.3.2 Time-dependent DFT: the Runge-Gross theorem

Almost two decades after the publication of the Hohenberg-Kohn theorem, Erich Runge

and Eberhard Gross developed an analogous theorem for time-dependent systems: the

Runge-Gross theorem [170]. Only the result, not the proof, of this theorem will be

presented here; for the proof see the original Runge-Gross paper [170] or the review

in [171]. Similarly to the Hohenberg-Kohn theorem, the Runge-Gross theorem proved

the existence of a one-to-one mapping between the (time-dependent) potential and

the (time-dependent) density of the system. Just as in the static case, the Kohn-Sham

approach can be applied to this time-dependent case, allowing the time-dependent

density (and therefore, in principle, all properties of the system) to be calculated by

considering a system of non-interacting electrons.

Since the electrons are non-interacting, the total Ne-electron wavefunction can be writ-

ten as a single determinant of one-particle orbitals, and the problem is reduced to solv-

ing a set ofNe one-electron Schödinger-like equations: the time-dependent Kohn-Sham

(TDKS) equations. Neglecting spin for brevity, the TDKS equations can be written as

i
∂

∂t
ψj(r, t) =HKSψj(r, t)

=

[

−1

2
∇2 + VKS[n](r, t)

]

ψj(r, t), j = 1, . . . , Ne. (2.17)

Here ψj(r, t) are the Kohn-Sham orbitals, from which the electronic density is given by

n(r, t) =

Ne
∑

j=1

|ψj(r, t)|2, (2.18)

and is defined to be equal to the density of the real (interacting) system. In Eq. (2.17),

HKS and VKS are the effective or Kohn-Sham Hamiltonian and potential respectively;

i.e., the Hamiltonian and potential which yield, through Eqs. (2.17)–(2.18), a den-

sity equivalent to that of the interacting system. The square brackets [n] indicate that

VKS[n](r, t) is a functional of the electronic density. The potential VKS[n] is usually split

into several parts, namely

VKS[n](r, t) = VH[n](r, t) + Vext(r,R, t) + Vxc[n](r, t). (2.19)
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The three terms on the right hand side of this equation will now be considered individ-

ually.

The first term, VH, is the Hartree potential for a time-dependent density

VH(r, t) =

∫

n(r′, t)

|r − r′|dr
′, (2.20)

and accounts for the electrostatic potential without exchange or correlation effects.

The external potential, Vext(r,R, t), accounts for all the electron-ion interactions as

well as the interactions between electrons and the laser field, i.e.

Vext(r,R, t) = Vions + Uelec. (2.21)

These two terms, Vions and Uelec, will be discussed in later sections.

The final potential term in Eq. (2.19) is the exchange-correlation potential, which ac-

counts for all many-body effects not captured by VH and Vext. Since the one-to-one cor-

respondence means that there is a unique Kohn-Sham potential VKS which yields the

density of the interacting system, Eq. (2.19) in fact defines the exchange-correlation

potential Vxc. The exchange-correlation potential can formally be expressed as the

functional derivative of the exchange-correlation action functional Axc[n] [172], i.e.

Vxc[n] =
δAxc[n]

δn
. (2.22)

In practice however, the exact form of Axc[n] (and therefore Vxc[n]) is generally un-

known. Despite efforts to calculate exact time-dependent exchange-correlation poten-

tials for specific systems (see, for example, [173]), this means that in general Vxc[n]

must be approximated. Some of the most common approximations will be discussed in

the next section.

With the Kohn-Sham potential defined by Eqs. (2.19) – (2.22), describing the electronic

dynamics of some system then requires solving the TDKS equations for the Kohn-Sham

orbitals ψj , from which the electronic density can be obtained, and then extracting

the desired observables, which themselves are functionals of the density. Since the

Kohn-Sham potential, through the Hartree and exchange-correlation potentials, is a
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functional of the density, the TDKS equations must be solved self-consistently.

Before we move to the next section, it should be noted that although TDDFT bears a

similarity to TDHF in that they both involve representing the wavefunction as a single

Slater determinant of one-particle orbitals, TDDFT (unlike TDHF) is in principle an

exact theory. The approximate nature of practical implementations of TDDFT arises

from the complexity of the exchange-correlation potential, and the failings of current

exchange-correlation approximations to capture all the many-body effects contained in

Vxc; the formalism of TDDFT itself is exact. Clearly then the accuracy of the exchange-

correlation approximation is a key factor in determining the accuracy of a TDDFT cal-

culation. A number of such approximations will be seen in the next section.

2.3.3 Exchange-correlation potential approximations

The work of Runge and Gross showed that TDDFT is in principle an exact theory. How-

ever, the exchange-correlation potential, Vxc(r, t), in the time-dependent Kohn-Sham

equations is an unknown and highly complex object, which must be approximated in

some way. By definition, and provided that the initial wavefunctions (both the interact-

ing and noninteracting Kohn-Sham wavefunctions) are nondegenerate ground states,

the exchange-correlation potential Vxc(r, t) is a functional of the entire history of the

density n(r, t). In other words, Vxc(r, t) has a functional dependence not just on n(r, t),

but on all n(r′, t′) for 0 ≤ t′ ≤ t and for all arbitrary points r′ in space, i.e., it is non-

local in both space and time [171]. This dependence of Vxc(r, t) on the entire history

of the density is referred to as the memory of the exchange-correlation potential.

In practice, non-locality in time is almost always neglected through the use of the adi-

abatic approximation, in which the dependence of the exchange-correlation potential

on the density is restricted to the instantaneous density, i.e.,

V adia
xc [n](r, t) = V

approx
xc [n(t)](r). (2.23)

Such an approximation is valid for systems in which the potential varies slowly with

time, which will not always be the case. However, including memory effects in the ap-

proximation of the exchange-correlation potential is far beyond the scope of this work;

we refer the reader to [174] and the references therein for a review of the problems
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posed by memory dependence and some of the attempts to develop functionals that

address them.

In static DFT, the most basic exchange-correlation approximation is the local density

approximation (LDA). In this approximation the exchange-correlation energy density

at every point is approximated by the exchange-correlation energy density of a homo-

geneous electron gas, ǫHEG
xc . The exchange-correlation action functional is then given

by

Axc[n] = ELDA
xc [n] =

∫

n(r)ǫHEG
xc (n(r))dr. (2.24)

The exchange and correlation parts of ǫHEG
xc (n(r)) are treated separately. For a ho-

mogeneous electron gas, the exchange energy has a known analytic form, and so the

approximation to the exchange term in LDA is simply [175]

ǫHEG
x (n(r)) = −3

4

(

3

π

)1/3

n1/3(r). (2.25)

Analytical forms of the correlation term are only available in high- and low-density

limits. However a number of accurate parameterizations have been calculated, for

example by Perdew and Wang [176] (this is the parameterization used in the work

described in this thesis, but others are available - see Chapter 5 of [114] for references

to some of these).

The local density approximation is attractive as it depends solely on the density at

each point in space, unlike other approximations which depend on derivatives of the

density, e.g., the generalized gradient approximation (GGA) [177], or on individual

orbitals, e.g., the optimized effective potential (OEP) [178, 179]. This makes applica-

tion of LDA a relatively straightforward task when compared to other, more complex,

exchange-correlation approximations (for details of some of these approximations see,

for example, Chapter 5 of [114] (for static DFT) and Part II of [180] (for TDDFT)). Such

computational efficiency combined with (surprisingly) good accuracy for most systems

[160] established LDA as a popular choice of exchange-correlation approximation, at

least as a first approximation.

Due to its simplicity however, the local density approximation contains a number of

errors. One of the most serious of these is that LDA contains self-interaction errors,
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due to its handling of the exchange term. Self-interaction results in incorrect asymp-

totic behaviour of the exchange-correlation potential (an exponential decay instead of

the correct Coulombic decay), and can lead to a number of non-physical effects, such

as incorrect dissociation limits, underestimation of ionization potentials, instability of

negatively charged ions, and absence of Rydberg series [114, 181, 182].

There are a range of schemes available for correcting the self-interaction error inherent

in LDA. One of the most frequently used schemes is that introduced by Perdew and

Zunger [183], in which the self-interaction-correction (SIC) is applied at the level of

the energy functional and which yields a separate SIC potential for each Kohn-Sham

state. This method of self-interaction-correction has problems however, in that the

explicit orbital-dependence of the SIC functional poses practical problems and means

that the orbitals are not guaranteed to be orthogonal, while the Kohn-Sham equa-

tions are no longer invariant under a unitary transformation of the orbitals [181, 184].

Some alternative approaches to SIC remove the explicit orbital dependence found in the

Perdew-Zunger approach by constructing an optimized effective potential (OEP), which

is state-independent. A popular example of an OEP-based method is that proposed by

Krieger, Li and Iafrate (KLI) [185]. However, these methods still require dealing with a

Coulomb term in the potential for each state individually; a computational burden that

will grow with the size of the system.

A much simpler and computationally cheaper approach to correcting the self-interaction

problem is the average-density self-interaction-correction (ADSIC) [182, 186]. In this

orbital-independent scheme, a globally averaged subtraction method is used, in which

the self-interaction is removed by simply subtracting the interaction due to the aver-

age density. Further details on ADSIC and its applicability, along with a comparison

between different SIC schemes can be found in [182]. Briefly, the authors note that

ADSIC will be most applicable in metal clusters (in which the spatial and energetic

ranges of electrons are fairly small) and less applicable in all-electron calculations in

atoms (in which there may be large spatial and energetic variations) or in molecular

systems involving large degrees of fragmentation. However they also note the impres-

sive performance of ADSIC, both in terms of accuracy and computationally efficiency,

when used in the correct situation. For the systems studied in this work, we expect

ADSIC to be reasonably accurate, especially since there will not be significant frag-
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mentation on the timescales considered in our simulations. ADSIC also benefits from

a number of formal advantages that other SIC schemes lack; these are discussed in

[182]. One such benefit is that the exchange-correlation potential can be obtained as

the functional derivative of the exchange-correlation functional; this allows the forces

acting on the ions to be calculated using the Hellmann-Feynman theorem.

The two approximations discussed above (adiabatic and local density) come together

in TDDFT as the adiabatic local density approximation (ALDA), in which the exchange-

correlation potential is approximated as the ground state potential of a uniform gas,

with an instantaneous, local density. Aside from the problems mentioned above, ALDA

suffers from a number of other drawbacks. It has been shown that despite capturing

autoionizing resonances that arise from single excitations, ALDA fails to capture those

resonances arising from double excitations [187]. ALDA also has problems describ-

ing double ionization, for example failing in reproducing the famous “knee structure”

indicative of non-sequential multiple ionization processes [173, 188].

While there are a number of alternative, more sophisticated, approximations available,

they are all invariably much more computationally demanding than ALDA. The extra

computational expense associated with these other approximations becomes particu-

larly cumbersome when dealing with systems with many electrons. Therefore all work

presented in this thesis uses ALDA, with the Perdew-Wang parameterization referenced

above, supplemented by the average-density self-interaction-correction; we refer to this

combined approximation as LDA-PW92-ADSIC.

2.3.4 Additional challenges and difficulties within TDDFT

As the previous section has shown, the lack of knowledge concerning the exact form of

the exchange-correlation potential is a significant challenge facing TDDFT. While this is

probably the biggest drawback to a TDDFT description of laser-molecule interactions,

there are also a number of other difficulties.

As will become apparent in the next chapter, while some observables, e.g., the dipole

moment, can be expressed in terms of the time-dependent electronic density, not all

observables are as readily accessible. For some observables (e.g., ionization yields), a

geometric approximation that depends on the density can easily be used in place of
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the exact (unknown) functional of the density [189]. Calculating other observables

however (e.g., ATI spectra) requires alternative techniques, which may require use of

the Kohn-Sham orbitals directly rather than the density [190]. Some authors have

raised concerns with this orbital-based approach, since the Kohn-Sham orbitals do not

themselves have a strict physical meaning [191]; however this is the only currently

feasible approach.

In addition, in comparison to some wavefunction-based approaches, understanding the

role of individual states and channels can be challenging in TDDFT, due to the switch

from the wavefunction to the density as the central quantity. Calculating individual ion-

ization probabilities to differently-charged ionic states also requires special treatment,

and a number of further approximations [192, 193].

Despite these challenges however, the efficiency and scalability of TDDFT compared

to other methods makes it an important technique for studying laser-molecule interac-

tions. While the use of TDDFT in the non-linear regime is still somewhat in its infancy

(compared to TDDFT calculations in the linear response regime, or static DFT calcula-

tions), there have already been many successful applications. A small number of these

will be highlighted in the next section.

2.3.5 Examples of use of TDDFT from literature

Having introduced some of the main failures and difficulties associated with TDDFT

in the previous two subsections, we now wish to paint a more optimistic picture by

highlighting some of the many successful applications of TDDFT over the past decades.

TDDFT has been applied in a number of diverse fields, including the study of transport

effects in molecular wires [194, 195] and of collision processes [196–198]. A large

number of studies of the response of systems to applied fields have been performed in

the linear regime, to calculate for example absorption spectra [199]; reviews of linear

response applications can be found in [172, 200], and Part IV of [180]. Here we focus

solely on applications in the non-linear regime, as this is where the work described

in this thesis is based. In addition to the references given below, a review of relevant

studies published before 2006 can be found in [191].

In order to investigate how the results from TDDFT compare with those from direct
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solution of the TDSE, a number of calculations were performed in the early 2000s in

which small systems such as H+
2 were studied using both techniques. For example, in

[201, 202] a basis-set-based TDDFT approach was combined with classical molecular

dynamics (similar to the quantum-classical molecular dynamics approach described in

Section 2.4) and used to study the dynamics of H+
2 exposed to different laser pulses.

The results of these calculations were compared with a set of TDSE calculations [203],

and in general showed fair agreement. In particular, comparisons between snapshots

of the probability distributions during the laser pulse obtained with the two techniques

were in qualitative agreement, with some noticeable quantitative differences. The dis-

sociation and ionization probabilities on the other hand showed fair qualitative and

quantitative agreement between the TDDFT and TDSE calculations.

Dissociation of heavier molecules has also been studied, for example in [204, 205]. In

these calculations, a mixed quantum-classical approach incorporating TDDFT was used

to study the dynamics of a dimer (Na+2 ) and two trimers (He+3 and LiCN/LiNC). These

systems were propagated for several hundred femtoseconds following irradiation by

short, linearly-polarized laser pulses with intensities on the order of 1010 - 1012 W/cm2,

and frequencies chosen relative to the resonant frequencies of the system. In the case of

Na+2 , by varying the laser frequency the authors were able to show that, for a number

of intensities, the expected behaviour took place: dissociation of the molecule was

induced when the system was excited to an anti-bonding potential energy surface,

and suppressed when the laser frequency excited electronic population to a bonding

surface. For the trimer He+3 , a dissociative picture was obtained that corresponded

to that seen in a previous experimental study [206]. The LiCN calculations were less

successful, with the dissociation dynamics of the molecule affected by artefacts of the

exchange-correlation approximation that was used, which had the incorrect asymptotic

behaviour.

The above study, [205], also included calculations of the high harmonic response of

the dimers HD and H2. The production of even harmonics is forbidden for symmetric

diatomics like H2, but may occur for a heteronuclear diatomic like HD. This effect had

previously been investigated through one-dimensional solution of the TDSE [36]. By

applying TDDFT with classical nuclear motion to the same problem, the authors were

able to qualitatively reproduce the results obtained with quantum nuclear motion; i.e.,
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they observed even harmonics in HD, but with much smaller harmonic intensities than

observed with the quantum description.

A number of TDDFT studies have also made comparisons with experimental results;

this is not a trivial comparison to make in general. For example, in [207] ionization

from helium and argon atoms due to a two-colour laser field (attosecond XUV pulses

in the presence of an IR pulse) was studied by performing TDDFT calculations, and

comparing the results with those from experiment and those from TDSE calculations

(within the single active electron approximation). By varying the delay time between

the XUV pulses and the IR background pulse, the TDDFT calculations were able to

reproduce the regular modulation in ionization signal observed in both experimental

and TDSE results. Photoelectron spectra from the Ar atom obtained with the three

different methods were also in qualitative agreement. Other systems included in this

investigation included a carbon chain (C3) and sodium clusters (Na+9 , Na+21, Na+41),

again considering the ionization yield as a function of XUV-IR delay time.

The study of high harmonic generation (HHG) in small molecules has been a popular

use of TDDFT in recent years. For example, high harmonic spectra from a range of di-

atomic molecules have been calculated, including homonuclear diatomics like N2 and

F2 [189, 208–211] and heteronuclear diatomics likes CO, BF and HF [212]. Compar-

isons with experimental data have shown that TDDFT calculations are capable of repro-

ducing features in the harmonic spectra such as Cooper minima and shape resonances

[211], as well as changes in high harmonic intensity as the angle between the laser

polarization direction and the molecular axis is varied [209]. Other linear molecules

such as OCS and CS2 have also been studied [213]. These calculations collectively have

shown the importance of multielectron and orientation effects in strong field ionization

and high harmonic generation. As we will see in Chapter 4, both of these effects are

also important for high harmonic generation in another linear molecule: acetylene.

In recent years, the applications of TDDFT in the non-linear regime have moved into

and beyond the limits of what is possible with other theoretical methods. Recent exam-

ples include calculation of energy-, angle- and time-resolved photoelectron spectra of

ethylene in a pump-probe setup (a UV pump followed by an XUV probe) [214] and the

study of high harmonic generation in benzene during interactions with both linearly
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and circularly polarized laser pulses [46]. One of the largest TDDFT calculations of a

strong-field laser-molecule interaction was presented in [190]. In this work, energy-

and angle-resolved photoelectron spectra were calculated for the C60 fullerene (the so-

called “buckyball”) exposed to a strong laser pulse. The results of these calculations

were in good agreement with predictions made using the strong field approximation

and quantitative rescattering theory.

The studies described above represent just a small fraction of the current wealth of

TDDFT-based literature. Much as the use of static DFT rapidly grew (and continues

to grow) in the years following the initial work of Hohenberg, Kohn and Sham, usage

of TDDFT has been increasing year on year, and this trend looks set to continue into

the future. As the topics of the studies discussed above indicate, the range of systems

that TDDFT is being applied to continues to expand, with molecules and clusters that

were previously inaccessible to theoreticians now being investigated as confidence of

working with TDDFT grows.

2.3.6 Summary

In this section we have introduced time-dependent density functional theory, a theory

in which the electronic-wavefunction-based description of a many-body system is re-

placed by a description in terms of the electronic density. The theorems underpinning

TDDFT were introduced, and the Schrödinger-like time-dependent Kohn-Sham equa-

tions were presented and discussed.

While TDDFT is in principle an exact theory, the exact form of the exchange-correlation

potential is unknown and so must be approximated. The adiabatic local density ap-

proximation (ALDA) is the simplest exchange-correlation approximation in TDDFT. Al-

though it has some known errors, the balance afforded by ALDA between efficiency

and accuracy, especially when supplemented by a self-interaction-correction such as

ADSIC, makes it a popular choice of exchange-correlation approximation for studying

laser-molecule interactions in the non-linear regime.

Similarly, while TDDFT itself comes with some challenging aspects (the lack of knowl-

edge concerning the exchange-correlation potential being perhaps the most important),

the level of efficiency and scalability it possesses compared to other methods while re-
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taining reasonable accuracy makes it a powerful tool for studying strong-field effects in

multielectron systems.

In the form described above, TDDFT accounts only for the electronic dynamics; it says

nothing about the behaviour of the nuclei. In the next section we shall see how the

nuclear dynamics can be incorporated classically alongside the quantum treatment of

the electrons provided by TDDFT, in a quantum-classical molecular dynamics method.

2.4 Quantum-classical molecular dynamics

In the previous section we saw how time-dependent density functional theory allows

the dynamics of a many-electron system to be studied without requiring solution of the

full time-dependent Schrödinger equation. The TDDFT formulation presented above,

however, includes no description of the motion of the ions. In some cases, neglecting

ionic motion can be a reasonable assumption (for example considering very heavy ions

evolving along non-dissociative potential energy surfaces). In many other cases how-

ever, the motion of the ions is an integral element of the dynamics of the molecule,

and therefore accurately capturing the ionic motion is crucial in accurately describing

the laser-molecule interaction. Furthermore, study of certain physical processes, for

example fragmentation processes, by definition requires the inclusion of ionic motion.

One option for incorporating nuclear effects into a TDDFT description of a system is to

reformulate the traditional TDDFT formalism into the so-called time-dependent multi-

component density functional theory [215–218]. In this method the basic variables are

the electron density (defined in a suitable body-fixed coordinate frame [215]) and the

diagonal of the nuclear density matrix. For these variables an analogue of the Runge-

Gross theorem can be proved, and Kohn-Sham equations for the electrons and nuclei

derived. While this approach is attractive since it treats both the electrons and the

nuclei fully quantum mechanically, it has the added complication of the need for the

development of accurate approximations to the electron-nuclear correlation functional.

An alternative method for accurately and efficiently modelling both electronic and ionic

dynamics is to couple a quantum treatment of the electrons (such as that given by

TDDFT) with a classical treatment of the ions. The resulting quantum-classical molecu-

lar dynamics method is an example of the more general non-adiabatic quantum molec-
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ular dynamics (NAQMD) approach. In this section we will outline an implementation of

this method based on the Ehrenfest theorem [113], and derive the equations of motion

for a system of quantum mechanical electrons and classical ions, firstly for a general

quantum mechanical treatment of the electrons, and then considering specifically a

TDDFT treatment.

Here we follow, in general, the derivation given in [219] and [220].

2.4.1 General formulation of the approach

We consider a system of Ne quantum mechanical electrons and Nn classical ions. The

electrons are described (ignoring spin for brevity) by their many-body wavefunction

Ψ(r, t), where r refers to their position vectors, r = {r1, . . . , rNe
}. The ions are de-

scribed by their trajectories R = {R1(t), . . . ,RNn
(t)}. The mass and charge of ion K

are denoted by MK and ZK respectively.

We will derive the equations of motion for the electrons and ions by using a Lagrangian

formalism. To find the equations of motion, we consider variations of the wavefunction

and ion trajectories that leave the action, A, stationary, i.e.

δA = δ

∫ t1

t0

Ldt = 0. (2.26)

Here L is the Lagrangian of the system, which is given by [221]

L = i

∫

Ψ∗(r, t)Ψ̇(r, t)dr −
∫

Ψ∗(r, t)H(r,R, t)Ψ(r, t)dr

+
1

2

Nn
∑

K=1

MKṘ2
K(t)− Vnn(R)− ZKRK ·E(t), (2.27)

where Ψ̇(r, t) = ∂
∂tΨ(r, t), and where the integration over r refers to integration over

all electron coordinates, i.e.
∫

dr =

∫

dr1· · ·
∫

drNe
. (2.28)

For this mixed quantum-classical system, the action consists of a quantum part and a

classical part [201]

A = Aq +Ac, (2.29)
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where

Aq =

∫ t1

t0

〈

Ψ(r, t)

∣

∣

∣

∣

i
∂

∂t
−H(r,R, t)

∣

∣

∣

∣

Ψ(r, t)

〉

dt, (2.30)

and

Ac =

∫ t1

t0

[

1

2

Nn
∑

K=1

MKṘ2
K(t)− Vnn(R)− ZKRK ·E(t)

]

dt, (2.31)

where the bra-kets 〈. . .〉 denote integration over all coordinates r1, . . . , rNe
.

In Eqs. (2.27) and (2.30), H(r,R, t) is the time-dependent Hamiltonian for the elec-

trons, which depends parametrically on the ion coordinates, and is written as

H(r,R, t) =

Ne
∑

i=1

[

−1

2
∇2

i + Vext(ri,R, t)

]

+ Vee(r). (2.32)

Here ∇2
i is the Laplacian with respect to the electronic coordinates of electron i, and

the electron-electron Coulomb repulsion term, Vee(r), is defined as

Vee(r) =
1

2

Ne
∑

i=1

Ne
∑

j=1
j 6=i

1

|ri − rj |
. (2.33)

The external potential term, Vext(ri,R, t), in the Hamiltonian consists of the interaction

between electron i and the ions, Vions(ri,R, t), and the interaction between electron i

and the applied laser field, Uelec(ri, t), i.e.

Vext(ri,R, t) = Vions(ri,R, t) + Uelec(ri, t). (2.34)

The electron-ion interaction term Vions(ri,R, t) is defined exactly as

Vions(ri,R, t) =

Nn
∑

K=1

Vion(ri,RK , t)

=−
Nn
∑

K=1

ZK

|ri −RK | . (2.35)

Finally, the ion-ion Coulomb repulsion term, Vnn(R), in Eq. (2.31) is defined as

Vnn(R) =
1

2

Nn
∑

I=1

Nn
∑

J=1
J 6=I

ZIZJ

|RI −RJ |
, (2.36)
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while ZKRK ·E(t) denotes the interaction between ion K and the applied laser field.

Returning to Eq. (2.26), we obtain the three Euler-Lagrange equations of motion

∂L
∂Ψ∗

=
d

dt

(

∂L
∂Ψ̇∗

)

, (2.37)

∂L
∂Ψ

=
d

dt

(

∂L
∂Ψ̇

)

, (2.38)

∂L
∂RK

=
d

dt

(

∂L
∂ṘK

)

. (2.39)

Evaluating Eq. (2.37) for the Lagrangian defined in Eq. (2.27) results in the time-depen-

dent Schrödinger equation

i
∂

∂t
Ψ(r, t) = H(r,R, t)Ψ(r, t), (2.40)

while evaluating Eq. (2.38) gives the complex conjugate of the TDSE. The remain-

ing Euler-Lagrange equation, Eq. (2.39), leads to the equation of motion for the ions,

namely

MKR̈K =−
∫

(

Ψ∗(r, t) (∇KH(r,R, t))Ψ(r, t)
)

dr

−∇K

(

Vnn(R) + ZKRK ·E(t)
)

, (2.41)

where ∇K is the gradient operator with respect to the ionic coordinates of ion K.

In Eqs. (2.40) and (2.41) we have obtained a set of general equations of motion for a

system of quantum mechanical electrons and classical ions. However, solution of these

would still require direct solution of the TDSE, which as we have seen in previous

sections is impossible for all but the simplest of systems. We therefore wish to derive

an analogous set of equations to Eqs. (2.40) and (2.41), but in which the electronic

dynamics are described by TDDFT.

2.4.2 Quantum-classical molecular dynamics with a TDDFT description

of electrons

As we saw in Section 2.3, in the TDDFT method the full Ne-electron wavefunction is

replaced by a Slater determinant of single particle orbitals, the Kohn-Sham orbitals ψj ,
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which reproduce the correct electron density through Eq. (2.18). With this treatment

of the electrons, the Lagrangian can be written [220]

L = i
Ne
∑

j=1

∫

ψ∗
j (r, t)ψ̇j(r, t)dr +

1

2

Ne
∑

j=1

∫

ψ∗
j (r, t)∇2ψj(r, t)dr

−
∫

n(r, t)

(

Vext(r,R, t) +
1

2

∫

n(r′, t)

|r − r′|dr
′

)

dr

−Axc[n] +
1

2

Nn
∑

K=1

MKṘ2
K(t)− Vnn(R)− ZKRK ·E(t), (2.42)

where Axc[n] is the exchange-correlation action functional.

Rewriting the Euler-Lagrange equations, Eqs. (2.37) – (2.39), with the many-body

wavefunction Ψ replaced by the Kohn-Sham orbitals ψj now leads analogously to the

time-dependent Kohn-Sham equations

i
∂

∂t
ψj(r, t) = HKS(r,R, t)ψj(r, t), (2.43)

and the ionic equation of motion

MKR̈K = −
∫

(

n(r, t)∇KHKS

)

dr −∇K

(

Vnn(R) + ZKRK ·E(t)
)

, (2.44)

where HKS is the Kohn-Sham Hamiltonian defined in Eq. (2.17). In Eqs. (2.43) and

(2.44) we have obtained a set of non-adiabatically coupled equations of motion de-

scribing the electronic and ionic dynamics of a general system. The solution of these

equations will allow us to study the dynamics of the system, and to investigate the

degree of coupling between the electronic and ionic motions. In the next chapter we

will show how these equations are solved numerically on a real-space grid in our code,

EDAMAME. Before that however, we will consider briefly the applicability of the classi-

cal treatment of the nuclei used in the quantum-classical method described above.

2.4.3 Applicability of classical description of ions

The approximation of treating nuclei as classical particles instead of describing them

quantum mechanically both enables calculations to extend beyond the simplest systems

and reduces the conceptual complexity of calculations and the interpretation of results.
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It is, however, an approximation, and as such has limits to its applicability. For example,

a full quantum treatment of the nuclei is required when describing zero-point motions

or nuclear tunnelling effects [222, 223].

We have already seen in Section 2.3.5 an example of a case in which results from

a classical treatment of the nuclear motion were in qualitative but not quantitative

agreement with results from calculations incorporating quantum nuclear motion [205].

This example dealt with the interaction of a laser field with the diatomic HD molecule.

A number of other studies have also highlighted how a proper quantum treatment of

the nuclear motion is important in describing laser interactions with small molecules

with light nuclei [74, 224].

In the Ehrenfest method for treating nuclear motion outlined above, the quantum me-

chanical nuclear dynamics are replaced by a single “mean-field” trajectory; i.e., the

system evolves on a potential energy surface that is a weighted average of a number of

the potential energy surfaces of the system [225]. Clearly such a mean-field approach

will only be applicable in situations in which the classical trajectories associated with

different states are not significantly different from each other, or in which the trajec-

tory associated with a single state dominates the dynamics [226]. Situations in which

there is substantial wavepacket splitting between significantly different classical trajec-

tories are beyond the scope of Ehrenfest [225]. Effects such as this will become more

prominent over longer timescales, and especially so when the difference between the

timescales of nuclear and electronic motions is small (in molecules with light nuclei for

example).

Since we are working with larger molecules with heavier nuclei than those considered

in the references above, and considering the relatively short timescales that the dy-

namics of the systems studied in this thesis are propagated for (≈ 25 fs), we expect

that a classical treatment of the nuclear motion as outlined above will be a reasonable

approximation.

2.4.4 Summary

In this section we have shown how a quantum description of electron dynamics (in

particular, TDDFT) can be combined with a classical description of ionic motion in a
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quantum-classical molecular dynamics method. By employing a Lagrangian formalism,

we have derived equations of motion for the quantum mechanical electrons and the

classical ions (Eqs. (2.43) and (2.44) respectively). In the next section we will com-

plete our theoretical description of the laser-molecule interaction by showing how the

interaction with the laser field can be treated in a semiclassical manner.

2.5 Semiclassical description of a laser-molecule system

In the previous sections, the applied laser field was included in the Hamiltonian as

Uelec(r, t), but no details of the actual form of this term were given. In this section we

show how a laser pulse can be introduced to the system as a classical field, resulting in a

semiclassical treatment of the laser-molecule interaction. We begin by discussing when

and why such a classical treatment of the laser field is appropriate, before showing how

a description of the field in terms of a vector potential A(r, t) can be obtained, starting

from Maxwell’s equations. An approximation known as the dipole approximation will

then be introduced to simplify the description of the laser field, and the validity of this

approximation discussed. Finally we will show how the laser interaction is included

in the Hamiltonian, and how, with a suitable gauge transformation, we can obtain an

expression for Uelec(r, t) in terms of the position vector r and the electric field vector

E(t).

2.5.1 First quantization

In principle, the interaction of a laser pulse with a molecule will require the full rel-

ativistic and quantum mechanical description of both the molecule and the radiation

field of the laser (i.e., describing individual photons). In practice however, a full quan-

tum mechanical treatment may not be necessary, if the intensity of the laser pulse is

large enough. To see why, consider the number of photons that would be present per

unit volume in a laser beam of intensity I, wavelength λ, and frequency ω. The so-

called photon density [227] in this case is given (in SI units) by

ρ =
I

~ωc
. (2.45)
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For a laser pulse with intensity 1.0×1014 W/cm2 and wavelength λ = 1450 nm, the

photon density would therefore be 2.4×1022/cm3 or 7.4×1010 per cubic wavelength.

For a pulse with lower intensity and wavelength (I = 1.0×1012 W/cm2, λ = 102 nm),

the photon density would be 1.8×104 per cubic wavelength. Clearly in both cases the

photon density per cubic wavelength is large, and so it is reasonable to use a semi-

classical treatment of the laser-molecule interaction. In that case the molecule can be

described quantum mechanically while the laser field is described as a classical field.

Historically, this type of description is known as first quantization (in contrast to second

quantization in which the electromagnetic field is also quantized).

2.5.2 Maxwell’s equations and gauge transformations

Employing a semiclassical description greatly simplifies the treatment of our system,

and allows us to draw on the well-known laws of classical electromagnetic theory.

At the foundation of classical electromagnetism are Maxwell’s equations. In atomic

units (see Table 1 for conversions between systems of units), Maxwell’s equations for

electromagnetic waves in a vacuum may be written as

∇ ·E = 0, (2.46)

∇ ·B = 0, (2.47)

∇×E = −∂B
∂t

, (2.48)

∇×B =
1

c2
∂E

∂t
, (2.49)

where E = E(r, t) and B = B(r, t) are the electric and magnetic field vectors, respec-

tively. In Since the divergence of the curl of any vector field is zero [228], Eq. (2.47)

implies that there must exist some vector potential A = A(r, t) such that

B = ∇×A. (2.50)

Making this substitution for the magnetic field vector in Eq. (2.48) gives

∇×
(

E +
∂A

∂t

)

= 0. (2.51)



2.5. SEMICLASSICAL DESCRIPTION OF A LASER-MOLECULE SYSTEM 76

Noting the vector identity that the curl of the gradient of any scalar field gives the zero

vector field (i.e., ∇×(∇φ) = 0), we can express the electric field vector in terms of the

vector potential A = A(r, t) and some scalar potential φ = φ(r, t) as [228]

E = −∇φ− ∂A

∂t
. (2.52)

Using the expressions for B and E given by Eqs. (2.50) and (2.52) in Eq. (2.48), we

can derive the following expression for A and φ

∇2A− 1

c2
∂2A

∂t2
−∇

(

∇ ·A+
1

c2
∂φ

∂t

)

= 0. (2.53)

These potentials A and φ are not unique, since a replacement of the form

A → A′ = A+∇χ, (2.54)

φ→ φ′ = φ− ∂χ

∂t
, (2.55)

will not alter the field strengths E and B. Here χ = χ(r, t) is some arbitrary scalar field.

Replacing A and φ with A′ and φ′ in this manner is known as a gauge transformation.

One particular gauge of interest is the Coulomb gauge, in which ∇ ·A = 0. Making a

transformation to this gauge, and assuming that φ = 0 [230], Eq. (2.52) reduces to

∇2A− 1

c2
∂2A

∂t2
= 0. (2.56)

One possible solution to this wave equation has the form

A(r, t) = ǫ̂A0 cos(k · r − ωt+ δ), (2.57)

where ǫ̂ is the polarization vector of the field, A0 is the peak value of A, k is the wave

vector, ω is the laser frequency, and δ is the phase of the field.

2.5.3 The dipole approximation

In Eq. (2.57) we have a fairly complicated expression for the vector potential A; one

that depends on both spatial coordinates and time. However, in certain circumstances

we can reasonably approximate the laser field as being uniform across the small in-
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teraction volume being considered. To see how this approximation is made, we first

express Eq. (2.57) in terms of complex exponentials

A(r, t) = ǫ̂
A0

2

[

ei(k·r−ωt+δ) + e−i(k·r−ωt+δ)
]

. (2.58)

Now expanding the spatial part of the first exponential term as a Taylor series, we have

eik·r = 1 + (k · r) + 1

2!
(k · r)2 + . . . , (2.59)

and similarly for the second exponential term, where k is the wavevector. Clearly, if

|kr| ≪ 1, then the spatial dependence of A can reasonably be discarded, and we are

left with a vector potential with no spatial dependence

A(t) = ǫ̂A0 cos(ωt+ δ). (2.60)

This is known as the dipole approximation, and is considered a reasonable approxima-

tion to make when the wavelength of incident radiation is much greater than the char-

acteristic size of the system being irradiated. Relating the magnitude of the wavevector

to the wavelength as |k| = k = 2π/λ, we can estimate typical values of |kr| for the

systems we will be considering. Taking an upper estimate of the size of the molecules

considered in this work of 0.4 nm, |kr| for a mid-IR wavelength of λ = 1450 nm is

0.0017, while for a VUV wavelength of λ = 102 nm it is 0.025. In both cases, the

dipole approximation seems a reasonable approximation to make. If much shorter

wavelengths were employed, the dipole approximation would no longer be valid, and

the problem would become significantly more complex.

In addition, if the laser intensity was large enough that relativistic effects became im-

portant, the dipole approximation would again no longer be valid. These effects in-

clude, for example, relativistic mass shifts, break down of the effect of stabilization

against ionization (an effect observed in atoms and molecules exposed to intense laser

fields), and an increasing importance of the magnetic component of the laser field

[229]. A relativistic treatment is considered necessary if

E0/ω

c
≈ 1, (2.61)
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where E0 is the maximum value of the electric field, ω is the laser frequency, c is the

speed of light, and all quantities are expressed in atomic units [11]. For a mid-IR

laser pulse with wavelength λ = 1450 nm and intensity 1.0×1014 W/cm2, we have ω =

0.0314 a.u. and E0 = 0.0534, giving a value of the above ratio (noting that c = 137 in

atomic units) of 0.0124. Therefore we do not expect relativistic effects to be important

with these laser parameters. For more discussion on relativistic effects see section 10

of [11], [229], and the references within.

Beyond the dipole approximation, a first-order approximation (in which the (k · r)2

and higher terms in Eq. (2.59) are neglected) or higher multipole approximations can

be employed, at much greater computational cost [230–232]. Nondipole effects have

been investigated and observed in a number of studies [233–235]. However, the laser

intensities and photon energies employed in these studies are well beyond the laser

parameters considered in this thesis. For the work presented in Chapters 4 and 5 we

expect the dipole approximation to be adequate.

2.5.4 Electron-laser interaction

In the previous sections we have derived an expression for a time-dependent and

spatially-independent vector potential

A(t) = ǫ̂A0 cos(ωt+ δ), (2.62)

which is related to the electric field vector (using Eq. (2.52) with φ = 0) through

E = −∂A
∂t

. (2.63)

We now need to determine an expression for the electron-laser interaction potential

Uelec(r, t).

The Hamiltonian for a particle of charge q and mass m moving in an electromagnetic

field described by a vector potential A (and a scalar potential φ = 0) is [236]

Hfield =
1

2m
(p− qA)2, (2.64)

where p is the canonical momentum of the particle.
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In atomic units, considering an electron in particular (so that m = 1, q = −1), and re-

placing the canonical momentum with the momentum operator p → −i∇, the Hamil-

tonian becomes

Hfield =
1

2
(−i∇+A)2 (2.65)

= −1

2
∇2 − iA ·∇+A2. (2.66)

This form of the Hamiltonian is known as the velocity gauge or minimal coupling de-

scription.

The majority of the work described in this thesis was carried out in the length gauge,

rather than the velocity gauge. The appropriate length gauge description can be ob-

tained by performing the transformation [237]

ΨLG(r, t) → exp [iA · r] ΨVG(r, t), (2.67)

where LG and VG refer to the length and velocity gauges respectively. The Hamiltonian

for an electron moving in the field described by A and E in the length gauge then

becomes

Hfield = −1

2
∇2 + r ·E. (2.68)

Clearly the first term of Hfield expressed in this way is simply the kinetic energy term

already present in the Kohn-Sham Hamiltonian in Section 2.3. We therefore take the

second term as the electron-laser interaction potential

Uelec(r, t) = r ·E(t). (2.69)

(In the velocity gauge, this term can be shown to be given by UV
elec(r, t) = −iA(t) ·∇

[237], since the A2 term in Eq. (2.66) can be removed by a different transformation).

In principle, with an exact description of the system the choice of gauge will have

no impact on the results obtained, since quantum mechanics is gauge invariant. In

practice, since approximations have been made, results obtained in different gauges

are not guaranteed to be identical. However, previous comparisons of results obtained

using length and velocity gauge descriptions of laser-matter interactions have shown
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good agreement between the two gauges [219, 237]. The length gauge description is

used in the majority of the work presented in this thesis as it is computationally more

efficient for the systems being considered.

2.5.5 Summary

In this section we have seen how a laser field can be introduced to the theoretical

description of a molecular system described in Sections 2.3 and 2.4. For the typical laser

parameters used in the work described in this thesis, the photon density is considered

large enough that the laser pulse can be described as a classical radiation field. It was

shown how Maxwell’s equations and gauge transformations lead to a description of the

laser in terms of a vector potential A(r, t). This description can be simplified to A(t) by

employing the dipole approximation, which is generally a reasonable approximation to

make when the laser wavelength is much greater than the size of the molecule. Finally,

by considering the Hamiltonian for a charged particle moving in an electromagnetic

field, we derived an expression for the electron-laser interaction potential in a length

gauge description, namely Uelec(r, t) = r ·E(t).

2.6 Conclusions

In this chapter, we have described the formal theory required to model interactions

of molecules with short, high intensity laser pulses. Describing the dynamics of a

laser-molecule system in principle requires the solution of the full time-dependent

Schrödinger equation. In practice however, this is impossible for all but the small-

est of systems. In almost all cases, some approximations are required, for example

the separation of the electronic and nuclear dynamics, as in the Born-Oppenheimer

and classical nuclei approximations. Even with one of these approximations, describ-

ing the electronic dynamics of a multielectron system is an enormous challenge, and

requires a specialist approach. There are a variety of methods available for tackling

this problem, including time-dependent Hartree-Fock, post-Hartree-Fock approaches

such as time-dependent configuration interaction, or the alternative method of time-

dependent density functional theory.

In the latter of these methods (TDDFT), the wavefunction is replaced by the elec-
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tronic density as the main quantity of interest, and solution of the time-dependent

Schrödinger equation is no longer required. Instead, describing the electronic dynam-

ics requires the self-consistent solution of a set of one-particle Schrödinger-like equa-

tions: the time-dependent Kohn-Sham (TDKS) equations. Solution of these will be,

in principle, equivalent to solution of the full time-dependent Schrödinger equation.

In practice however, a key quantity in the Hamiltonian of the TDKS equations, the

exchange-correlation potential, is unknown, and must be approximated.

A number of approximations to the exchange-correlation potential are available, the

simplest of which is the adiabatic local density approximation (ALDA). In this approx-

imation the exchange-correlation potential is approximated as the ground state po-

tential of a uniform gas, with instantaneous and local density. ALDA is the easiest

exchange-correlation potential to implement, but does contain several errors, which

can be significant depending on the system under investigation. One of the most sig-

nificant of these is the self-interaction error inherent in ALDA; this leads to incorrect

long-range behaviour with associated unphysical effects such as underestimated ion-

ization potentials and incorrect dissociation limits. While a number of more compli-

cated schemes for correcting the self-interaction error exist, the average-density self-

interaction-correction (ADSIC) scheme provides a good compromise between accuracy

and efficiency.

In the latter sections of this chapter, it was shown how a classical treatment of ionic

motion can be combined with a quantum description of electronic dynamics, giving

rise to a quantum-classical molecular dynamics approach, and finally how a laser field

can be introduced classically to the system, resulting in a semiclassical treatment of the

laser-molecule interaction.

In the next chapter, we will show how the theory described in this chapter is imple-

mented in practice, in the Fortran2008 code EDAMAME.



Chapter 3

Numerical implementation of the

quantum-classical molecular

dynamics approach

3.1 Introduction

The theoretical formalism of quantum-classical molecular dynamics incorporating TDDFT,

described in Chapter 2, is implemented in a Fortran2008 code named EDAMAME

(Ehrenfest DynAMics on Adaptive MEshes). This software was developed in Queen’s

University Belfast [220] and has previously been used to study a number of molecular

systems including nitrogen (N2) and benzene (C6H6) [46, 220].

EDAMAME combines a TDDFT description of electronic dynamics with a classical de-

scription of the motion of the ions. It is a highly parallelized code, which allows it

to take advantage of the computational power of high performance computing (HPC)

systems, ranging from large national services such as ARCHER, the UK National Su-

percomputing Service [238], to small departmental clusters. The ability to spread a

calculation over hundreds or thousands of cores is essential to the work described in

this thesis; the large grid sizes needed for accurately describing the motion of ionized
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wavepackets following ionization by a strong laser field mean that calculations on a

desktop machine would be practically impossible.

This chapter will provide an overview of the design of EDAMAME, and is arranged as

follows. In Section 3.2 we explain how the time-dependent Kohn-Sham equations are

discretized and solved on a finite difference grid, describing how each of the poten-

tial terms appearing in the equations are calculated, as well as how the initial state is

calculated and subsequently propagated in time. In Section 3.3 we consider the ionic

dynamics, describing how the classical equations of motion are propagated in time,

as well as how relaxed geometries are obtained. The parallelization of the code is

discussed in Section 3.4. Finally, in Section 3.5, we describe how a number of observ-

able quantities, such as ionization and high harmonic spectra, are calculated within

EDAMAME.

3.2 Electronic Dynamics: TDDFT

Modelling the electronic dynamics of a system withNe electrons within TDDFT requires

the solution of the time-dependent Kohn-Sham (TDKS) equations. Since the systems

studied in this work all have even numbers of electrons, and since we are interested in

the effect of electric fields only (i.e., not magnetic fields), spin effects can be neglected.

In this case the number of TDKS orbitals to be propagated is N = Ne/2, and the TDKS

equations are

i
∂

∂t
ψj(r, t) =HKSψj(r, t)

=

[

−1

2
∇2 + VKS(r, t)

]

ψj(r, t)

=

[

−1

2
∇2 + VH(r, t) + Vext(r,R, t) + Vxc(r, t)

]

ψj(r, t), (3.1)

for j = 1, . . . , N , where VH(r, t), Vext(r,R, t), and Vxc(r, t) are the Hartree potential,

external potential, and exchange-correlation potential introduced in Chapter 2. Each

of these N time-dependent Kohn-Sham orbitals, ψj(r, t), has an initial occupancy of 2,

with the total density of the system being given by

n(r, t) = 2
N
∑

j=1

|ψj(r, t)|2. (3.2)
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Note that a small number of extra, unoccupied states (typically 5–10 ) are also included

in EDAMAME calculations, as their inclusion generally helps with the convergence of

the ground state (the calculation of which is described in Section 3.2.7). These orbitals

have occupancies of 0, and do not contribute to the density or potential of the system.

In this section, we will describe how the TDKS equations are described and solved in

EDAMAME.

3.2.1 Finite difference grid

Within EDAMAME, the Kohn-Sham orbitals are discretized on a finite difference grid in

Cartesian coordinates. Use of finite difference grids rather than basis set techniques to

solve the TDKS equations allows the extent of the grid to be increased more easily, and

for the calculation to be parallelized across large numbers of processors (see Section

3.4). In this way, ionizing electrons can be described more easily. Two different types

of finite difference grid can be implemented:

(i) a standard grid, with uniform spacings between grid points, or

(ii) a scaled grid, with non-uniform spacings between grid points, in which the spac-

ing in a small region around the molecule is smaller than elsewhere.

In both types of grid the origin, (0, 0, 0), is positioned at the centre of the grid. For the

standard grid, the grid spacing is constant in each dimension. Working in a Cartesian

coordinate system (with unit vectors êx = ı̂, êy = ̂, êz = k̂ for the x, y, z coordinates

respectively), the position vector in these unscaled coordinates is simply

r = xı̂+ y̂+ zk̂. (3.3)

Consider the x coordinate. Using Nx grid points along this direction, and a grid spacing

of ∆x, the grid spans the range −xmax ≤ x ≤ xmax, where

xmax =
(Nx − 1)×∆x

2
. (3.4)
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The gridpoints themselves are defined as

xi = −xmax + (i− 1)∆x, (3.5)

for i = 1, . . . , Nx. Similar expressions hold for the y and z coordinates.

If a high density of points is required near the origin (in the vicinity of the molecule),

a scaled grid can be used. In this case the position vector is given by

r = f(x)ı̂+ g(y)̂+ h(z)k̂, (3.6)

where f(x), g(y) and h(z) are scaling functions. The volume element in these scaled

coordinates is

dr = f ′(x)g′(y)h′(z)dxdydz = |J |dxdydz, (3.7)

where f ′(x) = ∂f(x)
∂x , g′(y) = ∂g(y)

∂y , h′(z) = ∂h(z)
∂z , and |J | = det(J) is the determinant

of the Jacobian describing the transformation. For this orthogonal transformation the

Jacobian is

J =













f ′(x) 0 0

0 g′(y) 0

0 0 h′(z)













. (3.8)

The gradient operator can then be written as [239]

∇ = ı̂
1

f ′
∂

∂x
+ ̂

1

g′
∂

∂y
+ k̂

1

h′
∂

∂z
, (3.9)

while the Laplacian is [239]

∇2 =
1

|J |

[

∂

∂x

(

g′h′

f ′

)

∂

∂x
+

∂

∂y

(

f ′h′

g′

)

∂

∂y
+

∂

∂z

(

f ′g′

h′

)

∂

∂z

]

. (3.10)

In addition, the Kohn-Sham orbitals are transformed according to

ψj(r, t) →
1

√

|J |
ψj(r, t). (3.11)

These expressions can then be substituted into the Lagrangian defined in Eq. (2.42) be-

fore taking the variation to obtain the TDKS equations. With this choice, the Laplacian
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operator in the TDKS equations becomes

∇2 =
1√
f ′

∂

∂x

(

1

f ′

)

∂

∂x

1√
f ′

+
1√
g′
∂

∂y

(

1

g′

)

∂

∂y

1√
g′

+
1√
h′

∂

∂z

(

1

h′

)

∂

∂z

1√
h′
, (3.12)

which will result in symmetric equations when central finite difference formulae are

applied (see [220] for more details). This is important as it ensures that the resulting

finite difference Hamiltonian is Hermitian, which in turn allows for the use of unitary

time propagation schemes [240]. This expression for the Laplacian, given in terms of

first derivatives, can be rewritten in terms of second derivatives for convenience, while

maintaining the symmetry of the finite difference equations. Taking the term involving

derivatives with respect to x as an example, we can write

1√
f ′

∂

∂x

(

1

f ′

)

∂

∂x

1√
f ′

=
1

2

[

1

(f ′)2
∂2

∂x2
+

∂2

∂x2
1

(f ′)2

]

+

[

f ′′′

2(f ′)3
− 7

4

(f ′′)2

(f ′)4

]

, (3.13)

where f ′, f ′′ and f ′′′ indicate successively higher derivatives of f(x) with respect to x.

The terms in Eq. (3.12) involving derivatives with respect to y and z can be rewritten

in analogous forms.

To obtain a higher density of points close to the molecule, we apply the following

transformation. For clarity, here we apply this to the x coordinate; similar expressions

can be obtained for the y and z coordinates. In this case, we have

f(x) = 2x+
1

2

[

(x− xb)erf(x− xb) +
e−(x−xb)

2

√
π

]

− 1

2

[

(x+ xb)erf(x+ xb)−
e−(x+xb)

2

√
π

]

. (3.14)

Here xb is the specified boundary between the inner region (high density of points) and

outer region (low density of points), and

erf(x) =
2√
π

∫ x

0
e−t2dt, (3.15)

is the error function.
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Figure 3.1: Grid spacings in the two different finite difference grids used in EDAMAME.
In the unscaled grid, the grid spacing is constant (0.4 a0) throughout the grid. In the
scaled grid, the grid spacing is 0.4 a0 for most of the grid, but reduces to 0.2 a0 near the
centre of the grid. A smooth transition between the two regions occurs around ±10 a0.
The x coordinate has been chosen here as an example; the y and z coordinates are
scaled in the same manner.

The derivative terms appearing in Eq. (3.13) and elsewhere are therefore

f ′(x) = 2 +
1

2
[erf(x− xb)− erf(x+ xb)] , (3.16)

f ′′(x) =
1√
π

[

e−(x−xb)
2 − e−(x+xb)

2
]

, (3.17)

f ′′′(x) =
2√
π

[

−(x− xb)e
−(x−xb)

2

+ (x+ xb)e
−(x+xb)

2
]

. (3.18)

From Eq. (3.7), the grid spacing in x will be related to the scale factor f ′(x)∆x. There-

fore, from Eq. (3.16), we obtain a finite difference grid with a grid spacing of ∆x in the

inner region, and 2∆x in the outer region, with a smooth transition between the two

around xb, as shown in Fig. 3.1.

3.2.2 Finite difference formulae for derivatives

Evaluation of the kinetic energy operator in Eqs. (3.12) and (3.13) requires approxima-

tions to second derivatives. Derivatives in EDAMAME are approximated using central

difference formulae. For some function, F (x), the first derivative at the point xa can be
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approximated as

F ′(xa) =
1

∆x

Nfd
∑

κ=−Nfd

d1(xa+κ)F (xa+κ), (3.19)

while the second derivative is approximated as

F ′′(xa) =
1

(∆x)2

Nfd
∑

κ=−Nfd

d2(xa+κ)F (xa+κ), (3.20)

where d1(xa+κ) and d2(xa+κ) are the finite difference coefficients at point xa+κ. We

refer to Eqs. (3.19)–(3.20) as (2Nfd +1)-point, or (N +1)-point, finite difference rules,

where N = 2Nfd.

The finite difference coefficients can be derived in a number of different ways, in-

cluding using the Taylor series or Lagrange interpolation. For the results presented in

Chapter 4, the standard coefficients [241, 242] are used along with the unscaled grid

described above. The work that will be described in Chapter 5 requires the use of the

scaled grid described above. An undesired consequence of reducing the grid spacing is

the associated requirement to also reduce the time step used in the propagation of the

TDKS equations (see Section 3.2.8). This is due to the fact that the highest frequency

modes supported by the finite difference grid increase as the grid spacing is reduced.

The highest modes have energies beyond any physical energies associated with the sys-

tem, but will result in errors in the calculation if not described correctly. Reducing the

time step to accommodate the propagation of these states would be an added compu-

tational burden on top of that imposed by the need for a greater number of grid points

when the scaled coordinates are used. Instead, we follow the approach taken in the

development of an RMT (R-Matrix with time-dependence) code in Belfast [243], and

alter the finite difference method used to one which suppresses the highest frequency

components. Briefly, this approach proceeds as follows (further details and discussion

of this approach can be found in [243]).

An arbitrary function, F (x), can be approximated as a linear combination of (N + 1)

discrete orthogonal polynomials, uj(x), as

F (x) =
N
∑

j=0

cjuj(x) j = 0, . . . ,N . (3.21)
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Here the expansion coefficients, cj , are determined by projecting both sides of this

equation onto an arbitrary polynomial. Noting the orthogonality of the polynomials,

this gives

cj =
(F, uj)

(uj , uj)
, (3.22)

where (F,G) denotes the weighted inner product of the functions F (x) and G(x) over

the discrete points, xk, k = 0, . . . ,N , given by

(F,G) =

N
∑

k=0

wkF (xk)G(xk), (3.23)

with weights wk. In this work Lorentzian weights are employed where

wk =

[

1 + 212
(

xk
xN

)2
]−1

k = 0, . . . ,N . (3.24)

The set of (N +1) discrete orthogonal polynomials are defined through the recurrence

relation

u0(x) = 1 (3.25)

u1(x) = x− α1 (3.26)

uj(x) = (x− αj)uj−1(x)− βjuj−2(x) j = 2, . . . ,N , (3.27)

where

αj =
(xαj−1, αj−1)

(αj−1, αj−1)
j = 1, . . . ,N , (3.28)

and

βj =
(xαj−1, αj−2)

(αj−2, αj−2)
j = 2, . . . ,N . (3.29)

We can therefore rewrite Eq. (3.21) as

F (x) =
N
∑

j=0

(F, uj)

(uj , uj)
uj(x) =

N
∑

k=0

F (xk)



wk

N
∑

j=0

uj(xk)

(uj , uj)
uj(x)



 . (3.30)

Expressions for the derivatives of F (x) can then be obtained through differentiation

of Eq. (3.30). For example, suppose we wish to approximate the second derivative of

F (x) at the point x = xa. Here we could use an (N + 1)-point central finite difference
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scheme evaluated around the point xa = xN/2. This scheme would use the value of the

function at the discrete set of points x0, . . . , xN , where N is even. As an example, in the

work described in this thesis, we use a 9-point central finite difference rule, meaning

N = 8. The central difference approximation to the second derivative can be found by

differentiating Eq. (3.30), and evaluating the resulting equation at the midpoint, xN/2,

giving

F ′′(xN/2) =
N
∑

k=0

F (xk)



wk

N
∑

j=0

uj(xk)

(uj , uj)
u′′j (xk)



 =
N
∑

k=0

d
(N )
2 (xk)F (xk). (3.31)

In Eq. (3.31) the summations are taken over the complete set of (N + 1) discrete or-

thogonal polynomials defined over (N+1) points. A sum of (N+1) orthogonal polyno-

mials is an interpolating approximation, and so the coefficients d
(N )
2 (xk) as defined in

Eq. (3.31) are simply the standard central difference coefficients that one would obtain

from a Taylor expansion [241, 242]. If instead, the summation is truncated to fewer

than (N + 1) polynomials, the result is a least-squares fit to the (N + 1) points. By

truncating the summation such that the highest-order polynomials are neglected, we

can suppress the highest frequency components of f(x). This approach, introduced by

Parker [243], of truncating the summation in Eq. (3.31) at order M < N results in a

set of finite difference coefficients defined by

d
(M)
2 (xk) = wk

M
∑

j=0

uj(xk)

(uj , uj)
u′′j (xk). (3.32)

Comparisons of the eigenvalues calculated using a normal 9-point finite difference rule

(i.e., Eq. (3.31) with N = 8) with those calculated using a least-squares approximation

(i.e., Eq. (3.32) with M = 7) show that while the lowest eigenvalues for both cases

agree, the maximum eigenvalue supported by the grid in the least-squares case is re-

duced. An example of these differences between eigenvalues calculated with N = 8

and N = 7, as well as between eigenvalues calculated on standard and scaled grids, is

shown in Fig. 3.2 for the one-dimensional model Hamiltonian

Hmodel = −1

2

d2

dx2
− 1√

x2 + a
(3.33)
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Figure 3.2: Eigenvalues of the one-dimensional Hamiltonian defined in Eq. (3.33),
where the softcore parameter has been set to a = 2.0 to reproduce the ground state
energy of the hydrogen atom (-0.5 Ha). Four cases are considered, using either the
scaled or unscaled grids described in Section 3.2.1, and either the normal finite differ-
ence or least-squares finite difference methods. In the normal finite difference method,
a 9-point finite difference rule is used (i.e., coefficients given by Eq. (3.31) with N =
8). In the least-squares finite difference method, the function is approximated with a
7th-order polynomial (i.e., coefficients given by Eq. (3.32) with M = 7).

where a is a softcore parameter that prevents singularities on the grid (a = 2.0 in

this case). Here we see that, since the grid extent is the same in both scaled and

unscaled grids, the number of grid points, and therefore the number of eigenvalues,

is smaller when the scaled grid is used. However the maximum eigenvalue is the

same in both scaled and unscaled grids. Comparing the normal finite difference and

least-squares cases, we see that while the lowest eigenvalues are identical between

the two cases, the maximum eigenvalue supported by the grid is reduced when the

least-squares approximation is used, as desired.

In the work presented in Chapter 5, we use this least-squares approximation, with finite

difference coefficients defined by Eq. (3.32) with M = 7 (instead of N = 8 that would

reproduce the standard finite difference coefficients).

3.2.3 Calculation of the Hartree potential

The Hartree potential

VH(r, t) =

∫

n(r′, t)

|r − r′|dr
′ (3.34)
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is the classical electrostatic potential due to the charge distribution n(r, t). Evaluat-

ing this integral directly is computationally demanding, and becomes impractical for

large grids. Therefore, we instead obtain VH(r, t) by solving the corresponding Poisson

equation

∇2VH(r, t) = −4πn(r, t). (3.35)

As described previously for applying the Laplacian to the Kohn-Sham orbitals, we trans-

form the Hartree potential as

VH(r, t) →
1

√

|J |
VH(r, t), (3.36)

so that Eq. (3.35) can be rewritten as

[

1√
f ′

∂

∂x

(

1

f ′

)

∂

∂x

1√
f ′

+
1√
g′
∂

∂y

(

1

g′

)

∂

∂y

1√
g′

+
1√
h′

∂

∂z

(

1

h′

)

∂

∂z

1√
h′

]

VH(r, t) = −4π
√

|J |n(r, t). (3.37)

This equation is then solved using a conjugate-gradient method on the finite difference

grid. Since the systems in EDAMAME are non-periodic, it is necessary to impose some

boundary conditions on the system. In the work presented in this thesis, two different

boundary condition methods have been used, both involving a multipole expansion of

the charge distribution. In the first of these methods, used for the work presented in

Chapter 4, a single multipole expansion is taken around the centre of both the grid and

the molecule (i.e., the origin). In the second method, used for the work presented in

Chapter 5, the multicentre nature of the molecule is taken into account by taking multi-

pole expansions of a number of charge distributions, each centred around the position

of one of the Nn nuclei. This method is known as the fuzzy cell decomposition and

multipole expansion method, and involves setting up Voronoi polyhedra to partition

the grid and density into parts associated with each ion. Both of these methods are

described in more detail in chapter 2 of [242].

3.2.4 Pseudopotential description of the electron-ion interactions

The external potential in Eq. (3.1), Vext(r,R, t), accounts for both the Coulomb inter-

action between the electrons and the ions, Vions(r,R, t), and the interaction between
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the applied laser field and the electrons, Uelec(r, t), i.e.,

Vext(r,R, t) = Vions(r,R, t) + Uelec(r, t). (3.38)

These two terms will be dealt with in turn in this and the following subsection, begin-

ning with Vions(r,R, t). EDAMAME employs the use of psuedopotentials to treat this

term, as described below.

Describing the dynamics of an atomic or molecular system in principle requires the

explicit treatment of all the electrons in the system. However, close to each ion the po-

tential felt by the core electrons can be extremely steep. This would therefore require

a very high density of gridpoints to accurately describe the rapidly oscillating wave-

function in this region. Considering the wavelengths of the laser pulses considered in

this work however, we expect that the laser field will couple predominantly with the

valence electrons, and that the core electrons will play little to no part in the laser-

molecule interaction. In this case, it can be reasonable to replace the (all-electron)

Coulomb potentials with pseudopotentials. Using these effective potentials has the ef-

fect of replacing the all-electron wavefunctions with pseudo-wavefunctions, which are

identical to the true wavefunctions beyond some cut-off radius, but do not have as

many (or any) nodes within the core region.

There are various forms that pseudopotentials can take. “Norm-conserving” pseudopo-

tentials are one of the most commonly used forms, and it is these that are used in

EDAMAME. Pseudopotentials of this type are constructed so as to satisfy four criteria:

1. The valence all-electron and pseudopotential eigenvalues must be equal;

2. The pseudo-wavefunctions should contain no nodes;

3. Beyond a given cut-off radius, the normalized radial pseudo-wavefunction with

angular momentum l should be identical to the corresponding normalized radial

all-electron wavefunction;

4. Within the cut-off radius, the norm of the pseudo- and all-electron wavefunctions

should be equal (i.e., the charge inside the cut-off region should be equivalent in

both cases).
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The particular scheme used for generating the pseudopotentials used in EDAMAME,

namely that of Troullier and Martins [244], sets a number of additional conditions,

namely that the pseudo-wavefunction and its first four derivatives should be continuous

at the cut-off radius, and that the screened pseudopotential should have zero curvature

at the origin.

Norm-conserving pseudopotentials are non-local, meaning that the potential is differ-

ent for each angular momentum (l) state. In 1982 however, Kleinman and Bylander

showed that a non-local pseudopotential can be recast into a separable, fully non-local

form [245]. Use of this form rather than a non-separable form requires significantly

less computation, and as such is the form used in EDAMAME.

EDAMAME allows the core (1s) electrons in a molecule to be frozen through the use of

norm-conserving Troullier-Martins pseudopotentials [244], implemented in their fully-

separable Kleinman-Bylander form [245], so that Vions can be written as

Vions(r,R, t) =

Nn
∑

K=1

[

V
lloc
K,ps(xK)

+
∑

l=0
l 6=lloc

l
∑

m=−l

|∆V l
K,ps(xK)χK

lm(xK)〉 〈∆V l
K,ps(xK)χK

lm(xK)|
〈χK

lm(xK)|∆V l
K,ps(xK) |χK

lm(xK)〉

]

,

(3.39)

where l is the orbital angular momentum quantum number, m is the magnetic quan-

tum number, V
lloc
K,ps(xK) and ∆V l

K,ps(xK) are the local and non-local components re-

spectively of the pseudopotential of ion K, χK
lm(xK) is the pseudo-wavefunction for

the partial wave |lm〉, and xK = r −RK . The non-local components are defined as

∆V l
K,ps(xK) = V l

K,ps(xK)− V
lloc
K,ps(xK), (3.40)

where V l
K,ps(xK) is the l angular momentum component of the non-local pseudopoten-

tial for ion K. The force acting on ion K due to this non-local pseudopotential is given

by [220, 246]

FK =

∫

n(r)∇V
lloc
K,ps(xK)dr +

N
∑

j=1

∑

l=0
l 6=lloc

l
∑

m=−l

(

BjK
lm

AK
lm

)

∇BjK
lm , (3.41)
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where

AK
lm = 〈χK

lm(xK)|∆V l
K,ps(xK) |χK

lm(xK)〉 , (3.42)

and

BjK
lm = 〈∆V l

K,ps(xK)χK
lm(xK)|ψj(r, t)〉 . (3.43)

The pseudopotentials used in EDAMAME were generated using the Atomic Pseudopo-

tential Engine (APE) [247].

3.2.5 Laser interaction potential

The second contribution to the external potential, Eq. (3.38), is the interaction between

the electrons and the applied laser field, Uelec(r, t). In Section 2.5 it was shown how an

applied laser pulse can be introduced to our calculations by describing it as a classical

radiation field, resulting in a semiclassical treatment of the laser-molecule interaction.

Specifically, in Eq. (2.69) we obtained an expression for the electron-laser interaction

potential, Uelec(r, t), namely

Uelec(r, t) = r ·E(t). (3.44)

In EDAMAME, the exact form of the laser field comes from the definition of the vector

potential, A(t), which for the linearly polarized pulses considered in this thesis is

A(t) = A0f(t) cos(ωLt+ φ)êk, (3.45)

where A0 is the peak value of the vector potential, ωL is the laser frequency, φ is the

carrier-envelope phase, f(t) is the pulse envelope, and k = x, y, z. A sin2 pulse envelope

is used, i.e.,

f(t) =















sin2
(

πt

T

)

for 0 ≤ t ≤ T,

0 otherwise.

(3.46)

The electric field vector is then obtained through the derivative of A(t)

E(t) = − ∂

∂t
A(t). (3.47)
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Figure 3.3: Typical temporal profile of laser pulses used in EDAMAME calculations. In
(a) the vector potential, A(t), is plotted along with the pulse envelope (dashed line),
while the electric field vector, E(t), is plotted in (b). These plots correspond to a laser
pulse with wavelength λ = 1450 nm, peak intensity 1.0×1014 W/cm2, and a duration
of 5 cycles.

For all the calculations presented in this work, the carrier-envelope phase, φ, is set to

zero, and so E(t) can be written as

E(t) =

[

E0f(t) sin(ωLt)−
E0

ωL

∂f

∂t
cos(ωLt)

]

êk. (3.48)

The peak electric field strength in atomic units, E0, is related to the peak intensity of

the field in W/cm2, I0, through

E0 =

√

I0
Iau

, (3.49)

where Iau is the atomic unit of intensity, Iau = 3.51×1016 W/cm2. Figures 3.3(a) and

3.3(b) respectively show typical A-field and E-field profiles. In calculations in which

two pulses are applied, each individual pulse will have the profile defined by the above

equations, with the overall applied field then simply a sum of the two pulses, taking

account of any chosen delay time between the two pulses.

3.2.6 Exchange-correlation potential

As discussed in Section 2.3.3, the exact form of the exchange-correlation potential,

Vxc(r, t), is unknown, and must be approximated. In EDAMAME, Vxc(r, t) is described

in the adiabatic local density approximation (ALDA), incorporating the Perdew-Wang

parameterization of the correlation functional [176], and supplemented by the average-

density self-interaction-correction (ADSIC) [182, 186]. A brief discussion around the
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merits and failings of these approximations was previously given in Section 2.3.3, and

will not be repeated here. The exchange and correlation components of the LDA

potential, V LDA
xc (r, t), are treated separately, with the exchange component defined

from the analytical form of the exchange-only energy of a homogeneous electron gas,

Eqs. (2.24)–(2.25), as

V LDA
x (r, t) = −

(

6

π

)1/3

n1/3(r, t). (3.50)

Since analytical forms of the correlation part of the energy of a homogenous electron

gas are only available in the high- and low-density limits, for V LDA
c (r, t) we use the

parameterization of Perdew and Wang, given in [176].

To correct the self-interaction errors inherent in LDA, V LDA
xc (r, t) is supplemented by the

average-density self-interaction-correction [182, 186], which we write as

V ADSIC(r, t) =

∫

n(r′, t)/P (t)

|r − r′| dr′ +
δELDA

xc [n(r, t)/P (t)]

δn(r, t)
, (3.51)

where P (t) is the total electronic population contained in the grid at time t. This is

given simply by

P (t) =

∫

V
n(r, t)dr, (3.52)

where the volume V is the total volume of the grid, such that P (t) = 2N = Ne for

t = 0, but where we may have that P (t) < Ne for t > 0 in the presence of an applied

field, due to the effect of the absorbing boundaries (see Section 3.2.9). The total form

of the exchange-correlation potential is then given by

Vxc(r, t) = V LDA
x (r, t) + V LDA

c (r, t)− V ADSIC(r, t). (3.53)

3.2.7 Calculation of the initial state

With all the terms in Eq. (3.1) defined in the previous subsections, we now turn to

the solution of the TDKS equations. The first step in an EDAMAME simulation is the

calculation of the initial state of the system. For a given geometry, the initial state of

the system is assumed to be the ground electronic state. Changing the geometry of the

system will of course change the calculated ground state; Section 3.3.2 will describe

how the geometry of a system can be relaxed using EDAMAME in order to calculate the
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equilibrium geometry for the ground state.

The calculation of the initial state requires the self-consistent solution of the time-

independent Kohn-Sham equations

HKSψj(r) = Ejψj(r), j = 1, . . . , N, (3.54)

where HKS is the Kohn-Sham Hamiltonian and Ej is the eigenstate energy of Kohn-

Sham orbital ψj(r).

Calculating the Kohn-Sham eigenpairs at every self-consistent cycle can create a bot-

tleneck in the calculation of the ground state. To avoid this, we employ the Chebyshev

filtered subspace iteration (CheFSI) method proposed by Zhou et al. [248, 249]. By em-

phasising the importance of eigenspaces rather than eigenpairs, this method removes

the need to solve the eigenvalue problem at every self-consistent iteration. The CheFSI

method is based on the fact that the electronic density n(r, t) can be calculated from

the diagonal of the density matrix, Π, which is given by

Π = ΦΦ†, (3.55)

where Φ is the matrix whose columns are the occupied Kohn-Sham orbitals. For any

orthonormal matrix U of suitable dimension, we can write

Π = (ΦU)(ΦU)†, (3.56)

which means that explicit eigenvectors are not required to calculate the density in

Eq. (3.2); any orthonormal basis of the eigenspace corresponding to the occupied Kohn-

Sham states will do [248]. In order to find this eigenspace, the Kohn-Sham Hamil-

tonian, HKS, is used to create a Chebyshev filter of order m, pm(HKS). Chebyshev

polynomials are chosen because they grow rapidly outside of the interval [-1,1]. By

mapping only the unwanted part of the spectrum of the Hamiltonian into the interval

[-1,1], these unwanted parts of the spectrum can be damped. Therefore, by itera-

tively applying this filter to the basis of Kohn-Sham orbitals, i.e, computing pm(HKS)Φ,

one can obtain successively better approximations to the eigenspace of the occupied

Kohn-Sham states. Once self-consistency is reached, the filtered subspace includes the
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eigensubspace corresponding to the occupied states, and explicit eigenvectors can be

obtained by a Rayleigh-Ritz refinement (subspace rotation) step [249].

Using the CheFSI method, the self-consistent solution to Eq. (3.54) is therefore obtained

through the following procedure:

1. Get initial guess for Kohn-Sham orbitals ψj(r), choosing a random vector for each

orbital and then orthonormalising the set;

2. Calculate charge density n(r), by Eq. (3.2);

3. Calculate effective potential VKS(r), as defined in Eq. (3.1);

4. Calculate new guess for Kohn-Sham orbitals. This is taken to be either a set of

random orthonormal vectors, or the eigenvectors obtained from a single appli-

cation of the Thick-Restart Lanczos method implemented in the TRLan library

[250] to solve the time-independent Kohn-Sham equations, Eq. (3.54);

5. Calculate new charge density ν(r), again, by Eq. (3.2);

6. If convergence criteria |ν(r) - n(r)| < ǫ is satisfied:

– Ground state calculated; stop.

Else if convergence criteria not satisfied:

– Mix densities;

– Calculate new effective potential VKS(r), again, by Eq. (3.1);

– Perform Chebyshev subspace iteration;

– Go back to step 5;

Comparisons of the ground state obtained using the two methods for calculating an

initial approximation to the eigenspace given in step 4 show good agreement. When

the calculations presented in Chapter 4 were performed, the TRLan method was used

for step 4. This was subsequently found to be slightly slower than using a set of random

orthonormal vectors, and so the results presented in Chapter 5 are from calculations

using random orthonormal vectors.
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3.2.8 Time propagation

Once the initial state of the system is determined, the state at later times is determined

by applying the unitary time evolution operator, U(t+∆t), to the Kohn-Sham orbitals,

so that ψj at time t+∆t is given by

ψj(r, t+∆t) = U(t+∆t)ψj(r, t). (3.57)

For ∆t→ 0, this operator may be approximated as

U(t+∆t) ≈ e−iHKS∆t. (3.58)

Evaluating this exponential directly is impractical for the large Kohn-Sham Hamilto-

nian matrices of typical practical interest; instead iterative methods are generally used

[251]. In EDAMAME we employ the unitary nth-order Arnoldi propagator [252, 253].

This is an explicit propagator based on successive operations of HKS upon the Kohn-

Sham orbitals. We begin by constructing a set of orthonormal vectors that span the

Krylov subspace Km+1

Km+1(HKS, ψj) = {ψj , HKSψj , H
2
KSψj , . . . , H

m
KSψj}. (3.59)

Gram-Schmidt orthonormalisation is then used to construct a set of (m+1) orthonormal

vectors, [q0, q1, . . . , qm], that span the subspace Km+1. Using these vectors to form the

columns of matrix Q, we can write the Krylov subspace Hamiltonian, h, as

h = Q†HKSQ. (3.60)

We can then replace HKS in the time evolution operator with the approximation

HKS ≈ H̃KS = QhQ†, (3.61)

The time evolution operator is therefore approximated as

U(t+∆t) ≈ Ũ(t+∆t) = e−iH̃KS∆t = Qe−ih∆tQ†, (3.62)
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where we have used the fact that (QhQ†)m = QhmQ† to bring Q and Q† outside of the

exponentiation. Since the Krylov subspace Hamiltonian, h, is much smaller than the

Kohn-Sham Hamiltonian, HKS, and is a tridiagonal matrix (if HKS is Hermitian), the

exponential e−ih∆t can then be inexpensively evaluated through direct diagonalization

of h. This unitary propagator Ũ(t + ∆t) will be correct to order m in ∆t [219]. One

advantage of the Arnoldi propagator is that it permits the use of larger values of ∆t

compared to other propagators, such as the Taylor series propagator [251]. In the

work described in this thesis, converged solutions are obtained using an 18th-order

Arnoldi propagator with a time step of ∆t = 0.2 a.u. (using the unscaled grid and

normal finite difference method for the work presented in Chapter 4, and the scaled

grid and least-squares finite difference method for the work presented in Chapter 5).

3.2.9 Absorbing boundaries

At the beginning of a calculation, the molecule under investigation will typically be

located with its centre of mass at the centre of the grid, with the majority of the elec-

tronic density in close proximity. As a simulation in which a strong laser field applied

progresses however, ionized electronic wavepackets can propagate far from the centre

of the grid towards the edges. Upon reaching the grid boundary, these wavepackets

could be reflected back and return to the centre, interfering with the molecule and the

remaining electronic density in an unphysical manner. To prevent these reflections,

absorbing boundaries are employed near the edges of the grid. This absorption is per-

formed by applying a mask function,M(r) which splits each Kohn-Sham orbital ψj(r, t)

in to two parts:

ψj(r, t) =M(r)ψj(r, t) + [1−M(r)]ψj(r, t). (3.63)

The first term here represents the non-ionized wavepackets which have remained near

the centre of the grid, while the second term is associated with those wavepackets that

have been ionized and are propagating far away from the molecule. Each time the mask

function is applied, only the first term (the non-ionized parts of the wavefunction) is

carried forward in the calculation. Discarding the second term of the above equation

in this manner has the effect of reducing the electronic population in each Kohn-Sham

orbital over time; this can be used as a measure of the amount of ionization occuring

over time, as will be described in Section 3.5.1.
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The exact form that the mask function should take is an important factor: it should

decrease slowly enough towards the edges of the grid that reflections are kept to a

minimum, but quickly enough that a very large absorbing region isn’t required to en-

sure that the wavepackets are absorbed before reaching the edge of the grid.

The mask function is expressed in terms of independent functions in the x, y and z

coordinates as

M(r) =Mx(x)My(y)Mz(z). (3.64)

Considering the x component of the mask function separately, it can be written as

Mx(x) =















1 |x| ≤ xm,

1− (1−Medge)
(|x| − xm)5

(xmax − xm)5
|x| > xm,

(3.65)

where xmax is the maximum extent of the grid along the x coordinate, xm is the point

along the x coordinate where the absorbing boundary begins, and Medge is the value

chosen for the mask function at the edges of the grid (i.e., Medge = Mx(xmax)). The

x component of a typical mask function used in the work described in this thesis is

shown in Fig. 3.4. The y and z components of the mask function, My(y) and Mz(z),

have similar forms to Mx(x), although the grid extents and absorption start points can

be different to those for the x coordinate.

3.2.10 Summary

In this section we have described how the TDKS equations are discretised on a finite

difference grid and subsequently solved in EDAMAME. Each term in the Kohn-Sham

Hamiltonian was discussed individually, followed by the techniques used to calculate

the initial state of the system and how this is then propagated in time. In the next

section we will see how the ionic equations of motion, Eq. (2.41), are described in

EDAMAME.
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Figure 3.4: Example of the form of the mask function described by Eq. (3.65). Mx(x)
is plotted here for a grid with maximum extent in the x direction of |x| = 128.4 a0, and
where absorption begins at ±80.0 a0, with a final Mx(x) value of Medge = 0.2.

3.3 Ionic dynamics

In Section 2.4 in the previous chapter it was shown how a classical description of

ionic motion could be combined with a quantum treatment of electronic dynamics in a

quantum-classical molecular dynamics approach. This method has been implemented

in EDAMAME, and enables calculations to be run with all ions free to move, all ions

fixed in place, or a mixture of fixed and free ions. Unless otherwise specified, all the

EDAMAME results presented in this thesis are from calculations where all the ions are

free to move.

The dynamics of the ions during a simulation are calculated classically using Newton’s

equations of motion. For ion K we have

MKR̈K = −
∫

(

n(r, t)∇KHKS

)

dr −∇K

(

Vnn(R) + ZKRK ·E(t)
)

, (3.66)

where ∇K is the gradient operator with respect to the ionic coordinates of ion K,

Vnn(R) is the Coulomb repulsion between the ions

Vnn(R) =
1

2

Nn
∑

K=1

Nn
∑

L=1
L 6=K

ZKZL

|RK −RL|
, (3.67)
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and ZKRK ·E(t) denotes the interaction between ion K and the laser field.

3.3.1 Time propagation

To propagate the classical ionic equations of motion in time, we use the velocity-Verlet

algorithm [254]. With this algorithm, the position and velocity of ion K are evolved

according to

RK(t+∆T ) = RK(t) + ṘK(t)∆T +
1

2
R̈K(t)(∆T )2,

ṘK(t+∆T ) = ṘK(t) +
R̈K(t) + R̈K(t+∆T )

2
∆T, (3.68)

where R̈K(t) is given by Eq. (3.66) above. Note that the time step here for the ions,

∆T , need not be the same as the time step for the electrons, ∆t (Section 3.2.8).

3.3.2 Geometry relaxation

The relaxed geometry of a molecule in its ground state will depend upon various nu-

merical factors specific to the code used, including the choice of exchange-correlation

potential approximation, the grid spacings, and the pseudopotentials. Therefore, be-

fore a molecule can be studied using EDAMAME, a geometry optimization is required

in order to find the relaxed geometry specific to EDAMAME with the chosen calculation

parameters.

Geometry relaxations for the systems studied in this work follow a simple relaxation

scheme involving propagation in real time, based upon the idea of the variation in ki-

netic energy throughout the motion of a swinging pendulum. In a simple pendulum,

the kinetic energy is greatest when the pendulum is passing through its equilibrium

position, and zero when the pendulum is at a turning point. The geometry relaxation

scheme in EDAMAME follows a similar logic. An initial guess of the ground state geom-

etry is taken from experimental or other computational works, for example, from the

NIST Chemistry WebBook [255]. Then, after calculating the initial state of the system

(Section 3.2.7), the system is allowed to evolve in time with no external field applied,

until the total kinetic energy of the ions reaches a maximum value. The geometry at

this point is assumed to be a closer approximation to the relaxed ground state geometry,
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and is used as input for a new geometry relaxation. These calculations are performed

iteratively until the kinetic energy is reduced to an sufficiently low level, and the ions

are effectively stationary (in the absence of an external field) over the duration of a

typical calculation.

In previous versions of EDAMAME (as described in [220], for example), geometry op-

timization was performed using a quasi-Newton method known as the limited-memory

BFGS (L-BFGS) algorithm [256]. However, previous studies using EDAMAME en-

countered a number of problems in trying to achieve convergence with this approach.

The alternative approach described above was suggested for use in EDAMAME by re-

searchers from Université Paul Sabatier in Toulouse, based on their experience working

with this approach in their code, TELEMAN. As this is a somewhat unusual geome-

try optimization method however, it is unclear, for example, how well this approach

will work for very large systems. As such, future work with EDAMAME should include

more testing of the range of validity of this optimization technique, including how

this approach compares (in terms of both accuracy and efficiency) with more common

methods such as steepest decent or conjugate gradient. It would also be interesting

to investigate the convergence behaviour of the L-BFGS approach when used with the

recently implemented coordinate scaling and least-squares finite difference techniques

described in Sections 3.2.1 and 3.2.2.

3.3.3 Summary

In this section we have outlined how the classical equations of motion for the nuclei

are implemented in EDAMAME, and how the equilibrium geometry of a system can be

calculated using a simple geometry relaxation scheme.

3.4 Parallelization

Solving the Kohn-Sham equations for molecules interacting with strong laser fields re-

quires large grid extents in order to contain the ionizing wavepackets as they propagate

in the field. For this reason it is necessary to parallelize the code so that the full finite

difference grid is distributed over a number of processors. With this domain decom-

position approach, each processor stores all the Kohn-Sham orbitals for a small spatial
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region, and communication between processors is required when calculating the ki-

netic energy terms (using the central finite difference formulae described above) or

calculating observables that require a summation over the full grid (e.g., ionization, as

described in Section 3.5.1).

An alternative strategy for parallelizing the computation would be to parallelize over

Kohn-Sham orbitals, i.e., each processor only stores a single Kohn-Sham orbital, but

over the full grid extent. While this strategy has advantages in certain applications,

for the typical work done with EDAMAME, it would have two main disadvantages.

Firstly, a given system will only have a relatively small number of Kohn-Sham orbitals

(e.g., fewer than 50 orbitals for the systems typically studied using EDAMAME). This

would place an upper limit on the number of processors that could be used in a calcu-

lation where the parallelization was over Kohn-Sham orbitals (for comparison, in the

work presented in this thesis, the number of Kohn-Sham orbitals never exceeds 35,

whereas many of the calculations performed on ARCHER used over 3,500 cores). The

second drawback of parallelizing over Kohn-Sham orbitals would arise during calcula-

tion of quantities that involve multiple orbtials, such as the density. In this case, whole

orbitals would need to be transferred between processors, resulting in a large com-

munication overhead. As we will see below, the communication required with spatial

parallelization of the grid is substantially smaller.

The decomposition of the grid is carried out in each of the three spatial dimensions.

The number of processors, N
proc
k , and the number of local points per processor, N loc

k ,

can be varied for each dimension k = x, y, z, according to the size and shape of the

molecule, and the parameters of any laser pulse involved in the calculation. The total

number of gridpoints along dimension k is then simply given by Nk = N
proc
k N loc

k , and

the total number of processors by Nproc = N
proc
x N

proc
y N

proc
z .

The main communication overhead in EDAMAME is due to the application of the Lapla-

cian operator. In order to calculate the derivatives using a (2NFD + 1)-th order central

finite difference formula, communication between neighbouring processors is required

for points located near a boundary between processors. Since we are using central finite

difference formulae, evaluating the derivatives of a function at any grid point requires

the value of the function at the NFD grid points to either side. Therefore, evaluating the
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derivatives at a grid point at a processor boundary will require the communication of

just NFD grid points, since the other points required are local. In all cases described in

this thesis, the number of points per processor is chosen to be large enough compared

to the level of finite difference rule being used such that a given processor is never

required to communicate with any processors other than its nearest neighbours.

3.5 Calculation of observables

In this section we will describe how several important observables are calculated in

EDAMAME. In TDDFT, all observables are in principle defined as functionals of the

electron density, n(r, t). However, the exact forms of the functionals for many observ-

ables are not known, and so these observables must be evaluated by other means.

3.5.1 Ionization

Ionization is one of the observables in TDDFT for which the exact form of the functional

is unknown. For this reason measures of ionization in TDDFT are usually obtained

using geometric properties of the time-dependent Kohn-Sham orbitals [192, 193]. In

EDAMAME this is generally done through use of the mask function described in Section

3.2.9.

As well as preventing wavepacket reflections, use of the mask function near the edge

of the grid also allows us to describe ionization from the system from geometric con-

siderations. We define the (bound) electronic population of a Kohn-Sham orbital, ψj ,

at time t as

Pj(t) = 2

∫

V
|ψj(r, t)|2 dr, j = 1, . . . , N, (3.69)

where the volume V is the total volume of the grid, and the factor of two reflects the

fact that we are neglecting spin effects as before (i.e., each orbital is initially doubly

occupied). Then the total number of electrons contained in the grid at time t is

P (t) =
N
∑

j=1

Pj(t) = 2
N
∑

j=1

∫

V
|ψj(r, t)|2 dr =

∫

V
n(r, t)dr. (3.70)

At time t = 0, P (t) = 2N = Ne, but as the calculation progresses, depending on the

laser parameters and the specifics of the system, the norms of the Kohn-Sham orbitals
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can decrease due to repeated applications of the mask function. This decrease of P (t)

over time can be considered a measure of the ionization of the system.

Equations (3.69) and (3.70) respectively define the orbital population and net popu-

lation contained within the entire grid. On some occasions however, we may be more

interested in the populations within a smaller region of the grid, for instance the vol-

ume around an atom or molecule. In this case we define the inner population in the

same manner as the total populations defined above, but with the volume V now re-

ferring to the volume of a sphere of some chosen radius, centered at the origin of the

grid.

3.5.2 High harmonic spectra

Calculation of HHG spectra is traditionally done by first calculating the time-dependent

dipole moment of the system, d(t). However this is not the only approach: one could

instead begin by calculating the dipole velocity, ḋ(t), or the dipole acceleration, d̈(t).

The HHG spectrum is then calculated through a Fourier transform of the chosen dipole

quantity. Several studies in recent years, for example [224, 237, 257], have compared

the accuracy of using these three dipole quantities for computing the HHG spectra. The

2010 work by Han and Madsen [237] also compared the results obtained when the

three forms were used in the length gauge and the velocity gauge. There they noted

that while the forms of the dipole moment were identical in the length and velocity

gauges, and similarly for the dipole acceleration, the forms of the dipole velocity were

not.

Focusing on just the dipole and the dipole acceleration, the groups of Burnett et al.

[257] and Bandrauk et al. [224] concluded that there were no significance differences

(aside from a frequency scaling factor) between the results obtained using one dipole

quantity or the other in the case of a long, weak laser pulse. This was not the case

when a short, high intensity laser field was applied. In the strong-field case, where

there is appreciable levels of ionization, non-zero final values of the dipole can result in

increasing levels of background in the spectra obtained using from the dipole. For this

reason, both groups conclude that use of the dipole acceleration rather than the dipole

is a more robust method for calculating HHG spectra in the case of short, intense laser
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fields.

This recommendation is followed in EDAMAME: the harmonic spectral density Sk(ω),

along the direction êk, is calculated as the squared magnitude of the Fourier transform

of the dipole acceleration d̈(t)

Sk(ω) =

∣

∣

∣

∣

∫

eiωtêk · d̈(t)dt
∣

∣

∣

∣

2

, (3.71)

where k = x, y, z, and where d̈(t) is calculated, via Ehrenfest’s theorem, as

d̈(t) =
d2

dt2
〈r〉

= −
∫

n(r, t)∇HKS dr. (3.72)

Rather than calculating the overall harmonic response, calculating the response for

each individual Kohn-Sham orbital can also yield useful information [211]. The re-

sponse for each orbital can be estimated by replacing the total dipole acceleration d̈(t)

in Eq. (3.71) with the dipole acceleration for orbital j, d̈j(t), calculated as

d̈j(t) = −
∫

nj(r, t)∇HKS dr

= −2

∫

|ψj(r, t)|2∇HKS dr, j = 1, . . . , N. (3.73)

While this approach neglects interferences between different orbitals in the overall

harmonic signal, it does give an indication of the contribution of that state to the overall

harmonic response.

3.5.3 Time-frequency analysis

Equation (3.71) allows us to calculate the total harmonic response of a system to an

applied field, but gives no information about the times at which different harmonics

are emitted. In order to study HHG in more depth, we can retrieve this information

by performing a time-frequency analysis (also known as a Gabor transformation). In

this analysis, rather than Fourier transforming the entire dipole acceleration, we take a

series of Fourier transforms of short time periods. This is done using Gaussian functions
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as windows of the dipole acceleration

Hk(ω, t) =

∫ ∞

−∞

(

e−(t−τ)2/σ2

e−iωτ êk · d̈(τ)
)

dτ, (3.74)

where k = x, y, z as before, and where the parameter σ determines the width of the

Gaussian window. This parameter is defined to be

σ =
1

3ωL
, (3.75)

so that the Gaussian window has full width half maximum (FWHM) equal to 3 times

the laser frequency.

3.5.4 Summary

In this section we have described how several important observables are calculated in

EDAMAME. These observables will form the basis of much of the analysis of the results

presented in Chapters 4 and 5.

3.6 Conclusions

In this chapter we have described the implementation of the quantum-classical molec-

ular dynamics method in the Fortran2008 code EDAMAME. We began in Section 3.2 by

describing how the TDKS equations are discretized and solved in EDAMAME. Discretiz-

ing the Kohn-Sham orbitals on a finite difference grid, parallelized over a large number

of processors, allows us to efficiently simulate the large spatial extent required to ac-

curately describe high harmonic generation. To describe molecules for which a high

density of grid points is required around the nuclei, such as those studied in Chapter

5, a coordinate scaling has been implemented to allow a small grid spacing to be used

close to the molecule while not drastically increasing the total number of gridpoints

required. In Sections 3.2.2–3.2.6, the methods for calculating each of the terms in the

Kohn-Sham Hamiltonian in EDAMAME were described. The remainder of Section 3.2

included a description of the Chebyshev filtering method used for calculating the ini-

tial state of the system, and the Arnoldi propagator used to propagate the Kohn-Sham

orbitals in time.
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Section 3.3 dealt with the implementation in EDAMAME of the classical equations of

motion for the ions, describing how these are propagated in time, and how equilibrium

ground state geometries of molecules are calculated. The parallelization scheme used

in EDAMAME to allow the finite difference grid to be efficiently distributed across large

numbers of processors was outlined in Section 3.4. Finally, in Section 3.5, we described

how a number of observables quantities, such as ionization and harmonic generation,

are calculated in EDAMAME.

In the remainder of this thesis we will present a series of results from calculations

performed using EDAMAME: we begin in Chapter 4 by studying high harmonic gen-

eration in a small hydrocarbon molecule (acetylene), before moving on to study three

molecules of biological relevance (uracil, thymine and 5-fluorouracil) in Chapter 5.



Chapter 4

High harmonic generation in

acetylene and the role of excited

states

4.1 Introduction

Acetylene, C2H2, also known as ethyne, is a small, linear, polyatomic molecule. It is one

of the simplest hydrocarbons, and indeed is the simplest of the class of hydrocarbons

known as alkynes (hydrocarbons with a C-C triple bond). For this reason it has his-

torically been a useful molecule for both experimental and theoretical studies, helping

to elucidate processes occurring in more complex hydrocarbons and biomolecules, or

serving as a prototype for proof of concept demonstrations of new techniques [51, 258].

Related to acetylene’s simple structure are two additional reasons for its popularity

amongst experimentalists. Firstly, the majority of organic molecules and biomolecules

are in the solid or liquid phase at room temperature [83], making them unsuitable

for certain types of experiments, at least not without the addition of extra (sometimes

complicated) experimental steps [57, 259]. Acetylene on the other hand, is readily

(and cheaply) available in the gas phase at room temperature.
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Secondly, due to its linear form and rigidity, acetylene is much more suitable for ro-

tational alignment techniques [70] than other hydrocarbons and biomolecules [83].

This makes experimental studies of the kind of alignment-dependent effects presented

in this chapter feasible.

In this chapter, we present results from a series of EDAMAME calculations studying the

interaction of aligned acetylene molecules with mid infrared (mid-IR) laser pulses, with

a particular focus on the high harmonic response. The chapter is arranged as follows.

In Section 4.2 we provide a brief overview of previous experimental and theoretical

work on acetylene. Our results begin in Section 4.3 with the ground state equilibrium

properties of acetylene calculated using EDAMAME. Sections 4.4 and 4.5 present the

main topic of interest in this chapter, namely the high harmonic spectra produced dur-

ing the interaction of acetylene with a range of laser pulses. Finally, in Section 4.6, the

effect of the motion of the ions is briefly addressed.

Unless otherwise specified, ionic motion is included in all the calculations described in

this chapter (as discussed in Section 3.3). Some aspects of this work have previously

been presented in [260] and [261].

4.2 Background

Acetylene is a linear molecule with equilibrium C-C and C-H bond lengths of 2.273 a0

and 2.003 a0 respectively. Its electronic ground state (X1Σ+
g ) configuration is

(1σg)
2(1σu)

2(2σg)
2(2σu)

2(3σg)
2(1πu)

4, while the next lowest unoccupied orbitals are

(1πg)
0(3σu)

0(4σg)
0 [262]. The ionization potential to the ground state (X2Πu) of the

acetylene cation is 0.419 Ha (11.4 eV), while to the first excited (A2Σ+
g ), second ex-

cited (B2Σ+
u ) and third excited (C2Σ+

g ) states the ionization potentials are 0.614 Ha

(16.7 eV), 0.691 Ha (18.8 eV), and 0.867 Ha (23.6 eV) respectively [263].

In this section we will provide a brief overview of some previous experimental and

theoretical studies of acetylene. In particular we will focus our attention on studies of

photoionization and HHG.
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Figure 4.1: Photoionization-efficiency curve for C2H
+
2 and C2H

+ ions from the acety-
lene molecule, which exhibits a “double-hump” structure with peaks around 13.3 eV
and 15.5 eV. Figure reproduced from [264].

4.2.1 Photoionization

Experimental work on acetylene from the 1960s through to the 1980s focused largely

on measuring photoelectron spectra and attempting to assign specific peaks in the spec-

tra to specific electronic transitions (see, for example, [264–268]). These experimental

studies were supported by subsequent theoretical calculations [262, 263, 269–271] to

explain the origin of peaks and satellite features seen in the experimental spectra.

An area of particular contention in these studies and related works was the origin of

two features at ∼13.3 eV (0.4888 Ha) and ∼15.5 eV (0.5696 Ha) in the photoioniza-

tion spectra; the so-called “double hump” structure, shown in Fig. 4.1 [264]. Different

authors have proposed different origins for these features, but the general consensus

is that the lower energy feature arises mainly from the 3σg → 3σu transition or the

3σg → 3pσu Rydberg transition, while the higher energy feature is associated with the

2σu → 1πg transition [262, 263, 270].

In recent years, several time-dependent studies of ionization of acetylene have been

carried out. For example, in 2012, the group of Yamanouchi used a one-dimensional

time-dependent Hartree-Fock (TDHF) model to investigate the effect of the C-H bond

length on the ionization rate, with results suggesting an enhanced ionization mecha-

nism when the C-H distances are symmetrically stretched to more than twice the equi-

librium bond length [122, 272]. These calculations were subsequently extended to the

three-dimensional case [117].
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A number of time-dependent density functional theory (TDDFT) calculations on ion-

ization of acetylene have also been performed. These have focused on alignment-

dependent effects [273–275] in the ionization rate, as well as differences in the re-

sponse to linearly or circularly polarized laser fields [276]. More recent TDDFT calcu-

lations have focused on the ionization enhancement studied previously with the TDHF

models detailed above. This work showed that with strong laser pulses polarized par-

allel to the molecular axis, ionization was enhanced due to an increase in the coupling

between σ states, and a “geometrically induced energy upshift of the orbitals” as the

C-H bond lengths increase to 2-2.5 times the equilibrium distance [277, 278]. It should

be noted that the laser intensities used in these studies are generally greater than those

that we will consider in our calculations.

4.2.2 High harmonic generation

In recent years, several experimental studies of HHG in acetylene have been performed

[50, 51, 66, 68, 279]. As well as acetylene, these experiments also considered other

small hydrocarbons such as ethylene and allene. The focus of the first of these ex-

periments [50, 66] was on alignment effects in the harmonic spectra, and how these

could be used to infer the orbital structure of the molecules. These experiments used

Ti:sapphire lasers (λ = 780 nm, 800 nm), split into two separate beams with a variable

delay between them, to firstly induce some degree of molecular alignment in the sam-

ple gas, and subsequently generate high-order harmonics from it. The authors observed

a “suppression of the HHG signal with increasing alignment” [66]; in other words, the

harmonic signal increased as the angle between the molecular axis and the polarization

direction of the laser field was increased. This observation was deemed to be indica-

tive of the π structure of the highest occupied molecular orbital (HOMO), which has a

nodal plane passing through the molecular axis (see Fig. 4.2(a)). When the laser field

is polarized within this plane, the ionization and therefore high harmonic generation

from the HOMO are suppressed; when the field is perpendicular to the nodal plane,

ionization and HHG are at a maximum. This effect has previously been observed in

other molecules, for example [65, 73, 220], while a similar effect in atomic species, in

which the atomic polarization can play an important role in the HHG process, has been

investigated in helium [280].
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Subsequent studies [51, 68, 279] focused on achieving an extension to the harmonic

plateau by using longer wavelength pulses to drive HHG. As before, a Ti:sapphire wave-

length pulse was used for molecular alignment, but for the generating pulse, an optical

parameter amplifier (OPA), pumped by the 800 nm pulse, was used to produce a mid-IR

pulse of central wavelength λ = 1450 nm.

An extended harmonic spectrum is essential for high harmonic spectroscopy, since the

level of spatial resolution available is determined by the energy of the recolliding elec-

trons, which is inherently linked to the extent of the plateau. According to the semiclas-

sical three-step model, the energy that can be picked up by an ionized electron before

recollision is determined by the ponderomotive energy Up, given by Eq. (1.3). Since

Up scales with both the square of the amplitude of the applied electric field and the

square of the wavelength of the applied pulse, increasing either the wavelength or the

intensity of the driving pulse should result in an extension to the plateau. However, the

ionization saturation intensity (an effective intensity beyond which increasing the in-

tensity does not increase the ionization rate) of a molecule places an upper limit on the

maximum intensity that can be applied. This upper limit is on the order of 1014 W/cm2

for many molecules, and lower still for organic molecules with low ionization poten-

tials [281]. Therefore a limit is placed on the maximum energy of emitted harmonics

(and consequently on the usefulness of HHG as a spectroscopic tool) when performing

HHG studies of organic molecules using Ti:sapphire laser pulses.

The works cited above ([51, 68, 279]) sought to overcome this problem by increasing

the wavelength of the driving field, rather than its intensity. Extension of the harmonic

cutoff had previously been demonstrated experimentally in atomic gas targets, for ex-

ample in argon [282]. However, as noted in these works, and investigated further

elsewhere [283–286], this technique does have a major drawback: as the wavelength

λ is increased, the intensity of the harmonic signal scales as λ−5 or λ−6. This decrease

is due to the increased time the ionized electron spends in the continuum between

ionization and recombination. Increased time in the continuum leads to increased

wavepacket spreading, which reduces the probability of recombination. So a balance

must be struck between extending the cutoff energy and maintaining sufficient HHG

generation efficiency.
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With this technique, extended harmonic spectra were produced as desired in a range of

small molecules [51, 68, 279]. For example, by using a driving pulse with a wavelength

of 1300 nm rather than 800 nm, the observed cutoff in acetylene was extended from

∼40 eV to ∼60 eV, enabling the study of interference features at ∼46 eV [68]. Using a

1450 nm driving pulse, in a subsequent work, harmonics with energies as high as 70 eV

were obtained for acetylene [51].

Although some of the experimental work cited above includes some form of theoretical

accompaniment to their results (for example [66]), to our knowledge there have been

few previous theoretical studies of HHG in acetylene beyond those performed within

the Lewenstein model [287].

4.2.3 Summary

In this section we have provided a brief overview of the most relevant experimental

and theoretical works on acetylene in the literature. Some of these works are provided

merely as a general background on acetylene studies, while others are more directly

relevant to our work and will be referred to in later sections of this chapter. In the next

section we will show how acetylene is accurately modelled using EDAMAME.

4.3 Equilibrium ground state properties

In this work, acetylene is treated using our code, EDAMAME, as described in Chapter

3. Before the interaction of acetylene with a laser pulse can be considered, we must

first ensure that we have a good description of the static properties of the molecule. To

calculate the ground states properties, the molecule was aligned along the z-axis, with

initial trial values for the bond lengths taken from the NIST Chemistry Webbook [255].

For all the calculations presented in this chapter, we use the standard (unscaled) finite

difference grid described in Section 3.2.1, along with the standard finite difference for-

mulae described in Section 3.2.2 (i.e., using the standard finite difference coefficients

obtained from Eq. (3.31) with N = 8). For these geometry relaxation calculations

the grid extent was ±32.8 a0 in all directions, with a uniform grid spacing of 0.4 a0 in

each coordinate. With the exchange-correlation functional approximated using LDA-

PW92-ADSIC, the system was then relaxed to find the equilibrium geometry, using the
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Bond Calculated Value/a0 Experimental Value/a0
C-C 2.207 2.273
C-H 2.045 2.003

Table 4.1: Equilibrium bond lengths in acetylene calculated using EDAMAME, com-
pared with experimental values taken from [262].

geometry relaxation scheme described in Section 3.3.2. The resulting equilibrium bond

lengths are given in Table 4.1, and show good agreement with experimental values.

From this equilibrium geometry, the initial Kohn-Sham states and energies are calcu-

lated. Since the innermost 4 electrons of acetylene are bound much more tightly than

the others, we expect that, with the laser parameters considered in these simulations,

they will not have a significant contribution to the dynamics. Therefore pseudopoten-

tials are employed (as described in Section 3.2.4) to treat these inner electrons; only

the remaining 10 electrons are dealt with explicitly (i.e., Ne = 10 in Eq. (3.2)). We

therefore obtain the N = Ne/2 = 5 doubly occupied Kohn-Sham orbitals shown in

Fig. 4.2(a). Figure 4.2(b) shows the calculated Kohn-Sham energies for these occupied

orbitals along with those for a number of the lowest unoccupied orbitals; some of these

are also given in Table 4.2 for reference. The symmetries of the occupied orbitals listed

in this table can be clearly seen in Fig. 4.2(a). Note that HOMO(a) and HOMO(b) are

the two forms of the degenerate HOMO.

By Koopmans’ theorem, or rather, its DFT analogue, the magnitudes of occupied Kohn-

Sham orbital energies can be considered as good approximations to the vertical ioniza-

tion potentials of a system [289, 290]. Specifically, the magnitude of the HOMO energy

of a neutral molecule can be considered an approximation of the ionization potential

to the ground state of the cation, while the energies of the HOMO-1, HOMO-2, etc.

can be considered approximations of the ionization potentials to the first, second, etc.

excited states of the cation. Therefore we have also included experimental ionization

potentials to the ground and first three excited states of the acetylene cation in Table

4.2 for reference.

The reader may observe from Table 4.2 that the magnitude of the LUMO+1 energy is

smaller than that of the LUMO+2. This is a result of the numerics of the eigensolving

algorithm, and the fact that the two states are very close in energy. The states have
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Figure 4.2: Kohn-Sham orbitals and orbital energies of acetylene, calculated using
EDAMAME. Panel (a) show isosurface plots of the 5 doubly-occupied orbitals. These
plots were made using the VMD software package [288], with isosurface values of
±0.03. Panel (b) shows the energies of the occupied and lowest unoccupied Kohn-Sham
orbitals (solid lines) along with the negative of the experimental ionization potential
(red dotted line), taken from [263].

been assigned in the order given in the table so the symmetries of the lowest Kohn-

Sham states follow the order usually found in the literature [262].

4.3.1 Summary

In this section we have shown how the static properties of acetylene, namely the bond

lengths and ionization potentials, are accurately described in the TDDFT framework

implemented in the EDAMAME code. In the next three sections we will move beyond

this static picture, and investigate the dynamics of acetylene when driven by a strong

laser field.

4.4 Interaction of acetylene with a mid-IR pulse

We begin our time-dependent studies of acetylene by considering the response to a

mid-IR laser pulse. In particular, we will focus on alignment effects in HHG. This will
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Orbital State |Energy|/Ha Experimental Ip/Ha

LUMO+2 4σg 0.1241 –
LUMO+1 3σu 0.1104 –
LUMO 1πg 0.1469 –

HOMO 1πu 0.4160 0.419 — X2Πu

HOMO-1 3σg 0.5543 0.614 — A2Σ+
g

HOMO-2 2σu 0.6112 0.691 — B2Σ+
u

HOMO-3 2σg 0.8187 0.867 — C2Σ+
g

Table 4.2: Kohn-Sham energies and states of the lowest-energy orbitals of acetylene,
calculated using EDAMAME. Also included are the experimental ionization potentials
to the ground and first three excited states of the acetylene cation, taken from [263].
By the DFT analogue of Koopmans’ theorem, the magnitude of the Kohn-Sham energies
can be considered as approximations to these ionization potentials (see text). Note that
the 3σu and 4σg states have been reordered to follow the ordering usually found in the
literature [262].

compliment the experimental work discussed in Section 4.2.2 ([51, 68, 279]). In Sec-

tion 4.4.1 we set out the calculation details. This is followed in Section 4.4.2 by a

qualitative look at the electronic dynamics during the interaction with the laser. Quan-

titative results are presented in Sections 4.4.3 and 4.4.4, in which we investigate the

effect of molecular alignment on ionization and high harmonic generation, respectively.

4.4.1 Calculation parameters

The calculation parameters used throughout this work were chosen through specific

convergence tests and experience from previous work [46, 220]. A crucial factor in our

calculations is the extent of the finite difference grid, since it dramatically affects the

accuracy of calculations and the resulting computational cost. The required grid extent

is highly dependent on the laser parameters employed, so we address these first.

For our first set of calculations, laser parameters were chosen that were comparable

to those used in the 2010 experimental work of Vozzi et al. [51]: we apply a 5-

cycle, mid-IR pulse with a wavelength of λ = 1450 nm and a peak intensity of I =

1.0×1014 W/cm2. The pulse is linearly polarized, with the polarization direction along

the z-axis. In all the work described in this chapter, the carrier-envelope phase is set to

φ = 0, and a sin2 pulse envelope is used, as described in Chapter 3.

Based on these laser parameters, converged results are obtained with the following

grid extents: xmax = ymax = ±90.8 a0 and zmax = ±146.8 a0. The grid is much larger
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Coordinate Points per core Number of cores Grid spacing/a0 |Grid extent|/a0
x 35 13 0.4 90.8
y 35 13 0.4 90.8
z 35 21 0.4 146.8

Table 4.3: Grid parameters used in the majority of EDAMAME calculations described
in this chapter, for simulating the interaction of acetylene with a mid-IR laser pulse.
These calculations therefore require the use of 3549 cores on a parallel machine.

along the polarization direction since ionized wavepackets will predominantly propa-

gate along this direction. As described in Section 3.2.9, absorbing boundaries are im-

plemented near the edges of the grid, with absorption beginning at xm = ym = ±60.0 a0

and zm = ±100.0 a0. Considering that the quiver amplitude, α0, associated with these

laser parameters is 54.1 a0, we note that our grid extent along the laser polarization

direction is ∼ 3α0, with absorption beginning at ∼ 2α0.

As in the static calculation in the previous section, the grid spacing is 0.4 a0 in each

coordinate, and is uniform across the entire grid. The grid is parallelized in x, y, and z

over 13, 13 and 21 cores respectively, with 35 points per core in each direction. Thus

the total number of cores used is 3549. These parameters are summarized in Table

4.3. Both the TDKS equations, Eq. (3.1), and the ionic equations of motion, Eq. (3.66),

are propagated in time (as described in Sections 3.2.8 and 3.3.1) with a time step of

0.2 a.u..

In the static calculation, the molecule was orientated with the molecular axis aligned

along the z-axis. In the time-dependent calculations described below, the orientation

of the molecule will be varied. The molecular axis will always lie in the x-z plane, but

the angle, θ, between the molecular axis and the z-axis will be varied. We refer to the

molecule lying along the z-axis as the parallel orientation, or θ = 0◦. The perpendicular

orientation refers to the θ = 90◦ case, in which the molecule is aligned along the x-axis.

4.4.2 Evolution of electronic density

Before we begin a proper quantitative treatment of our results, we present a number of

2D plots showing the evolution of the electronic density in the molecule during a typical

interaction with a strong laser pulse, in order to qualitatively show the dynamics of the

system. Figure 4.3 shows the 2D electronic density in the x-z plane at a number of
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times during the interaction of acetylene with a 5-cycle laser pulse with a wavelength

of λ = 1450 nm and a peak intensity of I = 1.0×1014 W/cm2. The total duration of

the pulse is TIR = 999.8 a.u. = 24.18 fs. The pulse is linearly polarized along the z-

axis, while the molecular axis is aligned perpendicular to this (along the x-axis). In

these figures the density plotted is obtained by integrating the full 3D density over the

y-coordinate.

In Fig. 4.3(a), the ground state electronic density is plotted. In Fig. 4.3(b), as the inten-

sity of the IR probe begins to increase, we see the electron cloud becoming distorted

by the electric field. The electron cloud is behaving as a tightly bound oscillator, mov-

ing in antiphase to the field. Once the field has ramped up enough, we begin to see

bursts of ionization around the peaks of the laser field, as in Fig. 4.3(c), which increase

in intensity as the field ramps up further, as in Fig. 4.3(d). Following these ionization

bursts, ionized wavepackets propagate away from the molecule, while also spreading

in the x-direction, until the sign of the electric field reverses. At that point the ionized

wavepackets slow and are driven back towards the molecule, as shown in Fig. 4.3(e).

As the ionized wavepacket (in the negative z-direction) returns to the proximity of

the molecule, Fig. 4.3(f) shows interference occurring between the ionized and bound

parts of the wavefunction. At this point recombination occurs. Meanwhile, we see an-

other burst of ionization in the positive z-direction. This pattern of tunnel ionization,

propagation in the field, and recombination with the molecule continues as the field

intensity begins to ramp down, as shown in Fig. 4.3(g). In this panel we see how inter-

ference between different ionized wavepackets, and between bound and ionized parts

of the wavefunction cause the electronic density to obtain an increasingly complicated

structure as the calculation progresses. At the end of the calculation, Fig. 4.3(h), as

the strength of the laser field reduces again to zero, we see the system returning to a

state somewhat resembling the initial state, although with some ionized wavepackets

still propagating in the continuum. In addition, the grid now has an overall reduced

electronic population due to absorption of ionized electrons at the edges of the grid.

4.4.3 Ionization dynamics

We begin a quantitative discussion of our results by considering ionization of acety-

lene during interaction with the laser pulse. As was described in the previous chapter,
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(a) t = 0 a.u. (b) t = 265 a.u.

(c) t = 370 a.u. (d) t = 475 a.u.

(e) t = 535 a.u. (f) t = 565 a.u.

(g) t = 675 a.u. (h) t = 990 a.u.

Figure 4.3: Electronic density of acetylene at various times during an interaction with
a 5-cycle mid-IR laser pulse with wavelength λ = 1450 nm and a peak intensity of
I = 1.0×1014 W/cm2. The laser pulse is linearly polarized along the z-axis, while the
molecular axis is aligned along the x-axis. The densities presented in the x-z plane are
obtained by integrating the full 3D densities over the y-coordinate. The densities are
plotted on a logarithmic scale, with the lowest density clamped to 5×10-6. The electric
field strength is shown at the top of each panel, with the specific time indicated by the
red marker.
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(a) Orbital populations, θ = 0◦
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(b) Orbital populations, θ = 45◦
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(c) Orbital populations, θ = 90◦

0 100 200 300 400 500 600 700 800 900 1000
Time (a.u.)

9.88

9.90

9.92

9.94

9.96

9.98

10.00
T

o
ta

l 
P

o
p
u
la

ti
o
n
 

θ = 0° (Parallel)
θ = 45° 
θ = 90° (Perpendicular)

-0.05

0.00

0.05

E
(t

) 
(a

.u
.)

(d) Total populations, θ = 0◦, 45◦, 90◦

Figure 4.4: Electronic populations of the 5 occupied Kohn-Sham orbitals of acetylene
during interaction with a 5-cycle mid-IR laser pulse with wavelength λ = 1450 nm and
a peak intensity of I = 1.0×1014 W/cm2. The pulse is linearly polarized along the z-
axis, while the angle between the molecular axis and the laser polarization direction is
either (a) 0◦ (parallel orientation), (b) 45◦, or (c) 90◦ (perpendicular orientation). In
these plots, HOMO(a) and HOMO(b) refer to the two forms of the HOMO, shown in
Fig. 4.2(a). (d) shows the total population in each of the three orientations, found by
summing over the 5 orbitals in each case. The z-component of the E-field is shown at
the top of each plot.

ionization is modelled in EDAMAME through the use of absorbing boundaries: as a

simulation progresses, ionizing wavepackets may propagate away from the molecule

towards the edges of the grid, where they are “absorbed”, with the effect that the total

electronic population in the grid decreases over time.

Figure 4.4 show the changes in electronic population in each of the 5 occupied Kohn-

Sham orbitals during the interaction of acetylene with a linearly polarized, mid-IR

pulse. Three orientations of the molecular axis with the laser polarization are con-

sidered: Figs. 4.4(a) and 4.4(c) respectively show the response when the laser pulse
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is polarized parallel or perpendicular to the molecular axis, and Fig. 4.4(b) shows the

intermediate case where the molecular axis is aligned at an angle of 45◦ to the laser

polarization direction. Figure 4.4(d) shows the total population (i.e., summing over all

5 Kohn-Sham orbitals) in the grid for each orientation.

In each of these figures we can observe clear step-like decreases of the populations,

resulting from the oscillations in E(t) and the strong dependence of tunnel ionization

on electric field strength. The reader may note that the steepest decreases in population

do not coincide with the extreme values of E(t) as may be expected. This is due to the

fact that the decreases in population occur when an electronic wavepacket reaches the

absorbing boundary, not at the actual ionization time; there will be some delay time

between these two events, dependent on the size of the grid, the extent of the absorbing

region, and the laser parameters. If we looked instead at the populations within a small

region close to the molecule (not shown here), we would see similar behaviour to that

observed in Fig. 4.4, with similar final populations, but with the population decreases

coinciding with the extreme values of E(t).

From these figures we can see that in the parallel orientation, the two forms of the

HOMO, shown in Fig. 4.2(a), respond identically to the laser field, due to the symme-

try of the orbitals with respect to the laser polarization direction (the z-axis). When

this symmetry is broken by rotating the molecule with respect to the laser polarization

direction, there is a clear difference between the responses of the two forms of the

HOMO. These results also show that there is substantially more ionization when the

molecular axis is perpendicular to the laser polarization direction than in the parallel

case. This overall increase is due to the greatly increased amount of ionization from

one form of the HOMO (the HOMO(a) in this case); ionization from the other form of

the HOMO and the HOMO-1 and HOMO-2 decreases as the angle θ is increased, while

ionization from the HOMO-3 is minimal, and varies little with angle. It is also notable

that the response at θ = 45◦ bears much more resemblance to the perpendicular re-

sponse than to the parallel response. This effect of increased ionization at particular

molecular orientations is a well-known phenomenon due to the symmetry of the molec-

ular orbitals, and has been previously observed for a number of molecules [291–293],

including acetylene [273, 275, 278].
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We briefly note how the results in Fig. 4.4 compare with those of a previous TDDFT

study of ionization in acetylene [273]. Although the laser intensities used in this ear-

lier study by Russakoff et al. are much higher than those used in our work, our results

are in qualitative agreement with the results for the lowest intensity and shortest dura-

tion pulse used in the Russakoff study (I = 4.0×1014 W/cm2, 4.5 fs at FWHM). How-

ever, the behaviour observed by Russakoff et al. at higher intensities (7.0×1014 W/cm2,

14.0×1014 W/cm2) and longer pulse durations (15 fs, 25 fs) is different to what we

see in Fig. 4.4. With these higher intensity or longer duration pulses, Russakoff et

al. observed that the response of individual orbitals varied with increasing angle θ in

the same manner as in our results (i.e., ionization from one form of the HOMO in-

creases; ionization from the other orbitals decreases), but that the total ionization of

the molecule was actually greatest in the parallel orientation. This was due to a much

higher degree of ionization from the σ states in the parallel orientation than we see in

Fig. 4.4(a), arising from an enhanced ionization mechanism that becomes important as

the C-H bond length is stretched considerably. As we will show in Section 4.6, such

significant bond stretching does not occur for the laser parameters considered in our

calculations.

4.4.4 High harmonic generation

We now turn to the central topic of interest in this chapter: high harmonic generation

in acetylene. As discussed in the previous chapter, we calculate harmonic spectra by

taking the Fourier transform of the dipole acceleration along a given direction, as in

Eq. (3.71). In the results presented here we have summed the spectral densities along

the 3 coordinates (i.e., Sx + Sy + Sz). However, since the molecule is linear and the

laser pulse is linearly polarized, the harmonic emission along the x- and y-directions

(Sx, Sy) is negligible.

Figure 4.5 shows the harmonic spectra for acetylene interacting with the mid-IR laser

pulse described above (5-cycle duration, λ = 1450 nm, I = 1.0×1014 W/cm2, linearly

polarized along the z-axis), in the three molecular orientations also described above

(θ = 0◦, 45◦, 90◦). In Fig. 4.5(a) the harmonic responses for the three orientations are

plotted on separate axes for clarity. Fig. 4.5(b) shows the spectra together on a single

set of axes to highlight the contrast between the three spectra, which will be discussed
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Figure 4.5: Harmonic spectra from acetylene following interaction with a 5-cycle
mid-IR laser pulse with wavelength λ = 1450 nm and a peak intensity of I =
1.0×1014 W/cm2. The pulse is linearly polarized along the z-axis, while the molecule
is aligned either along the z-axis (parallel to the laser polarization direction), along
the x-axis (perpendicular to the laser polarization direction), or at an angle of 45◦ to
both the z- and x-axes. In panel (a), the three spectra are plotted on separate axes, for
clarity. In panel (b), all three spectra are shown together, for ease of comparison.

presently.

The most striking feature of Fig. 4.5 is the large increase in the intensity of the emitted

harmonics, across the entire spectrum, when the molecule is rotated away from the

parallel orientation (increasing θ). Comparing the parallel and perpendicular spectra

(Fig. 4.5(b)), we can see that the intensity of low-order harmonics in the perpendicular

case is about an order of magnitude larger than in the parallel case. For higher-order

harmonics close to the cutoff region, this enhancement can be greater than 3 orders of

magnitude.

These results tie in with the increased ionization at large angles between the molecule

and laser polarization direction that was observed in the previous section. Consider-

ing the three-step model of high harmonic generation, increased HHG follows natu-

rally from increased levels of ionization. This effect of increased harmonic response

at certain molecular orientations is a well-known effect, which has been seen in both

experiments and calculations (see, for example, [65, 73, 220]). Considering acetylene

in particular, this orientation-enhancement effect has previously been observed experi-

mentally in [51, 66, 68].

Another notable feature of Fig. 4.5(b) is the difference in the position of the cutoff
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Orbital State |Energy|/Ha Cutoff harmonic

LUMO+2 4σg 0.1241 76.7
LUMO+1 3σu 0.1104 76.3
LUMO 1πg 0.1469 77.4

HOMO 1πu 0.4160 86.0
HOMO-1 3σg 0.5543 90.4
HOMO-2 2σu 0.6112 92.2
HOMO-3 2σg 0.8187 98.8

Table 4.4: Calculated energies of the lowest-energy Kohn-Sham orbitals of acetylene,
and the cutoff harmonic associated with recombination to each state, as given by the
semiclassical cutoff law, Eq. (1.14), for a laser pulse with wavelength λ = 1450 nm and
a peak intensity of I = 1.0×1014 W/cm2.

between the parallel and perpendicular spectra: around the 91st harmonic for the

parallel orientation compared to around the 83rd harmonic for the perpendicular ori-

entation. In the three-step model of HHG, it is generally assumed that the electron

ionizes from and recombines back to the HOMO. In this case, the Ip term in the cutoff

law, Eq. (1.14), refers to the ionization potential from the ground state of the neu-

tral molecule to the ground state of the cationic molecule. However, the more tightly

bound orbitals (HOMO-1, HOMO-2, etc.) can also play an important role in the high

harmonic generation process [78, 79]. Recombination to one of these states will have a

corresponding Ip value that is larger than for recombination to the HOMO, and conse-

quently a higher cutoff harmonic will be predicted by the cutoff law. Using Eq. (1.14),

we would expect that HHG with recombination to the HOMO would result in a cutoff

around the 86th harmonic, whereas HHG involving recombination to the HOMO-1 or

HOMO-2 would correspond to cutoffs around the 90th and 92nd harmonics respec-

tively (see Table 4.4).

Considering the positions of the cutoffs in the spectra shown in Fig. 4.5, and the in-

crease in ionization seen in Fig. 4.4, these results suggest that in the perpendicular

orientation HHG arises mainly from the HOMO, while in the parallel orientation HHG

occurs mainly from the HOMO-1 and HOMO-2. This interpretation is backed up if we

consider the spectra obtained by taking the FFT of the dipole acceleration of individual

Kohn-Sham states, using Eqs. (3.71) and (3.73), as shown in Figs. 4.6(a) and 4.6(b).

As expected, these figures also show that the harmonic response of the two forms of

the HOMO are identical in the parallel orientation, but significantly different in the

perpendicular orientation.
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Figure 4.6: Contributions of individual Kohn-Sham orbitals to the “parallel” and
“perpendicular” harmonic spectra shown in Fig. 4.5, calculated using Eqs. (3.71) and
(3.73), along with the full spectra from Fig. 4.5(b) for reference. In both cases the
laser pulse is a 5-cycle pulse with wavelength λ = 1450 nm and a peak intensity of
I = 1.0×1014 W/cm2, linearly polarized along the z-axis. In panel (a), the molecule
is aligned parallel to the laser polarization direction, with the molecular axis along the
z-axis, while in panel (b) it is aligned perpendicular to the polarization direction (along
the x-axis). HOMO(a) and HOMO(b) refer to the two forms of the HOMO, shown in
panels (i) and (ii) of Fig. 4.2(a) respectively.

The final feature of note in Fig. 4.5 is the presence of what appears to be a double

plateau in the parallel spectrum. The inner plateau, with more intense harmonics,

has a cutoff around harmonic 65, compared to an outer plateau cutoff of harmonic

91. Analogously to how the cutoff can be increased beyond that predicted by the

semiclassical three-step model if the electron recombines to a more tightly bound state

than the HOMO, we can also envisage a case where recombination occurs to a less

tightly bound state. In this case we would expect the cutoff to decrease. Recombination

to one of the initially unoccupied orbitals (the LUMO, LUMO+1, etc.) may therefore

be the origin of the observed inner plateau region. However, calculating the expected

cutoff for recombination to the LUMO, LUMO+1 or LUMO+2 (Table 4.4) does not

match up with the observed inner plateau cutoff. This is also the case if recombination

to higher orbitals is considered; recombination to any of these states will result in a

cutoff of at least harmonic order 73, which would be the cutoff harmonic arising from

Eq. (1.14) with Ip = 0. We will return to the explanation of the position of the inner

plateau cutoff later, after investigating whether the inner plateau does indeed arise

from recombination to one of the initially unoccupied Kohn-Sham states.

Recent work by Erattupuzha et al. investigating enhanced ionization of acetylene as the
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HOMO-3 HOMO-2 HOMO-1 HOMO(a) HOMO(b)

HOMO-3 (2σg) – 0.99 0 0 0
HOMO-2 (2σu) 0.99 – 2.18 0 0
HOMO-1 (3σg) 0 2.18 – 0 0
HOMO(a) (1πu) 0 0 0 – 0
HOMO(b) (1πu) 0 0 0 0 –

LUMO(a) (1πg) 0 0 0 -1.27 0.00
LUMO(b) (1πg) 0 0 0 -0.00 -1.27
LUMO+1 (3σu) -0.01 0 0.66 0 0
LUMO+2 (4σg) 0 -0.11 0 0 0

(a)
〈

φk(r)
∣

∣z
∣

∣φl(r)
〉

(Parallel)

HOMO-3 HOMO-2 HOMO-1 HOMO(a) HOMO(b)

HOMO-3 (2σg) – 0 0 0.72 0.42
HOMO-2 (2σu) 0 – 0 0 0
HOMO-1 (3σg) 0 0 – 0.20 0.12
HOMO(a) (1πu) 0.72 0 0.20 – 0
HOMO(b) (1πu) 0.42 0 0.12 0 –

LUMO(a) (1πg) 0 -0.69 0 0 0
LUMO(b) (1πg) 0 -0.40 0 0 0
LUMO+1 (3σu) 0 0 0 0 0
LUMO+2 (4σg) 0 0 0 -0.43 -0.25

(b)
〈

φk(r)
∣

∣x
∣

∣φl(r)
〉

(Perpendicular)

Table 4.5: Transition dipole matrix elements (in a.u.) for transitions between the 5
occupied Kohn-Sham orbitals of acetylene and each of the 9 lowest occupied and un-
occupied orbitals, calculated using Eq. (4.1). The molecular axis is aligned along the
z-axis. In (a) the matrix elements for parallel transitions are given (i.e., r = êz in
Eq. (4.1)), while the matrix elements for perpendicular transitions (i.e., r = êx) are
given in (b).

molecule is stretched considered how the different Kohn-Sham states are coupled with

each other in the presence of a strong laser pulse [278], and found that in a parallel

alignment the states with σ-symmetry are strongly coupled when the C-H bonds are

stretched. We have performed a similar analysis of the coupling between states in

order to better understand the excitation and ionization mechanisms that result in the

formation of the inner plateau region observed in Fig. 4.5.

We begin by calculating the transition dipole matrix elements for transitions between

each of the occupied and lowest unoccupied Kohn-Sham orbitals. These are given by

dkl =
〈

φk(r)
∣

∣r
∣

∣φl(r)
〉

, k, l = 1, . . . ,M, (4.1)
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where φk(r) are theM (M < N) lowest-energy field-free eigenstates of the Kohn-Sham

Hamiltonian (i.e., the lowest-energy Kohn-Sham orbitals, ψj(r, t), at time t = 0). The

calculated values for transitions between the 5 occupied Kohn-Sham orbitals and each

of the 9 lowest-energy orbitals are given in Table 4.5, with Tables 4.5(a) and 4.5(b)

respectively showing the components parallel and perpendicular to the molecular axis.

These tables show us which transitions between field-free states are allowed transitions,

and which are dipole forbidden (those with elements equal to zero). For example, here

we see that in the parallel case, Table 4.5(a), the allowed transitions are σg ↔ σu and

πu ↔ πg transitions, whereas in the perpendicular case, Table 4.5(b), σg ↔ πu and

σu ↔ πg are the allowed transitions.

We then calculate the overlap of the N time-dependent Kohn-Sham orbitals ψj(r, t)

with the M lowest-energy occupied and unoccupied field-free Kohn-Sham orbitals,

φk(r), namely

ηk(t) = 2
N
∑

j=1

∣

∣

∣

∣

∫

φ∗k(r)ψj(r, t)dr

∣

∣

∣

∣

2

, k = 1, . . . ,M. (4.2)

The evolution of ηk(t) over time can give us an better understanding of the coupling

between the Kohn-Sham states, and the transitions between field-free states that are

induced by the mid-IR pulse.

Figure 4.7 shows the calculated overlaps, ηk(t), for the 9 lowest-energy Kohn-Sham

states, in the parallel and perpendicular orientations. From Fig. 4.7(a) we can see that,

noting the allowed transitions given in Table 4.5(a), in the parallel orientation the IR

pulse seems to be exciting both the HOMO → LUMO (1πu → 1πg) and HOMO-1 →
LUMO+1 (3σg → 3σu) transitions. Figure 4.7(b) is included here to show that the

response is quite different in the perpendicular case. With this orientation we now

see that, noting Table 4.5(b), the main transitions between the occupied and lowest

unoccupied states are the HOMO → LUMO+2 (1πu → 4σg) and HOMO-2 → LUMO(a)

(2σu → 1πg) transitions (note the difference in scale between upper and lower panels).

This plot is simply included to highlight the difference in response between different

orientations, and will not be discussed any further at this point.

Returning to the parallel case, and considering again the “inner plateau” observed in
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Figure 4.7: Electronic population in each of the 9 lowest initial Kohn-Sham orbitals,
φk(r), of acetylene, calculated using Eq. (4.2), during an interaction with a 5-cycle
pulse with wavelength λ = 1450 nm and a peak intensity of I = 1.0×1014 W/cm2,
linearly polarized along the z-axis. In panel (a), the molecule is aligned parallel to the
laser polarization direction, with the molecular axis along the z-axis, while in panel
(b) it is perpendicular to the polarization direction (along the x-axis). HOMO(a)
and HOMO(b) refer to the two forms of the HOMO, shown in panels (i) and (ii) of
Fig. 4.2(a) respectively. In both (a) and (b), the bottom and top sub-panels show the
populations in the initially occupied and unoccupied Kohn-Sham orbitals respectively,
while the middle sub-panel shows the z-component of the E-field.

Fig. 4.4.4, we might imagine that one of the HOMO → LUMO or HOMO-1 → LUMO+1

transitions could be related to the formation of this inner plateau. Although in Fig. 4.7(a)

the HOMO → LUMO transition seems to be the dominant of the two transitions, we re-

member that when we examined the contributions of individual states to the parallel

spectrum (Fig. 4.6(a)), the HOMO contribution was much less than the HOMO-1 and

HOMO-2 contributions. To put it in terms of orbital symmetries, in the parallel orien-

tation we saw that the harmonic response was dominated by σ states, whereas π states

dominated in the perpendicular orientation. We therefore postulate that the existence

of the inner plateau region in the harmonic spectrum is related to excitation of the

HOMO-1 → LUMO+1 transition. The importance of this transition on the harmonic

response will be the subject of Section 4.5.

4.4.5 Summary

In this section we have presented results for acetylene interacting with a mid-IR laser

pulse. We have seen how the electronic density of the molecule changes during the

interaction with the laser field, and how this can be investigated by studying the pop-
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ulation loss from each Kohn-Sham orbital over time and the harmonic response of the

system.

We have seen how the orientation of the molecule with respect to the laser polariza-

tion direction significantly affects the response. When the molecular axis is oriented

perpendicular to the laser polarization direction, we see increased ionization and high

harmonic generation compared to the case when the molecular axis and laser polar-

ization direction are parallel to each other. In this parallel case, we also observe an

extension to the harmonic cutoff, due to high harmonic generation from the HOMO-1

and HOMO-2 (rather than the HOMO), and the existence of an inner plateau region.

By considering the transitions between the lowest field-free occupied and unoccupied

orbitals, we suggested that this inner plateau is related to the excitation of the HOMO-1

→ LUMO+1 transition. In the next section we will test this hypothesis, by introducing

a second, lower intensity laser pulse, with the photon energy tuned to preferentially

excite this transition.

4.5 HHG in acetylene with a VUV pump + mid-IR probe

In Section 4.4 it was proposed that the existence of the inner plateau seen in the parallel

spectrum shown in Fig. 4.5 was related to excitation from the HOMO-1 (3σg state) to

the LUMO+1 (3σu state). In order to investigate the role of this transition in the high

harmonic generation process, we now directly excite this transition using a VUV pump

pulse tuned to the energy gap between these two states before studying HHG with the

mid-IR pulse.

As in the previous section, we apply a 5-cycle mid-IR pulse, with a wavelength of λ =

1450 nm, an intensity of I = 1.0×1014 W/cm2, and a duration of TIR = 999.8 a.u. =

24.18 fs. Now, however, we precede this mid-IR pulse with an 8-cycle VUV pulse with a

wavelength of λ = 102 nm, an intensity of I = 1×1012 W/cm2, and a duration of TVUV

= 112.5 a.u. = 2.72 fs. This VUV wavelength is chosen as it corresponds to a photon

energy of 0.4467 Ha, equivalent to the energy gap between the calculated HOMO-1 and

LUMO+1 energies. Both the VUV and IR pulses are polarized parallel to the molecular

axis, they both have sin2 pulse envelopes, and the IR pulse begins immediately after

the VUV pulse has ended. It should be noted that the photon energy of this VUV pulse
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is also large enough to directly ionize from the HOMO, and possibly also to excite

the HOMO-2 → LUMO+2 transition (when the bandwidth of the pulse is taken into

account).

Unless otherwise specified, in the calculations discussed in this section the molecular

axis is aligned parallel to the polarization direction of both laser pulses (along the

z-axis).

4.5.1 Ionization dynamics

As in the case of a single laser pulse (Section 4.4), we begin by considering how the

populations in each of the Kohn-Sham orbitals vary over time. These are shown in

Fig. 4.8 for three separate cases: Figs. 4.8(a) and 4.8(b) respectively show the response

when just the VUV pump or just the IR probe are applied, while Fig. 4.8(c) shows the

response when both pulses are applied sequentially. Note that the IR-only data has

been shifted along the time-axis so that the IR pulse begins at the same time in all 3

cases.

We can see clearly from this figure that applying both pulses produces much more

ionization than applying either pulse by itself. While from Fig. 4.8(a) we can see that

the VUV pulse by itself doesn’t cause any significant ionization from orbitals other than

the HOMO (as expected due to the chosen photon energy), comparing Figs. 4.8(b) and

4.8(c) shows that combining the pulses produces a significant increase in ionization

from the HOMO-1, as well as smaller increases from the other orbitals. Note also in

that in the pump-probe case (Fig. 4.8(c)) we observe population depletion taking place

much earlier in time than in the probe-only case (Fig. 4.8(b)), as the excitation by the

VUV pump pulse increases the probability of tunnel ionization occurring at lower IR

field strengths.

4.5.2 High harmonic generation

We now consider the harmonic response of the molecule to this pump-probe setup.

Figure 4.9 shows the harmonic spectrum produced with this 2-pulse setup, with the

parallel and perpendicular IR-only spectra included for comparison. With this combi-

nation of laser pulses, the addition of the VUV pulse clearly has a significant impact on
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Figure 4.8: Electronic populations of the 5 doubly occupied Kohn-Sham orbitals of
acetylene during interactions with different setups of laser pulses. The IR probe
pulse is a 5-cycle pulse with wavelength λ = 1450 nm and a peak intensity of I =
1.0×1014 W/cm2, while the VUV pump pulse is an 8-cycle pulse with wavelength λ =
102 nm and a peak intensity of I = 1.0×1012 W/cm2. Both pulses are linearly polarized
along the z-axis. HOMO(a) and HOMO(b) refer to the two forms of the HOMO, shown
in Fig. 4.2(a). In panel (a), the VUV pulse is applied, following which the system is
allowed to propagate with zero applied field for the duration of the IR pulse. In panel
(b), only the IR pulse is applied, and the times have been shifted so that the IR pulse
begins at the same time in all three panels. In panel (c), the VUV pump pulse and IR
probe pulse are applied sequentially. Panel (d) shows the total population in each of
the three setups shown in the other panels. The z-component of the E-field is shown at
the top of each plot.

the harmonic generation process: the intensities of the plateau harmonics (specifically

the inner plateau harmonics) are enhanced by several orders of magnitude compared

to those in the parallel IR-only case, although the inner plateau cutoff remains around

harmonic 65. The intensities of the harmonics in this inner plateau are now compara-

ble to the intensities seen in the spectrum produced in the perpendicular orientation

with only the IR pulse. Beyond the inner plateau cutoff, the addition of the VUV pulse
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Figure 4.9: High harmonic generation in acetylene following interactions with different
laser pulse setups. The IR probe pulse is a 5-cycle pulse with wavelength λ = 1450 nm
and a peak intensity of I = 1.0×1014 W/cm2, while the VUV pump pulse is an 8-cycle
pulse with wavelength λ = 102 nm and a peak intensity of I = 1.0×1012 W/cm2. In the
pump-probe case, the IR probe begins immediately following the end of the VUV pump.
The pulses in all cases are linearly polarized along the z-axis, while the molecular axis is
aligned along the z-axis in the parallel cases, and along the x-axis in the perpendicular
case.

has little effect on the spectrum, with just a slight reduction in the intensities of the

outer cutoff harmonics. The outer plateau cutoff remains around harmonic 91.

As was done with the spectra produced with the IR pulse, we also consider the contri-

butions of individual Kohn-Sham orbitals to the overall spectrum for this pump-probe

case; these contributions are shown in Fig. 4.10. From this figure we can see that the

enhancement of the inner plateau harmonics is due to an increased harmonic response

from the HOMO-1. The exact processes behind the enhancement will be investigated

further in the next subsection. In the remainder of this subsection, we will briefly dis-

cuss some of the previous investigations of enhancement of harmonic spectra, and the

mechanisms at work in each of these.

Enhancement of harmonic spectra has previously been observed in a number of stud-

ies. In many of these, the enhancement effect is centred on a single harmonic or a

narrow band of harmonics, due to a specific resonant transition in the system. For

example, in a previous study of HHG in an indium plasma, the 13th harmonic was
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Figure 4.10: Contributions of individual Kohn-Sham orbitals to the pump-probe har-
monic spectrum shown in Fig. 4.9, calculated using Eqs. (3.71) and (3.73), along with
the full pump-probe spectrum from Fig. 4.9 for reference. The IR probe pulse is a 5-
cycle pulse with wavelength λ = 1450 nm and a peak intensity of I = 1.0×1014 W/cm2,
while the VUV pump pulse is an 8-cycle pulse with wavelength λ = 102 nm and a peak
intensity of I = 1.0×1012 W/cm2. Both pulses are linearly polarized along the z-axis,
along which the molecular axis is also aligned, and the IR probe begins immediately
following the end of the VUV pump. HOMO(a) and HOMO(b) refer to the two forms
of the HOMO, shown in panels (i) and (ii) of Fig. 4.2(a) respectively.

observed to be almost two orders of magnitude greater than neighbouring harmonics

[294]. This was attributed to a resonant ionic transition. Smaller enhancements of

individual harmonics were later observed in the spectra of other materials [295]. This

resonant enhancement effect has been described by the development of a “four-step”

model of HHG (replacing the standard three-step model), in which an electron tunnel

ionizes and propagates in the field (as in the three-step model), but then, rather than

radiatively recombining to the ground state, it is captured into an autoionizing state,

from which it relaxes back to the ground state with the emission of a photon of energy

equal to the energy gap between the ground and autoionizing states [296].

A different enhancement mechanism was reported in calculations on HHG in asymmet-

ric diatomic molecules [297] and experimental observations of HHG in argon [298].

In these works, features in the harmonic spectra that were not explained by the usual

three-step model was attributed to a mechanism in which electrons are ionized from

an excited state of the molecule and recombine to the ground state (similar to the
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mechanism proposed in a theoretical work in 1996 [299]).

The use of a two-pulse setup has been studied theoretically [300] and experimen-

tally [301] in helium. In these works, the intensity across a wide range of harmonics

is increased by applying a high harmonic pulse along with the driving pulse (in the

experimental setup, this is achieved by using the driving pulse to generate “booster”

harmonics from xenon, which then combine with the driving pulse to affect the HHG

process in helium). The target systems are such that the driving pulse alone causes lit-

tle ionization (and therefore little HHG). With the addition of the high harmonic pulse

however, the ionization rate is significantly increased, which leads to a subsequent en-

hancement of high harmonics throughout the plateau region.

Having seen a number of potential harmonic enhancement mechanisms, we now return

to the dramatic inner plateau enhancement seen in Fig. 4.9, and, in the next section,

we investigate its origin.

4.5.3 Origin of inner plateau enhancement

In the previous section we saw that an increased harmonic response from the HOMO-

1 is responsible for the enhancement of the inner plateau harmonics when the VUV

pump is added. However, as was seen in the discussion surrounding Fig. 4.7, during the

interaction with the laser pulse the field-free Kohn-Sham states are coupled together.

This means that the as the field intensity increases, the time-dependent HOMO-1 is no

longer the same state as the field-free HOMO-1, and is instead a superposition of field-

free (mainly σ) states. A similar point is true for the other time-dependent Kohn-Sham

states. So to understand the mechanism behind the observed harmonic enhancement,

it would be beneficial to know which field-free states play an important role in the

dynamics.

In Section 4.4.4, we investigated the changes in the populations of the field-free states

by calculating the overlaps between the lowest time-dependent and field-free Kohn-

Sham orbitals. We now apply the same analysis to the pump-probe setup. The results

of these calculations are shown in Fig. 4.11(b), while Fig. 4.11(a) shows the parallel

probe-only overlaps again for comparison (the data has been shifted so the IR pulse

begins at the same time in both plots).
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Figure 4.11: Electronic population in each of the 9 lowest initial Kohn-Sham orbitals,
φk(r), of acetylene, calculated using Eq. (4.2), during interactions with different setups
of laser pulses. In both panels a 5-cycle IR pulse with wavelength λ = 1450 nm and a
peak intensity of I = 1.0×1014 W/cm2 is applied. In panel (b), this pulse is preceded
by an 8-cycle VUV pulse with wavelength λ = 102 nm and a peak intensity of I =
1.0×1012 W/cm2. Both pulses are linearly polarized along the z-axis, along which the
molecular axis is also aligned. The data in panel (a) has been shifted in time so that the
IR pulse begins at the same time in both panels. In both (a) and (b), the bottom and top
sub-panels show the populations in the initially occupied and unoccupied Kohn-Sham
orbitals respectively, while the middle sub-panel shows the z-component of the E-field.
For brevity, only one form of each of the HOMO and LUMO are shown.

In Fig. 4.11 the effect of the VUV pump in exciting the 3σg → 3σu (HOMO-1 →
LUMO+1) transition is evident. We also note that the excited population remains in the

LUMO+1 for some time following the end of the VUV pulse (duration = 112.5 a.u.);

the LUMO+1 population only decreases when the IR field strength has increased suffi-

ciently. Comparing Figs. 4.11(a) and 4.11(b), we can see that the VUV pulse also causes

some population loss from the HOMO, but does not significantly affect the HOMO’s

subsequent response to the IR field.

The most striking differences between Figs. 4.11(a) and 4.11(b) are in the first half

of the calculation, i.e., during and immediately after the VUV pump pulse, but before

the IR probe pulse has reached its maximum intensity. In order to better understand

how these differences result in the large harmonic enhancement observed in Fig. 4.9,

we can compare the times at which harmonics of specific energies are produced in

the IR-only and VUV-IR simulations. Figures 4.12(a) and 4.12(b) show time-frequency

analysis plots for the IR-only and VUV-IR cases respectively, calculated using Eq. (3.74)

as described in Section 3.5.3.
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(a) Parallel IR Probe

(b) Parallel VUV Pump and Parallel IR Probe

Figure 4.12: Time-frequency analyses of the two “parallel” HHG spectra shown in
Fig. 4.9. In both panels a 5-cycle IR pulse with wavelength λ = 1450 nm and a peak
intensity of I = 1.0×1014 W/cm2 is applied. In panel (b), this pulse is preceded
by an 8-cycle VUV pulse with wavelength λ = 102 nm and a peak intensity of I =
1.0×1012 W/cm2. The data in panel (a) has been shifted in time so that the IR pulse
begins at the same time in both panels. Both pulses are linearly polarized along the
z-axis, along which the molecular axis is also aligned. The red lines denote the z-
component of the electric field. The arrows highlight the emission times of some of
the highest harmonics, originating from ionization around times indicated by Ij and
recombination at times Rj , as described in text.
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In the probe-only case (Fig. 4.12(a)), we can see the semiclassical three-step model

at work: for the first ∼1/3 of the pulse, we see no plateau harmonics generated (only

low-order harmonics due to bound-bound harmonic generation) since the field strength

is initially too low to cause tunnel ionization. As the field strength ramps up, tunnel

ionization occurs around the peaks and troughs of the oscillating field. These ionized

wavepackets then propagate in the field, and can be driven back towards the core where

they can recombine producing the high-order harmonics evident in this figure. From

the three-step model, the harmonics near the cutoff should be emitted approximately

two thirds of a pulse cycle after ionization: indeed we see cutoff harmonics emitted

around 599 a.u. and 695 a.u. (indicated by arrows R1 and R2), corresponding to bursts

of ionization around 466 and 562 a.u. respectively (I1 and I2 in Fig. 4.12(a)). We also

note that the peak around 793 a.u. (arrow R3) has a lower harmonic order than the

preceding two peaks. Again, this is what we expect from the three-step model, noting

that the applied field is lower due to the pulse envelope. This means that an electron

ionized around 660 a.u. (I3) will experience a less intense field during its time in the

continuum than an electron ionized at 466 or 562 a.u., meaning it will gain less kinetic

energy and therefore result in the emission of lower energy harmonics.

Looking now at the pump-probe case (Fig. 4.12(b)), we see that the situation is dra-

matically different. We see intense emission of harmonics in a window centred around

harmonic 15 beginning during the VUV pulse, and continuing until around the 2nd

cycle of the IR pulse. As emission of harmonics from this window ceases, we see higher

energy harmonics begin to be emitted, much earlier than was seen in Fig. 4.12(a). To-

wards the end of the IR pulse, the low-order harmonics are emitted again, although

less strongly than at the beginning of the pulse.

Comparing these two figures, we can see that the addition of the VUV pulse causes the

enhancement seen in Fig. 4.9 in two ways:

1. Following excitation by the VUV pulse, low-order harmonics are emitted as the

molecule relaxes back to its ground state. A transition from the LUMO+1 back

to the HOMO-1 will involve the emission of a photon with energy 0.4439 Ha,

corresponding to harmonic 15. Considering that the VUV pump may populate

other excited states than just the LUMO+1, with a number of subsequent transi-
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tions possible between different states, we therefore attribute the enhancement

of harmonics 11-21 to an increase in bound-bound transitions. As the intensity of

the IR field increases, ionization will occur from the excited states, reducing the

number of bound-bound transitions. Only when the IR field strength has reduced

to near zero at the end of the pulse do we see any significant number of these

transitions occurring again. However, the bound-bound harmonics emission is

much less intense now than it was at the beginning of the calculation, due to the

relatively small excited state population (evident when comparing the beginning

(0 - 200 a.u.) and the end (900 - 1100 a.u.) of the upper panel of Fig. 4.11(b)).

2. The excitation of the molecule by the VUV pulse allows tunnel ionization, the

first step of the HHG process, to begin earlier in the IR pulse, before the intensity

has ramped up fully. This is evidenced by the fact that we see emission of the

inner plateau harmonics (up to around harmonic order 65) occurring at much

earlier times in Fig. 4.12(b) than in Fig. 4.12(a). For example, we see a peak in

Fig. 4.12(b) around 507 a.u. (indicated by arrow R0). Emission of high-order

harmonics at this time corresponds to ionization occurring at time ∼ 374 a.u.

(I0), when the IR field is still relatively weak. These earlier ionization times

indicate that the tunnel ionization step of the harmonic generation process is oc-

curring from an excited state. Combining this with the fact that only the inner

plateau harmonics are affected by the addition of the VUV pump pulse (the har-

monics beyond harmonic order ∼80 are comparable in the two parallel spectra in

Fig. 4.9), we can conclude that the inner plateau harmonics are a result of ioniza-

tion from and recombination back to an excited state of the molecule, specifically

the LUMO+1.

To summarize, from the results presented up to this point we have drawn several con-

clusions regarding harmonic generation in acetylene in the parallel orientation. Firstly,

the harmonic spectrum consists of two distinct plateau regions: an outer plateau,

where high harmonic generation is a result of ionization from and recombination to

the HOMO-1/HOMO-2, and an inner plateau, where high harmonic generation is a re-

sult of excitation from the HOMO-1 to the LUMO+1, followed by ionization from and

recombination to the LUMO+1. Secondly, exciting the HOMO-1 → LUMO+1 transi-

tion by applying a suitably tuned VUV pump pulse before the IR pulse produces a large
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I

II

Figure 4.13: Schematic representation of the two enhancement mechanisms respon-
sible for the increased intensity in the harmonic spectrum of acetylene when a VUV
pump pulse precedes the driving IR pulse, as seen in Fig. 4.9. The left set of arrows
(labelled I) represents the increase in bound-bound transitions, following excitation of
the HOMO-1 → LUMO+1 transition by the VUV pump pulse, that is responsible for the
enhancement of harmonics 11-21. The right set of arrows (labelled II), represents the
mechanism responsible for the enhancement of the inner plateau harmonics: following
excitation of the HOMO-1 → LUMO+1 transition by the VUV pump pulse, electrons are
ionized from the LUMO+1 by the IR field, propagate in the continuum gaining kinetic
energy, and then recombine back to the LUMO+1.

enhancement to the inner plateau harmonics. This enhancement is due to two separate

mechanisms: a number of low-order harmonics (11-21) are enhanced due to increased

bound-bound transitions between the initially unoccupied and occupied states, while

high harmonic generation from the LUMO+1 is enhanced due to increased population

in this state at the beginning of the IR pulse. Figure 4.13 presents these two enhance-

ment mechanisms schematically.

However, as was noted earlier, the cutoff harmonic for the inner plateau is inconsistent

with what is expected from the three-step model considering recombination to the

LUMO+1. This discrepancy will now be addressed.

4.5.4 Position of inner plateau cutoff

Returning to the inner plateau seen in the spectrum shown for the parallel orientation

in Fig. 4.5 and, more prominently, in the pump-probe spectrum in Fig. 4.9, we again

note that the cutoff predicted by the semiclassical three-step model for HHG with re-

combination to the LUMO+1 would be around harmonic 77, far from the observed
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Figure 4.14: Dipole recombination matrix elements for a continuum electron recombin-
ing back to one of the lowest Kohn-Sham states of acetylene, calculated via Eq. (4.3).
The energy of the free electron and the ionization potentials of the individual Kohn-
Sham states are related to a given harmonic order, n, using the classical formula
nωL = k2/2 + Ip, where ωL is the frequency of the IR field, k is the magnitude of
the momentum of the free electron, and Ip is the ionization potential of the Kohn-
Sham state. Here the IR field has a wavelength of λ = 1450 nm (i.e., ωL = 0.0314 Ha),
and the Ip values are taken as the negatives of the Kohn-Sham energies given in Table
4.2. Panels (a) and (b) show the recombination elements for the field-free occupied
and unoccupied orbitals respectively.

inner plateau cutoff around harmonic 65. There appears to be a suppression of har-

monics near the expected cutoff.

There are a number of effects that can result in minima in harmonic spectra and sup-

pression of particular harmonic orders, including multichannel interference [302–304]

and structural interference [72, 74, 304, 305]. We can investigate structural interfer-

ence effects by calculating recombination matrix elements [306, 307]. The recombi-

nation matrix element of an ionized electron to a bound state of a molecule can be

written as

drec(k) =
〈

χ(k, r)
∣

∣r
∣

∣Ψ(r)
〉

, (4.3)

where χ(k, r) is a plane wave describing a free electron with momentum k, and Ψ(r)

is the wavefunction of the bound state to which the free electron will recombine. We

consider the amplitude of drec along the laser polarization direction, and integrate over

all angular variables to calculate the recombination matrix elements as a function of the

electron’s momentum, k. This momentum is then related to a given harmonic order, n,

through the formula nωL = k2/2 + Ip, where ωL is the frequency of the laser field (the

IR probe) and Ip is the ionization potential of the bound state Ψ(r).
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(a) λ = 1450nm, I = 6.5×1013 W/cm2
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Figure 4.15: High harmonic spectra from acetylene following interactions with differ-
ent setups of laser pulses. In all cases the VUV pump pulse is an 8-cycle pulse with
wavelength λ = 102 nm and a peak intensity of I = 1.0×1012 W/cm2. In panel (a), the
IR probe is a 5-cycle pulse with wavelength λ = 1450 nm and a peak intensity of I =
6.5×1013 W/cm2. In panel (b), the IR probe is a 6-cycle pulse with wavelength λ =
1200 nm and a peak intensity of I = 1.0×1014 W/cm2. The vertical lines indicate the
harmonic cutoffs predicted by the semiclassical cutoff law, Eq. (1.14), for recombina-
tion to either the LUMO+1 or HOMO-1.

Taking this bound state to be one of the lowest field-free Kohn-Sham states, φk(r), of

the molecule (and Ip the magnitude of the energy of the state), we have calculated the

recombination matrix elements of an ionized electron recombining to various states

of acetylene in the parallel orientation (see Appendix A for further details about how

these are calculated). These are shown in Fig. 4.14, where recombination to field-

free occupied and unoccupied states are shown separately in Figs. 4.14(a) and 4.14(b)

respectively, for clarity. We highlight in particular the LUMO+1 recombination matrix

element, noting the presence of a minimum around harmonic 81: close to the predicted

inner plateau cutoff.

To test if this minimum in the LUMO+1 recombination matrix element is responsible

for the discrepancy between the expected and observed inner plateau cutoffs, we now

consider replacing the probe pulse in our pump-probe setup with one of two different

probe pulses. In the first case, we reduce the probe intensity to I = 6.5×1013 W/cm2,

keeping the wavelength at λ = 1450 nm. In the second case, we keep the probe in-

tensity at I = 1.0×1014 W/cm2, but reduce the wavelength to λ = 1200 nm. As was

discussed in Section 4.2.2, the predicted cutoff is dependent on both the wavelength

and intensity of the driving pulse. With these two new probe pulses we expect the inner

plateau cutoffs to be reduced to around harmonic 51 and harmonic 44, for the lower
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intensity and lower wavelength cases respectively. These cutoff values are far below the

minimum in the recombination matrix element for the LUMO+1 seen in Fig. 4.14(b).

The harmonic spectra produced in pump-probe setups with these two choices of probe

pulse (the pump pulse remains the same as above) are shown in Fig. 4.15. In both cases,

we see that the inner plateau cutoff matches what is predicted by the three-step model

cutoff law for recombination to the LUMO+1. We also note that with these varied laser

parameters, the outer plateau cutoff remains in agreement with the cutoff expected

for recombination to the HOMO-1 (harmonic 65 and harmonic 56 in Figs. 4.15(a) and

4.15(b) respectively).

These results support our conclusions drawn above, and the idea that the discrepancy

in the inner plateau cutoff is due to a minimum in the recombination matrix element

for the LUMO+1. In the next section we will test our conclusions further, by now

considering alternative pump pulses.

4.5.5 Effect of varying VUV pump wavelength

If our conclusion, that the enhancement of the plateau harmonics originates from

HOMO-1 → LUMO+1 excitation followed by HHG from the LUMO+1, is correct, the

enhancement effect should be sensitive to the wavelength (i.e., the photon energy)

of the pump pulse. To investigate this wavelength-sensitivity, three additional pump-

probe calculations were performed. In all three cases the pump wavelength is changed

from λ = 102 nm to one of the following:

(a) λ = 160 nm (0.285 Ha): In this case the photon energy is too small to excite the

HOMO-1 → LUMO+1 or HOMO-2 → LUMO+2 transitions with a single photon;

(b) λ = 82 nm (0.556 Ha): In this case the photon energy is equal to the energy re-

quired to ionize directly from the HOMO-1;

(c) λ = 65 nm (0.701 Ha): In this case the photon energy is large enough to ionize

directly from the HOMO, HOMO-1 and HOMO-2.

These photon energies are shown schematically in Fig. 4.16. The number of VUV pulse

cycles is varied between the different cases, in order to keep the total VUV pulse du-

ration approximately constant in all calculations (TVUV ≈ 110 a.u. = 2.66 fs). The
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Figure 4.16: Schematic representation of the four VUV pump pulse wavelengths de-
scribed in the text and associated with the harmonic spectra shown in Fig. 4.17. The
length of the arrows correspond to the photon energies associated with the following
wavelengths: blue → λ = 102 nm; red → λ = 160 nm; green → λ = 82 nm; magenta
→ λ = 65 nm.

harmonic spectra produced from acetylene interacting with these pump pulses fol-

lowed in each case by the 5-cycle (TIR = 999.8 a.u. = 24.18 fs), λ = 1450 nm, I =

1.0×1014 W/cm2 probe pulse are shown in Fig. 4.17.

Clearly from these plots we see that the inner plateau enhancement mechanism is

highly sensitive to the VUV photon energy. With a VUV pulse tuned to the HOMO-

1 → LUMO+1 transition, as in Fig. 4.17(a), we see a large enhancement of the inner

plateau harmonics, as presented in previous sections. Increasing the wavelength of the

VUV pulse (reducing the photon energy), as in the spectrum shown in Fig. 4.17(b), we

see the enhancement effect disappear across the inner plateau, since the VUV pulse is

no longer able to excite the HOMO-1 → LUMO+1 transition with a single photon. The

only enhancement we observe compared to the probe-only spectrum is at a few peaks

at low harmonic orders, due to bound-bound transitions (since the VUV photon energy

is still large enough to excite the HOMO → LUMO transition).

Reducing the wavelength of the VUV pulse (i.e., increasing the photon energy), as

in Figs. 4.17(c) and 4.17(d), we observe two changes. Firstly, when the VUV photon

energy is increased so that it is just large enough to ionize directly from the HOMO-1
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Figure 4.17: High harmonic spectra from acetylene following interactions with differ-
ent setups of laser pulses. The IR probe pulse is a 5-cycle pulse with wavelength λ =
1450 nm and a peak intensity of I = 1.0×1014 W/cm2, while the VUV pump pulse is
varied between panels. The pulses in all cases are linearly polarized along the z-axis,
and the molecular axis also lies along the z-axis. Panel (a) presents the two parallel
spectra from Fig. 4.9; for comparison, these two spectra are also shown in the other
three panels. The VUV pulse in all cases has a peak intensity of I = 1.0×1012 W/cm2,
and the following wavelengths and number of cycles: (a) λ = 102 nm, 8 cycles (dura-
tion = 112.5 a.u.); (b) λ = 160 nm, 5 cycles (duration = 110.3 a.u.); (c) λ = 82 nm,
10 cycles (duration = 113.0 a.u.); (d) λ = 65 nm, 12 cycles (duration = 107.6 a.u.).

with a single photon, as in Fig. 4.17(c), we see a reduction in the enhancement of the

window of bound-bound harmonics seen with a λ = 102nm VUV pump pulse. This is

due to the fact that the higher photon energy of a λ = 82nm pulse will less efficiently

populate the LUMO+1 than a λ = 102nm pulse, with a subsequent reduction in bound-

bound transitions. However, this choice of VUV pump pulse can populate some higher-

lying (near-threshold) states, from which HHG may occur, and so we still see some

enhancement of the inner plateau harmonics. Secondly, when the VUV wavelength is

reduced further, as in Fig. 4.17(d), so that the photon energy is significantly greater

than the energy required to ionize directly from the HOMO-1, we again observe no
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inner plateau enhancement.

4.5.6 Effect of pump-probe delay

In experimental pump-probe setups, the main “control knob” that can be varied is

the time delay between the two pulses. Following this train of thought, several ad-

ditional calculations were performed on the parallel VUV pump (λ = 102 nm, I =

1.0×1012 W/cm2) + parallel IR probe (λ = 1450 nm, I = 1.0×1014 W/cm2) setup

described above, but in which the time delay between the two pulses was varied.

Figure 4.18 shows the spectrum from one such calculation in which the VUV pulse is

applied during the IR pulse, beginning after 2 IR pulse cycles (we will refer to this as the

overlapping pulses setup). Also shown in this figure for comparison are the previously

shown spectra for the case in which the probe pulse begins immediately after the pump

pulse has ended (the sequential pulses setup) and the case in which only the IR probe is

applied (the probe-only setup). All pulses are polarized parallel to the molecular axis.

Comparing the 3 spectra in Fig. 4.18, we see that while applying the pump pulse during

the probe pulse produces an enhancement of the inner plateau harmonics relative to

the probe-only spectrum, the level of enhancement is less than in the spectrum obtained

when the pulses are applied sequentially. This is because a VUV pulse applied to the

ground state molecule before the IR pulse is much more effective at exciting the HOMO-

1 → LUMO+1 transition than one applied during the IR pulse, when the system has

already been excited.

Looking at the window of low-order harmonics we previously associated with bound-

bound transitions, we see that overlapping the pump and probe pulses causes a broad-

ening and enhancement of the harmonic peaks in this window, compared to the se-

quential pulses setup. This is again due to the state of the system when the VUV pump

pulse is applied. In the sequential pulses setup, the molecule is in its ground state when

the VUV pulse is applied. During the interaction of the pump pulse with the molecule,

the LUMO+1 is populated, and the subsequent transitions back to the ground state

produce relatively well defined harmonics. In the overlapping pulses setup, the VUV

pulse is applied when the molecule has already been distorted by the strong IR pulse,

which may have already excited some transitions to the LUMO+1. Now the VUV pulse



4.5. HHG IN ACETYLENE WITH A VUV PUMP + MID-IR PROBE 150

0 10 20 30 40 50 60 70 80 90 100 110
Harmonic Order

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

S
p

ec
tr

al
 D

en
si

ty

IR Probe Only

VUV Pump Before IR Probe

VUV Pump During IR Probe (Delay = 2 IR Cycles)

(a) Harmonic spectra

0 200 400 600 800 1000 1200
Time (a.u.)

-0.05

0.00

0.05

E
(t

) 
(a

.u
.)

VUV Pump During IR Probe (Delay = 2 IR Cycles)

-0.05

0.00

0.05

E
(t

) 
(a

.u
.)

VUV Pump Before IR Probe

-0.05

0.00

0.05

E
(t

) 
(a

.u
.)

IR Probe Only

(b) Electric fields

Figure 4.18: Effect of pump-probe delay on enhancement of harmonic spectrum. (a)
High harmonic spectra from acetylene following interactions with different setups of
laser pulses. The IR probe pulse is a 5-cycle pulse with wavelength λ = 1450 nm and
a peak intensity of I = 1.0×1014 W/cm2, while the VUV pump pulse is an 8-cycle
pulse with wavelength λ = 102 nm and a peak intensity of I = 1.0×1012 W/cm2. The
pulses in all cases are linearly polarized along the z-axis, and the molecular axis also
lies along the z-axis. The dashed black line is the spectrum when only the IR probe
pulse is applied. The dotted blue line is the spectrum when the IR probe pulse begins
immediately after the VUV pump pulse has ended. The solid red line is the spectrum
when the IR probe pulse begins first, with the VUV pump pulse beginning after 2 cycles
of the IR pulse. (b) The z-components of the three electric fields, where the top and
bottom pulses have been shifted in time so the IR pulse begins at the same time in all
three panels.

can excite more transitions to the LUMO+1, as before, but can also stimulate the emis-

sion of the low-order (bound-bound) harmonics. The broadening of the peak reflects

the distorted nature of the molecule and the associated shifting of energy levels at the

time when the VUV pulse is applied.

4.5.7 Effect of VUV pump at different molecular orientations

In Section 4.4 it was shown how the orientation of the molecular axis relative to the

laser polarization direction had a significant effect on the response of the system, specif-

ically on the ionization rate and harmonic response. In the pump-probe calculations

described thus far, both pulses have always been polarized along the molecular axis. We

now consider the harmonic response in the pump-probe setup when the angle between

the molecular axis and the laser polarization direction is varied. Figure 4.19 presents

the spectra obtained in three different orientations: Fig. 4.19(a) shows the previously

shown spectrum for the case where both pulses are polarized parallel to the molecular
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Figure 4.19: High harmonic spectra from acetylene following interaction with a VUV
pump pulse and a mid-IR probe pulse, for three different orientations of the molecule
with respect to the laser polarization direction. The IR probe pulse is a 5-cycle pulse
with wavelength λ = 1450 nm and a peak intensity of I = 1.0×1014 W/cm2, while the
VUV pump pulse is an 8-cycle pulse with wavelength λ = 102 nm and a peak intensity
of I = 1.0×1012 W/cm2. The pulses in all cases are linearly polarized along the z-axis,
while the molecule is aligned in one of three ways: panels (a) and (c) correspond to the
cases where the molecular axis lies along the z-axis and x-axis respectively; panel (b)
corresponds to the intermediate case in which the molecular axis is at an angle of 45◦

to both the z- and x-axes. The spectra for the three pump-probe cases are compared
directly in panel (d).

axis; Fig. 4.19(b) shows the spectrum when the molecular axis is at angle of θ = 45◦

to the polarization direction of the two pulses; Fig. 4.19(c) shows the spectrum for the

perpendicular case, in which the molecular axis is at an angle of θ = 90◦ to the laser

polarization direction. In each case both the probe-only and pump-probe spectra are

shown.

These figures show that the plateau enhancement due to the addition of the VUV pump

pulse is greatest when both pump and probe pulses are polarized along the molecular

axis. In addition, when both pulses are polarized perpendicular to the molecular axis,
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no harmonic enhancement is observed, with the exception of a single peak due to a

bound-bound transition. Looking specifically at some individual peaks in the spectrum,

we see that the addition of the VUV pulse can actually causes a slight reduction in the

harmonic intensity.

As was shown in Fig. 4.12 for the parallel orientation, Fig. 4.20 presents time-frequency

analyses of the two harmonic spectra from the perpendicular orientation shown in

Fig. 4.19(c). We immediately see a much higher intensity of harmonics in the probe-

only case than was seen in the parallel probe-only case (Fig. 4.12(a)), as expected from

the results and discussion of Section 4.4. Comparing now Figs. 4.20(a) and 4.20(b),

we see that while the addition of the VUV pump clearly affects the harmonic response,

the effect is much less pronounced than in the parallel orientation, since the harmonic

response in the perpendicular probe-only case is already strong. Indeed, comparing

Figs. 4.20(a) and 4.20(b) for times greater than 600 a.u., we see that the harmonic

responses with or without the pump pulse are almost indistinguishable.

To explain these results, we again consider the symmetries of the Kohn-Sham orbitals,

the allowed and forbidden transitions given in Table 4.5(b), and the overlaps of the

time-dependent states with the initial, field-free, orbitals. These calculated overlaps

for the perpendicular pump-probe setup are shown in Fig. 4.21(a). From this figure

we see that in the perpendicular orientation, the VUV pump is ineffective at exciting

the HOMO-1 → LUMO+1 transition. Instead, during the VUV pulse we see some ex-

citation from the HOMO-2 to the LUMO(a) (although the LUMO(a) is less effectively

populated by this pump pulse than the LUMO+1 pulse was in the parallel case, due

to the chosen photon energy). Considering that the photon energy is slightly larger

than the energy required to ionize directly from the HOMO, the VUV pump likely also

populates a number of high-lying (near-threshold) states, for which the overlaps with

the time-dependent orbitals have not been calculated. During the IR pulse, we see

HOMO-2 → LUMO(a) transitions as well as HOMO → LUMO+2 transitions, with sim-

ilar magnitudes as in the probe-only case shown in Fig. 4.7(b).

We can therefore explain the lack of enhancement of the harmonic spectrum when

the combined pump-probe setup is applied to acetylene aligned in the perpendicular

orientation as a result of the symmetries of the orbitals, and the selection rules gov-
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(a) Perpendicular IR Probe

(b) Perpendicular VUV Pump and Perpendicular IR Probe

Figure 4.20: Time-frequency analyses of the two “perpendicular” HHG spectra shown
in Fig. 4.19(c). In both panels a 5-cycle IR pulse with wavelength λ = 1450 nm and a
peak intensity of I = 1.0×1014 W/cm2 is applied. In panel (b), this pulse is preceded
by an 8-cycle VUV pulse with wavelength λ = 102 nm and a peak intensity of I =
1.0×1012 W/cm2. The data in panel (a) has been shifted in time so that the IR pulse
begins at the same time in both panels. Both pulses are linearly polarized along the
z-axis, while the the molecular axis is aligned perpendicular to this, along the x-axis.
The red lines denote the z-component of the electric field.
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Figure 4.21: Response of different initial and time-dependent Kohn-Sham orbitals to
different setups of laser pulses, when the molecular axis is aligned perpendicular to
the laser polarization direction. In panel (a), Eq. (4.2) has been used to calculate the
electronic population in each of the 9 lowest initial Kohn-Sham orbitals φk(r), for the
perpendicular pump-probe setup. In panel (b) the populations of the time-dependent
HOMO(a), calculated using Eq. (3.69), are shown for the perpendicular pump-probe
and perpendicular probe-only cases. In both laser setups, a 5-cycle IR pulse with wave-
length λ = 1450 nm and a peak intensity of I = 1.0×1014 W/cm2 is applied. In the
pump-probe setup, the IR pulse is preceded by an 8-cycle VUV pulse with wavelength
λ = 102 nm and a peak intensity of I = 1.0×1012 W/cm2. Both pulses are linearly po-
larized along the z-axis, while the the molecular axis is aligned perpendicular to this,
along the x-axis.

erning the transitions between them. In the parallel orientation considered previously,

the HOMO-1 → LUMO+1 transition was efficiently excited by a parallel VUV pump,

following which the σ-type LUMO+1 was ionized by a parallel probe pulse, initiating

the HHG process. In the perpendicular orientation on the other hand, the HOMO-1 →
LUMO+1 transition is not efficiently excited by the perpendicular VUV pump. Instead

the HOMO-2 → LUMO(a) transition is excited. The excited population does not remain

in the LUMO(a) for a significant length of time however, as the LUMO+1 population

did in the parallel case. The effect of this is that while bound-bound transitions from

the LUMO(a) result in the enhancement of a single peak in the harmonic spectrum, the

population excited to the LUMO(a) by the VUV pump does not play a significant role in

the subsequent HHG process. In addition, from Fig. 4.21(b) we see that the VUV pump

pulse causes ionization from the HOMO(a) to occur earlier in the calculation than in

the perpendicular probe-only case; this has the effect of reducing the population avail-

able for tunnel ionization during the IR pulse, and subsequently can lead to a small

reduction in the intensities of some of the high harmonics in Fig. 4.19(c).
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Finally, we note that since the addition of the VUV pump pulse in the parallel orienta-

tion increases the intensity of the inner plateau harmonics to a level comparable to that

of the plateau harmonics in the perpendicular probe-only case, and since the addition

of the VUV pump has little effect on the harmonic response in the perpendicular ori-

entation, the addition of a VUV pump pulse could prove useful in boosting the overall

harmonic response of an unaligned sample of molecules.

4.5.8 Summary

In this section we have investigated the role of the HOMO-1 → LUMO+1 transition

in the high harmonic generation process in acetylene. We showed first that when the

molecular axis is aligned parallel to the laser polarization direction, by applying a VUV

pump pulse tuned to the HOMO-1 → LUMO+1 energy gap before the IR probe pulse is

applied, the high harmonic response in acetylene can be dramatically enhanced. This

enhancement was shown to be due to two separate mechanisms. Firstly, after the VUV

pump pulse is applied and has promoted some electronic population to excited states,

the molecule begins to relax back to its ground state, with associated bound-bound

transitions occurring. The VUV pump increases the population of the LUMO+1, which

leads to an increase in these bound-bound transitions, and the observed enhancement

of a window of low-order harmonics. Secondly, the population of the LUMO+1 by

the VUV pump pulse allows tunnel ionization and subsequent high harmonic genera-

tion to occur earlier in the IR probe pulse, due to the lower ionization potential of the

LUMO+1 than the HOMO, HOMO-1, etc.. Increased ionization from and recombina-

tion back to the LUMO+1 results in the observed enhancement of the inner plateau

harmonics.

In Section 4.5.4, we addressed the issue of the discrepancy between the observed inner

plateau cutoff and the cutoff predicted by the three-step model for HHG with recom-

bination back to the LUMO+1. The lower than predicted cutoff was shown to be due

to a minimum near the expected cutoff harmonic in the dipole recombination matrix

element for a continuum electron recombining to the LUMO+1. When the IR wave-

length or intensity are reduced, so that the predicted cutoff is far below this minimum,

it was shown that the position of the cutoff is as expected for recombination back to

the LUMO+1.
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Finally in Sections 4.5.5, 4.5.6 and 4.5.7, we considered the response of the system

when various aspects of the laser setup were varied, namely the VUV wavelength, the

timing of the VUV pulse relative to the IR pulse, and the polarization direction of the

pulses relative to the orientation of the molecular axis. In each of these sections we

showed how the observed effects fit with our explanation of the enhancement mecha-

nism outlined above.

In the next section, we will conclude our investigations of acetylene by briefly consid-

ering the effect of the ionic motion on the dynamics of the system.

4.6 Effect of ionic motion

In an earlier work using EDAMAME to study HHG in benzene [46], it was found that

ionic motion had a large influence on the calculated harmonic spectra. Specifically,

it was found that allowing the ions to move during the calculation resulted in an en-

hanced harmonic response compared to when they were fixed in their initial positions

throughout the calculation. The pulse in this case was circularly polarized, in the plane

of the molecule. This increased harmonic response for moving nuclei was explained as

being due to a mechanism in which an electron is tunnel ionized from one atom, but

can recombine at an adjacent atomic site, due to the circularly polarized field causing

the ionized electron to spiral. It was shown that when the ions were allowed to move,

they traced out circular or elliptical trajectories. If the displacement of an ion from its

equilibrium position was sufficiently increased, the probability of an ionized electron

recombining at that atomic site was also increased, with such an increase leading natu-

rally to the observed increased intensity of plateau harmonics. While linearly polarized

pulses were studied elsewhere in this paper, the effect of ionic motion in the case of

linear polarization was not specifically discussed.

In all the calculations presented on acetylene in the above sections, ionic motion has

been included. As a calculation progresses, the position of each ion is output, which

allows us to plot the ionic trajectories. Two illustrative examples of these trajectories

are shown in Fig. 4.22, for the probe-only cases discussed in Section 4.4. In Fig. 4.22(a),

the trajectories of the ions when the pulse is polarized along the molecular axis are

shown, while the trajectories for the perpendicular case are shown in Fig. 4.22(b). In
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Figure 4.22: Trajectories of the individual ions of acetylene during interaction with
a 5-cycle laser pulse with wavelength λ = 1450 nm and a peak intensity of I =
1.0×1014 W/cm2. The pulse is linearly polarized along the z-axis, while the molec-
ular axis is aligned along either the z-axis (θ = 0◦, parallel orientation; panel (a)) or
the x-axis (θ = 90◦, parallel orientation; panel (b)). The circle markers indicate the
initial positions of the ions.

each of these figures, the trajectory of each ion is plotted on a separate set of axes, since

the displacements are small relative to the size of the molecule. In the parallel case,

Fig. 4.22(a), we see that the motion is confined entirely along the laser polarization

direction (the z-axis), due to the symmetrical nature of the molecule about this axis.

In the perpendicular case, Fig. 4.22(b), we see a different behaviour. Now, although

the motion is mainly along the laser polarization direction (the z-axis), there is also

some motion perpendicular to this, along the molecular axis (along the x-axis). In both

parallel and perpendicular orientations, we see that the hydrogen ions respond much

more strongly to the field than the heavier carbon ions. However, in all cases, we note

again that the ions move a relatively small distance during the calculation.

When considering the ionization from different Kohn-Sham orbitals due to a single IR

pulse in Section 4.4.3, we briefly commented on the comparison of our results to the

results of Russakoff et al. [273]. This work, and a subsequent work [278], reported
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Figure 4.23: Variations in bond lengths in acetylene during the interaction with dif-
ferent setups of laser pulses. The IR probe pulse is a 5-cycle pulse with wavelength
λ = 1450 nm and a peak intensity of I = 1.0×1014 W/cm2, while the VUV pump
pulse is an 8-cycle pulse with wavelength λ = 102 nm and a peak intensity of I =
1.0×1012 W/cm2. The pulses in all cases are linearly polarized along the z-axis, while
the molecule is aligned along the z-axis in the parallel cases, and along the x-axis in the
perpendicular case. Panels (a) and (b) show the C-H and C-C bond lengths respectively.
The z-component of the E-field is shown in the top sub-panel in both cases. In panel
(a), the middle sub-panel corresponds to the C-H bond between the carbon and hydro-
gen ions positioned on the positive side of the z-axis (in the parallel orientation) or the
x-axis (in the perpendicular orientation), while the bottom sub-panel corresponds to
the C-H bond between the carbon and hydrogen ions positioned on the negative side.

a significant enhancement of ionization from the HOMO-1 and HOMO-2 when the

C-H bonds are stretched to beyond twice the equilibrium distance. From Fig. 4.22 it

is already quite clear that the laser parameters used in our work do not cause such

significant bond stretching. This point is illustrated explicitly in Fig. 4.23, in which we

have plotted the changes in the C-H and C-C bond lengths over time, for three different

laser setups (the C-H bond lengths are shown in Fig. 4.23(a) while the C-C bond length

is shown Fig. 4.23(b)). From these figures we can assume that the bond stretching and

associated ionization enhancement mechanism reported in [273, 278] will not be an

important factor in the work reported in this chapter.

In order to investigate further whether or not this ionic motion is an important factor

in the dynamics of the molecule with these laser parameters, we repeated several of

our simulations but now keeping the ions fixed. The results of these calculations are

illustrated in Fig. 4.24. Figures 4.24(a) and 4.24(b) show the harmonic spectra for

the parallel and perpendicular probe-only setups, respectively, with and without ionic

motion. Figure 4.24(c) shows the total populations in the grid for these four different
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Figure 4.24: Effect of ionic motion on the response of acetylene to a 5-cycle laser pulse
with wavelength λ = 1450nm and a peak intensity of I = 1.0×1014 W/cm2. The pulse
is linearly polarized along the z-axis, while the molecular axis is aligned along either
the z-axis (θ = 0◦, parallel orientation) or the x-axis (θ = 90◦, parallel orientation).
Panel (a) shows the harmonic spectra produced in the parallel orientation when the
ions are allowed to move or are fixed in place. Panel (b) shows the same as (a), but
for the perpendicular orientation. Panel (c) shows the changes in the total electronic
population in the grid over time for the four different cases.

cases. Looking at the ionization with or without ionic motion included (Fig. 4.24(c)),

we see that allowing the ions to move increases the total population depletion, although

the effect is very small. Considering now the harmonic spectra, the effect of the ionic

motion is even less obvious, with the moving ions and fixed ions spectra nearly identical

in both parallel and perpendicular cases. In the parallel case, there are some slight

changes in individual peak intensities between the moving ions and fixed ions spectra;

in the perpendicular case there is near perfect agreement between the two spectra.

While only the probe-only cases are shown explicitly here for brevity, we have also

checked the effect of the ionic motion on the dynamics of the pump-probe setup of
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Section 4.5. In this case the result is similar to that shown above for the probe-only

cases: the ionic motion has only a minimal effect on the ionization and high harmonic

generation, for the chosen pulse parameters.

4.7 Conclusions

In this chapter we have presented results from a series of simulations of acetylene

interacting with a variety of laser pulses. In Section 4.2 we discussed some of the most

relevant experimental and theoretical work on acetylene from the literature. In Section

4.3 we presented results showing how EDAMAME can accurately reproduce the static

properties of acetylene, such as the bond lengths and ionization potentials.

Section 4.4 focused on the dynamics of acetylene interacting with a linearly polarized

mid-IR laser pulse. The effects of the molecular orientation relative to the laser po-

larization direction were investigated by studying the ionization from the Kohn-Sham

orbitals and the harmonic response of the system. Both ionization and high harmonic

generation were found to increase as the angle between the laser polarization direction

and the molecular axis was increased from a parallel to a perpendicular orientation.

This was shown to be a result of an increased response of one form of the degener-

ate HOMO in the perpendicular orientation. In the parallel orientation, it was shown

that the main contributor to the high harmonic spectrum was not the HOMO, but the

HOMO-1 and HOMO-2. The existence of an inner plateau in the parallel spectrum was

also discussed. By considering how the populations of the field-free occupied and un-

occupied orbitals varied over time, it was suggested that the origin of the inner plateau

region was related to the excitation of the HOMO-1 → LUMO+1 transition.

This HOMO-1 → LUMO+1 transition, and its role in the high harmonic generation

process, was investigated further in Section 4.5 by preceding the IR probe pulse with a

lower intensity VUV pump pulse, with a photon energy chosen to match the HOMO-1

→ LUMO+1 energy gap. In the parallel orientation, the addition of such a VUV pump

pulse was found to dramatically enhance the intensity of the inner plateau harmon-

ics, while having little to no effect on the harmonics beyond the inner plateau cutoff.

By again considering the populations of the field-free states, and by performing time-

frequency analyses of the probe-only and pump-probe harmonic spectra, the origin of
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this inner plateau enhancement was shown to be due to increased excitation of the

HOMO-1 → LUMO+1 transition, followed by ionization from and recombination back

to the LUMO+1. A discrepancy between the inner plateau cutoff and the cutoff pre-

dicted by the three-step model cutoff law was found to be due to a minimum in the

recombination matrix element for the LUMO+1. Harmonic spectra from several other

pump-probe setups were also shown, and these results were discussed in the context

of our understanding of the observed enhancement mechanisms. Finally, in Section

4.6, the (small) effect of ionic motion on the ionization and harmonic response of the

system was briefly discussed.

In the next chapter, we will turn our attention to the study of high harmonic gen-

eration in three larger molecules, namely uracil, thymine and 5-fluorouracil. These

molecules are of great interest due to their biological significance, but their large size

and increased complexity compared to acetylene make them much more challenging

to describe computationally.



Chapter 5

High harmonic generation in

nucleobases and radiosensitisers

5.1 Introduction

In the previous chapter, we studied the dynamic response of acetylene, a linear hy-

drocarbon with 14 electrons, to an intense mid-IR laser pulse. The linearity and small

size of this molecule enabled us to conduct an in-depth investigation of the response

of acetylene to a range of laser wavelengths, intensities and polarization directions.

Understanding the response of a relatively simple molecule such as acetylene is an es-

sential first step towards understanding the response of more complex molecules. One

such class of molecules of particular interest is that of biological molecules.

In this chapter we study the response of three biologically relevant molecules to intense,

mid-IR laser pulses. These molecules are: uracil (C4H4N2O2), thymine (also known as

5-methyluracil, C5H6N2O2), and 5-fluorouracil (C4H3FN2O2). These three molecules

are all pyrimidine derivatives, and differ only in what is bonded to the 5th carbon atom:

in uracil, this is a hydrogen atom, in thymine a methyl group, and in 5-fluorouracil a

fluorine atom. Uracil and thymine are nucleobases in RNA and DNA respectively, while

5-fluorouracil (5-FU) is a radiosensitiser molecule that is used in cancer therapies. A

radiosensitiser molecule in general is a molecule which is used to enhance the killing
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of tumour cells during radiotherapy, while reducing the effect on normal tissue [308].

Since it has a similar structure to thymine, 5-fluorouracil can be used as a replacement

for thymine in DNA, with the resulting radiosensitised-DNA suffering increased lethal

damage when exposed to radiation [309]. In healthy DNA, thymine pairs with the

nucleobase adenine, whereas with 5-FU, tautomerization can result in mispairing with

guanine. Ionization has been found to increase this mispairing [310]. This link between

ionization, ionic rearrangement, and ultimately increased lethal DNA damage implies

that understanding the radiosensitising role of 5-FU requires an understanding of the

combined electronic and ionic dynamics of the molecule.

Due to their biological significance, these molecules (in particular uracil and thymine)

have been the focus of numerous experimental and theoretical studies. These include

photoionization studies [311–313], as well as investigations of fragmentation and re-

laxation dynamics following excitation or ionization by a UV pump pulse [309, 314,

315]. However, there have been few studies carried out investigating the interaction

of these molecules with intense laser pulses, due in part to the significant technical

challenge of producing a gas-phase sample of intact (unfragmented) molecules. This

challenge is exasperated in HHG experiments, in which a relatively high density of

intact molecules is required in order to give a measurable HHG signal.

To our knowledge the only example of experimental measurements of HHG in these

molecules is that of Hutchison et al. in 2013 [57]. In this work, the technique of laser

ablation [58, 316, 317] was used to produce weakly ionized plasma plumes from solid

samples of uracil and thymine. The harmonic responses of the two molecules were

then investigated by applying driving laser pulses of 1300 nm or 780 nm to the plasma

plumes. While high harmonic spectra were obtained from the uracil plume, no high

harmonic signal was detected from the thymine plume, as shown in Fig. 5.1(a). The

authors of this study attributed the large difference between the non-linear responses

of uracil and thymine to differences in the ion composition of the ablation plumes of

the two molecules. Specifically, by analysing the composition of the ablation plumes

using time of flight mass spectrometry (TOFMS), the authors observed that the thymine

molecules experienced a much higher degree of fragmentation during the creation of

the ablation plume than the uracil molecules. This was evidenced in the two mass spec-

tra, shown in Fig. 5.1(b), by the significantly lower intensity of the peak corresponding
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(a) HHG spectra (b) Mass spectra

Figure 5.1: HHG spectra and mass spectra from an experimental study of HHG in uracil
and thymine. (a) Experimental HHG results measured under identical conditions in
uracil, thymine, and an equal mixture of uracil and thymine, with a 1300 nm driving
pulse. In the pure uracil case a strong harmonic signal is observed, which is reduced
by a factor of ≈ 4 in the uracil+thymine mixture. No signal is observed in the pure
thymine case. (b) Time of flight mass spectra showing the composition of the ablation
plumes for uracil and thymine. The parent ions are indicated by the labels U and T.
Figures reproduced from [57].

to the parent thymine ion than the corresponding peak for the parent uracil ion. These

mass spectra also demonstrated how, even in the case of uracil, the ablation plume

contained a large number of fragments of the parent ion. Such fragmentation makes

it difficult to determine whether the measured HHG signal originated from the parent

uracil ions or from some fragment ions [83]. We are not aware of any corresponding

theoretical calculations of HHG in biologically relevant molecules.

In this chapter we present the first results from a series of calculations using EDAMAME

to study uracil, thymine and 5-fluorouracil. The chapter is arranged as follows. We

begin in Section 5.2 by setting out the ground state equilibrium properties of the

molecules as calculated using EDAMAME. In Sections 5.3 and 5.4 we consider the

response of each of these three molecules, in three different orientations, to an in-

tense, mid-IR laser pulse. In Section 5.3 we compare the ionization and high harmonic
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responses of the two nucleobases uracil and thymine, drawing comparison with the ex-

perimental work of Hutchison et al. described above. In Section 5.4, we investigate the

differences between the responses of the nucleobase thymine and its radiosensitising

replacement in DNA, 5-fluorouracil, again in terms of ionization and high harmonic

generation.

Ionic motion is included in all the calculations described in this chapter (as discussed

in Section 3.3).

5.2 Equilibrium ground state properties

Before we can consider the interaction of a mid-IR laser pulse with uracil, thymine and

5-fluorouracil, we must calculate the equilibrium ground states of the three molecules

in EDAMAME. Due to the size and complexity of these molecules compared to acety-

lene, obtaining their ground state configurations was not as straightforward as in the

work described in the previous chapter. In this section we will first discuss the changes

to EDAMAME that were required to calculate equilibrium ground states for uracil,

thymine and 5-fluorouracil. The calculated static properties of the molecules in these

ground states, namely the bond lengths, orbital energies, and Kohn-Sham orbitals, will

then be presented.

5.2.1 Equilibrium geometries

In order to obtain relaxed geometries for uracil, thymine and 5-fluorouracil, it was

found that the grid spacings used in the acetylene work described in the previous chap-

ter, ∆x = ∆y = ∆z = 0.4 a0, were too large. A much finer grid was required, with grid

spacings of ∆x = ∆y = ∆z = 0.2 a0. However, such a reduction in grid spacing would

require the use of eight times as many grid points to produce the same grid extent.

Additionally, a smaller grid spacing would necessitate the use of a smaller time step

(∆t = 0.1 a.u., compared to ∆t = 0.2 a.u. as used in Chapter 4) due to the higher fre-

quencies supported by a finer grid. Taken together, these two computational increases

would result in calculations many times more computationally expensive than those for

acetylene, if the same finite difference methods were employed. To circumvent such

a computational burden, the finite difference methods in EDAMAME were adapted to
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Figure 5.2: Relaxed geometries of (a) uracil, (b) thymine, and (c) 5-fluorouracil, cal-
culated using EDAMAME. The labels N1, C2, etc. indicate the atom type and number-
ing system used, with the corresponding bond lengths given in Table 5.1. Atoms are
coloured according to: white = hydrogen, turquoise = carbon, blue = nitrogen, red =
oxygen, pink = fluorine.

incorporate a coordinate scaling of the standard Cartesian grid. In this scheme, which

was described in Section 3.2.1, the grid is divided into two regions, with a finer grid

used in the inner region, and a coarser grid in the outer region. In addition, the finite

difference method was altered so as to suppress the highest frequency components on

the grid, by deriving the finite difference coefficients from a least-squares procedure

(see Section 3.2.2). Suppressing these unphysical frequencies allows for the use of a

larger time step.

In this work we use this new coordinate scaling in EDAMAME to set up a finite differ-

ence grid with a grid spacing of ∆x = ∆y = ∆z = 0.2 a0 close to the molecule. We use

the scaling function defined in Eq. (3.14) for each coordinate with xb = yb = zb = 10 a0,

after which the grid spacings gradually increase to ∆x = ∆y = ∆z = 0.4 a0 (with a

grid extent of xmax = ymax = zmax = ±34.8 a0). Here the coordinate scaling allows us

to obtain this grid extent with 225 grid points in each coordinate, compared to the 349

grid points in each coordinate that would be required to obtain the same grid extent

with an unscaled grid with ∆x = ∆y = ∆z = 0.2 a0. The benefit of using the scaled

grid will be much greater for the larger grids employed in the laser-molecule calcula-

tions presented in Sections 5.3 and 5.4. We also use the least-squares finite difference

method described in Section 3.2.2, and truncate the summation in Eq. (3.32) at M =

7 (rather than M = 8 as in the standard 9-point finite difference scheme). This trun-

cation allows us to keep the time step at ∆t = 0.2 a.u., despite the effective reduction

in grid spacing.



5.2. EQUILIBRIUM GROUND STATE PROPERTIES 167

Bond lengths/a0
Bond Uracil Thymine 5-fluorouracil

EDAMAME PDB EDAMAME PDB EDAMAME PDB

N1–C6 2.567 2.610 2.583 2.591 2.599 2.646
N1–C2 2.519 2.619 2.545 2.596 2.543 2.636
C2–N3 2.471 2.608 2.506 2.608 2.528 2.608
N3–C4 2.520 2.615 2.503 2.608 2.494 2.591
C4–C5 2.673 2.731 2.656 2.727 2.649 2.729
C5–C6 2.604 2.544 2.568 2.538 2.539 2.534
N1–H7 2.036 1.928 2.040 1.928 2.039 1.929
C2–O8 2.267 2.315 2.286 2.305 2.286 2.319
N3–H9 2.027 1.926 2.032 1.926 2.033 1.928
C4–O10 2.297 2.296 2.304 2.330 2.275 2.324
C5–X11 2.172 2.084 2.773 2.835 2.379 2.470
C6–H12 2.186 2.086 2.189 2.084 2.180 2.084
C11-H13 – – 2.224 2.107 – –
C11-H14 – – 2.239 2.107 – –
C11-H15 – – 2.239 2.109 – –

Table 5.1: Equilibrium bond lengths in uracil, thymine and 5-fluorouracil calculated
using EDAMAME, compared with those from the experimental model geometries given
in the Protein Data Bank entries for the three molecules [321–324]. The atom labels
of N1, C2, etc. are those shown in Fig. 5.2, where the atom X11 is a hydrogen atom in
uracil, a carbon atom in thymine, and a fluorine atom in 5-fluorouracil.

Using these grid parameters, the geometries of the each of the three molecules were

relaxed using the relaxation scheme described in Section 3.3.2, with initial trial geome-

tries taken from the NIST Chemistry Webbook [255] and the PubChem Substance and

Compound [320] databases. The exchange-correlation potential approximation used

is the same as in Chapter 4: LDA-PW92-ADSIC. The resulting equilibrium geometries

are shown in Fig. 5.2, with the bond lengths set out in Table 5.1.

5.2.2 Orientation of molecules

In Section 5.2.3, we will present the initial Kohn-Sham states and energies calculated

for the three molecules in these equilibrium geometries. Firstly however, we will take a

moment to describe the different orientations of the molecules that will be considered

in the calculations involving an applied laser field that will be discussed later in this

chapter. This will allow us to present isosurface plots of the various Kohn-Sham orbitals

in the three different orientations, which will aid discussion of the results in Sections

5.3 and 5.4.



5.2. EQUILIBRIUM GROUND STATE PROPERTIES 168

To calculate the equilibrium geometries of the molecules, the orientation of the molecule

with respect to x-, y-, or z-axes is unimportant, provided that the grid is large enough

and the grid spacing small enough. However, in Sections 5.3 and 5.4, we will discuss

the results of calculations in which an intense, linearly polarized laser field is applied.

In such calculations, the orientation of the molecule relative to the laser polarization

direction can be very important, as was discussed in Chapter 4.

With acetylene, the molecular axis provided a natural reference for aligning the molecule

relative to the laser polarization direction. With uracil, thymine and 5-fluorouracil

however, the structure and asymmetric nature of the molecules mean that we must

choose some other reference for specifying the orientations of the molecules. In this

work we specify molecular orientations by aligning the permanent dipole moments of

the molecules along the x-, y-, or z-axes. The dipole moment, d(t), is calculated in

EDAMAME as

d(t) =

∫

rn(r, t)dr, (5.1)

with the permanent dipole moment given by d(t = 0). In all the time-dependent

calculations presented later in this chapter, the applied laser field is polarized in the

x-direction, and we refer to the orientation of the molecule by two angles:

(i) θmol: the angle between the laser polarization direction and the plane of the

molecule1;

(ii) θdip: the angle between the laser polarization direction and the permanent dipole

moment of the molecule.

The three orientations considered in this work are:

(1) θmol = 0◦, θdip = 0◦: The molecule lies in the x-y plane, oriented so that the dipole

moment is aligned along the x-axis. In this orientation the laser field is polarized

in the plane of the molecule, and parallel to the dipole moment;

(2) θmol = 0◦, θdip = 90◦: The molecule lies in the x-y plane, oriented so that the dipole

1While uracil and 5-fluorouracil are planar molecules, the presence of the methyl group in thymine
means that it is non-planar. Throughout this chapter references to the “molecular plane” refer to the plane
containing the ring of the molecule.
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Figure 5.3: Relaxed geometries of uracil, thymine and 5-fluorouracil, in the three ori-
entations considered in this work. Molecules are oriented so that the calculated dipole
moment is aligned along: (a)–(c) the x-axis; (d)–(f) the y-axis; (g)–(i) the z-axis (per-
pendicular to the page). The angle θmol is the angle between the laser polarization
direction (the x-axis) and the plane containing the ring of the molecule, while θdip is
the angle between the laser polarization direction and the permanent dipole moment
of the molecule, d. Atoms are coloured according to: white = hydrogen, turquoise =
carbon, blue = nitrogen, red = oxygen, pink = fluorine. Note that the placement of
the axes in the bottom left corner is for clarity; the origin in each case is located at the
centre of mass of each molecule.
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moment is aligned along the y-axis. In this orientation the laser field is polarized

in the plane of the molecule, and perpendicular to the dipole moment;

(3) θmol = 90◦, θdip = 90◦: The molecule lies in the y-z plane, oriented so that the

dipole moment is aligned along the z-axis. In this orientation the laser field is

polarized perpendicular to the plane of the molecule, and perpendicular to the

dipole moment.

These three orientations, for each of the three molecules, are shown in Fig. 5.3.

5.2.3 Kohn-Sham states

From the equilibrium geometries detailed above, the initial Kohn-Sham states and en-

ergies of the three molecules are calculated. For each molecule, as with acetylene,

the inner electrons are treated using pseudopotentials, as we do not expect them to

contribute to the dynamics for an applied field with the mid-IR wavelength considered

here. We therefore solve the TDKS equations for 21 doubly occupied orbitals (42 elec-

trons) for uracil, and for 24 doubly occupied orbitals (48 electrons) for both thymine

and 5-fluorouracil. The calculated Kohn-Sham energies for each of these orbitals are

given in Table 5.2. Here we note that for every Kohn-Sham state (HOMO, HOMO-1

etc.), the magnitude of the energy of the state in thymine is lower than that in both

uracil and 5-fluorouracil.

By Koopmans’ theorem, we can consider the magnitude of the HOMO energy of a neu-

tral molecule as an approximation to the vertical ionization potential to the ground

state of the cation. In Table 5.3 we compare our calculated values of the HOMO en-

ergies with experimental values for the ionization potentials of the three molecules.

Here we can see that the calculated ionization potentials are lower than the exper-

imental values. While differences between the relaxed geometry in EDAMAME and

the experimental geometry may account for some of this difference, comparisons of

the ionization potentials calculated with relaxed and unrelaxed geometries suggests

that the differences in Table 5.3 are not due to differences in geometry alone. This

may be an indication that the electronic structures of these molecules are not as well

described by the LDA-PW92-ADSIC exchange-correlation potential approximation as

other molecules previously studied with EDAMAME. Use of other exchange-correlation
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Uracil Thymine 5-fluorouracil
Orbital Sym. Energy/Ha Sym. Energy/Ha Sym. Energy/Ha

HOMO σ -0.3007 π -0.2963 π -0.3014
HOMO-1 π -0.3196 σ -0.3029 σ -0.3127
HOMO-2 σ -0.3430 σ -0.3275 σ -0.3348
HOMO-3 π -0.3466 π -0.3419 π -0.3579
HOMO-4 σ -0.4368 π -0.3899 σ -0.4119
HOMO-5 π -0.4388 σ -0.3904 π -0.4214
HOMO-6 σ -0.4456 σ -0.4127 σ -0.4484
HOMO-7 σ -0.4702 σ -0.4392 σ -0.4664
HOMO-8 π -0.4740 π -0.4427 π -0.4730
HOMO-9 σ -0.4924 σ -0.4555 σ -0.5187
HOMO-10 σ -0.5640 π -0.4790 π -0.5271
HOMO-11 π -0.5674 σ -0.4886 σ -0.5490
HOMO-12 σ -0.6057 π -0.5568 π -0.5814
HOMO-13 σ -0.6357 σ -0.5600 σ -0.5835
HOMO-14 σ -0.6996 σ -0.5856 σ -0.6405
HOMO-15 σ -0.7446 σ -0.6067 σ -0.6519
HOMO-16 σ -0.8356 σ -0.6850 σ -0.7047
HOMO-17 σ -0.9430 σ -0.7032 σ -0.7515
HOMO-18 σ -0.9940 σ -0.7498 σ -0.8198
HOMO-19 σ -1.0443 σ -0.8439 σ -0.9664
HOMO-20 σ -1.1207 σ -0.9448 σ -0.9909
HOMO-21 σ -0.9779 σ -1.0487
HOMO-22 σ -1.0388 σ -1.1145
HOMO-23 σ -1.1049 σ -1.2066

Table 5.2: Kohn-Sham energies of the occupied orbitals of uracil, thymine and 5-
fluorouracil, calculated using EDAMAME. The entries σ and π in the ‘Sym.’ columns
refer to the symmetry properties of each Kohn-Sham orbital.

approximations or self-interaction-correction schemes may yield HOMO energies closer

to the experimental Ip values; this would be an interesting avenue of further work with

EDAMAME, but is beyond the scope of this thesis. However we do see in Table 5.3

that EDAMAME does correctly reproduce the fact that while the ionization potentials

of uracil and 5-fluorouracil are almost identical, the ionization potential of thymine is

lower.

The Kohn-Sham orbitals themselves are plotted in Figs. 5.4–5.6. In these three figures

we show isosurface plots of the Kohn-Sham orbitals for the three molecules aligned in

each of the orientations shown in Fig. 5.3, with each orientation in a separate figure for

clarity and ease of discussion in later sections of this chapter. In Fig. 5.4 the Kohn-Sham

orbitals are plotted for the molecules oriented with the dipole moment along the x-axis
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|HOMO Energy|/Ha Experimental Ip/Ha

Uracil 0.3007 0.353
Thymine 0.2963 0.338
5-fluorouracil 0.3014 0.351

Table 5.3: Calculated energies of the highest occupied Kohn-Sham orbitals of uracil,
thymine and 5-fluorouracil, compared with experimental ionization potentials. Ex-
perimental values were taken from [318] for uracil and thymine, and from [319] for
5-fluorouracil.

(θmol = 0◦, θdip = 0◦); in Figs. 5.5 and 5.6, the molecules are oriented with the dipole

moments along the y-axis (θmol = 0◦, θdip = 90◦) and z-axis (θmol = 90◦, θdip = 90◦)

respectively.

From Fig. 5.6 in particular, the symmetries of the Kohn-Sham orbitals can be clearly

seen. These are also given in Table 5.2 for reference. In all three molecules, the majority

of states are σ-type orbitals, with only 5/21 orbitals in uracil and 6/24 orbitals in

thymine and 5-fluorouracil having π-symmetry (in which the Kohn-Sham wavefunction

has a nodal plane in the plane of the molecule). We also note that the HOMO in uracil

is a σ-type orbital, whereas it is a π-type orbital in 5-fluorouracil and thymine. As we

will see in Sections 5.3 and 5.4, these symmetries are important when considering the

response of the different Kohn-Sham states to an applied laser field.

To conclude this section, we note several features that are common to a number of the

Kohn-Sham orbitals in all three molecules. Firstly, the four highest lying states consist

of two σ states and two π states. In the two σ states (HOMO and HOMO-2 in uracil,

HOMO-1 and HOMO-2 in thymine and 5-fluorouracil), the Kohn-Sham wavefunctions

have relatively large densities in lobes on either side of the oxygen atoms (O8, O10).

In the two π states (HOMO-1 and HOMO-3 in uracil, HOMO and HOMO-3 in thymine

and 5-fluorouracil), the Kohn-Sham wavefunctions are localised around a number of

different atomic sites on either side of the molecular plane. Finally, we note the similar-

ity between the lowest lying π state in each molecule (HOMO-11 in uracil, HOMO-12

in thymine and 5-fluorouracil). In these states, the Kohn-Sham wavefunctions (which

have a nodal plane in the plane of the molecule) are dispersed over a large extent of

the molecule compared to the other π states, in which the wavefunctions are generally

more localised around a number of different sites.
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Figure 5.4: Isosurface plots of the doubly-occupied Kohn-Sham orbitals of uracil (U),
thymine (T) and 5-fluorouracil (5-FU), calculated using EDAMAME. The axes and
molecules are aligned as in the (θmol = 0◦, θdip = 0◦) orientation shown in Figs. 5.3(a),
5.3(b) and 5.3(c), with the dipole moment of each molecule aligned along the x-axis.
These plots were produced using the VMD software package [288], with isosurface
values of 0.05 (blue mesh) and -0.05 (red mesh).
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Figure 5.5: Isosurface plots of the doubly-occupied Kohn-Sham orbitals of uracil (U),
thymine (T) and 5-fluorouracil (5-FU), calculated using EDAMAME. The axes and
molecules are aligned as in the (θmol = 0◦, θdip = 90◦) shown in Figs. 5.3(d), 5.3(e)
and 5.3(f), with the dipole moment of each molecule aligned along the y-axis. These
plots were produced using the VMD software package [288], with isosurface values of
0.05 (blue mesh) and -0.05 (red mesh).
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Figure 5.6: Isosurface plots of the doubly-occupied Kohn-Sham orbitals of uracil
(U), thymine (T) and 5-fluorouracil (5-FU), calculated using EDAMAME. The axes
and molecules are aligned as in the (θmol = 90◦, θdip = 90◦) orientation shown in
Figs. 5.3(g), 5.3(h) and 5.3(i), with the dipole moment of each molecule aligned along
the z-axis. These plots were produced using the VMD software package [288], with
isosurface values of 0.05 (blue mesh) and -0.05 (red mesh).
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5.2.4 Summary

In this section we have described how the ground state properties of uracil, thymine

and 5-fluorouracil are calculated using EDAMAME. The complexity of these molecules

compared to molecules previously studied using EDAMAME meant that the standard

finite difference approach with equally spaced grid points was no longer adequate, un-

less much smaller grid spacings and time steps were used. To avoid the huge increase in

computational cost that such a reduction in grid spacings and time steps would entail,

the finite difference routines in EDAMAME were modified to allow for: (i) coordinate

scaling, resulting in a grid with non-uniform grid spacings, in which the density of grid

points is much higher in a small region of space surrounding the molecule than else-

where in the grid; (ii) a least-squares approximation to the finite difference operators,

which has the effect of suppressing unphysical, high frequency eigenstates supported

by the finer grid, and allows for the use of a larger time step than if the standard finite

difference coefficients were used.

These new finite difference approaches implemented in EDAMAME were used to relax

the geometries of the three molecules, and calculate their equilibrium ground state

properties. These properties, specifically the bond lengths and Kohn-Sham orbitals and

orbital energies, were presented and compared against experimental values. While the

agreement between the calculated and experimental values for the bond lengths and

ionization potentials of the three molecules is not as good as in a similar comparison

for acetylene (Section 4.3), the static properties of uracil, thymine and 5-fluorouracil

are still reasonably well described in EDAMAME.

With the ground state properties calculated, we are now able to investigate the dynam-

ics of the three molecules during interactions with an intense, mid-IR laser field. In the

next section we begin by considering the differences between the responses of the nu-

cleobases uracil and thymine, for three different orientations of the molecules. Then,

in Section 5.4, we examine the differences between the response of the nucleobase

thymine and its radiosensitising replacement in DNA, 5-fluorouracil.
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5.3 Response of uracil and thymine to a mid-IR field

We begin our investigation of the dynamics of uracil, thymine and 5-fluorouracil when

exposed to an intense, mid-IR laser pulse by first focusing on the responses of the two

nucleobases: uracil and thymine. These two molecules were the subject of the 2013

study by Hutchison et al. [57], which was the first attempt to “analyse differences in

structural molecular properties through plasma ablation-induced HHG spectroscopy”,

but in which the authors were unable to obtain a HHG signal in thymine due to exces-

sive fragmentation. This section is arranged as follows. In Section 5.3.1 we set out the

calculation parameters that are used in the laser-molecule calculations described in this

section and in Section 5.4. Then in Section 5.3.2 we compare the ionization response

of each molecule, for the three different orientations described in Section 5.2.2. Finally

in Section 5.3.3 the differences in high harmonic response between the molecules and

orientations are examined.

5.3.1 Calculation parameters

As in the calculations described in Chapter 4, here we consider the interaction of the

molecules with an intense, linearly polarized, mid-IR pulse. For this work, the applied

field is a 5-cycle pulse with a wavelength of λ = 1300 nm and a peak intensity of I =

1.0×1014 W/cm2. The pulse is linearly polarized along the x-axis, and has a duration

of 896.2 a.u. = 21.7 fs. As in Chapter 4, the pulse has a sin2 envelope, and the carrier-

envelope phase is set to φ = 0.

This wavelength of λ = 1300 nm was chosen to match the mid-IR wavelength used in

the work of Hutchison et al. [57]. The shortening of the wavelength compared to the

λ = 1450nm pulse used throughout Chapter 4 also has the benefit of reducing the asso-

ciated quiver amplitude, given by Eq. (1.4), and consequently the grid extent required

to contain ionized wavepackets. For these laser parameters, converged results are ob-

tained with the following grid extents: xmax = ±128.4 a0, and ymax = zmax = ±75.6 a0.

The absorbing boundary begins at xm = ±80.0 a0 and ym = zm = ±50.0 a0. As in

the geometry relaxation calculations described in the previous section, the grid spacing

in the inner region (which extends to ≈ xb = yb = zb = ±10.0 a0) is 0.2 a0. Beyond

≈ ±10.0 a0 in each direction, the grid spacing increases to 0.4 a0, and then remains con-
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stant. The grid is parallelized over 21 cores in x, and 13 cores in both y and z (3549

cores in total), with 33 points per core in each direction. Here the advantage of work-

ing with a scaled finite difference grid is clear. Using the coordinate scaling, we require

693 grid points in the x coordinate and 429 points in both the y and z coordinates to

obtain the stated grid extents; with an unscaled grid with ∆x = ∆y = ∆z = 0.2 a0, we

would require 1285 grid points in x and 757 points in y and z, and therefore the use of

20,631 cores in total. As in the geometry relaxation calculations described in Section

5.2.1, we use the least-squares finite difference method described in Section 3.2.2, with

the summation in Eq. (3.32) truncated at M = 7. Using this approach, both the TDKS

equations, Eq. (3.1), and the ionic equations of motion, Eq. (3.66), are propagated in

time with a time step of 0.2 a.u., as in the acetylene calculations of Chapter 4.

Three orientations of each molecule are considered, as described in Section 5.2.2. In

all orientations the laser field polarization is fixed along the x-axis.

5.3.2 Ionization response

We begin our time-dependent studies of uracil and thymine by considering the total ion-

ization from each molecule in each of the three orientations shown in Fig. 5.3, following

interaction with the 1300 nm laser pulse described above. These total ionizations, Itotal,

are calculated as

Itotal = Ne − P (T ) (5.2)

where Ne is the number of active electrons (Ne = 42 for uracil, Ne = 48 for thymine,

since the core electrons are described using pseudopotentials), and P (T ) is the total

electronic population, given by Eq. (3.70), in the grid at the end of the pulse (t = T ).

The total ionizations for the six calculations (three orientations for each of the two

molecules) are shown in Fig. 5.7.

The first feature of note in this figure is that in both molecules, we see a much greater

degree of ionization (approximately twice as much) when the laser field is polarized in

the plane of the molecule (θmol = 0◦) than perpendicular to it (θmol = 90◦). Secondly,

we note the differences in ionization between the two θmol = 0◦ orientations, in which

the laser field is polarized in the plane of the molecule (i.e., the dipole is aligned along

either the x- or y-axes). In uracil, there is significantly more ionization in the θdip = 0◦
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Figure 5.7: Total ionization Itotal, given by Eq. (5.2), for three different orientations
of uracil and thymine, following interaction with a 5-cycle mid-IR laser pulse with
wavelength λ = 1300 nm and a peak intensity of I =1.0×1014 W/cm2. The pulse is
linearly polarized along the x-axis, and the molecules are aligned in the orientations
shown in Fig. 5.3. The angles θmol and θdip respectively refer to the angle between the
laser polarization direction and the plane of the molecule, and the angle between the
laser polarization direction and the initial dipole moment of the molecule.

orientation than the θdip = 90◦ orientation. In thymine, the difference in ionization

between these two orientations is smaller than in uracil, with the total ionization in

the θdip = 0◦ orientation only slightly larger than in the θdip = 90◦ case. Finally, in

all orientations we see greater ionization from thymine than from uracil, as we might

expect considering the slightly lower ionization potential of thymine. To understand

the origins of these differences in the ionization response of the molecules in these

different orientations, we can consider individually the ionization from each of the

Kohn-Sham orbitals.

In Fig. 5.8 we show the ionization from each Kohn-Sham orbital in uracil and thymine,

for three different orientations of the molecules with respect to the laser polarization

direction. Due to the large number of orbitals in these molecules compared to in acety-

lene, to analyse the ionization from each orbital in the following we plot only the pop-

ulation loss at the end of the pulse, rather than the variations in population over time

as in Chapter 4. In Fig. 5.8 we consider the orbital depletions, Dj , from the HOMO-j,
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Figure 5.8: Orbital depletions, Dj , defined by Eq. (5.3), from each Kohn-Sham orbital
for three different orientations of (a) uracil and (b) thymine, following interaction
with a 5-cycle mid-IR laser pulse with wavelength λ = 1300 nm and a peak intensity of
1.0×1014 W/cm2. The pulse is linearly polarized along the x-axis, and the molecules
are aligned in the orientations shown in Fig. 5.3. The angles θmol and θdip respec-
tively refer to the angle between the laser polarization direction and the plane of the
molecule, and the angle between the laser polarization direction and the initial dipole
moment of the molecule. We consider the orbital depletions, Dj , from the HOMO-j,
where j = 0, . . . , N − 1 (i.e., j = 0 → HOMO-0 = HOMO, j = 1 → HOMO-1, j = 2 →
HOMO-2, etc.). The vertical dotted lines indicate the Kohn-Sham states of π symmetry.

where j = 0, . . . , N − 1 (i.e., j = 0 → HOMO-0 = HOMO, j = 1 → HOMO-1, j = 2 →
HOMO-2, etc.). These orbital depletions are defined as

Dj = 2− PN−j(T ), (5.3)

for j = 0, . . . , N − 1, where PN−j(T ) is the population of Kohn-Sham orbital ψN−j ,

given by Eq. (3.69), and evaluated at the end of the pulse (t = T ).

For both molecules the importance of the orbital symmetries is evident in Fig. 5.8.

When the molecule is aligned so that the laser polarization is in the plane of the

molecule (θmol = 0◦, black and red curves), ionization from the π orbitals (indicated

by the vertical dotted lines) is suppressed in most cases. On the other hand, when

the molecule is aligned perpendicular to the laser polarization direction (θmol = 90◦,

green curves), we generally see enhanced ionization from the π orbitals compared to

the nearest σ orbitals. This symmetry dependence leads to the large difference seen

in Fig. 5.7 between total ionizations in the θmol = 0◦ and θmol = 90◦ orientations.

In the θmol = 0◦ orientations, the ionization response is dominated by several of the

highest-lying σ states (e.g., the HOMO and HOMO-2 in uracil for θmol = 0◦, θdip = 0◦),
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with smaller contributions from lower-lying σ states. In the θmol = 90◦ orientation on

the other hand, ionization from a single π state (the HOMO-1 in uracil, the HOMO in

thymine) dominates the response of each molecule. The larger number of significantly

ionized states in the θmol = 0◦ orientations than in the θmol = 90◦ case leads directly to

the differences in total ionization between the θmol = 0◦ and θmol = 90◦ orientations.

Considering now the differences in total ionization observed in Fig. 5.7 between the

(θmol = 0◦, θdip = 0◦) and (θmol = 0◦, θdip = 90◦) orientations, we focus our atten-

tion on the two highest-lying σ states of each molecule (HOMO and HOMO-2 in uracil,

HOMO-1 and HOMO-2 in thymine). Looking at the response of these states in uracil,

we see in Fig. 5.8 that ionization from these two states in uracil is maximized in the

(θmol = 0◦, θdip = 0◦) orientation. As can be seen in Figs. 5.4 and 5.5, the Kohn-

Sham wavefunctions for these states in all three molecules have relatively high densi-

ties around around the two oxygen atoms. Looking again at the orientations shown

in Fig. 5.3, we can see that in this (θmol = 0◦, θdip = 0◦) orientation, the C2–O8 bond

is aligned almost perpendicular to the laser polarization direction. In the (θmol = 0◦,

θdip = 90◦) orientation on the other hand, in which we see reduced ionization from

the HOMO and HOMO-2, the C2–O8 bond is aligned almost parallel to the laser polar-

ization direction. For the other carbon–oxygen bond (C4–O10), the angle between the

laser polarization direction and the bond is similar in both θmol = 0◦ orientations. From

these observations, we might imagine that there may be some connection between the

orientation of these carbon–oxygen bonds relative to the laser polarization direction

and the response of these highest-lying σ states. However further calculations would

be required to investigate this more thoroughly; these will be discussed in the context

of possible future work at the end of this thesis.

In thymine, while we see that ionization from the HOMO-1 and HOMO-2 is increased

in the (θmol = 0◦, θdip = 90◦) orientation (in which the C2–O8 bond is almost per-

pendicular to the laser polarization direction), ionization from almost all of the other

Kohn-Sham orbitals is larger in the (θmol = 0◦, θdip = 0◦) orientation. Indeed, in this

(θmol = 0◦, θdip = 0◦) orientation of thymine the symmetries of the Kohn-Sham orbitals

have considerably less bearing on the ionization response than in the other orientations

for both thymine and uracil. For example, looking at the depletions of the five high-

est lying orbitals in this this orientation, we see very little variation between orbitals,
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despite three of these having π symmetry and two having σ symmetry. We note that

in this orientation the bond between the ring of the molecule and the methyl group

(C5–C11) is aligned almost parallel to the laser polarization direction; this may have

some bearing on the ionization dynamics. Again, this could be the subject of future

work, and will be discussed later.

The final point we noted in reference to Fig. 5.7 was that in all orientations, the ioniza-

tion from thymine was greater than from uracil. We might expect that this is a result of

increased ionization in thymine from the most ionized states than from the equivalent

states in uracil. However, comparing the response of the most ionized states in the

two molecules for a given orientation, we see that this is not always the case. While

in the (θmol = 0◦, θdip = 90◦) orientation (red curves), the ionization from the most

ionized orbitals in thymine is significantly larger than from those in uracil, in the other

two orientations (black and green curves) the reverse is true: ionization from the most

ionized orbitals in thymine is smaller than from those in uracil. In these two orienta-

tions, the increased overall ionization in thymine than in uracil arises instead due to

greater ionization from lower lying orbitals. This is not surprising, considering that the

magnitudes of all the energies of the Kohn-Sham states in thymine are smaller than

those of the equivalent Kohn-Sham states in uracil (Table 5.2).

Considering again the study of uracil and thymine by Hutchison et al. [57] described

previously, we remind the reader that in this experimental work, the authors were

unable to obtain any high harmonic signal from the thymine ablation plume. They

attributed this to a much greater degree of fragmentation during the creation of the

thymine ablation plume than the uracil ablation plume (from which a strong high

harmonic signal was measured). While the duration of our calculations (21.7 fs) is

too short to allow for any significant fragmentation of the molecules, the significantly

higher ionization observed in thymine than in uracil, in all orientations considered

(around 20% greater on average), could be a precursor to greater fragmentation of

thymine than uracil, as in the Hutchison study.

In the work of Hutchison et al., the large degree of fragmentation in the thymine sam-

ple hindered the attempt to study differences in the high harmonic spectra of uracil

and thymine. An advantage of studying the single molecule response on the short
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timescales considered in our work is that we do not encounter such a difficulty, and are

able to calculate the harmonic spectra from intact (unfragmented) parent molecules.

5.3.3 High harmonic generation

We now consider high harmonic generation in uracil and thymine following inter-

action with the 5-cycle, mid-IR laser pulse described previously (λ = 1300 nm, I =

1.0×1014 W/cm2). As in the previous section, we consider three orientations for each

of the molecules, with the laser field polarized along the x-axis in all cases. In Fig. 5.9

we plot the harmonic spectra for these six cases. As described in Section 3.5.2, we

calculate these harmonic spectra by taking the Fourier transform of the dipole accel-

eration along x, y or z, as in Eq. (3.71). In Fig. 5.9 we have plotted the sum of the

spectral densities in the three directions, i.e., Sx(ω) + Sy(ω) + Sz(ω), as was the case

in Chapter 4. Unlike with acetylene however, in which the harmonic emission in di-

rections other than the laser polarization direction was negligible, the increased size

and reduced symmetry of the molecules studied in this chapter mean that the spectral

density can be significant in more than one direction. In general though, the spectral

density along the laser polarization direction, Sx, is still larger than the spectral den-

sities in the other two directions, Sy and Sz. For simplicity all spectra plotted in this

chapter are the combined spectra, Sx + Sy + Sz.

Returning now to Fig. 5.9, the most obvious feature of note is the difference in inten-

sities between the spectra produced in different orientations. For both molecules, we

see that the intensities of the harmonic spectra vary with orientation in approximately

the same manner as the total ionization varied in the previous section; as we would ex-

pect from the three-step model of HHG. In both molecules the spectral density is much

smaller (approximately one order of magnitude) when the molecules are oriented with

the laser field polarized perpendicular to the plane of the molecule (θmol = 90◦) than

with the laser field polarized in the plane of the molecule (θmol = 0◦). In uracil, the

greatest harmonic response is observed for the (θmol = 0◦, θdip = 0◦) orientation. In

thymine, the harmonic spectra produced in the (θmol = 0◦, θdip = 0◦) and (θmol = 0◦,

θdip = 90◦) orientations are of comparable intensity.

While the intensities of the harmonic spectra produced for molecules in the θmol =
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Figure 5.9: High harmonic generation in (a) uracil and (b) thymine, following inter-
action with a 5-cycle mid-IR laser pulse with wavelength λ = 1300 nm and a peak
intensity of I =1.0×1014 W/cm2. The pulse is linearly polarized along the x-axis, and
the molecules are aligned in the orientations shown in Fig. 5.3. The angles θmol and θdip

respectively refer to the angle between the laser polarization direction and the plane
of the molecule, and the angle between the laser polarization direction and the initial
dipole moment of the molecule.

90◦ orientation are lower than those for molecules in the θmol = 0◦ orientations, we

note from Fig. 5.9 that the harmonic plateaus extend slightly further in the θmol =

90◦ spectra. For example, in uracil the cutoff in the θmol = 0◦ orientations is around

the 65th harmonic, whereas in the θmol = 90◦ orientation the cutoff is around the

68th harmonic. We also note that the intensities of the cutoff harmonics decrease

more sharply in the θmol = 90◦ orientation than in the other two orientations. We can

investigate both of these differences in cutoff harmonics by examining the contributions

of individual Kohn-Sham orbitals to the overall HHG spectra.

As an example, in Fig. 5.10 we show the contributions of a number of Kohn-Sham or-

bitals to two of the HHG spectra from thymine plotted in Fig. 5.9(b). As described

previously, these state-spectra are calculated by taking the FFT of the dipole accelera-

tion of individual Kohn-Sham states, given by Eq. (3.73). Due to the large number of

Kohn-Sham states, here we only plot the spectra from states with the largest spectral

densities, particularly those with high intensities around the cutoff region.

Considering first the (θmol = 0◦, θdip = 90◦) orientation, in Fig. 5.10(a) we see that

when thymine is oriented in this way (with the laser field polarized in the plane of

the molecule) the high harmonic response is dominated by the response of the two

highest-lying σ states: the HOMO-1 and HOMO-2. This is to be expected considering
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Figure 5.10: Contributions of a number of individual Kohn-Sham orbitals to two of the
harmonic spectra shown in Fig. 5.9(b), calculated using Eqs. (3.71) and (3.73), along
with the full spectra from Fig. 5.9(b) for reference. In all cases the laser pulse is a 5-
cycle pulse with wavelength λ= 1300 nm and a peak intensity of I = 1.0×1014 W/cm2,
linearly polarized along the x-axis. The molecule, thymine, is aligned with the dipole
aligned along (a) the y-axis and (b) the z-axis, as shown in Fig. 5.3. Due to the large
number of Kohn-Sham orbitals, only those with the largest spectral densities are shown
here.

what was seen in the ionization response in the previous section. The next highest σ

states, the HOMO-5 and HOMO-6, contribute to the overall HHG spectra to a lesser de-

gree in the plateau region, but increase in significance around the cutoff region. Here

the difference in Kohn-Sham energies (effective ionization potentials) of the different

orbitals means that the cutoffs associated with recombination to the four states shown

are slightly different, and results in a broadening of the cutoff region in the overall

harmonic spectrum. A similar behaviour is observed when the state contributions to

the thymine spectrum for the (θmol = 0◦, θdip = 0◦) orientation are examined (not

presented here), although in this case the HOMO-1 and HOMO-2 contributions are

much less dominant, since the ionization in this orientation comes from a larger num-

ber of states, as seen in Fig. 5.8(b). Overall, the state contributions to the full harmonic

spectrum in Fig. 5.10(a) are not surprising considering the three-step model and the

observations previously made concerning the ionization from each Kohn-Sham orbital.

In the θmol = 90◦ orientation however, the picture is quite different, as shown in

Fig. 5.10(b). In this orientation, while the plateau harmonics arise from recombina-

tion to a number of the highest occupied orbitals, the cutoff harmonics are associated

with recombination to a relatively low lying orbital (the HOMO-12). Noting the dif-

ference in Kohn-Sham energies between the HOMO-12 and the highest occupied states
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Figure 5.11: High harmonic generation in uracil and thymine, following interaction
with a 5-cycle mid-IR laser pulse with wavelength λ = 1300 nm and a peak inten-
sity of I =1.0×1014 W/cm2. The pulse is linearly polarized along the x-axis, and the
molecules are aligned in the orientations shown in Fig. 5.3. The angles θmol and θdip

respectively refer to the angle between the laser polarization direction and the plane
of the molecule, and the angle between the laser polarization direction and the initial
dipole moment of the molecule. Note that in panel (d), the spectral density is plotted
on a linear rather than a logarithmic scale.

(Table 5.2), recombination to such a low lying orbital explains the extended cutoff ob-

served in the spectra for θmol = 90◦ orientation compared to those for the θmol = 0◦

orientations. We see a similar picture when we examine the contributions of individual

states to HHG in uracil (not shown here): in the θmol = 0◦ orientations, the HOMO and

HOMO-2 dominate the spectrum; in the θmol = 90◦ orientation, the cutoff harmonics

are dominated by the response of the lowest-lying π state (the HOMO-11).

To conclude this section we wish to compare the harmonic spectra for the two molecules,

in each orientation. To this end, in Fig. 5.11 we re-plot the spectra shown in Fig. 5.9,

but now directly comparing the spectra for uracil and for thymine. In Fig. 5.11 we see
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that while in all three orientations the spectra for uracil and for thymine have similar

shapes in general, with similar cutoff harmonics and a number of minima common to

the spectra for both molecules (although other minima appear in only one spectrum),

there are some clear differences.

In terms of the overall intensities of the spectra, we see from Figs. 5.11(b) and 5.11(c)

that in the (θmol = 0◦, θdip = 90◦) and (θmol = 90◦, θdip = 90◦) orientations, the inten-

sities of the thymine spectra are in general larger than the uracil spectra. This is not

surprising, considering that we saw greater ionization from thymine than from uracil

in Fig. 5.7. The same is not true, however, for the spectra produced in the (θmol = 0◦,

θdip = 0◦) orientation. In Fig. 5.11(a) we see that the greater ionization from thymine

than from uracil in this orientation does not lead to a greater harmonic response, as

is the case in the other two orientations. We recall that in this (θmol = 0◦, θdip = 0◦)

orientation for thymine, the ionization response was not dominated by one or two

Kohn-Sham orbitals; instead we saw similar levels of ionization from a large number of

the highest lying orbitals, of both σ and π symmetries.

From Fig. 5.11 we note that in none of the orientations considered do we see a large

difference between HHG efficiency in uracil and thymine, as was observed in the uracil

and thymine ablation plumes studied in the work of Hutchison et al. [57]. Considering

the averages of the spectra for the three different orientations, as shown in Fig. 5.11(d),

we might expect that for unaligned samples of unfragmented molecules, one would

obtain harmonic spectra with broadly similar intensities from the two molecules. The

largest differences in intensity between the two average spectra shown in Fig. 5.11(d)

are generally localised to individual harmonic orders, and are most prominent among

the lower-order harmonics where bound-bound transitions dominate the harmonic re-

sponse.

5.3.4 Summary

In this section, we have investigated the response of the nucleobases uracil and thymine

to an intense, mid-IR laser pulse. Three orientations of each molecule relative to the

polarization direction of the linearly polarized laser pulse were considered, for each of

which we calculated the ionization and the high harmonic spectra. For both molecules,
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significantly more ionization and high harmonic generation were observed when the

molecule was oriented such that the laser polarization direction was in the plane of

the molecule than perpendicular to it. These differences were shown to be due to

differences in the response of orbitals with σ symmetry and those with π symmetry.

In the θmol = 0◦ orientations, we observed significant ionization and high harmonic

generation from a number of the highest-lying σ orbitals. In the θmol = 90◦ orientation,

ionization was observed mainly from a single orbital (the highest-lying π state), while

the high harmonic spectra was dominated by contributions from a number of orbitals

in the plateau region, and the lowest-lying π orbital near the cutoff.

Considering differences in response between the two θmol = 0◦ orientations (in which

the laser field is polarized in the plane of the molecule), in uracil we observed a signif-

icant increase in ionization and high harmonic generation in the (θmol = 0◦, θdip = 0◦)

orientation compared to the (θmol = 0◦, θdip = 90◦) orientation, and showed that this

was largely due to increased response of the two highest-lying σ states. In thymine,

although the response of the two highest-lying σ states also increases in the (θmol = 0◦,

θdip = 90◦) orientation, the total ionization is actually greatest in the (θmol = 0◦,

θdip = 0◦) orientation. This was seen to be a slightly special case, in which a large

number of orbitals, of both σ and π symmetry, contributed to the total ionization. We

noted that in this orientation the bond between the methyl group and the ring of the

thymine molecule was aligned parallel to the laser polarization direction. In terms of

HHG in thymine, the value of θdip was seen to have little effect on the intensity of the

harmonic spectrum.

Finally, in terms of differences between the two molecules, in all orientations we ob-

served more ionization from thymine than from uracil. This greater ionization from

thymine than from uracil was seen to lead to greater HHG in some orientations, but

not in the (θmol = 0◦, θdip = 0◦) orientation. The average intensity of the harmonic

spectra across the three orientations was seen to be comparable for the two molecules,

with large differences in intensity generally localised to individual harmonic orders.
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5.4 Response of thymine and 5-fluorouracil to a mid-IR field

Having observed a number of differences in the responses of the two nucleobases, uracil

and thymine, to an applied mid-IR field in the previous section, we now consider the

differences between thymine and the radiosensitising molecule used as a replacement

for thymine in DNA, 5-fluorouracil. Understanding the differences in the responses of

these two molecules is important for gaining a better understanding of the radiosensi-

tising nature of 5-fluorouracil.

In this section all the calculation parameters are identical to those set out previously in

Section 5.3.1.

5.4.1 Ionization response

As in Section 5.3, we begin by considering the total ionization from each molecule in

each of the three orientations shown in Fig. 5.3, following interaction with the 1300 nm

laser pulse described above (i.e., the pulse has a peak intensity of I = 1.0×1014 W/cm2,

a duration of 896.2 a.u. = 21.7 fs, and is linearly polarized along the x-axis). These

total ionizations, Itotal, are calculated using Eq. (5.2) as before (with Ne = 48 for both

thymine and 5-fluorouracil).

From Fig. 5.12 we can see that the comparison of the total ionization from thymine

and 5-fluorouracil is similar to the equivalent comparison between uracil and thymine

presented in Fig. 5.7, with three main features of note. Firstly, there is significantly

more ionization from both molecules when the laser pulse is polarized in the plane

of the molecule (θmol = 0◦) than perpendicular to it (θmol = 90◦). Secondly, in all

orientations, we see greater ionization from thymine than from 5-fluorouracil. How-

ever we note that in the (θmol = 0◦, θmol = 90◦) orientation, there is only a small

difference between the total ionization from thymine and from 5-fluorouracil. Finally,

in 5-fluorouracil there is a substantial difference in total ionization between the two

θmol = 0◦ orientations, as was the case in uracil; in thymine on the other hand, this

difference is much smaller.

As in Section 5.3.2, we now examine the ionization response further by considering the

ionization from each individual Kohn-Sham orbital. In Fig. 5.13 we show the ionization
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Figure 5.12: Total ionization, given by Eq. (5.2), from three different orientations of
thymine and 5-fluorouracil, following interaction with a 5-cycle mid-IR laser pulse with
wavelength λ = 1300 nm and a peak intensity of I =1.0×1014 W/cm2. The pulse is
linearly polarized along the x-axis, and the molecules are aligned in the orientations
shown in Fig. 5.3. The angles θmol and θdip respectively refer to the angle between the
laser polarization direction and the plane of the molecule, and the angle between the
laser polarization direction and the initial dipole moment of the molecule.

from each orbital in thymine and 5-fluorouracil, for three different orientations of the

molecules with respect to the laser polarization direction, calculated using Eq. (5.3) as

before. Many of the features of this figure are similar to those described previously for

Fig. 5.8, and so we will only describe them briefly here.

Firstly, we see from Fig. 5.13 that in 5-fluorouracil in all orientations, the ionization

from a particular Kohn-Sham orbital is strongly dependent on whether the orbital has

σ or π symmetry; such dependence is also observed in thymine, with the exception

of the (θmol = 0◦, θdip = 0◦) orientation. Secondly, in a given orientation the orbital

depletion from the most ionized orbital in 5-fluorouracil is greater than the depletion

from the most ionized orbital in thymine; the greater total ionization from thymine than

from 5-fluorouracil in each orientation (Fig. 5.12) is a result of significant ionization

from a larger number of orbitals in thymine than in 5-fluorouracil. A clear example

of this is in the (θmol = 0◦, θdip = 90◦) orientation (red curves): in both molecules,

ionization comes mainly from the HOMO-1 and HOMO-2. In thymine however, there
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Figure 5.13: Orbital depletions, Dj , defined by Eq. (5.3), from each Kohn-Sham or-
bital for three different orientations of (a) thymine and (b) 5-fluorouracil, following
interaction with a 5-cycle mid-IR laser pulse with wavelength λ = 1300 nm and a peak
intensity of 1.0×1014 W/cm2. The pulse is linearly polarized along the x-axis, and the
molecules are aligned in the orientations shown in Fig. 5.3. The angles θmol and θdip

respectively refer to the angle between the laser polarization direction and the plane
of the molecule, and the angle between the laser polarization direction and the ini-
tial dipole moment of the molecule. We consider the orbital depletions, Dj , from the
HOMO-j, where j = 0, . . . , N −1 (i.e., j = 0 → HOMO-0 = HOMO, j = 1 → HOMO-1,
j = 2 → HOMO-2, etc.). The vertical dotted lines indicate the Kohn-Sham states of π
symmetry.

is also significant ionization from the HOMO-5. In 5-fluorouracil on the other hand,

the other orbitals only exhibit minor ionization. Finally we note that in 5-fluorouracil,

the greatest ionization is observed in the (θmol = 0◦, θdip = 90◦) orientation, due to the

increased response of the two highest-lying σ states (the HOMO-1 and HOMO-2).

Having seen the differences in ionization between thymine and 5-fluorouracil, we now

wish to see how the high harmonic response varies between the two molecules.

5.4.2 High harmonic generation

We consider high harmonic generation in thymine and 5-fluorouracil following inter-

action with the 5-cycle, mid-IR laser pulse described previously (λ = 1300 nm, I =

1.0×1014 W/cm2, linearly polarized along the x-axis). The harmonic spectra for the

two molecules, in the three different orientations, are plotted in Fig. 5.14.

As was the case with the uracil spectra shown in Fig. 5.9(a), we see in Fig. 5.14(a) that

the intensities of the spectra for 5-fluorouracil vary in the manner one would expect

from the three-step model, considering the differences in ionization response observed
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Figure 5.14: High harmonic generation in (a) thymine and (b) 5-fluorouracil, following
interaction with a 5-cycle mid-IR laser pulse with wavelength λ = 1300 nm and a peak
intensity of I =1.0×1014 W/cm2. The pulse is linearly polarized along the x-axis, and
the molecules are aligned in the orientations shown in Fig. 5.3. The angles θmol and θdip

respectively refer to the angle between the laser polarization direction and the plane
of the molecule, and the angle between the laser polarization direction and the initial
dipole moment of the molecule.

above. The difference between the spectra for the (θmol = 0◦, θdip = 0◦) and (θmol = 0◦,

θdip = 90◦) orientations is particularly striking between harmonics 33 and 50, in which

we see up to an order of magnitude enhancement of the spectrum between these two

orientations. In 5-fluorouracil, we again see that the spectrum for the θmol = 90◦

orientation extends slightly further than the spectra for the θmol = 0◦ orientations.

As in the previous section, we can investigate the harmonic response further by exam-

ining the contributions of individual orbitals to the full spectra. These contributions

for the three orientations of 5-fluorouracil are shown in Fig. 5.15. Here we see that, as

was the case in thymine, in the θmol = 0◦ orientations (Figs. 5.15(a), 5.15(b)) the spec-

trum is dominated by contributions from the highest-lying σ states (the HOMO-1 and

HOMO-2), whereas in the θmol = 90◦ orientation (Fig. 5.15(c)) the spectrum around

the cutoff is dominated by contributions from a low-lying orbital (mainly the HOMO-

12). Thus we observe a slight extension to the spectrum in the θmol = 90◦ orientation.

In Fig. 5.15(d) we compare directly the HOMO-1 and HOMO-2 contributions in the two

θmol = 0◦ orientations. Here we observe a large increase in the spectral densities for

both the HOMO-1 and HOMO-2 contributions in the (θmol = 0◦, θdip = 90◦) orientation

compared to the (θmol = 0◦, θdip = 0◦) orientation.

We can also investigate the presence of minima in the harmonic spectra, and whether
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Figure 5.15: Contributions of a number of individual Kohn-Sham orbitals to the har-
monic spectra shown in Fig. 5.14(b), calculated using Eqs. (3.71) and (3.73), along
with the full spectra from Fig. 5.14(b) for reference. In all cases the laser pulse is a 5-
cycle pulse with wavelength λ= 1300 nm and a peak intensity of I = 1.0×1014 W/cm2,
linearly polarized along the x-axis. The molecule, 5-fluorouracil, is aligned with the
dipole aligned along (a) the x-axis, (b) the y-axis and (c) the z-axis, as shown in
Fig. 5.3. Due to the large number of Kohn-Sham orbitals, only those with the largest
spectral densities are shown here. In panel (d) the contributions of the HOMO-1 and
HOMO-2 in the two θmol = 0◦ orientations are compared directly.

they are the result of structural interference, by calculating the recombination matrix

elements for recombination to the various Kohn-Sham orbitals (see Section 4.5.4 and

Appendix A for more details). These have been calculated for recombination to a num-

ber of the highest-lying states in each molecule for each orientation. As an example, in

Fig. 5.16 we show the recombination amplitudes for recombination to the two highest-

lying σ states in 5-fluorouracil (the HOMO-1 and HOMO-2) for the two θmol = 0◦

orientations. Comparing Figs. 5.16(a) and 5.16(b), we see that the recombination ma-

trix elements for these two states exhibit quite different behaviours in the two θmol = 0◦

orientations. In the (θmol = 0◦, θdip = 0◦) orientation, Fig. 5.16(a), there are a number
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(a) 5-fluorouracil, (θmol = 0◦, θdip = 0◦)
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Figure 5.16: Dipole recombination matrix elements for a continuum electron recombin-
ing back to one of the two highest-lying occupied σ states of 5-fluorouracil, calculated
via Eq. (4.3). The energy of the free electron and the ionization potentials of the indi-
vidual Kohn-Sham states are related to a given harmonic order, n, using the classical
formula nωL = k2/2 + Ip, where ωL is the frequency of the IR field, k is the magnitude
of the momentum of the free electron, and Ip is the ionization potential of the Kohn-
Sham state. Here the IR field has a wavelength of λ = 1300 nm (i.e., ωL = 0.0350 Ha),
and the Ip values are taken as the negatives of the Kohn-Sham energies given in Table
5.2. The molecule, 5-fluorouracil, is aligned with the dipole aligned along (a) the x-
axis and (b) the y-axis, as shown in Fig. 5.3. Recombination amplitudes are plotted as
solid lines for recombination to the HOMO-1 and HOMO-2, while the averages of these
two recombinations amplitudes are indicated with dashed lines.

of minima and maxima in the recombination amplitudes for the two states, appearing

at different harmonic orders for the two states. However, taking an average of the

recombination amplitudes for the two states, we see a minima around harmonic 41,

which matches fairly well with what we see in the harmonic spectrum for this orienta-

tion shown in Fig. 5.14(b) (black spectrum). In the (θmol = 0◦, θdip = 90◦) orientation

on the other hand, Fig. 5.16(b), we see that the recombination amplitudes for the two

states follow similar shapes, with a minima around harmonic 32. Again, this matches

fairly well with what we see in the harmonic spectrum for this orientation shown in

Fig. 5.14(b) (red spectrum). In addition, we note that the recombination amplitudes

across much of the spectrum are larger in the (θmol = 0◦, θdip = 90◦) orientation than

in the (θmol = 0◦, θdip = 0◦) orientation, particularly so for the HOMO-1 in the re-

gion in which we observed the large harmonic enhancement in Fig. 5.14(b) (between

harmonic 33 and harmonic 50).

Returning now to Fig. 5.14, comparing Figs. 5.14(a) and 5.14(b) we see that in the

θmol = 0◦ orientations, thymine is much less sensitive to the value of θdip than 5-
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Figure 5.17: High harmonic generation in thymine and 5-fluorouracil, following in-
teraction with a 5-cycle mid-IR laser pulse with wavelength λ = 1300 nm and a peak
intensity of I =1.0×1014 W/cm2. The pulse is linearly polarized along the x-axis, and
the molecules are aligned in the orientations shown in Fig. 5.3. The angles θmol and θdip

respectively refer to the angle between the laser polarization direction and the plane
of the molecule, and the angle between the laser polarization direction and the initial
dipole moment of the molecule. Note that in panel (d), the spectral density is plotted
on a linear rather than a logarithmic scale.

fluorouracil, as was the case with the total ionizations shown in Fig. 5.12. As in Section

5.3, in order to directly compare the thymine spectra with the 5-fluorouracil spectra we

re-plot the spectra for each orientation; these comparisons are shown in Fig. 5.17.

In the (θmol = 0◦, θdip = 0◦) orientation, in which there is significantly more ionization

from thymine than from 5-fluorouracil (> 60% greater in thymine), we see that the

spectral density in the lower half of the harmonic spectrum (up to ≈ harmonic 40)

is in general larger in the thymine spectrum than in the spectrum for 5-fluorouracil.

Above harmonic 40 however, the intensities of the two spectra are very similar. In

the (θmol = 0◦, θdip = 90◦) orientation, in which the difference between ionization
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from thymine and 5-fluorouracil is smaller (< 5% greater in thymine), we see that in

general the intensity of the 5-fluorouracil spectrum is comparable to or greater than

the spectrum for thymine, with a particularly clear difference in the enhanced region

between harmonics 33 and 50. In both of these orientations, considering the greater

ionization seen in thymine than in 5-fluorouracil (Section 5.4.1), from a simple inter-

pretation of the three-step model we would expect that the corresponding harmonic

spectra from thymine would be greater than, or at least comparable to, the spectra

from 5-fluorouracil; in Figs. 5.17(a) and 5.17(b), the intensities of the thymine spectra

are smaller compared to the 5-fluorouracil than we might expect. In the (θmol = 90◦,

θdip = 90◦) orientation on the other hand, in which we saw slightly more ionization

from thymine than from 5-fluorouracil (> 5% greater in thymine), the intensities of

the harmonics in the thymine spectrum are consistently larger than those 5-fluorouracil

spectrum.

Finally, in Fig. 5.17(d) we compare the averages of the spectra for the three different

orientations of the two molecules. Here we see that the enhancement of harmonics

33–50 in 5-fluorouracil in the (θmol = 0◦, θdip = 90◦) orientation results in a noticeable

difference between the two average spectra; in this region of harmonics we see that

the average spectral density for 5-fluorouracil is 2–3 times as large as the average

spectral density for thymine. While larger differences in spectral densities are seen for

individual peaks in the spectra of the two molecules (particularly among the low-order

harmonics), this region between harmonics 33 and 50 is interesting in that the average

spectrum for 5-fluorouracil is consistently more intense than the average spectrum for

thymine over a fairly wide range of harmonic orders. In addition, we note that the

average spectra for thymine and 5-fluorouracil exhibit a much larger difference than

the average spectra for uracil and thymine (Fig. 5.11(d)).

5.4.3 Summary

In this section, we have investigated the response of the nucleobase thymine and the

radiosensitiser 5-fluorouracil to an intense, mid-IR laser pulse. Three different orien-

tations of each molecule relative to the polarization direction of the linearly polarized

laser pulse were considered, for each of which we calculated the ionization and the

high harmonic spectra. To our knowledge these represent the first calculations of HHG
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in these molecules.

In all three orientations, we observed greater ionization from thymine than from 5-

fluorouracil. In addition, for both molecules we saw much greater ionization in the two

θmol = 0◦ orientations (in which the laser field is polarized in the plane of the molecule)

than in the θmol = 90◦ orientation (in which the laser field is polarization perpendicular

to the plane of the molecule), as was seen with uracil in the previous section. In

both molecules this resulted in a significantly less intense harmonic spectrum in the

θmol = 90◦ orientation than in the θmol = 0◦ orientations.

In the θmol = 0◦ orientations, a large difference was observed between the θdip = 0◦

and θdip = 90◦ orientations in the response of 5-fluorouracil, but not in the response

of thymine. In other words, for a laser field linearly polarized in the plane of the

molecule, the orientation of the molecule within the plane has a significant effect on

the response of 5-fluorouracil, but not on the response of thymine. In 5-fluorouracil, we

saw significantly more ionization in the (θmol = 0◦, θdip = 90◦) orientation than in the

(θmol = 0◦, θdip = 0◦) orientation, which we attributed to enhanced ionization from the

two highest-lying σ orbitals, as described previously for uracil. In this (θmol = 0◦, θdip =

90◦) orientation of 5-fluorouracil, this increase in ionization resulted in an increase in

the intensity of the high harmonic spectrum, with particularly strong enhancement

observed between harmonics 33 and 50.

Finally, we compared the harmonic spectra between the two molecules, for the three

different orientations, and saw that increased ionization from thymine than from 5-

fluorouracil did not always result in a more intense high harmonic spectrum. For in-

stance, in the two θmol = 0◦ orientations, the higher-order plateau harmonics in the

spectra for 5-fluorouracil were of comparable or greater intensity to those in the spec-

tra for thymine. Considering the average spectra over the three different orientations,

we saw that while a number of the low-order harmonics had much greater intensity

in thymine, the region of the plateau between harmonics 33 and 50 was significantly

more intense in 5-fluorouracil, due to the enhancement in the (θmol = 0◦, θdip = 90◦)

orientation.
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5.5 Conclusions

In this chapter, we have presented results from the first set of TDDFT calculations of

ionization and high harmonic generation in uracil, thymine and 5-fluorouracil, during

interaction with an intense, linearly polarized, mid-IR laser pulse. The computation-

ally demanding grid parameters required to describe these molecules in EDAMAME in

an tractable way led to the development of new finite difference functionality in the

EDAMAME code.

In Section 5.2 we showed how, using these new finite difference methods, the ground

state properties of uracil, thymine and 5-fluorouracil are reproduced adequately well

in EDAMAME. Although the calculated ionization potentials of the molecules are lower

than the experimental values, the differences between calculated and experimental val-

ues are approximately the same for all three molecules, which gives us more confidence

in making comparisons between the three molecules.

In Section 5.3 we investigated the response of the nucleobases uracil and thymine to

an intense, linearly polarized, mid-IR pulse, for three different orientations of each

molecule. These two molecules were the focus of an experimental study in 2013 by

Hutchison et al., which aimed to obtain the first measurements of HHG in uracil and

thymine ablation plumes. While they were able to obtain a HHG signal in uracil, no

signal was measured in thymine due to excessive fragmentation during the creation

of the ablation plume. In our investigation of the response of uracil and thymine to a

mid-IR pulse, we observed significantly more ionization from thymine than from uracil,

although the duration of our calculations were too short to allow for fragmentation to

occur. While in individual orientations the intensities of the harmonic spectra from

uracil and thymine were noticeably different, averaging the spectral densities over the

three different orientations produced harmonic spectra of similar intensities between

the two molecules.

In Section 5.4 we extended our investigation to consider the differences in response to

a mid-IR pulse between the nucleobase thymine and its radiosensitising replacement in

DNA, 5-fluorouracil. Here we observed that ionization from thymine was also greater

than that from 5-fluorouracil. In the high harmonic response however, we saw that
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an enhancement of a window of high harmonics in one orientation of 5-fluorouracil

led to a larger difference between the “orientation-averaged” spectra for thymine and

5-fluorouracil than between the “orientation-averaged” spectra for uracil and thymine.

In all three molecules considered here, the orientation of the plane of the molecule

relative to the laser polarization direction was the most significant factor in deter-

mining the overall response. In all molecules we observed a significant reduction in

ionization and HHG when the applied field was polarized perpendicular to the plane

of the molecule, rather than in the plane. With the field polarized in the plane of the

molecule, the molecules differed in the importance of the orientation of the molecule

within this plane (specified by the angle θdip in this work). In uracil and 5-fluorouracil,

we observed a strong dependence of both ionization and high harmonic generation

on the angle θdip. This was seen to be largely due to changes in the responses of the

two highest-lying σ states (HOMO and HOMO-2 in uracil, HOMO-1 and HOMO-2 in

5-fluorouracil). In thymine on the other hand, the total ionization and high harmonic

generation varied only slightly with changing angle θdip, although the responses of

individual orbitals did vary.

The work described in this chapter will hopefully form the first step in a larger study of

the dynamics of these molecules, and potentially other biologically relevant molecules.

Some of the possible future avenues of research in this area will be outlined at the

end of this thesis. In addition, the coordinate scaling and least-squares finite difference

approximation methods developed for this work should increase the range of systems

that can be studied using EDAMAME.



Conclusions and future work

In this thesis we have investigated the dynamics of small organic molecules and bio-

logical molecules during interactions with intense laser fields. Using a mixed quantum-

classical approach, in which the electrons are described using time-dependent density

functional theory while the motion of the ions is treated classically, we have studied the

response of four different molecules to intense, linearly polarized, mid-infrared laser

pulses. In Chapter 1 we began with an overview of a number of the physical processes

that can occur during the interaction of molecules with intense laser pulses, focusing

in particular on ionization and harmonic generation processes. In Chapter 2 we intro-

duced a number of theoretical methods used to described strong-field laser-molecule

interactions, with a particular focus on the time-dependent density functional theory

(TDDFT) and quantum-classical molecular dynamics methods used in this thesis. In

Chapter 3 we described how these two methods are implemented in the Fortran2008

code EDAMAME.

In Chapter 4 we presented results from a series of calculations investigating the re-

sponse of acetylene (C2H2) to a linearly polarized, mid-IR laser pulse. The aim of this

project area was to perform one of the first in-depth theoretical studies of HHG in acety-

lene, focusing initially on the effect of varying the alignment of the molecule relative

to the laser polarization direction. This molecular alignment effect was investigated by

performing calculations for three different orientations of the molecule. Both ionization

and high harmonic generation were found to increase as this angle was increased from

a parallel to a perpendicular orientation, due to an increased response from the highest

occupied molecular orbital (HOMO), which dominates the response of the molecule in

the perpendicular orientation. In the parallel orientation, it was shown that the main
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contributor to the high harmonic spectrum was not the HOMO, but the HOMO-1 and

HOMO-2.

The second aim of this part of the project was to study differences in the response of the

system when exposed to one of a number of different pump-probe laser pulse setups.

The majority of Chapter 4 was dedicated to the discussion of these type of calculations,

in which the pump-probe setup was used as a tool for investigating the origin of a

double plateau structure observed in the harmonic spectrum produced in the parallel

orientation. By preceding the mid-IR pulse with a shorter, lower intensity VUV pump

pulse, we showed that the intensity of the inner plateau in the harmonic spectrum pro-

duced in the parallel orientation could be dramatically enhanced. While enhancement

of harmonic spectra has previously been observed in other systems, these enhance-

ments have generally been centred on a single harmonic or a narrow band of har-

monics; in acetylene we see enhancement across the entire inner plateau. By varying

the pulse parameters, performing time-frequency analyses of the harmonic response,

and examining the electronic populations in each of the initial Kohn-Sham orbitals, we

showed that the observed inner plateau is the result of high harmonic generation in

which electronic population is ionized from and recombines back to an excited state

(namely, the LUMO+1). A discrepancy between the observed inner plateau cutoff and

that predicted by the semiclassical three-step model was resolved by calculating the

recombination matrix element for recombination from the continuum to the LUMO+1,

which exhibits a minimum near the predicted cutoff harmonic. To conclude this chap-

ter we considered a number of variations on the pump-probe scheme, showing how

the results of these are in agreement with our understanding of the HHG mechanism

at work, and briefly considered the (minimal) role of ionic motion in the dynamic re-

sponse of the molecule to the chosen laser pulses. Overall, the aims of this part of the

project (as outlined in the Introduction) have been achieved.

In Chapter 5 we presented results from a series of calculations investigating the re-

sponse of uracil, thymine and 5-fluorouracil to a mid-IR laser field. Describing these

molecules in EDAMAME in a tractable way required the implementation of new finite

difference methods in the code, namely coordinate scaling and a least-squares approx-

imation to the central finite difference formulae. Using these new finite difference

methods enabled the interaction of a mid-IR pulse with the three molecules of interest
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to be studied at a manageable computational cost. For each molecule, we considered

three different orientations with respect to the laser polarization direction, and investi-

gated differences between molecules and between molecular orientations by studying

the ionization and high harmonic generation in each case.

We first compared the response of the two nucleobases, uracil and thymine, as these

molecules were the subject of a previous experimental study; as far as we know the

only experimental study of HHG in these molecules to date. We then considered dif-

ferences between the response of thymine and its radiosensitising replacement in DNA,

5-fluorouracil. In both of these comparisons (uracil and thymine on the one hand,

thymine and 5-fluorouracil on the other) we observed a number of differences between

orientations and between molecules.

Firstly, in all three molecules we observed a significant reduction in ionization and HHG

when the laser field was polarized perpendicular to the plane of the molecule, rather

than in the plane. Secondly, with the field polarized in the plane of the molecule, we

found that in uracil and 5-fluorouracil the alignment of the molecule within this plane

had a significant effect on the overall ionization and high harmonic generation. This

was seen to be largely due to changes in the responses of the two highest-lying σ-type

orbitals (HOMO and HOMO-2 in uracil, HOMO-1 and HOMO-2 in 5-fluorouracil). In

both molecules the increased response of these orbitals in a particular orientation dom-

inated the overall response of the molecules, and led to increased total ionization and

an enhanced HHG signal. In thymine however, the difference between the response in

the two orientations in which the laser field was polarized in the plane of the molecule

was much smaller: while in one of these orientations we observed increased ionization

from the two highest-lying σ orbitals (HOMO-1 and HOMO-2), in the other orientation

we observed significant ionization from a larger number of orbitals, of both σ and π

symmetries. The result is that while the orientation of the plane of the molecule rel-

ative to the laser polarization direction has a significant effect on the response in all

three molecules, the exact orientation of the molecule when the laser field is polarized

in the plane of the molecule is significant in uracil and 5-fluorouracil, but much less so

in thymine.

Finally, in terms of the relative responses of the three molecules, in all three orientations
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we observed greater ionization from thymine than from uracil or 5-fluorouracil. How-

ever, this was not always accompanied by more intense HHG in thymine than in the

other two molecules. Considering the average intensities of the harmonic spectra over

the three orientations, we saw that the “orientation-averaged” spectra for uracil and

thymine were largely similar in intensity, while those for thymine and 5-fluorouracil

were more noticeably different, due to a window of enhanced harmonics in the spec-

trum for one orientation of 5-fluorouracil.

Overall, the aims of this part of the project (as outlined in the Introduction) have been

partially met. With regards to the first aim (which was to determine the extent to

which EDAMAME can accurately and efficiently describe larger and more complicated

molecules than those previously studied with the code), it was found that the finite

different methods previously used in EDAMAME calculations would be inadequate for

molecules as large and complex as the three molecules studied in Chapter 5. With

the introduction of the new finite difference techniques described above, we saw that

EDAMAME can describe the ground state properties of these molecules reasonably well,

although with larger differences between calculated and experimental ionization po-

tentials and bond lengths than observed in smaller and more simple molecules; as such

this is an area that would warrant further investigation (as discussed in Future Work be-

low). The second aim of this part of the project was to perform the first calculations of

HHG in uracil, thymine and 5-fluorouracil, and to investigate the effect of the molecu-

lar alignment relative to the laser polarization direction on the harmonic response. This

aim has been achieved, in the sense that these calculations were performed successfully,

and a number of differences between the responses of the molecules in different orien-

tations were noted. However, the origins of a number of the effects observed in these

calculations were unclear, and will require further study (also discussed in Future Work

below). The final aim of this part of the project involved making comparisons between

the responses of uracil and thymine on the one hand, and thymine and 5-fluorouracil

on the other. This aim has been achieved, with several differences observed between

the responses of the molecules. In terms of how the calculated harmonic responses of

uracil and thymine compared with the results of the only experimental study of HHG in

these molecules to date, we found no significant differences between HHG in the two

molecules, suggesting that the large differences observed experimentally were indeed
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due to differences in the compositions of the ablation plumes of the two molecules, as

the authors of that experimental study had proposed.

Future work

The work presented in Chapter 5 on the interaction of nucleobase and radiosensitiser

molecules to a mid-IR laser pulse will hopefully be the first step in a larger study of

these molecules, and potentially other biologically relevant molecules. There are a

number of obvious avenues of follow-up work to the results presented in Chapter 5.

There were two effects observed in the results presented in Chapter 5 that were flagged

as requiring further investigation. The first of these was a possible connection be-

tween the orientation of the carbon–oxygen bonds in the three molecules relative to

the laser polarization direction and the response of the two highest-lying σ states. The

second was specific to thymine, in which we noted a possible connection between ion-

ization from individual Kohn-Sham orbitals and the orientation of the bond between

the methyl group and the ring of the molecule: when this bond was aligned almost

parallel to the laser polarization direction, we observed significant ionization from a

larger number of orbitals than in other cases, with the symmetry of the orbital (σ or π)

having little effect on the orbital depletion. One approach for investigating these two

factors in the responses of molecules would be to examine variations in ionization and

HHG around different atomic sites. This could be done in a number of ways.

One relatively straightforward approach would be to make use of the Voronoi poly-

hedra set up in the fuzzy cell decomposition used in the calculation of the Hartree

potential within EDAMAME (see Section 3.2.3). These polyhedra provide a convenient

way of partitioning the grid into regions around each atom. With a few modifications to

the code, we should be able to calculate the electron density in each of these regions,

and follow how these vary when a laser field is applied. The ability to observe, and

quantify to some degree, the changes in electron density around different locations in

the molecules should aid our understanding of the ionization dynamics in the different

molecules and orientations. Going a step further, we could envisage calculating HHG

in the region around each atom. Again making use of the fuzzy cell decomposition, cal-

culating the dipole acceleration via Eq. (3.72) but considering only the electron density



CONCLUSIONS AND FUTURE WORK 205

within each Voronoi polyhedra, we could obtain an idea of whether or not recombi-

nation was occurring at some atomic sites more than others, and if so at which sites.

Combined with the time-frequency analyses described in Section 3.5.3 (examples of

which were presented in Chapter 4), this would enable us to investigate both when

and where harmonics were generated.

In all the calculations described in Chapter 5, only a single laser pulse (a mid-IR pulse)

was applied. An obvious extension to these calculations would be to consider pump-

probe schemes, using a VUV pump pulse to excite or ionize the molecule in advance of

the mid-IR probe, similar to the pump-probe setups used in Chapter 4. Such calcula-

tions could provide insights into both the HHG process (as in Chapter 4), and the dif-

ferent relaxation or fragmentation pathways of the molecules. However, calculations

involving an intense, linearly polarized, mid-IR pulse are computationally expensive

due to the large quiver amplitude and therefore large grid size required. As such, the

range of pump-probe setups that could be studied could be quite severely limited by

the availability of supercomputer time. One could of course reduce the wavelength of

the applied field to reduce the grid size required, but this would also reduce the extent

of the harmonic spectra, unless the laser intensity was increased to compensate (al-

though possible increases in intensity would be limited by the low ionization potentials

of these biological molecules).

Such large grid extents would not be required if we were to consider the response

to just a lower intensity VUV laser pulse by itself. A number of interesting avenues

of inquiry could be followed with just a VUV pulse applied. One such focus of study

would be the calculation of the photoelectron spectra in different molecules, using

the time-dependent surface flux method (t-SURFF) which has been implemented in

the POpSiCLE (PhOtoelectron SpeCtrum library for Laser-matter intEractions) library

[325, 326]. This library was developed at QUB, and was designed to interface with a

number of laser-molecule codes, including EDAMAME. POpSiCLE and EDAMAME have

previously been used together to calculate photoelectron spectra (including angularly-

resolved photoelectron spectra) in acetylene due to the interaction with a number of

the VUV pulses considered in Chapter 4 [260]. Following excitation or ionization by

a VUV pulse, we could also consider propagating the Kohn-Sham equations for some

time in the absence of any applied field, which would enable us to study the onset of
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fragmentation in the molecules. Note however that in both of these types of studies,

the calculations involved will not necessarily be significantly computationally cheaper

than the mid-IR calculations presented in this thesis, despite the less demanding grid

requirements. In the case of photoelectron spectra calculations, the use of t-SURFF as

implemented in POpSiCLE requires the interpolation of the wavefunction (described in

EDAMAME in Cartesian coordinates) onto a spherical shell, which introduces an com-

putational overhead to the propagation of the Kohn-Sham equations. The study of frag-

mentation processes on the other hand may require the propagation of the Kohn-Sham

equations for much longer durations than those considered in the mid-IR calculations.

In Chapter 5 we considered three orientations of each molecule, and briefly considered

an average over the orientations when comparing high harmonic spectra between dif-

ferent molecules. While these three orientations certainly allowed us to observe differ-

ences in response between different orientations, three orientations are not sufficient to

provide a full picture. For a more robust study of the orientation-averaged response, we

could consider making use of the results of a series of studies on orientation-averaging

performed by the groups of Eric Suraud and Paul-Gerhard Reinhard [62, 327, 328].

In these studies, which focused on the calculation of photoelectron angular distribu-

tions (PADs), an analytical scheme was developed for one-photon processes, which

requires only 6 calculations, in properly chosen reference orientations, to compute

the orientation-averaged PAD. For more general cases, in the non-perturbative regime,

the authors investigated direct orientation-averaging (in which one considers a sphere

around the molecule, divided into segments around selected sampling directions) and

found that converged results for the orientation-averaged PADs were obtained with 30

different reference orientations, while 18 reference orientations represented a “a good

compromise between expense and averaging”. The number of reference orientations

required may be reduced further still if the molecule of interest has structural sym-

metries. Considering the computational expense of some of our calculations, taking

advantage of orientation-averaging schemes such as these and molecular symmetries

will be crucial to managing the cost of future studies.

In the future work described above, we have still considered the interaction of an ap-

plied field with a single, isolated molecule. However, treating a single molecule in iso-

lation is an idealised scenario, particularly when considering biological molecules such
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Figure 6: Evolution of the total spin density in solvated thymine, following vertical
electron attachment, calculated using first-principles molecular dynamics. The panels
show the system at times: (a) 0 fs, (b) 5 fs, (c) 10 fs and (d) 25 fs. Figure reproduced
from [331].

as these. To simulate a more realistic biological environment, we could consider adding

several water molecules to our systems, similar to a number of previous DFT studies

[329–333]. For example, in [331], the authors studied the localisation of an excess

electron in solvated DNA bases, and found that an initially delocalised electron localises

around the nucleobase within a 15 fs timescale (as shown in Fig. 6 for thymine). These

calculations were performed within the adiabatic approximation, in which the electron

density follows the nuclear dynamics instantaneously. With EDAMAME, we would be

able to describe the dynamics of the solvated system non-adiabatically. While the addi-

tion of numerous water molecules (enough to be representative of a liquid phase, e.g.

five molecules as in [332]) would increase the computational cost of our calculations,

it would be interesting to see what effect such an addition has on, for example, HHG in

the system, or the ionization and fragmentation dynamics of the biological molecules.

However, one potential challenge with working with such an ensemble of molecules

may be accurately calculating the relaxed ground state geometry.

Considering more general future work, there are a number of changes to EDAMAME

itself that could be implemented. One obvious example would be to investigate the

use of different exchange-correlation approximations and/or self-interaction-correction

schemes. The LDA-PW92-ADSIC approximation used in this work is a powerful approx-
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imation, but as was seen in Section 5.2, it has its limitations. In addition, if we were

to consider calculations in which the molecules under investigation undergo significant

fragmentation, it is unclear how well or badly the LDA-PWD92-ADSIC approximation

would describe the fragmenting molecule.

In the ADSIC scheme currently implemented in EDAMAME, we remove the

self-interaction in the system in an orbital-independent way, by subtracting the interac-

tion due to the average density. Alternatively, we could correct the self-interaction on

an orbital-by-orbital basis. This is the approach taken in the widely-used SIC scheme

introduced by Perdew and Zunger [183]. However, this Perdew-Zunger SIC scheme

suffers from two major drawbacks. Firstly, the SIC functional depends explicitly on the

orbitals, rather than the density. Secondly, it is not invariant under unitary transfor-

mation of the orbitals. These issues can be dealt with using the generalized OEP (opti-

mized effective potential) scheme for self-interaction-correction developed by Kümmel

et al. [181, 334, 335]. In this scheme, which aims to take advantage of the unitary

variance of Perdew-Zunger-SIC, the Kohn-Sham orbitals are complemented by a second

set of orbitals. These are obtained though a unitary transformation of the Kohn-Sham

orbitals designed to minimize the instantaneous SIC energy, while reproducing the den-

sity given by the Kohn-Sham orbitals. Implementing the generalized OEP SIC scheme

in EDAMAME would be considerably more computationally demanding than using AD-

SIC, but this orbital-specific self-interaction-correction may provide more accurate ion-

ization potentials and bond lengths than the average-density self-interaction-correction

currently used.

As with any computational study, we are restricted in the systems we can currently

investigate using EDAMAME by the availability of supercomputer time. Increases in

supercomputing power and availability in the coming years will hopefully allow us

to investigate larger and more complex molecules with EDAMAME, and study laser-

molecule interactions over longer timescales.



Appendix A

Calculation of recombination

matrix elements

The recombination matrix element of an ionized electron to a bound state of a molecule

can be written, in the length gauge, as

drec(k) =
〈

χ(k, r)
∣

∣r
∣

∣Ψ(r)
〉

, (A.1)

where χ(k, r) is a plane wave describing a free electron with momentum k,

χ(k, r) =
1

(√
2π
)3 e

ik·r, (A.2)

while Ψ(r) is the wavefunction of the bound state to which the free electron will re-

combine. In the work described in this thesis, we are interested in the recombination

of the free electron to one of the field-free Kohn-Sham orbitals, meaning that we have

Ψ(r) = ψj(r, t = 0) (in the following we will write ψj(r, t = 0) = ψj(r) for brevity).

To calculate the recombination matrix elements within EDAMAME, for recombination

to the Kohn-Sham orbital ψj(r), we use an adapted version of the surface flux (t-

SURFF) method [336, 337] as implemented in the POpSiCLE (PhOtoelectron SpeC-

trum for Laser-matter intEractions) library [325, 326]. This method and library were

designed for calculation of photoelectron spectra, but many of the routines used are
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easily transferable to the calculation of recombination matrix elements, especially since

POpSiCLE was developed to interface with EDAMAME (along with a number of other

codes).

Due to the spherical nature of the problem, the t-SURFF method is generally imple-

mented in spherical coordinates when describing a three-dimensional system; the im-

plementation of t-SURFF in POpSiCLE is no different. We define sets of spherical coor-

dinates in real-space (r, θ, φ) and momentum-space (kr, kθ, kφ) such that

r = (r sin θ cosφ) êx + (r sin θ sinφ) êy + (r cos θ) êz, (A.3)

k = (kr sin kθ cos kφ) êx + (kr sin kθ sin kφ) êy + (kr cos kθ) êz. (A.4)

Working in these spherical coordinates, the plane wave χ(k, r) can easily be expressed

as a multipole expansion,

eik·r = 4π

∞
∑

l=0

l
∑

m=−l

iljl(k · r)Ylm(kθ, kφ)Y
∗
lm(θ, φ), (A.5)

where Ylm(θ, φ) are spherical harmonics, for orbital angular momentum quantum num-

ber l and magnetic quantum number m, and jl(k · r) are spherical Bessel functions of

the first kind.

The Kohn-Sham wavefunctions however, are defined in EDAMAME in terms of Carte-

sian coordinates. We therefore require a method of interpolating the Kohn-Sham

wavefunctions from the Cartesian grid (x, y, z) to the spherical grid (r, θ, φ). This

is achieved using tricubic interpolation (see [101, 338] for a description of how this

method works).

In spherical coordinates, we can then rewrite Eq. (A.1) as

drec(kr, kθ, kφ) =
1

(√
2π
)3

∫ ∫ ∫

ψj(r, θ, φ)re
−ik·rdrdθdφ. (A.6)

Evaluating Eq. (A.6) along a given direction (e.g., along the laser polarization direction)

and integrating over the momentum-space angular variables, kθ and kφ, we therefore

obtain the dipole recombination matrix amplitude as a function of the momentum of

the recolliding electron. In order to compare this calculated amplitude with high har-
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monic spectra (as in Chapter 4), we can then relate the momentum of the returning

electron, kr, to the harmonic order, n, via the expression

nωL =
k2r
2

+ Ip, (A.7)

where ωL is the frequency of the applied laser field, and Ip is the ionization potential

of the state to which the electron recombines (i.e., the magnitude of the energy of the

Kohn-Sham orbital ψj(r).)
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129, 144304, (2008).
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[173] M. Lein and S. Kümmel, Phys. Rev. Lett. 94, 143003, (2005).

[174] N. T. Maitra, in Time-Dependent Density Functional Theory, edited by
M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke and E. K. U. Gross
(Springer-Verlag, Berlin Heidelberg, 2006).

[175] R. G. Parr and W. Yang, Density-functional theory of atoms and molecules (Oxford
University Press, New York, 1989).

[176] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244, (1992).

[177] J. P. Perdew and K. Burke, Int. J. Quantum Chem. 57, 309, (1996).

[178] C. A. Ullrich, U. J. Gossmann and E. K. U. Gross, Phys. Rev. Lett. 74, 872, (1995).
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[330] T. Gustavsson, Á. Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani,
M. J. Frisch, V. Barone and R. Improta, J. Am. Chem. Soc. 128, 607, (2006).

[331] M. Smyth and J. Kohanoff, Phys. Rev. Lett. 106, 238108, (2011).

[332] M. Smyth, J. Kohanoff and I. I. Fabrikant, J. Chem. Phys. 140, 184313, (2014).

[333] M. McAllister, M. Smyth, B. Gu, G. A. Tribello and J. Kohanoff, J. Phys. Chem.
Lett. 6, 3091, (2015).

[334] D. Hofmann, T. Körzdörfer and S. Kümmel, Phys. Rev. Lett. 108, 146401,
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