
The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 223	

Binary visualisation for malware detection

Irina Baptista

Project Advisor: Stavros Shiaeles , School of Computing, Electronics and
Mathematics, Plymouth University, Drake Circus, Plymouth, PL4 8AA

Abstract

It is becoming increasingly harder to protect devices against security threats; as
malware is steadily evolving defence mechanisms are struggling to persevere. This
study introduces a concept intended at supporting security systems using Self-
Organizing Incremental Neural Network (SOINN) and binary visualization. The system
converts a file to its visual representation and sends the data for classification to
SOINN. Tests were done to evaluate its performance and obtain an accuracy rate,
which rounds the 80% figures at the moment, and false positive and negative rates.
Bytes prevalence were also analysed with malware samples having a higher amount
of null bytes compared with software samples, which may be a result of hiding
malicious data or functionality. The patterns created by the samples were examined;
malware samples had more clustering and created different patterns across the
images whereas software samples presented mostly static and constant images
although exceptions were noted in both categories.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/200202212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 224	

Introduction
With the constant evolution of malware techniques and the increasing number of
devices infected the arms race between malware writers and security analysts is
escalating. The majority of antimalware mechanisms adopt a signature-based
approach (Moser, et al., 2008) and need to be aware of new malware and their source
code in order to update its database with the malicious signature. This process relies
on manually analysing a binary file, without executing it, allowing the analyst to
understand in detail the behaviour of a sample, such as function calls, detect packers,
find strings, – for instance if a program accesses a URL then a string will be created
for the URL – and observe operations using the disassembled version, however
reverse engineering code to obtain the malware signature is extremely time-
consuming and challenging for security defenders (Jilcott, 2015), thus the need for
automated analysis.

One method to automate the analysis process consists in running the binary in a virtual
environment, where its interactions with the system, for e.g. API calls and registry
changes, will determine if the program is malicious or not. This process provides a
level of security to the system; as the malware is analysed in an isolated environment
if any change is made by the binary it will only be reflected in the virtual machine image
which can be replaced with a newer one after the analysis. However this automation
method, also designated as dynamic analysis, has its shortcomings being them the
insufficient information regarding the program’s functionality in some scenarios (Conti,
et al., 2008), affecting the system performance as it is necessary to run the malware
for an extend amount of time with limited resources or even the use of detection
routines within the code (Katangur, et al., 2013). These routines detect whether the
binary is being executed in a virtual environment, in which case the malicious actions
will not be performed.

In addition to that, malware writers are constantly exploring advanced attacking
techniques such as polymorphism and metamorphism, and this has been proved
successful while evading signature-based systems (Christodorescu & Jha 2003,
Moser, et al., 2008). Polymorphic malware constantly mutates its appearance to avoid
detection by anti-malware programs; the change may be done by modifying attributes
such as filename or randomly generating a new key to encrypt the code but without
affecting the functionality of the malicious code. Metamorphic malware is another form
of polymorphism with the difference of auto-mutating its code and generating a
somewhat different instance of itself with each execution becoming harder to detect
but also harder to create.

In face of those issues research is now focusing on machine learning. Yoo, 2004 uses
Self-Organizing Maps (SOM) to flag unusual patterns in executables files particular to
malware with the pattern position reflecting the position of the malicious code in the
file. Chouchane, et al., 2008 base their research on that a good number of malicious
programs are variations of previously identified malware and apply Hidden Markov
Models to verify if a program may be a variant from some previous software, the
framework predicts the effects of morphing actions on a particular property of a
program being evaluated. Dahl, et al., 2013 presents a large-scale malware
classification system using neural networks; the system utilizes random projections to
decrease the input dimensionality. Gavrilut, et al., 2009 proposes a machine learning
framework to discern malware and clean files. Xu, et al., 2017 centre their research in
behaviour analysis, specifically the fingerprints left on the program memory access,

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 225	

and employ machine learning to classify malicious behaviour. Firdausi, et al., 2010
propose a method to tackle the ineffectiveness of static malware analysis against the
rapid spread of malware using automatic analysis and data mining techniques. The
solution compares 5 machine learning algorithms with the best performance being
achieved by J48 with an accuracy rate of 96.8%.

The purpose of this study is to present and evaluate a malware detection system
based on machine learning to address the problems of the current security
mechanisms, mainly detection of zero day exploits. The system employs binary
visualization and the Self-Organizing Incremental Neural Network (SOINN) to
distinguish malware from software. Binary visualization was used in the pre-
processing part of the system to identify potential anomalies in a file. Malin, et al.
(2012) explain that by visualising the contents of a file it is possible to gather
information about the data distribution on that file, identify data obfuscation and group
similar files based on their binary patterns. This technique converts the binary values
of a file to its two-dimensional representation. However, to maintain the proximity
between points the two-dimensional plane was constructed with a Hilbert space-filling
curve. Considering a two-dimensional square grid 𝑁	×	𝑁 where 𝑁 ≡ 2& and 𝑛 ≥ 0, a
space-filling curve (SPC) is a continuous curve that passes through 𝑁* cells in the
dimensional space without ever intercepting itself. Some algorithms need to perform
calculations between neighbouring points, therefore preserving the data locality
becomes essential when traversing the data (Gotsman & Lindenbaum, 1996), and in
these contexts SPC are extremely useful. Among them the Hilbert curve is believed to
achieve the best locality preservation (Jagadish 1990, Moon, et al. 2001, Lawder &
King, 2001) and was used for clustering in this research.

With regards machine learning SOINN, an unsupervised neural network used to
classify data without previous knowledge of its network structure (Shen & Hasegawa,
2006),	was used as the analysis and detection mechanism. It has no predefined
topology and adjusts its structure to account for new input and delete noise becoming
a simple yet powerful algorithm which has been adapted and used in various fields,
including computer vision, anomaly detection, pattern classification and many others
(Qiu, et al., 2016).

Methodology

Binary file visualisation using Binvis.io
The system was constructed based on the online tool binvis.io (Cortesi, 2016), which
uses images and the RBG plot to visualise binaries from files. The files were firstly
converted to a string containing their binary code as each character of the string would
later be used to create the image. The characters were picked one by one and
converted to their appropriate colour. The process of colour selection was done by
comparing the values in the ASCII table (figure 1) to their equivalent in the colour
scheme provided in binvis.io (Cortesi, 2016) (figure 3).

The values in the colour schemes (figure 3) have been divided in 5 groups:

• Black = 0 or 0x00
• Green = Low bytes
• Blue = ASCII text
• Red = High bytes (Extended ASCII)
• White = 255 or 0xFF

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 226	

	

Figure 1: ASCII Table (ASCII, no date)

With this information, it is possible to assume what data different files may transport,
i.e. the resulting image from a text file will mainly be composed by blue pixels whereas
a compressed file will mostly likely display random colours.

The data clustering was performed using the Hilbert curve to ensure data that is close
together remains grouped once the image processing finishes. Figure 2 presents the
same file clustered using Hilbert curves and simple curves.

The byte colour is then draw on the image according to the coordinates given by the
Hilbert curve. Since space-filling curves are made of squares, to obtain a rectangular
shape the image height is subdivided in four creating squares stacked on top of each
other. The squares are represented by their capacity which is the amount of data they
can hold. To account for files that are larger than the capacity of the 4 squares
previously introduced it is necessary to skip characters along the string. The flowchart
used to create a binary image can be seen on figure 4.

The final output is an image representing the features, data type of a file.

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 227	

												

	

Figure 4: Binvis.io flowchart

Image pre-processing
Before sending the image representation of a file to SOINN it was necessary to
normalise the data. Normalisation or pre-processing reduced redundancy, highlighted
features and improved performance.

Firstly, it was necessary that all images had the same resolution. Differences on input
could influence and decrease the reliability of the algorithm as an image would be
transporting more data than another.

Figure 3: Binvis.io colour scheme. Tab (09),
newline (0a) and carriage return (0d) are

considered to be text (Cortesi, 2016).

Figure 2: Hilbert curve clustering (a). The
second clustering mechanism was the simple

scan (b) which is more intuitive when
navigating through data. The Hilbert curve on

the other hand provides structural features
which could remain unseen or difficult to

evaluate otherwise.

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 228	

The scale or resizing of the images was done using a variation of the nearest
neighbour algorithm. For an input sample, the output or class was computed by finding
the closest match/sample in the training data. The process was similar when scaling
an image. If an image needed to be enlarged, empty spaces were appended to the
picture (Tech-Algorithm.com, 2007) and coloured using the nearest neighbour
method. The algorithm finds which pixel is nearest to an empty space and fills this
space with the pixel colour. Figure 5 illustrates a binary representation of a file before
(5a) and after (5b) being resized using the nearest neighbour algorithm.

	

Figure 5: Using the nearest neighbour algorithm to rescale an image

The second part of the pre-processing stage is feature extraction. By sending only the
most relevant features to the algorithm it was possible to decrease redundancy and
the time necessary to train it increasing the accuracy of the samples, as knowing only
individual pixels in the image would not provide sufficient information for SOINN.

To extract those features, the image was divided (Park, et al., 2006) in 4 parts
separating the top, bottom and upper and lower middle. The sum of each colour in the
RGB space was then calculated and used to create and histogram of colours (seen
on figure 6). This highlighted patterns on data and reduced the size (Sun, et al. 2014,
Zheng, et al. 2012, Gray & Tao, 2008) of the vector input in SOINN and consequently
the time necessary for training.

	

Figure 6: Four histograms depicting an image to account for the top, bottom and middle
parts. The X axis represent the RGB space, which is composed by 256 colours, whilst the Y
axis the number of times a pixel is portrayed on the image. Each image is then represented

by a 1024 feature vector

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 229	

Self-Organizing Incremental Neural Network (SOINN)
The feature vector obtained in the pre-processing stage is sent to SOINN for network
training, which is significantly fast taking less than 2 seconds to compute 200 sample
vectors. SOINN is composed from nodes and edges; nodes are vectors once inside
the network and the edges represent the connections between nodes, creating the
network structure.

Initially, the algorithm receives two random signals (vectors) for input which when
converted to nodes become the basis of the network topology. The remaining signals,
sent to the algorithm in various iterations, are built around those nodes. Each time a
signal arrives to the algorithm the 2 closest nodes referred to as winner and second
winner are calculated. If the new signal is within a predefined distance it is connect to
the winners, otherwise it will become a new node.

To allow for noise removal, both nodes and edges have a set time in the network in
which they need to be removed. However, while the edges are removed without
exception, nodes are only removed if considered insignificant to the network,
specifically if it has an insufficient number of connections. The following algorithm
(figure 7) is based on (Shen & Hasegawa, 2006) explanation of the SOINN network
structure.

	

Figure 7: Basic algorithm for the Self-Organizing Incremental Neural Network

Distance calculation
To calculate the distance between two nodes the Euclidean Distance was used, with
each node representing a vector of features. The distance is given by calculating the
mean value between the input signal and the existing nodes (Lee, et al., 2012).

The distance is achieved with the formula:

𝑑, = (𝑛/ − 𝑠/)*
&

/

Where 𝑖 is the position of the value in vector of features, 𝑛 indicates the node and 𝑠 is
the input signal.

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 230	

Network training
A set with 180 samples was used during training. The set contained a mixture of
malicious and normal executable files, 78 of which belonged to the later. The malicious
data contained 37 trojans, 17 ransomwares, 23 mixed malware types, – backdoor,
botnet and others – and 25 unclassified samples. Figure 8 shows the malicious
samples distribution on the training set.

	

Figure 8: Malware samples distribution according to type
The algorithm was trained for 1000 iterations in a stationary environment (Shen &
Hasegawa, 2006) therefore during each iteration a sample was randomly chosen from
a list containing the feature vectors from the images and then sent to SOINN.

As it was necessary to keep track of the network accuracy and compare results during
testing a label was inserted into each sample. However, the label was for testing
purposes only and had no influence on the network overall structure or classification
mechanism.

Data filtering
Different files were collected from online and other sources and divided according to
their extensions. During training and testing only files possessing an “.exe” extension
were used. This was done to limit the scope of the network to a specified group of files.

Influencing variables
Tests were conducted to determine which values would provide higher classification
accuracy. Each test was performed 10 times and then the average figures regarding
time, accuracy and SOINN output – number of nodes, edges and classes – were
calculated.

Image resolution
Two parts of the algorithm are responsible for its accuracy: image manipulation and
SOINN structure, therefore the tests were subdivided into two categories respectively.
In the first group the width and height of the images were altered and their influence
on the network was analysed. The width of the images was increased using the
equation 24 where x ≥ 0 since the algorithm uses Hilbert curves (Rose 2001, Jagadish
1997, Lawder 1999). On the other hand, the height was simply the width multiplied by
4.

No significant changes in the accuracy rate were discovered by changing the image
resolution as seen on figure 9 where the accuracy varies between 81 and 83.

36%

17%
23%

24%

MALWARE TYPE
Trojan Ransomware Other Unknown

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 231	

	

Figure 9: Image resolution influence in the accuracy rate. The (x) axis represents the
resolution used in the form width/height. The final values chosen for the image resolution

were 256/1024 according to the graph.

The performance, however, was affected by the resolution to a higher degree than the
accuracy. Smaller images needed less time to process than larger images (table 1).

Table 1: Effect of the image resolution effect in the algorithm perfomance

Width Height Node Age Edge Age Processing Time
64 256 300 200 < 5 seconds
128 512 300 200 < 15 seconds
256 1024 300 200 < 45 seconds
512 2048 300 200 ≈ 3 minutes

Node and edge removal
Contrarily to the first group, increasing the time to remove a node or edge from the
network topology provided better classification results without affecting the system
performance.

This time it was possible to see an improvement on the accuracy from the 63% using
50 and 25 for node and edge respectively reaching a peak of about 90% with the
values 300 and 200 (figure 10).

	

Figure 10: Node and edge age influence in the accuracy rate. The (x) axis represents the
specified “time” before removal from the SOINN network in the form node/edge. In the end,

the values 300/200 were used.

80

81

82

83

84

64/256 128/512 256/1024 512/2048

Accuracy Rate per Image Resolution

50

60

70

80

90

100

50/25 100/50 200/100 300/200 400/300 500/400

Accuracy Rate per Node & Edge Reduction

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 232	

Computing the result
During testing the nearest neighbour distance of the file being tested is calculated
against all nodes in the network (Shen & Hasegawa 2006, Shen, et al., 2007); the
node within smaller distance of the test file is the winner. The category of the file, for
instance malicious or not, is obtained by returning the class ID of the winner node
(Yamasaki, et al., 2010). The flowchart at figure 11 describes the steps taken to
classify the file.

	

Figure 11: Classification of a file flowchart.

The file category, is returned in the “Get Node Class” call and this value is used to
classify the file as whether it is safe or not.

Results
False positive and false negative rate
The accuracy rate varied between 76% and 89% in a set of 10 tests. The algorithm
has a higher probability of raising false negatives than positives (figure 12).

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 233	

	

Figure 12: % of false positives and false negatives raised. The (x) axis indicate the test
number

	

Bytes prevalence on malware and software images
Malware samples are prone to have distinct black (null terminator characters) (black
areas) and grey areas (control characters) whereas software samples have a more
even distribution of colours across the image with a minor proportion of null characters.
Software samples also have higher amounts of red pixels (special symbols and
characters from the extended ASCII) although more evenly distributed. The relation
between colours distribution and classification is seen on figure 13.

	

Figure 13: Average colour frequency and influence on the classification between malware
and software

Discussion
The study suggests that certain patterns in the binary data of a file can assist in
malware detection although similar characteristics exist between it and normal data.

One of the main findings of the research was that malware samples contained a higher
amount of null values which was seen by the volume of black pixels in the images.
Null values or zero-byte hexadecimals are mostly used to indicate the end of a string
(Sikorski & Honig 2012, Ligh, et al. 2011, Huseby 2005), for padding, to hide data in

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Error	Percentage	and	Distribution	

Accuracy	Rate False	Positives False	Negatives

0 5 10 15 20 25 30 35 40 45 50

Software

Malware

ASCII	CHARACTERS	 PREDOMINANCE
White Red Blue Green Black

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 234	

the registry (Ligh, et al., 2011) or instructions (Sovarel, et al., 2005), may indicate the
creation of an unknown file (Dahl, et al., 2013) or in a web-related context as a
circumvention mechanism (Baloch, 2016) known as null byte injection. Fonseca, et al.
(2010) explain that by placing a null byte in between two concatenated strings, the first
being a call to a compromised file, an attacker can bypass the concatenation and
execute the malicious file. This method is used by hackers to create botnets (Evron,
et al., 2007). Ovid (2000) and CAPEC Content Team (2017) demonstrate the use of
null bytes to attack and access data. Everett (2006) shows the exploitation of a
vulnerability using a null terminator to successfully gain unauthorised access to a
server.

Another pattern to note was that some malware samples were mostly covered with
green pixels or had a higher occurrence of them when comparing to other samples,
this is uncommon with software samples. Green pixels indicate the use (and abuse)
of control characters. As it happens with null bytes, attackers make use of control
characters to exploit vulnerabilities (Dadkhah, et al., 2014) or hide malicious data
(Wressnegger, et al., 2016).

Software samples had a more even distribution of colours across the image with a
higher predominance of red followed closely by blue pixels. The patterns recall the
image of noise with almost no clustering seen on the picture except for in the top or
bottom half of it where the majority of distinctive features occur for this category. There
are, of course, exceptions to this rule which may be the cause of false negatives seen
in the classification phase. On the other hand, images of malware appear to be more
dynamic with different patterns or clusters seen across the samples.

At times the mixture and closeness of pixels with different colours creates the effect of
a new colour and this is seen mostly with malware samples were purple, orange and
different shades of green were reproduced.

Limitations
The main limitation of the study was the lack of malicious and normal samples and this
led to restricting the data to executable files only. Most sources are not willing to
provide malware binaries without a cost involved and gathering reliable samples
individually from different sources is very time consuming.

A further limitation was regarding the sample details since for some it was not possible
to determine the family and type certain malware samples were a part of. Such was
the result of collecting samples from different sources as these do not store data in the
same detailed format.

Conclusion
The fight against malware has reached a crucial point where the current defence
systems have become insufficient; familiar threats represent minor risk to the systems
however newly created binaries are harder to detect creating a vulnerability.
Thousands of new malicious binaries are registered every day (Bayer, et al., 2010)
and malware analysts struggle to handle the analysis of such volume.

This study proposed a new focus for security systems were the detection mechanism
would be done with the aid of machine learning. The main findings revealed analysts
can have an insight into the malware structure and discover obfuscated code through
binary visualisation and this can indeed give them a new perspective to malware,
malwares presented a higher amount of null values in comparison to software.

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 235	

Furthermore, machine learning is efficient in recognising malware, but more
importantly it is capable of detecting zero day exploits.

Further investigation is recommended on improving the feature extraction such that it
transports increased valuable data to machine learning. Modifying the algorithm to its
improved version Enhanced Self-Organizing Incremental Neural Network (ESOINN)
would decrease the number of overlapped classes (Shen, et al., 2007) and increase
the accuracy rate.

References
ASCII, [no date]. American Standard Code for Information Interchange. [Online]
Available at: http://www.theasciicode.com.ar/ [Accessed 03 05 2017].

Baloch, R., 2016. Bypassing Mobile Browser Security for Fun and Profit.

Bayer, U., Kirda, E. & Kruegel, C., 2010. Improving the efficiency of dynamic
malware analysis. Sierre, Switzerland.

Chouchane, M. R., Walenstein, A. & Lakhotia, A., 2008. Using Markov chains to filter
machine-morphed variants of malicious programs. Fairfax, VI, USA, pp. 77-84.

Christodorescu, M. & Jha, S., 2003. Static Analysis of Executables to Detect
Malicious Pattern.

Conti, G., Dean, E., Sinda, M. & Sangster, B., 2008. Visual Reverse Engineering of
Binary and Data Files. Heidelberg, Berlin, Germany.

Cortesi, A., 2016. binvis.io - Vsual Analysis of Binary Files. [Online] Available at:
http://binvis.io/#/

Dadkhah, M., Dadkhah, A. & Deng, J., 2014. Malware Contamined Website
Detection by Scanning Page Links. Information Technology & Electrical Engineering
(ITEE) Journal, 3(6).

Dahl, G. E., Stokes, J. W. & Deng, L., 2013. Large-scale malware classification using
random projections and neural networks. Vancouver, BC, pp. 3422-3426.

Dahl, G., Stokes, J. & Deng, L., 2013. Large-scale malware classification using
random projections and neural networks. Vancouver, BC, pp. 3422-3426.

Everett, A., 2006. Unauthenticated Authentication: Null Bytes and the Affect on Web-
based Applications which Use LDAP.

Evron, G., Damari, K. & Rathaus, N., 2007. Web server botnets and hosting farms as
attack platforms, Virus Bulletin.

Firdausi, I., Lim, C., Erwin, A. & Nugroho, A. S., 2010. Analysis of Machine learning
Techniques Used in Behavior-Based Malware Detection. Jakarta, pp. 201-203.

Fonseca, J., Vieira, M. & Madeira, H., 2010. The Web Attacker Perspective - A Field
Study. San Jose, CA, pp. 299-308.

Gavrilut, D., Cimpoesu, M., Anton, D. & Ciortuz, L., 2009. Malware Detection Using
Machine Learning. Mragowo, Poland, pp. 735-741.

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 236	

Gotsman, C. & Lindenbaum, M., 1996. On the Metric Properties of Discrete Space-
Filling Curves. IEEE Transactions on Image Processing, 5(5), pp. 794-797.

Gray, D. & Tao, H., 2008. Viewpoint Invariant Pedestrian Recognition with an
Ensemble of Localized Features. Berlin, Heidelberg.

Huseby, S., 2005. Common Security Problems in the Code of Dynamic Web
Applications.

Jagadish, H., 1997. Analysis of the Hilbert curve for representing two-dimensional
space. Information Processing Letters, 62(1), pp. 17-22.

Jagadish, H. V., 1990. Linear Clustering of Objects with Multiple Attributes. Atlantic
City, New Jersey, USA, pp. 332-342.

Jilcott, S., 2015. Scalable malware forensics using phylogenetic analysis. Waltham,
Massachusetts, Technologies for Homeland Security (HST), 2015 IEEE International
Symposium on, pp. 1-6.

Katangur, A., Chaitankar, V., Kar, D. & Akkaladevi, S., 2013. Dynamic Analysis of
Malicious Code and Response. Athen.

Lawder, J., 1999. The Application of Space-filling Curves to the Storage and
Retreival of Multi-Dimensional Data, London.

Lawder, J. K. & King, P. J. H., 2001. Querying multi-dimensional data indexed using
the Hilbert space-filling curve. New York, USA: ACM SIGMOD Record.

Lee, L. H., Wan, C. H., Rajkumar, R. & Isa, D., 2012. An enhanced Support Vector
Machine classification framework by using Euclidean distance function for text
document categorization. Applied Intelligence, 37(1), pp. 80-99.

Ligh, M., Adair, S., Hartstein, B. & Richard, M., 2011. Chapter 10: Malware
Forensics. In: Malware Analyst's Cookbook and DVD. Indianapolis, Indiana: Wiley
Publishing, Inc., pp. 388-393.

Malin, C., Casey, E. & Aquilina, J., 2012. Chapter 6: Analysis of a Malware
Specimen. In: Malware Forensics Field Guide For Windows Systems: Digital
Forensics Field Guides. Massachusetts, USA: Elsevier, pp. 444-446.

Moon, B., Jagadish, H. V., Faloutsos, C. & Saltz, J. H., 2001. Analysis of the
clustering properties of the Hilbert space-filling curve. IEEE Transactions on
Knowledge and Data Engineering , pp. 124-141.

Moser, A., Kruegel, C. & Kirda, E., 2008. Limits of Static Analysis for Malware
Detection. IEEE Computer Society.

Ovid, 2000. CGI Security and the null byte problem.

Park, U. et al., 2006. ViSE: Visual Search Engine Using Multiple Networked
Cameras, pp. 1204-1207.

Qiu, T., Shen, F. & Zhao, J., 2016. Review of Self-Organizing Incremental Neural
Network. Journal of Software, 27(9), pp. 2230-2247.

The Plymouth Student Scientist, 2018, 11 (1), 223-237
	

	 237	

Rose, N., 2001. Hilbert-type space-filling curves.

Shen, F. & Hasegawa, O., 2006. An Incremental Network for On-line Unsupervised
Classification and Topology Learning. Neural Networks, 19(1), pp. 90-106.

Shen, F., Ogura, T. & Hasegawa, O., 2007. An enhanced self-organizing incremental
neural network for online unsupervised learning. Neural Networks, 20(8), pp. 893-
903.

Sikorski, M. & Honig, A., 2012. Chapter 1: Basic Static Techniques. In: Practical
Malware Analysis The Hands-On Guide to Dissecting Malicious Software. San
Francisco: no starch press, pp. 9-29.

Sovarel, A., Evans, D. & Paul, N., 2005. Where’s the FEEB? The Effectiveness of
Instruction Set Randomization. Baltimore, pp. 10-10.

Sun, Y., Liu, H. & Sun, Q., 2014. Online learning on incremental distance metric for
person re-identification. Bali, s.n., pp. 1421-1426.

Team, C. C., 2017. CAPEC-52: Embedding NULL Bytes.

Tech-Algorithm.com, 2007. Nearest Neighbor Image Scaling. [Online]
Available at: http://tech-algorithm.com/articles/nearest-neighbor-image-scaling/
[Accessed 05 05 2017].

Wressnegger, C., Freeman, K., Yamaguchi, F. & K., R., 2016. From Malware
Signatures to Anti-Virus Assisted Attacks, Braunschweig, Germany.

Xu, Z., Ray, S., Subramanyan, P. & Malik, S., 2017. Malware detection using
machine learning based analysis of virtual memory access patterns. Lausanne,
Switzerland.

Yamasaki, K., Makibuchi, N., Shen, F. & Hasegawa, O., 2010. How to use the
SOINN software: User's guide (version 1.0). Berlin, Heidelberg.

Yoo, I., 2004. Visualizing Windows Executable Viruses using Self-Organizing Maps.
Washington DC, USA, pp. 82-89.

Zheng, W., Gong, S. & Xiang, T., 2012. Reidentification by Relative Distance
Comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(3), pp. 653-668.

	

