
The Plymouth Student Scientist, 2013, 6, (2), 310-327

[310]

An audio analysis framework for XNA

developers

Stephen Hoult

Project Advisor: Serafim Rodrigues, School of Computing and Mathematics, Faculty
of Science and Technology, Plymouth University, Drake Circus, Plymouth, PL4 8AA

Abstract

To those that are not specialists in the area, audio analysis can seem a daunting
subject. This is particularly the case when creating software which draws upon the
subject. There are many frameworks available which aid in the development of
audio-driven software, yet few that cater to those with a limited knowledge of audio
analysis. The aim of this project was to develop an audio analysis framework,
specifically for implementation into C# XNA projects, which will enable developers
with little to no understanding of audio analysis to develop audio-driven games. The
result of this project has seen the completion of a simple, yet fully functional and well
documented audio analysis framework; one that that does not require an extensive
prior knowledge to use, and that’s easily implementable into any XNA project. The
implications of this solution lead towards further development, generalisation, and
refinement of the final framework; so that XNA developers of the future are provided
with a simple alternative to the complex and unforgiving existing audio analysis
frameworks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/200202085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://serafimrodrigues.co.uk/

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[311]

Background

This project began by delving into the audio-synchronous aspects of existing popular

games, to gain understanding towards the capabilities that a framework would be

expected to provide. Next, research into the development of both pre-analysis and

real-time analysis techniques lead to the decision towards manipulating XNA’s

existing classes, to extract visualisation data from currently playing audio; which

ultimately became the basis of the final real-time audio analysis framework.

Audio Analysis Concept Design
XNA Visualisation data provides a logarithmic scale of frequencies ranging from 20
Hz to 20 kHz (MSDN). Rose, J (2002) explains that hearing is logarithmic; this
means that a shift of only a few Hertz (Hz) at a low frequency can sound the same
as a shift of many hundreds of Hz at a high frequency. This equates to the medium
frequency band lying at around 1 kHz, as opposed to a linear midpoint of 10 kHz.
Thus, when creating my audio analysis class I shall split the Visualisation data array
into low, medium and high frequency bands accordingly, using Rose, J (2002)’s work
as a reference:

Low: 20 – 600 Hz - This includes extreme bass ranging between 20 and 100 Hz,
mid-bass ranging between 100 and 300 Hz, and finally low midrange ranging
between 300-600Hz. The low frequency band contains an average of the lower and
upper bass amplitudes, which will be extremely important for tracking rhythm.

Mid: 600 Hz – 2.4 kHz – This includes the frequencies critical for identifying dialog
and harmonics which identify one instrument from another. The mid band can be
used to monitor human speech samples.

High: 2.4 kHz – 20 kHz – This band ranges from low to top end highs. The high
band, with emphasis on 2.4 kHz to 9.6 kHz, primarily conveys energy, life, and
brightness to the audio.

To create each frequency band I will sample the current amplitude of each frequency
included from the visualisation data array, then divide it by the number of frequencies
sampled to create a single average amplitude result. This result can then be used to
calculate dynamic variables.

Knowing that the visualisation data array is logarithmic I will calculate the number of
frequencies to be sampled for each band using the following equation posted by
Rm09 (2010):

10^(arrayPosition * 0.01171875 + 1.30103) where arrayPosition =
VisualisationData[0..255]

This equation uses log 10 to return the Hz value for the specified position. Using this
formula I have calculated the range of frequencies that must be sampled from the
visualisation data array to create each band:

Low: 20 – 600 Hz
10^(0 * 0.01171875 + 1.30103) = 20.00 Hz
10^(126 * 0.01171875 + 1.30103) = 599.22 Hz

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[312]

Mid: 600 Hz – 2.4 kHz
10^(127 * 0.01171875 + 1.30103) = 615.61 Hz
10^(178 * 0.01171875 + 1.30103) = 2437.62 Hz

High: 2.4 kHz – 20 kHz
10^(179 * 0.01171875 + 1.30103) = 2504.29 Hz
10^(255 * 0.01171875 + 1.30103) = 19467.54 Hz

Note: Quick math check: 127+52+77 = 256. This is the correct total number of
frequencies (0 - 255).

For each frequency band the sum of the amplitudes included is calculated. The sum
is then divided by the range to create the average amplitude value. E.g. for the mid
frequency band the sum of the amplitudes of frequencies 127 to 178 is calculated,
then divided by the range 52.

Using the code
The following guide details only the recommended setup and use of the Audio
Analysis Class (AAC). Developers should feel free to stray from these procedures
should they feel comfortable to do so.

Setup (Using Visual Studio 2010)

Importing the Audio Analysis Class (AAC)

1. Create a new XNA 4.0 project. (Skip this step if you plan to use an existing
XNA 4.0 Project).

2. Right click on your XNA 4.0 project -> Add -> Existing Item… ->
3. Navigate to your copy of the AudioAnalysisXNAClass.cs
4. Add it to your XNA 4.0 project.
5. Using the solution explorer double click on the newly

added AudioAnalysisXNAClass.cs to open it and view its code. On line 8,
change the namespace from “FinalYearProject” to your projects namespace.

6. The AAC is now successfully added to your project!

Initialising the Audio Analysis Class (AAC)

1. If you made a new XNA 4.0 project, open the Game1.cs using the solution
explorer by double clicking on it. If you’re using an existing XNA 4.0 project,
open the equivalent class. (This class will contain XNA’s game
loop: Initialize(), LoadContent(), UnloadContent(), Update(GameTime
gameTime), and Draw(GameTime gameTime).

2. Instantiate AudioAnalysisXNAClass at the top of this class, see figure 1, line
14, for details.

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[313]

Figure 1: Instantiate the AudioAnalysisXNAClass

3. Inside the Initialize() method, initialise the AudioAnalysisXNAClass object, see
figure 2, line 114, for details. (This will call the AudioAnalysisXNAClass class’s
constructor, enabling visualisation data).

Figure 2: Initialise the AudioAnalysisXNAClass

4. The AAC is now successfully initialised into your project.

Updating the Audio Analysis Class (AAC)
It’s recommended that the AAC’s visualisation data array and frequency bands are
updated only once per game loop. This way, the visualisation data will stay
sufficiently synchronised with the music. While calling the AAC’s update functions
more than once per frame will, e.g. directly before each AAC “get” function call, will
provide greater synchronisation. It will also impact negatively upon performance.
Therefore, caution is urged when calling the update functions more than once per
game loop.

1. Inside Update(GameTime gameTime), call the AAC’s update methods in the
following order:

a. audioAnalysis.Update(); - This must be called first. This method
updates the visualisation data array; extracting the amplitude for 256

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[314]

frequencies, from audio currently being played by
XNA’s MediaPlayer class. If no audio is currently playing the amplitude
for each frequency will be set to 0.

b. audioAnalysis.updateAverageLowFrequencyData(); - This
method updates the average amplitude for the low frequency band,
using the updated version of the visualisation data array.

c. audioAnalysis.updateAverageLowFrequencyData();- This
method updates the average amplitude for the mid frequency band,
using the updated version of the visualisation data array.

d. audioAnalysis.updateAverageLowFrequencyData();- This
method updates the average amplitude for the high frequency band,
using the updated version of the visualisation data array.

2. See figure 3 for an example of how to correctly update the AAC.

Figure 3: How to correctly update the AudioAnalysisXNAClass

3. If you have followed the above steps correctly the AAC is now successfully

being updated once per game loop!

Getters and Setters
The Audio Analysis Class (AAC) contains a getter and setter method for each of its
private variables; lowFrBandAverage, midFrBandAverage, highFrBandAverage.

Set Methods
The set methods can be used should you wish to manually override the update
functions, and specify your own average amplitude values. See figure 4 for an
example of this.

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[315]

Figure 4: How to manually set the average amplitude value for each frequency band.

However, each these manual values will be replaced next time the low, mid and high
frequency average update method is called, with the current low, mid and high
averages according to the audio.

Get Methods

The get methods can be used should you wish to check the value that the variables
contain. The following code snippet manually sets the values of the average
amplitude variables each game loop, using the code from figure 4, before ‘getting’
and printing the manually set values to the console, see figure 5 for details.

protected override void Update(GameTime gameTime)
{
//FIRST: Update visulisation data.
audioAnalysis.Update();

//
/* SECOND: Update the average amplitutde for each frequency band, //
// using the current visulisation data. */
//
//Update the average amplitude for the low frequency band.
audioAnalysis.updateAverageLowFrequencyData();

//Update the average amplitude for the mid frequency band.
audioAnalysis.updateAverageMidFrequencyData();

//Update the average amplitude for the high frequency band.
audioAnalysis.updateAverageHighFrequencyData();

manuallySetValues(); //Manually set all of the average frequency values
getAverageAmplitudes(); //Print all of the average frequency values to the console.
}

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[316]

Figure 5: Values set in figure 4, returned and printed to the console. (See bottom left.)

Finally the get methods can also be used to create extra methods should they be

required. The creation of extra methods is an option I’ve provided for more

experienced users of the audio analysis framework. Of course, they could also

directly implement new methods into the audio analysis class itself. The creation of

new methods is much down to the creativity and ingenuity of the individual

developers. Figure 6 shows a very simple example of the creation of a new method,

using the get method to compare the average amplitude of the mid frequency band

against a min float value, to return a min or max double value.

Figure 6: Creation of a new method to return a double.

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[317]

Overview of the Audio Analysis Classes Functionality
The following section will provide an example of how one of the methods from each
function set could be used within an XNA project. The remaining methods from each
function set will not be demonstrated, as they work in exactly the same manor,
except that they will calculate the return value using a different frequency band
average. The frequency band average used to calculate a return value is specified in
the methods name. For example the method “getBool_2StepLowFrq” will calculate
the return value using the low frequency band average value, as specified by the
‘LowFrq’ at the end of the methods name. Whilst the “getBool_2StepMidFrq” will
calculate the return value using the mid frequency band average value, as specified
by the ‘MidFrq’ at the end of the methods name. Finally, the “getBool_2StepHighFrq”
will calculate the return value using the high frequency band average value, as
specified by the ‘HighFrq’ at the end of the methods name.

It should also be noted that the frequency band specified within the method name
will to some degree determine the possible uses of the returned variable. For
example using the low frequency band to calculate return values would be best for
variables that control rhythm. Whilst using the mid frequency band would be best for
variables to be associated with human speech samples within the audio, or perhaps
the main synth melody. Finally using the high frequency band would be best for
variables that convey energy or brightness. However, in the end, it is down to the
individual developer’s creativity and knowledge of these 3 frequency bands which
will ultimately dictate how they are used.

Finally the value of each frequency band average will always be between 0.0f and
1.0f. Specifying a value that is outside these boundaries will result in some return
values becoming unobtainable.

Function Set 1 Example: 2Step Return an Audio-dynamic C# Boolean Variable
This method is used to return a Boolean variable using the low frequency band. If the
low frequency band average of an audio clip is greater than 0.49f (an arbitrary value)
this method is will set the Boolean variable “shoot” to true. This variable could then
be used as a trigger for enemy units to fire their weapons when it is set to true.
Otherwise, if the audios average low frequency band is less than 0.49f false will be
returned, and enemies will cease their fire.

bool shoot = audioAnalysis.getBool_2StepLowFrq(0.49f);

Function Set 2 Example: 2Step Return an Audio-dynamic C# Integer Variable
This method is used to return a choice of two integer variables using the low
frequency band. If the low frequency band average of an audio clip is greater than
0.54f, this method will set the integer variable gameIntensity1Or6 to 6. Otherwise, if
this criterion is not met, gameIntensity1Or6 will be set to 1. This variable could be
used as a trigger, spawning a different enemy type when the value of
gameIntensity1Or6 is set to 6, than when it is set to 1.

int gameIntensity1Or6 = audioAnalysis.getInt_2StepLowFrq(1, 6, 0.54f);

Function Set 3 Example: 6Step Return an Audio-dynamic C# Integer Variable

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[318]

This method is used to return integer values between 1 and 6 using the low
frequency band. If the low frequency band average of an audio clip is less than 0.1f,
the minInt value of 1 will be returned. If the frequency band average is greater than
0.1f, but also less than or equal to 0.2f, 2 will be returned. If the frequency band
average is greater than 0.2f, but also less than or equal to 0.3f, 3 will be returned. If
the frequency band average is greater than 0.3f, but also less than or equal to 0.4f, 4
will be returned. If the frequency band average is greater than 0.4f, but also less than
or equal to 0.54f, 5 will be returned. Finally if the frequency band average is greater
than 0.54f 6, the maximum value, will be returned.

Each time a value is returned gameIntensity1To6’s value will be set to that value.
Once again this variable could be used as a trigger, perhaps to spawn different types
of enemies.

The only difference from the previous method being that this method has the ability
to spawn 6 different types of enemies, instead of just 2.

int gameIntensity1To6 = audioAnalysis.getInt_6StepLowFrq(1, 6, 0.1f, 0.2f, 0.3f, 0.4f,
0.54f);

Function Set 4 Example – 2Step Return an Audio-dynamic C# Float Variable
This method is used to return a choice of two float variables using the low frequency
band. If the low frequency band average of an audio clip is greater than 0.45f, this
method will set the float variable enemyMoveSpeed to 4.5f. Otherwise, if this
criterion is not met, enemyMoveSpeed will be set to 0.9f. This variable could be used
to regulate enemy move speed. So that enemies move slowly when the music is less
intense, and faster when it comes more so.

float enemyMoveSpeed = audioAnalysis.getFloat_2StepLowFrq(0.9f, 4.5f, 0.45f);

Function Set 5 Example – 6Step Return an Audio-dynamic C# Float Variable
This method is used to return float values between 0.75f and 2.0f using the mid
frequency band. If the mid frequency band average of an audio clip is less than 0.2f,
0.75f will be returned. If the frequency band average is greater than 0.2f, but also
less than or equal to 0.3f, 1.96f will be returned. If the frequency band average is
greater than 0.3f, but also less than or equal to 0.4f, 3.75f will be returned. If the
frequency band average is greater than 0.4f, but also less than or equal to 0.5f, 5.55f
will be returned. If the frequency band average is greater than 0.5f, but also less than
or equal to 0.64f, 7.34f will be returned. Finally if the frequency band average is
greater than 0.64f, 9.1337f - the maximum value, will be returned.

The returned float is stored in the enemyAnimation variable, which could for example
be used to regulate the scale of enemy animations.

Float enemyAnimation = audioAnalysis.getFloat_6StepMidFrq(0.175f, 9.1337f, 0.2f,
0.3f, 0.4f,
0.5f, 0.64f);

Function Set 6 – 2Step Return an Audio-dynamic C# String Variable

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[319]

This method is used to return one of two Strings using the high frequency band.
The highFrqMonitor String variable will be set to contain "High frequencies active" if
the high frequency average is above 0.0f. Otherwise, it will return "No highs". This
variable could be used to monitor the state of the high frequency average, perhaps
to display to the user when an audio sample currently contains no high frequencies.

String highFrqMonitor = audioAnalysis.getString_2StepHighFrq("No highs",
 "High frequencies active", 0.0f);

Function Set 7 Example – 6Step Return an Audio-dynamic C# String Variable
This method is used to return one of six Strings using the mid frequency band. If the
mid frequency band average of an audio clip is less than 0.1f, "Very low" will be
returned. If the frequency band average is greater than 0.1f, but also less than or
equal to 0.2f, "Low" will be returned. If the frequency band average is greater than
0.2f, but also less than or equal to 0.3f, "Low-Medium" will be returned. If the
frequency band average is greater than 0.3f, but also less than or equal to 0.4f,
"Medium" will be returned. If the frequency band average is greater than 0.4f, but
also less than or equal to 0.54f, "High" will be returned. Finally if the frequency band
average is greater than 0.54f "Very High" will be returned.

Similar to the previous method, the midFrqMonitor variable could perhaps be used to
display to the user the intensity of the mid frequency band.

String midFrqMonitor = audioAnalysis.getString_6StepMidFrq("Very low", "Low",
"Low-Medium",
"Medium", "High", "Very High", 0.1f, 0.2f, 0.3f, 0.4f, 0.54f);

Function Set 8 Example – 3Step Return an Audio-dynamic XNA Vector2 Variable
This method is used to return one of three Vector2 variables using the low frequency
band. If the low frequency band average of an audio clip is less than
0.4f, minParticleTrailVelocity will be returned. If the frequency band average is
greater than 0.4f, but also less than or equal to 0.54f, midParticleTrailVelocity will be
returned. Finally if the frequency band average is greater than
0.54f maxParticleTrailVelocity will be returned.

The currentParticleTrailVelocity variable could perhaps be used regulate the velocity
at which particles travel for a trail effect, using one of the three velocities provided as
parameters.

//Example particle trail velocities:
Vector2 minParticleTrailVelocity = new Vector2(0.7f, 0.7f);
Vector2 midParticleTrailVelocity = new Vector2(2.0f, 2.0f);
Vector2 maxParticleTrailVelocity = new Vector2(4.0f, 4.0f);

Vector2 currentParticleTrailVelocity = audioAnalysis.getVector2_3StepLowFrq(
minParticleTrailVelocity, midParticleTrailVelocity, maxParticleTrailVelocity, 0.4f,
0.54f);

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[320]

Function Set 9 Example – 6Step Return an Audio-dynamic XNA Vector2 Variable
This method is used to return one of six Vector2 variables using the mid frequency
band. If the mid frequency band average of an audio clip is less than 0.1f,
verySmallParticleExplosionVelocity will be returned. If the frequency band average is
greater than 0.1f, but also less than or equal to 0.2f, smallParticleExplosionVelocity
will be returned. If the frequency band average is greater than 0.2f, but also less than
or equal to 0.3f, mediumParticleExplosionVelocity will be returned. If the frequency
band average is greater than 0.3f, but also less than or equal to 0.4f,
bigParticleExplosionVelocity will be returned. If the frequency band average is
greater than 0.4f, but also less than or equal to 0.54f,
veryBigParticleExplosionVelocity will be returned. Finally if the frequency band
average is greater than 0.54f massiveParticleExplosionVelocity will be returned.

The currentParticleExplosionVelocity variable could be used to regulate the velocity
at which particles travel for explosions, using one of the six velocities provided as
parameters.

// Example particle explosion velocities:
Vector2 verySmallParticleExplosionVelocity = new Vector2(0.5f, 0.5f);
Vector2 smallParticleExplosionVelocity = new Vector2(1.5f, 1.5f);
Vector2 mediumParticleExplosionVelocity = new Vector2(5.0f, 5.0f);
Vector2 bigParticleExplosionVelocity = new Vector2(10.0f, 10.0f);
Vector2 veryBigParticleExplosionVelocity = new Vector2(15.0f, 15.0f);
Vector2 massiveParticleExplosionVelocity = new Vector2(25.0f, 25.0f);

Vector2 currentParticleExplosionVelocity = audioAnalysis.getVector2_6StepMidFrq(
verySmallParticleExplosionVelocity, smallParticleExplosionVelocity,
mediumParticleExplosionVelocity, bigParticleExplosionVelocity,
bigParticleExplosionVelocity, massiveParticleExplosionVelocity, 0.1f, 0.2f, 0.3f, 0.4f,
0.54f);

Function Set 10 Example – 3Step Return an Audio-dynamic XNA TimeSpan Variable
This method is used to return one of three TimeSpan variables using the low
frequency band. If the low frequency band average of an audio clip is less than 0.4f,
the maxFireRateInterval will be converted into a TimeSpan using the
TimeSpan.FromSeconds(maxFireRateInterval), then returned. If the frequency band
average is greater than 0.4f, but also less than or equal to 0.54f, the
midFireRateInterval will be converted into a TimeSpan using the
TimeSpan.FromSeconds(midFireRateInterval), then returned. Finally if the frequency
band average is greater than 0.54f the minFireRateInterval will be converted into a
TimeSpan using the TimeSpan.FromSeconds(minFireRateInterval), then returned.

The timeSpanBetweenShots variable could perhaps be used regulate time between
firing a projectile. For Example, when the low frequency band average is below 0.4f
projectiles will almost stop being fired at all, according to the maxFireRateInterval
float that was used to setup the returned TimeSpan. Whilst when the low frequency
band average is greater than 0.54f projectiles will be fired extremely quickly,
according to the minFireRateInterval float that was used to setup the returned
TimeSpan. While when the low frequency band average is between 0.1f and 0.7f

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[321]

projectiles will be fired at one of the other TimeSpan rates depending on the exact
current average.

//Example fire rate intervals, as floats:
float minFireRateInterval = 0.05f;
float midFireRateInterval = 0.15f;
float maxFireRateInterval = 10000f; //This basically turns off shooting.

TimeSpan timeSpanBetweenShots = audioAnalysis.getTimeSpan_3StepLowFrq(
minFireRateInterval, midFireRateInterval, maxFireRateInterval, 0.4f, 0.54f);

Function Set 11 Example – 6Step Return an Audio-dynamic XNA TimeSpan Variable
This method is used to return one of six TimeSpan variables using the low frequency
band. If the low frequency band average of an audio clip is less than 0.1f, the
slowestInterval will be converted into a TimeSpan using the
TimeSpan.FromSeconds(slowestInterval), then returned. If the frequency band
average is greater than 0.1f, but also less than or equal to 0.2f, the slowInterval will
be converted into a TimeSpan using the TimeSpan.FromSeconds(slowInterval), then
returned. If the frequency band average is greater than 0.2f, but also less than or
equal to 0.3f, the mediumInterval will be converted into a TimeSpan using the
TimeSpan.FromSeconds(mediumInterval), then returned. If the frequency band
average is greater than 0.3f, but also less than or equal to 0.4f, the fastInterval will
be converted into a TimeSpan using the TimeSpan.FromSeconds(fastInterval), then
returned. If the frequency band average is greater than 0.4f, but also less than or
equal to 0.7f, the veryFastInterval will be converted into a TimeSpan using the
TimeSpan.FromSeconds(veryFastInterval), then returned. Finally if the frequency
band average is greater than 0.7f the extremelyFastInterval will be converted into a
TimeSpan using the TimeSpan.FromSeconds(extremelyFastInterval), then returned.

The timeSpanBetweenSpawning variable could perhaps be used regulate time
between the spawning of enemies. For Example, when the low frequency band
average is below 0.1f enemies will almost stop spawning at all, according to the
slowestInterval float that was used to setup the returned TimeSpan. Whilst when the
low frequency band average is greater than 0.7f enemies will spawn extremely
quickly, according to the extremelyFastInterval float that was used to setup the
returned TimeSpan. While when the low frequency band average is between 0.1f
and 0.7f enemies will spawn at one of the other TimeSpan rates depending on the
exact current average.

float extremelyFastInterval = 0.05f;
float veryFastInterval = 0.2f;
float fastInterval = 0.3f;
float mediumInterval = 0.5f;
float slowInterval = 0.9f;
float slowestInterval = 10000f; //This basically stops spawning.

TimeSpan timeSpanBetweenSpawning =
audioAnalysis.getTimeSpan_6StepLowFrq(
extremelyFastInterval, veryFastInterval, fastInterval, mediumInterval,

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[322]

 slowInterval, slowestInterval, 0.1f, 0.2f, 0.3f, 0.4f, 0.7f);

Function Set 12 Example – 3Step Return an Audio-dynamic XNA Color Variable
This method is used to return one of three Color variables using the low frequency
band. If the low frequency band average of an audio clip is less than 0.4f,
colour_LowResponce will be returned. If the frequency band average is greater than
0.4f, but also less than or equal to 0.54f, colour_MediumResponce will be returned.
Finally if the frequency band average is greater than 0.54f colour_HighResponce will
be returned.

The currentColour variable could perhaps be used regulate the colour of particle
trails or explosions.

Color colour_LowResponce = new Color(1.0f, 0.0f, 0.0f); // Red
Color colour_MediumResponce = new Color(0.0f, 1.0f, 0.0f); // Green
Color colour_HighResponce = new Color(0.0f, 0.0f, 1.0f); // Blue
Color currentColour = audioAnalysis.getColour_3StepLowFrq(
colour_LowResponce,
 colour_MediumResponce, colour_HighResponce, 0.4f, 0.54f);

Function Set 13 Example – 6Step Return an Audio-dynamic XNA Color Variable
This method is used to return one of six Color variables using the high frequency
band. If the high frequency band average of an audio clip is less than 0.2f,
colour_MinResponce will be returned. If the frequency band average is greater than
0.2f, but also less than or equal to 0.25f, colour_LowMediumResponce will be
returned. If the frequency band average is greater than 0.25f, but also less than or
equal to 0.3f, colour_MediumResponce will be returned. If the frequency band
average is greater than 0.3f, but also less than or equal to
0.35f, colour_HighMediumResponce will be returned. If the frequency band average
is greater than 0.35f, but also less than or equal to 0.7f, colour_HighResponce will
be returned. Finally if the frequency band average is greater than 0.7f
colour_MaxResponce will be returned.

The currentColour variable could be used to regulate the background colour of the
project. So when the high frequency average is a very large value, the background
colour will change to a light grey. Whilst when it is a low value, it will remain black or
dark grey. This will create background colour strobe effect – flashing the background
colour a light grey on high frequency spikes (such as hi-hat hits).

Color colour_MinResponce = new Color(0, 0, 0); // Black
Color colour_LowMediumResponce = new Color(3, 3, 3); // Very very dark grey
Color colour_MediumResponce = new Color(6, 6, 6); // Very dark grey
Color colour_HighMediumResponce = new Color(9, 9, 9); // dark grey
Color colour_HighResponce = new Color(12, 12, 12); // grey
Color colour_MaxResponce = new Color(40, 40, 40); // light grey

Color currentColour = audioAnalysis.getColour_6StepHighFrq(
colour_MinResponce,

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[323]

colour_LowMediumResponce, colour_MediumResponce,
colour_HighMediumResponce,
colour_HighResponce, colour_MaxResponce,
0.2f, 0.25f, 0.3f, 0.35f, 0.7f);

Function Set 14 Example – 3Step Return an Audio-dynamic XNA Color[] Array
This method is used to return one of three Color arrays, Color[], using the low
frequency band. If the low frequency band average of an audio clip is less than 0.4f,
audioVisColourArray1 will be returned. If the frequency band average is greater than
0.4f, but also less than or equal to 0.54f, audioVisColourArray2 will be returned.
Finally if the frequency band average is greater than 0.54f audioVisColourArray3 will
be returned.

The currentColourArray could be used regulate the colours of multiple items that
work in synchronization / in colour combinations – and provides a more efficient
means of returning colour combinations that simply calling the getColour method
multiple times.

//initalise colour arrays for audio analysis use:
audioVisColourArray1 = new Color[2]; //array of 2 colours
audioVisColourArray2 = new Color[2]; //array of 2 colours
audioVisColourArray3 = new Color[2]; //array of 2 colours

//Colours for a low responce
audioVisColourArray1[0] = new Color(0, 153, 153);
audioVisColourArray1[1] = new Color(153, 153, 0);
//Colours for a medium responce
audioVisColourArray2[0] = new Color(152, 237, 0);
audioVisColourArray2[1] = new Color(0, 237, 152);
//Colours for a high responce
audioVisColourArray3[0] = new Color(208, 0, 110);
audioVisColourArray3[1] = new Color(110, 0, 208);

//A new array large enough to hold largest colour combination returned by the AAC
(2).
Color[] currentColourArray = new Color[2];

//Get the currentColourArray from using the AAC.
Color[] currentColourArray = audioAnalysis.getColourArray_3StepLowFrq(
audioVisColourArray1, audioVisColourArray2, audioVisColourArray3, 0.4f, 0.54f);

Audio-Driven Prototype Game
Alongside this framework a 2D 'audio-driven' game was created, see figures 7, 8 and
9. This game implements the audio analysis framework demonstrating some of its
possible capabilities. This prototype game has been uploaded to git hub as an XNA
executable, along with the full source code.

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[324]

To download an exe of the game click here!
https://github.com/SteveTKD64/DissertationAudioAnalysisProject/archive/master.zip
To download the game source code click here!
https://github.com/SteveTKD64/AACVSSource/archive/master.zip

Figure 7: "Very low" gameplay intensity - low frequency band average amplitude of 0.077

https://github.com/SteveTKD64/DissertationAudioAnalysisProject/archive/master.zip
https://github.com/SteveTKD64/AACVSSource/archive/master.zip

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[325]

Figure 8: "High" gameplay intensity - low frequency band average amplitude of 0.478

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[326]

Figure 9: "Insane" gameplay intensity - low frequency average amplitude of 0.542

Future Considerations
Knowing what I now know, there are some major changes that I would consider
making to the audio analysis class. When creating the audio analysis class, I
considered carefully the effects of functionality vs. performance. Since this
framework is designed for the use of developers, who may be building applications
already significantly impact upon performance, it’s important that my own methods
are of the lowest impact possible. Considering this, I decided to trade a small amount
of functionality and maintainability, to produce two sets of functions for each return
data type. This way, should developers only wish for a simple ‘on or off’ type return
of two specified values, inflicting minimum impact to their program, the 2Step
functions provide optimal performance. On the other hand, the 6Step functions
provide some extra functionality, at the expense of slightly higher impact, but
providing a smoother curve over which values are returned, and allowing the
developer to specify six different values for return.

If I am to continue the audio analysis class in the future, I will attempt to analyse the
impact that both these methods cause. If the difference is relatively small I will
consider scrapping both, in place of a 10Step method. My reasoning behind this is
that a 10Step method will likely provide the maximum functionality a developer could

The Plymouth Student Scientist, 2013, 6, (2), 310-327

[327]

need from a single method, over a smooth return curve. At the same time, as with
the 6Step method, it’s also possible to use it as a 2, 3, 4, etc. step method, by
manipulating the parameters in such a way that makes them out of bounds (out of
bounds being outside the normalised amplitude array of 0 to 1). For example a
10Step function can be converted into an XStep function easily. If X is the number of
parameters you wish the function to choose from, starting from string1 and going to
string10, then you must enter X-1 parameters within bounds the for calculation,
starting with the float max parameter, and going to the float min parameter.

Acknowledgements
Music created by Andreas Estensen (Est&Sen). Please click here to see his
facebook page for more!
https://www.facebook.com/estandsen

References
MSDN - 'MediaPlayer.GetVisualizationData Method':
http://msdn.microsoft.com/en-
us/library/microsoft.xna.framework.media.mediaplayer.getvisualizationdata.aspx (Ac
cessed 20/04/2013)

Rm09 (2010) – 'Understanding VisualizationData':
http://xboxforums.create.msdn.com/forums/t/22707.aspx (Accessed 20/04/2013)

Rose, J (2002) – ‘Range Finder’:
http://www.dplay.com/tutorial/bands/index.html (Accessed: 10/02/2013)

https://www.facebook.com/estandsen
https://www.facebook.com/estandsen
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.mediaplayer.getvisualizationdata.aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.mediaplayer.getvisualizationdata.aspx
http://xboxforums.create.msdn.com/forums/t/22707.aspx
http://www.dplay.com/tutorial/bands/index.html

