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Introduction

For nearly half a century, strong associations have been made linking early adventitial 

activation in disease with endothelial dysfunction [1, 2], and thus challenging the notion that 

the luminal endothelium is the initial sensor and propagator of cardiovascular disease. Over 

the past two decades, perturbational studies have established a causal role of adventitial 

factors in this regard. This review-based update acts as a springboard for a revitalized debate 

of the adventitia’s role in vascular disease.

From a pathological perspective, the adventitia reportedly plays a deleterious role via 

production of large amounts of NADPH oxidase (Nox)-derived reactive oxygen species 

(ROS) in response to vascular injury and disease [3, 4]. A combined adventitial fibroblast 

and inflammatory cell infiltration facilitated by the vasa vasorum (VV) is expected to 

synergize and propagate vessel inflammation [5]. In fact, Noxes are highly activated by 

inflammatory cytokines, hormones, lipids and angiotensin II (AngII) [6]. In the adventitia, 

Nox-derived ROS is the dominant culprit for intracellular redox signaling cascade 

activation, either in an autocrine or paracrine manner, leading to subsequent vascular cell 

activation, proliferation, hypertrophy, and apoptosis and thereby promoting vascular 

diseases including hypertension and atherosclerosis [7]. Despite these discoveries, studies 

delving into the role of the adventitia in disease propagation and/or progression remain 

limited. This gap in knowledge presents a relatively “untapped” opportunity to study 

vascular disease etiology in a renewed light. This focused mini-review addresses the role of 

adventitial Nox-derived ROS from a perivascular viewpoint looking inwards to promoting 

vascular inflammation and disease.
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The Adventitia, Adventitial Fibroblasts and ROS: Instigators of Vessel 

Inflammation

Forming the outermost layer of the vessel wall, the adventitia is emerging as a prominent 

channel for the progression of vascular remodeling. Within the adventitial milieu, adventitial 

fibroblasts/myofibroblasts, lymphocytes, stem cell-like vascular and hematopoietic lineage 

progenitors, and endothelial cells reside [8–10]. To date, the scientific maxim has been that 

vascular inflammation is initiated at the main luminal endothelial surface and progresses 

through the media towards the adventitia. However, this rigid hematocentric or “inside-out” 

view of the vasculature is slowly being debunked by another perspective of the adventitia as 

an integral tissue of sorts, in its own right, influencing vessel function [11]. Importantly, a 

plethora of evidence details the direct effects of adventitia-derived ROS on medial growth as 

well as ROS-dependent vascular wall inflammation in hypertension, aortic aneurysms and 

atherosclerosis [12]. By extension, the adventitia has profound implications for vessel tone, 

with adventitial fibroblasts producing substantial amounts of Nox-derived ROS which 

augment constriction [13, 14]. Additionally, adventitial fibroblast cell-derived cytokines (i.e. 

IL-1β, IL-6, and MCP-1) are implicated in fibroblast activation and recruitment of 

inflammatory cells to the adventitial layer which impairs vascular function [15]. Therefore, 

the directionality of “inside-out” vascular disease hypothesis requires careful 

reconsideration. Gaining traction within the literature is the notion of an adventitious (from 

the Latin for “coming from without”) or “outside-in” paradigm, in which the nexus of 

vascular wall ROS and inflammation propagates in the adventitia and spreads through the 

media inward toward the intima [16, 17]. Hallmarks of the “outside-in” hypothesis include 

increased activation and migration of fibroblasts and myofibroblasts, increased VV 

neovascularization, a relatively high adventitial infiltration of leukocytes, and enhanced 

adventitia-derived ROS levels [5, 8, 9, 18]. Together, these processes appear to exacerbate 

attraction and delivery of inflammatory cells to the adventitia and subsequently throughout 

the vessel wall. Indeed, a complex interaction between vascular cells and different classes of 

leukocytes (T lymphocytes, neutrophils and monocytes/macrophages) exists and supports 

the vascular inflammation phenotype [19]. Importantly, adventitial hyperplasia precedes 

medial hypertrophy and neointimal hyperplasia, and even endothelial dysfunction, in various 

manifestations of CVD [1, 2, 20, 21]. These findings appear to suggest that the adventitia is 

an “initial-sensor” and a prominent motivator of vascular phenotype change (see Figure 1).

Nox: The Nexus of Adventitial Signaling?

Adventitial fibroblast Nox has been implicated in fibroblast function [22], as well as being 

the major contributor to vascular ROS in CVD [23]. Both superoxide and its metabolite 

hydrogen peroxide (H2O2), generated from the former by spontaneous dismutation or 

facilitated by the enzyme superoxide dismutase (SOD), have emerged as important players 

in vascular pathophysiology due to their signaling roles in a range of cellular processes, 

including cell proliferation, migration, hypertrophy, and apoptosis [24]. Essentially, Nox-

derived ROS remain front runners of adventitial redox signaling as other ROS generating 

enzymes (e.g. mitochondrial complex I and xanthine oxidases) are yet to be implicated in 

this response.
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The Nox family of enzymes consists of 7 isozymes, namely Nox1-5 and DUOX1-2 [25] 

with varying expression patterns throughout adventitial resident cells. Early studies in our 

laboratory demonstrated abundant co-localization of Nox2, p22phox, p47phox and p67phox in 

aortic vascular adventitia and enrichment of p67phox-dependent Nox activity in cultured 

adventitial fibroblasts of the rabbit aorta [3]. With regard to the other Nox isoforms and 

cytosolic subunits, reports illustrate expression of the adventitial fibroblast Nox1 and Nox4 

oxidase systems [26, 27]. Notably, Nox4-derived H2O2 is documented to be protective in 

many vascular and heart disease models [28, 29]. Irrespective of the Nox isoform, fibroblast 

Nox activity is enhanced by a wide variety of stimuli, including hypoxia, cytokines, 

hormones, metabolic factors and mechanical injury [6]. As expected, adventitial leukocytes 

exhibit high Nox2 expression [30] and this increased leukocyte-Nox-ROS is predicted to 

contribute to an overall increase in local oxidant level following adventitial leukocyte 

accumulation, a potential result of the chronic sterile inflammasome [31]. In terms of 

adventitial stem cells, a potential influential role of Nox expression/activation is yet to be 

explored. That notwithstanding, these findings collectively predict a complex disarray of 

ROS-mediated signaling from the adventitia in response to various stimuli in vascular 

disease.

The Vasa Vasorum (VV): The New “Front Door” to Medial Inflammation?

As a result of medial hypertrophy and/or hyperplasia, pO2 levels plummet at the vessel wall 

core setting in motion hypoxia-dependent and -independent signaling, which include 

fibroblast and myofibroblast proliferation, increased ROS levels and neovascularization. 

Consequently, as a microvascular network of vessels luminally lined with endothelial cells 

and surrounded by smooth muscle cells and pericytes, the VV serves to supply oxygen and 

nutrients to the walls of large vessels [32]. As a result, these new microvessels are expected 

to facilitate chemoattraction and delivery of inflammatory cells from the adventitia across 

the external laminae and into the media eliciting noxious effects [11, 33].

As observed in hypertension [34] and atherosclerosis [35], the VV often becomes densely 

arborized and extends from the adventitial layer into the media. Indeed in atherosclerosis, 

the nascent VV is considered to be an immature and leaky network, therein promoting 

vascular inflammation and plaque progression by facilitating extravasation of leukocytes 

into the medial layer [36]. Moreover, many experimental studies in animal models directly 

link VV neovascularization with neointimal thickening [37, 38]. Whether neointimal 

thickening in this setting is the result of direct accumulation of leukocytes in the intima 

and/or an inflammation-induced smooth muscle migration is still unclear. Interestingly, a 

niche of adventitial-resident endothelial progenitor cells and multipotent pericytes putatively 

provide the “building blocks” for neovascularization [9, 39]. However, mechanisms by 

which these stem cell-like progenitors are mobilized from their adventitial niches and 

pervade other vessel layers are incompletely understood. And although yet unsubstantiated, 

a key role of the VV in facilitating migration of these progenitor cells to vascular sites of 

inflammation and injury is expected. Indeed, as vascular inflammation is known to involve 

chemotaxis, chemokinesis, and transmigration [33] of adventitial cells, greater consideration 

of the “outside-in” theory, concordant with a burgeoning VV, is required to fully 

comprehend neointimal hyperplasia in hypertension and atherosclerosis.
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Currently, methods to visualize the VV in vivo are limited to end stage disease using either 

three-dimensional micro-computed tomography (micro-CT) [40], fluorescence confocal 

image stacking [38] or multiphoton microscopy [41]. Using micro-CT, Herrmann and 

colleagues observed increased density of the VV penetrating the tunica adventitia and media 

of large vessels as early hallmarks of vascular inflammatory disease [20]. As alluded to 

above, the initiating factor for increasing VV density purportedly involves decreased medial 

O2 levels in turn eliciting hypoxia-inducible factor-1α (HIF-1α) [34, 42] activation and 

fibroblast growth factor-2 (FGF2)-dependent VV stabilization [43]. Moreover, Nox-derived 

ROS play a central role in HIF-1α activation [44]. In this regard, Khatri and colleagues 

identified transgene over-expression of vascular smooth muscle cell p22phox in mice 

triggered oxidative stress-induced HIF-1α and enhanced atheroma progression via 

angiogenic switching [45]. However, while this angiogenic response may appear fortuitous 

in this context, it is expected to enhance plaque progression via extravasation of leukocytes 

following endothelial activation. Other reports identify pro-inflammatory cytokines IL-1β 

and TNFα involvement in VCAM-1 expression via NFkB [46]. Indeed, ROS is known to 

participate in endothelial adhesion molecule ICAM-1, VCAM-1 and E-selectin expression 

[47] and compared to wild-type mice, TNFα stimulation does not induce expression of 

VCAM-1 in coronary microvascular endothelial cells from p47phox null mice, implicating a 

role of Nox2-derived ROS in this process [48]. Moreover, treatment of endothelial cells with 

SOD and catalase inhibited ROS-mediated activation of NFkB [49]. Taking these findings 

together, one might expect a positive feedback loop involving Nox-derived ROS leading to 

an exaggerated accumulation of leukocytes in the adventitia and outer media. The 

abovementioned findings are supported by work by Cheng and colleagues who 

demonstrated that plaque vulnerability and growth correlated with expression of Est2 (a 

potent transactivator of endothelial pro-angiogenic receptors), and neovascularization [50]. 

In still another study, Langheinrich and colleagues correlated neovascularization with 

extravasation of leukocytes and plaque progression [51]. That being said, the existence of a 

feed-forward interaction between leukocyte-derived and adventitial parenchymal cell-

derived ROS propagating VV adhesion molecule expression has not yet been confirmed. 

Thus, there is still much to be learned regarding adventitial fibroblast ROS, oxidative stress 

and VV neovascularization cross-talk.

Adventitial Nox-ROS and Vascular Disease

To date, the question of which vessel segment when activated, intima versus adventitia, is 

the predominant driver of vascular disease remains unanswered. The evidence referenced 

herein should leave little doubt that the adventitia plays a mounting role in vascular disease 

progression. That is, the “inside-out” hypothesis falls short of fully addressing the 

underpinnings for vessel remodeling and neointimal hyperplasia. Nonetheless, we consider 

it highly likely that both the intima and adventitia play prominent roles.

Hypertension

Hypertension affects 1:3 people in the USA, and, although therapies exist with the aim of 

reducing blood pressure, e.g. angiotensin converting enzyme (ACE) inhibitors, beta-blockers 

and diuretics [52], hypertension-induced vascular inflammation remains an intractable 
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problem. In AngII, DOCA-salt and spontaneous hypertensive rat (SHR) models, Nox2-

derived ROS remain the main culprits for adventitial redox signaling [53, 54]. Notably, 

adventitial fibroblast ROS is observed to play an active role in AngII-hypertension 

associated vessel remodeling by effecting secretion of monocyte chemoattractant protein-1 

(MCP-1) and IL-6 [15, 55]. Significantly, adventitial leukocyte accumulation and vessel 

inflammation are observed in human hypertensive specimens and animal models [56–58] 

and adventitial macrophage infiltration occurs in conjunction with the development of 

vascular wall hypertrophy in models of AngII-induced hypertension [17]. Intriguingly, this 

accumulation is acknowledged to occur in the absence of significant intimal macrophage 

migration and it remains to be determined whether this macrophage accumulation in 

hypertension is synergized by “outside-in” infiltration via the VV and resident macrophage 

progenitor cells [39, 59].

Our laboratory discovered AngII induces p67phox-dependent adventitial ROS in the mouse 

[60] and this was recently corroborated by the Cowley laboratory, who showed that p67phox 

knockout rats display significantly lower mean arterial pressures in a salt-sensitive 

hypertension model compared to wild-type rats [61]. Moreover, Nox1/2 inhibition, using the 

non-selective VasoPharm compounds, inhibited endothelial dysfunction in SHR rat aortas, 

with an evident decrease in adventitial ROS and potential Nox2 expression [62]. Therefore, 

as adventitial Nox2 is activated in hypertension models, we hypothesized Nox2-derived 

ROS plays a paracrine role to induce medial hypertrophy [63]. Importantly, our group 

recently expanded on this notion by discovering that extracellular feed-forward ROS 

signaling promotes SMC hypertrophy via aquaporin 1 and Nox1 [64]. Similarly, AngII-

induced vessel hypertrophy was reportedly attenuated with adventitial catalase gene transfer 

[65]. In aggregate, these studies implicate Nox2 as a potential therapeutic target for 

inhibiting adventitial fibroblast activation, medial hypertrophy and hypertension.

Aortic aneurysm/dissection

Aortic aneurysms (AAs) are a chronic vascular degenerative disease characterized by the 

deterioration of the aortic wall architecture leading to progressive segmental dilation and 

lethal risk of aortic rupture [66]. To date, limited therapeutic strategies exist for combatting 

AA outside of surgical repair, and much of the disease etiology is unknown. A large 

proportion of AA is characterized by an inflammatory response within the aortic wall which 

includes dramatic adventitial remodelling [67]. As with hypertension, AA pathogenesis 

commences with macrophage recruitment and accumulation in the adventitia; however it 

differs in ensuing migration and redistribution throughout the media [68]. Moreover, reports 

identify that other leukocytes accumulate and populate the adventitia, including neutrophils 

and lymphocytes [69]. Therefore, the adventitia appears to act as an efficient ‘gateway’ for 

leukocyte infiltration. The lethality of AA stems from acute rupture (aortic dissection) 

allowing luminal blood to permeate the media. In an acute model of aortic dissection, 

adventitial CXCL1/G-CSF expression following dissection triggered local neutrophil 

recruitment which exaggerated the disease [70]. This finding alone is expected to stimulate a 

line of inquiry into a plausible role of neutrophils in exacerbated ROS generation and 

dissection of the vessel wall. Furthermore, Nox2 was recently identified as a central culprit 

for aortic dissection in an AngII-infused ApoE-null mouse model [71]. Fan and colleagues 
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elegantly demonstrate that increased endothelial Nox2 expression and ROS promote 

cyclophillin-A secretion and SMC-derived reactive species, leading to vascular 

inflammation and dissection. While evidence of adventitial VV permeating the medial layer 

is clear in AA [72], whether VV Nox2 or intimal Nox2 is the culpable endothelial source 

requires further inquiry. A caveat to these findings is the knowledge that global Nox2 

deficiency exacerbated AngII-induced AAs [73] via increased macrophage IL-1β and MMP 

activity. Conversely, Meng and colleagues recently demonstrated regulatory T-lymphocytes 

(T-regs) prevent AngII-induced abdominal aneurysms in an ApoE-null mouse model [74]. 

In particular, T-regs were able to decrease aortic expression of MCP-1, IL-6 and ICAM-1, as 

well as reduce MMP-2 and MMP-9 expression. In fact, redox mechanisms are linked with 

expression of MCP-1 and ICAM-1, and activation of MMPs. Therefore, a T-reg-mediated 

dampening of immune response is likely to involve suppression of Nox/ROS. Further 

studies are thus warranted to fully appreciate the role of the adventitial VV as well as the 

specific classes of leukocytes which ostensibly dictate AA disease progression.

Atherosclerosis

Atherosclerosis is a multifactorial, multicellular vascular inflammatory disease. Current 

therapeutic strategies involve statins (lipid lowering agents) and dietary control, in addition 

to surgical stenting. However, modulators of vascular inflammation are conspicuously 

absent. Not surprisingly, therefore, increased VV vascularity is a hallmark of the disease. At 

this juncture, it should be clear that an attendant leukocyte infiltration would promote 

atheromatous plaque progression [75, 76]. In animal models, endothelial activation portends 

chronic inflammation and plaque progression [77] and the role of Nox2 in endothelial cell 

activation and dysfunction is well defined [6]. Therefore, an unrestrained neovascularization 

and endothelial activation in atherosclerosis is consistent with global Nox2 deficiency 

reducing early plaque burden and atherosclerosis [78]. That said, cell-specific Nox2 

knockouts would be useful in addressing the relative and temporal contribution of 

endothelial dysfunction versus sterile inflammasome response in the disease [79]. The role 

of adventitial fibroblasts in atherosclerosis has been documented, where they are described 

as early activators in the disease [80] and migrate through the vessel wall as differentiated 

myofibroblasts. Finally, a cross-talk between adventitial cells (including progenitor cells) 

and SMCs in the propagation of plaques is expected to be the basis of many intriguing 

studies in coming years.

Concluding remarks and personal perspective

A chronic increase in adventitial activation and Nox-derived ROS has emerged as a catalyst 

for vascular hypertrophy and hyperplasia in vascular disease. In this regard, our perspective 

as vascular biologists requires an alternate and complementary view of the typical 

hematocentric paradigm associated with disease initiation and progression. Instead, a greater 

focus on the adventitia from a perivascular perspective is required to fully investigate the 

relative contribution of adventitial fibroblasts, vascular stem cell-like progenitors and 

inflammatory cells to disease progression. Inevitably, this vantage point is expected to 

illuminate our appreciation the adventitial VV as a prominent gateway responsible for 

overall vascular inflammation. In closing, surprisingly few studies have emerged over the 
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past 5 years in Hypertension, Circulation or Circulation Research which explore the 

adventitia in disease aside from key discoveries documenting pools of adventitial stem cell 

progenitors. Thus, further investigation of the role of the adventitia will greatly improve our 

knowledge of vascular disease progression and, importantly, accelerate basic research to 

better understand the sequence of events in vascular remodeling. From a pre-clinical 

perspective, inhibitory agents targeting specific Nox enzymes are expected to permit 

dissection of the precise roles of Nox-derived ROS and form the basis for new drug 

therapies treating vascular inflammation.
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Figure 1. 
Schematic representation of the adventitious “outside-in” paradigm in cardiovascular 

disease. In the “outside-in” model adventitial ROS from multiple cell types propagate a 

rapidly growing and “leaky” vasa vasorum which provides a gateway for inflammatory cells 

to enter the media and intima. There leukocytes and myofibroblasts accumulate and cause 

local SMCs to become hypertrophic or proliferate depending on the disease milieu: 

hypertension, aortic aneurysm/dissection and atherosclerosis.
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