

University of Bath

PHD

Efficient Simulation of Rare Events in one-dimensional systems using a parallelised
cloning algorithm

Brewer, Tobias

Award date:
2019

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. May. 2019

Citation for published version:
Brewer, T 2019, 'Efficient Simulation of Rare Events in one-dimensional systems using a parallelised cloning
algorithm', University of Bath.

Publication date:
2019

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Apr. 2019

https://researchportal.bath.ac.uk/en/publications/efficient-simulation-of-rare-events-in-onedimensional-systems-using-a-parallelised-cloning-algorithm(d08dda6d-6d59-41d3-af30-cbf86344348a).html

Efficient Simulation of Rare Events in
one-dimensional systems using a parallelised

cloning algorithm

Tobias Brewer

A thesis submitted for the degree of

Doctor of Philosophy

University of Bath
Department of Physics

October 2018

1

0%

Abstract

We consider the population dynamics that are implemented by the cloning algorithm

for analysis of large deviations of time-averaged quantities. We consider exclusion

processes acting on particles on one-dimensional lattices such as the simple sym-

metric exclusion process and the Fredkin Process. We use large deviation theory

to quantify the probabilities of rare events. To achieve this we adapt a numerical

algorithm which employs a combination of biased cloning and simulation of modi-

fied dynamics. We establish its accuracy within particular regimes, determine which

configurations are likely to produce rare events and quantify the convergence of the

algorithm with respect to algorithmic parameters. We investigate the efficiency and

speed-up obtained when using different parallelisation techniques to implement the

algorithm which involves complex communication patterns between systems.

2

Acknowledgments

I would like to thank Dr. Robert L. Jack, Dr Stephen R. Clark and Dr Russell

Bradford for their support throughout my PhD and for their contributions to the

research paper [19] that we wrote together. This paper included results collected

by me as well as contributions to writing the text from all four of us. I would

also like to thank them for the feedback that they provided throughout writing this

thesis which includes text written and results collected by me. Thankyou also to Dr

Juan P. Garrahan at the University of Nottingham for the ideas he suggested for

our research on Fredkin Chains. Thankyou also to my friends and family for their

support. This research made use of the Balena High Performance Computing (HPC)

Service at the University of Bath. Thankyou also to ClusterVision for providing and

funding my studentship and for their help and assistance throughout my PhD.

3

Contents

Page

1 Introduction 7

1.1 Statistical Mechanics, Equilibrium and Non-Equilibrium 9

1.2 Examples of Phase Transitions . 11

1.3 New Contributions . 13

2 Large Deviation Theory and the Cloning Algorithm 16

2.1 Large Deviation Theory for Time Averaged-Quantities 17

2.2 Modified Dynamics . 19

2.3 Cloning Algorithm . 21

2.4 Computational Procedures . 23

2.5 Estimating Averages with Respect to P̃ 25

3 Dynamical Phase Transition in the SSEP 27

3.1 Model and Choice of Dynamical Observable 28

3.2 Theoretical Analysis of Dynamical Phase Transition 30

3.3 Properties of Dynamical Phase Transition 31

3.4 Scaling at the Dynamical Phase Transition 36

3.5 SSEP Summary . 37

4 Algorithm Performance in the SSEP 39

4.1 Clone Selection Methods . 40

4.2 Effect of Cloning Method and Choice of ∆t 41

4.3 Convergence . 43

4.3.1 Time tobs Convergence . 43

4.3.2 Population Size nc Convergence 49

4.4 Performance Summary . 53

5 Large Deviations in Fredkin Processes 54

5.1 Fredkin Process and Relevant Observables 54

4

5.2 Large Deviations in Activity (Hops) 58

5.2.1 Peak in Susceptibility . 61

5.3 Large Deviations in Area Beneath the Dyck Path 64

5.4 Algorithm Performance . 65

5.4.1 Measuring Activity (Hops) . 66

5.4.2 Measuring Area Beneath the Dyck Path 73

5.5 Fredkin Summary . 77

6 Computational Approaches for Measuring and Improving Speed

and Efficiency 79

6.1 Serial Code and Definitions . 80

6.2 OpenMP Code . 81

6.3 MPI Code . 82

6.3.1 MPI Pack Functions . 83

6.4 Reduced Communications . 84

6.4.1 Communication Patterns . 85

6.5 Non-Blocking Implementations . 86

6.5.1 Test Codes . 87

6.5.2 Packing Multiple Systems . 92

6.6 Hybrid Implementations . 93

6.6.1 Test Code . 95

6.7 Weak Scaling . 96

6.8 Derived Data Types . 97

6.9 Compilers and Optimisers . 98

6.10 Computation Summary . 99

7 Conclusions and Future Work 100

7.1 Conclusions . 100

7.2 Future Work . 108

A Relating ψ(s) to π(a) Using the Observable Value at time t 110

B Calculation of Hop Success Rates 113

C Satisfying the Master Equation 116

D Path Measures 118

E Derived Data Type for a One-Dimensional Lattice 121

5

List of Tables

Page

4.1 Relative Error in Activity when Varying the Observation Time tobs

in the SSEP . 45

4.2 Normalisation Coefficients cO(t′) of Several Observables in SSEP . . . 48

4.3 Relative Error in Activity when Varying the Number of Systems nc

in the SSEP . 50

5.1 Relative Error in Activity when Varying the Observation tobs in Fred-

kin Processes when Biasing Activity 69

5.2 Normalisation Coefficients cO(t′) of Various Observables in Fredkin

Processes when Biasing Activity . 71

5.3 Relative Error in Activity when Varying the Number of Systems nc

in Fredkin Processes when Biasing Activity 72

5.4 Relative Error in the Area Beneath the Dyck Path when Varying the

Observation Time tobs in Fredkin Processes when Biasing the Area

Beneath the Dyck Path . 75

5.5 Relative Error in the Area Beneath the Dyck Path when Varying the

Number of Systems nc in Fredkin Processes when Biasing the Area

Beneath the Dyck Path . 77

6.1 Set of Parameters for a Test Case at which we Obtain Results. 80

6.2 Run Times Obtained by MPI implementations with Different Amounts

of Packing . 84

6.3 Run Times Obtained by MPI implementations with and without Re-

duced Communications. 85

6.4 Run Time of Test Code A . 88

6.5 Run Times of the Test Code which Copies One Component of Length

100 when the Request Array of the WaitAny Function is Split. 91

6

List of Figures

Page

3.1 Example of SSEP on a One-Dimensional Lattice 30

3.2 Sample Trajectories of SSEP . 32

3.3 The Mean Square Value of the First Fourier Component of Density . 33

3.4 Results Obtained from our Implementation of the Algorithm for the

SSEP . 34

4.1 Number Line Used in Clone Selection Methods 40

4.2 Dependence of the Algorithm’s Results on the Size of the Cloning

Interval and the Clone Selection Mechanism 42

4.3 Time Convergence with Respect to tobs 44

4.4 The pave Measure of Variables Around the Final Transient Regime . . 46

4.5 Autocorrelation Function of Variables with Respect to the Final Time

tobs . 48

4.6 Clone Convergence with Respect to nc 50

4.7 pave and pend Distributions of Activity Per Cloning Interval Kβ 51

5.1 An Example of a Dyck Path and its Corresponding Dyck Word . . . 56

5.2 Illustration of a Fredkin Process on a One-Dimensional Lattice 56

5.3 Large Deviation Function and Directly Measured Activity when Bi-

asing Activity in the Fredkin Process 59

5.4 Large Deviation Function and Directly Measured Area from Algo-

rithm and Theory when Biasing Activity in the Fredkin Process . . . 60

5.5 Sample Trajectories of Fredkin Processes when Biasing Activity . . . 61

5.6 Density Profile of Fredkin Processes when Biasing Activity 62

5.7 Directly Measured Area Beneath the Dyck Path in Fredkin Processes

when Biasing the Activity . 63

5.8 Directly Measured Centre of Mass in Fredkin Processes when Biasing

the Activity . 63

7

5.9 Large Deviations, Activity and Susceptibilty of Fredkin Processes

when Biasing Activity. 64

5.10 Large Deviation Function and Directly Measured Area Beneath the

Dyck Path when Biasing the Area Beneath the Dyck Path 65

5.11 Sample Trajectories of Fredkin Processes when Biasing the Area Be-

neath the Dyck Path . 66

5.12 Density Profile of Fredkin Processes when Biasing the Area Beneath

the Dyck Path . 67

5.13 Centre of Mass of Fredkin Processes when Biasing the Area Beneath

the Dyck Path . 68

5.14 Time Convergence of the Algorithm when Biasing Activity in Fredkin

Processes . 68

5.15 Clone Convergence of the Algorithm when Biasing Activity in Fredkin

Processes . 69

5.16 Time Convergence of the Algorithm when Biasing Activity in Fredkin

Processes Near the Maximum Susceptibility 70

5.17 The pave Measure of Variables Around the Final Transient Regime in

Fredkin Processes when Biasing the Activity. 71

5.18 Autocorrelation Function of Variables with Respect to the Final Time

tobs in Fredkin Processes when Biasing the Activity. 72

5.19 Clone Convergence of the Algorithm when Biasing Activity in Fredkin

Processes Near the Maximum Susceptibility 73

5.20 pave and pend Distributions of Activity Per Cloning Interval Kβ in

Fredkin Processes . 74

5.21 Time Convergence of the Algorithm when Biasing the Area Beneath

the Dyck Path in Fredkin Processes 75

5.22 Clone Convergence of the Algorithm when Biasing the Area Beneath

the Dyck Path in Fredkin Processes. 76

6.1 Illustration of the Serial Implementation of the Algorithm 80

6.2 Illustration of the OpenMP Implementation of the Algorithm 82

6.3 Illustration of the MPI implementation of the algorithm 83

6.4 An Example of Reduced MPI Communication 85

6.5 MPI Communications Pattern Under Simple Communications and

Reduced Communications . 86

6.6 Fixed Communications Pattern for Test Codes. 89

6.7 Run Time of Test Code B. 90

6.8 Run Time of Test Code which Copies One Component of Length 100. 91

8

6.9 Run Time of the Test Code which Uses Multiple Request Arrays . . . 92

6.10 Run Times of the Code with System-Packing with Blocking and with

Non-Blocking Communications. 93

6.11 Illustration of the Hybrid Implementation of the Algorithm 94

6.12 Run Times of the Hybrid Code. 95

6.13 Run Time of the Test Code where the Length of the Component

Being Copied is Varied. 97

6.14 Weak Scaling of the Run Time of the Code 98

9

Chapter 1

Introduction

Rare events are important across scientific fields from geology [52] to climate dy-

namics [40]. In particular, there has been recent interest in rare events where a

time-averaged observable quantity has a non-typical value [35, 61, 110]. If the sys-

tem is ergodic and the average is taken over a long period then these rare events can

be described by large deviation theory. Studies of such rare events have proven use-

ful in glassy materials [69, 48], protein-folding [120, 121, 91] and integrable systems

[112].

Large deviation theory was first developed in the field of insurance mathemat-

ics by Harald Cramér [32] and Filip Lundberg [31]. Cramér and Lundberg were both

actuaries who used large deviation theory to describe the probability of an insurer

going into insolvency, this was known as ruin theory. Large deviation theory allows

us to approximate the asymptotic behaviour of probability distributions. It has a

range of applications [117, 59] such as in finance and insurance [100] and allows us

to approximate the probabilities of rare events.

The study of large deviations in simple systems of interacting diffusing par-

ticles has led to the exploration of dynamical phase transitions [12] and attempts

to describe their properties [13, 85, 14]. Phase transitions are interesting because

they correspond to a step change in the value of an observable. To fully understand

the physics of a system it is important to be able to understand the properties of

this shift and why it occurs. The phase transitions that we consider are between a

hyperuniform state [115] and a less easily characterized ordered state [85]. The nu-

merical methods used for evaluating large deviations often exhibit large systematic

errors close to these phase transitions [94]. This makes phase transitions a useful

place at which to test and improve these methods.

The nature of rare events makes their direct measurement difficult, which

has motivated a number of computational methods for studying them [18, 74, 75].

10

Grassberger introduced a numerical procedure [51] for sampling configurations from

a given distribution which simulates a large number of systems and clones/deletes

systems which have a particularly large or small weight associated with them. This

approach has been developed by Giardinà, Peliti and Kurchan [50] and then by

Lecomte and Tailleur [86] leading to a cloning algorithm. This method shares some

features with other rare-event sampling methods such as forward-flux sampling [1]

and weighted-ensemble dynamics [66, 122]. Other methods – particularly transi-

tion path sampling [16] – can also be applied to similar problems. Transition path

sampling allows the computational study of rare events without prior knowledge of

reaction coordinates or transition rates [16]. It has proved particularly efficient

in sampling reactive trajectories [76]. Path sampling can be substantially more ef-

fective than simply the simulation of dynamics and is particularly well suited to

situations when there is a large separation between the timescale of the transition

event itself and the preceding period of time [28].

The cloning algorithm has been applied to a range of systems [112, 101, 67, 96].

Examples of systems in which we may simulate the dynamics to investigate rare

events are molecular dynamics [29, 23], supercooled liquids [77] and rogue waves

[98] [49]. The method gives powerful results but requires the simulation of a large

number of instances of the systems and only produces accurate results in the limit

of the number of systems tending to infinity. Nemoto, Hidalgo and Lecomte [95, 64]

and Ray, Chan and Limmer [103] analyse the systematic and random errors that

occur when the algorithm is executed with a finite number of systems. The scaling

of these errors has been determined by an analytical description and verified using

a numerical approach which measures the speed at which an estimator converges

towards its true value [95, 64]. To improve the efficiency of this convergence some

versions of the algorithm use controlling forces or simple guiding models [96, 103, 94].

In some previous analyses of the convergence of the algorithm it was often

assumed that the clone population is larger than the total number of states visited by

the model [95, 64]. This is not generally the case in typical applications so we analyse

here the case where the number of clones is much smaller than the total number of

states that the model allows the system to exist in. The algorithm requires a large

time and only produces accurate results in the limit of the observation time tending

to infinity. As the observation time increases the systematic error decreases. In Part

II of their Finite Scalings paper [64], Hidalgo, Nemoto and Lecomte investigated

the scaling of these errors.

11

1.1 Statistical Mechanics, Equilibrium and Non-

Equilibrium

Many of the ideas that the cloning algorithm is based on are related to ideas in sta-

tistical mechanics. Statistical mechanics is based on the idea that a system can exist

in a discrete set of microstates which define the values of all possible microscopic

variables. It is used to study physical properties of macroscopic systems with a

large number of degrees of freedom. In the context of statistical mechanics, internal

parameters are those which depend on the positions and momenta of particles en-

tering the system examples of which are internal energy, temperature and pressure.

External parameters, in this context, are those only determined by the co-ordinates

of external bodies interacting with the system such as the electric and magnetic field

strengths and the volume.

The internal parameters of a system can be described as intensive or extensive.

Extensive parameters are some sometimes called additive parameters and include

quantities like the energy and the entropy. Extensive parameters are proportional to

the amount of substance in the system. Intensive parameters are quantities which

are not dependent on the amount of substance in the system such as the temperature

and pressure. A macroscopic state of the system is described by these parameters

and is not related to microscopic parameters.

One of the important concepts in statistical mechanics is the distinction be-

tween equilibrium and non-equilibrium. An equilibrium system is one in which

conserved quantities do not change even in a very long waiting time. In equilibrium,

the system will be in a state that is independent of its past history. Nonequilibrium

systems are any systems that cannot be described as being in equilibrium including

those in a transient time before reaching equilibrium. Non-equilibrium systems are

not well understood in comparison to our understanding of equilibrium systems.

If a system is not in the equilibrium state, the first postulate of thermodynam-

ics states that over some period of time if it is isolated (or finite) it tends towards

its equilibrium state. It also says that, macroscopically, this state is characterized

completely by the internal energy, the volume and the amounts of the chemical com-

ponents. This postulate also states that an isolated system only has one intrinsic

state, its equilibrium state. Once a system is in its equilibrium state it can only ever

leave it spontaneously by an external force being exerted on it.

Phase transitions are transformations of thermodynamic systems from one

phase to another where their properties change, sometimes dramatically. In par-

ticular environments, systems that are quantified by external parameters such as

12

temperature, pressure and magnetic field exhibit singularities in their associated

thermodynamic variables. Classic examples are the boiling of liquid or a ferromag-

net losing its magnetization on reaching its Curie temperature [82]. Phase transitions

have been also been observed in various other contexts such as in percolation [65],

cosmology [88] and protein folding [119].

These transitions can be described as being first-order phase transitions or

second-order phase transitions. The order referred to is the order of the lowest

derivative of the free energy for which a step is observed at the phase transition.

The phase transition occurs at a critical value and the free energy is a continuous

function at the phase transition and is a smooth function in the case of a second-

order phase transition. For first-order phase transitions, the derivative of the free

energy exhibits a step at the critical value which is also referred to as a transition

point. The second derivative therefore displays a singularity. The quantity in which

this divergence occurs is referred to as the susceptibility.

In the case of a second-order phase transition, the first derivative does not

exhibit a discontinuity at the transition point and is an example of a continuous

transition. The first derivative is similar to the function itself in first-order tran-

sitions in that it exhibits a kink at the critical value. The second derivative in

second-order transitions is therefore where we observe a discontinuity which is rep-

resented by a step change in its value at the transition point.

Systems that are out of equilibrium have significant differences to their equilib-

rium equivalents. In out of equilibrium systems unusual phase transitions can take

place [115]. One approach to understand the steady state of non-equilibrium sys-

tems is macroscopic fluctuation theory. Macroscopic fluctuation theory is based on

the probability of fluctuations in thermodynamic variables and currents. It provides

a macroscopic treatment of stationary nonequilibrium states for driven diffusive sys-

tems [10].

Here we are particularly interested in dynamical phase transitions observed in

systems that exhibit dynamical regimes. Phase transitions are interesting because

a very small change in the value of a parameter can lead to a very large change

in behaviour. This makes them important for understanding natural processes. In

dynamical phase transitions, a quantity plays an analogous role to the free energy in

terms of a step occurring in one of its derivatives. The dynamical phase transition

terminology began in the 1980’s, in a time when the thermodynamic formalism of

Ruelle and others was exploited to characterize the dynamical regimes exhibited in

simple iterated maps [6, 85].

Models in which dynamical phase transitions have been observed include the

13

weakly asymmetric exclusion process [12], kinetically constrained models [15] and

finite size studies [14]. The cloning algorithm has been used to study dynamical

phase transitions in the contact process [86] and in the one-dimensional Fredrickson-

Andersen model [96]. Much progress has been made in the theoretical understand-

ing of phase transitions and critical phenomena by the parallel application of many

approaches to simple lattice models and their continuum analogs [89]. These ap-

proaches include exact solutions, mean-field theories, computer simulations, series

expansions and renormalization group methods [89].

1.2 Examples of Phase Transitions

Here we use the cloning algorithm to analyse the simple symmetric exclusion process

(SSEP), a simple model of particles hopping on a one-dimensional lattice. The SSEP

is used widely for modelling dynamic systems in the fields of physics, chemistry [45]

and biology [44] and in theories of stochastic processes [114]. The rare events (large

deviations) in this model have been analysed theoretically in [3, 85]. We also con-

sider the Fredkin Process [105, 93] a similar model with additional rules governing

transition rates and allowed transitions within the process. This allows direct com-

parison between the results obtained from the SSEP and the results obtained from

the Fredkin Process.

The models that we analyse, the SSEP and the Fredkin Process are examples

of lattice models. Lattice models have been important in equilibrium statistical me-

chanics for understanding phase transitions and critical phenomena. One virtue of

lattice models is that they allow the isolation of specific features of the system and

for them to be connected with macroscopic properties. Lattice models of nonequilib-

rium processes that have been studied include driven lattice gases, contact processes

[86], traffic models [102] and surface catalytic reactions [89].

The SSEP model is very simple but exhibits a large range of rare-event phe-

nomena, including the assembly of many particles into a large macroscopic cluster.

Additionally, the model can exhibit hyperuniform states [115] in which density fluc-

tuations are strongly suppressed. These regimes are separated by a dynamical phase

transition [85] at which numerical calculations are difficult and which is hence a use-

ful place to test the algorithm.

The phase transition is known to exist for large systems [85] and the value of

its transient point is known. The large deviations of the SSEP are known [85] in the

limit of infinitely large systems but for finite systems are only known up to the phase

transition [3]. This makes the region above the phase transition an interesting place

14

to test the algorithm for systems of finite size. Also, the behaviour of the system

around the phase transition is not understood, nor the scaling of the position or

height of the maximum susceptibility with system size.

The Fredkin Process is interesting because it is similar to the SSEP but acts

under additional restrictions. These additional restrictions include occupancy rules

which produce long range correlations which we do not observe in the SSEP. The

Fredkin Process therefore provides an opportunity to understand how these ad-

ditional restrictions and long range correlations affect the large deviations of the

system and its properties at large deviations. As when we investigate the SSEP, we

measure large deviations of the particle activity. As the Fredkin Process model is

still a simple process it is straightforward to use it to measure the large deviations

of other quantities. It is then of interest to observe whether the large deviations of

these other quantities correspond to the same rare events.

In the Fredkin Process, we are again interested in the position and height of

the maximum susceptibility, how these values scale with system size and how they

are affected by additional restrictions. The restrictions that the Fredkin Process acts

under are expected to affect the large deviations of the process and hence the position

of the maximum susceptibility. There are also results that have been obtained on

the size of the spectral gap of the Fredkin Process [93]. This is of interest because

it is related to timescales within the process which can be compared to timescales

within the SSEP.

Our study here has four purposes. First, to analyse the finite-size scaling of

a dynamical phase transition in the SSEP, associated with a particular class of rare

events. Second to understand the large deviations of a Fredkin Process. Third, we

analyse the performance of the cloning algorithm, particularly its convergence as a

function of population size and observation time. The algorithm is often used to

analyse rare events in processes and systems which take a long time to simulate.

Researchers look for a quick implementation that uses only a small amount of com-

putational resources. Therefore the fourth purpose of this study is to analyse the

performance of the method in terms of speed-up and efficiency when it is paral-

lelised on high-performance computers, using OpenMP and MPI for (CPU-based)

computation.

The following chapters begin with chapter 2 which provides background on

large deviation theory and details of the cloning algorithm. In chapter 3 we describe

the SSEP and its dynamical phase transition and present some numerical results

that allow finite size effects to be characterised. We then explain in greater detail in

chapter 4 how the algorithm is applied to the SSEP and how the method is optimised

15

to reduce errors. We also analyse the underlying causes of these errors. In chapter

5 we describe the Fredkin Process and obtain numerical results that demonstrate

how properties of the system are related to its rare events. We also discuss the

number of systems and units of time that are required when we run the algorithm

to keep the errors small and what the causes of these errors are. Chapter 6 discusses

the computational implementation and the parallelisation techniques that we have

investigated. In chapter 7 we summarise our conclusions and speculate on possible

future work that would build on the results that we have obtained.

1.3 New Contributions

We make several new contributions in this thesis. Firstly, we obtain values of the

large deviation function and its cumulants for activity in the SSEP around the phase

transition in systems of finite size. Previously data around this phase transition has

only been obtained for the infinite system size limit and below the phase transition

for systems of finite size from theoretical values. Our contribution is therefore to

generate values of the large deviation function and its cumulants above the phase

transition. These results have only previously been presented in our recent paper

[19].

As well as obtaining these mathematical quantities around the phase tran-

sition, we also attain and present the properties of the system around the phase

transition, specifically those properties relating to the clustering of particles. This

includes trajectories depicting the evolution over time of the system on which the

SSEP occurs. It also includes the first Fourier component of density and how it

varies across the phase transition. These results have also only previously been

displayed in our paper [19].

We have also made some new contributions concerning the performance of

the algorithm. The dependency of the accuracy of the algorithm on the size of

the cloning interval is not fully understood. We compare two statistical methods for

deciding which systems are cloned. In each case we measure how the statistical errors

associated with our algorithmic results vary with the size of the cloning interval and

hence for each size of cloning interval determine which cloning method produces

the smallest statistical errors. We also determine how the systematic errors of the

algorithmic results change with the size of the cloning interval.

The scaling of errors with respect to the observation time of the algorithm

and the number of systems that are simulated is known. Here we verify that these

scalings hold for the system sizes that we consider for the SSEP. These scalings

16

provide an estimate of the true values of the large deviations of activity that would

be obtained if the algorithm were run for an infinite observation time and with an

infinite number of systems. We use this estimate to determine values for the number

of units of time and the number of systems that are needed for the algorithmic values

to converge to within a 2% criterion of the estimate of the true value.

We have also measured the evolution over time and autocorrelations of a few

observables relating to the SSEP. The timescales associated with these observables

are informative for understanding the values of the observable time that are required

for the algorithm to converge. We have also obtained distributions of two measures

of observables that we are interested in. The overlap of these distributions is useful

for understanding how many systems are required for the algorithm to converge.

Several new contributions come from our chapter on the Fredkin Process.

Large deviations in the Fredkin Process are not something that have previously

been considered in great detail and hence the results that we obtain are additions

to the field of large deviations. These results include values of the large deviations

in activity in the Fredkin Process, specifically the large deviation function and its

cumulants the activity and the susceptibility.

These results allow a direct comparison between the SSEP and the Fredkin

Process and for the effect of the restrictions on the SSEP that are enforced in

the Fredkin Process to be measured. These comparisons include effects on the

mathematical quantities associated with the processes such as the large deviation

function, the activity and the susceptibility. Furthermore they include the effects of

the restrictions on the trajectories of the systems. We also consider how many units

of time and how many systems are required for the algorithm to converge when

simulating the Fredkin Process and compare them to the corresponding required

values for the SSEP.

The configurations generated by our simulations of the Fredkin Process can be

described by diagrams called Dyck Paths. Each Dyck Path has an area associated

with it. In addition to generating results for large deviations in activity in the

Fredkin Process, we also produce results for large deviations in the area beneath

the Dyck Path. This allows us to make a comparison between the rare events that

we observe when we bias the activity in the Fredkin Process with when we bias the

area beneath the Dyck Path. It also allows us to make a comparison between the

observable values that we measure in each case.

We also state the optimal high performance computing (HPC) techniques to

use for the algorithm code to run as quickly and efficiently as possible. There has

not previously been literature that has stated the relative performance of different

17

computational implementations in executing the specific cloning algorithm that we

are studying. The HPC techniques for which we obtain results are parallelisation

using MPI and OpenMP which we directly compare with a serial code and paral-

lelisation using an MPI-OpenMP hybrid code. Our results for parallelising the code

using MPI include results for blocking MPI implementations and non-blocking MPI

implementations.

18

Chapter 2

Large Deviation Theory and the

Cloning Algorithm

In this chapter we describe large deviation theory [116, 117, 92, 41] and how a

cloning algorithm can be used on a large population of systems to focus on the rare

events of interest. We discuss relevant theoretical and computational methods from

the literature and adapt them to our requirements. The content in this chapter and

chapters 3 and 4 follows our paper [19] closely. We set out some of the notation that

we use and define variables such as the average across the population. The cloning

algorithm itself employs a two-step approach of simulating dynamics and cloning

systems such that those that exhibit the relevant rare events proliferate.

The algorithm is capable of simulating a wide range of processes and measuring

the rare events statistics of various observables. These observables can be categorised

into type A observables and type B observables [70]. It is useful and more efficient

in the case of some observables to modify the dynamics [50, 96] to assist us in

focusing on the rare events of interest. Here we describe the different variables and

functions associated with the cloning algorithm and how their definitions change

when the dynamics are modified. Variables and quantities are set out in terms of how

they are mathematically related to the processes within the algorithm and we then

describe functionally how some of the processes of the algorithm are implemented

computationally.

We go on to set out some definitions of other averages across the population.

These averages apply to observables that are measured at a single point in time and

those that are measured across a window of time. Related to these averages is a

characteristic time scale that we also define. We also set out some definitions of

distributions of observables. These definitions are dependent on whether or not the

systems are weighted by how many descendants that they have at the final time.

19

The algorithm has previously been used to consider large deviations of current

and activity in the SSEP [86, 113] which is described in detail in chapter 3 and in

the ASEP which is a similar process [34] in which the rates in each direction are

unequal and to consider large deviations in the number of events in the contact

process. Additionally, it has been used to study kinetically constrained models of

glass formers. In particular, the Fredrickson-Andersen model, the East model and

constrained lattice gas models [48, 47]. It has also been used to study nonlinear

dynamical systems [112]. Other results for large deviations in the SSEP [37], ASEP

[36, 42, 38, 24] and the East model [109] have also been obtained by other methods.

There are some things that are not yet fully understood about the performance

of the algorithm. One of these is how the size of the cloning interval has an effect

on the accuracy of the algorithm [95]. Other properties of the performance of the

algorithm are understood. For example, in their two-part paper [95, 64], Nemoto,

Hidalgo and Lecomte have investigated how an estimator of the large deviation

function converges towards its true value. They have found that as the scalings of

the estimator obey a power law they present no characteristic values above which

corrections to the value obtained from the estimator become negligible. Hidalgo

[62] has gone on to investigate how the validities of these scalings change for large

system sizes.

2.1 Large Deviation Theory for Time Averaged-

Quantities

Consider a physical system with some stochastic dynamics. The state of the system

at time t is Ct, and let At be a (random) observable quantity that depends on the

behaviour of the system during the time-interval [0, t]. For example, in the simple

symmetric exclusion process (SSEP) [3, 85, 86], which we introduce and describe in

chapter 3, one considers particles jumping on a lattice of a discrete set of sites. In this

case, At might be the total number of particle hopping events in [0, t]. Alternatively,

At might be a time integral of the form
∫ t

0
b(Ct′)dt′, where b is some function that

depends on the configuration. With either of these choices, one expects that At

obeys a large deviation principle: as t gets large, the probability distribution of At

scales as

Prob(At ≈ at) ∼ exp(−π(a)t), (2.1)

which describes the fluctuations in At and means that the dominant behaviour of

the probability of the observable taking a value of At at large values of the time

20

t is a decaying exponential in t and corresponds to the observable per unit time

taking a value of a = At/t, see [116, 48] for details. It defines the rate function

π(a) = − ln |Prob(At ≈ at)|/t in the limit t → ∞, for which π(a) ≥ 0. We know

that the rate function π(a) is convex as we consider discrete Markov chains. This

is a necessary condition for the large deviation principle to hold. Typically, there

is a single a for which π(a) = 0. Hence, one sees from the large deviation principle

(2.1) that as t → ∞, the distribution of at = At/t concentrates on the single value

a, with the probability of any other value being suppressed exponentially in t. Of

course, the validity of the large deviation principle (2.1) depends on the system of

interest and the observable A – here we consider irreducible Markov processes with

finite (discrete) state spaces, for which the large deviation principle (2.1) holds for a

large set of observables At: for examples see [48]. There are non-Markovian systems

in which large deviation principles with other powers of t are valid [58, 56, 97].

The general aims of rare-event sampling methods in this context are (i) to

estimate the function π(a), which gives the probability of the rare event; and (ii) to

characterise the rare events themselves: what are the trajectories that lead to rare

values of at? To achieve these aims, it is convenient to introduce a biasing field –

denoted by s – which allows access to the relevant rare events. Let Θ be a trajectory

of the system, during the time interval [0, t], and let P (Θ) be the probability density

of observing trajectory Θ, this definition is also used for example in [48]. (The

distribution P (Θ) depends on the initial condition of the model. The results of

the following large-deviation analysis are independent of the initial condition, but

we assume for concreteness that the initial condition is taken from the steady-state

probability distribution of the model, so that P (Θ) corresponds to the steady state.)

Then define a new probability density function (which is sometimes referred to as a

p.d.f.)

P̃ (Θ, s) =
P [Θ] exp[−sAt(Θ)]

Z(s, t)
, (2.2)

where At(Θ) is the value of At associated with trajectory Θ, and

Z(s, t) = 〈exp(−sAt)〉 , (2.3)

is a dynamical partition function. Here and throughout, the notation 〈·〉 indicates

an average with respect to P (Θ). It is useful to state

ψ(s) = lim
t→∞

1

t
lnZ(s, t), (2.4)

which is our definition of the large deviation function ψ(s). (This limit certainly

21

exists if the LDP (2.1) holds.)

The distribution P̃ is parameterised by the field s. For s = 0 we recover the

original distribution P ; for s > 0 trajectories with large values of At are suppressed.

Suppose that O is an observable whose value in trajectory Θ is O(Θ). Then its

average value with respect to P̃ can be obtained as

〈O〉s =

∫
O(Θ)P̃ (Θ, s)dΘ =

〈O exp(−sAt)〉
〈exp(−sAt)〉

. (2.5)

The advantage of introducing the field s is that averages of the form 〈O〉s
can often be evaluated by some numerical or analytical method. The average of

the observable of interest At can be computed by calculating the scaled cumulant

generating function ψ(s) and then calculating its derivative with respective to s. In

the absence of dynamical phase transitions, one may then obtain the rate function

π(a) in the large deviation principle (2.1) as

π(a) = max
s

[−ψ(s)− sa], (2.6)

the Legendre transform of the large deviation function ψ(s) which we have derived

in Appendix A. Moreover, if the value of s that achieves this maximum is s∗a then

trajectories obtained from the distribution P̃ (Θ, s∗a) are representative trajectories

associated with the rare event at = a discussed above in the large time limit [27].

In this case, the numerical results can then achieve both the aims (i) and (ii) given

above. The situation in the presence of dynamical phase transitions will be discussed

below (chapter 3).

Note that the function ψ is a scaled cumulant generating function [48]: one

has

lim
t→∞
〈At/t〉s = −ψ′(s),

where the prime denotes a derivative. One also has an associated susceptibility

(scaled variance) which can be obtained as

lim
t→∞

1

t

(〈
A2
t

〉
s
− 〈At〉2s

)
= ψ′′(s).

2.2 Modified Dynamics

The problem with computationally simulating large deviations is that the associated

events are rare [113]. The trajectories with the largest values of P (Θ) exp[−sAt(Θ)]

that dominate 〈e−sAt〉 are not necessarily those with the largest values of P (Θ) and

22

hence may not dominate the population of trajectories under the natural dynamics.

To assure that the relevant trajectories are sufficiently sampled it is often useful to

modify the dynamics [50, 96].

It is important for us to define two types of observable that we may measure

the large deviations of. Firstly type A observables [70, 71] that change in value

every time that the systems change configuration. These can be written in the form

At =
K−1∑

k=0

α(Ck, Ck+1), (2.7)

where α(Ck, Ck+1) is the change in the value of the observable between configurations

Ck and Ck+1. Examples of type A observables are the activity where α(Ck, Ck+1) = 1

and the current where α(Ck, Ck+1) = ±1 depending on the direction that a particle

moves. The second type of observable that we define are type B observables [70, 71],

which are time-integrated quantities of the form

Bt =

∫ t

0

dt′B(t′), (2.8)

where B(t) only depends on the configuration of the system at time t. Observables

that can be taken as type B observables include the escape rate and Fourier compo-

nents of the density. Other observables such as three-point quantities have large devi-

ation principles. Three-point quantities are defined as Gt =
∑K−2

k=0 γ(Ck, Ck+1, Ck+2)

and are dependent on the system’s configuration at three different points in time.

Under natural dynamics P (Θ) is the path probability density function of tra-

jectories. When we modify the dynamics of the process the trajectories follow a

path p.d.f. denoted by P̂ (Θ). Both of these path probability density functions are

normalized. We can relate these two p.d.f.’s

P (Θ) = P̂ (Θ) exp(−Ût(Θ)), (2.9)

where Ût(Θ) is a weight function that depends on a trajectory Θ. The way in which

dynamics are modified depends on the process [86, 48, 63]. We give an example of

how we modify dynamics in section 3.1 which in practice means modifying the rates

at which the process transitions between configurations. The p.d.f. P̃t(Θ, s) can

then be obtained using

P̃t(Θ, s) =
1

Z(s, t)
P̂ (Θ) exp(−[Ût(Θ) + sAt(Θ)]), (2.10)

23

from the modified dynamics and is normalized by the partition function Z(s, t).

Alternatively the p.d.f. P̃t(Θ, s) may still be obtained from the p.d.f. P (Θ) under

the natural dynamics as in equation (2.2). The weight

Υt(Θ) = exp[−Ût(Θ)− sAt(Θ)], (2.11)

should therefore be associated with each trajectory to obtain the p.d.f. P̃ (Θ) under

the modified dynamics. This can be done by importance sampling [51] where we

clone trajectories so that the number of copies of each system is proportional to the

weight Υt. As the integral of P̃ (Θ) across the trajectory space must be equal to 1,

we obtain that

Z(s, t) =

∫
Υt(Θ)P̂ (Θ)dΘ, (2.12)

so that the partition function Z(s, t) is the average of the cloning factor Υt(Θ)

across the trajectory space when each trajectory is weighted by the probability

density function of the modified dynamics. When we calculate type A and type

B observables there are examples where we do not modify the dynamics. In this

situation an integral of equation (2.2) gives us

Z(s, t) =

∫
Φt(Θ)P (Θ)dΘ, (2.13)

where

Φt(Θ) = exp[−sAt(Θ)], (2.14)

is the weight that should be associated with trajectories under the natural dynamics

to obtain the probability density distribution P̃ (Θ). This can also be done by

importance sampling where each trajectory is copied a number of times proportional

to its associated weight Φt.

2.3 Cloning Algorithm

The rate function π(a) is difficult to measure at extreme values of a so the algorithm

runs at a fixed value of a bias parameter s which fixes the average of a at some value.

We can then make a direct calculation of the large deviation function ψ(s) at this

fixed value of s. By calculating ψ(s) at a range of values of s we can compute the

rate function from equation (2.6), π(a) = max
s

[−ψ(s) − sa] if π(a) is convex [48].

We know that the rate functions that we consider are convex as we are considering

finite discrete Markov chains. We can hence use the large deviation principle (2.1)

to compute the probability function Prob(At ≈ at) at extreme values of a = A/t.

24

This section gives an overview of the cloning algorithm [50, 86], further details

are provided in chapter 4 below. The cloning algorithm is a method that draws

on earlier work by Grassberger [51] and Diffusion Quantum Monte Carlo methods

[2, 103]. It is one of the two dominant computational methods for computing the

large deviations of time-averaged quantities alongside transition path sampling [16].

One considers a population of nc copies (or clones) of the system, evolving

over a total observation time tobs where the field s is a fixed parameter. To obtain

accurate estimates of ψ(s) and averages such as 〈O〉s, one requires a limit of large

nc and tobs. The dependence of the results of the algorithm on nc and tobs will be

discussed in section 4.3 below.

The total time tobs is split into intervals of length ∆t, so the number of such

intervals is M = tobs/∆t. Within each step of the algorithm, each clone evolves

independently for a time ∆t. An importance sampling method where some clones

are deleted and others copied in order to bias the system towards the rare events of

interest is described in [51]. In our implementation we perform a form of importance

sampling at the end of the interval. In the importance sampling stage, the popula-

tion size is held strictly constant. Modified algorithms with variable populations are

also possible. These two sub-steps – of independent stochastic evolution followed by

importance sampling – are each repeated M times. The parameter ∆t (or equiva-

lently M) can be chosen according to the problem of interest and the method can

(in principle) give exact results for any value of ∆t. In practice, ∆t has significant

effects on the accuracy of the results obtained: this is discussed in section 4.2 below.

The key feature of the method is that for any trajectory Θ, one may write

Atobs(Θ) =
M∑

β=1

Aβ(Θ), (2.15)

where Aβ(Θ) is the contribution to Atobs(Θ) from the time interval [tβ−1, tβ], in which

tβ = β∆t. The cloning algorithm and a lot of the theory that surrounds it relies on

the fact that At can be decomposed in this way. Using definition (2.14) and letting

the trajectory of the ith clone be Θi, one may compute

Φiβ = exp(−sAiβ), (2.16)

for clone i in time interval β where Aiβ = Aβ(Θi) is the value of Aβ in the trajectory

of the ith clone. Within the importance sampling step of the algorithm, the (average)

number of descendants of clone i is proportional to Φiβ. In the cloning language,

one may think of Φiβ as an evolutionary fitness.

25

The definition of ψ(s) is 1
t

ln(〈Φt〉) in the limit t→∞. Moreover, the estimate

of ψ(s) provided by the algorithm is

ψ̂nc,tobs(s) =
1

tobs

M∑

β=1

ln

(
1

nc

nc∑

i=1

Φiβ

)
, (2.17)

and one has limnc,tobs→∞ ψ̂nc,tobs(s) → ψ(s) [95]. This estimator becomes exact as

nc, tobs → ∞ because its systematic and statistical errors vanish. As discussed in

section 2.2 we are free to modify the dynamics of the process to focus on the most

relevant trajectories and obtain the partition function from equation (2.12) which

is the average of weights Υiβ under the modified process as opposed to the average

of Φiβ under the natural process. Hence

ψ̃nc,tobs(s) =
1

tobs

M∑

β=1

ln

(
1

nc

nc∑

i=1

Υiβ

)
, (2.18)

is an estimate of ψ(s) across the modified process because limnc,tobs→∞ ψ̃nc,tobs(s)→
ψ(s) [95]. As previously, the estimator becomes exact as nc, tobs → ∞ because the

systematic and statistical errors that the estimator is subject to vanish. Clearly

the values of Υiβ depend on how the dynamics of each trajectory are modified. The

total modification of the trajectory depends on a weight Ûtobs(Θ) defined in definition

(2.9) which can be expressed as the sum of contributions

Ûtobs(Θ) =
M∑

β=1

Ûβ(Θ), (2.19)

from each cloning interval. We can then compute

Υiβ = exp(−Û iβ − sAiβ), (2.20)

where under the importance sampling step of the algorithm, the (average) number

of descendants of clone i is proportional to Υiβ. In cloning language, one may think

of Υiβ as an evolutionary fitness under the modified dynamics.

2.4 Computational Procedures

The algorithm generates a value of the large deviation function ψ(s) by computing

the partition function Z(s, tobs) ≡ 〈exp(−sAtobs)〉, where this expression defines the

partition function. As discussed in section 2.3, the dynamics are run for one cloning

26

interval at a time and each has an index β. On each clone the dynamics run from

the start of the cloning interval at time t′ = tβ to the end of the cloning interval at

time t′ = tβ + ∆t = tβ+1. When the natural dynamics are simulated, the cloning

factor Φiβ associated with each clone i is calculated and the value of the estimator

of the large deviation function ψ̂ defined in equation (2.17) updated

ψ̂nc,tβ+∆t =
tβψ̂nc,tβ + ln (ΦT/nc)

tβ + ∆t
, (2.21)

where the variable

ΦT =
nc∑

i=1

Φiβ, (2.22)

is the total of the cloning weights across all of the systems. When we have run the

modified dynamics from the start to the end of a cloning interval we calculate the

cloning factor Υiβ associated with each system. We then update the value of the

estimator ψ̃ defined in equation (2.18)

ψ̃nc,tβ+∆t =
tβψ̃nc,tβ + ln (ΥT/nc)

tβ + ∆t
, (2.23)

where the variable

ΥT =
nc∑

i=1

Υiβ, (2.24)

is the total of the cloning weights across all of the systems. For both types of

observable and regardless of whether the dynamics are modified Z(s, 0) = 1 at the

beginning of the simulation.

After the value of the partition function has been updated the importance

sampling takes place. In this stage of the algorithm, we clone all of the properties

associated with a system that are required to be copied, these are sometimes referred

to as components. In chapters 3, 4 and 5 we analyse several observables associated

with the algorithm such as the estimator for the observable we are biasing, the

Fourier components of density δρq and the activity per cloning interval Kβ. These

require the trajectories to be obtained by extrapolation backwards through time,

this is achieved by these observables being cloned along with the properties of the

system during the cloning stage [113].

For some processes and observables the algorithm requires a large number of

systems nc and units of time tobs to obtain results, this may lead to the code having

long run times. Researchers that use the cloning algorithm may need to attain results

at high speeds or efficiencies and so in chapter 6 we investigate different computa-

27

tional implementations of the algorithm in detail. To improve the observed speeds

and efficiencies we go on to use computational parallelism, employing OpenMP, MPI

and OpenMP-MPI hybridisation.

2.5 Estimating Averages with Respect to P̃

To estimate averages of the form 〈O〉s, as defined in definition 2.5, we consider the

entire population at the final time tobs. Each system has a trajectory associated

with it that is generated by following that history of the system backwards in time

to the initial time t = 0. Many members of the final population will have common

ancestors which means that up to some time t < tobs their trajectories are identical.

Therefore not all trajectories are independent samples from the p.d.f. P̃ (Θ). If the

history of the ith clone corresponds to a trajectory Θ̂i one may then estimate the

general expectation value,

〈O〉s ≈
1

nc

nc∑

i=1

O(Θ̂i), (2.25)

of an observable O as defined in equation (2.5). The value O(Θ) is the value of

observable O in trajectory Θ. The equality becomes exact [95] as nc, tobs →∞.

The observable O may depend on any aspect of the trajectory Θ. Let Ft be

a function that depends on the state of the system at time t, such as a Fourier

component density or the escape rate. We can also generalise the function and

definitions below to include observables such as the activity per cloning interval

Kβ and cloning factor Υβ that depend on the trajectory in a preceding finite time

window [t − ∆t, t]. At no bias s = 0, the probability density function P is time

translation invariant (TTI) and does not depend on t. For all other values of s

the average 〈Ft〉s is time-dependent. The average exhibits transient regimes [70]

in which its value changes. These transient regimes exist at small t close to the

initial time and at small tobs − t close to the final time. There is a time-translation

invariant regime between the transient regimes in which the averages do not change

with time. We can say that

〈Ft〉s =

Fi(t), t ∼< τ

Ff(tobs − t), (tobs − t) ∼< τ

F∞, otherwise,

(2.26)

where τ is a characteristic time scale that describes the length of the transient

regimes. The functions Fi(t), Ff(tobs − t) describe the average in the transient

28

regimes at small t and small tobs − t [94]. The asymptotic value F∞ describes the

time translation invariant value of the variable Ft between the transient regimes

and so is not a function of time. We measure the probability distributions of Ft and

define these as

ptobs(F, t) = 〈δ(F − Ft)〉s, (2.27)

so that this is the probability density to observe the value F of the observable Ft

at time t in trajectories of length tobs with distribution P̃ . To characterise the TTI

regime we choose α between 0 and 1 so that αtobs � τ and (tobs − αtobs)� τ when

tobs →∞ because αtobs →∞ and (tobs − αtobs)→∞. We then define

pave(F) = lim
tobs→∞

ptobs(F, αtobs), (2.28)

where we know αtobs must be in the TTI regime independent of α. We can use

this to state that the time translation invariant value F∞ =
∫
Fpave(F)dF . We also

define another distribution

pend(F) = lim
tobs→∞

ptobs(F, tobs), (2.29)

which is the distribution of F at the final time t = tobs. After the importance sam-

pling step of the cloning algorithm the clone population is distributed as pend. The

pave distribution, however, represents the clone population obtained by constructing

the trajectories back through time. When we pause the simulation at t = tobs/2

and store the observables of the trajectories they are distributed by pend. When we

continue the simulation to tobs and weight each of these stored observables by the

number of descendants of its associated trajectory that exist at the final time they

are distributed by pave. There is a detailed discussion of this in [94].

29

Chapter 3

Dynamical Phase Transition in the

SSEP

In this chapter we consider the Simple Symmetric Exclusion Process (SSEP) [87,

111, 80, 79] a simple lattice model. The SSEP is used widely for modelling dynam-

ical systems in the fields of physics, chemistry and biology [44] and in theories of

stochastic processes.

The large deviations of activity in this process have previously been studied

[85, 3]. In the study of large deviations it has been observed that simple systems

exhibit behaviours such as intrinsically dynamic phase phase transitions [8, 9, 12,

13, 47, 48]. This is also the case in the SSEP where a phase transition exists in

the properties of the system [85]. This phase transition exists as L → ∞. Under a

scaling of the bias s the position of the phase transition is consistent with the large

deviations of all large systems. The value of the large deviation function and its

cumulants are known up to this phase transition for finite-L. In the large-L limit it

is also understood how the large deviation function and hence its derivatives behave

up to and beyond the phase transition.

Our contribution to the understanding of the large deviations in activity in

the SSEP is to obtain the large deviation function from the cloning algorithm set

out by Giardinà, Peliti and Kurchan [50] and by Lecomte and Tailleur [86] based on

ideas from Grassberger [51] at finite values of L above the phase transition. We also

obtain measures of the clustering of particles as the bias s is varied. Specifically we

present typical trajectories at values of the scaled bias around the phase transition

and obtain values of the first component of Fourier density as a function of the

scaled bias. The magnitude of this variable increases as the particles become more

clustered.

30

3.1 Model and Choice of Dynamical Observable

We consider a one-dimensional lattice of L sites with periodic boundaries. The

lattice is occupied by N particles and each site can be occupied by at most one

particle. In the symmetric simple exclusion process (SSEP) step sizes ∆th between

attempted hops are drawn from a probability density function,

P (∆th) = 2N exp(−2N∆th), (3.1)

under the natural dynamics because this gives an average time of ∆th = (2N)−1

between attempted hops. At each time step a random particle is picked and a

hop attempted left or right with equal probability. This means that each particle

attempts to hop on average with rate 1 in each direction as in figure 3.1. The at-

tempted hop is successful if the neighbouring site is unoccupied. There are other

techniques that may make the basic dynamics more efficient such as the Gillespie

algorithm [78]. We deliberately did not optimise the method by which we simulate

the dynamics of individual systems as we are interested in the performance of the

cloning algorithm when there is some fixed method for simulating individual sys-

tems. Let the occupancy of site i be ni. The model obeys detailed balance. In its

equilibrium (steady) state, the occupancy of each site is independent: ni = 1 with

probability ρ = N/L and ni = 0 with probability 1− ρ.

The observable At considered here is the total number of (successful) hops in

the time-interval [0, t]. This is the same as the number of configuration changes and

is hence a type A observable. We denote this observable Kt and refer to it as the

activity. Within the steady state of the model, one has 〈Kt/t〉 = 2Lρ(1− ρ), since

the rate of attempted hops is 2N = 2ρL and the expected fraction of successful hops

is equal to the probability (1− ρ) that the destination site is unoccupied.

It is notable that the probability density function P̃ (Θ, s) may be written in a

number of alternative ways. Consider a general stochastic model with configurations

C, transition rates W (C → C ′), and define the escape rate r(C) =
∑
C′W (C → C ′).

Taking At = K, one has

P̃ (Θ, s) =
1

Z(s, t)

[
K−1∏

i=0

W (Ci → Ci+1)e−s exp
(
− r(Ci)(ti+1 − ti)

)]

where t0 = 0 and ti is the time at which hop i takes place for i = 1 . . . K. Given

that activity is a type A observable we are free to modify the dynamics to focus on

the relevant region of the trajectory space. Consider a modified model in which all

rates are scaled by a factor of e−s, so that Ws(C → C ′) = e−sW (C → C ′) and the

31

scaled escape rates are rs(C) = e−sr(C) so

P̃ (Θ, s) =
1

Z(s, t)

[
Υ(Θ)

K−1∏

i=0

Ws(Ci → Ci+1) exp
(
− rs(Ci)(ti+1 − ti)

)]
,

where we have introduced a modified reweighting parameter Υ(Θ) = exp(
∫ t

0
[rs(C)−

r(C)]dt) associated with each trajectory. This means that the trajectory ensemble

for the original model and a reweighting parameter e−sAt(Θ) is the same as the

ensemble obtained from the modified model with a modified reweighting parameter

Υ(Θ). This can be stated as P̃ (Θ, s) = ΥP̂ (Θ)/Z(s, t) where P̂ (Θ) is the probability

density of following a trajectory under the modified weights. Under the modified

dynamics, step sizes ∆t̃h are drawn from a probability density function

P (∆t̃h) = 2Ne−s exp(−2Ne−s∆t̃h), (3.2)

as opposed to the P (∆th) probability density function described in equation (3.1)

because under equation (3.2) they have an average time of ∆t̃h = (2Ne−s)−1 between

attempted hops. As under the natural dynamics we choose a random particle at

each time step and attempt to hop left or right with equal probability. Particles then

attempt to hop on average with rate e−s in each direction. We show in Appendix

B that when the time steps between attempted hops are drawn from equation (3.2)

that in configuration C successful hops occur at the modified escape rate rs(C). In

Appendix A we state a master equation to describe the evolution of the path p.d.f.

P̂ (Θ) under the SSEP with modified dynamics and in Appendix C we show that it

is satisfied by the hops occurring at the modifed escape rate rs(C).
By integrating over all trajectories we find that

Z(s, t) =

∫
Υ(Θ)P̂ (Θ)dΘ ≈

nc∑

i=1

Υi/nc,

where Υi is the cloning factor associated with the trajectory of the ith clone. This

construction is a general one: one is free to modify the transition rates of the model,

as long as one makes a corresponding modification to the reweighting factor. This

fact was exploited in [94], to aid computational efficiency. In Appendix D we derive

the values of the cloning factors for the modification of the SSEP that we have made

and in Appendix A derive a master equation to describe the evolution of P̃ (Θ).

32

5

5

Figure 3.1: An example of SSEP on a one-dimensional lattice of 8 sites with periodic
boundary conditions and a density ρ = 0.5. Each hop is attempted with rate 1.

3.2 Theoretical Analysis of Dynamical Phase Tran-

sition

There is a well-understood phase transition [8, 9, 12, 13, 85] that occurs in the SSEP,

when considering large deviations of the activity Kt. For systems of finite size, the

large deviation function ψ(s) and rate function π(a) are analytic and there is no

phase transition. However, it is interesting to fix the density ρ = N/L and take the

conventional thermodynamic limit L→∞ and the infinite time limit t→∞. One

then expects Kt to be proportional to the system size, so it is useful to define the

activity per site per unit time k(s) = limL,t→∞〈Kt〉s/(Lt). It is important that we

take t→∞ before L→∞. For the cases where we know, these limits commute.

Phase transitions correspond to singularities in k(s). In this case we have

k(0) = 2ρ(1 − ρ) but k(s) = 0 for all s > 0 [47], so there is a discontinuity at

s = 0, corresponding to a first-order phase transition. It is known [47] that there

is a lower bound on ψ(s) ≥ −minC r(C). This bound is derived from the fact the

large deviation function ψ(s) is equal to the largest eigenvalue of a transition matrix

that represents that process. The lower bound on its value is determined using a

variational principle that is valid for any symmetric operator. In any system where

L→∞ one can find configurations such that the subextensive escape rate r/L→ 0.

In the case of the SSEP on a one-dimensional lattice, when all particles are in one

cluster r = 2 independent of L and r/L→ 0 as L→∞. Given the lower bound on

ψ(s), this means that ψ(s)/L ≥ 0 when L→∞.

The observation of a phase transition was made by Bodineau and Derrida

[12]. They have found that macroscopic fluctuation theory predicts correctly the

large deviation function. Macroscopic fluctuation theory is based on the probability

of fluctuations in thermodynamic variables and currents and provides a macroscopic

treatment of stationary nonequilibrium states for driven diffusive systems [10]. The

numerical results that Bodineau and Derrida have obtained are consistent with the

second order phase transition that they predicted to exist when measuring large

33

deviations in the current. They predicted that these results could be confirmed by

solving Bethe Ansatz equations. The phase transition that they have observed is

similar to the phase transition that we observe in the activity in that it is between a

regime in which the density remains constant and one in which the density becomes

time dependent.

In the approach of Appert-Rolland et al [3], the values of the activity at finite

values of L below the phase transition during a long period of time tobs are obtained.

They have also obtained values of the first cumulants of the activity K. For large

system sizes these cumulants take universal scaling forms as does the large deviation

function. They show how these scaling forms can be calculated for SSEP using a

Bethe ansatz method. The scaling forms can be extracted from a detailed analysis

of finite size effects similar to what has been developed for quantum spin chains in

the context of string theory [7, 53].

Appert-Rolland et al have also derived the existence of a phase transition in

the large deviation function ψ(s). They have obtained an expression for ψ(s) by

stating it as an expansion of the values of its cumulants that they have obtained.

This expression is only valid in the limits s → 0 and L → ∞. As the bias s tends

towards a critical value, the expansion becomes singular. This divergence is what

implies the existence of a phase transition.

When we consider values of the bias s above the phase transition, we compare

our results to the results of Lecomte, Garrahan and van Wijland [85]. They observed

that the phase transition is from a homogeneous state to a kink-like profile. This

occurs as the trajectories’ activity is lowered to a below average value. They have

obtained values of the large deviation function in the limit L → ∞ at values of

the bias above the phase transition. They do this by finding solutions to elliptical

equations in the inactive regime which they obtain from macroscopic fluctuation

theory.

3.3 Properties of Dynamical Phase Transition

The phase transition can physically be seen in figure 3.2 where there is a transition

from a homogeneous state (where particles are distributed evenly throughout the

system) to an inhomogeneous (“phase-separated”) state in which the particles are

segregated into a dense and a dilute region.

34

Figure 3.2: Sample trajectories of SSEP with L = 50, ρ = 0.5 and tobs = 104, nc =
105. (a) s = 0, the equilibrium state; (b) s = 0.008, showing evidence of transient
clusters; (c) s = 0.012, in which a single large cluster has formed; (d) s = 0.020, with
most of the particles in a well-defined single cluster. The corresponding values of λ as
defined in definition 3.4 are 0, 20, 30, 50 and the critical value of λ is λc = 2π2 ≈ 19.7.

The clustering of the particles that occurs as the bias s is increased is related

to other observables such as the Fourier components of the density which we define

as

δρn =
1√
L

N∑

j=1

exp(−2πinXj/L), (3.3)

where Xj is the index of the site occupied by particle j and n = 0, 1, . . . L− 1. We

obtain results for the first Fourier component of the density which corresponds to

n = 1. We see in figure 3.3 that above the phase transition this Fourier component

of the density grows as the particles cluster. We also see above the phase transition

λ > λc that for each value of λ the values of 〈|δρ1|2〉s are approximately proportional

to L.

35

Figure 3.3: The mean square value of the first Fourier component of the density,
〈|δρ1|2〉s, measured at t = tobs/2 with tobs = 104, nc = 105, for various L, λ as defined
in definition 3.4 at ρ = 0.5. The phase transition occurs at λc = 2π2: for λ > λc
one expects the system to become inhomogeneous so that 〈|δρ1|2〉s ∝ L, consistent
with the data.

To investigate in detail, we make the same scaling as Lecomte et al [85] and

let

λ = sL2 (3.4)

and consider the limit of large L at fixed λ. This is also the same scaling as Appert-

Rolland et al [3] to order L. This allows us to zoom in on the jump in k and resolve it

as a (continuous) crossover from large k to small k, whose width is of order L−2. This

is analogous to finite-size scaling in equilibrium systems. The crossover is described

by the function

K(λ) = k(λ/L2), (3.5)

which may be computed using macroscopic fluctuation theory [85]. For λ < 2π2(≈
20) one has K(λ) = 2ρ(1 − ρ), independent of λ. For λ > 2π2, the function K(λ)

decreases smoothly from 2ρ(1− ρ) to zero. The derivative K′(λ) is discontinuous at

λ = 2π2. When viewed on this scale, the transition has some features of a continuous

phase transition [22, 4].

Note this situation is different from classical finite-size scaling and from other

first-order dynamical phase transitions [96]. The reason is that we have taken t→∞
before large L so we can think of a system on a long cylinder. In that case one

expects a first-order phase transition to happen by the formation of large domains

that wrap around the cylinder, with domain walls perpendicular to the time axis.

This leads to a natural analogy with thermodynamic phase transitions in cylindrical

geometries. However, since the number of particles in the SSEP is equal at every

36

Figure 3.4: Results obtained from our implementation of the cloning algorithm.
Results are obtained with tobs = 104 for all system sizes, 105 clones for L = 20, 40, 50
and 106 clones for L = 80. The density is ρ = 0.5, the cloning interval is ∆t = 10
and the results are averaged across 10 independent realizations. The vertical dashed
line shows the position of the phase transition (λc = 2π2). The theoretical values
are obtained by solving Euler-Lagrange equations as set out in [85] and taking
derivatives using finite differences. The theoretical values are valid in the limit
L→∞.

37

time, the domain wall between dense and dilute phases must run parallel to the time

axis. This leads to the unusual finite-size scaling behaviour described here.

It is useful to rescale the dynamical free energy

φ(λ) = lim
L→∞

Lψ(λ/L2), (3.6)

so that K(λ) = −φ′(λ). This is the approach used by Lecomte, Garrahan and van

Wijland [85] and is inspired by the work of Appert-Rolland et al [3] and Bodineau

and Toninelli [15]. It’s also useful to define an appropriate susceptibility

χ(s) = ψ′′(s)L−1, (3.7)

which is a measure of the scaled variance of Kt across all of the systems. We should

have that as L → ∞, then L−2χ(λ/L2) → K′(λ). However, the way that this

convergence happens is not clear (in particular the scaling with L of the maximal

susceptibility χ∗ = maxs χ(s)). In a system that is far from any phase transition

limL→∞ χL(s) should have a finite value. In figure 3.4 we see a divergence in χ

which is consistent with the existence of a phase transition. We also define another

measure of the susceptibility

XL(λ) = −K′(λ) = L−2χ(λ/L2), (3.8)

which is predicted by MFT to have a finite limit as L→∞. Our numerics in figure

3.4 are consistent with this prediction but they show that measuring this limiting

function requires large system sizes.

When studying properties of the large deviation function at positive values of

s, Appert-Rolland et al [3] introduce a function σ(ρ) = 2ρ(1 − ρ) where ρ = N/L

is the density. This is a function also used by Lecomte, Garrahan and van Wijland

[85]. For our purposes σ(ρ) = 0.5 as we are considering systems in which the lattice

is half-full, ρ = 0.5. For sufficiently large systems below the phase transition it is

shown in [3] that K(λ) = σ which they have obtained using a Bethe Ansatz method.

The activity K(λ) is equal to the derivative of the large deviation function and so

as stated in [85] the large deviation function takes the value φ(λ) = −λσ in the

limit L→∞. The measure of susceptibility XL(λ) is equal to the derivative of the

activity so we expect that XL(λ) = 0 when 0 < λ < 2π2 as L→∞.

Lecomte, Garrahan and van Wijland [85] have then been able to obtain theo-

retical values of φ(λ) at values of λ > λc = 2π2 above the phase transition by solving

Euler-Lagrange equations. These values hold in the limit L → ∞. By using finite

38

differences to take the derivatives of φ(λ), we can then obtain theoretical values of

the activity K(λ) = −φ′(λ) and the susceptibility XL(λ) = φ′′(λ). This means that

above λ = 0 we have theoretical values for all three of these quantities in the large

size limit.

3.4 Scaling at the Dynamical Phase Transition

We consider systems of size L = 20, 40, 50 and 80 at density ρ = 0.5 in figure 3.4.

We directly measure the values of activity in the algorithm code. We also directly

measure the variance in activity across the population and use this to obtain our

scalings of susceptibility χ(s) and XL(λ). In section 4.2 we investigate the optimal

size of cloning interval at which to acquire results for the SSEP and find ∆t = 10 to

be the best in terms of speed and accuracy. In section 4.3 we measure the number

of clones and units of time required for the results for the SSEP to have converged

and find that tobs = 104 and nc = 105 (L = 20, 50), nc = 106 (L = 80) are necessary.

These are the parameters used to obtain the results in figure 3.4 and we use nc = 105

clones for systems of size L = 40. These results were obtained with the [eq] method

to select which systems to clone as determined in section 4.2 from the two methods

set out in section 4.1 due to its superior speed and smaller errors.

The theoretical values of the activity and susceptibility are obtained by us-

ing finite differences to take the derivative of the theoretical value of the scaled

large deviation function φ(λ). The values of φ(λ) are obtained using the method

of Lecomte, Garrahan and van Wijland [85] of solving Euler-Lagrange equations

which they have obtained from macroscopic fluctuation theory. We do not include

the theoretical values obtained by Appert-Rolland et al [3] for large finite L as they

only apply as s → 0 and become singular as s tends towards the phase transition.

For systems of size L = 20 we see that the algorithmic values of K(λ) and φ(λ)

are close to but not the same as the theoretical values which are valid as L → ∞.

The algorithmic values align closely with the theoretical values for systems of sizes

L = 50, 80, which suggests that L = 50 is enough sites for the theoretical values

to be valid for most values of the bias s. When looking specifically at the activity

subfigure we find that even systems of size L = 50, 80 are not big enough around

the phase transition λc = 2π2 for the algorithmic values and the theoretical values

to agree.

One value of interest is the value of λ at which the susceptibility is maximised

λmax = argmaxλ χ(λ) = argmaxλ XL(λ), (3.9)

39

which depends on L and according to theory [85], is expected to occur at the phase

transition λc = 2π2 as L → ∞. In the susceptibility subfigures in figure 3.4 we

clearly see the value of λmax vary with the system size. For each system size that

we have considered the peak in susceptibility exists at a value of λ greater than

the value at which the phase transition exists. In the subfigure of values of XL we

observe that the position of the peak decreases towards λc = 2π2 as the system size

L increases.

Another value of interest is the largest value of susceptibility

κeff = max
λ
XL(λ), (3.10)

which depends on L. Lecomte, Garrahan and van Wijland [85] state that κeff takes a

value of 3/4π2 in the limit of L→∞. The algorithmic results that we have obtained

in figure 3.4 are clearly much smaller than this. We also observe in figure 3.4 that

the value of κeff changes with the system size L. As the system size increases figure

3.4 shows that the height κeff of the peak in XL increases. We observe that for each

system size L the value of κeff is similar to the theoretical value of XL(λmax), the

theoretical value of the susceptibility at the value of λ at which we measure the

maximum susceptibility for this size of system L.

One property of this region of the large deviations of the SSEP that is not

understood is the rate at which the peak of the XL(λ) increases towards the large-L

limit as the number of sites L is increased for finite L. This would be an interesting

way to add to the results that we have obtained. Furthermore, the value of λ at

which the values of XL(λ) crossover for finite values of L is not understood. This is

the value of λ at which XL(λ) is the same for two different system sizes. It is not

clear whether it would be a similar value for all L and would be another interesting

area of research in the future.

3.5 SSEP Summary

In conclusion we have obtained results that agree with the theoretical values of

activity and the large deviation function below the phase transition. Above the

phase transition, we have shown the similarity between our algorithmic results and

the theoretical values of the large system limit L → ∞. We have investigated

how these results scale with L in terms of the height of the peak in susceptibility

increasing and the values of the bias at which the peak in susceptibility occurs

decreasing towards s = 2π2/L2.

We have also measured how the first Fourier component of the density evolves

40

from being somewhat constant below the phase transition to increasing more rapidly

with λ above the phase transition. We also observe that this variable exhibits larger

values as the system size is increased. Correspondingly, we find that the typical tra-

jectories that we observe up to the phase transition exhibit clusters of particles that

are unstable. Above the phase transition the clusters in these trajectories rapidly

stabilise and the transition of particles between the cluster and the corresponding

sparser region decreases.

41

Chapter 4

Algorithm Performance in the

SSEP

The results obtained in chapter 3 for the SSEP are obtained at values of the bias

s, λ around the phase transition and the modified SSEP dynamics are implemented

using the Bortz-Kalos-Lebowitz (continuous time Monte Carlo) algorithm [17] by

selecting time increments between attempted hops from equation (3.1). We require

these results to be sufficiently accurate. To do this we define criteria for accuracy to

measure when the algorithmic results are sufficiently close to their true value. Our

results must be obtained with parameters and methods that meet these criteria.

Some of these parameters affect the run time of the code which we aim to keep as

low as possible. In this chapter we define two methods for selecting which systems

are copied during the cloning stage of the algorithm. We test these two methods and

the size of the cloning interval (∆t) in terms of how they are related to the speed

and accuracy of the code. We quantify the accuracy of the code in terms of the

systematic errors and statistical errors in the values of activity which are expressed

by the standard deviation across several realizations.

We then measure the convergence of the algorithm with respect to two quan-

tities: the number of units of time for which the algorithm is run tobs and the size of

the population nc. In each case the general scaling of the estimator with respect to

the quantity is known [64] but the rate of scaling and values required to meet our

accuracy criteria have been obtained by us. In addition we have investigated the

reasons that these quantities are required to take the values that they do and de-

rived lower bounds on them by measuring the evolution over time and distributions

of relevant observables.

42

4.1 Clone Selection Methods

During the cloning process systems from the current set of clones are copied to a

new set of clones. Our implementation must be such that the number of times

that a system is cloned is proportional to its associated Υiβ value. We require

that the average number of descendants of clone i approaches ncΥ
β(Θi)/Υ

β
T where

Υβ
T =

∑nc

i=1 Υβ(Θi). There are a number of ways of doing this and here we test two

methods for selecting clones. Both of these methods meet this requirement for the

new population.

0 Υ1 Υ1 + Υ2

3∑
i=1

Υi

nc−1∑
i=1

Υi
ΥT

0 Υ1 Υ1 + Υ2

3∑
i=1

Υi

nc−1∑
i=1

Υi
ΥT

Figure 4.1: Example of the number line associated with the cloning factors Υβ(Θi)
used in the clone selection methods. The red arrows indicate some of the points αj
that determine which clone is selected to be cloned. The αj values may be chosen
via the [iid] method (top) or the [eq] method (bottom).

We define a binary search key which involves a set of numbers Ξβ[k] for k =

0, 1, . . . nc where Ξβ[0] = 0 and

Ξβ[k] =
k∑

i=1

Υiβ, (4.1)

which defines the edges of intervals within the key for k = 1 . . . nc. We then place

markers on the key and the number of markers in interval i of the key determines

how many times that system i is cloned as in figure 4.1. There are two methods

that we use to place the markers.

The first cloning method uses markers that are identically and independently

distributed uniformly on [0,Υβ
T). We call this method the [iid] method and each

marker has a position αj on the binary search key where j = 1 . . . nc. The state of

system j in the new population of systems is then a clone of system k in the old

43

population of systems where k satisfies

k∑

i=1

Υβ(Θi) ≤ αj <

k+1∑

i=1

Υβ(Θi). (4.2)

The second clone selection method places markers that are equally spaced on [0,Υβ
T)

and we call this method the [eq] method. We choose a random number d on the

interval [0, 1) and the marker positions are αj = (j + d − 1)Υβ
T/nc. The state of

system j in the new population of systems is a clone of the system k which satisfies

equation (4.2). By comparison, Lecomte and Tailleur [86] use a clone selection

method where the number of times that system i is cloned is bΥβ(Θi) + εc where ε

is uniformly distributed on [0, 1]. To maintain a constant population other systems

are randomly chosen to be cloned or erased.

The system on which the SSEP is implemented is defined by four components.

One of these is an array of particle positions where the position of a particle is the

index of the site that it occupies. Another is an array of particle freedoms where

the freedom of a particle is the number of empty sites neighbouring the site that it

occupies. The other two components are an array of site occupancies, the index of

the particle that occupies each site and the escape rate of the system. When a site

is empty its site occupancy takes a value of −1.

A system is cloned by copying each of its four components: particle posi-

tions, site occupancies, particle freedoms and the escape rate to the new set of

systems. An alternative method to copying these four components to clone a sys-

tem would be to copy just one of them such as the particle positions and use this

to reconstruct the other components. Simulations showed, however, that for the

computational approaches that we considered, this method was slower than copying

all four components. After tobs units of time (M cloning intervals) we compute the

large deviation function ψ(s) = ln[Z(s, tobs)]/tobs.

4.2 Effect of Cloning Method and Choice of ∆t

We have defined two clone selection methods in subsection 4.1. We seek to determine

which of these methods is preferable in terms of accuracy and speed. To do this we

define a numerical estimator for K which is

k̂L(λ) =
1

Lnctobs

nc∑

i=1

M∑

β=1

Kβ(Θ̂i), (4.3)

44

Figure 4.2: Dependence of the algorithm’s results on the size of the cloning interval
∆t and the clone selection mechanism ([eq] or [iid]). Results are obtained for the
SSEP at a bias λ = 28 and each of the two clone selection methods [iid] (circles)
and [eq] (crosses). In each case tobs = 104 and nc = 105, the parameters required
for convergence. (a) The average of the estimator k̄ (as defined in definition (4.4))
as the size of the cloning interval ∆t is varied. Results obtained for systems of size
L = 20, 50, 80. (b) Standard deviations in the estimator σ(k̂) (as defined in definition
(4.5)) measured over 100 independent realizations as the size of the cloning interval
∆t is varied. Results obtained for one system size L = 50. (c) The run time of the
code as the size of the cloning interval ∆t is varied. These results are obtained for
the OpenMP code as defined in section 6.2 for one system size L = 50.

which we obtain by copying the accumulated value
∑

βK
β(Θ̂i) of the observable

during the cloning stage of the algorithm. As can be seen in figure 3.4 the directly

measured activity is a more revealing measure of errors than the large deviation

function.

To obtain an accurate measure of the activity we average the estimator across

several realizations. We define

k̄L(λ) =
1

R

R∑

r=1

k̂rL(λ), (4.4)

as the average of the estimator where k̂rL is the estimator associated with realization

r of R independent realizations indexed r = 1, 2, . . . R. When we are considering the

average of the activity estimator in figure 4.2a we see that the [eq] and [iid] cloning

methods give systematically the same value. We find that as the size of the cloning

interval is varied, the value of the activity stays the same. These observations are

true for all three values of system size L = 20, 50, 80 with the exception of a slight

dependence of the systematic values of activity on ∆t when L = 20 at large values

of ∆t. This may be due to the systematic errors becoming bigger as the cloning

interval becomes larger and the frequency of cloning decreases. As the system size

is increased we see the observed activity move closer to the value predicted by the

45

large-L theory.

We also measure the statistical errors in our results by defining the variance

of the estimator

∆kL(λ)2 =
1

R

R∑

r=1

[
k̂rL(λ)− k̄L(λ)

]2

(4.5)

across the independent simulations. Consequently the standard deviation is defined

as σ(k̂) = [∆kL(λ)2]1/2. When we investigate the size of statistical errors in activity

we vary the size of the cloning interval. We see that for the [iid] method they

decrease to a minimum when ∆t = 10 in figure 4.2b and for the [eq] method they

stay approximately constant up to ∆t = 10. As we increase the size of the cloning

interval beyond this the errors increase for both clone selection methods. The effect

of the size of the cloning interval on the accuracy of the algorithm is not yet fully

understood [95]. We find for all values of ∆t that the [eq] method has smaller

statistical errors than the [iid] method. This is because under the [eq] method the

number of times that system i is cloned is proportional to its associated Υiβ value

with a maximum variation of ±1. Under the [iid] method, however, there is more

variation in the number of times that a system can be cloned.

As well as being more accurate than the [iid] method we observe in figure 4.2c

that the [eq] method is marginally quicker. At values of the cloning interval ∆t ≤ 10

where the [eq] method is measurably quicker, the run time of the code decreases with

∆t when using either clone selection procedure. We find that the run times decrease

up to ∆t = 10 at which point they reach a constant value that stays the same as the

size of the cloning interval ∆t is increased further. Our conclusion is that the [eq]

method is the preferable clone selection method and that ∆t = 10 is the optimal

size of cloning interval as above this value of ∆t we have larger statistical errors and

no change in run time but below this value of ∆t we have larger run times and no

change in the size of the statistical errors. The accuracy and run times are both

optimal for both clone selection methods at ∆t = 10. There may not be a size of

cloning interval for which this is the case for all processes.

4.3 Convergence

4.3.1 Time tobs Convergence

We first measure how many units of time are required for the algorithm to converge

to accurate results. In their two-part paper [95, 64], Nemoto, Hidalgo and Lecomte

investigate the rate at which an estimator of the large deviation function converges

46

Figure 4.3: Time convergence with respect to tobs of the average of the estimator
k̄ as defined in definition (4.4). When L = 20, 50, the number of clones nc = 105

and when L = 80, the number of clones nc = 106. The cloning interval is of size
∆t = 10. (a) Results obtained at various values of the bias λ and at one system size
L = 50. (b) The results are obtained at one value of the bias λ = 28 for systems of
size L = 20, 50, 80 and are averaged over 10 independent simulations.

towards its true value. They have obtained the finite-time scaling behaviour of an

estimator of the large deviation function so that they may attain more reliable results

from the algorithm. They find that in order for the estimator to represent the actual

value, corrections of order 1/tobs in the value of the estimator have to be considered.

They also find that as a power law, the scalings which dictate convergence to the

infinite-time limit present no characteristic time above which the corrections would

be negligible. We measure how many units of time are required for the algorithm

to converge by fitting a curve

k̄(λ)nc,tobs = k∞ + A/tobs (4.6)

to our data where k∞ is the value of k̄(λ) as tobs → ∞ and A is a measure of the

rate of convergence. We expect A to depend on nc. Hidalgo [62] has proceeded

to determine that in the large-L limit, the 1/tobs scaling ceases to be valid. The

algorithm has power law corrections in tobs because errors induced by the transient

regimes have contributions to the algorithmic value of order 1/tobs and this leads

to errors of order 1/tobs. These are errors in the algorithmic value itself. When we

obtain algorithmic results, if we have a large enough population size nc then we make

an accurate computation of lnZ(s, tobs) which we use to make an approximation to

ψ(s). When tobs is large this approximation is accurate.

The value of the activity k∞ as tobs → ∞ that we obtain by fitting a curve

through the data in figure 4.3 allows us to make an estimate of the systematic error

47

log |tobs| L = 20 L = 50 L = 80
1 3.0×10−1 2.8×10−1 2.8×10−1

2 4.8×10−2 2.3×10−1 2.7×10−1

3 7.9×10−3 4.7×10−2 1.2×10−1

4 1.2×10−2 2.9×10−3 1.2×10−2

5 3.1×10−4 2.3×10−3 2.3×10−3

Table 4.1: Relative error in activity at sL2 = 28 when varying the number of units
of time. These results correspond to the values in figure 4.3b and were obtained
with nc = 105 (L = 20, 50), nc = 106 (L = 80) clones and the [eq] clone selection
method.

in the algorithmic values by calculating their difference to the infinite tobs value. The

magnitudes of these errors are shown in table 4.1 for systems of size L = 20, 50, 80.

As in our paper [19] we assert a criterion of 2% as the maximum error allowed

between the results from the algorithm and the infinite-time value k∞ obtained

from the curve fit. We choose 2% as our criterion because we find that when we are

in this regime, the errors are small enough that they follow 1/t and 1/nc asymptotic

expansions. If we were to choose a criterion of 20%, we may find that errors that

follow asymptotic expansions in 1/t2 or 1/n2
c would not be negligible. Choosing a

smaller criterion such as 0.2% would be numerically expensive and would not provide

much more information. The 2% criterion provides us with a value for the number

of units of time tobs at which to obtain results from the algorithm. Within the 2%

error tolerance we use as few units of time as we can to keep the run time of the

code as low as possible.

In figure 4.3 we have also plotted the estimator k̄ against the bias λ for two

values of the tobs when L = 50. At values of the bias up to and including the phase

transition at λ = 2π2, tobs = 103 appears to be a sufficient number of units of time

for the algorithm to converge for this system size. At larger biases, however, we

clearly see that at least 104 units of time are needed for convergence as the values of

the estimator have a smaller value than for 103 units of time and are closer to the

L→∞ theory value. The biggest difference between the results for tobs = 103 and

tobs = 104 is around the maximum susceptibility (sL2 = λmax ≈ 28). This suggests

that the algorithm is hardest to converge around the maximum susceptibility because

trajectories at the maximum susceptibility have the longest timescales associated

with them. This is why we have obtained our other results in figure 4.3 and in table

4.1 at sL2 = 28.

In table 4.1, the results that we have obtained are around the peak in suscep-

tibility and the data shows us that tobs = 103 units of time is the smallest number

of units of time that we can use when L = 20 to meet our error tolerance of 2%.

48

Figure 4.4: The pave measure of variables around the final transient regime for system
sizes L = 50 (red) and L = 80 (blue) averaged over 5 repeats. The results are scaled
by the system size L and are obtained at various values of tobs − t. The algorithm
is run for tobs = 104 units of time on nc = 106 systems with cloning intervals of size
∆t = 10 at a bias sL2 = 28. (a) The square of the first Fourier component of the
density |δρ1|2. (b) The activity per cloning interval Kβ.

For systems of size L = 50, 80 we find that tobs = 104 units of time is the amount

required to meet our error tolerance. The number of units of time required for con-

vergence increases with L because larger systems have longer time scales associated

with them. This is because the slowest time scale in the system is associated with

wavelengths of order L and is expected to scale quickly with system size. These

results and those in figure 4.3 are obtained at the values of nc required for the

algorithm to have converged (see subsection 4.3.2).

The definition of observable averages that we use in definition (2.5) is known

[70] to be dependent on the time t at which it is measured when s 6= 0 as discussed

around definitions (2.26) in section 2.5. The trajectories that the algorithm samples

have transient regimes at initial and final times whose timescale is of length τ .

Between these transient regimes is a time-translation invariant (TTI) regime in

which the observable distributions do not depend on t.

The results in figure 4.4 are for two observables: the first Fourier component of

the density 〈|δρ1|2〉s /L measured at one instant in time and the activity per cloning

interval
〈
Kβ
〉
s
/L measuring across the preceding cloning interval. They show two

important features associated with the transient regime that exists immediately

before the final time tobs. The first is the transient time scale τ which is the amount

of time between the system existing in the TTI regime and the final time tobs. The

second is the difference between the average value of the observable in the TTI

regime F∞ and the average value of the observable at the final time.

For both observables the size of the time scale is the same τ ' 300 when

49

L = 50 and τ ' 800 when L = 80. To obtain an accurate estimate of K we require

that tobs � τ . In this regime the sum in equation (4.3) is dominated by contributions

from terms in the TTI regime. Alternatively one could estimate K from the plateau

value of
〈
Kβ
〉
s
/L by ignoring the transient terms in the definition (4.3) of k̂. This

may be a useful strategy for future applications of the algorithm.

Also of interest is the change in the value of the observable as t is varied from

the TTI regime where the value of the the observable is F∞ as defined in definitions

(2.26) to tobs. We observe in figure 4.4 that for both system sizes the value of the

first Fourier component of density |δρ1|2∞/L that we measure in the TTI regime

changes by more than a factor of 2 to the value that we measure at the final time.

In contrast there are much smaller fractional changes in the amount of activity per

cloning interval Kβ
∞ in the TTI regime to the amount of activity per cloning interval

at the final time.

This indicates that the first Fourier component of density responds much more

strongly to the biasing field s, λ than the activity itself. The first Fourier compo-

nent of density is related to the clustering of particles and the effect of the bias on

this variable can be seen in figures 3.2 and 3.3 where the particles rapidly cluster,

particularly above the phase transition. To understand further the evolution of ob-

servables over time we also study the autocorrelation function. The autocorrelation

of the most relevant observable limits the convergence time of the cloning algorithm.

We define the autocorrelation function of the observable F as

CF (t, t′) =
〈Ft′Ft〉s − 〈Ft′〉s 〈Ft〉s

cF (t′)
, (4.7)

where cF (t′) = 〈Ft′Ft〉s − 〈Ft′〉s 〈Ft〉s is a normalisation factor that ensures that

CF (t, t) = 1 and t1, t2 might both be far from the boundary or one of them might

be the final time. As the transient timescale τ is comparable with the inverse of

the spectral gap of the stochastic process [21] one expects CF (t, t′) to be small if

t − t′ � τ . The time it takes for this function to decay to zero informs us of how

important that the early time values of an observable are to later times and hence

how many units of time that we need to run the algorithm for to assure that the

effect of the early times on the results that we obtain are small.

The autocorrelation of the variables in figure 4.5 are always for t′ = tobs.

This is the value of t′ for which good statistics are most easily obtained. For the

first Fourier component of density |δρ1|2 the autocorrelation CF (t, tobs) with respect

to the final time tobs is close to a value of 1 until close to the TTI regime tobs −
t ≈ τ . After this the density fluctuations at the two times decorrelate and the

50

Figure 4.5: Autocorrelation Function as defined in definition (4.7) of variables with
respect to the final time tobs for systems of size L = 50, 80. The algorithm is run for
tobs = 104 units of time on nc = 106 systems with cloning intervals of size ∆t = 10 at
a bias sL2 = 28. The variables are the escape rate r, the square of the first Fourier
component of density |δρ1|2, the activity per cloning interval Kβ and the cloning
weight Υ. The normalisation coefficients cO(t′) are presented in table 4.2.

O L = 50 L = 80
r 1.49×101 2.35×101

|δρ1|2 7.01×102 2.44×103

Kβ 9.46×102 1.44×103

Υ 6.93×10−4 8.33×10−4

Table 4.2: Normalisation coefficients cO(t′) of various observables at sL2 = 28 for
systems of size L = 50, 80. The algorithm is run for tobs = 104 units of time on
nc = 106 systems with cloning intervals of ∆t = 10 units of time.

autocorrelation decays to 0.

For observables such as the activity per cloning intervalKβ the autocorrelation

CF (t, tobs) with respect to the final time tobs is significantly less than 1 already at

tobs− t = 10. This indicates that the activity fluctuations also have a fast timescale

associated with them with autocorrelations that decay quickly as well as a slow

timescale that seems to be correlated with a slow decay of large density fluctuations.

The decrease in the autocorrelation function over this very quick time scale varies

greatly between observables. To order of magnitude, 103 units of time is sufficient

for this autocorrelation to decay to 0 for systems with 50 sites and with 80 sites and

this time scale is very similar for all of the observables.

The autocorrelations in activity play a role in the theory. The susceptibility

χ ∼ L−1cKβ(tobs)

∫ tobs

0

CKβ(t, tobs)dt, (4.8)

51

[48] so χ is large if the prefactor cKβ is large or if the function CKβ decays to zero

slowly. When the latter happens the integral decays slowly to zero and it implies that

the transient time scale is long. The data in table 4.2 suggests that the prefactor cKβ

is approximately proportional to L for the two system sizes that we have considered.

The transient timescale τ is expected to scale as L2 as diffusive decay associated

with wavelengths of order L is the slowest time scale in the system. This suggests

that the value of χ should increase quickly with L and this is in agreement with the

heights of the peaks in χ that we observe in figure 3.4.

The key points of our analysis of the time convergence are that the longest

relaxation time in the system determines the convergence with respect to tobs and

that these relaxation times can be explicitly determined by computing the evolution

over time of the average value of observables and their autocorrelations. Making

these measurements as we have done in figures 4.4 and 4.5 is also useful for revealing

important physical effects in the biased trajectories that we are interested in. Above

the phase transition λ � 2π2, the main physical effect is that density ceases to be

inhomogeneous on a macroscopic scale and so 〈|δρ1|2〉s diverges with the system size

L. There is a slow time scale associated with this inhomogeneity which leads to a

large susceptibility χ and scales as τ ∼ L2. The long time scale requires a large

observation time tobs for the cloning algorithm to be run for. This is because we

require that tobs � τ to obtain accurate values from the algorithm so that the values

in the transient regimes do not have a large effect on the values obtained from the

algorithm.

4.3.2 Population Size nc Convergence

To obtain an accurate estimation of 〈exp(−sAt)〉 (see section 2.1) we need to sim-

ulate enough systems to sufficiently sample the trajectory space and hence gain

access to the trajectories that produce the rare events of interest and have the

largest contributions to 〈exp(−sAt)〉. One observation made by Nemoto, Hidalgo

and Lecomte [64] is the finite-population convergence of an estimator of the large

deviation function towards its true value. For the estimator to represent the actual

value, corrections of order 1/nc in the value of the estimator have to be considered.

We fit a curve [95, 64]

k̄(λ)nc,tobs = k∞ + A/nc (4.9)

to our data where k∞ is the value of k̄(λ) as nc →∞ and A is a measure of the rate

of convergence. These are different quantities to k∞ and A in equation 4.6 and here

we expect A to depend on tobs. We ignore the higher order terms O(n−2
c) in the

52

Figure 4.6: Clone convergence with respect to nc of the average of the estimator k̄
as defined in definition (4.4). The number of units of time tobs = 104 and the cloning
interval is of size ∆t = 10. (a) Results obtained at various values of the bias λ and
at one system size L = 50. (b) The results are obtained at one value of the bias
λ = 50 for system sizes of size L = 50, 80 and are averaged over 10 independent
simulations.

log |nc| L = 50 L = 80
0 5.6×10−1 5.4×10−1

1 5.0×10−1 5.0×10−1

2 3.5×10−1 3.9×10−1

3 1.9×10−1 2.5×10−1

4 6.5×10−2 1.2×10−1

5 1.3×10−2 3.5×10−2

6 5.2×10−3 1.8×10−2

Table 4.3: Relative error in activity at sL2 = 50 when varying the number of
clones. These results correspond to the values in figure 4.6b and were obtained with
tobs = 104 units of time and the [eq] clone selection method.

asymptotic prediction [95]. Hidalgo has proceeded to determine that in the large-L

limit, the 1/nc scaling ceases to be valid. We can now make an estimate of how

many clones are required to obtain a small error between the algorithmic value and

the true value. We have chosen as our criterion a maximum 2% tolerance in the

error between these two values to determine the number of clones required.

It is particularly clear in figure 4.6 that above the phase transition (λ > 2π2)

more systems are needed than below the phase transition. When looking at values

of λ above the phase transition we observe that with nc = 106 systems the activity

estimator is less than and closer to the theory line than with nc = 105 systems.

At values of λ below the phase transition, the estimator values are the same for

nc = 105 clones and nc = 106 clones. This is because as the bias λ increases the

rarity of the rare events increases and so more systems are required to access the

53

Figure 4.7: pave (crosses) and pend (circles) distributions of activity per cloning
interval Kβ. The algorithm is run for 104 units of time on 106 systems with cloning
intervals of 10 units of time. The distributions are measured at t = 9700 (the 970th

cloning interval) at a bias sL2 = 50.

corresponding rarer trajectories. The figure shows that the numerical results do not

align exactly with the theory line. This is due to the fact that the theory line applies

as L → ∞ and we are looking at a finite value of L. In figure 4.6 it is apparent

that more systems are required for the algorithm’s convergence as the system size

increases. This is due to the fact that the bigger the system is the more possible

configurations there are for the system to exist in and the less likely the rare events

are. The sizes of the errors as the number of clones is varied are shown in table 4.3.

The pend distribution defined in definition (2.29) in section 2.5 is sampled di-

rectly by the cloning algorithm. The pave distribution defined in definition (2.28)

in section 2.5 is attained via a form of importance sampling from the pend distri-

bution. This means that data is only available for pave at values sampled by the

pend distribution. Since all ancestors must come from the current population we

must obtain a representative sample from pave by importance sampling from pend.

Whether the algorithm achieves this depends on the overlap of the two distributions

and the size of the population nc. Unfortunately the two distributions are (much)

too high-dimensional to visualise directly. It is therefore useful to examine the dis-

tributions of particular observables. One seeks observables for which pave and pend

have minimal overlap, since this will limit the effectiveness of the algorithm.

To obtain accurate results from the algorithm we must sample all systems

that have a significant contribution to the measured value of 〈exp(−sAtobs)〉 and

hence dominate the final population. These are the systems that dominate the pave

distribution. When the two distributions are far apart and do not overlap greatly

then a large number of systems are required to sample pave sufficiently. This is

one of the important bounds on how many systems are required for the algorithm

54

to generate accurate results. When we obtain results in figure 4.6 at values of nc

that are too small for the results to have converged, under sampling of the pave

distribution is an important source of the systematic errors.

To estimate the magnitude of this effect (see also [68]) for convenience we

consider the distributions of the activity per cloning interval Kβ and we suppose that

pave and pend have approximately Gaussian distributions with the same variance σ2.

The variables µave and µend, respectively, are defined as the mean values of the two

distributions. We also define a scaled version of the complementary error function

Gσ(z) =

∫ ∞

z

g(y, 0, σ)dy,

where

g(x, µ, σ) =
exp(−(x− µ)2/2σ2)√

2πσ2

and x is the observable which we are measuring the distributions of. When drawing

nc systems independently from pend, we expect to sample a range of values of the

observable x we are measuring, (µend− V) < x < (µend + V) so that Gσ(V) = 1/nc.

The range of values that we sample is dependent on the number of clones nc and

hence so is the variable V . The average of x with respect to pave is

x̄ =

∫ µend+V

µend−V xg(x, µave, σ)dx
∫ µend+V

µend−V g(x, µave, σ)dx
(4.10)

and we may replace the upper limits of the integrals with infinity when µave < µend

and σ is not too large. We define ∆µ = (µend − µave) and obtain from equation

(4.10) the error

(x̄− µave) ≈ σ/
√

2π · exp(−(V −∆µ)2/2σ2)

Gσ(∆µ− V)
, (4.11)

which converges to zero as V → +∞ as it should. For large nc we have the scaling

relation V ∼ σ
√

log |nc| so V increases slowly with the number of systems nc. The

relevant parameter for convergence is the dimensionless quantity X = (V −∆µ)/σ

which is positive when the peak of the pave distribution is within the range of data.

We at least require this to assure that the pave distribution is sufficiently sampled so

nc ∼> exp[(∆µ/σ)2] (4.12)

is a requirement for convergence. It may be possible to construct a similar general

argument for an improved bound by considering that we need to sample more than

55

just the peak of the pave distribution to obtain a representative sample. The value

∆µ is expected to be proportional to L and by central limit theorem so is σ2. This

means that we expect the bound on nc to be proportional to exp(constant · L). We

expect the behaviour of A in equation 4.9 to be comparable to the bound on nc

at the point of convergence and hence to also be proportional to exp(constant · L).

Based on our Gaussian fits in figure 4.7 and the condition on the lower bounds in

equation 4.12 we require 2.2 × 103 systems when L = 50 and 4.9 × 104 systems

when L = 80. Our criterion for convergence informs us that we require 105 and

106 systems, respectively, for convergence. These values are significantly larger than

the lower bounds that we have derived, partially because we require that we sample

more of the pave distribution than just the peak.

4.4 Performance Summary

In this section we have found the [eq] clone selection method to be equivalent to the

[iid] clone selection method systematically, in terms of the value of activity that it

produces but superior in terms of the size of the statistical errors that it generates

and its computation time in terms of the run time of the code when obtaining

results for activity in the SSEP. We have also concluded that a cloning interval of

size ∆t = 10 is optimal in terms of the run time of the code and statistical errors

but that the frequency of cloning does not seem to systematically affect the values

of activity generated by the algorithm.

We have obtained values for the number of units of time tobs and systems

nc required for the algorithm to have converged when obtaining results for systems

of size L = 20, 50, 80 when simulating the SSEP and biasing activity. We have

investigated the number of units of time required for convergence in terms of how

it is related to the autocorrelations and evolution over time of a few observables.

Additionally, we have derived a lower bound (4.12) on the number of clones nc

required for convergence by studying the distributions of activity per cloning interval.

56

Chapter 5

Large Deviations in Fredkin

Processes

Our code that implements the algorithm is designed such that it is applicable to a

wide range of systems and processes. Large deviations have been observed in a range

of settings such as 2-level open quantum systems [46, 93], one-dimensional systems

with attractive interactions [20], rectangular networks [118] and reset processes [60,

92]. The next process that we have investigated is the Fredkin Process [105, 93]

that operates on a one-dimensional lattice. This process is similar to the SSEP but

the particles operate under additional restrictions. We therefore observe the effects

that these restrictions have on the value of the observable and the value of the large

deviation function by comparison with the results that we have obtained from the

SSEP. We test whether the restrictions that govern the particle activity and its rates

affect the process observables. Specifically, we consider the peaks in susceptibility

and how the values of the bias at which the peaks occur and heights of the peaks are

affected by additional Fredkin restrictions. Also we observe the relations between

observables. We investigate how biasing one observable affects the other observables

and whether biasing one of these other observables leads to the same rare events.

5.1 Fredkin Process and Relevant Observables

The Fredkin Process has been studied in great detail by Salberger and Korepin [105]

where they set out the Hamiltonian of the Fredkin Process in terms of Fredkin Gates.

This is the quantum model from which we describe classical stochastic Fredkin

Processes. They solve their model using Catalan combinatronics in the form of

random walks which exist on the upper half of a square lattice. One quantity of

interest is the size of the spectral gap, this is the difference between the first two

57

largest eigenvalues of the transition matrix [90]. It is of interest because it is related

to timescales within the process [21]. Several results on the size of the spectral gap

of the Fredkin quantum spin chain Hamiltonian have been obtained by Movassagh

[93].

Fredkin Processes have been studied as gapless quantum spin chains [26].

The gap is the difference between the smallest and second smallest eigenvalues of

the Hamiltonian associated with the system. The gap of the Hamiltonian is positive

for finite systems but tends to zero as the system size tends to infinity and this is the

gapless property that they refer to in [26]. They are of interest because they exhibit

long range correlations due to their occupancy rules which we do not observe in the

SSEP. One dimensional processes such as Fredkin Processes are ideal for researchers

to work with because they are often more tractable numerically and analytically

than realistic models of quantum critical systems which are often very challenging

for researchers to study due to the presence of strong interactions. The Fredkin Gates

which the Hamiltonian of the Fredkin Process can be set out in terms of were first

proposed by Edward Fredkin and are one of the first examples of a reversible logic

operation which conserves the number of bits and for which no energy is dissipated

as a result of erasure [99].

One useful representation of these processes is their Dyck Paths [105, 93]. In

a Dyck Path representation such as in figure 5.1 an ‘up-diagonal’ (bottom-left to

top-right) represents an occupied site and a ‘down-diagonal’ (top-left to bottom-

right) represents an empty site. These correspond to Dyck Words represented by

open brackets and closed brackets. At either end of the one-dimensional lattice there

is an implicit occupied site (left-hand end) and an implicit empty site (right-hand

end).

One of the rules that governs the Dyck Paths of Fredkin Processes is that the

area beneath it is always positive. This is because a Fredkin Process’s Dyck Path,

which begins directly before the implicitly occupied site to the left of the left-hand

boundary of the lattice, never has a height less than zero. This means that when

reading from left to right there are always more occupied sites than unoccupied

sites. In a Dyck Word there must be a preceding open bracket not corresponding to

a succeeding closed bracket for a closed bracket to be placed. We always consider

half-filling so that the Dyck Path has the same initial height as final height and so

that there are an equal number of open brackets and closed brackets in the Dyck

Word.

Under the Fredkin Process we consider there is exclusivity so that particles

may not move to an already occupied site. Furthermore the boundary conditions

58

() ((()) ()) ()

Figure 5.1: An example of a Dyck Path and its corresponding Dyck Word. The
shaded green area is what we consider to be the area beneath the Dyck Path and
does not include the area beneath the implicit boundary sites.

5 5

5
0.5

0.25

0

0.25

0.5 Possible hop

Occurs at
rate 0

Inhibited by
exclusion

Figure 5.2: Illustration of a Fredkin Process on a one-dimensional lattice of 8 sites
with non-periodic boundaries and implicit sites at either end. The left-hand implicit
site is occupied and the right-hand implicit site is unoccupied.

are that the particles may not jump from either end of the lattice and there are no

periodic boundary conditions. Each particle hops with rate 0.25 to neighbouring

empty sites but this rate is modified by local rules. An example of this is shown in

figure 5.2 and the rules are listed below.

• If the site to the left of the particle is occupied before the hop then the rate

of the hop is increased by 0.25.

• If the site to the left of the particle is occupied after the hop then the rate of

the hop is increased by 0.25.

• If the site to the right of the particle is occupied before the hop then the rate

of the hop is decreased by 0.25.

• If the site to the right of the particle is occupied after the hop then the rate

59

of the hop is decreased by 0.25.

This means particles are more likely to hop to and from sites with neighbouring

sites to the left of them that are occupied and less likely to hop to and from sites

with neighbouring sites to the right of them that are occupied.

There are several observables that we may measure the large deviations of

under the Fredkin Process. As with the SSEP we may consider activity and current.

Another observable which we may consider is the area under the Dyck Path which

is defined in figure 5.1 and does not include the area beneath the implicit boundary

sites. By biasing the area under the Dyck Path we measure its large deviations and

other observables under this bias. The occupancy rule as we read left to right makes

the centre of mass under constraint and of interest.

When all of the particles are clustered to the left hand side of the lattice, the

area underneath the Dyck Path is N2 where N is the number of particles. From this

we can access any combination of particles by shifting particles to the right. Each

particle shift reduces the area by 2. We can state the area under the Dyck Path as

N2 − 2hr after hr shifts to the right. To normalise such that the maximum area is

1 we have that the area is

area =
N2 − 2hr

N2
= 1− 2hr

N2
. (5.1)

The centre of mass can be stated as
N∑
i

p[i]/N , the average position of the particles.

In this case the position of a particle p[i] is (s[i]− 1/2) /L where L is the number of

sites in the lattice and s[i] is the site occupied by particle i when the sites are indexed

1, 2, . . . , L. We include a −1/2 so that the when the particles are clustered to the

left hand side of the lattice, the centre of mass is [N ×N/2]/NL = N/2L = 1/4.

As particles hop to the right this increases the centre of mass by 1/(2N2).

Hence, the centre of mass of the particles is 1/4 + hr/(2N
2). By substituting this

equation for centre of mass into the equation for area beneath the Dyck Path we

obtain that

com =
1

2
− area

4
, (5.2)

where com is the centre of mass and that obtaining values for fluctuations in area

is equivalent to obtaining values for fluctuations in centre of mass.

One key difference between the SSEP and Fredkin Processes is that the SSEP

does not necessarily have an associated Dyck Path with a positive area as the height

of the Dyck Path under SSEP is free to have a value less than zero. Furthermore we

know that SSEP exhibits a phase transition in activity when it is biased. We let s∗ be

60

the value of s which maximises χ(s) and know that in the SSEP, s∗ scales with L−2

[85]. We expect ψ(s) to have an altered curvature when we impose restrictions on

the allowed activity under the Fredkin Process. Hence, we expect to see alternative

scalings in s∗ that may not go like L−2.

5.2 Large Deviations in Activity (Hops)

When simulating the Fredkin Process, we measure large deviations of the activity.

This is a type A observable as the activity changes with configuration changes,

however we do not modify the dynamics. This is because if we were to modify the

dynamics in the same way in which we have modified the dynamics for the SSEP we

would need to track the value of the escape rate. This is difficult to do in the case

of the Fredkin Process because when a particle hops it does not just affect the rate

at which its neighbouring particles move but the rate at which particles two sites

away from it move. An additional difficulty in tracking the escape rate of Fredkin

Chains is that the rule that there must be more occupied than unoccupied sites

when reading across the lattice from left to right also needs to be tracked.

Therefore the cloning weights are of the form Φiβ = exp(−sAiβ) and we calcu-

late ψ̂nc,tobs(s) and update Z(s, t) according to the procedures for when the dynamics

are not modified in sections 2.3 and 2.4. In figure 5.3 the large deviations results

for Fredkin Processes show us an approximately linear region of the large deviation

function at negative s and at s = 0 a transition to the positive s region where the

large deviation function no longer follows this straight line. This corresponds to a

clear step change in the value of the activity from high activity at negative s to low

activity at positive s although in neither region is the value of the activity constant.

We check in figure 5.4 that our results for the Fredkin Process are giving us

accurate values by comparing to some theoretic results. In figure 5.4a, we show that

the algorithm data aligns with large deviations values obtained from the transition

matrix [83, 36, 84, 57]. Jack and Sollich [70] define a transition matrix W(s) whose

terms depend on the transition rates W (C → C ′) and escape rates r(C),

〈C|W|C ′〉 =

{
W (C ′ → C) exp(−sα(C ′, C)), C 6= C ′,

−r(C), C = C ′,
(5.3)

where 〈A|W|B〉 refers to the entry of the transition matrix in row A of column

B. As usual α(C,C ′) refers to the change in the value of the observable between

configuration C and configuration C ′. It is demonstrated by Jack and Sollich [70]

that the large deviation function ψ(s) can be obtained via eigendecomposition of

61

(a) Large Deviation Function (b) Activity

Figure 5.3: Large deviation function and directly measured activity when biasing
activity. Results obtained at tobs = 104, nc = 105, L = 50, ∆t = 10 over 10 repeats
with the [eq] (equal spacing) clone selection method and non-modified dynamics.

W(s). Specifically, by defining ωi as the eigenvalues of W(s) they obtain the result

ψ(s) = max
i
ωi, (5.4)

which we use to compute the Transition Matrix values of the large deviation function

in figure 5.4. We also compare to results obtained by computing fully the biased

Hamiltonian of the system which we compute by calculating its boundary and bulk

terms using spin operators. The biased Hamiltonian is identical to the transition

matrix W(s) and again we calculate its eigenvalues to obtain the large deviation

function. Figure 5.4 also shows alignment between the algorithm data and these

numerically exact values.

We also check that the area underneath the Dyck Path scales as expected with

system size. In figure 5.4b when there is no bias, the average area scales with L−1/2.

The result for L = 50 at s = 0 is above the results for both L = 20 and L = 80

because of statistical variation. We expect from the theory of Brownian bridges [73]

that the average value of the area on a unit interval [0, 1] is some constant. As we

scale the system length by L, the length of the Dyck Path scales by L and its height

scales by making the standard Brownian rescaling L1/2. We normalise every area

that we measure by a factor of L−2 to ensure that the maximum area we can observe

is equal to 1, so we obtain the observed L−1/2 scaling in the average area beneath

the Dyck Path. As we scale to a negative bias we see that Area·L1/2 is decreasing

with L in figure 5.4b.

We then look at properties of the system under the Fredkin Process when we

bias the activity. In figure 5.5 we see how the systems evolve with time at different

62

(a) ψ(s), L = 2 (b) Area, L = 50

Figure 5.4: (a) Large deviation function comparison between data from the algo-
rithm, exact data and results from the transition matrix for a system of size L = 2.
(b) Directly measured area scaled by a factor of L

1
2 when biasing hops. Algorithmic

data in both subfigures obtained at tobs = 104, nc = 104, ∆t = 10 averaged over 10
repeats with the [eq] (equal spacing) clone selection method.

values of the bias s. These trajectories show a clustering of particles on the left

boundary of the lattice which corresponds to the bottom of the trajectories in figure

5.5 when we bias towards a positive s. From figure 5.3b we know that a positive bias

corresponds to a low activity. We also make a pave measure of the density profile

of systems of size L = 20. This is done by measuring the site occupancies of each

system at the end of each cloning interval.

They show that when there is no bias or a small negative bias that particles

naturally cluster on the left hand side of the lattice to preserve the rule that there

are more occupied than empty sites when reading from left-to-right. The panels in

figure 5.6 also show that as the bias becomes more positive the particles become more

clustered on the left hand boundary. A further noticable feature of the panels in

figure 5.6 is their alternating structure. This is particularly clear when the particles

are spread out and the sites alternate between occupied and unoccupied.

One feature of the large deviations cloning algorithm that we are using is that

we may measure other observables than the one that we are biasing at a fixed value

of the bias. For example, when we bias the activity we may directly measure the

values of the average area beneath the Dyck Path as in figure 5.7. At negative s

where we have biased to a large activity the particles are spread out and hence the

area is low. As the bias s is increased to positive s the low activity corresponds to

the area being maximised.

We can also measure the centre of mass varying with s. We know that when

the bias is positive, the activity is low and that this corresponds to particles cluster-

63

Figure 5.5: Sample trajectories of Fredkin Processes when biasing hops with L = 20,
tobs = 104, nc = 104 and ∆t = 10. Trajectories of systems that have index 0 at time
tobs when primary seed is 0. (a) s = −0.1; (b) s = −0.01; (c) s = 0; (d) s = 0.01.

ing on the left boundary. We can calculate what centre of mass that this corresponds

to. There are two ways of calculating the centre of mass: either from the directly

measured area (which tells us how many particle hops to the right that there are

from the configuration where all particles are clustered on the left hand boundary)

or from the pave measure of the density profile. We see in figure 5.8 that as expected

a low activity corresponds to a low centre of mass. There is good agreement between

the two methods of obtaining the centre of mass. At negative s the centre of mass

approaches 0.5 which is its maximum possible value.

5.2.1 Peak in Susceptibility

The values in figure 5.3 suggest a sharp drop off in activity in the positive s regime

close to s = 0. When we zoom in on this transition in figure 5.9 we plot our results

against sL2. We have found that when we make an sL2 scaling of our results that

different system sizes have similar large deviations as is the case in the SSEP. This

can also be seen in the values of K(sL2). The corresponding peak in susceptibility

exists somewhere between sL2 = 0 and sL2 = 5 in the system sizes that we have

considered L = 20, 50, 80.

As with the SSEP in figure 3.4, the value s∗L2 which maximises X decreases

in value as the system size L is increased. In the SSEP this value decreases towards

the value 2π2 but under the Fredkin Process this value decreases towards a value

less than 2π2 that may be zero. We also note that the peak in X increases in value

as the system size is increased from L = 20 to L = 50 but does not increase further

64

Figure 5.6: Density Profile of Fredkin Processes when biasing hops with L = 20,
tobs = 104, nc = 104 and ∆t = 10 over 10 repeats. (a) s = −0.1; (b) s = −0.01;
(c) s = 0; (d) s = 0.01.

when the system size is increased further from L = 50 to L = 80 or is increasing

more slowly if at all. This is in contrast to the SSEP, where the peak in X continues

to increase in value as the system size is increased from L = 20 to L = 40 and then

to L = 80.

When we bias activity in the SSEP as in chapter 3, the phase transition

exists at a fixed value of a scaling of the bias sL2. As discussed in section 5.1,

when we impose restrictions on the activity in the SSEP as we do in the Fredkin

Process, we expect to see alternative scalings of the bias at which the maximum

susceptbility occurs. Figure 5.9 shows that at the sL2 scaling of the bias, although

different system sizes have similar large deviation functions and values of activity

when biasing the activity in the Fredkin Process, the results do not align as clearly

as they do when biasing activity in the SSEP. Furthermore, the values of sL2 at

which the peaks in susceptibility occur are not as similar for different system sizes

in the Fredkin Process as they are in the SSEP. This suggests that there is a better

scaling than the sL2 scaling to plot our results against. An informative objective

65

(a) L = 20 (b) L = 50

Figure 5.7: Directly measured area when biasing hops. Results obtained at tobs =
104, nc = 104 (L = 20), 105 (L = 50), ∆t = 10 over 10 repeats with the [eq]
(equal spacing) clone selection method and non-modified dynamics. Dashed red line
represents the minimum possible area for each system size.

(a) L = 20 (b) L = 50

Figure 5.8: Directly measured centre of mass when biasing hops. Results obtained
at tobs = 104, nc = 104 (L = 20), 105 (L = 50), ∆t = 10 over 10 repeats with the
[eq] (equal spacing) clone selection method and non-modified dynamics.

66

Figure 5.9: Large Deviations, activity and susceptibilty of Fredkin Processes when
biasing hops with system sizes L = 20 (tobs = 104, nc = 103), L = 50 (tobs = 105,
nc = 104) and L = 80 (tobs = 106, nc = 104) when ∆t = 10. The results are averaged
over 50, 50 and 10 repeats respectively. In figure 3.4 we show similar results for the
SSEP.

of future research would be to determine the correct scaling for our results to be

plotted against.

5.3 Large Deviations in Area Beneath the Dyck

Path

As discussed in section 5.1 one of the observables relevant to the Fredkin Process is

the area beneath the Dyck Path (see figure 5.1) sometimes simply referred to as the

area. In this section we bias the area and seek to find similarities and symmetries

when comparing these results with the results that we have obtained when biasing

the activity. For clarity we call this bias h and obtain results at small values of the

bias −0.1 < h < 0.1.

The Area beneath the Dyck Path is a type B observable as its value only

67

(a) Large Deviation Function (b) Area

Figure 5.10: Large deviation function and directly measured area when biasing area.
Results obtained at tobs = 105, nc = 104, L = 50, ∆t = 10 over 10 repeats with the
[eq] (equal spacing) clone selection method and non-modified dynamics.

depends on the state at a point in time and not its history, hence we do not modify

the dynamics. The cloning weights are therefore of the form Φiβ = exp(−sAiβ) and

we calculate ψ̂nc,tobs(s) and update Z(s, t) according to the procedures in sections

2.3 and 2.4 for when the dynamics are not modified.

Again we see a decrease in the observable value, this time area, as the bias

is increased from negative to positive. As with activity, in figure 5.10 there is a

kink around h = 0 as the value of the observable quickly drops off. This time the

area seems to decrease most quickly when the bias is negative. We know that when

particles are clustered to the left that this corresponds to a high area. When we

look at the trajectories of the systems in figure 5.11 we see that the negative bias

which produces these high area values also produces the left boundary clustering as

expected.

When we look at the density profiles and centre of mass in figures 5.12 and

5.13, we also see the expected left hand clustering at a negative bias. As we bias

towards low area, the system takes a centre of mass that approaches 0.5, its maxi-

mum possible value. We see that the positive bias hence produces a flatter density

profile although the left to right occupancy rule cannot be broken.

5.4 Algorithm Performance

In a previous chapter (4) we have investigated how the algorithm performs at ob-

taining results for the SSEP. We have determined the best parameters to use in

terms of speed and accuracy. We investigate in this section how the algorithm per-

forms when we obtain results for Fredkin Processes. We consider the case where we

68

Figure 5.11: Sample trajectories of Fredkin Processes when biasing area with L = 20,
tobs = 104, nc = 104 and ∆t = 10. Trajectories that arrive at index 0 when primary
seed is 0. (a) h = −0.1; (b) h = −0.01; (c) h = 0; (d) h = 0.01.

bias the activity but also the case where we bias the area beneath the Dyck Path.

We specifically measure the number of clones and units of times required for the

algorithm to converge and hence use several of the definitions used in section 4.3.

The system on which the Fredkin Chains are implemented is defined by two

components. One of these is an array of particles positions where the position of

a particle is the index of the site that it occupies. The other is an array of site

occupancies, the index of the particle that occupies each site. When a site is empty

its site occupancy takes a value of −1. A system is cloned by copying both of these

components. After tobs units of time (M cloning intervals) we compute the large

deviation function ψ(s) = ln[Z(s, tobs)]/tobs.

5.4.1 Measuring Activity (Hops)

We first consider how many units of time tobs and how many clones nc are required

to converge the results at various values of the bias s when L = 50 in figures 5.14

and 5.15, respectively at a cloning interval ∆t = 10. In figure 5.14 we fit a curve

of the form k∞ +A/tobs as in equation (4.6) and in figure 5.15 we fit a curve of the

form k∞ + A/nc as in equation (4.9) at the values of the bias s that are hardest to

converge. We then analyse how may units of time tobs and how many clones nc are

required to converge the results in more detail for systems of size L = 20, 50, 80.

We have found in the SSEP that the phase transition is the hardest place to

converge the algorithm with respect to the number of units of time. We consider

systems of size L = 20, 50, 80 and investigate how many units of time are required

69

Figure 5.12: Density Profile of Fredkin Processes biasing area with L = 20, tobs = 105

and nc = 103. (a) h = −0.1; (b) h = −0.01; (c) h = 0; (d) h = 0.01. These values
are obtained at ∆t = 10 averaged over 10 repeats with the [eq] (equal spacing) clone
selection method.

to converge the algorithm at the maximum susceptibility. In figure 5.16 we fit a

curve of the form k∞ + A/tobs as in equation (4.6) through data for system sizes

L = 50, 80 as we have done for the SSEP in section 4.3. The value of k∞ represents

the value of the activity as tobs →∞ and A is a fitting parameter that depends on

the rate of convergence. We fit these curves through the final three data points in

each case, and these are used to obtain values of k∞ and hence the data in Table

5.1 which includes values for L = 20.

The curve fits provide us with an estimate of the value of activity as tobs →∞.

The values in table 5.1 then provide us with an estimate of the systematic error

between the algorithm’s value and this infinite tobs value when we use a finite number

of time steps. As in our paper [19] we assert a 2% criterion of the maximum error

between the results from the algorithm and the results from the curve fit. This

allows us to derive a value for the number of units of time to use when obtaining

results around the maximum susceptibilty. As always we look to use as few units of

70

(a) L = 20, nc = 103 (b) L = 50, nc = 104

Figure 5.13: Centre of Mass calculated via two methods from the directly measured
area and from the density profile. Results obtained at tobs = 105,∆t = 10 over 10
repeats with the [eq] (equal spacing) clone selection method.

(a) Various s (b) s = 0.01

Figure 5.14: Time convergence of directly measured activity in Fredkin Processes
when biasing the activity. Results obtained for L = 50 sites with nc = 105 clones and
a cloning interval ∆t = 10. The results are averaged over 10 repeats and obtained
with the [eq] (equal spacing) clone selection method and non-modified dynamics.
(a) Results are obtained at various values of the bias s (b) The black curve is a fit
through the final three data points using a least squares fitting method of the form
k∞ + A/tobs where k∞ = 2.04 (3s.f.) and A = 1.75× 103 (3s.f.).

71

(a) Various s (b) s = 0.1

Figure 5.15: Clone convergence of directly measured activity in Fredkin Processes
when biasing the activity. Results obtained for L = 50 sites with tobs = 104 units
of time and a cloning interval ∆t = 10. The results are averaged over 10 repeats
and obtained with the [eq] (equal spacing) clone selection method and non-modified
dynamics. (a) Results are obtained at various values of the bias s (b) The black
curve is a fit through the final three data points using a least squares fitting method
of the form k∞ + A/nc where k∞ = 0.891 (3s.f.) and A = 50.1× 103 (3s.f.)

log |tobs| L = 20 L = 50 L = 80
1 2.4×10−1 3.5×10−1 3.6×10−1

2 2.1×10−1 3.3×10−1 3.5×10−1

3 7.0×10−2 3.0×10−1 3.4×10−1

4 1.2×10−2 7.9×10−2 2.2×10−1

5 1.4×10−3 1.2×10−2 3.5×10−2

6 1.6×10−6 2.6×10−3 4.9×10−3

Table 5.1: Relative error in activity at sL2 = 5 when varying the number of units
of time. These results were obtained with nc = 103 (L = 20), nc = 104 (L = 50, 80)
clones.

time as necessary to maximise efficiency.

To gain a better understanding of why the required number of units of time

varies with system size as it does and why it takes the value that it does we measure

how some observables evolve over time. In figure 5.17 we look at how the pave

measure of two observables varies with time. In figure 5.17a we see that the first

Fourier component of density of systems of size L = 20 has a timescale of ∼ 103 units

of time. When we increase the system size to L = 50 the timescale becomes longer

and tobs ∼ 103 is insufficient for it to converge to its true value. We observe the

same timescales in figure 5.17b when we measure the activity per cloning interval.

To allow the errors incurred by this timescale to become small we hence require

tobs ∼ 104 units of time to obtain values for L = 20 sites. We require even more

than this to obtain results for systems of size L = 50, 80.

72

(a) L = 50 (b) L = 80

Figure 5.16: Directly measured activity with various values of the number of units
of time tobs. Results obtained at nc = 104, sL2 = 5, ∆t = 10 over 10 repeats
(exc. tobs = 106, 1 repeat) with the [eq] (equal spacing) clone selection method
and non-modified dynamics. The black curves are 1/tobs fits through the final three
data points of the form k∞ + A/tobs. These values are k∞ = 4.6, 6.98 (3s.f.) and
A = 3.95× 103, 1.95× 104 (3s.f.) for L = 50, 80 respectively.

(a) Fourier Denisty δρq (b) Activity Kβ

Figure 5.17: Directly measured observables varying with time at sL2 = 5 for systems
of size L = 20 (tobs = 104, nc = 103) and L = 50 (tobs = 105, nc = 104). These
values are obtained at ∆t = 10 averaged over 5 repeats with the [eq] (equal spacing)
clone selection method.

73

O L = 20 L = 50
r 3.66×10−1 8.99×10−1

|δρ1|2 4.58×101 6.69×102

Kβ 5.02×101 1.19×102

Υ 4.1×10−3 3.78×10−4

Table 5.2: Normalisation coefficients cO(t′) of various observables at sL2 = 5 for
systems of size L = 20, 50. The algorithm is run for tobs = 104 (L = 20), tobs = 105

(L = 50) units of time on nc = 103 (L = 20), nc = 104 (L = 50) systems with
cloning intervals of ∆t = 10 units of time.

We also measure the autocorrelations with respect to the final time of several

observables. We use the same definition (4.7) of autocorrelations as we have used

in chapter 4 to investigate the performance of the algorithm when measuring large

deviations in the SSEP. In figure 5.18 the evolution of these autocorrelations over

time can be seen. Their normalisation coefficients cO(t′) are presented in table 5.2.

As the cloning factor Υ is calculated directly from the activity per cloning interval

Kβ, the autocorrelations of these two observables align. Therefore the black curves

for the activity per cloning interval Kβ do not appear clearly in figure 5.18 as

they are behind the blue curves for the cloning factor Υ. The timescale for the

autocorrelations of these observables to decay to zero in systems of size L = 20 is

of the order 103 units of time as can be seen in figure 5.18a. The time required to

obtain results for systems of this size is therefore at least 104 units of time. In figure

5.18b when we increase the system size to L = 50, we find that the timescale for

autocorrelations to decay to zero is longer and hence that more units of time are

required to obtain results from the algorithm.

The timescales associated with Fredkin Processes are therefore longer than

those associated with the SSEP. This is because in the SSEP, the size of the spectral

gap goes like L−2 [21]. In the Fredkin Process, however, Movassagh [93] has found

that the size of the spectral gap goes like L−p where p ≥ 2 and p ≤ 15/2. This

means that as the transient timescale τ goes like the inverse of the spectral gap [21],

the longer timescales in Fredkin Chains are expected. The macroscopic fluctuation

theory that Lecomte, Garrahan and van Wijland [85] use to calculate the large

deviation function of the SSEP, see chapter 3, assumes diffusive spreading [10] so

that a perturbation in the density profile would diffuse like t1/2. In the Fredkin

Process, however, the Dyck Path must remain positive which induces long range

correlations. These are what give the Fredkin Process its long timescales.

Figures 5.19 (a)-(b) include fits of the form k∞ + A/nc as in equation (4.9)

through the final three data points in each case as we have done for the SSEP

74

Figure 5.18: Directly measured autocorrelations with respect to the final time tobs

at sL2 = 5 for systems of size L = 20 (tobs = 104, nc = 103) and L = 50 (tobs = 105,
nc = 104). These values are obtained at ∆t = 10 with the [eq] (equal spacing) clone
selection method. The normalisation coefficients cO(t′) are presented in table 5.2.

log |nc| L = 20 L = 50 L = 80
0 2.1×10−1 3.0×10−1 3.3×10−1

1 1.0×10−1 2.2×10−1 2.7×10−1

2 2.8×10−2 1.2×10−1 1.6×10−1

3 7.0×10−3 2.9×10−2 5.8×10−2

4 3.1×10−4 2.2×10−3 1.1×10−2

5 9.9×10−4 1.0×10−3 3.7×10−3

Table 5.3: Relative error in activity at sL2 = 5 when varying the number of clones.
These results were obtained with tobs = 104 (L = 20), tobs = 105 (L = 50), tobs = 106

(L = 80) units of time.

in chapter 4. These fits provide us with an estimate of the value of activity as

nc → ∞ as discussed. The values in table 5.3 then provide us with an estimate of

the systematic error between the algorithm’s value and this infinite value when we

use a finite number of units of time. As in our paper [19] we assert a 2% criterion

of the maximum error between the results from the algorithm and the results from

the curve fit. This allows us to derive a value for the number of clones to use when

obtaining results around the maximum susceptibilty. As always we look to use as

few clones as necessary to maximise efficiency.

We obtain in table 5.3 and figure 5.19 that 103 clones are required for L = 20

sites for the algorithm to converge, when biasing activity in Fredkin Processes and

104 clones are required for L = 50, 80 sites. This is fewer than the number of clones

required for convergence for the same system sizes when measuring the large devia-

tions in activity in the SSEP. As discussed in chapter 4 the pave distribution which is

defined in section 2.5 in definition (2.28) is obtained by a form of importance sam-

75

(a) L = 50 (b) L = 80

Figure 5.19: Directly measured activity with various values of the number of clones
nc. Results obtained at tobs = 105, sL2 = 5, ∆t = 10 over 10 repeats (exc. tobs = 106,
1 repeat) with the [eq] (equal spacing) clone selection method and non-modified
dynamics. The black curves are 1/nc fits through the final three data points of the
form k∞ + A/nc. These values are k∞ = 4.65, 7.1 (3 s.f.) and A = 141, 499 (3 s.f.)
for L = 50, 80 respectively.

pling from the pend distribution which is directly sampled by the cloning algorithm

and is also defined in section 2.5 in definition (2.29). A lower bound on the number

of systems that are required to obtain results from the algorithm is that there are

enough systems that the pave distribution is sufficiently sampled. In figure 5.20 we

make Gaussian fits to the values of pend and pave that we sample. These Gaussian

fits overlap much more than the equivalent fits for the SSEP in figure 4.7 which

implies that less clones are required for convergence. This is in agreement with our

results in table 5.3 and figure 5.19.

One reason that convergence with respect to the number of clones for Fredkin

Processes requires less clones than for the SSEP may be that there are fewer config-

urations available for the system to exist in. This is due to the fact that there must

be more occupied sites than unoccupied sites when reading from left to right across

the lattice. Another reason may be that the low activity in the rare configurations is

higher relative to the average activity than in the SSEP. This is because the activity

is already restricted when there is no bias, this is also due to the rule that enforces

that there must be more occupied sites than unoccupied sites when reading from left

to right across the lattice. This theory is strengthened by the data for L = 20 and

L = 50 in figure 5.20 which shows that the peaks in the pave and pend distributions

are close to one another.

76

Figure 5.20: pave (crosses) and pend (circles) distributions of activity per cloning
interval Kβ. The algorithm is run for tobs = 104 (L = 20), 105 (L = 50) units
of time on nc = 103 (L = 20), nc = 104 (L = 50) systems with cloning intervals
of ∆t = 10 units of time. The distributions are measured at t = 9700 (the 970th

cloning interval) at a bias sL2 = 50.

5.4.2 Measuring Area Beneath the Dyck Path

We investigate time convergence when biasing the area by fitting a curve through

the data of the form 1/tobs. As previously, we obtain an estimate of k∞ as tobs →∞
and of the fitting parameter A. We use a 2% criterion again to determine how many

units of time are required for convergence at a fixed value of the number of clones

nc. In figure 5.21a we show convergence with respect to tobs at various values of the

bias h. Unlike when biasing the activity the steepest derivative in the observable

that we are biasing exists at a negative bias. This implies that the variance in the

area beneath the Dyck Path (the susceptibility) across the population is largest at

a negative bias so we expect time convergence to be hardest when h < 0. This is

seen at h = −0.01 where tobs = 105 units of time are required for convergence when

L = 50 as opposed to the other values of h which we require tobs = 104 units of time

to converge.

In figure 5.21, we show the convergence with respect to time tobs at h = −0.01.

As with the results obtained when we biased activity in the SSEP (section 4.3) and

the Fredkin Process (section 5.4.1) we fit a curve through the data of the form in

equation (4.6). Similarly to when we bias the activity in the Fredkin Process, when

we bias the area in the Fredkin Process tobs = 105 units of time are required for

convergence when L = 50, as shown in table 5.4. When we bias to the maximum

susceptibility we bias to the trajectories with the longest timescales. This means

than when we bias the activity to the maximum susceptibility we bias to the same

trajectories as when we bias the area beneath the Dyck Path to the maximum

77

(a) Various h (b) h = −0.01

Figure 5.21: Time convergence of the directly measured area under the bias h.
Results obtained at nc = 104, L = 50, ∆t = 10 over 10 repeats with the [eq]
(equal spacing) clone selection method. (a) Results are obtained at various values
of the bias h (b) The black curve is a fit through the final three data points using a
least squares fitting method of the form k∞ + A/tobs where k∞ = 0.607 (3s.f.) and
A = −468 (3s.f.).

log |tobs| L = 20 L = 50
1 4.8×10−1 2.1×100

2 3.3×10−1 1.9×100

3 6.6×10−2 1.1×100

4 6.7×10−3 8.3×10−2

5 1.1×10−3 8.4×10−3

6 2.9×10−4 1.6×10−4

Table 5.4: Relative error in area at h = −0.01 when varying the number of units of
time. These results were obtained with nc = 104 (L = 50) systems.

susceptibility. This explains why they require the same number of units of time to

converge.

We use the same curving fitting techniques as used in subsections 4.3.2 and

5.4.1. We fit a curve of the form k∞ + A/nc through our data as in equation (4.9).

Again we use a 2% convergence criterion to determine how many clones are required

to converge the results at a fixed value of the number of units of time. In figure 5.22

we show the convergence with respect to the number of clones nc for systems of size

L = 50. We find that the number of clones required for convergence are nc = 102

and nc = 103 systems for systems of size L = 20 and L = 50 respectively as shown

in table 5.5. The values of the the relative error that are obtained when biasing the

area beneath the Dyck Path are similar to those obtained when biasing the activity.

This is likely to be because the pave and pend distributions of area when biasing area

have a similar amount of overlap to the pave and pend distributions of activity when

78

(a) Various h (b) h = −0.1

Figure 5.22: Clone convergence of the directly measured area under the bias h.
Results obtained at tobs = 105, L = 50, ∆t = 10 over 10 repeats with the [eq]
(equal spacing) clone selection method. (a) Results are obtained at various values
of the bias h (b) The black curve is a fit through the final three data points using a
least squares fitting method of the form k∞ + A/nc where k∞ = 0.263 (3 s.f.) and
A = 3.07× 10−2 (3 s.f.).

biasing activity at the values of the bias that we have considered.

If we were to bias one quantity and measure another we would expect to

require as many clones for the values to converge as when we measure the quantity

that we are biasing. This is because we would require that we access the same rare

trajectories as when we measure the quantity that we are biasing. Furthermore,

our results in figures 4.4 and 4.5 for the SSEP and in figures 5.17 and 5.18 for

the Fredkin Process show that the timescales of different quantities under the same

dynamics are the same. This means that the number of units of time required for

the errors incurred by these time scales to become small is similar when we bias

one quantity and measure another to when we measure the quantity that we are

biasing. This does, however, depend on the relative of the value of the quantity that

we are measuring at the final time to its value in the TTI regime. Therefore, when

we bias one quantity and measure another, the number of units of time required for

its convergence depends on its relative value at these two times.

5.5 Fredkin Summary

We have obtained results when biasing activity in the Fredkin Process. We have

then verified the accuracy of our results by comparison with some theoretical values

of the large deviation function for a small system and theoretical area beneath the

Dyck Path at no bias obtained from Brownian Bridges. In the range s = −0.1 to

79

log |nc| L = 20 L = 50
0 1.1×100 2.4×100

1 1.8×10−1 2.6×10−1

2 1.6×10−2 4.1×10−2

3 5.7×10−4 7.2×10−3

4 4.4×10−4 9.9×10−4

5 4.5×10−4 1.8×10−4

Table 5.5: Relative error in area at h = −0.1 when varying the number of units of
time. These results were obtained with tobs = 105.

0.1 we have obtained the large deviation function and directly measured activity

from the algorithm. Across this range of biases we have measured the clustering

of particles by measuring density profiles, the directly measured area beneath the

Dyck Path, the centre of mass and typical trajectories. When s is negative we see

that the particles tend to be as diffuse as possible and consequently have a centre

of mass near the centre of the lattice and that the area beneath the Dyck Path is

small. As we transition to a positive bias the particles cluster specifically on the left

hand end of the lattice, the sites with small indices. As a consequence the centre of

mass tends towards its minimum possible value 0.25 and the area beneath the Dyck

Path tends towards its maximum possible value 1.

We have then investigated the activity, large deviation function and suscepti-

bility as a function of the sL2 scaling of the bias that we made when analysing the

phase transition in the SSEP in chapter 3. As with the SSEP we have found that

the values of activity and the large deviation function agree at this scaling. We have

found that the position of the peak in susceptibility as L → ∞ is at a far smaller

value of the bias sL2 than the position of the peak in the SSEP. Like the SSEP, as

the system size increase the value of the bias sL2 at which the peak occurs decreases

and in the Fredkin Process it may decrease to 0.

We have then investigated large deviations in the area beneath the Dyck Path.

We have done this by obtaining results as a function of the bias h and found that

the properties of the trajectories transition in the opposite way to the properties

of the trajectories under the bias s. At a positive bias the particles are diffuse and

the centre of mass approaches 0.5, its maximum allowed value. There is a sharp

transition around h = 0 that is seen in the large deviation function and directly

measured area. At a negative bias we see the particles clustering to the left hand

boundary of the lattice on the sites with the smallest indices. The larger value in

the area beneath the Dyck Path at negative h corresponds to a lower value in the

centre of mass that tends towards its minimum allowed value 0.25.

80

We have measured the number of clones and the amount of time required for

the algorithm to converge when obtaining results for the Fredkin Process. We have

found that it requires fewer clones than the SSEP but more units of time. The

reason that more time is required is that the Fredkin Process has longer time scales

associated with it because of long range correlations. The smaller number of clones

required by the Fredkin Process for convergence may be caused by the fact that

there are fewer configurations available for the system to exist in. It may also be

that the particles in rare configurations hop at a higher rate relative to the average

rate of the process than is the case in the SSEP.

81

Chapter 6

Computational Approaches for

Measuring and Improving Speed

and Efficiency

We have shown that our implementation of the algorithm produces useful results in

previous chapters. We now investigate the quickest way to computationally generate

these results. Researchers that use the cloning algorithm to collect results seek to

do so in a way that is quick but also in a way that is not expensive in the amount

of resources that it uses. This means that our objectives are to obtain large speeds

but also large efficiencies. One way to do this is to use computational parallelism so

that multiple processors execute the algorithm simultaneously.

Here we state the effect of various parallelisation techniques on the speed and

efficiency of the code. Also we show the effectiveness of using MPI techniques in

terms of the effect that it has on the codes speed and whether it is worthwhile using

them when obtaining results from the algorithm. We specifically focus on the run

time of the code when simulating the SSEP and a particular test case of typical

parameters used to obtain results in chapters 3, 4.

We measure the communications patterns of typical MPI implementations

in terms of the number of communications sent between pairs of processors and

investigate ways of reducing the number of communications sent between them. We

also consider how our implementations scale across multiple processors and what

options to use during compilation such as the compiler and optimiser.

82

Key
Generation

Index
Selection

Copying
Systems

Figure 6.1: Serial implementation of the algorithm code run on one node (ellipse)
and one processor (grey circle).

Process Modified SSEP
Observable Activity

Number of Clones nc = 105

Number of Units of time tobs = 104

System Size L = 50
Number of Particles N = 25

Cloning Interval ∆t = 10

Table 6.1: Set of Parameters for a Test Case at which we Obtain Results.

6.1 Serial Code and Definitions

To implement the algorithm we have written a C++ code which implements each

stage of the cloning algorithm. The dynamics stage is run on all nc systems in a

for loop. These are then used to create a binary search key which is used to select

the indices of the systems to clone. Finally, the cloning stage is completed using a

copy function to clone the systems. A diagram representing the clone selection and

cloning stages in the serial implementation is shown in figure 6.1. We have written

several C++ implementations of the algorithm to investigate which computational

techniques maximise the speed and efficiency at which we can obtain results from

the algorithm.

To test and compare the run times of each implementation we have defined

a set of parameters at which to obtain results as a test case (see table 6.1). We

generally obtain results for this test case at a bias sL2 = 20 using the [eq] clone

selection method. This serial code takes 5515s to obtain results on one processor on

one node when averaged over 20 runs. We define the speed-up Sm of implementation

m as

Sm = RTs/RTm, (6.1)

where RTm is the run time of implementation m and RTs is the run time of the

serial code. The corresponding efficiency Em of implementation m is defined as

Em = Sm/nt, (6.2)

83

where nt is the number of threads that the code is running on. In general, both the

speed-up Sm and the efficiency Em are dependent on the number of threads nt. All

of our results were obtained on (8-core) Intel Xeon E5-2650V2 Ivybridge processors

at 2.6 GHz. The computer nodes on which the implementations are run each have

a maximum of 16 threads that can be used simultaneously with shared memory.

6.2 OpenMP Code

We parallelise the code using a parallelisation technique called OpenMP [93, 25].

This means that multiple processing cores are used to run the computer code simul-

taneously. We expect this to decrease the run time of the code. Under OpenMP

multiple threads are used so that each thread performs computations independently

of the other threads. They do this with shared memory so that each thread has

access to the same memory as all of the other threads. OpenMP may only be run

on at most one node at a time.

The OpenMP code parallelises by using 16 threads on one node. The systems

are shared across all threads by shared memory and so the cloning communication

stage is implemented by the C++ copy function which performs a memory copy.

The dynamics are parallelised so that each thread implements the dynamics on an

equal share of the systems. The binary search key is generated by one thread and

available to all others through shared memory. The systems are indexed 0 . . . nc− 1

and each selects which system will be copied to replace it in the next set of systems

for the next cloning interval. This clone selection process is parallelised and the

indices of the systems to be cloned are known by all other threads through shared

memory.

The cloning is also parallelised so that each thread clones an equal share of

the number of systems to be copied. A diagram of the clone selection and cloning

stages in the OpenMP implementation are shown in figure 6.2. The run time for

the OpenMP code is 349s when run on 16 threads on one node across 10 repeats.

This corresponds to a speed-up of 15.8 and an efficiency of 98.8%. This is a good

speed up and means that a set of results that would have taken two weeks to obtain

with the serial code can be obtained with the OpenMP code in less than a day. The

efficiency is very high and indicates that the additional run time generated by the

OpenMP overheads is small relative to the overall run time of the code.

84

Key
Generation

Index
Selection

Copying
Systems

Figure 6.2: OpenMP implementation of the algorithm code run on one node (ellipse)
and multiple threads (grey circles).

6.3 MPI Code

We also use a parallelised MPI [54, 108] code. Multiple processing cores are again

used to run the computer code so that each processor executes code independently.

Under MPI there is not shared memory so MPI communications are required to

send information from one processor to another. One advantage that MPI has over

OpenMP is that it is not restricted to only being run on one node. This means that it

should be possible to obtain much larger speed-ups. It may then be possible to attain

results for large systems in a short period of time by using MPI implementations on

a large number of nodes.

This code is parallelised so that we have 16 processors per node and the ability

to run the code across multiple nodes. The dynamics are run such that an equal

share of the systems are run on each processor. Each processor goes through its

share of systems and runs the dynamics on them one at a time and calculates their

associated cloning weight. The cloning weights are then communicated to all other

processors via MPI Allreduce. Each processor then independently generates an iden-

tical binary search key. This is so that one processor does not have to do all the work

of clone selection and so that MPI overheads are not incurred by communicating a

binary search key between processors. The systems then each choose which system

will replace them in the next set of systems. This information is then communicated

to all of the other processors using the MPI AllGather function. Systems are com-

municated through MPI functions sending systems between processors. A diagram

of the clone selection and cloning stages of the algorithm is shown in figure 6.3.

85

Υ
Broadcast

AllReduce

Key Generation

Index Selection
Index

Broadcast

AllGather

Cloning
Systems

Send/Recv

Figure 6.3: MPI implementation of the algorithm code run on two nodes (ellipses)
and multiple processors (grey circles). Arrows are MPI communications, black ar-
rows are pointwise and grey arrows are collective.

6.3.1 MPI Pack Functions

Generally systems are in a state defined by several components. In our test case

the SSEP involves a one-dimensional lattice and hopping particles. The components

that therefore define the state of the system are site occupancies, particle positions,

particle freedoms and the escape rate. So far when we have been performing the

cloning process, each of the components has been copied separately. In the MPI

implementation this corresponds to one MPI message per component.

In principle, MPI implementations increase in speed as the message size in-

creases if the number of MPI messages is decreased proportionately. This means

that when sending systems via MPI it is expected that packing a system’s compo-

nents into one MPI message increases efficiency. We pack/unpack components using

the MPI functions MPI Pack/MPI Unpack. The speed of the implementations

may be reduced by the additional computation required to execute these functions.

When we pack system components into one message Table 6.2 shows that this im-

plementation [Components] is quicker than the MPI implementation [None] that

does not pack components.

Furthermore, it is possible to pack multiple systems from a processor into one

MPI message. This reduction in the number of MPI messages is expected to increase

the code’s speed further. Table 6.2 shows that the implementation [Systems] which

packs the components of multiple systems into each array and then sends it is quicker

than the implementation [Components] in which the components of only one system

are packed into each array to be sent.

86

Amount of Packing Speed-Up Efficiency (%)
None 48.6 75.9

Components 49.8 77.8
Systems 55.3 86.4

Table 6.2: Run times obtained by MPI implementations with different amounts of
packing when run on 4 nodes and 16 processors per node. The results are obtained
at the set of parameters in the test case (see table 6.1) and at a bias sL2 = 20.

6.4 Reduced Communications

Each pair of processors send systems to each other under the simple set of com-

munications. If processor A and processor B are sending systems to one another

this means that there is an inefficiency because the MPI communications required

to send systems to one another could be replaced by each one of these processors

copying as many systems as possible internally. We implement this using a pairwise

cancellation procedure and so for each pair of processors systems are only sent in

one direction. All of the other systems that would have been sent are copied inter-

nally within the processor they exist on using the C++ copy function to perform a

memory copy.

We define ΓA,B as the number of systems sent from processor A to processor

B. Under this communication reduction the number of systems Γ∗A,B sent from

processor A to processor B is

Γ∗A,B = ΓA,B −min(ΓB,A,ΓA,B), (6.3)

where A 6= B. This significantly decreases the number of messages sent by MPI, see

section 6.4.1 below. Furthermore each MPI message contains fewer systems which

leads to smaller MPI messages which in principle are quicker to send.

To assert that each system is copied the number of times determined by the

cloning process and that the number of systems on each processor remains fixed,

the decrease in MPI communication is offset by increased internal copying within a

processor. The number of systems copied internally ΓA,A within each processor A

using a copy function is increased to

Γ∗A,A = ΓA,A +
∑

B 6=A
min(ΓB,A,ΓA,B), (6.4)

where the sum is over all other processors. As table 6.3 shows this approach increases

the speed of the code. Our main reason for producing MPI implementations is to

obtain higher speed-ups than we did with our OpenMP code. We can achieve this

87

Communications Patterns Speed-Up Efficiency (%)
Simple Comms 54.6 85

Reduced Comms 59 92

Table 6.3: Run times obtained by MPI implementations with and without reduced
communications when packing systems and running the code on 4 nodes and 16
processors per node. The results are obtained at the set of parameters in the test
case (see table 6.1) and at a bias sL2 = 50.

Simple Communications Reduced Communications

Figure 6.4: An example of reduced MPI communication between four processors
(blue circles). Communications are reduced by point-wise cancellation so that com-
munication only occurs in one direction between each pair pf processors.

as MPI implementations can be run on multiple nodes whereas OpenMP codes can

only be run on one node. Our focus here is not on the resources spent on obtaining

these higher speed ups and so the fact that under reduced communications the MPI

implementation remains less efficient than the OpenMP code is less important than

the fact that it achieves larger speed-ups.

6.4.1 Communication Patterns

The diagram in figure 6.4 shows a typical reduction in communications between

four nodes under our communications reduction procedure. The communications

patterns in figure 6.5 show the number of systems sent between each pair of pro-

cessors that we measure when we run the algorithm code. The reduction in the

number of communications is clearly visible with messages only being sent in one

direction for each pair of processors. This communication reduction hence reduces

the number of messages by a factor of at least 2 and the average message size from

typically containing around 25 systems to around 5 systems. This corresponds to

the total number of systems sent by each processor reducing by about a factor of

10.

The reduction in the number of systems sent by MPI by a factor of 10 cor-

responds to an increase in the speed-up of the code of less than 10%, see table 6.3.

This is due to the fact that the reduced communications only increase the speed

88

Figure 6.5: The number of systems sent between each pair of processors using MPI
when evolving systems at the set of parameters in the test case (see table 6.1) and
at a bias λ = 20. Simple communications (left) and reduced communications (right)
using the independent [iid] clone selection method. These communications are in
the 500th cloning interval (t = 5000). Bottom Row: The number of systems sent by
each processor using MPI (blue) and those whose states are simply copied (orange).

of the communications stage of the algorithm, not the dynamics stage. Another

reason for this is that the increase in speed is largely only due to the reduction in

the number of messages, which is a factor of 2, not the size of the messages.

6.5 Non-Blocking Implementations

When using MPI to parallelise our code we use send and receive functions to perform

MPI communications. When these communications are blocking [39] the processor

that executes the send function waits until the message has been sent and can be

overwritten before it executes any more code. Similarly, the processor that executes

the receive function waits until the message has been received before it executes

89

any more code. Conversely non-blocking MPI communications allow computation

to occur whilst messages are being transmitted.

When non-blocking communications are performed and the receive function

is posted it returns a request object [107]. After the receive function is posted

at some point the receiving processor will require that the MPI message has been

received before performing some particular computation. To ensure that this has

happened a wait function can be called to wait for the MPI message to be received

[104]. This wait function can wait on one or multiple MPI messages [72]. When the

wait function waits on multiple MPI messages it contains an MPI request array of

requests [30]. When a communication completes this is when the request object is

returned by the wait function.

6.5.1 Test Codes

One drawback of our previous implementations is that they are blocking. The

consequence of this is that dynamics and communication cannot happen simulta-

neously. Furthermore, some nodes sit idle during the communications stage whilst

other nodes communicate systems to one another. A solution to this is to use

non-blocking implementations and non-blocking MPI functions. This means that

computations such as the dynamics can be being performed whilst communication

(i.e. the cloning process) continues to be executed in the background. To test the

efficiency of non-blocking MPI codes compared to blocking MPI codes we produce

some simple test codes that work at a fixed number of systems per processor. We

have done this as immediately creating a non-blocking version of our algorithm code

may be unnecessary if non-blocking communications do not work effectively for the

system sizes and communication patterns that we are considering.

Test Code A

In this simple test code we approximate the dynamics computation by the produc-

tion of random numbers. These random numbers are used to fill one integer array

of length 50, two integer arrays of length 25 and a double. In this test code, the re-

placement systems are randomly chosen for the copying process. An MPI Allreduce

function is used to communicate between all processors which systems are to be

copied. The same function is used to communicate between all processors which

processor each system is to be copied from. There are four MPI messages sent for

every system that is copied, one for each component.

For this test code we have two implementations, one is blocking and the other

90

Implementation
Run Time(s)

nct = 102 nct = 103

t = 103 t = 104 t = 103 t = 104

Non-Blocking (WaitAny) 24.6 239 262 2560
Blocking 12.7 128 125 1250

Table 6.4: Run time of test code A which copies four components using random
communication patterns and mimics the dynamics process by the production of
random numbers. Results obtained on 4 nodes of 16 processors per node and there
is one dynamics stage and one communications stage per unit of time.

is non-blocking. The blocking implementation uses MPI Recv and Send functions

and the non-blocking code uses the MPI Waitany function to wait for any system.

Our results in table 6.4 show that both cases scale approximately linearly with time.

Furthermore, they show for both values of clones per thread nct, that the blocking is

quicker than the non-blocking code. This suggests that the blocking communications

are quicker than the non-blocking communications. This could either be due to the

MPI Recv and Send functions being quicker than the MPI Waitany function or

the non-blocking messages taking a longer time to send than the blocking messages.

In both cases this may be due to the number of systems that we are trying to send

during the communications process.

Test Code B

In this test code we use a nanosleep function to replicate the time spent by the algo-

rithm code computing the dynamics stage. The communications stage is replicated

by a fixed communications pattern where systems are sent between processors using

an MPI function and within a processor using a copy function. This can be seen

in figure 6.6 where each communication represents four MPI messages, one for each

component. No random numbers are used in either the dynamics or communica-

tions stages of these test codes. When the test code is run for a given number of

communication stages it is trivial to calculate what the values of the array elements

are expected to be and hence to perform a consistency check that the test codes are

functioning as expected.

To test how effective that the non-blocking functions are we compare four im-

plementations of the test code. One of these implementations is blocking and three

are non-blocking. As with the previous test code we have an MPI Waitany imple-

mentation. In addition, for this test code we have MPI Wait and MPI Waitsome

implementations. The MPI Wait function has one MPI request and waits for one

particular system to be received. The MPI Waitsome function has an MPI request

91

Thread 1 Thread 2 Thread 3 Thread 4

Figure 6.6: Communication between systems and threads in test codes with fixed
communications patterns. Each circle represents a system. Red systems are copied
within the same thread using a copy function and blue systems are sent to other
threads using MPI functions. Black arrows copy to the next processor, green arrows
to two processors away and purple arrows to three processors away.

array for all of the systems. It waits for at least one system to have been received

and once it has the indices of all of the systems to have been received are returned.

As figure 6.7 demonstrates, the three non-blocking implementations are a

similar speed to one another regardless of the number of units of time or clones per

processor that the test code is run for. With a small number of clones per processor

(< 200) the non-blocking codes are quicker than the blocking code as figure 6.7

shows. A better approximation of the parameters used when we obtain results from

the algorithm code employs a lot more clones per processor than this and in this

regime the blocking code is faster.

Array-100 Codes

We have an alternative set of test codes called the Array-100 codes. Again, we use

the communications patterns of test code B as in figure 6.6. Also like test code B

the dynamics are mimicked by the nanosleep function. In this case we have one

integer array of length 100, which is again the equivalent number of array elements

to a lattice of length L = 50. We again have four implementations of the array-100

code, three are non-blocking and use the MPI Isend and Irecv functions and one

92

(a) t = 103 (b) nct = 103

Figure 6.7: Run time of test code B which copies four components using a fixed
communications pattern and mimics the dynamics process using a nanosleep func-
tion. Results are obtained on 4 nodes of 16 processors per node and there is one
dynamics stage and one communications stage per unit of time.

is blocking.

Figure 6.8 shows that when there are nct < 2000 clones per processor, the

blocking code is slower than at least one of the non-blocking codes. When we are

obtaining results from our algorithm code we often need more clones than this corre-

sponds to and hence we are looking at a regime where the blocking code is quicker.

This is a common observation across all of the non-blocking codes that we have

considered. When we have a large number of systems and hence communications

and MPI requests, the code takes a long time to run.

Balaji et al [5] have investigated why the run time of multi-request MPI func-

tions increases so quickly with its number of internal requests. They have found

that the run time of these functions scales linearly with the number of MPI requests

passed to them because of the time they take to gather the requests together. The

fact that the number of times that the MPI WaitAny and WaitSome functions are

called and the length of time that it takes for them to be called both scale linearly

with nct explains why the run times of the codes scale so quickly with the number

of clones per processor.

Two Request Arrays

A solution to the problem of long request arrays that take a long time to compu-

tationally gather is to split the request array into two smaller arrays. The corre-

sponding wait function then has to collect together only half as many requests each

time it is called. This increases the speeds of the wait function each time that it is

called and hence the code overall. In table 6.5 we see that increasing the number of

93

(a) t = 103 (b) nct = 103

Figure 6.8: Run time of the test codes which copy one component in the commu-
nications process, an integer array of length 100. The communications patterns are
fixed as in figure 6.6. Results are obtained on 4 nodes of 16 processors per node.
There is one dynamics stage and one communications stage per unit of time.

Implementation
Run Time(s)

nct = 103 nct = 3× 103 nct = 5× 103

WaitAny (One Array) 70 311 674
WaitAny (Two Arrays) 64.8 256 549

Blocking 62.3 186 310

Table 6.5: Run times of the Array-100 codes when the request array of the WaitAny
function is split. Compared with the case where the request array is not split and
the blocking implementation at t = 103 units of time. There is one dynamics stage
and one communications stage per unit of time.

WaitAny request arrays to two does decrease the run time of the code but that it is

still slower than the blocking implementation.

Multiple Request Arrays

As splitting the request array make the non-blocking WaitAny code quicker we

investigate how much the codes speed can be increased by further splitting the

request array into equally sized smaller arrays. Every reduction in the size of the

array corresponds to a reduction in the number of requests that have to be collected

each time that a message is received and a wait function called.

In figure 6.9 we see that at a fixed value of clones per processor nct, the run

time decreases as the number of request arrays increases up to a point where the

run time plateaus and does not change as the number of request arrays is increased

further. We see that the run time of the non-blocking code is never as quick as the

run time of the blocking code. These results were at nct = 104 which corresponds

94

(a) t = 103, nct = 104 (b) t = 103

Figure 6.9: Run time of the test code which uses multiple request arrays. The
components being copied are of length 100 and the communications patterns are
fixed as in figure 6.6. Results are obtained on 4 nodes of 16 processors and there is
one dynamics stage and one communications stage per unit of time.

to more than nc = 6× 105 systems in total.

Figure 6.9 also shows how the run time of this code changes as the number

of clones per processor nct is varied. When we run the code with a large number of

systems per thread nct > 103 we generally find that the blocking code is faster than

the non-blocking code regardless of how many smaller segments that the request

array is split into. We also find that when the request array is split into 25 smaller

arrays that the non-blocking code is quicker than when there is one request array.

When the number of clones per processor nct is less than 102 the non-blocking code

exhibits more efficient run times than its blocking equivalent regardless of whether

the request array is split.

6.5.2 Packing Multiple Systems

Having generated results for codes where systems and their components are packed

together we now consider the case where we do this alongside using non-blocking

functions. The main reason that the non-blocking codes take such a long time to run

is that there are a large number of MPI communications and there is consequently

a large number of MPI requests in the MPI request array. This is the case when

there are many components (test codes A and B) and also when there is one long

component (array-100 test codes) which is effectively the same as the case where

several components have been packed.

The main advantage of a non-blocking implementation in which systems to

be sent between each pair of processors are packed is that there are far fewer MPI

communications. We define the abbreviation cpm as meaning clones per message.

95

Figure 6.10: Run time of a blocking code with system-packing and a non-blocking
code with system-packing. Results obtained on 4 nodes of 16 processors per node
and averaged over 10 repeats. Results are obtained at the set of parameters in the
test case (see table 6.1) at a range of values of the cloning interval and at a bias
sL2 = 20.

In the case where we have nc = 105 systems on 4 nodes as in figure 6.10 the packing

of systems reduces the number of MPI communications from of the order ∼ 105

to ∼ 4 × 103. We find that this non-blocking implementation is not as fast as its

blocking equivalent as the results presented in figure 6.10 demonstrate. We are

able to adjust the frequency of communication stages by scaling the size of the

cloning interval ∆t. We find that at all values of the cloning interval the blocking

implementation is quicker. By comparison with the results for the test code with

arrays of length 100 in figure 6.8 we see that for the number of clones per processor

that we are using we would expect the blocking code to be quicker because of the

effect of the quick increase in the time spent calling wait functions with the number

of clones per processor.

6.6 Hybrid Implementations

The OpenMP code does not exhibit the communication inefficiencies observed in

the MPI implementations. One way to deal with this is to have shared memory

across a node and hence increase the amount of internal copying. This means that

there is no use of MPI functions to perform copying between processors that are

on the same node. In addition, we may use the packing function so that multiple

systems that are on the same node but different processors may be sent together in

one communication.

We have written a hybrid code that performs this packing routine of all sys-

96

tems to be sent between each pair of nodes. In figure 6.11 the diagram depicts the

clone selection and cloning stage in the Hybrid implementation. In figure 6.12 we

then present the run time of this implementation compared to other implementa-

tions with different amounts of packing. We plot these results against the size of the

cloning interval ∆t which is effectively a parameter which decides the frequency of

communication. As figure 6.12 shows, the implementations have similar run times

when there is a low amount of communication, at large values of ∆t.

When the cloning intervals are small the communication is much more fre-

quent. We know that the implementation that packs together systems on the same

processor is more efficient than the implementation that only packs components.

We see in this regime that packing more systems together decreases the codes speed

in the hybrid implementation where all the systems sent between each pair of nodes

are packed together. We observe this despite the large reduction in the number of

MPI messages.

When we hybridise the OpenMP and MPI codes we use the typical procedure

of using only one processor (rank 0) on each node to execute the MPI communi-

cations. The consequence of this is that the communications are performed by nN

processors where nN is the number of nodes. This corresponds to a reduction in

the number of processors communicating MPI messages by a factor of 16. As the

blocking codes send one MPI message at a time this means there is a large increase

in the amount of time that messages are waiting for the previous message to be sent

before they are able to sent. This explains the increase in run time that we see in

figure 6.12.

6.6.1 Test Code

When we run the hybrid code with all systems being sent from one node to another

packed into one buffer we find that it is slower than the other blocking implementa-

tions with packing. The obvious disadvantage of the communications in the hybrid

code is that MPI messages are longer although there are far less of them. The

general trend in MPI programming is that a code with a few long MPI messages is

generally quicker than one with several short MPI messages. Here this is clearly not

the case.

To determine why this is the case we have developed some test codes. These

test codes are similar to the array-100 codes. Again we use a fixed communications

pattern as in figure 6.6 and the dynamics stage of the algorithm is mimicked by a

nanosleep function. The difference between this test code and our previous test codes

is that the one component to be cloned is an array that has a length determined by

97

Υ
Broadcast

AllReduce

Key Generation

Index Selection
Index

Broadcast

AllGather

Cloning
Systems

Send/Recv

Figure 6.11: Hybrid implementation of the algorithm code run on two nodes (el-
lipses) and multiple threads (grey circles) with packing of all systems to be sent
between each pair of nodes. Arrows are MPI communications, black arrows are
pointwise and grey arrows are collective.

an input to the code.

This test code is designed to measure how quickly that the run time of the

code increases as the size of the message length increases. We observe in figure 6.13

that as the message size is increased from 100 to about 102 the run time of the code

stays at about a constant. As it is increased beyond this the the run time of the

code starts to increase. When there are 104 clones per processor as in figure 6.13b

increasing messages of size 104 by a factor of 5 increases the run time of the code

by a factor of 5.26 (3 s.f.).

When we obtain results with nc = 105 clones on 64 processors without reduced

communications as we have in figure 6.12 we know from figure 6.5 that this corre-

sponds to about 24 clones per message when we pack all systems to be sent between

each pair of processors. For systems of size L = 50 this corresponds to messages

of approximately 1200 integers. When we hybridise the code and have the clones

communicated by 4 processors this means that each node packs all the systems to

be sent by its 16 processors and all the systems to be received by the 16 processors

on the node that it is sending systems to. This means that we have about 162 times

as many clones per message. This corresponds to messages of approximately 6250

systems and hence approximately 312500 integers for systems of size L = 50.

In figure 6.13 when we increase the message size from 5×103 to 5×104 we also

see the run time of the code increase by a factor of 10. Given the rate at which the

code run time is increasing with message size in this region of the graph, increasing

the message size by another factor of 6 would likely increase the run time of the

98

Figure 6.12: Run time of the hybrid code compared with two MPI implementations.
Results obtained on 4 nodes of 16 processors per node and averaged over 10 repeats.
Results are obtained at the set of parameters in the test case (see table 6.1) at a
range of values of the cloning interval and at a bias sL2 = 20.

code by more than a factor of 6. Decreasing the number of messages by a factor

of 60 is unlikely to decrease the run time by more than 60 as blocking codes scale

linearly with the number of clones and this would only increase the speed of the

communications stage.

Overall we conclude that the increase in message size by a factor of 60 for these

parameters overrides the decreased number of messages in terms of how it affects

the speed of the code. These much larger MPI messages sent by fewer processors

explains why the hybrid code in figure 6.11 is slower than the MPI codes with

packing. When we increase the number of clones and hence the message size we

would expect this observation to be even clearer. Under reduced communications

the messages are shorter so we may expect to see a lesser increase in run time from

message packing but there are also fewer messages to see an increase in speed by

reducing the number of messages.

6.7 Weak Scaling

An important measure of the effectiveness and efficiency of our codes is how well

that our codes scale across multiple nodes particularly the code that provides the

largest speed-up, the blocking MPI code with reduced communications and which

packs multiple clones per message. When we scale the population size nc with the

number of processors that we use this is known as weak scaling [106]. In an ideal

implementation the run time would stay the same as the number of processors in-

creases. Here, when we increase the number of processors, the proportion of cloning

99

(a) nct = 103 (b) nct = 104

Figure 6.13: Run time of the blocking test code described in section 6.6.1 where the
component being cloned is an array that may take any size. Results obtained at
t = 104 on 4 nodes of 16 processors per node where nct corresponds to the number
of clones per thread (processor).

that is performed by MPI communications is increasing as a smaller proportion of

systems are expected to be copied internally. Additionally when we have multiple

clones per message we have an additional message to be received and sent for each

additional processor.

We test the weak scaling of our code at a state point λ = 20 close to the phase

transition in the SSEP. We run the code on systems of 50 sites and nc/nN = 105 so

that the algorithm is converged when run on one node. This means that the value

of the estimator k̂ only depends weakly on the number of systems. We define the

abbreviation ppn as meaning processors per node. For both clone selection methods,

figure 6.14 shows that the run time increases slowly with the number of nodes under

weak scaling. Across the range of nN from 1 to 8 (16 to 128 processors) the fact

that the run time does not increase greatly shows that the code is performing well.

We find these observations to be the case for all three implementations pre-

sented in figure 6.14. The ordering of implementations in terms of run time as the

number of nodes is increased stays the same and we find that there is only approxi-

mately a 5% increase in the run time of the quickest implementation as we increase

from 1 node to 8 nodes. This suggests that scaling the code across multiple nodes

does not greatly diminish its efficiency. We do not find a point at which the run

time of the code becomes rapidly slower or any obvious optimal number of nodes to

run the code on.

100

Figure 6.14: Weak Scaling of the run time of the code run for both clone selection
methods [iid] (left) and [eq] (right). Results are obtained at the set of parameters in
the test case (see table 6.1) at nc/nN = 105 clones per node and at a bias sL2 = 20.

6.8 Derived Data Types

An alternative way to send a system in one MPI message is to use derived data types.

Derived MPI data types are user defined data types. To send three vectors and a

double in one message we have defined an MPI datatype called MPI Lattice (see

Appendix E). One feature of derived datatypes is that the relative memory offset

of each component must be known, this varies between instances of the class that

defines the system. Therefore each class requires its own datatype. A drawback of

this is that multiple systems cannot be sent in one message via this derived datatype

method.

We find that the implementation where we use a derived data type is a similar

speed but slightly slower than the implementation in which components but not

systems are packed. This is a slightly unexpected result as the derived data type

implementation does not require the use of packing functions to send one system per

message. The reason for this may be that for each system to be sent, the components

are still packed by MPI into a buffer to be sent and unpacked from a buffer once

they are received. Performing communication with derived data types also requires

some additional computation for the derived data types to be produced. As this

implementation is slower than the implementation in which components are packed

it is also slower than the implementation in which multiple systems are packed into

each message. We do not, therefore, use derived data types when obtaining results

from our algorithm.

101

6.9 Compilers and Optimisers

There are various compilers and optimisers that can be used to compile and run our

codes. The run time of the code is clearly dependent on the optimiser and compiler

that are used. The two OpenMP compilers that we have used here are g++ and

icpc and the two MPI compilers are mpicxx and mpiicpc. We have found in both

cases when we run the reduced communication implementation on the SSEP that

the intel compilers icpc and mpiicpc are quicker than g++ and mpicxx for OpenMP

and MPI, respectively.

We have also tested a few different optimisers and how the MPI implementa-

tion performs when using them. The optimisers we try are −O1, −O2, −O3 and no

optimiser and we measure how they scale across multiple nodes. We find that the

run times of our implementations when using optimisers −O2 and −O3 are similar

when using up to 5 nodes. When using more than 5 nodes we find that the code has

a shorter run time when using the −O3 optimiser than when using the −O2 opti-

miser. When we use the −O1 optimiser the code is slower than than when we use

the −O2 and −O3 optimisers on any number of nodes. When we use no optimiser

we find that when run on any number of nodes that this is slower than the three

cases where we use an optimiser.

When obtaining results with the OpenMP method we therefore use the icpc

compiler. When obtaining results with any of the MPI implementations we are

generally obtaining results on 4 nodes of 16 processors. We have found that for

this number of nodes that the −O2 and −O3 optimisers are a similar speed. For

simplicity we use the −O3 optimiser as this is the better optimiser to use when we

are obtaining results on more than 5 nodes. In addition we use the quicker mpiicpc

compiler when obtaining results with our MPI implementations.

6.10 Computation Summary

In conclusion we have found that the OpenMP implementation is the most efficient.

In addition, we have found that the MPI implementation provides a larger speed-

up. This may be of use to researchers when they obtain results for large systems

or at state points which are difficult to converge. We have found that the MPI

implementations can be increased in speed by performing pointwise communication

reduction and packing multiple systems into MPI messages.

We have investigated MPI techniques including non-blocking communications

and hybridisation. We have found in each case that they do not decrease the run time

of the MPI implementations. We have also measured how our MPI implementations

102

scale across multiple nodes. We have found that when we perform weak scaling the

efficiency of the code does not drop off greatly. Also the ordering of the speed of

the MPI implementations does not change as we scale from one node to eight nodes

under weak scaling.

103

Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have investigated the probabilities of rare events in physical systems. This has

been done using large deviation theory particularly following on from the cloning

process first described by Grassberger [51] et al and built upon by Giardinà, Kurchan

and Peliti [50] by including modification of dynamics. We have first looked at large

deviations of activity in the SSEP, a process particularly studied by Appert-Rolland,

Derrida, Lecomte and van Wijland [3] and by Lecomte, Garrahan and others [85].

They have found that when using the algorithm to bias the activity in the SSEP

that a phase transition occurs at a particular value of the bias. Our work here also

follows on closely from our work on the dynamical phase transition in the SSEP in

[19].

The algorithm evolves a large number of systems and we are able to directly

measure the variance in activity across these systems when simulating the SSEP

as well as directly measuring the activity itself and the mathematical quantity of

interest, the large deviation function. For systems of size L, in the limit L → ∞
Appert-Rolland et al [3] and Lecomte, Garrahan et al [85] respectively have obtained

theoretical values for these quantities below and above the phase transition. Below

the phase transition, Appert-Rolland et al have also found theoretical values for

these quantities in finite systems at large values of L and small values of the bias.

We have then measured how variables such as the variance in activity scale towards

the theoretical L→∞ values in systems of finite size.

We have found that the algorithmic results are close to the theoretical values

that correspond to the L→∞ limit of the activity and large deviation function for

systems of size L = 20 and align well for systems of size L = 50, 80. The results

for the variance in activity show a divergence in the variance in activity that is

104

consistent with the existence of a phase transition. Our algorithmic values show

that the value of the bias at which the peak in the variance in susceptibility occurs

decreases in value towards the L → ∞ value predicted by theory as the system

size increases. The height of the peak increases towards the value predicted by the

theory in the L→∞ limit as L increases.

We have also investigated how the properties of the system change as the

size of the bias is increased from 0 to above the phase transition. At the phase

transition we see stable clusters beginning to form. We have measured this by

attaining trajectories of the system that show the positions of each particle on the

system as well as by measuring the first Fourier component of density. We see that

as the bias is increased further the cluster becomes increasingly well-defined and the

number of particles in the sparse region outside of the cluster decreases. Physically,

this means that in the SSEP when there are rare events of low activity, the system

exhibits clusters and high values of the first Fourier component of density.

To obtain results regarding the SSEP we have investigated which algorithmic

parameter values to use. One of these parameters is the number of units of time spent

implementing the dynamics between each stage that we perform the cloning process,

this is referred to as the cloning interval. We have found that when simulating the

SSEP that a cloning interval of 10 units of time has the smallest statistical errors

associated with it. We have also found that increasing the size of the cloning interval

to more units of time than this does not significantly reduce the run time of the code

that implements the algorithm despite less cloning processes taking place. When we

decrease the size of the cloning interval below this, the increased number of cloning

processes increases the run time of this code. As we vary the size of the cloning

interval the size of the systematic errors stay the same.

We have also investigated two methods for selecting which systems are going to

be copied during the cloning process. One of these is the [iid] method in which mark-

ers on a number line of cloning weights are identically independently distributed.

The other is the [eq] method in which these markers are equally spaced. We find

that these two cloning systems produce systematic errors of the same size. The

statistical errors are smaller under the [eq] method for all sizes of cloning interval.

In addition the run time of the OpenMP implementation of our code is smaller un-

der the [eq] clone selection method than the [iid] clone selection method. Therefore

when obtaining results for the algorithm under the SSEP we use a cloning interval

of 10 units of time and the [eq] clone selection method.

The results that we have obtained on the size of the statistical errors varying

with the size of the cloning interval are generally going to depend on the system

105

and process of interest. However, we expect the fact that the [eq] method produces

smaller statistical errors than the [iid] method to generally be true for any system

and any process. We have found that the systematic errors that we have obtained

do not vary with the size of the cloning interval or the choice of clone selection

method. We would expect this to also be the case if researchers were to use these

clone selection methods to collect results for other systems and processes.

We have also investigated how many units of time are required to obtain

accurate results. For each system size L = 20, 50, 80 we have investigated how many

units of time are required for convergence with respect to a 2% tolerance of an

infinite tobs value of the activity obtained by fitting a curve through our algorithmic

results. We have investigated the reasons for why the values of the number of units

of time required for convergence take the values that they do. We have done this by

measuring how long it takes for observables such as the first Fourier component of

density |δρ1|2 and the escape rate r to decay into a time translation invariant regime

by measuring their average value over time. We have also measured the timescales

associated with the process by measuring the evolutions of the autocorrelations of

these observables with respect to the final time tobs.

To obtain accurate results from the algorithm we also require a sufficient

number of systems nc. For each system size L = 20, 50, 80, we have again fitted

a curve through our algorithmic data to obtain an infinite nc value of the activity

and we have investigated how many clones are required for convergence with respect

to a 2% tolerance of this value. To investigate why we obtain the values that we

do for the number of clones required for convergence we have analysed two ways of

measuring the distribution of observables. One of these distributions measures the

distribution across the population of clones. The other measures the distribution

across the population when each system is weighted by the number of descendents

that it has at the final time.

From the two methods for measuring the distributions of observables we have

derived a lower bound on the number of clones required for convergence. This bound

is to assure that at least the peak of a particular one of the distributions is sampled

by the other distribution. This bound assumes that both of these distributions have

approximately Gaussian distributions. We have used this lower bound to obtain

values for how many systems are required for convergence for systems of size L =

50, 80 in the SSEP.

The values for the number of clones required for convergence that we have ob-

tained using our convergence criteria based on curve fitting through our algorithmic

data are larger by a factor of about 10 than the values that we have obtained using

106

the lower bound that we have derived. This lower bound is therefore consistent with

the other results that we have obtained for convergence with respect to the number

of clones. The lower bound that we have derived is a result that could be used

by other researchers to obtain a lower bound for the number of clones required for

convergence when biasing observables in other processes including in other types of

system.

The results that we have obtained for convergence in the SSEP are for systems

of size L = 20, 50, 80. We have shown that for these systems sizes, the scaling

behaviour obtained by Nemoto, Hidalgo and Lecomte is valid. We have only shown,

however, that they are valid for the SSEP for systems up to this size. Hidalgo

has determined that in the large-L limit, the 1/tobs and 1/nc scalings break down.

Therefore at some system size greater than L = 80 we expect these scalings to not

be valid for the SSEP.

One feature of our results for the SSEP is that a large number of clones is

required to obtain results, up to about a million. This is due to the fact that

we are considering quite large systems. Some methods [94, 96] may allow results

to be obtained with fewer clones and hence results for larger systems than we have

considered or for more complicated systems than we have considered. For researchers

to efficiently analyse more complicated systems without these methods, they may

need to consider smaller system sizes.

As well as large deviations in the SSEP we have also measured large deviations

in the Fredkin Process. Firstly, we have looked at large deviations in the activity.

We have shown that our algorithm produces accurate results for Fredkin Processes

by comparison with theoretical results. Again, we have measured what happens to

the clustering of particles as we scale the bias. We have found in typical trajectories

of the system and in density profiles of the system that at a negative bias the

particles tend to spread out as much as possible. Sometimes Fredkin Processes are

represented by a Dyck Path that varies in height as the occupancy of lattice sites

vary. When the particles are spread out at a negative bias the area beneath this

Dyck Path is small and this corresponds to the centre of mass being near the centre

of the lattice.

As the bias is increased to a positive bias we see in the typical trajectories

and density profiles that the particles tend to cluster specifically on the left hand

end of the lattice. The sites on the left hand end of the lattice are those with indices

close to 0. This clustering of particles at the left end of the lattice at a positive bias

corresponds to a large area beneath the Dyck Path and a low centre of mass near

the left hand end of the lattice. Physically, this means that in Fredkin Processes,

107

rare events of high activity correspond to particles being spread out and rare events

of low activity correspond to particles being clustered on the left hand end of the

lattice.

Our results show that when under no bias, the systems under SSEP are dif-

ferent to the systems under the Fredkin Process because under the Fredkin Process

particles tend to be positioned towards the left hand side of the lattice in sites with

an index close to 0. This is due to the fact that under the Fredkin Process, there

must always be more occupied sites than unoccupied sites when reading from left

to right across the lattice. This is the also the main difference between the two

processes when we scale to a positive bias of the activity. Under the SSEP, particles

tend to form into a single cluster. This is also the case under the Fredkin Process,

however the cluster is always formed on the left hand boundary of the lattice where

the sites have small indices whereas this is not the case under the SSEP.

As with the SSEP we have investigated the large deviation function, activity

and susceptibility as a function of a scaling of the bias sL2. We have found that

the values of activity and the large deviation function are similar at this scaling for

systems of size L = 50, 80 and that the corresponding values for systems of size

L = 20 are also somewhat similar. We have found that the position of the peak

in susceptibility as L → ∞ is at a value of the bias sL2 that is much smaller than

the position of the peak in the SSEP. The value of the bias sL2 at which the peak

in susceptibility exists decreases as the system size increases and may decrease to

sL2 = 0.

Although, the activity values and large deviation functions that we measure

for the Fredkin Process are similar for different system sizes they do not align as

closely as is the case for the SSEP. Also, the values of the scaled bias at which the

peaks in susceptibility exist for different system sizes align more closely in the SSEP

than they do in the Fredkin Process. When we impose restrictions on the activity in

the SSEP as we do in the Fredkin Process, alternative scalings of the bias at which

the maximum susceptibilty occurs are expected. This suggests that the sL2 scaling

of the bias against which we plot our results for the SSEP may not be the correct

scaling of the bias to plot our results for the Fredkin Process against.

We have also investigated large deviations in the area beneath the Dyck Path.

We have found that the properties of the trajectories when we bias this area tran-

sition in the opposite way to the properties of the trajectories when we bias the

the activity. When we have a negative bias the particles cluster to the left hand

boundary of the lattice on sites with indices close to 0. Physically, this is is what

corresponds to large values in the area beneath the Dyck Path and a lower value in

108

the centre of mass. Conversely, at a positive bias the particles tend to spread out

and this is physically what happens when there is a low area beneath the Dyck Path

corresponding to a higher centre of mass near the centre of the lattice.

As with the SSEP we have then investigated which parameters to use when

obtaining results from the Fredkin Process. As with the SSEP we use the [eq] clone

selection method to obtain results and a cloning interval of 10 units of time. We

again investigate how many units of time are required for the algorithm to converge

to within a 2% tolerance of the infinite tobs value of the activity. As when we’ve

obtained results for the SSEP, we obtain this infinite tobs value of the activity by

fitting a curve through our data points. By also investigating the average values of

observables over time and the evolution over time of autocorrelations of observables

with respect to the final time we find that when biasing activity the Fredkin Process

has longer time scales associated with it than the SSEP does.

We then go on to consider the clone convergence of the algorithm when biasing

activity under the Fredkin Process. We do this by investigating how many clones

are required for the results to convergence to within a 2% tolerance of the infinite

nc value. We also investigate the different distributions of the activity under the

Fredkin Process to understand why the number of clones that are required by the

algorithm for convergence takes the value that it does. We find that when biasing

the activity under the Fredkin Process we require many fewer systems to converge

to an accurate value than when biasing the activity under the SSEP.

As well as investigating the performance of the algorithm when biasing the

activity under the Fredkin Process we have also investigated the performance of

the algorithm when biasing the area beneath the Dyck Path. Again we fit curves

through the data and measure how many units of time are required for the algorithm

to converge to within a 2% tolerance of the infinite tobs value. We find that a similar

number of units of time are required to converge the algorithm when biasing the

area under the Dyck Path to when biasing the activity.

We also fit a curve through the data to measure how many systems are required

for the algorithm to converge to within a 2% tolerance of the infinite nc value. We

find that a similar number of clones are required for convergence when biasing the

area beneath the Dyck Path to when biasing the activity. The reason that a similar

number of units of time are required for both observables may be because in both

cases the algorithm biases to trajectories with configurations in which particles are

clustered to the left hand boundary and which exhibit the longest timescales. The

number of clones required for convergence may be similar for the two observables

because the pave and pend distributions have a similar amount of overlap for the

109

values of the bias that we have considered.

The results that we have obtained for convergence in the Fredkin Process are

for systems of size L = 20, 50, 80 when biasing the activity and L = 20, 50 when

biasing the area beneath the Dyck Path. In both cases, we have found that for the

systems sizes that we have considered, the scaling behaviour obtained by Nemoto,

Hidalgo and Lecomte is valid. We have not shown, however, that they are valid for

Fredkin Processes for systems larger than the ones that we have considered. Hidalgo

has determined that in the large-L limit, the 1/tobs and 1/nc scalings break down.

Therefore at some system size greater than L = 80 when biasing the activity and

L = 50 when biasing the area beneath the Dyck Path, we expect these scalings to

not be valid for the Fredkin Process.

We have also investigated various parallelisation techniques for implementing

the algorithm. The first of these that we have tried is an OpenMP implementation.

We have found that this is the most efficient of the parallelisation techniques that

we use and is able to obtain efficiencies of 98.8%. We are only able to run this

implementation on one node of 16 processors at most. In this set-up we obtain a

speed-up of 15.8. We have also found that a simple MPI implementation of the

algorithm produces larger speed-ups as it can be run on multiple nodes. A larger

speed-up of 48.6 is obtained when running this implementation on 4 nodes of 16

processors per node. This speed-up corresponds to an efficiency of 75.9%, less than

the OpenMP implementation.

One way to increase the speed of the MPI implementations further is to use

packing functions. This means that a system made of several components can be

packed into one message. It also means that when multiple systems are sent from one

processor to another that they can all be packed into one MPI message. When pack-

ing a system’s components the speed-up of the code increases to 49.8 corresponding

to an efficiency of 77.8%.

Another method to increase the speed of the MPI implementation is to re-

duce the number of MPI communications by pointwise cancellation of the number

of systems sent between each pair of processors. This means that many systems

that would have been sent via MPI between each pair of processors are instead

copied internally. We find that the number of systems sent by each processor and

between each pair of processors decreases significantly. The number of messages sent

decreases by a factor of 2 and the average message size decreases from containing

around 25 systems to containing around 5 systems.

We have also investigated the effect of using non-blocking communications

when implementing our code. These are codes in which computation such as the

110

dynamics can be executed whilst MPI communications such as the communications

stage occur simultaneously. We have constructed test codes to measure how the

run time of the code varies as the number of systems per processor is varied. We

find that none of the various non-blocking implementations that we have produced

are as fast as the blocking implementation when we have the number of clones per

processor that would use when obtaining results from the algorithm.

Another approach that we have used to increase the speed of our code is to

use OpenMP-MPI hybridisation. This is where within each node the program is

parallelised with OpenMP and then MPI is used to communicate systems between

nodes. When we do this we find that the code is not as quick as the simpler MPI

implementations that employ the packing of systems and of components.

We measure how well MPI implementations scale across multiple nodes. We

find that as we increase the number of nodes that we run the code on from one to

eight with a fixed number of systems per node there is only approximately a 5%

increase in the run time of the quickest code. Another technique we use to attempt

to increase the speed of our code is the use of Derived Data Types. This is where we

define a data type that contains all of the components associated with a system so

that the whole system can be sent in one MPI message without packing. We do not

use derived data types as we have found that using them is marginally slower than

our previous implementation that uses component packing. We have also tested

various compilers and optimisers to determine which are the best with which to

run our code. We have concluded that the icpc compiler is the best with which to

run our OpenMP code in terms of lowest run time. We have also found that when

running MPI implementations the optimiser which produces the largest speeds is

−O3 and the most efficient MPI compiler to use is mpiicpc.

The results that we have obtained for the speed and efficiency of different

computational techniques are for a specific test case where we implement the SSEP.

We have found that the OpenMP code is the most efficient code and we anticipate

that this should be the case regardless of the amount of time spent simulating

dynamics compared to the amount of time performing the cloning process. This is

because the OpenMP overheads induced by the cloning process are always smaller

than the corresponding MPI overheads. Therefore for any system and any process

the OpenMP implementation should always be the most efficient.

When investigating the speed-up obtained by MPI implementations we have

found that packing components and systems has always increased the speed of the

code. This should be the case for any system and for any process as it reduces

the number of MPI communications. Similarly the pointwise cancellation procedure

111

should also increase the speed of the code for any system and for any process as it

reduces the quantity and size of MPI communications. For some systems and pro-

cesses, our results suggest that non-blocking implementations may be faster than

blocking implementations when there are sufficiently few clones required for con-

vergence. Our results also suggest that for sufficiently small systems, the size of

MPI messages may be small enough that an MPI-OpenMP hybrid code would be

quicker than other MPI codes, however, communications being performed by a small

number of processors may still lead to large run times.

7.2 Future Work

There are several ways in which the results obtained in this thesis could be built

upon. One of these is to explore how the algorithm can be used to obtain results for

other processes. One type of process of interest may be those considered by Evans,

Kafri, Levine and Mukamel [43] involving different types of interacting particles such

as positive and negative particles. Other processes of interest may be those in which

particles may proliferate and/or the system may grow with time. Processes like this

are relevant in cell colonization during embryonic development [11]. Various birth

defects can result from unsuccessful colonization and so it is of importance to be

able to use models to calculate probabilities associated with this.

Another type of process that it may be interesting to test the algorithm on is

higher-dimensional processes than the ones that we have tested here such as particles

moving on grids or networks. Large deviations have previously been studied in the

rare events of complex networks [33, 81] and it may be insightful to compare results

from our implementation of the algorithm to results obtained by their methods. For

each of these processes it would be of interest to compare them with the processes

that we have already considered here, the SSEP and the Fredkin Process, in terms

of how the accuracy and run time of the algorithm are dependent on the size of

the cloning interval ∆t and how the observable time tobs and population size nc

convergences vary with the definitions of the process.

We have so far estimated averages of observables by using summation (4.3).

As discussed in section 4.3, this summation is dominated by contributions from

the TTI regime, introduced in section 2.5. There are however contributions from

the transient regimes which incur errors in our estimations of these averages. As

discussed in section 4.3, alternatively one could estimate K from the plateau values

of
〈
Kβ
〉
/L. This may be a useful strategy for obtaining averages from the algorithm

in the future.

112

One attribute of this region of the large deviations of the SSEP that is not

understood is the rate at which the peak of the susceptibility X (λ) increases towards

the large-L limit as the number of sites L is increased for finite L. This would be an

interesting way to add to the results that we have obtained. Furthermore, the value

of λ at which the values of X (λ) crossover for finite values of L is not understood

and would be another interesting area of research in the future. The correct scaling

of the bias for our results for large deviations in activity in the Fredkin Process to

be plotted against is also unknown and would be a further informative area of future

research.

As well as other physical processes there are other computational techniques

that it would be interesting to use the code that implements the algorithm to test.

Currently we are using two-sided MPI communication where both processors post

a send or receive for each MPI communication. An alternative is to use one-sided

communication which may under MPI be implemented in several different ways

[55]. Under one sided-communication each processor places messages to be sent in

a remote memory access window which other processors are then able to pick out.

Another computational technique that could be utilised is to advance the commu-

nications reduction further. This can be done by performing the same cancellation

procedure as we have used between processors to reduce the number of systems

being sent between nodes. We may find it quicker for systems to be communicated

intranodally than between nodes.

Overall, the cloning algorithm that we have investigated the performance of

and have used to study the SSEP and the Fredkin Process, can in principle be

applied to a wide range of processes across many fields such as geology, finance,

chemistry, biology and cosmology. In each case the cloning algorithm can be used

to calculate the probabilities of rare events and the values of associated quantities

such as the large deviation function and to characterise rare events to determine

the conditions in which they occur. If by scaling our MPI implementations of the

algorithm across a larger numbers of processors we are able to obtain results more

quickly this would give us the opportunity to study bigger and more complicated

systems. This would be a productive and informative way to build on the results

that we have obtained.

113

Appendix A

Relating ψ(s) to π(a) Using the

Observable Value at time t

The purpose of this appendix is to derive the relation between the large deviation

function ψ(s) and the rate function π(a) by considering the change in the value

of the observable between configurations. In addition by considering the modified

rates of changes between configurations we state a master equation to describe the

true dynamics and modified dynamics and derive a master equation to describe the

evolution of the path measure.

We denote P (A, t) as the probability of a system having observable value A

at time t. This is related to the probability P (C,A, t) by

P (A, t) =
∑

C

P (C,A, t), (A.1)

where P (C,A, t) is the probability of being in configuration C with observable value

A at time t. The probability of having observable value A can be written as the

proportion of all trajectories that give this observable value. By defining At as the

value of the observable at time t, P (C,A, t) is re-stated as

P (A, t) =
〈
δ
(
A− At

)〉
, (A.2)

by taking the average over all trajectories of delta functions that pick out trajectories

that lead to the observable having a value of A. This delta function can be stated

using its integral representation

P (A, t) =
1

2πi

+i∞∫

−i∞

ds 〈exp(−s[At − ta])〉 , (A.3)

114

using the definition a = A/t. From the definitions of the large deviation function

(2.4) and the partition function (2.3) we state

exp(tψ(s)) = 〈exp(−sAt)〉 , (A.4)

in the limit t→∞ which is substituted into equation (A.3)

P (A, t) =
1

2πi

+i∞∫

−i∞

ds exp(t[ψ(s) + sa]), (A.5)

to obtain a link between ψ(s) and the probability of having a particular observable

value. We compute the integral to obtain the solution

P (A, t) ∼ exp
(
−tmax

s
[−ψ(s)− sa]

)
, (A.6)

in the limit of t → ∞ by assuming that ψ(s) is finite in this limit and using the

method of steepest descent. This assumes that the imaginary contour line can be

deformed to the real line. This is the approach of Giardinà, Kurchan and Peliti [50]

to compute the integral in equation (A.5). From our definition (2.1) of π(a) and

equation (A.6) we obtain

π(a) = max
s

[−ψ(s)− sa], (A.7)

by assuming that π(a) is convex [48] which one may assume in the absence of

dynamical phase transitions [19]. We also know that the rate functions π(a) that

we consider are convex as we are considering discrete Markov chains. This means

that π(a) is the Legendre transform of ψ(s).

From here we consider type A observables that change in value every time

that the system changes configuration as we have defined them in definition (2.7).

We follow the approach of Lecomte and Tailleur [86]. The probability P (C,A, t) is

defined as the probability of being in configuration C with observable value A at

time t. These probabilities evolve according to a master equation

∂tP (C,A, t) =
∑

C′

W (C ′ → C)P (C ′, A− α(C ′, C), t)− r(C)P (C,A, t), (A.8)

where α(C,C ′) is the change in the value of the observable between configuration

C and configuration C ′, W (C ′ → C) are the transition rates and r(C) is the escape

rate. The modified probabilities P̂ (C,A, t) evolve according to a similar master

115

equation but with modified transition rates Ws(C
′ → C) and a modified escape rate

rs(C). The escape rate is defined by

r(C) =
∑

C′

W (C → C ′). (A.9)

A statistical weight is defined by

P̃ (C, s, t) =
∑

A

exp(−sA)P (C,A, t), (A.10)

and we want to find a master equation that describes how this statistical weight

changes over time. A sensible approach is to take the Laplace transform of both

sides of master equation (A.8)

∑

A

∂t [exp(−sA)P (C,A, t)] =
∑

C′

∑

A

exp(−sA)W (C ′ → C)P (C ′, A− α(C ′, C), t)

−
∑

A

exp(−sA)r(C)P (C,A, t),

(A.11)

by multiplying all terms by e−sA and summing over all values of A. We then intro-

duce the modified transition rates

Ws(C → C ′) = exp(−sα(C,C ′))W (C → C ′), (A.12)

which we substitute into the transformed master equation

∂tP̃ (C, s, t) =
∑

C′

∑

A

exp(−s(A− α(C ′, C)))Ws(C
′ → C)P (C ′, A− α(C ′, C), t)

− r(C)P̃ (C, s, t),

(A.13)

where we have substituted in P̃ (C, s, t). The introduction of the modified transitions

Ws(C
′ → C) then allows us to perform the sum over all possible values of A in the

first term of our transformed equation and obtain our final version

∂tP̃ (C, s, t) =
∑

C′

Ws(C
′ → C)P̃ (C ′, s, t)− r(C)P̃ (C, s, t). (A.14)

This master equation has no steady state solution but it does have solutions that

behave for long times as P̃ (C, s, t) = Q(C, s) exp(ψ(s)t). Substituting this into

master equation A.14 gives our usual eigenvalue problem with ψ as the eigenvalue

and Q as the eigenvector.

116

Appendix B

Calculation of Hop Success Rates

In this appendix we determine that hops in the SSEP are successful at the correct

rate. We do this by considering probability distributions of the same form as those

from which time steps are drawn.

At each time step we pick a random one of N particles, each having a proba-

bility of being picked of 1
N

. We also pick a direction, the probability of picking left

is p
p+q

and of picking right is q
p+q

, where p and q are our left rate and right rate. If

the particle can move to the neighbouring site in the direction that we have picked

(i.e. if the neighbouring site is empty) then the particle is moved. Regardless of

whether the move takes place

P (∆t) = N(p+ q) exp(−N(p+ q)∆t), (B.1)

describes the probability distribution of ∆t, which is the amount by which the time

is incremented. If we are in configuration C at time t0, we want to determine the

probability, P (t1|C, t0), that a hop occurs at time t1. To do this, we define R as the

number of rejected moves between t0 and t1. These rejections occur at times: s0, s1

... sR.

We define the freedom fi(C) of each particle in configuration C as the number

of empty sites that are neighbouring the site that it occupies. The total freedom

is therefore equal to the total number of possible configuration changes. For every

cluster of particles there is one particle hop to the left that is possible and one to

the right. So half of the configuration changes are hops to the left and half are hops

to the right. The total of all rates is therefore [p/2 + q/2] multiplied by the total

number of possible configuration changes. We have that

r(C) =
∑

C′

W (C → C ′) =
(p+ q)

2

∑

i

fi(C), (B.2)

117

which relates the escape rate r(C) of configuration C to the particle freedoms.

Clearly the probability of picking a successful hop is

∑
i
fi(C)

2N
. Using equation (B.2)

we obtain that
(p+ q)N − r(C)

(p+ q)N
, (B.3)

is the probability of picking a move that is rejected. We use equation (B.1) to

calculate the probability of attempts occurring at each value of s and we obtain the

probability that a hop occurs at time t1

P (t1|C, t0) =
∞∑

R=0

∫ t1

t0

ds1

∫ t1

s1

ds2

∫ t1

sR−1

dsR Pf (s1|t0) Pf (s2|s1) ...

Pf (sR|sR−1) N (p+ q) exp(−N(p+ q)(t1 − sR))
r(C)

(p+ q)N
,

(B.4)

by summing over paths with all possible R and s variables. The final term in

equation (B.4) is the probability of a successful hop occurring after our final rejected

move at time sR. The Pf (b|a) terms in equation (B.4) are the probabilities of a failed

attempt occurring at time b given that a move attempt occurred at time a. These

are defined by

Pf (b|a) =
(p+ q)N − r(C)

(p+ q)N
(p+ q)N exp(−N(p+ q)(b− a)) (B.5)

= [(p+ q)N − r(C)] exp(−N(p+ q)(b− a)), (B.6)

which are obtained by multiplying the probability of a hop occurring with the prob-

ability of it being rejected. We can then write

P (t1|C, t0) = exp(−(p+ q)N(t1 − t0))

r(C)
∞∑

R=0

[(p+ q)N − r(C)]R
∫ t1

t0

ds1

∫ t1

s1

ds2

∫ t1

sR−1

dsR,
(B.7)

by using the fact that the exponential terms can be collected into a term that does

not depend on s, and re-writing the product of the other terms. We can try to do

the integrals (note the ranges) but the integrand (which is equal to 1) is symmetric

under interchange of all s arguments and so we can replace all the lower limits by

118

t0 as long as we multiply by 1
R!

. Then we obtain equation

P (t1|C, t0) = exp(−(p+ q)N(t1 − t0))

r(C)
∞∑

R=0

(
[(p+ q)N − r(C)]R (t1 − t0)R

1

R!

)
,

(B.8)

as each integral yields a factor of (t1 − t0). The sum is the series expansion of an

exponential which gives us

P (t1|C, t0) = exp(−(p+ q)N(t1 − t0))r(C) exp([(p+ q)N − r(C)](t1 − t0)) (B.9)

= r(C) exp(−r(C)(t1 − t0)), (B.10)

as the probability of a successful hop occurring at t1, given that we change to

configuration C at time t0. This means that hops occur at the correct rate of r(C).

Under modified dynamics we used modified rates and the same arguments apply so

we obtain

P̂ (t1|C, t0) = rs(C) exp(−rs(C)(t1 − t0)), (B.11)

as the probability of a successful hop occurring at t1, given that we change to

configuration C at time t0. Therefore, hops occur at the correct rate rs(C).

119

Appendix C

Satisfying the Master Equation

In this appendix we show that given the probabilities that we have previously deter-

mined of a hop succeeding at a given point in time and the rate at which successful

hops occur, master equations (A.8) and (A.14) are satisfied.

The probability that any stochastic process is in a state after an infinitesimal

amount of time is given by

P (γ, t+ dt) = P (γ, t) +
∑

γ′

[P (γ′, t) rate(γ′ → γ)dt] (C.1)

−
∑

γ′

[P (γ, t) rate(γ → γ′)dt] ,

where γ refers to a state and γ′ refers to any other state. In our case the state is

comprised of the value of the observable A and the configuration C so

P (C,A, t+ dt) = P (C,A, t) +
∑

C′

[P (C ′, A− α(C ′, C), t) rate(C ′ → C)dt] (C.2)

−
∑

C′

[P (C,A, t) rate(C → C ′)dt] ,

describes the rate at which we move between configurations and observable values.

We have obtained in Appendix B that when the dynamics are implemented, the

probability distribution of the time t∗ at which we leave configuration C is

P (t∗) = r(C) exp(−r(C)(t∗ − t′)), (C.3)

if we enter this configuration at time t′. Given the memory-less property of expo-

nential distributions, the probability at any time t of exiting configuration C at time

t∗ is

P (t∗|no hop t′ → t) = r(C) exp(−r(C)(t∗ − t)). (C.4)

120

The average value of time between hops of this exponential probability distribution

is 1
r(C)

. This means that the rate of hops is r(C). When there is a hop from C,

the probability of it going to C ′ is W (C→C′)
r(C)

. Therefore the transition rate that we

implement from C to C ′ is W (C → C ′). Hence, equation(C.2) becomes

P (C,A, t+ dt) = P (C,A, t) +
∑

C′

[P (C ′, A− α(C ′, C), t) W (C ′ → C)dt] (C.5)

− P (C,A, t) r(C)dt,

noting that r(C) =
∑
C′
W (C → C ′). By using the first forward difference operator

∂tP (C,A, t) =
P (C,A, t+ dt)− P (C,A, t)

dt
, (C.6)

where dt is an infinitesimal amount of time we re-arrange equation (C.5) to obtain

the master equation

∂tP (C,A, t) =
∑

C′

W (C ′ → C)P (C ′, A− α(C ′, C), t) − r(C)P (C,A, t), (C.7)

which is the same as master equation (A.8) and hence the master equation is satisfied

by attempting hops at the rates at which we do. The same arguments apply for the

equivalent master equation for the modified rates.

121

Appendix D

Path Measures

The purpose of this appendix is to derive the cloning weights (factors) that we use

when simulating the algorithm. We derive the weights required for when the SSEP

is modified and for when processes are not modified. During the modified dynamics

phase each system is evolved from the start time of each cloning interval, t0. We

normalise

P̂ (C, s, t0) =
P̃ (C, s, t0)

Z(s, t0)
, (D.1)

at the start of each cloning interval to be proportional to the path measure and

these probabilities remain normalised throughout the implementation of the modi-

fied dynamics. Under modified dynamics it is shown in Appendix B that

P̂ (t1|C, t0) = rs(C) exp(−rs(C)(t1 − t0)), (D.2)

is the probability of a hop occurring at time t1 if we’re in configuration C at time t0.

When we change configuration, the probability of changing to configuration C1 is

given by Ws(C→C1)
rs(C)

. By taking into account the probability of being in configuration

C0 at time t0 we can hence determine the probability

P̂ (C0 → C1, s, t0 → t1) =
P̃ (C0, s, t0)

Z(s, t0)
Ws(C0 → C1) exp(−rs(C0)(t1 − t0)), (D.3)

of following a path from C0 at t0 to C1 at t1. The cloning interval is defined as being

of length ∆t, in which K hops occur with the final hop occurring at time tK . Using

the same logic as before, consider the case where the system evolves continually

122

along a path, where the path probabilities are

P̂ (C0 → . . .→ CK , s, t0 → . . .→ tK) =

P̃ (C0, s, t0)

Z(s, t0)

[
K−1∏

i=0

Ws(Ci → Ci+1)

]
exp

(
K−1∑

i=0

−rs(Ci)(ti+1 − ti)

)
,

(D.4)

under modified dynamics and the system changes to configuration Ci at time ti.

We need to determine the probability of these configuration changes occurring at

particular times and then no more occurring during this cloning interval, i.e. between

time tK and time t0 + ∆t. If a hop has occurred at time tK the probability of a hop

occurring before time t0 + ∆t by integrating equation (D.2) from tK to t0 + ∆t is

calculated

P̂ (hop before t0 + ∆t|CK , s, tK) =

∫ t0+∆t

tK

rs(CK) exp(−rs(CK)(t− tK))dt (D.5)

= 1− exp(−rs(CK)([t0 + ∆t]− tK)). (D.6)

Knowing the probability that there is a hop within this time period, there is a

probability

P̂ (no hop before t0 + ∆t|CK , s, tK) = exp(−rs(CK)([t0 + ∆t]− tK)), (D.7)

of there not being a hop between tK and t0 + ∆t. It is then possible to state the

probability of a system following a particular path from the start of the cloning

interval to the end of the cloning interval

P̂ (C0 → . . .→ CK → CK , s, t0 → . . .→ tK → t0 + ∆t) =

P̃ (C0, s, t0)

Z(s, t0)

[
K−1∏

i=0

Ws(Ci → Ci+1)

]
exp

(
−
∫ t0+∆t

t0

rs(C) dt

)
, (D.8)

obtained by multiplying equation (D.4) by equation (D.7). This then gives us the

probability of following a particular path from equation (D.4) and then of not hop-

ping again before the end of the cloning interval from equation (D.7). Note that

in doing this we replace the summation of the escape rate multiplied by the time

step size with the integral of the escape rate. These quantities are equivalent to one

another. When considering the P̃ (C, s, t) measure the partition function Z(s, t0)

is not used to normalise at the beginning of each cloning interval as the total of

P̃ (C, s, t) is free to be greater than or less than unity. This would correspond to

123

a growing or shrinking population if we were not keeping the population constant.

When evolving the systems by the true dynamics as opposed to the modified dy-

namics, rs(C) is replaced by r(C). The P̃ (C, s, t) measure also evolves by r(C) as

opposed to rs(C). The statistical weight of each path is given by

P̃ (C0 → . . .→ CK → CK , s, t0 → . . .→ tK → t0 + ∆t) =

P̃ (C0, s, t0)

[
K−1∏

i=0

Ws(Ci → Ci+1)

]
exp

(
−
∫ t0+∆t

t0

r(C) dt

)
, (D.9)

where rs(C) is replaced by r(C). By using ‘path’ to denote a particular set of

configuration changes at particular times C0 → . . .→ CK → CK , equation (D.9) is

divided by equation (D.8) to obtain

P̃ (s, path) = Υ P̂ (s, path) Z(s, t0), (D.10)

a relation between the two ways of measuring each path. In equation (D.10) the

cloning factors

Υ = exp

(∫ t0+∆t

t0

[rs(C)− r(C)] dt

)
, (D.11)

are defined. If the systems are evolving under the true dynamics with importance

sampling, the probability of following a particular path is

P (C0 → . . .→ CK → CK , t0 → . . .→ tK → t0 + ∆t) =

P̃ (C0, s, t0)

Z(s, t0)

[
K−1∏

i=0

W (Ci → Ci+1)

]
exp

(
−
∫ t0+∆t

t0

r(C) dt

)
. (D.12)

We would then obtain a different cloning factor, Φ, relating these two path measures

to one another

P̃ (s, path) = Φ P (path) Z(s, t0), (D.13)

by dividing equation (D.9) by equation (D.12). The cloning factors under the true

dynamics are

Φ =

K−1∏
i=0

Ws(Ci → Ci+1)

K−1∏
i=0

W (Ci → Ci+1)

=
K−1∏

i=0

exp(−sα(Ci → Ci+1)) = exp(−sA). (D.14)

124

Appendix E

Derived Data Type for a

One-Dimensional Lattice

In section 6.8 we have described a derived MPI datatype that we have defined for

a one-dimensional lattice that includes three vectors and a double. The C++ code

for this MPI Lattice datatype is displayed below.

Listing E.1: Derived MPI Lattice datatype

int count = 4 ;

int b lo ck l eng th s [4] = { ptc l s , s i t e s , p t c l s , 1} ;

MPI Aint ploc , s l o c , f l o c , e l o c ;

MPI Datatype types [] = {MPI INT , MPI INT , MPI INT , MPI DOUBLE} ;

for (i = 0 ; i < cpp ; i++)

{
k = i ∗ numproc + myid ;

i f (k < n la t)

{
MPI Get address (l a t s [i]−>p . data () , &ploc) ;

MPI Get address (l a t s [i]−>s . data () , &s l o c) ;

MPI Get address (l a t s [i]−>freedom . data () , &f l o c) ;

MPI Get address(& l a t s [i]−>esc , &e l o c) ;

MPI Aint d i sp lacements [] =

{ploc−e loc , s l o c−e loc , f l o c−e loc , 0} ;

MPI Type create struct (count , b lock l engths ,

d i sp lacements , types , &(i n f o s [i]−>MPI Lattice)) ;

MPI Type commit(&(i n f o s [i]−>MPI Lattice)) ;

125

MPI Get address (l a t s [i+cpp]−>p . data () , &ploc) ;

MPI Get address (l a t s [i+cpp]−>s . data () , &s l o c) ;

MPI Get address (l a t s [i+cpp]−>freedom . data () , &f l o c) ;

MPI Get address(& l a t s [i+cpp]−>esc , &e l o c) ;

d i sp lacements [0] = ploc−e l o c ;

d i sp lacements [1] = s loc−e l o c ;

d i sp lacements [2] = f l o c−e l o c ;

MPI Type create struct (count , b lock l engths ,

d i sp lacements , types , &(i n f o s [i+cpp]−>MPI Lattice)) ;

MPI Type commit(&(i n f o s [i+cpp]−>MPI Lattice)) ;

}
}

126

Bibliography

[1] R Allen, P Warren, and Pieter Rein Ten Wolde, Sampling rare switching events

in biochemical networks, Physical Review Letters 94 (2005), no. 1, 018104.

[2] J Anderson, A random-walk simulation of the schrödinger equation: H+ 3,

The Journal of Chemical Physics 63 (1975), no. 4, 1499–1503.

[3] C Appert-Rolland, B Derrida, V Lecomte, and F van Wijland, Universal cu-

mulants of the current in diffusive systems on a ring, Physical Review E 78

(2008), no. 2, 021122.

[4] Y Baek, Y Kafri, and V Lecomte, Dynamical symmetry breaking and phase

transitions in driven diffusive systems, Physical Review Letters 118 (2017),

no. 3, 030604.

[5] P Balaji, A Chan, W Gropp, R Thakur, and E Lusk, Non-data-communication

overheads in mpi: analysis on blue gene/p, European Parallel Virtual Ma-

chine/Message Passing Interface Users’ Group Meeting, Springer, 2008,

pp. 13–22.

[6] C Beck and F Schögl, Thermodynamics of chaotic systems: an introduction,

no. 4, Cambridge University Press, 1995.

[7] N Beisert, A Tseytlin, and K Zarembo, Matching quantum strings to quantum

spins: One-loop vs. finite-size corrections, Nuclear Physics B 715 (2005), no. 1-

2, 190–210.

[8] L Bertini, A De Sole, D Gabrielli, G Jona-Lasinio, and C Landim, Current

fluctuations in stochastic lattice gases, Physical Review Letters 94 (2005),

no. 3, 030601.

[9] , Non equilibrium current fluctuations in stochastic lattice gases, Jour-

nal of Statistical Physics 123 (2006), no. 2, 237–276.

127

[10] , Macroscopic fluctuation theory, Reviews of Modern Physics 87 (2015),

no. 2, 593.

[11] B Binder, K Landman, D Newgreen, and J Ross, Incomplete penetrance: The

role of stochasticity in developmental cell colonization, Journal of Theoretical

Biology 380 (2015), 309–314.

[12] T Bodineau and B Derrida, Distribution of current in nonequilibrium diffusive

systems and phase transitions, Physical Review E 72 (2005), no. 6, 066110.

[13] , Cumulants and large deviations of the current through non-equilibrium

steady states, Comptes Rendus Physique 8 (2007), no. 5, 540–555.

[14] T Bodineau, V Lecomte, and C Toninelli, Finite size scaling of the dynamical

free-energy in a kinetically constrained model, Journal of Statistical Physics

147 (2012), no. 1, 1–17.

[15] T Bodineau and C Toninelli, Activity phase transition for constrained dynam-

ics, Communications in Mathematical Physics 311 (2012), no. 2, 357–396.

[16] P Bolhuis, D Chandler, C Dellago, and P Geissler, Transition path sampling:

Throwing ropes over rough mountain passes, in the dark, Annual Review of

Physical Chemistry 53 (2002), no. 1, 291–318.

[17] A Bortz, M Kalos, and J Lebowitz, A new algorithm for monte carlo simulation

of ising spin systems, Journal of Computational Physics 17 (1975), no. 1, 10–

18.

[18] F Bouchet and J Reygner, Generalisation of the eyring–kramers transition rate

formula to irreversible diffusion processes, Annales Henri Poincaré, vol. 17,

Springer, 2016, pp. 3499–3532.

[19] T Brewer, S Clark, R Bradford, and R Jack, Efficient characterisation of

large deviations using population dynamics, Journal of Statistical Mechanics:

Theory and Experiment 2018 (2018), no. 5, 053204.

[20] M Burman, D Carpenter, and R Jack, Emergence of particle clusters in a one-

dimensional model:connection to condensation processes, Journal of Physics A:

Mathematical and Theoretical 50 (2017), no. 13.

[21] N Cancrini, F Martinelli, C Roberto, and C Toninelli, Kinetically constrained

lattice gases, Communications in Mathematical Physics 297 (2010), no. 2,

299–344.

128

[22] F Carollo, J Garrahan, I Lesanovsky, and C Pérez-Espigares, Fluctuating hy-

drodynamics, current fluctuations, and hyperuniformity in boundary-driven

open quantum chains, Physical Review E 96 (2017), no. 5, 052118.

[23] E Carter, G Ciccotti, J Hynes, and R Kapral, Constrained reaction coordinate

dynamics for the simulation of rare events, Chemical Physics Letters 156

(1989), no. 5, 472–477.

[24] M Cavallaro and R Harris, A framework for the direct evaluation of large

deviations in non-markovian processes, Journal of Physics A: Mathematical

and Theoretical 49 (2016), no. 47, 47LT02.

[25] B Chapman, G Jost, and R Van Der Pas, Using openmp: portable shared

memory parallel programming, vol. 10, MIT press, 2008.

[26] X Chen, E Fradkin, and W Witczak-Krempa, Gapless quantum spin chains:

multiple dynamics and conformal wavefunctions, Journal of Physics A: Math-

ematical and Theoretical 50 (2017), no. 46, 464002.

[27] R Chetrite and H Touchette, Nonequilibrium markov processes conditioned on

large deviations, Annales Henri Poincaré, vol. 16, Springer, 2015, pp. 2005–

2057.

[28] L Chong, A Saglam, and D Zuckerman, Path-sampling strategies for simulating

rare events in biomolecular systems, Current Opinion in Structural Biology 43

(2017), 88–94.

[29] G Ciccotti, M Ferrario, and C Schuette, Molecular dynamics simulation, En-

tropy 16 (2014), 233.

[30] B Cook and A Podelski, Verification, model checking, and abstract interpre-

tation: 8th international conference, vmcai 2007, nice, france, january 14-16,

2007, proceedings, vol. 4349, Springer, 2007.

[31] H Cramér, Historical review of filip lundberg’s works on risk theory, Scandina-

vian Actuarial Journal 1969 (1969), no. sup3, 6–12.

[32] , A century with probability theory: Some personal recollections, The

Annals of Probability 4 (1976), no. 4, 509–546.

[33] C De Bacco, E Power, D Larremore, and C Moore, Community detection, link

prediction, and layer interdependence in multilayer networks, Physical Review

E 95 (2017), no. 4, 042317.

129

[34] B Derrida, An exactly soluble non-equilibrium system: the asymmetric simple

exclusion process, Physics Reports 301 (1998), no. 1-3, 65–83.

[35] , Non-equilibrium steady states: fluctuations and large deviations of

the density and of the current, Journal of Statistical Mechanics: Theory and

Experiment 2007 (2007), no. 07, P07023.

[36] B Derrida and J Lebowitz, Exact large deviation function in the asymmetric

exclusion process, Physical Review Letters 80 (1998), 209–213.

[37] B Derrida, J Lebowitz, and E Speer, Large deviation of the density profile in

the steady state of the open symmetric simple exclusion process, Journal of

Statistical Physics 107 (2002), no. 3-4, 599–634.

[38] , Exact large deviation functional of a stationary open driven diffusive

system: the asymmetric exclusion process, Journal of Statistical Physics 110

(2003), no. 3-6, 775–810.

[39] J Dongarra, S Otto, M Snir, and D Walker, An introduction to the mpi stan-

dard, Communications of the ACM (1995), 18.

[40] D Easterling, G Meehl, C Parmesan, S Changnon, T Karl, and L Mearns,

Climate extremes: observations, modeling, and impacts, Science 289 (2000),

no. 5487, 2068–2074.

[41] R Ellis, Entropy, large deviations, and statistical mechanics, Springer, 2007.

[42] C Enaud and B Derrida, Large deviation functional of the weakly asymmetric

exclusion process, Journal of Statistical Physics 114 (2004), no. 3-4, 537–562.

[43] M Evans, Y Kafri, E Levine, and D Mukamel, Phase transition in a non-

conserving driven diffusive system, Journal of Physics A: Mathematical and

General 35 (2002), no. 29, L433.

[44] P Ferrari, E Presutti, E Scacciatelli, and M Vares, The symmetric simple

exclusion process, i: Probability estimates, Stochastic Processes and their Ap-

plications 39 (1991), no. 1, 89–105.

[45] , The symmetric simple exclusion process, ii: Applications, Stochastic

Processes and their Applications 39 (1991), no. 1, 107–115.

130

[46] J Garrahan, Aspects of non-equilibrium in classical and quantum systems:

Slow relaxation and glasses, dynamical large deviations, quantum non-

ergodicity, and open quantum dynamics, Physica A: Statistical Mechanics and

its Applications 504 (2018), 130–154.

[47] J Garrahan, R Jack, V Lecomte, E Pitard, K van Duijvendijk, and F van Wi-

jland, Dynamical first-order phase transition in kinetically constrained models

of glasses, Physical Review Letters 98 (2007), no. 19, 195702.

[48] , First-order dynamical phase transition in models of glasses: an ap-

proach based on ensembles of histories, Journal of Physics A: Mathematical

and Theoretical 42 (2009), no. 7, 075007.

[49] C Giardinà, J Kurchan, V Lecomte, and J Tailleur, Simulating rare events in

dynamical processes, Journal of Statistical Physics 145 (2011), no. 4, 787–811.

[50] C Giardinà, J Kurchan, and L Peliti, Direct evaluation of large-deviation func-

tions, Physical Review Letters 96 (2006), 120603.

[51] P Grassberger, Go with the winners: A general monte carlo strategy, Computer

Physics Communications 147 (2002), no. 1, 64–70.

[52] P Gretener, Significance of the rare event in geology, AAPG Bulletin 51 (1967),

no. 11, 2197–2206.

[53] N Gromov and V Kazakov, Double scaling and finite size corrections in sl (2)

spin chain, Nuclear Physics B 736 (2006), no. 3, 199–224.

[54] W Gropp, W Gropp, E Lusk, and A Skjellum, Using mpi: portable parallel

programming with the message-passing interface, vol. 1, MIT press, 1999.

[55] W Gropp and R Thakur, An evaluation of implementation options for mpi

one-sided communication, European Parallel Virtual Machine/Message Pass-

ing Interface Users’ Group Meeting, Springer, 2005, pp. 415–424.

[56] R Harris, Fluctuations in interacting particle systems with memory, Journal

of Statistical Mechanics: Theory and Experiment 2015 (2015), no. 7, P07021.

[57] R Harris, A Rákos, and G Schütz, Current fluctuations in the zero-range pro-

cess with open boundaries, Journal of Statistical Mechanics: Theory and Ex-

periment 2005 (2005), no. 08, P08003.

131

[58] R Harris and H Touchette, Current fluctuations in stochastic systems with

long-range memory, Journal of Physics A: Mathematical and Theoretical 42

(2009), no. 34, 342001.

[59] , Large deviation approach to nonequilibrium systems, Nonequilibrium

Statistical Physics of Small Systems: Fluctuation Relations and Beyond 6

(2013), 335–360.

[60] , Phase transitions in large deviations of reset processes, Journal of

Physics A: Mathematical and Theoretical 50 (2017), no. 10, 10LT01.

[61] L Hedges, R Jack, J Garrahan, and D Chandler, Dynamic order-disorder in

atomistic models of structural glass formers, Science 323 (2009), no. 5919,

1309–1313.

[62] E Hidalgo, Breakdown of the finite-time and-population scalings of the large

deviation function in the large-size limit of a contact process, Journal of Sta-

tistical Mechanics: Theory and Experiment 2018 (2018), no. 8, 083211.

[63] E Hidalgo and V Lecomte, Discreteness effects in population dynamics, Jour-

nal of Physics A: Mathematical and Theoretical 49 (2016), no. 20, 205002.

[64] E Hidalgo, T Nemoto, and V Lecomte, Finite-time and finite-size scalings in

the evaluation of large-deviation functions: Numerical approach in continuous

time, Physical Review E 95 (2017), no. 6, 062134.

[65] C Hu and K Mak, Percolation and phase transitions of hard-core particles on

lattices: Monte carlo approach, Physical Review B 39 (1989), no. 4, 2948.

[66] G Huber and S Kim, Weighted-ensemble brownian dynamics simulations for

protein association reactions., Biophysical Journal 70 (1996), no. 1, 97.

[67] P Hurtado, C Espigares, J del Pozo, and P Garrido, Thermodynamics of

currents in nonequilibrium diffusive systems: theory and simulation, Journal

of Statistical Physics 154 (2014), no. 1-2, 214–264.

[68] P Hurtado and P Garrido, Current fluctuations and statistics during a large

deviation event in an exactly solvable transport model, Journal of Statistical

Mechanics: Theory and Experiment 2009 (2009), no. 02, P02032.

[69] R Jack, J Garrahan, and D Chandler, Space-time thermodynamics and sub-

system observables in a kinetically constrained model of glassy materials, The

Journal of Chemical Physics 125 (2006), no. 18, 184509.

132

[70] R Jack and P Sollich, Large deviations and ensembles of trajectories in stochas-

tic models, Progress of Theoretical Physics Supplement 184 (2010), 304–317.

[71] , Effective interactions and large deviations in stochastic processes, The

European Physical Journal Special Topics 224 (2015), no. 12, 2351–2367.

[72] J Jaeger, E Saillard, P Carribault, and D Barthou, Correctness analysis of

mpi-3 non-blocking communications in parcoach, Proceedings of the 22nd Eu-

ropean MPI Users’ Group Meeting, ACM, 2015, p. 16.

[73] S Janson, Brownian excursion area, wright’s constants in graph enumeration,

and other brownian areas, Probability Surveys 4 (2007), 80–145.

[74] T Johnson, S Clark, and D Jaksch, Dynamical simulations of classical stochas-

tic systems using matrix product states, Physical Review E 82 (2010), no. 3,

036702.

[75] T Johnson, T Elliott, S Clark, and D Jaksch, Capturing exponential vari-

ance using polynomial resources: Applying tensor networks to nonequilibrium

stochastic processes, Physical Review Letters 114 (2015), no. 9, 090602.

[76] H Jung, K Okazaki, and G Hummer, Transition path sampling of rare events

by shooting from the top, The Journal of Chemical Physics 147 (2017), no. 15,

152716.

[77] A Keys, L Hedges, J Garrahan, S Glotzer, and D Chandler, Excitations are lo-

calized and relaxation is hierarchical in glass-forming liquids, Physical Review

X 1 (2011), no. 2, 021013.

[78] A Kierzek, Stocks: Stochastic kinetic simulations of biochemical systems with

gillespie algorithm, Bioinformatics 18 (2002), no. 3, 470–481.

[79] C Kipnis and C Landim, Scaling limits of interacting particle systems, vol.

320, Springer Science & Business Media, 2013.

[80] C Kipnis, S Olla, and S Varadhan, Hydrodynamics and large deviation for sim-

ple exclusion processes, Communications on Pure and Applied Mathematics

42 (1989), no. 2, 115–137.

[81] V Kishore, M Santhanam, and R Amritkar, Extreme events on complex net-

works, Physical Review Letters 106 (2011), no. 18, 188701.

[82] I Lawrie, Phase transitions, Contemporary Physics 28 (1987), no. 6, 599–601.

133

[83] J Lebowitz and H Spohn, A gallavotti–cohen-type symmetry in the large de-

viation functional for stochastic dynamics, Journal of Statistical Physics 95

(1999), no. 1-2, 333–365.

[84] V Lecomte, C Appert-Rolland, and F Van Wijland, Thermodynamic formal-

ism for systems with markov dynamics, Journal of Statistical Physics 127

(2007), no. 1, 51–106.

[85] V Lecomte, J Garrahan, and F van Wijland, Inactive dynamical phase of a

symmetric exclusion process on a ring, Journal of Physics A: Mathematical

and Theoretical 45 (2012), no. 17, 175001.

[86] V Lecomte and J Tailleur, A numerical approach to large deviations in con-

tinuous time, Journal of Statistical Mechanics: Theory and Experiment 2007

(2007), no. 03, P03004.

[87] T Liggett, Stochastic interacting systems: contact, voter and exclusion pro-

cesses, vol. 324, springer science & Business Media, 2013.

[88] A Linde, Phase transitions in gauge theories and cosmology, Reports on

Progress in Physics 42 (1979), no. 3, 389.

[89] J Marro and R Dickman, Nonequilibrium phase transitions in lattice models,

Cambridge University Press, 2005.

[90] N McNew, The eigenvalue gap and mixing time, (2011).

[91] A Mey, P Geissler, and J Garrahan, Rare-event trajectory ensemble analysis

reveals metastable dynamical phases in lattice proteins, Physical Review E 89

(2014), no. 3, 032109.

[92] P Mörters, Introduction to large deviations, October 19th (2010).

[93] R Movassagh, The gap of fredkin quantum spin chain is polynomially small,

Math. Sci. Appl (2016).

[94] T Nemoto, F Bouchet, R Jack, and V Lecomte, Population-dynamics method

with a multicanonical feedback control, Physical Review E 93 (2016), no. 6,

062123.

[95] T Nemoto, E Hidalgo, and V Lecomte, Finite-time and finite-size scalings in

the evaluation of large-deviation functions: Analytical study using a birth-death

process, Physical Review E 95 (2017), no. 1, 012102.

134

[96] T Nemoto, R Jack, and V Lecomte, Finite-size scaling of a first-order dynam-

ical phase transition: Adaptive population dynamics and an effective model,

Physical Review Letters 118 (2017), no. 11, 115702.

[97] D Nickelsen and H Touchette, Anomalous scaling of dynamical large devia-

tions, Physical Review Letters 121 (2018), 090602.

[98] M Onorato, A Osborne, and M Serio, Extreme wave events in directional,

random oceanic sea states, Physics of Fluids 14 (2002), no. 4, L25–L28.

[99] R Patel, J Ho, F Ferreyrol, T Ralph, and G Pryde, A quantum fredkin gate,

Science Advances 2 (2016), no. 3, e1501531.

[100] H Pham, Some applications and methods of large deviations in finance and

insurance, Paris-Princeton Lectures on Mathematical Finance 2004, Springer,

2007, pp. 191–244.

[101] E Pitard, V Lecomte, and F Van Wijland, Dynamic transition in an atomic

glass former: A molecular-dynamics evidence, EPL (Europhysics Letters) 96

(2011), no. 5, 56002.

[102] V Popkov, L Santen, A Schadschneider, and G Schütz, Empirical evidence

for a boundary-induced nonequilibrium phase transition, Journal of Physics A:

Mathematical and General 34 (2001), no. 6, L45.

[103] U Ray, G Chan, and D Limmer, Importance sampling large deviations in

nonequilibrium steady states. i, The Journal of Chemical Physics 148 (2018),

no. 12, 124120.

[104] T Saif and M Parashar, Understanding the behavior and performance of non-

blocking communications in mpi, European Conference on Parallel Processing,

Springer, 2004, pp. 173–182.

[105] O Salberger and V Korepin, Fredkin spin chain, Ludwig Faddeev Memorial

Volume: A Life In Mathematical Physics (2018), 439.

[106] H Shoukourian, T Wilde, A Auweter, and A Bode, Predicting the energy and

power consumption of strong and weak scaling hpc applications, Supercomput-

ing Frontiers and Innovations 1 (2014), no. 2, 20–41.

[107] S Siegel, Model checking nonblocking mpi programs, International Workshop

on Verification, Model Checking, and Abstract Interpretation, Springer, 2007,

pp. 44–58.

135

[108] M Snir, S Otto, S Huss-Lederman, J Dongarra, and D Walker, Mpi–the com-

plete reference: The mpi core, vol. 1, MIT press, 1998.

[109] P Sollich and R Jack, Large deviations of the dynamical activity in the

east model: analysing structure in biased trajectories, J. Phys. A 47 (2014),

no. 015003.

[110] T Speck, A Malins, and C Royall, First-order phase transition in a model glass

former: Coupling of local structure and dynamics, Physical Review Letters 109

(2012), no. 19, 195703.

[111] H Spohn, Large scale dynamics of interacting particles, Springer Science &

Business Media, 2012.

[112] J Tailleur and J Kurchan, Probing rare physical trajectories with lyapunov

weighted dynamics, Nature Physics 3 (2007), no. 3, 203–207.

[113] J Tailleur and V Lecomte, Simulation of large deviation functions using pop-

ulation dynamics, AIP Conference Proceedings 1091 (2009), no. 1, 212–219.

[114] K Temme, M Wolf, and F Verstraete, Stochastic exclusion processes versus

coherent transport, New Journal of Physics 14 (2012), no. 7, 075004.

[115] I Thompson and R Jack, Dynamical phase transitions in one-dimensional

hard-particle systems, Physical Review E 92 (2015), no. 5, 052115.

[116] H Touchette, The large deviation approach to statistical mechanics, Physics

Reports 478 (2009), no. 1-3, 1–69.

[117] , A basic introduction to large deviations: Theory, applications, simu-

lations, Tech. report, 2011.

[118] A Tzella and J Vanneste, Dispersion in rectangular networks: effective diffu-

sivity and large-deviation rate function, Physical Review Letters 117 (2016),

no. 11, 114501.

[119] P Vekilov, Phase transitions of folded proteins, Soft Matter 6 (2010), no. 21,

5254–5272.

[120] J Weber, R Jack, and V Pande, Emergence of glass-like behavior in markov

state models of protein folding dynamics, Journal of the American Chemical

Society 135 (2013), no. 15, 5501–5504.

136

[121] J Weber, R Jack, C Schwantes, and V Pande, Dynamical phase transitions

reveal amyloid-like states on protein folding landscapes, Biophysical Journal

107 (2014), no. 4, 974–982.

[122] B Zhang, D Jasnow, and D Zuckerman, The “weighted ensemble” path sam-

pling method is statistically exact for a broad class of stochastic processes

and binning procedures, The Journal of Chemical Physics 132 (2010), no. 5,

054107.

137

