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Abstract 
Bacterial genomes evolve under strong selective constraints. They are compact, gene dense, 

and contain little extraneous DNA. They are also diverse; individuals from the same species 

frequently differ substantially in gene content from each other. The work presented in this thesis 

has investigated the diversity of bacterial species and the selective forces which shape their 

genomes. A focus has been given to regions of the genome which are poorly understood, 

particularly intergenic sites. Intergenic sites are shown to be under widespread purifying 

selection which varies according to divergence time, the class of regulatory element, and 

distance from gene borders. This is complemented by work on Rho-independent terminator 

sequences which shows that compensatory evolution is widespread in many species. A detailed 

analysis of H. pylori introgression shows that selection acts to moderate the uptake of DNA from 

different sources. Additionally, analyses of pan-genomes incorporating intergenic regions were 

performed, and a new tool, Piggy, was introduced to facilitate these analyses. This enabled the 

interaction between genes and their cognate intergenic regions to be analysed, and genes with 

divergent upstream intergenic regions were shown to be more differentially expressed than 

those without in S. aureus. This work has provided new insights into the evolutionary dynamics 

of these poorly understood but vital components of bacterial genomes. 
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Introduction 

Bacteria are ubiquitous, ecologically important organisms which affect almost every conceivable           

part of the biosphere. Recent advances in whole-genome sequencing technologies have           

provided great insight into their genomic composition and diversity. The work in this thesis uses               

large-scale sequencing data to investigate the evolutionary dynamics of parts of bacterial            

genomes which are poorly understood, primarily intergenic regions. As each chapter has a             

focused introduction, in this overall introduction I provide a general introduction to bacterial             

evolutionary genomics, from the basic composition of the genome to current understanding of             

the forces which shape it. 

 

The structure and organisation of bacterial genomes 

Bacterial genomes vary in size by more than two orders of magnitude, from the tiny Nasuia-ALF                

genome (112 Kb) encoding only 137 genes (Bennett and Moran 2013), to the huge Sorangium               

cellulosum genome (14.8 Mb) encoding 11,599 genes (Han et al. 2013). These are extreme              

examples, and bacterial genomes typically range from 1.5-8 Mb in length. Based on an analysis               

of 659 sequenced bacterial genomes, Koonin and Wolf suggested that genome size in bacteria              

is bimodal, with one peak at 5 Mb and another at 2 Mb (Koonin and Wolf 2008). A recent                   

reanalysis of this distribution with 3923 bacterial genomes also found a bimodal distribution,             

however the distribution became unimodal as redundant species were removed (Gweon, Bailey,            

and Read 2017) (Figure 1.1e). Thus, the bimodal distribution is likely an artefact of sequencing               

bias towards species of interest; for example Escherichia coli and Salmonella enterica in the 5               

Mb peak and Helicobacter pylori and Staphylococcus aureus in the 2 Mb peak. After this bias is                 

accounted for, a unimodal distribution with a peak of approximately 3 Mb is found (Gweon,               

Bailey, and Read 2017). 

 

The majority of bacteria have a single circular chromosome, which is replicated bidirectionally             

from the origin of replication to the terminus (Figure 1.1a). However, bacteria can vary in               

genome organisation with some species having multiple circular and/or linear chromosomes           

(Egan, Fogel, and Waldor 2005) (Figure 1.1b). This was first shown in Rhodobacter sphaeroide,              

where Pulsed-Field Gel Electrophoresis (PFGE) indicated the presence of two circular           

chromosomes (Suwanto and Kaplan 1989). Other species with multiple circular chromosomes           

include members of the Vibrio genus (two chromosomes), and Burkholderia cenocepacia (three            

chromosomes) (Cooper et al. 2010). Borrelia burgdorferi has a linear chromosome and multiple             
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linear and circular plasmids (Fraser et al. 1997), and Agrobacterium tumefaciens has both             

circular and linear chromosomes (Allardet-Servent et al. 1993). Bacteria also carry plasmids,            

which are semi-autonomous replicating units of DNA (Figure 1.1c). Plasmids are frequently            

transferred between species through conjugation, and often carry genes encoding selectively           

important traits (such as antibiotic resistance genes) (Harrison and Brockhurst 2012).           

Secondary chromosomes can be small and plasmids can be large, so differentiating them is not               

always clear, but typically chromosomes are essential and plasmids are dispensable (Egan,            

Fogel, and Waldor 2005). However, essentiality is not easy to measure, as it is context               

dependent. A secondary chromosome may be dispensable in rich laboratory media but not in              

the wild, and a plasmid may be essential in the presence of an antibiotic. Replication of                

chromosomes is also linked to the cell cycle, whereas replication of plasmids is not (Egan,               

Fogel, and Waldor 2005). To summarise, bacteria carry their genome in one circular             

chromosome (usually) or a small number of circular and linear chromosomes (less commonly),             

and a number of small plasmids (Figure 1.1a-c). 

 

Bacterial genomes are compact, densely packed with genes, and highly organised. They have             

few repetitive regions and little extraneous DNA. This genome structure contrasts sharply with             

eukaryotic genomes, which are large, sparsely populated with genes, and repeat dense. To put              

this into context, on average 87% of bacterial genomes is protein coding (McCutcheon and              

Moran 2011), compared to 1.1% in humans (Venter et al. 2001). Genes in bacteria are               

commonly grouped together in operons, which are groups of co-transcribed genes (Jacob and             

Monod 1961) (Figure 1.1d). Organising genes as operons provides an elegant way to             

co-regulate genes. The length distribution of bacterial genes is relatively narrow, with most             

genes being approximately 1000 bp in length, a figure which is consistent across a broad range                

of taxa (Koonin and Wolf 2008) (Figure 1.1f). They are typically present as uninterrupted open               

reading frames (ORFs). The length distribution of intergenic regions is bimodal, with a peak at               

~0 bp and another peak at ~150 bp (Figure 1.1f). The peak at 0 likely corresponds to small                  

within-operon intergenic regions, and the peak at 150 bp likely corresponds to the intergenic              

regions located between operons (Koonin and Wolf 2008). There is a fat tail of longer intergenic                

regions; these likely correspond to regulatory elements, non-coding RNAs, and possibly           

unannotated genes. The between-operon intergenic regions harbour regulatory elements which          

are used to control gene expression. These include, but are not limited to promoters,              

8 

https://paperpile.com/c/BArwVu/VkDXp
https://paperpile.com/c/BArwVu/1VaA2
https://paperpile.com/c/BArwVu/lmhZA
https://paperpile.com/c/BArwVu/fi7K2
https://paperpile.com/c/BArwVu/fi7K2
https://paperpile.com/c/BArwVu/fi7K2
https://paperpile.com/c/BArwVu/fi7K2
https://paperpile.com/c/BArwVu/RNBJD
https://paperpile.com/c/BArwVu/RNBJD
https://paperpile.com/c/BArwVu/1Kl6r
https://paperpile.com/c/BArwVu/GGxMt
https://paperpile.com/c/BArwVu/GGxMt
https://paperpile.com/c/BArwVu/dH2QZ
https://paperpile.com/c/BArwVu/dH2QZ


rho-dependent and independent transcriptional terminators, regulator binding sites, non-coding         

RNAs, and ribosome binding sites. 
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Figure 1.1: The composition of bacterial genomes. a. Circular and b. linear bacterial chromosomes, with the origin                 
and terminus of replication marked. Replication proceeds bidirectionally from the origin to the terminus, as shown by                 
the arrows. c. Circular and linear plasmids. d. A schematic of part of a bacterial genome, showing genes (coloured                   
block arrows), promoters (angled black arrows), and terminators (red bars). Genes are coloured according to their                
operon. e. Size distribution of bacterial genomes, with all genomes (light grey), and redundant genomes removed                
(dark grey). f. Size distributions of genes (top), and intergenic regions (bottom). Figure adapted from (Gweon, Bailey,                 
and Read 2017; Koonin and Wolf 2008). 
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Bacterial gene expression and regulation 

The paradigm of bacterial gene regulation is the operon (Koonin and Wolf 2008; Jacob and               

Monod 1961). Operons typically consist of 2 to 4 genes which are co-transcribed and translated,               

enabling efficient expression of genes which are required to be expressed together (Figure 1.1d,              

Figure 1.2a). An operon will typically have a single promoter upstream of the first gene, and a                 

terminator downstream of the last gene, and may have binding sites for regulators. The lac               

operon enables E. coli to metabolise lactose, and is a classic example of a typical bacterial                

operon (Jacob and Monod 1961; Lewis et al. 1996) (Figure 1.2a). The lac operon consists of                

three operational genes, lacZ, lacY, and lacA, which are sufficient for breaking down lactose.              

Upstream of lacZ is a promoter, and downstream of lacA is a terminator. Additionally, there is an                 

operator located between the promoter and lacZ; this is a binding site for the lac repressor lacI,                 

which is encoded on a separate operon (Jacob and Monod 1961; Lewis et al. 1996). These                

components enable the lac operon to be regulated according to environmental conditions. In the              

absence of lactose, the lac repressor binds the operator, preventing transcription of the lac              

operon. In the presence of lactose, lactose allosterically binds the lac repressor, preventing it              

from binding the operator. With the operator unbound, the promoter is free and transcription              

initiation can begin. 

 

Bacterial transcription initiation is achieved through a coordinated effort involving RNA           

polymerase, sigma factors, promoters, and sometimes other regulatory proteins. RNA          

polymerase is a protein consisting of four subunits, β and β′ which form the active site, α2 which                  

binds certain promoters, and ω which assists the folding of the β′ subunit (Figure 1.2c). RNA                

polymerase alone can perform transcription, but cannot bind the promoter, and so cannot             

initiate transcription. Transcription initiation is performed with the assistance of sigma factors            

(Browning and Busby 2004). 

 

Sigma factors are proteins which bind RNA polymerase and enable it to bind the promoter. They                

consist of up to four domains, and these domains bind to specific promoter sequences              

(Browning and Busby 2016). There are a variety of sigma factors which bind to specific subsets                

of promoters, and these are used to globally regulate transcription. All bacteria have a dominant               

housekeeping sigma factor (such as σ70 in E. coli), which is involved in the expression of the                 

majority of genes. These sigma factors have four domains, all of which are responsible for               

binding a specific part of the promoter (Browning and Busby 2016) (Figure 1.2b). Bacteria also               
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have alternative sigma factors, which are often evolutionarily related to the housekeeping sigma             

factors, but do not necessarily share the same four domain structure. Additionally, there are a               

class of alternative sigma factors (such as E. coli σ54) which are evolutionarily unrelated to               

other sigma factors, and bind different promoter motifs (Browning and Busby 2016). 

 

Bacterial promoters consist of short sequence motifs which are recognised by sigma factors             

(Figure 1.2b). Promoters which are recognised by the σ70 family of sigma factors have -10 and                

-35 elements, which are 6 bp motifs which bind to subunits 2 and 4 of the sigma factor,                  

respectively. The consensus sequences of the motifs are TATAAT for the -10 element and              

TTGACA for the -35 element (Browning and Busby 2016). Of these two motifs, the -10 element                

is more important for transcription initiation than the -35 element, although both are usually              

present. More recent work has shown the existence of other promoter elements, the extended              

-10 element (consensus sequence TGTG), and the discriminator element (consensus sequence           

GGG) (Hook-Barnard and Hinton 2007; Browning and Busby 2016). Some promoters also have             

an UP element (consensus sequence AAAWWTWTTTTNNNAAANN), which is bound by the           

C-terminus of the α subunit of RNA polymerase. Promoters bound by the σ54 family of sigma                

factors have a different structure consisting of -12 and -24 elements instead of -10 and -35                

elements (Wigneshweraraj et al. 2008). 

 

The modular nature of bacterial promoters enables their strength to be tailored; this provides a               

mechanism for controlling gene expression. It has been noted that no naturally occurring             

promoters show perfect matches to the consensus sequence for each element, and the different              

elements often vary in how much they deviate from the consensus (Browning and Busby 2016;               

Hook-Barnard and Hinton 2007). The degree of deviation from the consensus sequence            

influences the binding strength of the promoter to the sigma factor (a perfect consensus element               

binds more strongly than one which deviates from the consensus). This means that genes              

controlled by promoters with near-consensus sequences will be more highly expressed than            

those controlled by promoters which deviate further from the consensus. This variability in             

promoter strength provides a ‘baseline’ level of gene expression, where some genes can be              

constitutively more highly expressed than others (Browning and Busby 2016; Hook-Barnard and            

Hinton 2007; Hawley and McClure 1983). 
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Bacteria use two methods to terminate transcription: Rho-independent (or ‘intrinsic’) termination,           

and Rho-dependent termination (Peters, Vangeloff, and Landick 2011; Santangelo and          

Artsimovitch 2011). Rho-independent termination relies on intrinsic properties of the mRNA           

transcript in order to halt transcription. These properties consist of a GC rich stem-loop (hairpin)               

structure followed by a U-rich tract of the mRNA (Figure 1.2d). The stem has a mean length of 8                   

bp, compared to 4 bp for the loop, and 7-8 bp for the U-tract. Rho-independent termination                

occurs in four stages (of which the first three are shown in Figure 1.2e). First, the U-tract                 

induces a pause in transcription. Second, the hairpin nucleates, meaning that the            

complementary bases bind each other to begin to form the stem-loop structure. Third, the              

hairpin extends; this melts ~3 bp of the RNA-DNA hybrid by pulling the RNA strand away from                 

the hybrid. Fourth, RNA polymerase dissociates from the DNA, terminating transcription (Peters,            

Vangeloff, and Landick 2011). The strong sequence properties of Rho-independent terminators           

means they can be accurately predicted from the genome sequence. De Hoors et al. developed               

a decision rule to predict Rho-independent terminators with 94% specificity across 57 Firmicute             

species (De Hoors et al. 2005). Subsequently, Kingsford et al. developed a program,             

TransTermHP, which is several orders of magnitude faster than the decision rule and almost as               

accurate (Kingsford, Ayanbule, and Salzberg 2007). 

 

In contrast, Rho-dependent termination does not have a simple set of intrinsic motifs, and              

instead relies on the presence of auxiliary proteins to complete termination. Indeed, the only              

common feature of Rho-dependent terminators is a richness of C residues in the mRNA              

transcript (Ciampi 2006). This means they cannot be predicted computationally from the            

genome sequence alone. There are a number of trans-acting factors which are required for              

transcription termination. Rho is a hexameric protein which is sufficient to terminate transcription             

at most Rho-dependent terminators in-vitro. It is essential in E. coli, and Rho homologs are               

ubiquitous across bacteria (Ciampi 2006). Rho acts as an ATP dependent RNA-DNA helicase,             

and moves along the mRNA until it encounters the transcription elongation complex stalled at a               

pause site. Transcription is then terminated by disruption of the RNA-DNA hybrid. In vivo,              

another protein, NusG is required in addition to Rho at certain terminators (Ciampi 2006). 

 

Bacteria vary in how much they rely on the two forms of termination. In the Firmicutes,                

Rho-independent termination is the prefered method (Kingsford, Ayanbule, and Salzberg 2007;           

Ciampi 2006). Consistent with this, in B. subtilis Rho is not essential. In contrast, E. coli uses                 
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Rho-independent and dependent termination approximately equally, consistent with Rho being          

essential in this species (Ciampi 2006). 
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Figure 1.2: Bacterial operons, transcription initiation, and termination. a. Schematic of the lac operon. b. A                
σ-like sigma factor bound to a promoter. The αCTD domains of RNA polymerase are also shown. c. The components                   
required for and mechanism of transcription initiation in bacteria. d. The structure of Rho-independent terminators. e.                
The mechanism of Rho-independent transcriptional termination. Figure adapted from (Browning and Busby 2016;             
Kingsford, Ayanbule, and Salzberg 2007; Peters, Vangeloff, and Landick 2011). 
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Bacterial typing methods 

Within a bacterial species, individual strains vary considerably in phenotypes such as virulence             

and antibiotic resistance. In order to understand this variation, and to provide neutral markers              

for molecular epidemiology, accurate typing methods are needed. Early typing methods such as             

Pulsed-Field Gel Electrophoresis (PFGE) and Arbitrarily Primed Polymerase Chain Reaction          

(AP-PCR) both relied on observing banding patterns of DNA fragments on agarose gels             

(Macfarlane et al. 1999; Roberts et al. 1998). In PFGE, the genomic DNA is fragmented with                

rare cutting restriction enzymes, whereas in AP-PCR, a single random primer is used to amplify               

genomic DNA. Both methods detect variation which evolves quickly and therefore have good             

discriminatory power. This has enabled outbreak cases to be discriminated from the background             

population (Macfarlane et al. 1999; Roberts et al. 1998). In contrast Multi Locus Enzyme              

Electrophoresis (MLEE) detects more slowly evolving variation, and so is more useful for             

studying bacterial population structure over longer time scales (Selander et al. 1986; Milkman             

1973). MLEE works by analysing the electrophoretic mobilities of housekeeping enzymes on            

starch gels, where molecular variation in protein sequences can be assayed and combined in              

order to produce a relatedness matrix of the bacterial strains. The crucial difference between              

[PFGE, AP-PCR] and MLEE is that the former is an unbiased assessment of genetic variation               

en masse, while in the latter only a small subset of enzymes common to the strains are                 

analysed. This feature of MLEE meant that it could be used for population genetic analyses, and                

for the first time this enabled a view into the population structure of several bacterial species                

(Enright and Spratt 1999; J. M. Smith et al. 1993; Milkman 1973). 

 

However, the methods discussed above suffered from several problems. They were slow and             

laborious, and samples could not easily be compared between laboratories. In PFGE and             

AP-PCR, the loci responsible for the variation were unknown, and in all three methods              

between-species comparisons were not possible (Enright and Spratt 1999). To address these            

issues MultiLocus Sequence Typing (MLST) was developed, based on the principles of MLEE             

(M. C. Maiden et al. 1998). In MLST, a set of housekeeping genes (usually 7) are chosen, and                  

from these primers are designed to amplify a portion (~450 bp) of each gene. These PCR                

fragments are then sequenced, and the sequence at each gene is converted into an allele               

number. If the allele has been sequenced previously, it is assigned the existing allele number,               

and if it is novel then it is assigned a new number. The allele numbers at each gene can then be                     

used to give an allele profile for the strain (Enright and Spratt 1999; M. C. Maiden et al. 1998). 
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Because sequence data are truly portable between laboratories, datasets could be combined            

and analysed together for the first time. This was made possible by the development of a                

website, pubmlst (https://pubmlst.org/), which stored the details of the primer sets for each             

organism. Further, pubmlst housed databases of the allele profiles of strains provided by             

different laboratories. At the time of writing, pubmlst has >200,000 isolates from 95 bacterial              

species. In order to understand and visualise the relationships between different allele profiles,             

an algorithm called eBURST was developed. eBURST aimed to classify allele profiles into             

related ‘clonal complexes’, each centred on the likely founding genotype (Feil et al. 2004). An               

example of an eBURST diagram is shown in Figure 1.3a. 

 

MLST has provided great insight into bacterial population structure and evolutionary processes,            

but it has limited resolution as only 7 genes are analysed (<1% of the genome) (M. C. J. Maiden                   

et al. 2013; Feil 2015). Since the genome of Haemophilus influenzae was fully sequenced in               

1995 (Fleischmann et al. 1995), improvements in sequencing technologies and falling prices            

mean that it is now routine to sequence a bacterial genome for as little as £50. The research                  

community has quickly taken advantage of these developments, and there are now >400,000             

sequenced bacterial genomes in the sequence read archive (SRA), with the most important             

pathogens being represented by 1000s of isolates. This has provided unprecedented power to             

study evolutionary processes, as in principle all genetic variation is covered by whole-genome             

sequencing. However, the increased resolution offered by whole-genome sequencing has          

posed new challenges for data analysis. One solution which is in keeping with traditional MLST               

is to extend the scheme to include thousands of core alleles; this is known as cgMLST (M. C. J.                   

Maiden et al. 2013). Alternatively the need to group isolates into ‘types’ can be removed, and                

the relationships between isolates can be interpreted by more continuous measures, such as             

distances on a phylogenetic tree or their shared accessory gene content (Feil 2015). 

 

Bacterial population structure 

Bacteria are asexual and reproduce by binary fission. Thus, in the absence of recombination to               

shuffle variation within the population, they evolve clonally and there is strong linkage             

disequilibrium between loci. If the rate of recombination is sufficiently high, then variation is              

shuffled and linkage disequilibrium is weak. In a landmark paper, Maynard Smith et al. analysed               

MLEE data from a number of bacterial species (J. M. Smith et al. 1993). It was found that                  
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bacteria vary greatly in their population structure, from the highly clonal Salmonella enterica to              

the effectively panmictic (random associations between loci) Neisseria gonorrhoeae. However,          

two intermediate population structures were also found. Neisseria meningitidis displayed an           

‘epidemic’ population structure, where associations between loci were found in a small number             

of common electrophoretic types. When these were removed, the associations between loci            

were no longer present. This population structure results from a rapid expansion of a small               

number of electrophoretic types. In contrast, Rhizobium meliloti exhibits associations between           

loci, but these are a product of the population being split into two groups, where there are                 

random associations between loci within each group but not between the groups (J. M. Smith et                

al. 1993). This study revealed that the nature of bacterial population structure is highly variable               

between species. 

 

Although the study described above provided great insight into the features of bacterial             

evolution, the nature of MLEE data prevents the electrophoretic types from being robustly             

classified, and comparisons between species cannot be made quantitatively. The eBURST           

algorithm developed by Feil et al. aimed to robustly classify groups of closely related strains,               

and to understand how they are evolutionarily related to each other (Feil et al. 2004). According                

to eBURST, strains which share the same allele profile are designated the same sequence type               

(ST). The STs are then grouped by thresholds, for example all STs in a group must share a                  

minimum number of alleles with at least one other member of the group (Feil et al. 2004). If this                   

group of STs is sufficiently stringent (only 1/7 alleles can vary between members), then it is                

known as a clonal complex (CC), and strains which vary at a single locus are known as single                  

locus variants (SLVs). The founding member of the CC is then predicted by parsimony as the                

strain with the most SLVs (Feil et al. 2004). This was the first species-independent,              

sequence-based, and quantitative method to classify bacteria, and it enabled powerful           

snapshots of the population structure of different bacterial species to be compared with each              

other. 

 

eBURST revealed that, in general, bacteria display a population structure consisting of multiple             

distantly related clones, each with recent clonally related descendents. However, the nature and             

robustness of the identified clonal complexes varies by species. In S. aureus, which diversifies              

primarily through mutation (rather than recombination) (Feil et al. 2003), the clonal complexes             

are robust (Figure 1.3a). In contrast, C. jejuni and N. meningitidis recombine at a much higher                
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rate, and in these species the identified clonal complexes vary considerably when the             

thresholds used to define them are changed. More detailed analyses of Salmonella have             

revealed that it is not clonal as was previously thought (J. M. Smith et al. 1993). From MLST                  

data the rate of recombination to mutation (r/m) was estimated to be 30.2, suggesting very high                

recombination rates (Vos and Didelot 2009). However, a more recent analysis based on             

sequencing 10% of the core genome revealed lower r/m rates ranging from 2.95-0.15             

depending on the lineage (Didelot et al. 2011). These estimates show that it is not easy to                 

estimate the clonality of some species, and that there can be substantial within-species variation              

in recombination rates. 

 

The increased resolution from whole-genome sequencing has enabled far more detailed           

analyses into bacterial population structure than was possible with previous methods. For            

predominantly clonal species such as S. aureus, phylogenetic analysis of of a diverse collection              

of isolates revealed that the species is composed of several distantly related clonal complexes,              

in agreement with MLST data (Figure 1.3a-b). 

 

However, the power of whole-genome sequencing was illustrated by a landmark study on S.              

aureus ST239 (Harris et al. 2010), which provided a detailed analysis of a single S. aureus                

clonal complex (Figure 1.3c). The sample consisted of 63 isolates; 43 from a global collection               

recovered from 1982-2003, and 20 from Sappasithiprasong hospital in Thailand. 4310 single            

nucleotide polymorphisms (SNPs) were identified in the core genome of the 63 isolates,             

revealing considerable variation among isolates which were very closely related. Phylogenetic           

analysis showed that this variation was sufficient to identify transmission events on both a large               

scale (between continents) and a much finer scale (between patients within the same hospital)              

(Harris et al. 2010) (Figure 1.3c). This study was the first to show that whole-genome               

sequencing could be used to monitor outbreaks and identify transmission events; this has now              

become an essential tool for infectious disease control (Chan et al. 2012). It is worth noting that                 

the isolates in this study are grouped into a single sequence type by MLST, and this serves as a                   

dramatic example of the increased resolution offered by whole-genome sequencing over           

previous typing methods (Figure 1.3a-c). 
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Figure 1.3: Bacterial population structure at different scales using different technologies. S. aureus is used to                
illustrate common features of bacterial populations. a. An eBURST diagram constructed from MLST data from a                
diverse collection of isolates. The circles are scaled according to the number of isolates. b. A phylogenetic tree                  
constructed from whole-genome sequence data from a diverse collection of isolates. In both a. and b. ST239 is                  
highlighted. c. A phylogenetic tree constructed from whole-genome sequence data from a collection of ST239               
isolates. The detail present in this tree highlights the increased resolution of whole-genome sequence data compared                
with the MLST data shown in a. Figure adapted from (Feil et al. 2004; Aanensen et al. 2016; Harris et al. 2010). 
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Bacteria have large pan-genomes 
In addition to extensive SNP variation among closely related strains, whole-genome sequencing            

has revealed large gene content variation between strains. This variation is known as the core               

genome (genomic loci present in all or nearly all strains), the accessory genome (genomic loci               

present in some strains), and the pan-genome (the core + accessory). Some species, such as               

E. coli and K. pneumoniae have large pan-genomes with many accessory genes. A recent study               

of 228 E. coli ST131 isolates revealed a pan-genome consisting of 11,401 genes, of which only                

2,722 were core (present in all isolates) (McNally et al. 2016) (Figure 1.4c). Given that each                

isolate has approximately 4100 genes, only 65% of genes within a single isolate will be present                

in all other members of the collection. This level gene content variation is remarkable given that                

these isolates are all clustered into a single sequence type (ST131) by MLST. In contrast,               

another analysis of a single MLST type (S. aureus ST22), revealed that 86% of genes were core                 

in a dataset of 193 isolates (Holden et al. 2013). 

 

Compared to the previous analyses which focused on individual lineages, Holt et al. analysed a               

collection of 328 K. pneumoniae isolates which encompassed the variation within the species             

(Holt et al. 2015). This revealed a pan-genome of 29,886 genes, of which 1,888 were core                

(present in ≥95% of isolates) (Figure 1.4a). This means that less than half of the genes in an                  

individual isolate are present in 95% of isolates (a typical K. pneumoniae isolate has 4500-5000               

genes). Gene accumulation curves showed that the pan-genome was ‘open’, meaning that the             

estimate of the total number of genes will likely increase as more isolates are sampled and                

sequenced (Figure 1.4b). A striking feature of the K. pneumoniae pan-genome was that many              

accessory genes are likely to have been transferred from other species, notably the             

Acinetobacter and Vibrio genera (Holt et al. 2015). 

 

It is not immediately clear why bacteria should require access to such a large gene pool, but                 

environmental species such as K. pneumoniae occupy many different niches with varying            

conditions. McInerney et al. argue that large pan-genomes are the result of bacteria acquiring              

new genes, which give them the ability to migrate to new niches (McInerney, McNally, and               

O’Connell 2017). In a dataset of 228 E. coli ST131 isolates, accessory genes encoding              

metabolic functions were more common than those contained on selfish elements. This is             

consistent with accessory genes being advantageous for the bacteria, rather than selfish            

propagation of certain genomic elements (McInerney, McNally, and O’Connell 2017). In           
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contrast, Vos et al. showed that pan-genome size correlates with effective population size,             

suggesting that many accessory genes may be neutral (Andreani, Hesse, and Vos 2017). 

 

Studies of pan-genomes are not strictly limited to protein-coding regions, but may also             

incorporate intergenic regions. In a landmark study by Oren et al., adjacent genes were shown               

to be regulated by alternative intergenic alleles in different strains of E. coli (Oren et al. 2014).                 

These alternative intergenic alleles frequently shared little sequence homology with each other            

(< 42%), and were incongruent with the phylogeny of the species, suggesting that they are               

transferred by recombination (Oren et al. 2014) (Figure 1.4d). These alternative alleles were             

shown to contain binding sites for different regulators, and were associated with differential             

expression of their downstream genes. This process was termed horizontal regulatory transfer            

(HRT), and is likely to be an important source of phenotypic variation in bacteria (Oren et al.                 

2014). 
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Figure 1.4: Bacterial pan-genomes. a. The pan-genome of K. pneumoniae. A phylogenetic tree is shown on the left,                  
and each gene is shown by a black block on the right. The continuous block of genes on the left represent the core                       
genes, and the others are accessory genes. b. Gene accumulation curves for K. pneumoniae. More genes are                 
identified as more genomes are sequenced, indicating an ‘open’ pan-genome. c. The pan-genome of E. coli ST131.                 
d. Horizontal regulatory switching in E. coli. Alternative intergenic regions are carried between two orthologous genes                
in different isolates, and these are incongruent with the tree. Figure adapted from (Holt et al. 2015; McNally et al.                    
2016; Oren et al. 2014). 
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Mechanisms of generating variation 

Processes which generate variation in bacteria can be divided into two major groups, the first               

consisting of small variants of existing sequence and the second consisting of larger variants              

comprising the import/export of genomic elements, rearrangement of existing elements, or           

recombination between homologous sequences. Small variants can involve substitution of one           

nucleotide for another (for example an A -> T); these variants are known as single nucleotide                

polymorphisms (SNPs). Additionally, nucleotides can be inserted into or deleted from existing            

sequence (INDELs). These types of small variation are formed de novo by errors during the               

DNA replication process, and this distinguishes them from the larger variants (although SNPs or              

INDELs can also be introduced by recombination). 

 

SNPs within genes can be divided into categories depending on the types of nucleotides              

exchanged, and how the mutation affects the encoded protein sequence. Transitions are            

mutations where the purine/pyrimidine status of the nucleotide doesn’t change (e.g. A -> G or C                

-> T), whereas transversions are mutations between purines and pyrimidines (e.g. A -> T).              

Synonymous mutations are changes which do not affect the protein sequence due to the              

degenerate nature of the genetic code (for example CGA -> CGC both encode Arginine).              

Non-synonymous mutations are changes which do affect the protein sequence, for example            

CGA -> CCA results in an Arginine to Proline substitution. Nonsense mutations are changes              

where a premature stop codon is produced, for example CGA -> TGA.  

 

There are 12 possible SNP types (each of the four nucleotides can change to one of three                 

others), but these are not equally likely to occur. Two independent studies published             

simultaneously provided evidence that GC -> AT mutations are more frequent than the reverse              

in most bacterial species (Hershberg and Petrov 2010; Hildebrand, Meyer, and Eyre-Walker            

2010) (Figure 1.5a). Hershberg et al. analysed large datasets corresponding to 5 clonal             

bacterial species, where many whole-genome sequences were available for each species.           

Importantly, within each species the isolates were very closely related, meaning that the             

mutations were recent, and thus suitable for measuring mutation biases. They found strong             

evidence that mutation was biased from GC -> AT in all species, and that this bias was primarily                  

driven by C -> T (or reversibly G -> A) transitions (Hershberg and Petrov 2010). Hildebrand et                 

al. analysed a much wider sample of 149 bacterial species, with the caveat that fewer isolates                

were included for each species, and the ages of the mutations were less certain. They found                
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that in all but the most AT rich bacterial species, mutation was biased from GC -> AT                 

(Hildebrand, Meyer, and Eyre-Walker 2010). Both studies compared the observed GC contents            

of bacterial species with those predicted from the mutation biases, and found that observed GC               

contents were substantially higher than predicted by the mutation biases (Rocha and Feil 2010). 

 

Small INDELs are formed by the addition or loss of one or more nucleotides into existing                

sequence. They are commonly formed by slippage of DNA polymerase during DNA replication,             

and therefore repeats are hotspots for INDEL mutations (Lin and Kussell 2012; Gu et al. 2010;                

Gragg, Harfe, and Jinks-Robertson 2002). Within mononucleotide repeats, INDEL formation          

rates increase exponentially with the length of the repeat tract, and the rate is higher in GC                 

compared to AT mononucleotide repeats (Lin and Kussell 2012). GC repeats are thought to be               

more mutable than AT repeats because the mismatch repair system (MMR) is more able to               

remove slippage intermediates in AT repeat tracts compared to GC repeat tracts (Gragg, Harfe,              

and Jinks-Robertson 2002). 

 

Horizontal gene transfer (HGT) is the process whereby genetic material is exchanged            

horizontally between cells, and is a significant contributor to bacterial evolution (Figure 1.5b-d).             

There are three principal mechanisms of HGT: transformation, conjugation, and transduction.           

Transformation is where exogenous DNA is taken into the cell and integrated into the genome               

by homologous recombination, a process which is facilitated by competence machinery           

encoded by the cell (Croucher et al. 2016) (Figure 1.5b). Double stranded DNA binds to an                

outer membrane protein, and is then translocated through a pore, during this process the              

complementary strand is degraded, and so the DNA transferred into the cytosol is single              

stranded. The single stranded DNA is then cleaved into fragments, which are bound to proteins               

to form a RecA nucleoprotein filament. This can then invade the duplex of the host               

chromosome, and homologous recombination can then occur (Johnston et al. 2014; Croucher et             

al. 2016). In general, bacteria tightly regulate transformation, although some species (e.g.            

Helicobacter pylori) are constitutively transformable (Johnston et al. 2014). 

 

While transformation is driven by machinery encoded by the recipient cell, conjugation and             

transduction are driven by groups of genes from the donor cell which encode both the               

recombination machinery and other cargo genes; these groups of genes are transferred as units              

known as mobile genetic elements (MGEs) (Croucher et al. 2016; Juhas, Crook, and Hood              
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2008) (Figure 1.5c). In conjugative MGEs, the DNA is transferred through machinery consisting             

of a relaxase, a type IV secretion system (T4SS), and a type IV coupling protein (T4CP)                

(Guglielmini et al. 2011; Juhas, Crook, and Hood 2008). The relaxase nicks the DNA at the                

origin of transfer, this complex is then coupled to the T4SS by the T4CP, and the T4SS then                  

translocates the DNA through the conjugative pilus into the cytoplasm of the recipient cell              

(Guglielmini et al. 2011; Juhas, Crook, and Hood 2008). DNA transferred through conjugation             

can either be autonomously replicating (such as a plasmid), or not (in which case the DNA is                 

integrated into the recipient chromosome). Whereas transformation mostly transfers small          

fragments of DNA, conjugation transfers much larger fragments. For example, in Streptococcus            

agalactiae, DNA fragments of up to 334 Kb are transferred by conjugation (Brochet et al. 2008). 

 

Transduction involves the transfer of DNA through an MGE encoded bacteria-infecting virus            

particle (phage), which transfers the DNA by injecting it into the recipient bacterial cell (Croucher               

et al. 2016; Feiner et al. 2015) (Figure 1.5d). It has been estimated that there are 1031 phage in                   

the biosphere, making them the most abundant known biological entities (Rohwer and Edwards             

2002). In order to defend themselves against this threat, bacteria have developed an immune              

system consisting of clustered regularly interspaced short palindromic repeats (CRISPRs).          

When a bacterium is infected by a phage, some of the phage DNA is stored between the                 

CRISPR repeats, and this renders the bacterium resistant to subsequent infection by the same              

phage (Vale and Little 2010). This arms race between bacteria and phage has had a profound                

impact on bacterial genomes, and as a result many genes within a bacterial genome are               

phage-derived. In E. coli O157 strain Sakai, up to 16% of the chromosomal DNA is               

phage-derived (Canchaya et al. 2003). Phage-derived genes are often virulence factors, such            

as the shiga toxin in enterohaemorrhagic E. coli (Canchaya et al. 2003). Other examples of               

important phage-derived MGEs include the S. aureus pathogenicity islands (SaPIs), which           

encode the toxic shock protein and enterotoxin B (Penadés et al. 2015). 

 

HGT can influence the diversification of bacteria by transferring novel genes or variant alleles of               

existing genes. The transfer of novel genes results in substantial differences in gene content              

between isolates, resulting in large pan-genomes. In contrast, the transfer of variant alleles             

influences the diversification of homologous sequences which are shared within a species. The             

relative rates of homologous recombination and de novo point mutation determine which is the              

major driver of bacterial diversification, and this quantity is often expressed as r/m (the relative               
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number of mutations introduced by recombination compared to mutation). A study by Feil et al.               

showed that diversification in S. aureus is driven primarily by mutation, whereas in S.              

pneumoniae it was driven primarily by recombination (Feil et al. 2003). Vos et al. used MLST                

data to estimate r/m in a large number of bacterial species and found extensive variation in r/m                 

rates (Vos and Didelot 2009). Some species were extremely recombinogenic, such as Vibrio             

parahaemolyticus (r/m = 39.8) and S. pneumoniae (r/m = 23.1). Some species had intermediate              

rates, such as Campylobacter jejuni (r/m = 2.2) and Enterococcus faecium (r/m = 1.1), and               

some species had very low recombination rates, such as Staphylococcus aureus (r/m = 0.1) and               

Clostridium difficile (r/m = 0.2) (Vos and Didelot 2009). 
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Figure 1.5: Mechanisms of generating variation in bacteria. a. Rates and biases of single nucleotide               
polymorphisms in five different species. Non-synonymous mutations are shown on the left, and synonymous              
mutations are shown on the right. b. The mechanism of transformation. c. The mechanism of conjugation. d. The                  
mechanism of transduction. Figure adapted from (Hershberg and Petrov 2010; Johnston et al. 2014; Juhas, Crook,                
and Hood 2008; Feiner et al. 2015). 
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Population genetics 

Population genetics is the study of allele frequency change, and describes the interactions             

between four major elements: mutation, HGT, drift, and selection. Mutation is the de novo              

occurrence of genetic variation (SNPs, INDELs). HGT is the import/export of genetic variation             

into or out of the population, or the reassortment of existing variation within the population. Drift                

is the change in allele frequencies caused by random sampling of the population. Selection is               

the understanding that genetic variants may have fitness effects, and these effects influence the              

change in allele frequency of that variant (Casillas and Barbadilla 2017; Charlesworth 2009).             

Briefly, mutation and recombination provide the raw input for evolution, and drift and selection              

influence how that variation is assorted (the output). 

 

How this assortment happens depends on two factors, the selective coefficient (s), and the              

effective population size (Ne). The selective coefficient is relative difference in fitness between             

two variants; a variant with a fitness advantage of 1% is represented as s = 0.01. The effective                  

population size refers to the number of genotypes which contribute variation to future             

generations in an ideal population (random mating, constant population size), and has an             

important effect on the relative power of selection and drift in determining the fate of a variant                 

(Casillas and Barbadilla 2017; Charlesworth 2009). The power of drift is determined by the law               

of large numbers, and so is dependent on Ne. If s < 1/Ne (i.e. when the selective coefficient is                   

less than 1 divided by the effective population size), then drift can overpower selection, and               

alternatively if s > 1/Ne, then selection will be effective (Casillas and Barbadilla 2017;              

Charlesworth 2009). Thus, whether a variant is selected or not depends on its fitness effect and                

the size of the population. A variant of s = 0.01 will be selected if the population contains > 100                    

individuals, whereas a much more subtle variant of s = 0.000001 will only be selected if the                 

population contains > 1,000,000 individuals, otherwise its fate will be governed by drift. This              

means that selection is a more powerful force in large populations, and more subtle genetic               

variants can be selected. 

 

Measuring selection 

One way to measure selection is to use a priori assumptions about mutation types in order to                 

construct tests. dN/dS is one of the most well used tests for measuring selection, and compares                

the rates of observed non-synonymous (dN) and synonymous (dS) mutations (Casillas and            

Barbadilla 2017; Hurst 2002). It is based on the assumption that synonymous mutations (which              
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do not result in an amino acid change) are neutral (or at least more neutral than                

non-synonymous mutations). Thus, in the absence of selection dN/dS = 1, as the per sites rates                

of the two mutation types are equal. However, if dN/dS < 1, then this suggests that the observed                  

rate of non-synonymous mutation is lower than that of synonymous mutation, and this is              

interpreted as purifying selection against deleterious non-synonymous mutations, removing         

them from the population. Alternatively, if dN/dS > 1, this is interpreted as positive selection for                

advantageous non-synonymous mutations (Casillas and Barbadilla 2017; Hurst 2002). 

 

However, dN/dS is not a useful statistic if part of a protein is under positive selection (for                 

example an antigenic domain on the cell surface), and another part is under purifying selection               

(for example a domain which anchors the protein into the membrane). In this scenario the               

purifying and positive selection would cancel out, possibly resulting in dN/dS = 1, and this could                

then be falsely interpreted as no selection on the protein (Hurst 2002). The principle of this test                 

is not limited to only non-synonymous and synonymous mutations; variants of the test have              

used non-coding and INDEL mutations in place of non-synonymous mutations (Zhou et al.             

2014; Feng and Chiu 2014). 

 

Another way to measure the effect of a variant is to statistically associate it with a particular                 

phenotype in a genome-wide association study (GWAS). In a GWAS study, variants are tested              

for association against phenotypes, and for an association to be valid it must remain significant               

after correction for both the population structure and multiple testing. Although these            

associations are not strictly evidence of selection, often phenotypes known to be strongly             

selected for are identified (for example antibiotic resistance), and so in these cases it is               

reasonable to assume that these variants are selected (Lees et al. 2016; Earle et al. 2016).                

GWAS has been successfully applied to in human genetics for many years (Stranger, Stahl, and               

Raj 2011), but in bacteria the problem of correcting for population structure is more difficult, and                

GWAS studies have only recently become possible (Sheppard et al. 2013). In bacteria, binary              

fission and limited recombination result in a strong clonal frame where many variants are              

inherited together. This makes it difficult to distinguish between causal and co-inherited variants,             

as many co-inherited variants may be associated with a particular phenotype. Several methods             

have recently been proposed to correct for this problem, (Sheppard et al. 2013) and treeWAS               

(Collins and Didelot 2017) use simulated phylogenetic trees, bugwas (Earle et al. 2016) uses              

principal components analysis (PCA) to detect and correct for lineage effects, and SEER (Lees              
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et al. 2016) uses PCA based on Kmers. Scoary (Brynildsrud et al. 2016) tests the association of                 

variably present genes within the pan-genome against phenotypes. 

 

Identifying important variants through GWAS studies requires that phenotypes have been           

measured. However, it is possible to identify epistatic interactions (defined as non-additive            

interactions between variants) without first measuring phenotypes. As with GWAS studies,           

population structure control must be applied to ensure that co-occurring variants are not simply              

the result of linkage on the genome. These methods were first applied to V. parahaemolyticus,               

where strong epistatic interactions between a type VI secretion system and biofilm forming             

genes were found (Cui et al. 2015). More recently, a method based on direct coupling analysis                

(genomeDCA) was developed, and this identified interactions between the penicillin binding           

proteins in S. pneumoniae (Skwark et al. 2017). 

 

Selection shapes bacterial genomes 

Owing to their small sizes, ubiquity, and short generation times, many bacterial species have              

large long term effective population sizes; for example in E. coli Ne has been estimated to be                 

25,000,000 (McInerney, McNally, and O’Connell 2017; Charlesworth 2009). In populations of           

this size, selection is powerful enough to influence very subtle genetic variants, such as              

alternative codons which encode the same amino acid. This is shown by an analysis of 80                

bacterial species, where the strength of selected codon bias in E. coli is among the highest of all                  

species tested (Sharp et al. 2005). 

 

In an analysis of core genes from 6 bacterial species, Rocha et al. showed that (with the                 

exception of the low diversity Chlamydia pneumoniae and Mycobacterial species), dN/dS values            

were 0.1 or lower (Rocha et al. 2006). This is convincing evidence of strong purifying selection                

acting on these species. More strikingly, dN/dS decreased with divergence time, such that             

comparisons between distantly related isolates had lower dN/dS values than those between            

more closely related isolates. This is shown as increasing dS/dN values in Figure 1.6a. This               

observation was also recovered from both deterministic and stochastic models, where values of             

s for non-synonymous mutations, and Ne were varied across a wide range of parameters              

(Rocha et al. 2006). The concordance between the observed and simulated data, and the effect               

of dN/dS decreasing with time, are consistent with expectations from the nearly neutral theory of               

evolution (Ohta 1973). If most non-synonymous mutations are slightly deleterious (i.e. have            
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small negative values of s), then they will not be removed from the population immediately, but                

will persist for some time. Between closely related bacterial isolates (such as those from the               

same clonal complex), many of the mutations are recent, and selection has not yet had time to                 

purge them from the population, and so they are observed. A clear example of this is found in S.                   

aureus, where comparisons between isolates from the same clonal complex have dN/dS values             

of approximately 0.5, whereas those from different clonal complexes have values < 0.1             

(Castillo-Ramírez et al. 2011). 

 

In addition to time, recombination has been shown to affect inferences of dN/dS             

(Castillo-Ramírez et al. 2011). In S. aureus ST239, recombination is infrequent within the core              

genome, but more prevalent within the accessory genome. In the core genome, high dN/dS              

values (of approximately 0.7) were observed, consistent with these isolates being very recently             

diverged. In contrast, dN/dS values in accessory regions of the genome were much lower (0.2)               

(Figure 1.6b). Additionally, within the core genome, non-recombined regions had higher dN/dS            

values than regions which had been subjected to homologous recombination from distant            

lineages (Castillo-Ramírez et al. 2011). These results are consistent with the model of ongoing              

purifying selection, as SNPs within recombined regions are likely to be older, and therefore have               

been subject to selection for longer than those which have emerged de novo only recently. 

 

In bacterial species where the genome consists of multiple chromosomes, there is commonly             

one larger, more conserved chromosome, and other smaller chromosomes. Cooper et al.            

investigated the possibility that different chromosomes are subject to varying levels of selection             

(Cooper et al. 2010). Core genes from Burkholderia (three chromosomes) and Vibrio (two             

chromosomes) were analysed. It was found that evolutionary rates (dN and dS) were faster on               

the secondary chromosome compared to the primary chromosome (Figure 1.6c-d). Codon bias            

was also stronger on primary chromosomes than on secondary chromosomes. By comparison            

of orthologs from species with only a single chromosome, it was found that the genes on                

secondary chromosomes are inherently faster evolving than those on primary chromosomes           

(Cooper et al. 2010). This suggests that more conserved genes are localised to the primary               

chromosome, and those which are less conserved are located to the secondary chromosome.             

Together, these results show that the strength of purifying selection can vary between             

chromosomes from the same species, and have implications for genome organisation in            

bacteria. 
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Because the strength of selection depends on s and Ne, changes in ecological niches are likely                

to influence selection, for example if Ne decreases then selection will become weaker. This was               

investigated by Balbi et al., who used E. coli and Shigella as a model for ecological shift (Balbi,                  

Rocha, and Feil 2009). E. coli is a ubiquitous, diverse species of enteric bacterium, and Shigella                

is the name given to lineages of E. coli which have acquired the pINV plasmid and adopted an                  

intracellular lifestyle. This shift in lifestyle could have reduced the Ne of Shigella species, or it                

could have rendered some genes unimportant, thus reducing s in those genes, or a combination               

of both. In both cases selection would be weaker. Additionally, the shift may present greater               

possibility for adaptive evolution in response to the new environment. It was found that the               

Shigella isolates were carrying more deleterious mutations than the E. coli isolates, consistent             

with relaxed or inefficient purifying selection (Balbi, Rocha, and Feil 2009). The Shigella isolates              

had higher dN/dS values, more GC -> AT mutations (consistent with mutation bias), and more               

transitions than their E. coli counterparts, and consistent with a model of ongoing purifying              

selection, these quantities all decreased with divergence time (Balbi, Rocha, and Feil 2009)             

(Figure 1.6e-f). 

 

There are several studies which show that bacterial GC contents are typically higher than the               

equilibrium GC content calculated from mutation biases (given the GC -> AT mutation bias in               

bacteria) (Hershberg and Petrov 2010; Hildebrand, Meyer, and Eyre-Walker 2010; Rocha and            

Feil 2010; Balbi, Rocha, and Feil 2009). It has been proposed that this discrepancy is the result                 

of selection for higher GC contents, maintaining the GC content above the equilibrium state. In               

E. coli and Shigella, GC -> AT mutations are more common than the reverse, but this effect is                  

less pronounced with increasing divergence time, suggesting that deleterious AT increasing           

mutations are removed by selection over time (Balbi, Rocha, and Feil 2009). Additionally, the              

number of AT increasing mutations is higher in Shigella than E. coli, which is consistent with                

other features of reduced selection in Shigella (high dN/dS values) (Balbi, Rocha, and Feil              

2009). The selective advantage of high GC contents in bacteria is not clear (Rocha and Feil                

2010). One study tested the effect of GC content on gene expression in E. coli (Raghavan,                

Kelkar, and Ochman 2012). Multiple copies of a gene were synthesised to differ in GC content,                

without affecting codon bias, and the expression of these variants was measured. The             

expression level was dependent on GC content, with the high GC variants being the most highly                
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expressed (Raghavan, Kelkar, and Ochman 2012). This gives a glimpse into the possible             

selective advantage of high GC content, but many questions remain. 

 

More extreme examples of genomic changes come from bacterial endosymbionts, which have            

reached a ‘point of no return’ and are committed to coevolution with their hosts (Balbi, Rocha,                

and Feil 2009). This can manifest in extreme genome reduction, for example a 90% reduction in                

genome size in Buchnera aphidicola (McCutcheon and Moran 2011; Moran and Mira 2001).             

Endosymbiont genomes are typically AT rich, for example the GC content of Carsonella ruddii is               

only 16.5%, and these genomes are typically closer to mutational equilibrium than their             

free-living counterparts (Nakabachi et al. 2006). 
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Figure 1.6: Selection shapes bacterial genomes. a. Increasing dS/dN (decreasing dN/dS) values in six bacterial               
species. dS/dN was plotted against divergence in intergenic regions as a proxy for divergence time. b. dN/dS values                  
in the core (red) are higher than those in the accessory (blue) part of the genome in S. aureus ST239. c. Lower                      
evolutionary rates on chromosome 1 compared with the secondary chromosomes in Burkholderia and d. Vibrio               
species. e. Higher dN/dS values in Shigella genomes (white diamonds) compared with E. coli (black diamonds) or                 
internal branches (grey diamonds). dN/dS decreases with divergence time. f. Same as for e., but for +AT/+GC                 
mutations instead of dN/dS. Figure adapted from (Rocha et al. 2006; Castillo-Ramírez et al. 2011; Cooper et al. 2010;                   
Balbi, Rocha, and Feil 2009). 
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The work presented in this thesis 
The review of current literature reveals that bacterial genomes evolve under strong selective             

constraints; they are compact, and selection is measurable on features with very subtle fitness              

effects (codon bias and AT skew). They are also diverse, with gene content varying widely               

between individuals from the same species. The work presented in this thesis has attempted to               

advance our understanding of bacterial genome evolution by investigating these two themes in             

greater detail. This has predominantly involved analysing the non protein-coding or ‘intergenic’            

component of the genome. In chapter 1, intergenic regions (IGRs) were analysed both en              

masse, and subdivided into individual regulatory elements, in order to test for signals of              

selection in the core genomes of a range of bacterial species. In chapter 2, the intergenic                

component of the pan-genome was considered, and a new tool, Piggy, was developed to              

facilitate these analyses. In this chapter RNA-seq data was combined with genomic data to              

investigate the association between changes in IGRs and gene expression. Chapter 3 focuses             

on the effect of selection on introgressed DNA in Helicobacter pylori, and chapter 4 presents a                

detailed analysis of compensatory evolution in terminator sequences. 
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Chapter 2 
 
 
 
 
Comparative analyses of selection operating on non-translated intergenic regions of          
diverse bacterial species 
 
 
The work presented in this chapter is published as a peer-reviewed publication at: 
 
Thorpe, Harry A., Sion C. Bayliss, Laurence D. Hurst, and Edward J. Feil. 2017.              
“Comparative Analyses of Selection Operating on Non-Translated Intergenic Regions of          
Diverse Bacterial Species.” Genetics, March. doi:10.1534/genetics.116.195784. 
 
Commentary text 
The work in this chapter provides a comprehensive analysis of both purifying and positive              

selection on intergenic sites within bacterial genomes. 6 diverse bacterial species were            

analysed in order to enable comparisons between species to be made. Intergenic sites were              

analysed both en masse, and were also divided into different regulatory elements in order to               

compare differing selective pressures on these elements. Widespread purifying selection was           

found on intergenic sites, the strength of which varied according to the class of intergenic site.                

The statement of authorship for this chapter can be found in the Appendix, supplementary form               

SF1. 
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Abstract 
Non-translated intergenic regions (IGRs) comprise 10-15% of bacterial genomes, and contain           

many regulatory elements with key functions. Despite this, there are few systematic studies on              

the strength and direction of selection operating on IGRs in bacteria using whole-genome             

sequence datasets. Here we exploit representative whole-genome datasets from six diverse           

bacterial species; Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium     

tuberculosis, Salmonella enterica, Klebsiella pneumoniae and Escherichia coli. We compare      

patterns of selection operating on IGRs using two independent methods; the proportion of             

singleton mutations, and the dI/dS ratio; where dI is the number of intergenic SNPs per               

intergenic site. We find that the strength of purifying selection operating over all intergenic sites               

is consistently intermediate between that operating on synonymous and non-synonymous sites.           

Ribosome binding sites and non-coding RNAs tend to be under stronger selective constraint             

than promoters and rho-independent terminators. Strikingly, a clear signal of purifying selection            

remains even when all these major categories of regulatory elements are excluded, and this              

constraint is highest immediately upstream of genes. Whilst a paucity of variation means that              

the data for M. tuberculosis are more equivocal than for the other species, we find strong                

evidence for positive selection within promoters of this species. This points to a key adaptive              

role for regulatory changes in this important pathogen. Our study underlines the feasibility and              

utility of gauging the selective forces operating on bacterial IGRs from whole-genome sequence             

data, and suggests that our current understanding of the functionality of these sequences is far               

from complete. 

 

Introduction 

The ability to generate whole-genome sequence datasets from very large samples of bacterial             

isolates recovered from natural populations provides unprecedented power to dissect          

evolutionary processes. Although tests for selection are routinely carried out on the ~85-90% of              

bacterial genomes corresponding to protein-coding sequences, attempts to measure the          

strength and direction of selection operating on non-translated intergenic regions (IGRs) are far             

less common. Notable exceptions include the study by Molina et al., who demonstrated that the               

number of regulatory elements per IGR is independent of genome size within bacteria, but also               

noted a surprising level of purifying selection operating on bacterial IGRs (Molina and Van              

Nimwegen 2008). However, as this study pre-dates the advent of next-generation sequencing,            

very large whole-genome datasets for single species were unavailable at that time. More             
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recently, Luo et al. found evidence for purifying selection within IGRs of a small sample (n=13)                

of group A streptococcal genomes (Luo et al. 2011) and Degnan et al. found strong evidence for                 

sequence conservation within IGRs of eight Buchnera genomes (Degnan, Ochman, and Moran            

2011). This observation is particularly striking in Buchnera, as it is an endosymbiont and so               

likely has a small effective population size (Ne). Together, these studies challenged the view              

held for many years that intergenic sites provide a valid proxy for neutrality (Wang and Chen                

2013; Hu, Lan, and Reeves 2006; S. Fu et al. 2015). 

 

Whole-genome sequence datasets for bacteria now routinely encompass many hundreds of           

genomes for a single species, although currently these data have remained almost completely             

untapped with respect to examining selection on IGRs. In fact, despite the studies mentioned              

above, many commonly used pipelines and databases by default exclude IGRs altogether, with             

the focus instead on defining sets of ‘core’ or ‘accessory’ genes (CDSs), upon which              

phylogenetic, epidemiological or evolutionary analyses are then carried out (M. C. J. Maiden et              

al. 2013; Jolley and Maiden 2010; Sheppard, Jolley, and Maiden 2012; Feil 2015; M. C. J.                

Maiden and Harrison 2016; Page et al. 2015). One explanation for this apparently casual              

dismissal of IGRs is a lack of ‘off-the-shelf’ methodology to measure selection on these              

sequences; the standard approach for protein-coding sequences, the dN/dS ratio, being invalid.            

In addition, there may be a prevailing sense that IGRs are technically challenging to work with,                

owing to low levels of constraint, poor annotation and a high frequency of indels. The approach                

by Fu et al. is a rare exception which challenges this view. These authors generated a core                 

genome consisting of both genes and IGRs for Salmonella enterica serovar Typhimurium, and             

in so doing demonstrated the feasibility of incorporating IGRs into routine analysis. Furthermore,             

these authors showed that IGRs contribute meaningful signal to increase discriminatory power            

for phylogenetic and epidemiological analyses (S. Fu et al. 2015). 

 

The paucity of studies aimed at systematically measuring selection on non-translated IGRs is             

strikingly at odds with the many recent examples demonstrating the phenotypic impact of             

mutations in riboswitches, small RNAs, promoters, terminators, and regulator binding sites           

(Waters and Storz 2009). Single nucleotide polymorphisms (SNPs) or small insertion/deletions           

(INDELs) within these elements can have major phenotypic consequences. For example, in a             

recent GWAS study, 13 intergenic SNPs were found to be significantly associated with toxicity in               

Methicillin-resistant Staphylococcus aureus (MRSA), and four of these were experimentally          
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validated (Laabei et al. 2014). In Mycobacterium tuberculosis, mutations within the eis promoter             

region increase expression of Eis, an enzyme which confers resistance to kanamycin and             

promotes intracellular survival (Casali et al. 2012). In addition to those studies focussing on              

naturally occurring mutations, knock-out experiments on regulatory RNAs have also confirmed           

their key roles in virulence and other important phenotypes such as competence. For example,              

the Salmonella sRNA IsrM is important for invasion of epithelial cells and replication inside              

macrophages (Gong et al. 2011). In S. aureus, the Sigma B-dependent RsaA sRNA represses              

the global regulator MgrA; this decreases the severity of acute infection and promotes chronic              

infection (Romilly et al. 2014). In S. pneumoniae, the srn206 non-coding RNA is involved in               

competence modulation (Acebo et al. 2012). 

 

These well characterised regulatory elements are clearly expected to be under strong purifying             

selection, but there remain no broad measures of the commonality of constraint operating on              

IGRs at an intra-species level. There is also currently little understanding of which intergenic              

regulatory elements are under strongest selection, whether a signal of selection can be detected              

even for those intergenic sites for which there is no known function, or to what extent positive                 

(as well as negative) selection may be operating on IGRs. Here we use two independent               

approaches to address these questions. The first method is based on the established logic of               

site frequency spectra (the Proportion of Singleton Mutations; PSM), whilst the second is a              

modification of dN/dS (dI/dS; where dI is the number of intergenic SNPs per intergenic site). We                

apply these approaches to large whole-genome datasets from six diverse bacterial species;            

Escherichia coli, Staphylococcus aureus, Salmonella enterica, Streptococcus pneumoniae,        

Klebsiella pneumoniae, and Mycobacterium tuberculosis. With the exception of M. tuberculosis,           

our results demonstrate that the overall strength of selective constraint on intergenic sites in              

bacteria is intermediate between that operating on synonymous and non-synonymous sites.           

This observation does not significantly alter even when all major regulatory IGR elements are              

removed from the analysis, consistent with a substantial level of cryptic functionality in these              

sequences. We also compare the strength and direction of selection operating on different types              

of regulatory element within IGRs, and note strong evidence of positive selection acting on              

promoters in M. tuberculosis. 
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Methods 

Data selection 

For S. aureus, S. pneumoniae, K. pneumoniae, and M. tuberculosis, isolates were selected from              

recently published data (Reuter et al. 2015; Chewapreecha et al. 2014; Holt et al. 2015; Casali                

et al. 2014). For S. enterica, isolates were selected from those whole-genome sequenced             

routinely by the Gastrointestinal Bacteria Reference Unit at Public Health England. Recent            

large-scale bacterial genome sequencing projects have been primarily motivated by efforts to            

understand features which are important for public health, such as disease transmission,            

virulence, and antibiotic resistance. Consequently, the datasets may be poorly representative of            

the population as a whole, with disproportionate weight given to lineages of particular clinical              

significance. For example the S. aureus data were generated as part of a retrospective study of                

hospital-acquired methicillin resistant S. aureus MRSA in the UK (Reuter et al. 2015), and the               

majority of these isolates corresponded to a single clonal lineage, CC22 (EMRSA-15). We             

therefore subsampled the datasets to include each major lineage and a random sample from              

the over-represented clonal complexes. A complete list of all isolates used in the analysis is               

given in Table S2.1. 

 

Sequencing, mapping and SNP calling 

For each species except E. coli, reads were downloaded from the ENA            

(http://www.ebi.ac.uk/ena). For E. coli, completed genome sequences were downloaded from          

NCBI, and sheared into reads with ArtificialFastqGenerator (Frampton and Houlston 2012). The            

isolates were mapped against a single reference genome for each species (as shown in Table               

2.1) using SMALT-0.7.6 (https://sourceforge.net/projects/smalt). SAMtools-0.1.19 (Li et al. 2009)         

was used to produce Variant Call Format (VCF) files, which were filtered to call SNPs. SNPs                

were only called if they passed all of the following thresholds: depth >= 4, depth per strand >= 2,                   

proportion of reads supporting the SNP >= 0.75, base quality >= 50, map quality >= 30, af1 >=                  

0.95, strand bias >= 0.001, map bias >= 0.001, tail bias >= 0.001. Consensus Fasta sequences                

were then used to produce an alignment for each species. [N.B. The mapping was performed in                

collaboration with Sion Bayliss, University of Bath, Bath, UK.] 

 

Validation of singleton SNPs 

As singleton SNPs are potentially vulnerable to poor quality data, we performed a thorough              

analysis of the SNPs to validate their quality. This was based on analysing three metrics: depth                
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of coverage, proportion of reads supporting the variant, and the Phred Quality (Q) score in both                

singletons and non-singletons. Q is related to the per-base error probability according to the              

following equations: 

 and − 0log PQ = 1 10 P = 10 10
−Q

 

In illumina reads, the per-base Q score is approximately Q30, equating to one error every 10-3                

bases. However, this error rate is substantially reduced by sequencing to high coverage, and              

then mapping the reads to the reference genome. For each species in our analysis (with the                

exception of E. coli), the sequencing depth was 50-100x per isolate. For E. coli, we simulated                

reads with no errors, using the complete genome sequences, and then mapped these synthetic              

reads to the standard reference genome (MG1655). 

 

To validate our SNPs, we used the mapping information in the Variant Call Format (VCF) files.                

We focused on three metrics, the depth of coverage, the proportion of reads supporting the               

variant, and the Q score for the position (which takes into account the per-base-per-read error               

rate, and the coverage at the position). We split our SNPs into singletons and non-singletons to                

check for singleton associated biases. 

 

IGR identification and core genome definition 

Each reference genome was annotated using Prokka-1.11 (Seemann 2014). This annotation           

was used to extract genes and IGRs (IGRs > 1000 bp in length were excluded), and three core                  

sets of genes and IGRs were defined for each species. tRNA and rRNA genes were excluded                

from all analyses. The ‘relaxed core’ consisted of all genes and IGRs, the ‘intermediate core’               

consisted of all genes and IGRs with > 90% sequence present in > 95% of isolates, and the                  

‘strict core’ consisted of genes and IGRs with > 90% sequence present in > 99% of isolates. 

 

Calculation of dN/dS and dI/dS 

Core gene and intergenic sequences were extracted from the alignments and concatenated to             

produce gene and intergenic alignments (reverse oriented genes were reverse complemented           

so all genes were in sense orientation). The codons within the gene alignment were shuffled,               

and the gene alignment was split into two (referred to as a and b). The YN00 program from the                   

PAML suite (Ziheng Yang 2007) was used to calculate dN/dS values by the Nei and Gojobori                

(1986), and Yang and Nielson (2000) methods in a pairwise manner for both gene alignments a                

and b (Nei and Gojobori 1986; Z. Yang and Nielsen 2000). The results were almost identical,                
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and so we used the Nei and Gojobori (1986) method as it was computationally less demanding,                

and enabled the results to be compared directly with the dI values. SNPs were counted between                

isolates in a pairwise manner from the intergenic alignment, and dI was calculated by dividing               

the number of SNPs by the length of the alignment, before applying a Jukes-Cantor distance               

correction (Jukes and Cantor 1969). For both the gene and intergenic alignments Ns were              

removed from the alignment in a pairwise manner to ensure that all possible data was used.                

The dS values from gene alignment a were used to calculate dN/dS and dI/dS, and the dS                 

values from gene alignment b were used as a proxy for divergence time. This ensured that                

when plotting dN/dS and dI/dS against dS, the dS values on each axis were calculated               

independently, thus controlling for statistical non-independence. 

 

Correcting dN/dS and dI/dS calculations for mutation biases and base composition 

In order to confirm that the model we used to calculate dN/dS and dI/dS accurately reflects the                 

null expected under neutrality, we simulated neutral divergence of the reference genomes            

based on the observed mutational spectra, then recalculated dN/dS and dI/dS from the             

simulated sequences. Any deviation from parity (dN/dS = 1) reflects the fact that we have not                

accurately incorporated mutation bias, in particular the strong AT pressure in bacterial genomes             

(Balbi, Rocha, and Feil 2009; Hershberg and Petrov 2010; Hildebrand, Meyer, and Eyre-Walker             

2010) and base composition into our models. However, by calculating the magnitude of the              

deviation between the simulated sequences and parity we can correct for this bias. 

 

We first calculated the per-site mutation bias for the 6 mutation types for each species (Figure                

S2.1). We then simulated neutral mutations on a sequence of concatenated genes and IGRs to               

a divergence of 1% from the original sequence for 50 replicates. We then calculated dN/dS and                

dI/dS between pairwise comparisons of these 50 replicates. This gave us an expectation of              

dN/dS and dI/dS under neutral conditions, taking into account mutation biases and base             

composition. We then computed observed/expected (simulated) dN/dS and dI/dS ratios, thus           

providing corrected estimates. We did this for alignments of each intergenic element considered             

(promoters, terminators, ribosome binding sites, non-coding RNAs, and unannotated sites) to           

also correct these estimates. 

 

Ribosome binding site, promoter, non-coding RNA, and terminator annotation 

Promoter and terminator predictions were obtained using the PePPER webserver (de Jong et             
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al. 2012). Non-coding RNA annotations were obtained from the reference genome annotation            

GFF file produced by Prokka, where they were labelled as ‘misc_RNA’. Ribosome binding site              

annotations were predicted using RBSfinder (Suzek et al. 2001). 

 

Code availability and computation 

All of the code used in the analysis is available at           

https://github.com/harry-thorpe/Intergenic_selection_paper under the GPLv3 license. The      

complete analysis can be reproduced by running a single script, using any alignment and              

annotation files as inputs. Full instructions are available in the GitHub repository. All             

computations were performed on the Cloud Infrastructure for Microbial Bioinformatics (CLIMB)           

(Connor et al. 2016). All figures were produced using the R package ggplot2 (Wickham 2009). 

 

Results 

Species and data selection 

We used existing large whole-genome sequence datasets for six diverse bacterial species:            

Escherichia coli, Staphylococcus aureus, Salmonella enterica, Streptococcus pneumoniae,        

Klebsiella pneumoniae, and Mycobacterium tuberculosis. These species are diverse in terms of            

phylogeny (representing Gram-positive and Gram-negative taxa), in terms of population          

structure (ranging from the highly clonal M. tuberculosis to the freely recombining S.             

pneumoniae), and in terms of ecology. The K. pneumoniae and E. coli data include isolates               

from environmental sources and disease, the S. aureus and S. pneumoniae data includes             

isolates from asymptomatic carriage, and M. tuberculosis is an intracellular pathogen. The GC             

content of these species range from 32.9% (S. aureus) to 65.6% (M. tuberculosis) (Table 2.1).               

The diversity of these species provides a means to examine the robustness of the methods               

against possible confounders such as rates of recombination, demographic effects, effective           

population size, and population structure. In cases where very large datasets (1000s of             

genomes) were available, we sub-sampled representative strains as described in Methods. A            

complete list of all isolates used in the analysis is given in Table S2.1. 

 

For each species, we mapped the sequence reads to a single reference genome (Table 2.1),               

and defined alternative sets of core genes and IGRs using different frequency thresholds.             

Defining core gene sets on the basis that each core gene is universally present, or present at a                  

very high frequency, among all the sequenced genomes is an established first step in bacterial               
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comparative genomics. This simplifies the analysis by removing the problem of missing data             

(genes), and by excluding mobile elements (e.g. phage and plasmids), and also reduces the              

problem of potentially conflicting signals resulting from high rates of recombination or atypical             

selection pressures. However, it is likely that the most frequently observed genes and IGRs that               

correspond to a strict core are also the most selectively constrained, thus this approach              

potentially imposes a bias. In order to address this, we analysed three different sets of core                

genes and IGRs for each species defined according to different frequency thresholds. The             

'relaxed core' represents all genes and IGRs present in at least 2 genomes, the 'intermediate               

core' includes all genes and IGRs that are present in > 95% isolates, and the 'strict core',                 

includes all genes and IGRs present in > 99% of isolates. The number of genes and IGRs                 

included in each dataset is given in Table 2.1. The 'strict core' IGR dataset included at least                 

50% of the corresponding 'relaxed core' IGRs for each species, with the biggest potential bias in                

S. pneumoniae and E. coli, where the 'strict core' IGRs corresponded to 50.5% and 56.5% of                

the 'relaxed core' IGRs respectively. For the 'intermediate core' datasets, 64.9% and 64.2% of              

the relaxed core IGRs were included in the 'strict core' for S. pneumoniae and E. coli                

respectively. 

 

Species Data source 

# 

Isolates %GC  Reference genome 

RC 

Genes 

RC 

IGRs 

IC 

Genes 

IC 

IGRs 

SC 

Genes 

SC 

IGRs 

E. coli NCBI complete genome 157 50.8 MG1655 4305 3647 3164 2342 2873 2060 

S. enterica Public Health England 366 52.2 Typhimurium_D23580 4554 3777 3617 2830 3114 2456 

K. pneumoniae Holt et al, 2015 208 57.7 NTUH_K2044 4787 4006 3954 3150 2954 2453 

S. aureus Reuter et al, 2015 132 33.2 HO_5096_0412 2405 2084 2131 1704 2057 1609 

S. pneumoniae Chewapreecha et al, 2014 264 39.5 ATCC_700669 2183 1846 1574 1198 1373 932 

M. tuberculosis Casali et al, 2014 144 65.6 H37Rv 4069 3135 3806 2940 3332 2691 

Table 2.1: The data used in the analysis. RC = Relaxed core, IC = Intermediate core, SC = Strict core. 
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Sequence properties of genes and IGRs 

IGRs were identified based on reference genome annotation as described in Methods. The size              

distribution and GC content of both genes and assigned IGRs are shown in Figure 2.1. Figure                

2.1a shows that IGRs with a predicted promoter at each end tend to be larger than double                 

terminator regions and co-oriented regions. This is partly explained by the fact that many              

co-oriented regions are small spacers within operons. The GC content of IGRs is lower than in                

protein coding sequences (Figure 2.1b); although this difference is far less marked in M.              

tuberculosis, it is statistically significant in all species (p < 10-16, Mann-Whitney U test). 

 
Figure 2.1: Summary of the sequence properties of genes and IGRs. a. Length distributions of genes and IGRs.                  
IGRs were divided into three groups according to the orientation of the flanking genes: co-oriented regions are                 
flanked by genes in the same orientation, double promoter regions are flanked by 5’ gene starts, and double                  
terminator regions are flanked by 3’ gene ends. The points and error bars represent mean ± sem. b. GC contents of                     
genes and IGRs. GC contents were calculated for each gene and IGR individually. The points and error bars                  
represent the mean ± sem. c. GC contents of different site classes compared to genome GC content. The GC                   
content of synonymous, non-synonymous, and intergenic sites was calculated, and compared with the genome GC               
content for each species. The steepness of the slope indicates the amount of constraint on the GC content of the site                     
class (shallower slopes indicate stronger constraint). 
 

Muto and Osawa showed that fourfold degenerate sites exhibit the widest range of GC content               

across a diverse sample of genomes (that is, these sites show the most extreme values),               

whereas non-degenerate second codon positions exhibit the narrowest range, with 1st and 3rd             

sites being intermediate. These authors noted that this variation in the range of GC content               

between different site categories mirrors the selective constraints on those sites, with second             

codon positions being the most constrained because they are in all cases non-degenerate             

46 



(Muto and Osawa 1987; Rocha and Feil 2010). We repeated this analysis using synonymous,              

non-synonymous and intergenic sites (Figure 2.1c). Our data are consistent with that of Muto              

and Osawa; the synonymous sites exhibit the widest range of GC content (steepest slope), the               

non-synonymous sites exhibit the narrowest range of GC content (shallowest slope). However,            

we also note that the slope for intergenic sites is intermediate between the synonymous and               

non-synonymous sites. If the original interpretation by Muto and Osawa is correct, this implies              

that the strength of selective constraint on intergenic sites is also intermediate between that on               

operating on synonymous and non-synonymous sites. Below we describe detailed analyses           

which examines this possibility in more detail. 

 

The proportion of singleton mutations (PSM) is consistent with an intermediate strength            
of selective constraint on intergenic sites 

In order to measure the frequency of strongly deleterious intergenic mutations, relative to             

synonymous, non-synonymous and nonsense mutations within coding regions, we used a           

simple method based on site frequency spectra. Similar methods have been used on             

non-coding DNA in eukaryotes (Drake et al. 2006) and in bacteria, albeit on a much smaller                

scale than the current study (Luo et al. 2011). Mutations affecting sites under strong selective               

constraint are more likely to be quickly purged by selection before they begin to rise in                

frequency, thus are also more likely to be very rare. Here, we define very rare mutations simply                 

as those observed only once in the dataset (singletons). It is thus possible to gauge the                

proportion of strongly deleterious SNPs for a given site category simply by computing the              

proportion of those SNPs that are singletons (Proportion of Singleton Mutations; PSM). In order              

to check to what degree the definition of core IGRs imposes a bias we carried out the analysis                  

using the three thresholds as defined above ('relaxed core', 'intermediate core' and 'strict core').              

We first considered four mutation categories, intergenic, synonymous, non-synonymous, and          

nonsense. The PSM values for each of these mutation types, for all six species, are shown in                 

Figure 2.2. An analysis of all individual genes and IGRs is given in Figure S2.2 ('intermediate                

core' only). 

47 

https://paperpile.com/c/BArwVu/w02qN+0LYGz
https://paperpile.com/c/BArwVu/iyaEj
https://paperpile.com/c/BArwVu/CJmon


 

Figure 2.2: PSM (Proportion of Singleton Mutations) analysis of selection on different mutation categories.              
PSM values were calculated by dividing the number of singleton SNPs (those present in only one genome) by the                   
total number of SNPs within that mutation category. 
 

This analysis reveals a consistent trend across five of the six species, the exception being M.                

tuberculosis. Nonsense mutations had the highest PSM values, indicating the highest proportion            

of strongly deleterious mutations, followed by non-synonymous mutations, intergenic mutations,          

and finally synonymous mutations. Thus, for five of the six species, PSM values for intergenic               

sites were intermediate between the synonymous and non-synonymous PSM values. It follows            

that the proportion of SNPs at intergenic sites that are highly deleterious, and therefore purged               

rapidly by purifying selection, is intermediate between the equivalent proportions for           

synonymous and non-synonymous sites. 

 

Although comparisons of PSM values between species are not valid, as species-specific factors             

(e.g. the rate of recombination) will also impact on PSM, it is reasonable to assume that these                 

potential confounders are at least consistent between different mutation types within a single             
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species. This is strongly evidenced by the consistency of the relative strengths of selective              

constraint operating on each mutation type (nonsense > non-synonymous > intergenic >            

synonymous). The same trend is observed when individual genes and IGRs were analysed             

separately (Figure S2.2). Moreover, the pattern is highly robust to the definition of core genes               

are IGRs. Although the 'strict core’ gene and IGR sets within each species correspond to               

marginally higher PSM values (as, expected and consistent with higher selective constraint),            

again the relative trends within each species remain robust. We are therefore confident that this               

analysis is not confounded by biases resulting from species-specific factors, or from selecting             

unrepresentative genes and IGRs. In M. tuberculosis, the exceptional species, there was very             

little difference between all mutation categories, and PSM scores were high in all cases. Multiple               

interpretations of the apparent patterns of selection and the high frequency of rare variants in M.                

tuberculosis have been discussed in the literature. These include very weak purifying selection,             

short coalescent time, linkage (background selection), a combination of purifying and positive            

selection, rapid demographic expansion combined with bottlenecks (leading to a reduction in the             

effective population size and increased drift), selective sweeps and diversifying selection           

(Namouchi et al. 2012; Pepperell et al. 2013; Hershberg et al. 2008). We consider some of                

these possibilities in the context of our results in more detail below. 

 

We recognise that this analysis is potentially vulnerable to sequencing errors, as these are most               

likely to generate singleton SNPs. The consistency of the results across 5 diverse species is               

reassuring, as this is very difficult to reconcile with a high error rate without assuming this                

systematically affects some site categories more than others. Nevertheless, in order to gauge             

whether our analysis has been impacted by a high frequency of error-derived singleton SNPs,              

we repeated the analysis by first removing all singleton SNPs and instead computing, for each               

site category, the proportion of doubleton mutations (PDM). These are SNPs present in exactly              

two genomes within each sample; although still rare, these are a priori far less likely to have                 

been generated by random sequencing error than singleton SNPs. PDM values were ordered             

nonsense > non-synonymous > intergenic > synonymous for all species except M. tuberculosis             

and S. pneumoniae (Figure S2.3). Thus, the only discrepancy between the PSM and PDM              

results was S. pneumoniae, where intergenic < synonymous. However, we note this            

discrepancy is marginal, and the distinction between site categories is less robust for this              

species even when considering PSM, probably reflecting very high rates of recombination in this              

species (discussed below). 
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To further examine to what extent singleton SNPs may have been generated by sequencing              

error, we carried out a detailed comparative analysis of the quality scores of singleton and               

non-singleton SNPs (Figure S2.4). We analysed three metrics: depth of coverage, proportion of             

reads supporting each variant, and the Phred Quality (Q) score in both singletons and              

non-singletons. The analysis revealed that the vast majority (> 99%) of all SNPs were of               

extremely high quality, and that there are negligible differences in the quality scores between              

singleton and non-singleton SNPs. For example, across all species 99.5% of singleton SNPs             

and 99.8% of non-singleton SNPs had a Q score of > 100. This quality score corresponds to an                  

error rate of 10-10, or equivalently one erroneous SNP every 2000 genomes (given a 5Mb               

genome). Given these combined checks, we are highly confident that errors in the singleton              

SNPs have not confounded our analysis. 

 

The signal of purifying selection on intergenic sites is time-dependent 
To further examine selective constraint on intergenic sites, we extended the logic of dN/dS by               

computing dI/dS, where dI = intergenic SNPs per intergenic site. dI has previously been used in                

M. tuberculosis as a neutral reference by calculating dI/dS for individual IGRs using             

neighbouring genes as a source of synonymous sites (Wang and Chen 2013). In contrast, we               

drew pairwise comparisons by pooling sites across the whole genome, and used the             

genome-wide dI as the numerator and the genome-wide dS as the denominator. We computed              

genome-wide dN/dS in the same way in order to draw valid comparisons between the strength               

of selection on intergenic sites and non-synonymous sites, both relative to synonymous sites. 

 

Previous work has shown that dN/dS decreases with divergence time due to a lag in purifying                

selection, which operates much more strongly on non-synonymous than synonymous sites as            

the former are more likely to be slightly deleterious (Rocha et al. 2006; Namouchi et al. 2012).                 

We tested for the same time dependence in dI/dS by comparing pairs of very closely related                

genomes (within 'clonal complexes' (CCs); where dS < 0.003) with those representing more             

distantly related genomes ('between-CCs'; dS > 0.003. This analysis was also carried out for all               

three alternative gene sets (relaxed, intermediate and strict core; Figure 2.3). All genome             

comparisons within M. tuberculosis were defined as 'within-CC' due to the very low level of               

variation in this species. We also plotted, for each pair of isolates and for each species, dN/dS                 

and dI/dS against dS in order to further explore the impact of divergence time on dI/dS                
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('intermediate core' only; Figure S2.5). 

 

Figure 2.3: dN/dS and dI/dS analysis of selection. dN/dS and dI/dS were calculated between isolates in a pairwise                  
manner. The results were categorised into within clonal complex (Within CC, dS < 0.003, red), and between clonal                  
complex (Between CC, dS > 0.003, blue) comparisons, to account for the effect of divergence time on the observed                   
levels of selection. The notches in the box plots represent 95% confidence intervals around the median. All                 
comparisons between M. tuberculosis isolates were classified as 'Within CC' due to the extremely low level of                 
diversity in this species. The dashed red line shows where dN/dS and dI/dS = 1, and therefore indicates neutrality. 
 

Figure 2.3 shows that for each species, dI/dS is consistently greater than dN/dS for both within                

and between-CC comparisons. The between-CC dN/dS and dI/dS values are universally < 1,             

but the within-CC values are more equivocal, with the dN/dS values being mostly < 1, and the                 

dI/dS values being < 1 in E. coli, K. pneumoniae, and S. pneumoniae, and > 1 in S. enterica, S.                    

aureus, and M. tuberculosis. This trend is consistent across all three core gene and IGR sets,                

with very little difference in dI/dS and dN/dS values between the sets. Low dN/dS and dI/dS                

values (particularly in the between-CC comparisons) are strong evidence of purifying selection            

on non-synonymous and intergenic sites, and lower dN/dS values compared to dI/dS values             

indicate stronger constraint on non-synonymous sites than intergenic sites. It is worth noting             
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that this observation (dI < dS) has previously been interpreted as evidence for positive selection               

on synonymous sites (Wang and Chen 2013). Given previous work and the results of the PSM                

analysis, we argue instead that it confirms greater selective constraint on intergenic sites than              

on synonymous sites. Moreover, the difference between within and between-CC comparisons is            

evidence of time dependence consistent with ongoing purifying selection operating over           

increasing divergence, as noted previously for non-synonymous sites (Rocha et al. 2006). For             

four of the five species for which such a comparison was possible, (E. coli, S. aureus, S.                 

enterica, K. pneumoniae), dN/dS and dI/dS were both significantly higher for within-CC            

comparisons than between-CC comparisons (p < 10-16, Mann-Whitney U test). These           

differences are expected if non-synonymous and intergenic SNPs are preferentially purged           

(relative to synonymous SNPs) over divergence time, although we recognise that our pairwise             

methodology might lead to an amplification of these differences due to the over-sampling of long               

internal branches in the between-CC comparisons. In S. pneumoniae, dN/dS was significantly            

higher for within-CC comparisons compared to between-CC comparisons (p < 10-16,           

Mann-Whitney U test) but dI/dS was not (p = 0.19). It is possible that the signal of time                  

dependence is weaker in this species owing to high rates of recombination (Chaguza et al.               

2016). The statistical analysis described above was carried out based on the 'intermediate core'              

gene set. As there was negligible difference between the three core gene and IGR sets in both                 

the PSM and dI/dS analyses presented thus far, we performed all subsequent analyses on the               

'intermediate core' sets (where at least 90% of genes and IGRs are present in at least 95% of                  

isolates). 

 

We also plotted, for each pair of isolates for each species, dN/dS and dI/dS against dS (based                 

on the 'intermediate core' only; Figure S2.5). In the case of E. coli, S. aureus, S. enterica and K.                   

pneumoniae a large number of points are evident at very low values of dS; these reflect the                 

presence of clusters of closely related genomes in these species (i.e. clonal complexes). The              

absence of significant clonal clustering in S. pneumoniae reflects high rates of recombination,             

and can help to explain the lack of significant difference within and between clonal complexes in                

this species as noted above. However, for all species except S. enterica and M. tuberculosis               

there is a significant decrease of both dN/dS and dI/dS against dS (p < 10-16, Spearman’s                

correlation). The time dependence of dN/dS potentially poses a problem for comparing between             

species, as those species with longest time to most recent common ancestor will appear to be                

under stronger selection (as dN/dS decreases with divergence time). However, Figure S2.5            
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shows that dN/dS decreases very quickly initially, and then begins to plateau very early,              

suggesting that this is not a major problem in our analysis. 

 

As noted above, the genetic diversity within M. tuberculosis is so low that between-CC              

comparisons were not possible, as the dS for all pairwise comparisons was < 0.003. Values of                

dN/dS are approximately 0.8 in this species, which is comparable to the within-CC values for all                

the other species, and slightly higher than that reported previously for this species (Pepperell et               

al. 2013; Hershberg et al. 2008). Both the observation of high dN/dS in M. tuberculosis and the                 

PSM analysis described above are consistent with, though not demonstrative of, weak purifying             

selection in this species. It has been argued that weak purifying selection in M. tuberculosis               

reflects its lifestyle as an obligate pathogen subject to frequent bottlenecks, and thus a reduction               

in effective population size (Hershberg et al. 2008). Contrary to this view, Namouchi et al.               

highlighted the absence of the classic footprints of genome degradation expected to result from              

increased drift, and that, in contrast to Hershberg et al. 2008, non-synonymous SNPs are more               

common (compared to synonymous SNPs) in terminal branches of the tree (as predicted if              

purifying selection is operating). Moreover, other authors have reported evidence of both            

positive and purifying selection (Pepperell et al. 2013; Farhat et al. 2013), and even diversifying               

selection in M. tuberculosis (Osório et al. 2013). Given this complex picture, it is possible that                

our results represent a mixture of contrasting forces acting over short coalescence times,             

converging on a signal that is indistinguishable from very weak purifying selection. In favour of               

this argument, the diversity in M. tuberculosis is so low that only a small number of mutations                 

would need to be positively selected in order to have a large impact on the patterns observed,                 

and our M. tuberculosis sample is enriched for antibiotic resistance which is known to be               

positively selected (Farhat et al. 2013; Casali et al. 2014; Pepperell et al. 2013). 

 

Purifying selection on intergenic sites is strongest near gene borders 

Although values of dI/dS < 1 are consistent with stronger selective constraint on intergenic sites               

than on synonymous sites, this could also arise due to slower mutation rates within IGRs than in                 

coding regions. This might be expected if a non-negligible fraction of mutations arose during              

transcription, which would also impact on intergenic sites near to the gene border (Chen and               

Zhang 2013). The demonstration of the time dependence of dI/dS, specifically the difference             

between within and between-CC comparisons, acts to mitigate these concerns, but as a further              

check we calculated dI/dS values from intergenic sites immediately upstream of genes (30             
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bases upstream from the start codon). If intergenic sites immediately upstream of genes are              

transcribed, and transcription-derived mutation significantly elevates dS, then dI/dS should          

approach 1 in these regions. However, for each species (except M. tuberculosis) we noted the               

opposite; dI/dS immediately upstream of genes was in fact lower than dI/dS for intergenic sites               

in general (p < 10-16, Mann-Whitney U test), suggesting that transcription-derived mutation is not              

confounding our analysis (Figure S2.6). This suggests that intergenic sites close to the start of               

genes are under particularly strong purifying selection, which may be due to the presence of               

regulatory elements upstream of genes, or selection for mRNA stability to enable efficient             

translation (Molina and Van Nimwegen 2008). 

 

The strength of purifying selection on different classes of intergenic regulatory element 
Above we demonstrate that intergenic sites in the majority of bacterial species are likely to be                

under selective constraint. However, we have not yet considered to what extent the strength of               

purifying selection may vary within a given IGR according to the presence or absence of               

different regulatory elements. It would be expected that sites associated with known or predicted              

regulatory elements should be under stronger selective constraint than sites with no known             

function, and it may be the case that certain classes of regulatory element are under stronger                

selective constraint than others. To test this possibility, we identified all ribosome binding sites              

(RBSs), non-coding RNAs, predicted promoters, and rho-independent terminators for each          

species (see Methods). We then applied both methods (PSM and dI/dS) to compare the              

strength of selective constraint on these different elements, as well as on all the remaining               

intergenic sites that do not correspond to any of these elements ('unannotated sites'). 

 

With the exception of M. tuberculosis, we note that the PSM values for the RBSs tend to be                  

higher than for other regulatory elements and unannotated sites (Figure S2.7), suggesting that             

these elements are particularly strongly constrained. In E. coli, S. aureus, and K. pneumoniae,              

non-coding RNAs also appear to be strongly constrained. In contrast, promoters and            

terminators tend to exhibit similar PSM values to the unannotated sites. We next drew the same                

comparisons using dI/dS values (Figure 2.4). This confirmed the observation from the PSM             

analysis of particularly strong purifying selection on RBSs in all species except M. tuberculosis,              

and in non-coding RNAs of E. coli, S. aureus, and K. pneumoniae. Indeed, the dI/dS values for                 

RBSs and non-coding RNAs in these species are similar to the dN/dS values, suggesting that               

the strength of purifying selection on these elements is similar to that operating on              
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non-synonymous sites (Figure 2.4). This analysis also reveals that predicted promoters and            

terminators tend to be under more similar levels of selective constraint to unannotated sites.              

The two analyses (PSM and dI/dS) are highly concordant, with both showing a clear signal of                

strong purifying selection on RBSs and non-coding RNAs in the same species, and that              

promoters and terminators are under similar levels of purifying selection to unannotated sites.             

Importantly, however, it is clear that (with the exception of M. tuberculosis) dI/dS is < 1 in all                  

cases, including unannotated sites, which suggests a high level of constraint even when             

excluding major regulatory elements. 

 

 

Figure 2.4: dI/dS analysis of selection on different regulatory elements. dI/dS was calculated between isolates in                
a pairwise manner, and the results were binned by dS (bin width = 0.0001) to control for oversampling of very closely                     
related isolates (such as those belonging to the same CC). The genome-wide dN/dS values are included to enable                  
comparisons to be made between non-synonymous sites and the different regulatory intergenic sites. The dashed red                
line shows where dN/dS and dI/dS = 1, and therefore indicates neutrality. 
 

We then further examined the strength of selective constraint on transcriptional terminators            

which appear to be under only marginally stronger selective constraint than unannotated sites.             

55 



Transcriptional terminators consist of a stem-loop structure, and it seemed likely that the stem              

should be under stronger constraint than the loop, due to requirement of the stem sequence to                

maintain complementary base pairing. To test this, we calculated dI/dS for the terminator stems              

and loops separately (Figure S2.8). As expected, the stem dI/dS values are substantially lower              

than those for the loop, confirming that the stem is more constrained than the loop, and                

providing additional validation of our methodology. However, we also note that the dI/dS values              

for the loops are clearly < 1 in S. aureus, E. coli and S. pneumoniae, indicating they are not                   

completely free to change in these species. 

 

As discussed, our analysis points to considerable selective constraint (relative to synonymous            

sites) on intergenic sites even when the major regulatory elements are excluded. We noted              

earlier (Figure S2.6) that the strength of selective constraint appears to be particularly high              

within 30-bp of the gene borders. In order to examine to what extent this trend reflects the                 

presence of known regulatory elements, we first excluded these elements then investigated            

SNP density as a function of the distance from gene start codons in co-oriented IGRs (where                

the genes flanking these regions are in the same orientation). In each species (except M.               

tuberculosis), SNP densities increased with distance from the 5’ gene starts (p < 10-4,              

Spearman’s correlation) (Figure 2.5), demonstrating that the relatively high level of selective            

constraint on intergenic sites near gene borders (noted earlier) remains even when excluding             

promoters, terminators, RBSs and non-coding RNAs. 
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Figure 2.5: Analysis of SNP densities within co-oriented IGRs (those flanked by genes in the same                
orientation as each other). SNP densities were calculated in 10 bp windows moving away from the gene start                  
codon by dividing the number of SNPs by the number of IGRs of that length or greater (to normalise for the unequal                      
lengths of IGRs). Only unannotated intergenic sites were considered in the analysis. 
 
Evidence for positive selection within IGRs of M. tuberculosis 

Throughout this analysis, M. tuberculosis has repeatedly proved the exception as it exhibits very              

little evidence of purifying selection on protein-coding sequences, and even some evidence of             

positive selection on IGRs. Considering different intergenic regulatory elements separately          

reveals that positive selection is strongly associated with predicted promoter regions. The mean             

dI/dS for M. tuberculosis promoters was 2.8 (Figure 2.4), and the vast majority (97%) of               

comparisons exhibit a dI/dS of > 1 (Figure S2.9). This result is not solely a consequence of the                  

approach we have used to calculate dI/dS, which corrects for mutation biases and base              

composition, as even without this correction the mean dI/dS for promoters is 1.9. The evidence               

for positive selection is highly statistically significant. Of the 10513 promoter sites, 99 have              

experienced a SNP, compared with 6330 of the 954745 synonymous sites (p < 0.0001 by a                

Fisher’s exact test). We further confirmed significance by resampling the predicted promoter and             
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synonymous sites 1000 times and comparing the distributions with a z-test (p < 10-16). Figure               

2.3 shows that the within-CC values of dI/dS for S. enterica and S. aureus are > 1, thus are also                    

indicative of positive selection. We therefore also calculated dI/dS separately for the different             

intergenic elements for all the other 5 species, but restricting the analysis to within-CC              

comparisons. This did not reveal any evidence of positive selection on promoters or any other               

IGR elements (Figure S2.10). 

 

In order to further investigate the potential functional relevance of promoter SNPs in the M.               

tuberculosis dataset, we identified genes downstream of predicted promoters harbouring SNPs           

(Table S2.2). The 71 promoter SNPs identified corresponded to 58 genes; 11 genes were              

identified for which the corresponding promoter harboured 2 SNPs, and one gene where the              

promoter harboured 3 SNPs. Many of the downstream genes are known to play a key role in                 

virulence, resistance or global regulation. For example, 8 genes were transcriptional regulators,            

and promoters in four of these experienced two independent SNPs: MT0026 (a putative HTH              

type regulator); CmtR (a cadmium sensing repressor (Chauhan et al. 2009)), WhiB2 and WhiB4              

(transcription factors (Larsson et al. 2012; Ma et al. 2015; L. J. Smith et al. 2012)). Six genes                  

were members of the PE/PPE protein family that are recognised virulence factors (Fishbein et              

al. 2015). Genes known to play a role in resistance are also identified, including one mutation in                 

the ethA promoter; mutations in this promoter have previously been implicated in resistance to              

ethionamide (Casali et al. 2014). The promoter for the alanine dehydrogenase gene ald is the               

only example harbouring 3 independent SNPs, loss of function of this gene has recently been              

shown to confer resistance to D-cycloserine (Desjardins et al. 2016). Other notable genes             

include ctpJ, which encodes an ATPase that controls cytoplasmic metal levels (Raimunda et al.              

2014), and psk2 which plays a critical role in the synthesis of cell wall lipids (Sirakova et al.                  

2001). In addition, 15 hypothetical genes residing downstream of mutated promoters were            

identified, and in five of these cases the promoter experienced two independent SNPs. 

 

Discussion 

Here we demonstrate consistent evidence for purifying selection on intergenic sites in five             

diverse species (excluding M. tuberculosis), even when major regulatory elements are           

excluded. This further challenges the view that IGRs can be used as mostly neutral markers to                

estimate neutral mutation rates or profiles (Wang and Chen 2013). Rather, our results suggest              

these regions are rich with functional elements, many of which are yet to be characterised, and                
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are selectively conserved and maintained (Molina and Van Nimwegen 2008; Degnan, Ochman,            

and Moran 2011; Luo et al. 2011). Although consistent with previous work, this observation is               

pertinent with respect to the default exclusion of IGRs from bacterial databases based on the               

core genome (cg)MLST model (M. C. J. Maiden et al. 2013; Jolley and Maiden 2010; Sheppard,                

Jolley, and Maiden 2012; M. C. J. Maiden and Harrison 2016). Our analysis suggests the               

exclusion of IGRs from these databases is not warranted either for biological nor technical              

reasons. 

 

We have used two fast and efficient approaches to measuring selection on non-protein coding              

sequences based on established principles of population genetics and suited for large whole             

genome datasets. According to the nearly-neutral theory, slightly deleterious mutations are not            

eliminated immediately from a population, but can persist for a period of time determined by the                

selection coefficient (s) and the effective population size (Ne) (Ohta 1973; Kimura and Ohta              

1971). Highly deleterious mutations will be lost more quickly whilst they are still very rare. The                

rarest SNPs are those that are observed in only one genome (singletons), thus the proportion of                

singleton mutations (PSM) reflects the frequency of highly deleterious mutations (Hershberg et            

al. 2008). The weaker effect mutations will tend to be lost more gradually over time (Rocha et al.                  

2006). Whereas the PSM approach provides a measure of how many SNPs are purged very               

quickly due to highly deleterious effects, dI/dS provides a measure of how many deleterious              

mutations have been purged relative to the coalescence time of the genomes under             

consideration. Thus, these two methods are not only independent but also provide            

complimentary comparisons encompassing both strongly and more weakly deleterious         

mutations. 

 

We demonstrate for the first time that, like dN/dS (Rocha et al. 2006; Castillo-Ramírez et al.                

2011), dI/dS also decreases with divergence time, as the ratio is lower when considering              

between (rather than within) CC comparisons. This confirms that the lower prevalence of             

segregating sites in IGRs when compared to synonymous sites (i.e. dI/dS < 1) does not simply                

reflect differences in mutation rate, and moreover our analysis of IGR sequences near gene              

borders reveals that dS has not been significantly inflated by transcription-derived mutation. We             

also note that our analyses are likely to be conservative. The comparator (dS) is not a perfect                 

neutral benchmark; selection at synonymous sites operates on codon usage bias (Sharp et al.              

2005), secondary RNA structure (Molina and Van Nimwegen 2008), and possibly GC content             

59 

https://paperpile.com/c/BArwVu/RYvqX+VKjnA+CJmon
https://paperpile.com/c/BArwVu/RYvqX+VKjnA+CJmon
https://paperpile.com/c/BArwVu/9pBr+kf2cE+9ibOr+6SGn5
https://paperpile.com/c/BArwVu/9pBr+kf2cE+9ibOr+6SGn5
https://paperpile.com/c/BArwVu/jlv5w+yjauO
https://paperpile.com/c/BArwVu/jlv5w+yjauO
https://paperpile.com/c/BArwVu/gCSq8
https://paperpile.com/c/BArwVu/gCSq8
https://paperpile.com/c/BArwVu/es8Y
https://paperpile.com/c/BArwVu/es8Y
https://paperpile.com/c/BArwVu/es8Y+Kwhs0
https://paperpile.com/c/BArwVu/es8Y+Kwhs0
https://paperpile.com/c/BArwVu/BEJdE
https://paperpile.com/c/BArwVu/BEJdE
https://paperpile.com/c/BArwVu/RYvqX


(Hildebrand, Meyer, and Eyre-Walker 2010; Balbi, Rocha, and Feil 2009; Rocha and Feil 2010;              

Namouchi et al. 2012). Moreover, dI/dS and dN/dS will continue to decrease with divergence              

time until the synonymous sites are saturated, and there is no reason to suppose that the                

available data corresponds to the minima for a given species. 

 

Our analyses provides a novel comparison of the strength and direction of selection on different               

classes of regulatory element within IGRs. This reveals that RBSs and non-coding RNAs tend to               

be under relatively strong constraint, broadly comparable to non-synonymous sites. We have            

shown that the average selection operating on terminator regions reflects strong selection on             

the stem, combined with much weaker selective constraint on the loop. Our results also              

demonstrate that purifying selection is operating on IGRs (relative to synonymous sites) even             

when predicted promoters, terminators, RBSs and non-coding RNAs are excluded, and that this             

constraint is strongest close to gene starts. This suggests that many functional elements in IGRs               

remain uncharacterised, and unannotated intergenic sites close to gene borders may have            

particular functional significance. 

 

The power of our approach is underscored by novel evidence for positive selection in predicted               

promoter regions in M. tuberculosis. This result is highly statistically significant, meaning that the              

signal of positive selection must be strong enough not to be confounded by any background               

purifying selection in our global comparisons. In order to gauge the functional relevance of these               

promoter SNPs, we identified all downstream genes, and noted a number global regulators,             

transcription factors, and genes implicated in virulence or resistance. A large number of             

hypothetical proteins were also identified, which could form targets for future studies (Table             

S2.2). This observation thus points to a key role of subtle changes within promoters for               

short-term adaptation through regulatory rewiring in this species, which may also help to             

account for the paucity of variation within coding regions. A recent report by McNally et al. is                 

consistent with this view as it implicated a key role for changes in promoters within a single E.                  

coli clone (ST131) as an adaptive response coinciding with the gain and loss of accessory               

elements (McNally et al. 2016). 

 

Conclusion 

Here we have applied two tests to quantify the strength and direction of selection acting on                

IGRs in bacteria. We demonstrate consistent evidence of strong purifying selection on IGRs in 5               
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species, even when major regulatory elements are excluded. We also note the strength and              

direction of selection varies with the class of intergenic regulatory element, the species under              

consideration and distance from gene border. We show that the signal of purifying selection              

increases with divergence time for intergenic sites, just as it does for non-synonymous sites and               

consistent with expectations under the nearly-neutral model of evolution. Although our analysis            

is consistent with previous reports of very weak purifying selection in M. tuberculosis (Hershberg              

et al. 2008), we are cognisant that this evidence is equivocal and that our data may in fact                  

reflect a complex combination of purifying, positive and possibly diversifying selection operating            

over short coalescence times (Pepperell et al. 2013; Farhat et al. 2013; Casali et al. 2014;                

Osório et al. 2013). In support of this, we note strong evidence for positive selection within M.                 

tuberculosis promoters, and argue that regulatory rewiring represents a major adaptive           

mechanism in this species. 

 

We conclude that our current understanding of the functions encoded in IGRs is fragmented,              

and we would therefore urge utmost caution before excluding these regions from bacterial             

databases or 'core' genome analyses. Our results call for the routine analysis of the selection               

pressure operating on, and hence functional relevance of, IGRs similar to those carried out on               

protein-coding regions. To facilitate this, the code used in the analysis is available at              

https://github.com/harry-thorpe/Intergenic_selection_paper under the GPLv3 license. 
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Chapter 3 
 
 
 
 
Piggy: A Rapid, Large-Scale Pan-Genome Analysis Tool for Intergenic Regions in           
Bacteria 
 
 
The work presented in this chapter is available as a preprint at: 
 
Thorpe, Harry A., Sion C. Bayliss, Samuel K. Sheppard, and Edward J. Feil. 2017. “Piggy:               
A Rapid, Large-Scale Pan-Genome Analysis Tool for Intergenic Regions in Bacteria.”           
bioRxiv. doi:10.1101/179515. 
 
Commentary text 
The work in this chapter builds on the previous chapter by incorporating intergenic sites into               

pan-genome analyses. This is facilitated by the development of a tool, Piggy, which enables              

analyses of both gene and intergenic components of bacterial pan-genomes. E. coli and S.              

aureus are used as example datasets, and for S. aureus these are combined with RNA-seq               

data to show that changes in intergenic regions affect gene expression. The statement of              

authorship for this chapter can be found in the Appendix, supplementary form SF2. 
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Abstract 
Despite overwhelming evidence that variation in intergenic regions (IGRs) in bacteria impacts            

on phenotypes, most current approaches for analysing pan-genomes focus exclusively on           

protein-coding sequences. To address this we present Piggy, a novel pipeline that emulates             

Roary except that it is based only on IGRs. We demonstrate the use of Piggy for pan-genome                 

analyses of Staphylococcus aureus and Escherichia coli using large genome datasets. For S.             

aureus, we show that highly divergent ('switched') IGRs are associated with differences in gene              

expression, and we establish a multi-locus reference database of IGR alleles (igMLST;            

implemented in BIGSdb). Piggy is available at https://github.com/harry-thorpe/piggy. 

 
Introduction 
Whole-genome sequencing has revealed that, in many bacteria, individual strains frequently           

recruit new genes from a seemingly endless genetic reservoir. The total complement of genes              

observed across all strains, known as the pan-genome, often numbers tens of thousands, up to               

an order of magnitude more than the number of genes present in any single genome. In                

contrast, the 'core-genome', which refers to the complement of genes present in all (or the vast                

majority) of sampled isolates, can be significantly smaller than the total number of genes in any                

given genome (Medini et al. 2005; Page et al. 2015). For example, a study of 328 Klebsiella                 

pneumoniae isolates, each of which harbour 4-5,000 genes, revealed a pan-genome of 29,886             

genes; only 1,888 (6.8%) of which were universally present (core) (Holt et al. 2015). Similarly,               

genome data for 228 Escherichia coli ST131 isolates revealed a pan-genome of 11,401 genes,              

of which 2,722 (23.9%) were core (McNally et al. 2016). The degree of gene content variation in                 

the latter study is particularly striking as these isolates were all from the same sequence type                

(ST), thus show limited nucleotide divergence in core genes, and are descended from a recent               

common ancestor. 

 

There is growing recognition that the acquisition of new genes through horizontal gene transfer              

(HGT) has a central role in ecological adaptation (Vos et al. 2015). The emergence and spread                

of antibiotic resistance, underpinned by the transfer of plasmids and other MGEs, is a pertinent               

example. The increasing availability of datasets containing thousands of isolates thus offers an             

unprecedented opportunity for describing the genetic basis of bacterial adaptation. However, the            

scale of these data presents serious logistic and conceptual challenges in terms of data              

management and analysis. 
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Pioneering pan-genome analysis tools, such as PanOCT and PGAP relied on all-vs-all BLAST             

comparisons between protein sequences, and scaled approximately quadratically with the          

number of isolates (Fouts et al. 2012; Zhao et al. 2012). LS-BSR introduced a pre-clustering               

step which substantially reduced the number of BLAST comparisons, but sacrificed specificity            

(Sahl et al. 2014). More recently, the Roary pipeline has rapidly gained in popularity for               

scalable, user-friendly, pan-genome characterisation (Page et al. 2015). Roary uses a           

pre-clustering step based on CD-HIT (L. Fu et al. 2012), and is more accurate and faster than                 

LS-BSR, meaning that it can analyse 1000s of isolates quickly using modest computing             

resources. 

 

The concept of the pan-genome, as described above, places an exclusive emphasis on genes;              

or, more specifically, open reading frames with the potential to encode proteins. This             

gene-centric perspective has both shaped, and been shaped by, the bioinformatics tools            

developed to interrogate the pan-genome. For example, Roary works by taking individual            

protein-coding sequences, pre-defined using Prokka annotation (Seemann 2014), and assigning          

each to a single cluster of homologous sequences. This approach thus excludes non             

protein-coding intergenic regions (IGRs) which typically account for approximately 15% of the            

genome. This is clearly problematic for downstream attempts to identify genotype-phenotype           

links, as IGRs contain many important regulatory elements including, but not limited to,             

promoters, terminators, non-coding RNAs, and regulatory binding sites. Moreover, we have           

recently shown that IGRs are subject to purifying selection in the core-genomes of diverse              

bacterial species, even when known major regulatory elements are excluded (Thorpe et al.             

2017; Molina and Van Nimwegen 2008). 

 

Given that variation in IGRs can have profound phenotypic consequences, it is timely to              

consider how best to incorporate these sequences into pan-genome analyses. A key question is              

the degree to which protein-coding genes, and their cognate regulatory elements, should be             

considered a single 'unit', both selectively (in terms of co-adaptation) and in terms of physical               

linkage on the chromosome. If physical linkage is assumed to be highly robust, such that genes                

are mostly transferred along with their cognate IGRs, then in principle the definition of a 'gene'                

could be expanded to include the upstream regulatory regions. On the other hand, if there is                

moderate or weak linkage between genes and IGRs, such that IGRs can occasionally transfer              
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independently, then the purview of the pan-genome could be expanded to include the full              

complement of IGR alleles in addition protein-coding sequences. 

 

Consistent with the second model, which allows for independent transfer of IGRs, a landmark              

study demonstrated that E. coli genes can apparently be regulated by alternative IGRs that              

frequently share no sequence similarity to each other (Oren et al. 2014). Moreover, the              

distribution of these IGRs was incongruent with gene trees, suggesting that recombination can             

act to replace one IGR with another resulting in regulatory 'switches'; a process they call               

horizontal regulatory transfer (HRT) (Oren et al. 2014). It is important to note here that the term                 

‘switching’ refers only to the replacement of an IGR by a non-homologous or highly divergent               

variant sequence. It does not specify that the replacement IGR has a particular origin, and could                

therefore correspond to a transfer from elsewhere in the same genome, or from another isolate.               

It was also noted that conserved flanking genes may facilitate this process by providing              

localised regions of homology. IGR switches can be accompanied by differential gene            

expression (Oren et al. 2014), and may provide a mechanism to offset the fitness costs of                

harbouring plasmids and other MGEs (McNally et al. 2016), pointing to a central role for this                

process in adaptation. 

 

Our current understanding of the evolutionary dynamics of IGRs in the context of bacterial              

pan-genome leave many open questions. Specifically, it is unclear how IGRs are distributed             

among isolates within bacterial populations, how commonly IGRs and their cognate genes are             

co-transferred, or how the frequency of HRT relates to different functional gene categories. A              

more complete understanding of bacterial adaptation clearly requires a careful consideration of            

gene presence/absence alongside gene regulation. Here we address this by introducing a new             

pipeline called Piggy which closely emulates and complements the established pan-genome           

analysis pipeline Roary (Page et al. 2015). Input and output files for Piggy and Roary use the                 

same format, and run in a similar time on modest computing resources. Piggy provides a means                

to rapidly identify IGR switches, and more broadly the means to examine the role of horizontal                

transfer in shaping the bacterial regulome. We demonstrate the utility of Piggy using large              

genome datasets for single lineages within two bacterial species, both of which are of high               

public health importance; Staphylococcus aureus ST22 (EMRSA-15) and Escherichia coli          

ST131. Conventional pan-genome analyses are applied to analyse and compare core and            

accessory IGRs/genes in these lineages. In S. aureus we show a link between IGR switching               
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and changes in gene expression, and demonstrate proof-of-principle by establishing a           

multilocus IGR scheme, (igMLST) in BIGSdb (Jolley and Maiden 2010). Piggy is available at              

(https://github.com/harry-thorpe/piggy) under the GPLv3 licence. 

 
Methods 
Datasets 

The S. aureus ST22 dataset was assembled from published genome sequences of the clinically              

important lineage ST22 (EMRSA-15) (Reuter et al. 2015) available at http://www.ebi.ac.uk/ena           

(study number ERP001012). The original genome assemblies were used, and 500 isolates            

belonging to ST22 were randomly selected for analysis. The S. aureus RNA-seq data was              

previously published (Warne et al. 2016), and is available at (http://www.ebi.ac.uk/ena, study            

number ERP009279). This was supplemented with the corresponding reference genomes,          

HO_5096_0412: HE681097, MRSA252: BX571856, Newman: AP009351, S0385: AM990992,        

available at (www.ncbi.nlm.nih.gov). The E. coli ST131 dataset was also from a previously             

published study (McNally et al. 2016), and is available at          

(http://datadryad.org/resource/doi:10.5061/dryad.d7d71). All complete genomes and assemblies      

were annotated with Prokka (Seemann 2014). 

 

Roary and Piggy parameter settings 
Roary (Page et al. 2015) was run using default parameters except for the following: -e -n (to                 

produce alignments with MAFFT (Katoh and Standley 2013)); -i 90 (lower amino acid identity              

than the default); -s (to keep paralogs together); -z (to keep intermediate files). Piggy was run                

using default parameters except for --len_id, which controls the percentage of IGR sequences             

which must share similarity in order to be clustered together. For the S. aureus ST22 and E. coli                  

ST131 datasets, Piggy was run twice, once with --len_id 10 and once with --len_id 90. The                

former was used for the pan-genome comparisons between genes and IGRs (Figs 2 and 3) in                

order to be comparable with Roary. Using a low length identity (--len_id 10) enabled              

homologous sequences of varying lengths (for example a truncated sequence) to cluster            

together. Roary does not provide a similar setting, and only requires that sequences have a               

minimum length of 120 bp. It is common that genes in Roary clusters frequently vary               

considerably in length (likely due to both genuine differences and assembly artefacts), and are              

clustered together despite this. Thus, in order to provide a fair comparison between Roary and               

Piggy (and not increase the number of IGR clusters due to strict clustering), a relaxed --len_id                
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setting of 10 was used. The latter (--len_id 90) was used whenever 'switched' IGRs were               

detected, as this enabled more control over downstream filtering of these sequences. 

 

RNA-seq analysis 

Two biological replicates for each isolate were analysed. Kallisto (Bray et al. 2016) was used to                

quantify transcripts (--kmer-size 31 and --bootstrap-samples 100), and Sleuth (Pimentel et al.            

2017) was used to normalise and filter the counts produced by Kallisto. These counts were then                

log10 transformed, and major axis (MA) regression was performed. Rockhopper2 (Tjaden 2015)            

was used to produce an operon map for each strain by grouping adjacent genes with similar                

expression profiles together into operons. 

 

Statistical analysis 

All statistical analysis was performed within R version 3.3.2 (https://www.r-project.org). All           

plotting was performed with ggplot2 (Wickham 2009). 

 

Results 
Overview of the Piggy pipeline 
Figure 3.1a shows an overview of the Piggy pipeline. The first step is to run Roary, as the gene                   

presence absence output file from Roary is used as an input for Piggy. Piggy is then run using                  

the same annotated assemblies as Roary, specifically GFF3 format files such as those             

produced by Prokka (Seemann 2014). Piggy extracts intergenic sequences (IGRs) from these            

files, and uses the flanking gene names and their orientations to name the IGRs (Figure 3.1b).                

Each IGR name contains three pieces of information: the upstream gene, the downstream gene,              

and their relative orientations (CO - co-oriented, DP - double promoter, DT - double terminator).               

For example, the IGR ‘Gene_1 Gene_2 DP’ is flanked by Gene_1 and Gene_2, which are               

divergently transcribed away from each other. For IGRs at the edge of contigs the missing               

information is denoted by NA, for example ‘Gene_1 NA NA’. Including the gene neighbourhood              

information gives context to the IGR and enables identification of 'switched' IGRs. The IGRs are               

then clustered with CD-HIT (L. Fu et al. 2012) at user defined identity thresholds (--nuc_id -                

nucleotide identity, --len_id - length identity). The nucleotide identity is defined as SNPs/aligned             

sites, and the length identity is defined as shared sites/alignment length. These two flags allow               

the user to set the level of stringency for clustering. For example, a conservative approach is to                 

set high values for both nucleotide and length identity such that IGRs must be similar in both                 
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nucleotide and length identity to cluster together. By relaxing the length identity whilst             

maintaining a high nucleotide identity threshold, highly related sequences still cluster even if one              

is truncated. A representative sequence from each cluster is then used to perform an all-vs-all               

BLASTN search (Camacho et al. 2009). This is used to merge similar clusters, which did not                

cluster with CD-HIT. These clusters are then used to produce an IGR presence absence matrix               

('IGR_presence_absence.csv'), in the same format as the gene presence absence matrix           

('gene_presence_absence.csv') produced by Roary. Up until this point, the pipeline is very            

similar to Roary (Page et al. 2015). 

 
Figure 3.1: An overview of the Piggy pipeline. a. A schematic to illustrate the Piggy pipeline and how it works                    
alongside Roary. b. IGRs are named according to their flanking genes and their orientations. This naming scheme                 
enables Piggy to link genes with their associated IGRs, and provides information on their orientations. c. A schematic                  
to illustrate the difference between the 'gene-pair' and 'upstream' methods used to identify candidate switched IGRs. 
 
Switched IGR detection 

Piggy identifies 'switched' IGRs using two methods. For both methods, the term ‘switch’ refers to               

divergent IGR sequences adjacent to genes. This definition does not specify a particular origin              

for the divergent IGR sequences, in keeping with (Oren et al. 2014). The first method identifies                

adjacent genes on the same contig (gene-pairs), and searches for IGR clusters which lie              

between these gene-pairs (Figure 3.1c). Instances where multiple IGR clusters correspond to            
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the same gene-pair are identified as candidate switched IGRs. The second method identifies             

instances where multiple IGR clusters are upstream of the same gene, which are also putatively               

switched IGRs. This is a less conservative approach as the downstream gene is not considered               

in this case, (Figure 3.1c). The gene-pair method is used by default as it controls against                

detecting 'switching' (recombination) events that encompass more than a single IGR, for            

example, cases where a mobile element has inserted between two genes. However such cases              

remain relevant as the regulation of the downstream gene will still be affected. 

 

To ensure that differences in gene annotation between isolates are not erroneously identified as              

'switching' events, the first and last 30 bp of each flanking gene are searched against the IGRs                 

with BLASTN. Any matches from these searches indicate differences in annotation of gene             

borders (rather than genuine differences between the IGRs), and these sequences are            

disregarded. In order to confirm that they represent genuine switching events, candidate            

switched IGRs are searched against each other with BLASTN with low complexity filtering             

turned off (-dust no). If there is no significant match they are classed as 'switched', and if there is                   

a significant match they are aligned using MAFFT (Katoh and Standley 2013). The resulting              

alignment is then used to calculate nucleotide identity (SNPs / aligned sites), and length identity               

(number of shared sites / alignment length). These values can then be used to define an                

appropriate threshold to identify 'switched' IGRs. To aid this, Piggy calculates within-cluster            

divergences for both genes and IGRs, and these divergences can be used to calibrate Piggy               

with Roary. 

 

Staphylococcus aureus ST22  
In order to validate Piggy, we ran it on a dataset of 500 S. aureus ST22 isolates. S. aureus                   

ST22 (EMRSA-15) is a clinically important hospital-acquired methicillin resistant strain which is            

common in the UK and is rapidly expanding elsewhere in Europe and globally. Previous work               

has shown that S. aureus ST22 is clonal and has a relatively small set of accessory genes                 

(Holden et al. 2013; Reuter et al. 2015). The size of the gene and IGR pan and core-genomes                  

were compared by running 500 ST22 (Reuter et al. 2015) isolate genomes through Roary and               

Piggy. Frequency histograms and accumulation curves were plotted for both genes and IGRs             

(Figure 3.2). 
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Figure 3.2: Properties of the S. aureus ST22 pan-genome. Genes (red) and IGRs (blue) were analysed. a. Gene                  
and IGR frequency histogram – that is, the number of genes / IGRs present in any given number of isolates. The vast                      
majority of genes / IGRs are either very rare or very common. b. Gene and IGR accumulation curves – that is, the                      
cumulative number of genes / IGRs detected in a given number of isolates. 
 

The gene-IGR frequency histogram (Figure 3.2a) shows that there are 2,312 core genes and              

1,486 core IGRs, where core is defined as gene presence in > 99% of isolates. The fact that                  

there are fewer core IGRs than core genes is in part due to the exclusion of intra-operonic IGRs                  

< 30 bp. Both distributions conform to the U-shape typically found in such analyses, where the                

majority of genes/IGRs are either very common or very rare. The gene accumulation curve              
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(Figure 3.2b) shows a total of 3,225 genes, with a mean of 2,524 genes per isolate. The                 

gradient of the curve is shallow, consistent with the small, closed, pan-genome of clonal ST22               

isolates. The IGR curve shows that each isolate has fewer IGRs than genes (1,696 on average                

per isolate) due to the exclusion of IGRs < 30 bp, but that the total number of IGRs (3,593) is                    

higher than the total number of genes reflecting greater diversity in IGRs than genes. The IGR                

curve increases more steeply than the gene curve, and does not appear to plateau. Despite               

these differences, within any given isolate on average 92% of genes and 88% of IGRs were                

core. 

 

Escherichia coli ST131 

The utility of Piggy was further validated by re-analysing data from a recent study on the                

widespread and clinically important E. coli lineage ST131 (McNally et al. 2016). This dataset              

contains 236 clinical E. coli ST131 isolates from human, domesticated animal, and avian hosts.              

E. coli is a more genetically diverse species than S. aureus, and unsurprisingly E. coli ST131                

has a larger pan-genome than S. aureus ST22, with 12,806 genes and 16,429 IGRs (Figure               

3.3a). Of these, 3,285 genes and 1,403 IGRs were core (Figure 3.3b), out of an average of                 

4,678 genes and 2,999 IGRs per isolate. 
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Figure 3.3: Properties of the E. coli ST131 pan-genome. Genes (red) and IGRs (blue) were analysed. a. Gene and                   
IGR frequency histogram – that is, the number of genes / IGRs present in any given number of isolates. The vast                     
majority of genes / IGRs are either very rare or very common. b. Gene and IGR accumulation curves – that is, the                      
cumulative number of genes / IGRs detected in a given number of isolates. 
 

Thus despite the differences in diversity, for both S. aureus and E. coli datasets we found a                 

lower number of core IGRs than core genes, but a high number of accessory IGRs compared to                 

accessory genes. This is illustrated by the fact that the IGR and gene accumulation curves               

intersect in both species. A lower proportion of both genes (70%) and IGRs (47%) are core                

within each E. coli ST131 isolate, compared to S. aureus ST22. Similarly, rare accessory genes               
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and IGRs are much more prevalent in E. coli ST131 than in S. aureus ST22 with 34% of genes                   

and 55% of IGRs found in < 1% of isolates in E. coli ST131, compared with 11% of genes and                    

40% of IGRs in S. aureus ST22. 

 

Previous work has found evidence of extensive IGR switching, where the linkage between an              

IGR and the cognate downstream gene breaks down, resulting in alternative gene / IGR pairs               

(Oren et al. 2014). Piggy provides a list of candidate switching events together for both               

'gene-pair' and 'upstream' approaches (see Methods) at different thresholds of nucleotide           

identity. For the E. coli ST131 data, the pipeline detected 61 cases of putative IGR switching                

using the most conservative settings (i.e. the conservative gene-pair method, and the alternative             

IGRs showing no sequence similarity by BLASTN). Relaxing the threshold of sequence identity             

to < 90% resulted in the identification of an additional 317 candidate switching events, though               

these possibly reflect either relaxed or positive selection. 

 

Switched IGRs influence gene expression in S. aureus 

To examine whether switches in IGRs affect the expression of cognate (downstream) genes, we              

used a previously published RNA-seq dataset based on four reference S. aureus isolates             

HO_5096_0412 (ST22), Newman (CC8), MRSA252 (CC36), and S0385 (CC398) (Warne et al.            

2016). Each of these S. aureus references isolate represents a distinct major clonal complex,              

and all were grown under identical conditions with each experiment being replicated. Thus these              

data provide evidence of the natural variation in gene expression within the S. aureus              

population. By analysing these data alongside the output from Piggy, it is possible to test the                

extent to which IGR switches between these four genomes can account for the observed              

variation in gene expression between clonal complexes. First Roary was used to identify a set of                

2094 single copy core genes present in all four isolates, and then expression of these core                

genes was quantified using Kallisto (Bray et al. 2016). To do this we used RNA-seq data for two                  

replicates for each of the four reference genomes. We then used Sleuth (Pimentel et al. 2017)                

to normalise and filter these counts. 

 

To check the consistency of the data between biological replicates, we first plotted two              

replicates for each isolate against each other (e.g. Newman replicate 1 vs Newman replicate 2)               

(Figure 3.4). These plots were tightly correlated (mean R2 = 0.98), confirming that the              

expression values for individual genes were consistent between replicates. We then plotted            
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between-isolate comparisons, again using both replicates for each genome (e.g. Newman           

replicate 1 vs MRSA252 replicate 1, and Newman replicate 2 vs MRSA252 replicate 2) (Figure               

3.4). These comparisons revealed considerably more scatter, with R2 values ranging from 0.76             

to 0.9. Given the extremely high R2 values for within-isolate comparisons, the decrease in R2 for                

between-isolate comparisons reflects genuine differences in expression between the isolates.          

We note that a small number of genes show very striking differences in expression between the                

clonal complexes. For example, the expression of mepA, which encodes a multidrug efflux             

pump, was ~250 fold higher in Newman compared with the other isolates. 
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Figure 3.4: S. aureus gene expression data. Pairwise RNA-seq comparisons between four S. aureus isolates,               
where two biological replicates were used for each isolate. The top-left of the diagonal corresponds to comparisons                 
between replicate 1 from different isolates (e.g. SO385 replicate 1 vs HO_5096_0412 replicate 1). The bottom-right of                 
the diagonal corresponds to comparisons between replicate 2 from different isolates (e.g. SO385 replicate 2 vs                
HO_5096_0412 replicate 2). The diagonal corresponds to comparisons between the two biological replicates from the               
same isolate. 2094 core genes were analysed in each comparison, and tpm (Transcripts per Kilobase Million) was                 
used to quantify expression. The genes were separated into two categories: Switched (red), and Not-switched (grey),                
based on their upstream IGRs. The R2 value corresponds to all the genes. The P-value corresponds to a Monte Carlo                    
permutation test comparing the residuals of the two groups of genes, where a significant score indicates that the                  
genes downstream of switch IGRs are associated with a greater degree of differential expression (i.e. greater                
residuals). 
 

The genomes of each pair of isolates were analysed using Roary and Piggy to identify switched                

IGRs with a nucleotide identity threshold of < 90% for IGR clusters. For each pair of isolates, we                  
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then identified all genes immediately downstream of a switched IGR. As a single switched IGR               

might impact on the expression of more than one co-transcribed downstream genes we also              

considered all genes linked in a single operon that could be impacted by a single switching                

event upstream affecting a shared promoter. Thus, for each pair of isolates we identified all core                

genes putatively affected by upstream IGR switches. We then tested whether these genes             

showed a higher degree of differential expression by conducting Monte Carlo permutation tests             

on the residuals from the regressions (Figure 3.4). For each pairwise comparison of isolates, we               

summed the residuals of the genes with switched IGRs (shown as red points in Figure 3.4), and                 

compared this to a distribution obtained by resampling (without replacement) 100,000 random            

sets of the same number of genes and summing their residuals. We computed a one-tailed               

p-value by dividing the number of permutations with summed residuals greater than the             

observed value by 100,000. We then adjusted the p-values using the Benjamini-Hochberg            

method (Figure 3.4). Because we used both replicates separately (e.g. Newman replicate 1 vs              

S0385 replicate 1, and Newman replicate 2 vs S0385 replicate 2), each comparison between              

pairs of isolates was tested twice independently. In 9/12 pairwise comparisons, the observed             

residuals of the genes downstream of switched IGRs were significantly greater than expected             

from the resampled data, indicating that genes with switched IGRs were more differentially             

expressed than those without. Of the three remaining comparisons, two corresponded to            

comparisons between HO_5096_0412 and S0385 (P = 0.17, and P = 0.062), and one between               

HO_5096_0412 and Newman (p = 0.062). The second comparison between HO_5096_0412           

and Newman was the most weakly significant result (p = 0.032). Thus, the two replicates for                

each individual pairwise comparison were largely concordant with each other. 

 

Our analysis confirms that genes downstream of switched IGRs are on average more likely to               

be differentially expressed than genes not associated with IGR switches as identified using             

Piggy. To illustrate the genomic context and expression differences of genes with switched             

IGRs, we selected three of the most differentially expressed genes with IGR switches for the               

Newman vs MRSA252 comparison, and plotted nucleotide identity across the IGR (calculated            

as a 20-bp sliding window) alongside gene expression (Figure 3.5). 
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Figure 3.5: A detailed view of the genomic neighbourhood and expression data for selected genes in                
Newman vs MRSA252. Nucleotide identity was calculated using a 20 bp sliding window across the IGR, and this is                   
shown alongside the flanking genes in their correct orientation (left). The corresponding expression data for the gene                 
of interest was also shown (right), with the two boxplots per isolate corresponding to the two biological replicates. a.                   
dapE b. ssaA_1 c. ytrA. 
 
Compatibility and scalability 

We have so far demonstrated that Piggy can be used to analyse the intergenic component of                

the pan-genome and identify IGR switches, and shown that these switches have biological             

relevance with respect to gene expression. Importantly, Piggy is designed such that the output              
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files are compatible with existing software and databases. The 'IGR_presence_absence.csv' file           

has an identical format to the 'gene_presence_absence.csv' file produced by Roary, and can be              

loaded directly into the interactive browser-based viewer Phandango (Hadfield et al. 2017)            

(Figure S3.1). It can also be used as input, along with a traits file, to Scoary (Brynildsrud et al.                   

2016) to test for associations between IGRs and phenotypic traits. Moreover, the            

'representative_clusters_merged.fasta' file can be loaded directly into BIGSdb (Jolley and          

Maiden 2010) to create an allele scheme for IGRs. In order to provide proof-of-principle, we               

created a multilocus IGR (igMLST) scheme in BIGSdb. Briefly, 2631 unique IGR sequences with              

length ≥ 30bp, from 7 S. aureus reference genomes, were entered into the database locus list.                

Using functionality within the database, these sequences were grouped as a searchable            

scheme (S_aureus_Intergenic_PIGGY), comparable to MLST, rMLST and wgMLST schemes         

(M. C. J. Maiden et al. 2013; Jolley et al. 2012; Sheppard, Jolley, and Maiden 2012). The                 

distribution of IGRs was analysed for all isolates in the database, identifying IGRs as present in                

the respective genome if a hit was recorded with nucleotide identity ≥ 70% over ≥ 50% of the                  

sequence using a BLAST word size of 7 bp. The scheme can be found at               

https://sheppardlab.com/resources. [N.B. The BIGSdb IGR scheme was generated by Sion          

Bayliss, University of Bath, Bath, UK.] Finally, Piggy runs in a comparable time to Roary and                

scales approximately linearly with increasing numbers of isolates, as tested on a MRC-CLIMB             

(Connor et al. 2016) virtual machine with 10 vcpus and increasing numbers of S. aureus ST22                

isolates (Figure S3.2). 

 

Discussion 

Whole-genome sequence datasets consisting of hundreds or even thousands of bacterial           

isolates have revealed pan-genomes of many thousands of genes and large differences in gene              

content between isolates of the same species. Currently, pan-genome diversity is considered            

almost exclusively in terms of protein-coding genes, despite overwhelming evidence that           

variation within IGRs impacts on phenotypes. Here we address this by introducing Piggy, a              

pipeline specifically designed to incorporate IGRs into routine pan-genome analyses by working            

in close conjunction with Roary (Page et al. 2015). 

 

The utility of this approach is demonstrated using large datasets of S. aureus ST22 and E. coli                 

ST131. Consistent with previous analyses of protein-coding regions (Holden et al. 2013;            

McNally et al. 2016), the IGR component of the ST131 pan-genome (the 'panIGRome') is              
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considerably larger than that for ST22. There was more diversity within IGRs than genes in both                

species. While some IGRs may be essential for expression of multiple genes, it is expected that                

IGRs will be subject to less stabilizing selection than protein coding genes (Thorpe et al. 2017).                

The maintenance of core IGRs in both bacterial genome datasets is consistent with selection              

acting to conserve them and allows alignment and analysis in much the same way as               

protein-coding regions. 

 

Variation within regulatory elements located within IGRs can impact on the expression of the              

downstream gene (Oren et al. 2014). Piggy (alongside Roary) provides the means to combine              

information on genes and their cognate IGRs thus facilitating the detection of 'switched' IGRs              

and downstream genes that are potentially affected. We have shown that in S. aureus, genes               

with switched upstream IGRs show a higher degree of differential expression than those             

without. This is consistent with previous work on E. coli (Oren et al. 2014), and suggests that the                  

identification of IGR switches using Piggy can provide a useful indication of differential gene              

expression, even in the absence of RNA-seq data. However, we note that high divergence              

within IGRs does not necessarily imply selection for differential gene expression, and may             

instead simply reflect weaker selective constraints. A clear direction for future work is to make               

constructs consisting of genes with alternative IGRs, in order to directly measure the effect of               

natural IGR variants on gene expression. Similar experiments have previously been performed            

in E. coli based on variation within promoters (Shimada et al. 2014), and IGRs more broadly                

(Oren et al. 2014). 

 

Excluding IGRs from bacterial comparative genomics severely limits our ability to draw            

inferences on the regulation of gene expression and associated phenotypic consequences. By            

developing Piggy as an easy-to-use bioinformatics tool with output files that are compatible with              

existing software and databases (eg Roary, Phandango; Figure S3.1, Scoary, BIGSdb) we            

envisage that combined information from genes and their cognate IGRs will vastly improve our              

understanding of genome evolution in bacteria. 
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Chapter 4 
 
 
 
 
Variation in deleterious mutation load in H. pylori populations, and effect of selection on              
introgressed DNA in hpEurope 
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Introduction 

Helicobacter pylori is a gram-negative Proteobacterium which lives in the human stomach. It is              

thought to be carried by half of humans worldwide, and it causes gastric inflammation in all                

carriers, gastric ulcers in 10-15% of carriers, and gastric carcinoma in ~1% of carriers              

(Kodaman et al. 2014; Maixner et al. 2016). Transmission of H. pylori mostly occurs between               

family members, and because carriage is often long-term, this results in strong phylogeographic             

structure within the population (Moodley et al. 2012). H. pylori has been associated with humans               

for approximately 100,000 years, and phylogeographic patterns of H. pylori resemble major            

migration events in human history (Moodley et al. 2012; Falush et al. 2003). This continual               

association has resulted in human and H. pylori genetic histories which broadly mirror each              

other, for example genetic distance increases and diversity decreases with increasing distance            

from Africa in both humans and H. pylori (Linz et al. 2007). H. pylori consists of several major                  

genetic populations which correspond to large geographical areas: hpEurope, hpEastAsia,          

hpAsia2, hpNEAfrica, hpAfrica1 and hpAfrica2 (Falush et al. 2003; Moodley et al. 2012). Figure              

4.1a shows the relationships between the major ancestral populations, and their extant            

counterparts are shown in Figure 4.1b. 
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Figure 4.1: An overview of the major H. pylori populations and their origins. a. The five major ancestral H.pylori                   
populations, and b., their extant counterparts, with hpEurope shown as a hybrid between AE1 and AE2. The size of                   
the circles corresponds to the within-population genetic diversity. The filled portions of the circles correspond to the                 
numbers of isolates in the original datasets, and are irrelevant in this context. c. The current model for the                   
evolutionary origins of the major H. pylori populations. The colours of both ancestral and extant hpAfrica2, hpAfrica1,                 
hpEastAsia, and hpEurope are the same in all parts of the figure. Figure adapted from (Falush et al. 2003; Moodley et                     
al. 2012). 
 

The current model for how these populations emerged is shown in Figure 4.1c. H. pylori was                

acquired by humans at least 100,000 years ago (Figure 4.1c, 1) and differentiated into two               

major lineages (Figure 4.1c, 2), with one lineage evolving with the San people in South Africa,                

ultimately becoming hpAfrica2 (Figure 4.1c, 8). The other major lineage was carried out of Africa               

during the first successful out of Africa migration (Figure 4.1c, 3), and differentiated into              

hpAfrica1 and hpNEAfrica within Africa (Figure 4.1c, 4), and hpAsia2 and hpEastAsia in Asia              

(Figure 4.1c, 6) (Moodley et al. 2012). hpEurope was formed by introgression between two              

lineages: AE1 (ancestral Europe 1) from central and South-West Asia and AE2 (ancestral             

Europe 2) from North-East Africa, and is therefore a hybrid (Figure 4.1b, Figure 4.1c, 10). This                

introgression is thought to have started in the Middle East or Western Asia, and continued               

gradually North-West across Europe, where the hybrid strains replaced the ancestral European            

population (Moodley et al. 2012; Falush et al. 2003). This resulted in a cline, and the proportion                 

of African ancestry decreases from the Southern hpEurope strains to their Northern            

counterparts. 
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This introgression was likely very disruptive, with extensive rearrangement of loci leading to             

many novel interactions throughout the genome. The recent advances in whole-genome           

sequencing mean there are now thousands of genome sequences for H. pylori, offering an              

opportunity to study evolutionary events in great detail. Here I present a study of the long-term                

consequences of the introgression in hpEurope, and show that selection has likely moderated             

the uptake of DNA from different ancestral sources. 

 

Methods 

Sequencing, mapping, and core genome definition 

Genome assemblies were downloaded from BIGSdb, and synthetic sequencing reads were           

created from these assemblies using ArtificialFastqGenerator (Frampton and Houlston 2012).          

These synthetic reads were mapped to the 26695 H. pylori reference genome using Snippy              

(--mincov 10 --minfrac 0.9) (https://github.com/tseemann/snippy). [N.B. The synthetic read         

generation and mapping were performed by Kaisa Thorell, Karolinska Institutet, Stockholm,           

Sweden.] For each isolate, the ‘.consensus.subs.fa’ file (containing the SNPs), and the            

‘.aligned.fa’ file (containing information on unmapped sites) were merged to create a consensus             

sequence containing both SNPs and information on unmapped sites. This step is important for              

creating a core genome, as when only the ‘.consensus.subs.fa’ file is used the absence of SNPs                

within a genomic region can either mean that this region is identical to the reference, or that                 

these sites are not present in the isolate. Distinguishing between these possibilities is important              

for estimating mutation rates. Genes and IGRs with > 90% sequence present in > 95% of                

isolates were used to create a core genome. 

 

Calculation of dN/dS, dI/dS, and PSM 

The pipeline used in chapter 1 was used to calculate these quantities. 

 

Population structure analysis 

Chromopainter and fineSTRUCTURE were used to assign individual isolates to populations           

(Lawson et al. 2012; Yahara et al. 2013). Chromopainter was first used, and for each region of                 

DNA in each isolate, a likely donor was assigned from the other isolates in the dataset. This                 

information was then used to produce a co-ancestry matrix showing the proportion of ancestry              

each isolate shares with every other isolate. This was then used as input to fineSTRUCTURE,               
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which classified the isolates into populations with distinct ancestry profiles. [N.B. The            

Chromopainter and fineSTRUCTURE analyses were performed by Koji Yahara, National          

Institute of Infectious Diseases, Tokyo, Japan, Kaisa Thorell, Karolinska Institutet, Stockholm,           

Sweden, and Daniel Falush, University of Bath, Bath, UK.] 

 

Results 

Selection on core genes and IGRs in H. pylori is comparable to other species 

I first repeated the PSM and dN/dI/dS analyses from chapter 1 on 476 H. pylori isolates (Figure                 

4.2). In the PSM analysis, synonymous sites had the lowest PSM values (19%), followed by               

intergenic sites (36%), followed by non-synonymous sites (52%), and nonsense sites had the             

highest PSM values (75%) (Figure 4.2a). This pattern was the same when PDM values were               

calculated from doubleton mutations. These results are consistent with the results from other             

species, and suggest that selection on intergenic sites is intermediate between that acting on              

synonymous and non-synonymous sites. The dN/dS values range from 0.1-0.2, and the dI/dS             

values are significantly higher, ranging from 0.3-0.5 (P < 10-15, Mann-Whitney U test) (Figure              

4.2b). These results are consistent with those from other species, suggesting that selection is              

weaker on intergenic sites than on non-synonymous sites. 
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Figure 4.2: Purifying selection on H. pylori genomes. a. Pairwise dN/dS and dI/dS comparisons between 476 H.                 
pylori isolates. dN/dS (and dI/dS) were plotted against dS as a measure of divergence time. b. Proportions of both                   
singleton and doubleton mutations (those present in one or two isolates, respectively), in four different mutation                
categories. 
 

Populations of H. pylori vary in their deleterious mutation load 

H. pylori consists of several distinct genetic populations with different evolutionary histories. The             

African and Asian populations are ancient, distinct populations, and the European populations            

are hybrids of African and Asian ancestors (Falush et al. 2003; Moodley et al. 2012). To                

investigate the effect of these different evolutionary histories on the mutational load within             

contemporary populations, I calculated dN/dS values for each pairwise comparison between           

isolates, and separated the comparisons into within and between-population comparisons          

(Figure 4.3). For each comparison, I plotted dN/dS against dS to separate the populations from               

each other and to control for the decrease in dN/dS which has previously been reported (Rocha                

et al. 2006). 
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Figure 4.3: Purifying selection on H. pylori genomes, from between-population comparisons. Pairwise dN/dS             
comparisons between different H. pylori populations, where dN/dS is plotted against dS as a measure of divergence                 
time. In each panel, there is a focal population, and within that panel each point is a comparison between an isolate                     
from the focal population and an isolate from a different comparator population. The comparisons are coloured by the                  
comparator population, and these colours are consistent with those in Figure 4.1. 
 

In the between-population comparisons, there are clear and substantial differences in dN/dS            

values between populations, ranging from 0.07-0.11. In the Asian focal plots (hpEAsia and             

hpAsia2), the populations are separated by dS values, and the dN/dS values decrease with              

increasing dS. This means the Asian populations have the highest dN/dS values, followed by              

the European populations, and the African populations have the lowest dN/dS values. Given             

previous work, this could be interpreted as ongoing purifying selection acting to remove             

deleterious non-synonymous mutations over time (Rocha et al. 2006). However, the hspAfrica1            

focal plots (hspAfrica1WAfrica, hspCNEAfrica, hspENEAfrica) show the opposite trend, where          
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dN/dS increases with increasing dS. This trend is however the same with respect to the               

populations, with gradually increasing dN/dS values from the African populations, to the            

European populations, to the Asian populations. This means that the difference between            

populations in dN/dS values must result from genuine differences between the populations in             

terms of population genetic processes, and not a difference in divergence time. The European              

populations are hybrids of African and Asian strains, and so in the European focal plots the                

populations are not well separated by dS. However, the Asian populations (hpAsia2, hpEAsia)             

have higher dN/dS values than the other populations, which is consistent with previous             

observations. I also plotted only within-population comparisons (Figure 4.4). 
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Figure 4.4: Purifying selection on H. pylori genomes, from within-population comparisons. Pairwise dN/dS             
comparisons between isolates from the same population, where dN/dS is plotted against dS as a measure of                 
divergence time. The partially transparent circles are comparisons between individual isolates, and the filled circles               
with error bars correspond to the mean ± sem for each population. In some cases the error bars are too small to be                       
seen. The colours are consistent with those in Figure 4.1. 
 

In the within-population comparisons (Figure 4.4), there is again considerable variation in dN/dS             

values between the different populations. hpAfrica2 have the lowest dN/dS values, followed by             

hpAfrica1 populations, the European populations are intermediate, and the Asian populations           

have the highest dN/dS values. 

 

In order to facilitate comparisons between the different populations, I used hpAfrica2 as an              

outgroup as it is divergent from the other populations. As introgression between hpAfrica2 and              

another population will affect (reduce) the genetic distance between the two populations, I             

constructed an artificial hpAfrica2 outgroup strain. I did this by painting the hpAfrica2 genomes              
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with fineSTRUCTURE, and choosing the least introgressed sites, thus creating an artificial            

hpAfrica2 strain with minimal introgression (hereafter referred to as hpArtAfrica2). [N.B. the            

fineSTRUCTURE analysis was performed by Koji Yahara, National Institute of Infectious           

Diseases, Tokyo, Japan.] The effect of this is shown in Figure 4.5, where the other populations                

are essentially equidistant from hpArtAfrica2 (as measured by dS). When compared with            

hpArtAfrica2, hpEAsia and hpAsia2 have the highest dN/dS values; this is consistent with             

previous observations. However, the African and European populations are less clearly           

distinguished from each other. 

 

 
Figure 4.5: Purifying selection on H. pylori genomes, using hpArtAfrica2 as an outgroup. Pairwise dN/dS               
comparisons between hpArtAfrica2 and isolates from other populations, where dN/dS is plotted against dS as a                
measure of divergence time. The other populations are nearly equidistant from the outgroup, as shown by the limited                  
differentiation of the populations by dS. The colours are consistent with those in Figure 4.1. 
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The introgression within European populations has been moulded by selection 

To summarise the results so far, the two ancient separated populations from Africa and Asia               

have low and high dN/dS values, respectively. The European populations are hybrids between             

African and Asian strains, and have intermediate dN/dS values. As the European populations             

have had access to both African and Asian DNA, it is possible that their genetic composition is a                  

result of selection for the fittest DNA from either source. To test this possibility, I combined                

information from estimates of ancestry with information about mutation frequencies. I analysed            

three European populations (hspEuropeS, hspEuropeN, hspEuropeNNW), and for each focal          

European population I painted the genome with hpEAsia and hspAfrica1WAfrica as source            

populations. [N.B. The chromosome painting was performed by Koji Yahara, National Institute of             

Infectious Diseases, Tokyo, Japan.] This provided site-by-site estimates for the ancestry of the             

European populations. I then calculated a mutation score for the hpEAsia and            

hspAfrica1WAfrica source populations, where each population was separately compared to the           

hpArtAfrica2 outgroup. For each for each site I calculated a score from 0-1 based on the                

frequency of mutations within a source population compared to hpArtAfrica2. The score was             

defined as number of isolates with the mutation divided by the number of isolates within the                

source population, so a site with a fixed mutation in the source population has a score of 1, and                   

a site with no mutation within the source population has a score of 0. These scores were                 

calculated separately for each source population, and separately for non-synonymous and           

synonymous mutations. For each mutation type, I then calculated the difference between the             

scores for the two source populations at each site, to give a score between -1 (hpEAsia specific                 

mutations) and 1 (hspAfrica1WAfrica specific mutations). It must be noted here that mutations             

which are specific to either source population are likely to be present in the European               

populations as a result of introgression. Thus, for each site I have calculated both a mutation                

score (for both non-synonymous and synonymous mutations), and an estimate of ancestry. I             

then calculated the mean of these quantities for each gene, and this data is shown in Figure 4.6. 
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Figure 4.6: The source of population-specific mutations predicts ancestry in hpEurope populations. Two             
donor populations (hpEAsia and hspAfrica1WAfrica) were chosen as proxy source populations for hpEurope. Within              
each of these populations, a score was calculated for each mutation based on its frequency within each source                  
population. These scores were then combined with ancestry estimates for the hpEurope populations. The mean               
scores and ancestry estimates for each gene were calculated (for both synonymous and non-synonymous sites), and                
these are shown (each point is a gene). 
 

For non-synonymous mutations in each focal European population, the mutation score predicts            

the ancestry (Figure 4.6). In genes with strongly negative scores, (those with many mutations              

present between hpEAsia and the outgroup which are not present in hpAfrica1WAfrica), the             

hpEAsia ancestry component is lower, and vice-versa. Crucially, this effect is much stronger for              

non-synonymous mutations than for synonymous mutations, meaning that non-synonymous         

mutations within source populations can better predict ancestry than synonymous mutations.           

This suggests that selection is likely to explain the difference between non-synonymous and             

synonymous mutations. 

 

There are also differences between the three hpEurope populations. The proportion of African             

ancestry decreases moving South-North, and the strength of selection on the introgression also             
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decreases from hspEuropeS to hspEuropeNNW (as shown by the steepness and differentiation            

of the non-synonymous and synonymous regressions, Figure 4.6). This is consistent with a             

model of introgression which started in the Middle East or Western Asia, and continued              

North-West across Europe, where donor DNA gradually became more limited (Falush et al.             

2003; Moodley et al. 2012).  

 

This analysis relies on the assumptions that European isolates are perfect hybrids of Asian and 

African strains, and that Africa2 is an appropriate outgroup (i.e. it is approximately equidistant 

from the African and Asian populations at every gene). The former is supported by the literature; 

when painted with the major old-world populations, the European populations overwhelmingly 

take their ancestry from hpAfrica1WAfrica and hpEAsia, even when hpAfrica2 is included as a 

donor (Falush et al. 2003; Linz et al. 2007; Thorell et al. 2016). The latter is supported by a 

further analysis of the mutation data (Figure 4.7). For each gene, the synonymous distance to 

the outgroup was calculated for hspAfrica1WAfrica and hpEAsia. This analysis confirmed that 

these two populations are almost exactly equidistant from the outgroup (hpAfrica2), and that 

there are no genes which show evidence of recent admixure with the outgroup (as these would 

have extremely low synonymous distances to the outgroup). This means that for each gene, the 

nucleotides present in a European population could reasonably have come from either an Asian 

or African source. It also assumes that the introgression which gave rise to the European 

populations has happened recently, and that much of the source DNA present at the time is still 

present in modern descendents of AE1 and AE2. Both of these assumptions are supported by 

recent evidence, which suggests that the introgression may have happened as recently as 6000 

years ago (Maixner et al. 2016; Moodley et al. 2012). 
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Figure 4.7: The synonymous distances between the source populations and the outgroup. The synonymous              
distance was calculated for each gene between each source population and the outgroup. The synonymous distance                
is the sum of the synonymous scores across the gene divided by the length of the gene. 
 
Discussion 

The separation of H. pylori into differentiated populations which largely mirror human            

populations has been well studied. These populations correspond to large geographical areas,            

and contain enough evidence to reconstruct major events (such as the out of Africa migrations)               

(Falush et al. 2003; Moodley et al. 2012). These populations have likely been subject to varying                

levels of selection and drift as a result of their different histories. From analysis of dN/dS (and                 

dI/dS) within and between populations, I have noted that there is substantial variation in these               

quantities, with hpAfrica2 having the lowest dN/dS values. This population is thought to have              

been associated with the San people in South Africa for at least 100,000 years, and limited                

movement of this population may have prevented bottlenecks, resulting in very strong purifying             

selection. The West African populations had slightly higher dN/dS values. The East Asian             

populations had the highest dN/dS values, and this is consistent with reduced efficacy of              

purifying selection, resulting from a reduced effective population size due to bottlenecks. It has              
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previously been shown that as distance from Africa increases, the diversity of the populations              

decreases. This is consistent with my results, which show that the efficacy of purifying selection               

decreases with distance from Africa, presumably as a result of reduced diversity (reduced             

effective population size). 

 

The exception to this model is hpEurope, which is thought to have been formed by gradual                

introgression between EA1 (of Asian descent), and EA2 (of African descent) (Falush et al. 2003;               

Moodley et al. 2012). This was likely very disruptive, as the mixing of Asian and African DNA will                  

have introduced many novel combinations of loci, bringing both deleterious and beneficial            

interactions. Here, I have attempted understand the long-term effects on the genome of the              

introgression. I have done this by characterising regions of the genome with a preponderance of               

mutations in proxies for AE1 (hpEAsia), and EA2 (hspAfrica1WAfrica), compared with an            

outgroup (hpArtAfrica2). I find that in genes with many hpEAsia specific mutations (relative to              

the outgroup and hspAfrica1WAfrica), the ancestry of these genes within European populations            

is more likely to be from hspAfrica1WAfrica than hpEAsia. This effect is much stronger for               

non-synonymous compared to synonymous mutations, and the effect is present when the            

populations are reversed (i.e. genes with many hspAfrica1WAfrica specific mutations are more            

likely to have ancestry from hpEAsia). This is not a result of limited genetic divergence between                

the outgroup and the source populations, for example by recent admixture. To summarise,             

when a gene has many non-synonymous mutations specific to one source population, in             

European populations it is preferentially sourced from the other source population. A compelling             

explanation for the observed difference in this effect between non-synonymous and           

synonymous mutations is that selection has acted to limit the uptake of population specific              

mutations into the European strains. 
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Chapter 5 
 
 
 
 
Compensatory evolution is widespread in Rho-independent terminators in bacteria 
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Introduction 
Terminating transcription is an important part of bacterial gene regulation, and it is achieved by               

two primary mechanisms: Rho-dependent termination, and Rho-independent (intrinsic)        

termination (Peters, Vangeloff, and Landick 2011; Santangelo and Artsimovitch 2011).          

Rho-dependent termination utilises Rho, along with a number of auxiliary proteins to achieve             

transcription termination. There are few consistent motifs present at Rho-dependent          

terminators, so they cannot be accurately predicted from the genome sequence (Ciampi 2006).             

In contrast, Rho-independent termination relies on the intrinsic properties of the terminator            

mRNA sequence. These consist of a GC-rich stem loop structure followed by a U-rich tract, and                

these properties mean they can be accurately predicted from the genome sequence (Peters,             

Vangeloff, and Landick 2011; De Hoors et al. 2005; Kingsford, Ayanbule, and Salzberg 2007).              

Rho-independent termination occurs as follows: The U-tract induces a pause in transcription,            

the hairpin then nucleates to form the stem-loop structure, as the hairpin nucleates, this pulls               

the DNA-RNA hybrid apart, and RNA polymerase dissociates (Peters, Vangeloff, and Landick            

2011). The two methods of termination are used to different extents by different bacterial              

species. In the gram-positive low-GC firmicutes, Rho-independent transcription is the dominant           

method, and in Staphylococcus aureus Rho is not essential (Washburn et al. 2001; Kingsford,              

Ayanbule, and Salzberg 2007). In contrast, E. coli uses the two methods more equally, and Rho                

is an essential gene in this species (Ciampi 2006). 

 

The intrinsic sequence properties of Rho-independent terminators mean that they can be            

accurately predicted from the genome sequence (De Hoors et al. 2005; Kingsford, Ayanbule,             

and Salzberg 2007), and these properties also enable the evolutionary dynamics of such             

sequences to be studied. A recent study showed that Rho-independent terminators are subject             

to purifying selection in bacteria (Thorpe et al. 2017). Further, the stem was shown to be under                 

stronger purifying selection than the loop. This is expected as mutations within the stem are               

likely to disrupt the complementary Watson-Crick base pairing, and these are likely to be              

deleterious. In contrast, mutations within the loop are likely to be more neutral as they are not                 

constrained in the same way as the stem. 

 

Mutations within the stem which disrupt the complementary Watson-Crick base pairing may be             

compensated by a second mutation which repairs the complementary base pairing (illustrated in             

Figure 5.1). This phenomena was recently shown to be common in Bacillus cereus, suggesting              
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that strong selection acts to maintain these sequences (Safina, Mironov, and Bazykin 2017).             

Here I provide a complementary analysis of Rho-independent terminators in a number of             

bacterial species, and find that compensatory evolution is widespread in bacteria. 

 

 
Figure 5.1: Compensatory evolution in a stem-loop sequence. a. An intact stem-loop sequence. b. A mutation                
occurs on the left side of the stem, disrupting the complementary Watson-Crick base pairing. c. A second mutation                  
occurs on the right side of the stem, repairing the stem. 
 
Methods 
Dataset 
For E. coli, S. enterica, S. pneumoniae, K. pneumoniae, S. aureus, and M. tuberculosis, the               

datasets used in chapter 1 were used. For H. pylori, the dataset used in chapter 3 was used.                  

For R. salmoninarum, V. anguillarum, and V. parahaemolyticus, the isolates were obtained from             

collaborators. For each species, overrepresented clonally related isolates (such as those           

belonging to the same sequence type) were removed to leave a dataset where each major               

lineage was represented, but only by a limited number of isolates. 

 
Sequencing, mapping, and SNP calling 
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The isolates were mapped against a single reference genome for each species using             

SMALT-0.7.6 (https://sourceforge.net/projects/smalt). SAMtools-0.1.19 (Li et al. 2009) was used         

to produce Variant Call Format (VCF) files, which were filtered to call SNPs. SNPs were only                

called if they passed all of the following thresholds: depth >= 4, depth per strand >= 2,                 

proportion of reads supporting the SNP >= 0.75, base quality >= 50, map quality >= 30, af1 >=                  

0.95, strand bias >= 0.001, map bias >= 0.001, tail bias >= 0.001. Consensus Fasta sequences                

were then used to produce an alignment for each species. For V. anguillarum and V.               

parahaemolyticus, the two chromosomes were treated separately. [N.B. The mapping for the R.             

salmoninarum, V. anguillarum, and V. parahaemolyticus data was performed by Nicola Coyle            

and Sion Bayliss, University of Bath, Bath, UK.] 

 

Genome annotation and core genome definition 

Each reference genome was annotated using Prokka-1.11 (Seemann 2014). The terminator           

predictions were produced using TransTermHP (Kingsford, Ayanbule, and Salzberg 2007), and           

obtained from the PePPER webserver (de Jong et al. 2012). These annotations were used to               

extract genes and terminator sequences, and a core genome was produced consisting of genes              

and terminators with > 90% sequence present in > 95% of isolates. 

 

Calculation of dN/dS and dI/dS 

The pipeline used in chapter 1 was used to calculate these quantities. 

 

Identification of compensatory mutations 

I identified compensatory mutations in a pairwise manner between isolates. In a comparison             

between two isolates, if a SNP was present at the complementary position of both the left and                 

right hand side of the terminator stem, this was identified as a potential compensation event.               

These events were then classified as 'compensatory' if the nucleotides on each side of the stem                

formed a Watson-Crick pair in both isolates, and 'non-compensatory' if they did not. Thus, for a                

compensatory mutation to be identified, there must be a SNP in both the left and right sides of                  

the stem, and in each isolate the nucleotides at these positions must be complementary (Figure               

5.1). 

 

Compensatory mutation simulation 
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In order to provide a neutral expectation to compare against (as compensatory mutations would              

be expected to occur by chance), I performed simulations. I simulated mutations on terminator              

sequences and counted the number of compensatory mutations observed. Mutations were           

simulated with both no mutation bias, and the observed mutation bias where GC -> AT               

mutations are more common than the reverse (Hershberg and Petrov 2010; Hildebrand, Meyer,             

and Eyre-Walker 2010). Using singleton mutations (those present in only one genome) I             

calculated the per-site relative mutation rates for the 6 mutation types for each species. As               

these biases were similar in all species, I averaged them across all species and used this as the                  

observed mutation bias. 

 
Results 
Properties of terminators 
I assembled datasets of 10 diverse bacterial species, of which 6 corresponded to those in a                

previous study of selection on intergenic sites (E. coli, S. enterica, K. pneumoniae, S.              

pneumoniae, S. aureus, and M. tuberculosis) (Thorpe et al. 2017). I supplemented these with V.               

anguillarum, V. parahaemolyticus, R. salmoninarum, and H. pylori. The two vibrio species both             

have two chromosomes, and so offered the opportunity to study differing selective constraints             

on the different chromosomes (Cooper et al. 2010). R. salmoninarum is a high GC low-diversity               

species, with similar genomic properties to M. tuberculosis. H. pylori was included because             

there is some uncertainty in the literature about the extent to which it uses Rho-independent               

termination (De Hoors et al. 2005; Washio, Sasayama, and Tomita 1998; Castillo et al. 2008). 

 

Terminators were predicted using TransTermHP (Kingsford, Ayanbule, and Salzberg 2007).          

Although the properties of Rho-independent terminators enable them to be predicted from the             

sequence, this does not guarantee that they are functional. The algorithm used by             

TransTermHP accounts for the presence of both the GC-rich stem-loop and U-tail in order to               

minimise the erroneous prediction of sequences which contain only one of these features (for              

example uptake sequences which consist of a GC-rich stem-loop). The firmicutes (S. aureus             

and S. pneumoniae) are known to rely predominantly on Rho-independent termination (Rho is             

not essential in S. aureus). Additionally, the accuracy of prediction was shown to be extremely               

high in the closely related species Bacillus subtilis, where 88% of experimentally confirmed             

terminators were predicted with a 2.1% false positive rate (De Hoors et al. 2005; Kingsford,               

Ayanbule, and Salzberg 2007). Other species with many high quality terminator predictions            
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were members of the Vibrio genus, although there is no experimental data to confirm these. In                

M. tuberculosis, predicted terminators were shown to be functional by analysis of RNA-seq data              

(Botella et al. 2017). There are conflicting reports of the extent that H. pylori uses               

Rho-independent termination, but one study provided experimental evidence that terminators          

predicted by TransTermHP were functional (De Hoors et al. 2005; Washio, Sasayama, and             

Tomita 1998; Castillo et al. 2008). Although these studies provide good evidence that the              

predictions contain functional terminators, without further experimental data this cannot be           

confirmed, and the analysis must be considered with this caveat. 

 

I first analysed the general properties of terminator sequences (Figure 5.2). Terminator stems             

had mean lengths of approximately 6 bp in most species, but varied from 6 bp in H. pylori to 10                    

bp in S. aureus. The loops were more consistent, with mean lengths of 4-5 bp. These figures                 

are in agreement with previous research (Peters, Vangeloff, and Landick 2011; Kingsford,            

Ayanbule, and Salzberg 2007). The stems had higher GC contents than the loops, and              

intriguingly the GC content of the stems decreased from the foot of the stem to the loop (P <                   

0.05, Spearman’s correlation) for all species except H. pylori and K. pneumoniae. This             

observation of decreasing GC content is novel, and may be explained by selection for stronger               

GC bonds towards the foot of the stem. 
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Figure 5.2: Properties of Rho-independent terminators. a. Terminator stem and loop lengths. The points and error                
bars correspond to the mean ± sem. b. Terminator stem and loop GC contents. The points and error bars correspond                    
to the mean ± sem. c. Stem GC contents against position in the stem, from the foot end (0) to the loop end (15).                        
Stems were limited to 15 bp in length as there were very few longer than this. In all cases the two chromosomes of V.                        
anguillarum and V. parahaemolyticus were analysed separately. 
 
Purifying selection on terminators 

I used dI/dS (a modification of dN/dS to work on intergenic sites) to investigate purifying               

selection on terminators (Figure 5.3a). I analysed the stem and loop separately, as in (Thorpe et                

al. 2017). As in (Thorpe et al. 2017), I find that both the stem and loop parts of terminators are                    
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subject to purifying selection in most species, and that the stems are consistently more              

constrained than the loops (P < 10-15, Mann-Whitney U test) in all species except R.               

salmoninarum, M. tuberculosis, and H. pylori, where there is no significant difference between             

the stem and loop parts. R. salmoninarum and M. tuberculosis display wide variation in dI/dS               

values, typical of recently differentiated strains, or more generally low-diversity species (Rocha            

et al. 2006; Castillo-Ramírez et al. 2011; Thorpe et al. 2017). V. anguillarum and V.               

parahaemolyticus offer an opportunity to compare selection pressures on different          

chromosomes, as both species have two chromosomes. In both species, dI/dS from the             

terminator stems (and dN/dS from the core genes) were lower in chromosome 1 than 2 (P <                 

10-15, Mann-Whitney U test). This is consistent with previous work showing that purifying             

selection is stronger on chromosome 1 than 2 (Cooper et al. 2010). 

 

I also analysed the locations of mutations within the terminator stems, as in (Safina, Mironov,               

and Bazykin 2017). In agreement with Safina et al., I find that mutations are significantly more                

likely to be observed at the first and last (external) positions of the stem than those within the                  

stem (internal) (P < 0.05, Fisher’s exact test). This was true for all species except R.                

salmoninarum, M. tuberculosis, H. pylori and chromosome 2 from V. anguillarum (Figure 5.3b). I              

also tested for differences between the number of mutations at the first (foot) and last (loop)                

stem positions, as done by Sefina et al. I found only limited evidence for this, with only K.                  

pneumoniae, V. anguillarum chromosome 1, and V. parahaemolyticus chromosome 1 reporting           

significant results (P < 0.05, Fisher’s exact test) (Figure 5.3c). 
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Figure 5.3: Purifying selection on Rho-independent terminators. a. dI/dS values for terminator stem and loops.               
The two chromosomes of V. anguillarum and V. parahaemolyticus were analysed separately. b. Comparisons              
between the numbers of mutations per site in external (blue) and internal (red) positions within the stem. c.                  
Comparisons between the numbers of mutations per site in the external positions within the stem, at the loop end                   
(blue), and foot end (red). In both b and c the blue positions are those with an excess of mutations, and this colouring                       
is consistent with (Safina, Mironov, and Bazykin 2017). 
 
Compensatory evolution is widespread 

In a recently published study, (Safina, Mironov, and Bazykin 2017) showed that compensatory             

evolution in terminator sequences was relatively common in Bacillus cereus. I used a slightly              
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different method to identify compensatory mutations in my datasets. Whereas Safina et al.             

performed ancestral state reconstruction, I analysed isolates in a pairwise manner. I did this              

because some of the species analysed (such as V. parahaemolyticus and H. pylori) recombine              

at extremely high rates, resulting in star-like phylogenies with low bootstrap support values at              

the base of the deep branches (Cui et al. 2015). Where mutations were present on both sides of                  

complementary positions within the terminator stem, these were identified as potential           

compensatory events. If in both strains being compared, these positions formed a Watson-Crick             

complementary pair, then they were classified as 'compensatory', and if not then they were              

classified as 'non-compensatory'. I also simulated mutations on terminator stems to provide a             

neutral expectation for the rate of compensatory evolution, and these simulations were            

performed both with and without mutation bias. 
 

This analysis revealed that compensatory mutations are widespread across bacteria (Figure           

5.4). For all species except H. pylori, R. salmoninarum, M. tuberculosis, and the second              

chromosome on the two vibrio species, the number of compensatory mutations observed was             

significantly greater than the neutral expectation (P < 0.05, Mann-Whitney U test). These results              

were robust to simulations performed both with and without mutation biases. Further, the rates              

of compensatory mutations were higher than those of non-compensatory mutations (where           

mutations are present at both positions but do not form a Watson-Crick pair). These results               

indicate that compensatory mutations are strongly selected for. The rate of compensatory            

evolution was highest in E. coli, this is likely a product of the large effective population size of                  

this species (Charlesworth 2009). In V. anguillarum and V. parahaemolyticus, the rate of             

compensation was higher on the first chromosome compared to the second (where there was              

no evidence of higher rates compared to the neutral expectation). This suggests that selection is               

stronger on the first chromosome, in agreement with the dN/dS values reported above (Cooper              

et al. 2010). H. pylori shows no evidence of selected compensatory evolution. I tested for               

positional biases of compensatory mutations (as in Figure 5.3b), but found no evidence of this. 
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Figure 5.4: Compensatory evolution of terminator sequences. The number of compensatory mutations was             
plotted against the divergence within terminator sequences. Each panel corresponds to a different species, and the                
two chromosomes of V. anguillarum and V. parahaemolyticus were analysed separately. The red points correspond               
to the observed number of compensatory mutations, and the green and blue points correspond to the simulated data. 
 
Discussion 
Here I have performed a detailed analysis of the evolutionary dynamics of Rho-independent             

terminator sequences in bacterial genomes. Consistent with Safina et al., I have shown that              

terminator sequences are under strong purifying selection, which increases in strength from the             

loop, to the external stem positions, to the internal stem positions. I also find that the strength of                  

selection varies according to species. H. pylori, which does not rely heavily on intrinsic              

termination (Kingsford, Ayanbule, and Salzberg 2007), shows weak evidence of selection,           

whereas E. coli (which utilises intrinsic terminators and has a large Ne) shows strong evidence               

of selection. In the species with two chromosomes (V. anguillarum and V. parahaemolyticus),             
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the terminators on the first chromosome are under stronger selection than those on the second               

chromosome. This is consistent with previous work showing that genes on the first chromosome              

are more strongly selected than those on the second chromosome. 

 

I also provide an analysis of compensatory evolution which is both complementary to, and              

broader than that performed previously (Safina, Mironov, and Bazykin 2017). My approach            

enabled me to perform simulations to provide a neutral expectation for the rate of compensatory               

evolution, and to record the rate of non-compensatory mutations. This analysis revealed            

widespread selected compensatory evolution, providing further evidence that these sequences          

are subject to strong selective pressures. Signals of selection from individual species were             

consistent with previous observations; E. coli had high rates of compensatory evolution,            

compared to the low rates observed in H. pylori, and in the two Vibrio species the first                 

chromosome exhibited higher rates of compensatory evolution than the second. 

 

The explanations for high rates of compensatory evolution are not immediately clear. Strong             

selection is presumably required to explain the number of observed compensatory mutations,            

however this strong selection would also be expected to select against any initial mutations              

which disrupt the stem-loop structure, eliminating them from the population by purifying            

selection. Perhaps the terminators which are compensated are not the most strongly selected,             

as it is only in these terminators that the intermediate state (one mutation) is tolerated. The                

strength of selection on a terminator is likely to be governed by the expression of its upstream                 

gene, as the cost of inefficient termination will be greater in highly expressed genes. Another               

factor which is likely to influence the strength of selection on terminators is changes in effective                

population size (Ne). Deleterious mutations (such as a single mutation in a terminator) can rise               

in frequency during bottlenecks, and perhaps these are compensated when Ne increases and             

selection is more efficient. Investigating both the between-terminator variation and the effect of             

Ne on compensatory evolution are areas for further research, with the caveat that Ne is a difficult                 

quantity to measure in bacteria (Charlesworth 2009; Cui et al. 2015; Price and Arkin 2015;               

Didelot et al. 2011; Sharp et al. 2005; Hartl, Moriyama, and Sawyer 1994). 

 

R. salmoninarum and M. tuberculosis displayed very little evidence of selection, with widely             

varying dI/dS values and no enrichment of compensatory mutations. This may be because             

Rho-independent termination is not important in these species (Washio, Sasayama, and Tomita            
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1998), or that selection is genuinely weak. Previous work on M. tuberculosis has consistently              

reported high dN/dS values of approximately 0.6, indicating that purifying selection is weak in              

this species (Hershberg et al. 2008; Thorpe et al. 2017). However, there are reports of positive                

and diversifying selection in M. tuberculosis (Pepperell et al. 2013; Farhat et al. 2013; Osório et                

al. 2013). H. pylori also showed limited evidence of selection on terminator sequences, with no               

difference between the stem and loop dI/dS values and no enrichment of compensatory             

mutations. In contrast with the two low-diversity species discussed above, H. pylori is a diverse               

species with genome-wide dN/dS values of approximately 0.09. Thus, H. pylori is subject to              

strong purifying selection, and the lack of evidence for selection on terminators may be because               

the sequences are not functional in this species. This is consistent with previous observations              

(De Hoors et al. 2005; Washio, Sasayama, and Tomita 1998), but in contrast with more recent                

work (Castillo et al. 2008). 

 

In conclusion, for most species there is widespread evidence of both purifying selection, and              

compensatory evolution in Rho-independent terminator sequences. In contrast, H. pylori shows           

little evidence of selection on terminator sequences, despite strong genome-wide purifying           

selection, indicating that terminator sequences are not important in this species.  
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Discussion 

The work presented in this thesis is broad in scope, and has tried to advance our understanding                 

of genome evolution in bacteria, with a focus on intergenic sites. Although the precise questions               

and organisms under study are different in each chapter, they are complementary to each other               

and form a coherent set of analyses. Chapter 1 is concerned with measuring the selective               

constraint on intergenic sites in the core genomes of a diverse set of bacterial species. Chapter                

2 is also concerned with intergenic sites, but here both core and accessory sites are considered,                

and a new tool, Piggy is introduced to facilitate these analyses. As in chapter 1, chapter 3 is an                   

analysis of selection, but in this chapter Helicobacter pylori is studied in detail to understand               

how extensive admixture may be moderated by selection. Finally, chapter 4 is focused on              

compensatory evolution in transcriptional terminator sequences. A common thread throughout          

the thesis is an attempt to understand the diversity present within bacterial genomes, and how               

these genomes are shaped by selection, with particular focus to those regions of the genome               

which are poorly understood on a genomic scale, such as intergenic sites. Here I discuss the                

major results and themes of the chapters, and place them into the context of our current                

understanding. Finally, some directions for further research are considered. 

 

Bacterial genomes are strongly shaped by selection 

Previous work has shown that mutations which are likely to have very subtle fitness effects are                

influenced by selection in bacteria. This includes selection on codon bias, AT skew, and              

genomic GC content (Sharp et al. 2005; Charneski et al. 2011; Hildebrand, Meyer, and              

Eyre-Walker 2010). That these features are selected in bacteria shows that selection must be a               

strong force, and this can be explained by large population sizes and short generation times in                

many bacterial species (E. coli is estimated to have a long-term effective population size of               

25,000,000 (Charlesworth 2009)). Since large whole-genome datasets consisting of hundreds of           

isolates from a given species have become available, there has been much effort to study the                

protein-coding components of bacterial genomes, but comparatively little effort to study their            

intergenic components. 

 

One small study of group A Streptococcus genomes, a study of Buchnera genomes, and a               

study of 22 diverse bacterial clades all found evidence of purifying selection on intergenic sites               

(Luo et al. 2011; Degnan, Ochman, and Moran 2011; Molina and Van Nimwegen 2008). The               

work presented in chapter 1 provides both complementary and additional analyses to this             
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literature. The overall observation that intergenic sites are subject to purifying selection is             

consistent with previous work. The PSM analysis in chapter 1 is similar to that done by (Luo et                  

al. 2011) as they are both based on the site-frequency spectrum, and the calculation of dI/dS                

(as a modification of dN/dS) is similar in principle to the calculation of R values in (Molina and                  

Van Nimwegen 2008). Despite differences in approach, these analyses, along with the Kmer             

based analysis in (Degnan, Ochman, and Moran 2011), all show intergenic sites to be under               

purifying selection which is intermediate in strength between that acting on synonymous and             

non-synonymous sites. Additionally, in chapter 1 different regulatory elements were analysed           

separately, and ribosome binding sites and non-coding RNAs were found to be under stronger              

purifying selection than the other elements, and the terminator stems were more constrained             

than the loops. These novel analyses advance our understanding by showing that not all              

intergenic sites are equally important, and that I can measure differences in constraint between              

these classes of site. 

 

Selection moderates the effect of introgression 

In chapter 3, a detailed analysis of introgression in H. pylori was carried out. It was shown that                  

in European populations (which are a hybrid between Asian and African bacteria), the source of               

introgressed DNA was likely to have been shaped by selection. The DNA of the European               

populations was painted with proxies for the two source populations in order to identify likely               

ancestry, and this was then compared to mutation data. Areas of the European genomes with               

many Asian specific mutations were more likely to be inherited from African strains and              

vice-versa, and this effect was stronger for non-synonymous mutations than synonymous           

mutations. This suggests that selection has moderated the introgressed DNA to reduce the load              

of deleterious non-synonymous mutations. 

 

This work builds on previous research showing differences in mutational load in other species.              

In S. aureus, recombined fragments often have lower dN/dS values than mutation-derived SNPs             

when very closely related isolates (such as those belonging to the same clonal complex) are               

compared (Castillo-Ramírez et al. 2011). This is likely explained by the age of these mutations;               

mutations in the recombined fragments are likely to be considerably older than recent             

mutation-derived SNPs. As selection has had longer to purge older deleterious mutations, this             

results in lower dN/dS values in the recombined fragments. This effect of time dependence on               

dN/dS is explained in detail in (Rocha et al. 2006), and this provides an important consideration                
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when comparing dN/dS values. Additionally, dN/dS values have been shown to vary in             

response to ecological shifts, such as the higher dN/dS values observed in intracellular Shigella              

species compared to free-living E. coli (Balbi, Rocha, and Feil 2009). These studies show that               

inferences of selection vary according to the age of mutations, regions of the genome, and               

ecological conditions, and the novel work on H. pylori adds to this by showing that selection                

moderates deleterious mutation load according to the source of introgressed DNA. 

 

Compensatory evolution is widespread 

The work presented in chapter 4 provides a more detailed analysis of Rho-independent             

terminator sequences in a range of bacterial species. This follows recent work by (Safina,              

Mironov, and Bazykin 2017) which showed that compensatory evolution is relatively common in             

Bacillus anthracis. Chapter 4 shows that compensatory evolution is widespread among bacteria,            

suggesting that these elements are subject to strong selection. The rates of compensation are              

also consistent with expectation in some species, for example E. coli (with a large Ne) has high                 

compensation rates, whereas H. pylori (which does not rely heavily on Rho-independent            

termination) has low rates. Additionally, in the species with two chromosomes (V. anguillarum             

and V. parahaemolyticus), compensation rates are higher in the first chromosome than the             

second. This is consistent with previous work showing that the first chromosome is subject to               

stronger selection than the second (Cooper et al. 2010). The study by (Safina, Mironov, and               

Bazykin 2017) was the first to show compensatory evolution in terminator sequences in             

bacteria. However, this study only investigated one species (B. anthracis), and so general             

statements could not be drawn. The work in chapter 4 broadened the study of compensatory               

evolution, showing that it is widespread, but also showing variation between species which is              

consistent with previous knowledge and expectations. 

 

Pan-genomes incorporating intergenic regions 
The work discussed thus far clearly demonstrates that bacterial genomes are strongly shaped             

by selection, and that this selection is measurable on, and differs between classes of intergenic               

site. However, this work is based only on the core genomes of bacteria. The work in chapter 2                  

aimed to broaden our understanding of bacterial evolution by incorporating intergenic sites into             

pan-genome analyses. In order to facilitate this, a tool, Piggy, was developed to analyse IGRs in                

conjunction with Roary (Page et al. 2015). Chapter 2 showed that it is possible to create                

pan-genomes from IGRs in much the same way as from protein-coding sequences. There is              
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sufficient conservation within IGRs that a core set of IGRs are present, but there is more                

diversity in IGRs than genes overall. This is consistent with work in chapter 1 showing that IGRs                 

are subject to weaker purifying selection than genes. 

 

As gene regulation depends on elements located within IGRs, changes in IGRs can influence              

gene expression, and this can have profound phenotypic consequences. A striking recent            

example is a C -> T SNP in the -10 region of the promoter of ptgE from African Salmonella                   

enterica serovar Typhimurium (Hammarlöf et al. 2017). This SNP resulted in a tenfold increase              

in the expression of PtgE, an outer membrane protein. This resulted in increased survival in               

human serum, and increased cleavage of Complement Protein B in vivo. Further, the SNP was               

required for successful infection in a chicken model. Another prominent example is a SNP in the                

promoter of the eis gene in M. tuberculosis; this SNP results in increased expression of Eis, and                 

this confers resistance to kanamycin (Casali et al. 2012). 

 

Although these are likely extreme examples, the work presented in chapter 1 shows that              

intergenic sites en masse are subject to purifying selection, and so many other SNPs within               

regulatory elements are likely to have more subtle fitness effects. One way to study this is to                 

identify genes present in multiple isolates from a species, where that gene is preceded by               

divergent IGR sequences in different isolates. If the upstream IGR sequences are important for              

controlling gene expression then these genes would be expected to be differentially expressed             

in isolates with divergent IGRs. This was previously shown to be the case in E. coli, where up to                   

12% of the overall variance in gene expression could be attributed to this phenomenon (Oren et                

al. 2014). In the work presented in chapter 2, four S. aureus clonal complexes were analysed,                

and genomic and RNA-seq data were combined to investigate the same effect. In 9/12              

comparisons, genes with divergent IGRs were more differentially expressed than those without,            

in accordance with the previous work on E. coli. From these results I can conclude that changes                 

in IGRs frequently affect gene expression, and this is not limited to rare high-effect mutations.               

As gene expression in bacteria is tightly controlled (and therefore presumably under selection),             

this provides an explanation for the selection observed on IGRs in chapter 1. 

 

Why do bacteria have such large pan-genomes? 
It is clear from previous work that many bacterial species have enormous pan-genomes             

consisting of many thousands of genes (McInerney, McNally, and O’Connell 2017; Andreani,            
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Hesse, and Vos 2017; Holt et al. 2015; McNally et al. 2016), and from the work in chapter 2 that                    

this is also true of IGRs. Advances in whole-genome sequencing, along with tools such as               

Roary and Piggy, have greatly increased our understanding of the scale of bacterial             

pan-genome variation (what is there), but this does not necessarily inform on deeper             

evolutionary questions (why is it there?). Assessing the evolutionary dynamics of these large             

pan-genomes is a clear direction for future research, and this will likely involve incorporation of               

population genetic ideas and methods with large-scale genomic data. 

 

Several recent studies have started to address these questions, with surprisingly different            

results. (Andreani, Hesse, and Vos 2017) showed that pan-genome fluidity (a measure of             

pan-genome size), correlates with synonymous diversity across a number of bacterial species.            

According to population genetic models (Kimura 1991), species with large Ne maintain more             

neutral genetic diversity. Further to this, a number of recent studies have shown that rates of                

HGT are higher than point mutation rates in many bacterial species (Vos et al. 2015). From                

these findings, I could conclude that pan-genomes in bacteria are largely neutral and are              

governed by the effective population size of the species. The high rates of HGT would provide                

rapid turnover of genes, and providing that these genes are not overly deleterious, they would               

be maintained within a large pan-genome. (McInerney, McNally, and O’Connell 2017) argue that             

this scenario is unlikely because maintaining unnecessary genes is likely to be costly, and              

purifying selection would act to remove these genes. They use E. coli as a prime example, with                 

a large estimated long-term Ne of 25 million, and ample evidence of purifying selection              

elsewhere in the genome (for example codon bias) (Charlesworth 2009; Sharp et al. 2005).              

They argue the large pan-genome in E. coli is likely due to migration into new niches, and this is                   

consistent with mathematical models (Niehus et al. 2015). In support of this, pan-genome sizes              

correlate with lifestyles, with generalist environmental species having large pan-genomes, and           

host restricted endosymbionts having small pan-genomes (McInerney, McNally, and O’Connell          

2017). 

 

There is likely truth to both of these theories, and the dynamics of pan-genomes are likely                

governed by several competing forces. Perhaps one under appreciated component of these            

dynamics is time. (Rocha et al. 2006) showed that it is critical to incorporate time into analyses                 

of selection, as deleterious mutations are gradually removed from populations over time,            

consistent with the nearly-neutral theory of evolution (Ohta 1973). For example, when a sample              
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of extremely closely related isolates from a bacterial species are analysed (such as those from               

the same sequence type), there is a preponderance of deleterious variation compared to when              

more distant isolates are compared (Rocha et al. 2006). This manifests as high dN/dS values,               

compared to low values observed between distant isolates. It is curious that one of the               

pan-genome examples used in (McInerney, McNally, and O’Connell 2017) consisted of 288 E.             

coli ST131 isolates. These isolates are extremely closely related (they are members of the same               

sequence type), and so are likely to contain large amounts of transient deleterious variation. A               

comparison between the mutational variation and gene content variation would shed much light             

on the evolutionary dynamics of the pan-genome here. For example, if the site frequency              

spectrum of genes and mutations was compared, this would enable patterns of transient gene              

content variation to be elucidated. Many singleton genes (and correspondingly mutations),           

would strongly indicate a situation where these genes are likely to be lost over time (as is                 

observed in mutations). Alternatively, clusters of genes present in distinct groups of isolates             

would indicate some form of niche adaptation, and this would be more consistent with the               

hypothesis proposed by (McInerney, McNally, and O’Connell 2017). 

 

Genotype-phenotype relationships 
Understanding how genotypes contribute to phenotypes is one of the central goals of biology.              

Recent advances in GWAS methodologies have helped to identify mutations which contribute to             

phenotypes, but these tend to be limited to mutations with high penetration (Lees et al. 2016).                

Additional complications for bacteria arise from the clonal frame; many mutations are            

co-inherited along with causal mutations, and this limits the power of such approaches (Lees et               

al. 2016; Earle et al. 2016; Sheppard et al. 2013). A recent study by (Galardini et al. 2017)                  

combined genomic and experimental data to predict phenotypes in E. coli. Genomic data from              

696 strains was used to build loss-of-function probabilities for each gene, and this was              

integrated with conditional essentiality data from the E. coli K-12 reference strain. Using this              

information, accurate phenotype predictions were made for 38% of 214 tested conditions. This             

indicates that combining experimental and genomic data can provide great insight into            

genotype-phenotype causality. However, this study did not include information on intergenic           

sites, and so gene regulation was not considered within the analysis. It is possible that for some                 

genes, their regulation is physiologically important, rather than simply the presence of the gene,              

or mutations contained within a gene. One such example is the promoter SNP in S. enterica                
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discussed above (Hammarlöf et al. 2017). A clear direction for improvement of this approach              

would be to incorporate information on gene regulation into the model. 

 

However, the relationship between the divergence of an IGR and the expression of its cognate               

genes is not well understood. For example, a high effect mutation within a promoter may have                

more impact than several mutations in less important parts of the IGR. One approach could be                

to combine RNA-seq and genomic data to identify IGR variants which are associated with high               

and low expression of their cognate genes (as was done in chapter 2). This would then enable                 

genes to be scored according to expression, and this would enable expression to be              

incorporated into the analysis. 

 

Concluding remarks 
The work presented in this thesis has shown that bacterial genomes evolve under strong              

selective constraints, and these constraints act upon intergenic sites, particularly the elements            

responsible for gene regulation. Where extensive introgression has taken place, selection has            

acted to moderate the deleterious mutation load by preferentially selecting loci from certain             

ancestry sources. These findings add weight to the view that there are no truly neutral sites in                 

bacteria (Rocha and Feil 2010). The work on pan-genomes suggests that bacterial genomes             

should be viewed in terms of rich interactions between genes and IGRs, instead of only their                

gene content. Future work should focus on the interplay between these factors within             

appropriate evolutionary contexts to further our understanding of these important organisms. 
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Figure S2.1: Per site mutation biases. The per site mutation bias was calculated for each species from the                  
singleton SNPs. This was done by dividing the number of SNPs by the number of sites (e.g. the number of A->C and                      
T->G mutations was divided by the number of A and T sites in the genome). These rates were then converted to a                      
proportion so that the mutation types summed to 1 for each species. 
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Figure S2.2: Analysis of selection on individual genes and IGRs. PSM values were calculated for each gene and                  
IGR separately to check that our analysis was not confounded by a small number of highly conserved,                 
unrepresentative IGRs. The notches in the box plots represent 95% confidence intervals around the median. 
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Figure S2.3: PDM (Proportion of Doubleton Mutations) analysis of selection on different mutation categories.              
PDM values were calculated by dividing the number of doubleton SNPs (those present in two genomes) by the total                   
number of SNPs within that mutation category (excluding singletons). 
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Figure S2.4: Validation of the quality of singleton SNPs. Singleton and non-singleton SNPs were analysed in                
order to validate the quality of the singleton SNPs. a. Depth of coverage of SNP positions. b. The proportion of reads                     
supporting the SNP. c. The Phred Quality Q score of SNP positions. 
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Figure S2.5: dN/dS and dI/dS analysis of selection. dN/dS and dI/dS were calculated between isolates in a                 
pairwise manner, and these were both plotted against dS to explore the effect of divergence time on observed levels                   
of selection. In order to control for the non-independence between the axes, we calculated dN/dS, dI/dS, and dS from                   
different sites as described in Methods. The dashed red line shows where dN/dS and dI/dS = 1, and therefore                   
indicates neutrality. 
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Figure S2.6: dI/dS analysis of IGRs upstream from gene starts. dI/dS was calculated from all intergenic sites, and                  
intergenic sites 30 bp upstream from gene starts separately, by comparing isolates in a pairwise manner. The results                  
were binned by dS (bin width = 0.0001) to control for oversampling of very closely related isolates (such as those                    
belonging to the same CC). The genome-wide dN/dS values are included to enable comparisons to be made                 
between non-synonymous sites and the intergenic sites. The dashed red line shows where dN/dS and dI/dS = 1, and                   
therefore indicates neutrality. 
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Figure S2.7: PSM analysis of selection on different regulatory elements within IGRs. PSM values were               
calculated by dividing the number of singleton SNPs by the total number of SNPs within that mutation category. 
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Figure S2.8: dI/dS analysis terminator stem and loop regions. dI/dS was calculated from terminator stem and                
loops separately, by comparing isolates in a pairwise manner. The results were binned by dS (bin width = 0.0001) to                    
control for oversampling of very closely related isolates (such as those belonging to the same CC). The genome-wide                  
dN/dS values are included to enable comparisons to be made between non-synonymous sites and the intergenic                
sites. The dashed red line shows where dN/dS and dI/dS = 1, and therefore indicates neutrality. 
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Figure S2.9: The distribution of promoter dI/dS values in M. tuberculosis. dI/dS was calculated from promoter                
sequences in a pairwise manner between M. tuberculosis isolates, and the histogram shows the distribution of these                 
dI/dS values. 85% of the comparisons are > 1. The dashed red line shows where dI/dS = 1, and therefore indicates                     
neutrality. 
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Figure S2.10: dI/dS analysis of selection on different regulatory elements in within-CC comparisons. dI/dS              
was calculated between isolates in a pairwise manner, and comparisons with dS < 0.003 were included to represent                  
within-CC comparisons. The genome-wide dN/dS values are included to enable comparisons to be made between               
non-synonymous sites and the different regulatory intergenic sites. The dashed red line shows where dN/dS and                
dI/dS = 1, and therefore indicates neutrality. 
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Figure S3.1: The IGR pan-genome (‘panIGRome’) as visualised using Phandango. A neighbour-joining            
phylogenetic tree was imported into Phandango alongside the IGR_presence_absence.csv file. Each row            
corresponds to an isolate, and each column corresponds to an IGR, with the IGRs ordered from the left in order of                     
decreasing frequency within the sample. The line graph at the bottom shows the frequency of the IGRs within the                   
sample. a) S. aureus ST22 b) E. coli ST131. 
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Figure S3.2: Comparison between Piggy and Roary. Roary (blue) and Piggy (red) were both run on increasing                 
numbers of S. aureus ST22 isolates on a CLIMB virtual machine with 10 vcpus. The programs were both run with                    
(circles) and without (triangles) alignment options. 
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Table S2.1: The isolates used in chapter 2. 
 

Escherichia coli MG1655 NC_004431 NC_002695 NC_012892 NC_007779 NC_011415

NC_013654 NC_013353 NC_013364 NC_007946 NC_008253 NC_008563

NC_009801 NC_009800 NC_012967 NC_010468 NC_010473 NC_010498

NC_011353 NC_013008 NC_012759 NC_012971 NC_017625 NC_012947

NC_013941 NC_017628 NC_011748 NC_011741 CU928161 NC_011750

NC_011601 NC_017626 NC_013361 NC_016902 NC_017631 NC_017632

NC_017634 NC_017635 NC_017633 NC_017641 NC_017644 NZ_CP006632

NZ_AGTD01000001 NC_017646 NC_017651 NC_017652 NC_017656 NC_017663

NC_017660 NC_017664 NC_017906 NZ_AKBV01000001 NC_017638

NZ_AKVX01000001 NC_011993 NZ_HG941718 NC_018650 NC_018658 NC_018661

NC_020163 NC_020518 NC_022364 CP006698 NC_022370 NC_022648

NZ_HG738867 NZ_CP006027 NZ_CP006262 NZ_CP007265 NZ_CP007390 NZ_CP007391

NZ_CP007392 NZ_CP007393 NZ_CP007394 NZ_CP007133 NZ_CP007136 NZ_CP007799

CP005998 NZ_CP008801 NZ_CP008805 NZ_CP008957 NZ_CP009072 NZ_CP009273

NZ_CP009859 NZ_CP009644 NZ_CP009789 NZ_CP007149 NZ_CP009104 NZ_CP009106

NZ_CP009685 NZ_CP010304 NZ_CP005930 NZ_CP010371 NZ_CP010315 NZ_CP007592

NZ_CP009166 NZ_CP010585 NZ_CP010344 NZ_CP010816 NZ_CP010876 NZ_LM995446

NZ_LM993812 NZ_HF572917 NZ_CP011134 NZ_CP011018 NZ_CP010438 NZ_CP010439

NZ_CP010440 NZ_CP010441 NZ_CP010442 NZ_CP010443 NZ_CP010444 NZ_CP010445

NZ_LN832404 NZ_CP011331 NZ_CP007594 NZ_CP011320 NZ_CP011321 CP011322

CP011323 NZ_CP011324 NZ_CP011416 NZ_CP011342 NZ_CP011343 NZ_CP006636

NZ_CP011938 NZ_CP011495 NZ_CP007442 NZ_CP012125 NZ_CP012126 NZ_CP012127

NZ_CP011113 NZ_CP012635 NZ_CP012625 NZ_CP012633 NZ_CP012631 NZ_CP012802

NZ_CP012868 NZ_CP012869 NZ_CP012870 NZ_CP013029 NZ_CP013025 NZ_CP013112

NZ_CP013253 NZ_CP013658 NZ_CP008697 NZ_CP013831 NZ_CP013835 CP013837

NZ_CP007491 NZ_CP014197 NZ_CP014225 NZ_CP014314 NZ_CP014268 NZ_CP014269

NZ_CP014270 NZ_CP014272 

 

Salmonella enterica Typhimurium_D23580 SRR1635091 SRR1635101 SRR1638968

SRR1638975 SRR1638985 SRR1638992 SRR1638995 SRR1639000 SRR1639001

SRR1639006 SRR1639007 SRR1639009 SRR1643061 SRR1643065 SRR1643067

SRR1643076 SRR1643078 SRR1643079 SRR1643080 SRR1643082 SRR1643086

SRR1643090 SRR1643092 SRR1643094 SRR1643095 SRR1643101 SRR1643103

SRR1643104 SRR1643109 SRR1643112 SRR1643121 SRR1643123 SRR1643124

SRR1643129 SRR1643130 SRR1643131 SRR1643132 SRR1643133 SRR1643139

SRR1643141 SRR1643142 SRR1643144 SRR1643145 SRR1643148 SRR1643149

SRR1643151 SRR1643154 SRR1643155 SRR1643156 SRR1643157 SRR1643158
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SRR1643159 SRR1643160 SRR1643161 SRR1644065 SRR1644066 SRR1644067

SRR1645070 SRR1645072 SRR1645074 SRR1645166 SRR1645181 SRR1645189

SRR1645193 SRR1645197 SRR1645198 SRR1645205 SRR1645211 SRR1645267

SRR1645279 SRR1645281 SRR1645343 SRR1645358 SRR1645363 SRR1645432

SRR1645441 SRR1645443 SRR1645457 SRR1645459 SRR1645462 SRR1645465

SRR1645535 SRR1645549 SRR1645564 SRR1645574 SRR1645586 SRR1645599

SRR1645601 SRR1645613 SRR1645617 SRR1645718 SRR1645736 SRR1645745

SRR1645758 SRR1645762 SRR1645772 SRR1645786 SRR1645795 SRR1645806

SRR1645829 SRR1645831 SRR1645849 SRR1645890 SRR1645891 SRR1645894

SRR1645915 SRR1645916 SRR1645924 SRR1645927 SRR1645929 SRR1645945

SRR1645955 SRR1645964 SRR1645965 SRR1645966 SRR1645970 SRR1645978

SRR1645983 SRR1645991 SRR1646024 SRR1646051 SRR1646052 SRR1646071

SRR1646098 SRR1646109 SRR1646113 SRR1646139 SRR1646160 SRR1646163

SRR1646166 SRR1646176 SRR1646197 SRR1646203 SRR1646226 SRR1646228

SRR1646245 SRR1646246 SRR1646255 SRR1646257 SRR1646261 SRR1646262

SRR1646271 SRR1646275 SRR1646276 SRR1646279 SRR1646283 SRR1646284

SRR1646287 SRR1646290 SRR1646349 SRR1646354 SRR1646361 SRR1646362

SRR1646366 SRR1646371 SRR1646372 SRR1646376 SRR1646379 SRR1646383

SRR1646389 SRR1646407 SRR1646408 SRR1646409 SRR1646410 SRR1952820

SRR1952885 SRR1957718 SRR1957733 SRR1957734 SRR1957742 SRR1957744

SRR1957768 SRR1957769 SRR1957772 SRR1957800 SRR1957805 SRR1957815

SRR1957826 SRR1957843 SRR1957848 SRR1957859 SRR1957867 SRR1957876

SRR1957887 SRR1957889 SRR1957901 SRR1957913 SRR1957919 SRR1957936

SRR1957937 SRR1957944 SRR1957945 SRR1957947 SRR1957962 SRR1957964

SRR1957970 SRR1957977 SRR1957985 SRR1957991 SRR1957998 SRR1958016

SRR1958031 SRR1958053 SRR1958063 SRR1958089 SRR1958091 SRR1958096

SRR1958099 SRR1958104 SRR1958125 SRR1958127 SRR1958147 SRR1958149

SRR1958174 SRR1958177 SRR1958178 SRR1958184 SRR1958211 SRR1958224

SRR1958245 SRR1958255 SRR1958263 SRR1958276 SRR1958277 SRR1958282

SRR1958294 SRR1958299 SRR1958300 SRR1958305 SRR1958311 SRR1958319

SRR1958323 SRR1958325 SRR1958326 SRR1958337 SRR1958357 SRR1958358

SRR1958365 SRR1958368 SRR1958376 SRR1958378 SRR1958380 SRR1958387

SRR1958401 SRR1958406 SRR1958425 SRR1958445 SRR1958446 SRR1958455

SRR1958471 SRR1958475 SRR1958480 SRR1958482 SRR1958506 SRR1958509

SRR1958531 SRR1958534 SRR1958543 SRR1958554 SRR1958563 SRR1958566

SRR1958567 SRR1958568 SRR1958569 SRR1958573 SRR1958585 SRR1958586

SRR1958593 SRR1958599 SRR1958602 SRR1958603 SRR1958604 SRR1958611

SRR1958614 SRR1958615 SRR1958622 SRR1958625 SRR1958627 SRR1958632

SRR1958637 SRR1958640 SRR1958643 SRR1958652 SRR1958655 SRR1958658
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SRR1958663 SRR1958666 SRR1958667 SRR1958681 SRR1958686 SRR1959219

SRR1959220 SRR1959221 SRR1959225 SRR1959231 SRR1959235 SRR1959236

SRR1959240 SRR1959241 SRR1959242 SRR1959245 SRR1959264 SRR1959266

SRR1959268 SRR1959270 SRR1959277 SRR1959282 SRR1959283 SRR1959290

SRR1959291 SRR1959293 SRR1959304 SRR1959307 SRR1959309 SRR1959310

SRR1959313 SRR1959317 SRR1959319 SRR1959364 SRR1959365 SRR1959367

SRR1959368 SRR1959394 SRR1959401 SRR1959402 SRR1959410 SRR1959413

SRR1959414 SRR1959418 SRR1959430 SRR1959442 SRR1959445 SRR1959447

SRR1959449 SRR1959450 SRR1959456 SRR1959466 SRR1959474 SRR1959483

SRR1959491 SRR1959494 SRR1959718 SRR1959722 SRR1959725 SRR1960028

SRR1960030 SRR1960039 SRR1960046 SRR1960047 SRR1960055 SRR1960059

SRR1960070 SRR1960079 SRR1960087 SRR1960121 SRR1960130 SRR1960133

SRR1960137 SRR1960142 SRR1960154 SRR1960161 SRR1960183 SRR1960195

SRR1960196 SRR1960201 

 

Klebsiella pneumoniae NTUH_K2044 ERR024819 ERR024821 ERR024822 ERR024823

ERR024824 ERR024831 ERR024832 ERR024835 ERR024836 ERR024837

ERR024839 ERR024840 ERR024843 ERR024845 ERR024848 ERR024851

ERR024854 ERR025098 ERR025100 ERR025103 ERR025107 ERR025109

ERR025111 ERR025113 ERR025115 ERR025116 ERR025117 ERR025118

ERR025119 ERR025121 ERR025125 ERR025128 ERR025135 ERR025137

ERR025139 ERR025140 ERR025141 ERR025142 ERR025143 ERR025144

ERR025146 ERR025147 ERR025150 ERR025151 ERR025152 ERR025154

ERR025156 ERR025159 ERR025160 ERR025462 ERR025464 ERR025465

ERR025468 ERR025469 ERR025470 ERR025471 ERR025472 ERR025473

ERR025475 ERR025477 ERR025478 ERR025479 ERR025482 ERR025483

ERR025484 ERR025485 ERR025486 ERR025489 ERR025492 ERR025494

ERR025495 ERR025496 ERR025497 ERR025498 ERR025499 ERR025501

ERR025502 ERR025503 ERR025504 ERR025505 ERR025506 ERR025510

ERR025511 ERR025512 ERR025515 ERR025516 ERR025517 ERR025518

ERR025519 ERR025520 ERR025521 ERR025522 ERR025523 ERR025524

ERR025525 ERR025527 ERR025529 ERR025531 ERR025532 ERR025534

ERR025535 ERR025536 ERR025538 ERR025540 ERR025541 ERR025542

ERR025543 ERR025544 ERR025545 ERR025546 ERR025547 ERR025548

ERR025550 ERR025553 ERR025554 ERR025555 ERR025557 ERR025558

ERR025561 ERR025562 ERR025563 ERR025564 ERR025566 ERR025570

ERR025571 ERR025572 ERR025574 ERR025575 ERR025576 ERR025581

ERR025583 ERR025585 ERR025589 ERR025590 ERR025593 ERR025594

ERR025595 ERR025596 ERR025597 ERR025600 ERR025601 ERR025602
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ERR025603 ERR025605 ERR025606 ERR025607 ERR025609 ERR025610

ERR025614 ERR025616 ERR025618 ERR025619 ERR025620 ERR025621

ERR025622 ERR025624 ERR025627 ERR025628 ERR025633 ERR025634

ERR025635 ERR025636 ERR025637 ERR025638 ERR025641 ERR025642

ERR025645 ERR025646 ERR025647 ERR025648 ERR025649 ERR025652

ERR025654 ERR025655 ERR025657 ERR025658 ERR025659 ERR025660

ERR025661 ERR025663 ERR025664 ERR025667 ERR025668 ERR025670

ERR025672 ERR025673 ERR025674 ERR025675 ERR025677 ERR025678

ERR025679 ERR025680 ERR025979 ERR025980 ERR025981 ERR025983

ERR025984 ERR025985 ERR025988 ERR025989 ERR025992 ERR025993

ERR025994 ERR025996 ERR025998 ERR026000 ERR026001 

 

Staphylococcus aureus HO_5096_0412 ERR084677 ERR084668 ERR084649 ERR084554

ERR084555 ERR084492 ERR114901 ERR109598 ERR114881 ERR109499

ERR109494 ERR109523 ERR114857 ERR109681 ERR114861 ERR109589

ERR109575 ERR114910 ERR109483 ERR172072 ERR172073 ERR172075

ERR109685 ERR109532 ERR223120 ERR109555 ERR109691 ERR172035

ERR109519 ERR114913 ERR172065 ERR109654 ERR223176 ERR223173

ERR223171 ERR114871 ERR172025 ERR223117 ERR109625 ERR109536

ERR114903 ERR172055 ERR109661 ERR109663 ERR109631 ERR109634

ERR109628 ERR109581 ERR109558 ERR114897 ERR114894 ERR107843

ERR118523 ERR223143 ERR223140 ERR223141 ERR118411 ERR118414

ERR158654 ERR158699 ERR107942 ERR107902 ERR129301 ERR111129

ERR107844 ERR107938 ERR118336 ERR118480 ERR107950 ERR158798

ERR134385 ERR124474 ERR129326 ERR107834 ERR118579 ERR118580

ERR118353 ERR118330 ERR158729 ERR107913 ERR107792 ERR158776

ERR124530 ERR118468 ERR129333 ERR134397 ERR134395 ERR134399

ERR134352 ERR111090 ERR124456 ERR129321 ERR118385 ERR158631

ERR118462 ERR118605 ERR107974 ERR134370 ERR134368 ERR124492

ERR158727 ERR129264 ERR107799 ERR158691 ERR111058 ERR118514

ERR134335 ERR134345 ERR118377 ERR158753 ERR158756 ERR107854

ERR134402 ERR118446 ERR118454 ERR107946 ERR156430 ERR156433

ERR156496 ERR156497 ERR159006 ERR159008 ERR223164 ERR156493

ERR156510 ERR158985 ERR156498 ERR156509 ERR177165 ERR159050

ERR156518 

 

Streptococcus pneumoniae ATCC_700669 ERR039573 ERR039578 ERR039560

ERR039563 ERR039567 ERR039605 ERR039585 ERR039592 ERR039620

ERR039621 ERR039622 ERR039629 ERR039631 ERR047914 ERR047916
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ERR047895 ERR047922 ERR047925 ERR047954 ERR047956 ERR047947

ERR047980 ERR047981 ERR047983 ERR047989 ERR047969 ERR048024

ERR048031 ERR048014 ERR048094 ERR048121 ERR048128 ERR048131

ERR048114 ERR048118 ERR048151 ERR048156 ERR048135 ERR048137

ERR048141 ERR048176 ERR048196 ERR048199 ERR048205 ERR048187

ERR050018 ERR050044 ERR051421 ERR051432 ERR051415 ERR051450

ERR051442 ERR049091 ERR049092 ERR049082 ERR049115 ERR049949

ERR049955 ERR049937 ERR052579 ERR050071 ERR050076 ERR050079

ERR052608 ERR052635 ERR052627 ERR273512 ERR051471 ERR051461

ERR051462 ERR051483 ERR051484 ERR051488 ERR051512 ERR051513

ERR051540 ERR051549 ERR051534 ERR051535 ERR051559 ERR273539

ERR051625 ERR051610 ERR051637 ERR051643 ERR051648 ERR051628

ERR273494 ERR273496 ERR273497 ERR273500 ERR273485 ERR054228

ERR054265 ERR054267 ERR054250 ERR051591 ERR051593 ERR051579

ERR051585 ERR054303 ERR054304 ERR054307 ERR054330 ERR054333

ERR054359 ERR054362 ERR054350 ERR054380 ERR054382 ERR054433

ERR054419 ERR054450 ERR054455 ERR054442 ERR054473 ERR054468

ERR054505 ERR054509 ERR054516 ERR054549 ERR054533 ERR054556

ERR054574 ERR054575 ERR054597 ERR054598 ERR054614 ERR054617

ERR054626 ERR054648 ERR056716 ERR056708 ERR056711 ERR056687

ERR056772 ERR056774 ERR056775 ERR056757 ERR056759 ERR056760

ERR056762 ERR056763 ERR056793 ERR056779 ERR056802 ERR056814

ERR056815 ERR056803 ERR056808 ERR056830 ERR056833 ERR056865

ERR056851 ERR056852 ERR056855 ERR056876 ERR056879 ERR056880

ERR057772 ERR057778 ERR057782 ERR057790 ERR057821 ERR057826

ERR057809 ERR057814 ERR059994 ERR060004 ERR060025 ERR060026

ERR060007 ERR060043 ERR060032 ERR063808 ERR063821 ERR063846

ERR063841 ERR063868 ERR063877 ERR063866 ERR063896 ERR063890

ERR063906 ERR063924 ERR063925 ERR063952 ERR063982 ERR064033

ERR064034 ERR064057 ERR066191 ERR066192 ERR066197 ERR066183

ERR064110 ERR064096 ERR064133 ERR064136 ERR064169 ERR064202

ERR064204 ERR064205 ERR066216 ERR066228 ERR066236 ERR066249

ERR066253 ERR066270 ERR066271 ERR066290 ERR066279 ERR066299

ERR066325 ERR066331 ERR066361 ERR067881 ERR067865 ERR067905

ERR067907 ERR067954 ERR067958 ERR069622 ERR069647 ERR069653

ERR069639 ERR069674 ERR069664 ERR084168 ERR084190 ERR084185

ERR084217 ERR084248 ERR084229 ERR084252 ERR084257 ERR072192

ERR072195 ERR072182 ERR072213 ERR072219 ERR072220 ERR072244

ERR084296 ERR084314 ERR057901 ERR057904 ERR057906 ERR057909
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ERR057941 ERR057963 ERR057966 ERR057977 ERR057978 ERR067777

ERR067789 ERR067808 ERR067811 ERR067795 ERR067825 ERR067826

ERR067820 ERR063859 

 

Mycobacterium tuberculosis H37Rv ERR017792 ERR017798 ERR019568 ERR019569

ERR019573 ERR019852 ERR019871 ERR019875 ERR026636 ERR027462

ERR027466 ERR047884 ERR047890 ERR067606 ERR067607 ERR067628

ERR067632 ERR067637 ERR067656 ERR067659 ERR067671 ERR067674

ERR067677 ERR067682 ERR067686 ERR067703 ERR108424 ERR108439

ERR108442 ERR108453 ERR108458 ERR108463 ERR108480 ERR108482

ERR117449 ERR117465 ERR117467 ERR133801 ERR133812 ERR133847

ERR133851 ERR133858 ERR133870 ERR133871 ERR133892 ERR133897

ERR133901 ERR133902 ERR133905 ERR133913 ERR133918 ERR133919

ERR133924 ERR133940 ERR133947 ERR133951 ERR133954 ERR133963

ERR133981 ERR137208 ERR137213 ERR137217 ERR137219 ERR137224

ERR137225 ERR137229 ERR137247 ERR137251 ERR137266 ERR137280

ERR137281 ERR144546 ERR144551 ERR144556 ERR144567 ERR144572

ERR144573 ERR144576 ERR144579 ERR144600 ERR144602 ERR144615

ERR144625 ERR158570 ERR158580 ERR158585 ERR158586 ERR158592

ERR158600 ERR158603 ERR158610 ERR158612 ERR227978 ERR228018

ERR228020 ERR228021 ERR228025 ERR228026 ERR228045 ERR228057

ERR228062 ERR228066 ERR229937 ERR229940 ERR229945 ERR229952

ERR229958 ERR229972 ERR229973 ERR229974 ERR229979 ERR229983

ERR229992 ERR230000 ERR230006 ERR234561 ERR234575 ERR234587

ERR234597 ERR234614 ERR234621 ERR234627 ERR234638 ERR234642

ERR234672 ERR234675 ERR234676 ERR234678 ERR234681 ERR234683

ERR234690 ERR234695 ERR403216 ERR403246 ERR403247 ERR403252

ERR403254 ERR403257 ERR403273 ERR403274 ERR403289 ERR403312

ERR403314 
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Table S2.2: Information about genes with promoter SNPs in M. tuberculosis. 
 

Genomic_position Number_of_isolates_with_SNP Gene_Prokka_id Gene Product 

27463 4 M_tuberculosis_00030 putative_HTH-type_transcriptional_regulator/MT0026 

27487 5 M_tuberculosis_00030 putative_HTH-type_transcriptional_regulator/MT0026 

66827 1 M_tuberculosis_00070 yvdP putative_FAD-linked_oxidoreductase_YvdP 

136132 1 M_tuberculosis_00125 rmd GDP-6-deoxy-D-mannose_reductase 

163320 1 M_tuberculosis_00149 Bacterial_regulatory_proteins%2C_tetR_family 

277865 1 M_tuberculosis_00252 DNA-binding_transcriptional_regulator_EnvR 

394059 1 M_tuberculosis_00351 ptlI_2 Pentalenene_oxygenase 

684376 3 M_tuberculosis_00624 mce2R_2 HTH-type_transcriptional_regulator_Mce2R 

696916 1 M_tuberculosis_00637 hypothetical_protein 

716376 1 M_tuberculosis_00665 Antitoxin_VapB30 

850239 5 M_tuberculosis_00804 putative_PPE_family_protein_PPE42 

886661 13 M_tuberculosis_00846 Putative_monooxygenase 

919563 1 M_tuberculosis_00881 hypothetical_protein 

919564 1 M_tuberculosis_00881 hypothetical_protein 

935511 1 M_tuberculosis_00898 ubiE_2 Demethylmenaquinone_methyltransferase 

944296 4 M_tuberculosis_00905 hypothetical_protein 

944316 1 M_tuberculosis_00905 hypothetical_protein 

986515 1 M_tuberculosis_00947 hypothetical_protein 

993795 2 M_tuberculosis_00952 hapE_1 4-hydroxyacetophenone_monooxygenase 

10217171 M_tuberculosis_00978 PE_family_protein 

11638083 M_tuberculosis_01108 PE_family_protein 

11723782 M_tuberculosis_01118 slyA_1 Transcriptional_regulator_SlyA 

12415723 M_tuberculosis_01191 Antibiotic_biosynthesis_monooxygenase 

12545431 M_tuberculosis_01205 prpD 2-methylcitrate_dehydratase 

13486381 M_tuberculosis_01286 hypothetical_protein 

15251961 M_tuberculosis_01446 hypothetical_protein 

17087923 M_tuberculosis_01615 epsE_1 Putative_glycosyltransferase_EpsE 

172860350 M_tuberculosis_01626 pks2_3 Phthioceranic/hydroxyphthioceranic_acid_synthase 

172862216 M_tuberculosis_01626 pks2_3 Phthioceranic/hydroxyphthioceranic_acid_synthase 

17335631 M_tuberculosis_01631 hypothetical_protein 

17748471 M_tuberculosis_01667 ripA_2 Peptidoglycan_endopeptidase_RipA_precursor 

18556591 M_tuberculosis_01749 PE_family_protein 

19063071 M_tuberculosis_01787 DivIVA_protein 

20563771 M_tuberculosis_01930 Fatty_acid_hydroxylase_superfamily_protein 

213587014 M_tuberculosis_02004 hypothetical_protein 

21709431 M_tuberculosis_02040 putative_PPE_family_protein_PPE42 

135 



21770491 M_tuberculosis_02046 hypothetical_protein 

217707312 M_tuberculosis_02046 hypothetical_protein 

21873062 M_tuberculosis_02057 fcbB2 4-chlorobenzoyl_coenzyme_A_dehalogenase-2 

222536569 M_tuberculosis_02108 hypothetical_protein 

22299611 M_tuberculosis_02114 putative_HTH-type_transcriptional_regulator/MT2039 

22380101 M_tuberculosis_02126 cmtR HTH-type_transcriptional_regulator_CmtR 

22380331 M_tuberculosis_02126 cmtR HTH-type_transcriptional_regulator_CmtR 

226505913 M_tuberculosis_02151 hypothetical_protein 

22651981 M_tuberculosis_02151 hypothetical_protein 

22718321 M_tuberculosis_02158 putative_cation_efflux_system_protein/MT2084 

22812781 M_tuberculosis_02166 hypothetical_protein 

22812791 M_tuberculosis_02166 hypothetical_protein 

23269091 M_tuberculosis_02204 sigC ECF_RNA_polymerase_sigma_factor_SigC 

261070216 M_tuberculosis_02492 hypothetical_protein 

26843461 M_tuberculosis_02549 hypothetical_protein 

29279392 M_tuberculosis_02764 hypothetical_protein 

29486311 M_tuberculosis_02786 Helix-turn-helix_domain_protein 

308674210 M_tuberculosis_02944 ald Alanine_dehydrogenase 

30867471 M_tuberculosis_02944 ald Alanine_dehydrogenase 

308678818 M_tuberculosis_02944 ald Alanine_dehydrogenase 

33631851 M_tuberculosis_03178 ilvB1 Acetolactate_synthase_large_subunit_IlvB1 

33810821 M_tuberculosis_03199 PE_family_protein 

34194679 M_tuberculosis_03237 Putative_cytochrome_P450_120 

36402891 M_tuberculosis_03457 whiB2 Transcriptional_regulator_WhiB2 

36404081 M_tuberculosis_03457 whiB2 Transcriptional_regulator_WhiB2 

40564531 M_tuberculosis_03827 espA_1 ESX-1_secretion-associated_protein_EspA 

40570363 M_tuberculosis_03828 Soluble_epoxide_hydrolase 

41216742 M_tuberculosis_03893 whiB4 Transcriptional_regulator_WhiB4 

41216757 M_tuberculosis_03893 whiB4 Transcriptional_regulator_WhiB4 

41494882 M_tuberculosis_03919 hypothetical_protein 

41953821 M_tuberculosis_03962 ctpJ putative_cation-transporting_P-type_ATPase_J 

41953903 M_tuberculosis_03962 ctpJ putative_cation-transporting_P-type_ATPase_J 

42054581 M_tuberculosis_03980 osmF

Putative_osmoprotectant_uptake_system_substrate-binding_protein_OsmF_precursor 

432748015 M_tuberculosis_04086 ethA_4 FAD-containing_monooxygenase_EthA 

433659712 M_tuberculosis_04092 gltB_2 Glutamate_synthase_[NADPH]_large_chain 
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