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ABSTRACT 

The extracytoplasmic function (ECF) σ factor, σE is a key regulator of the cell envelope stress 

response in Streptomyces coelicolor. Although its role in maintaining cell wall integrity has been 

known for over a decade, a comprehensive analysis of the genes under its control has not been 

undertaken. Here, using a combination of chromatin immunoprecipitation-sequencing (ChIP-seq), 

microarray transcriptional profiling and bioinformatic analysis, we attempt to define the σE regulon. 
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Approximately half of the genes identified encode proteins implicated in cell envelope function. 17 

novel targets were validated by S1 nuclease mapping or in vitro transcription, establishing a σE 

binding consensus. Subsequently, we used bioinformatic analysis to look for conservation of the σE 

target promoters identified in S. coelicolor across 19 Streptomyces species. Key proteins under σE 

control across the genus include the actin homolog MreB, three penicillin-binding proteins, two L,D-

transpeptidases, a LytR-CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid 

deposition, and a predicted MprF protein, which adds lysyl groups to phosphatidylglycerol to 

neutralize membrane surface charge. Taken together, these analyses provide biological insight into the 

σE-mediated cell envelope stress response in the genus Streptomyces.  

 

INTRODUCTION 

The bacterial cell envelope, made up of the cell wall and cell membranes, is critical in counteracting 

the high intracellular osmotic pressure to maintain cell shape (Silhavy et al., 2010). It also provides an 

essential defensive barrier against various environmental stress agents. The cell envelope facilitates 

the ability of the cell to monitor the external environment and modulate cell behaviour in response 

(Jordan et al., 2008). Numerous antibiotics target the bacterial cell envelope. For example, penicillin 

and other β-lactams mimic the D-alanyl-D-alanine (D-ala-D-ala) terminus of the pentapeptide side 

chain of peptidoglycan and thus block the activity of penicillin binding proteins (PBPs) in the 

elongation and cross-linking of peptidoglycan precursors. Furthermore, vancomycin and other 

glycopeptide antibiotics bind to the D-ala-D-ala terminus and thereby inhibit peptidoglycan cross-

linking (Kahne et al., 2005).  

 

Bacteria employ two major types of signalling system to sense and respond to environmental stresses: 

two-component systems and extracytoplasmic function (ECF) σ factors (Raivio 2005; Jordan et al., 

2008; Mitrophanov and Groisman, 2008; Capra and Laub, 2012).  These two systems are functionally 

analogous in that they generally consist of a membrane protein (a sensor kinase or an anti-σ factor), 

that acts as a stress sensor and a transcription factor (a response regulator or a σ factor) that modulates 

gene expression in response. In the case of two-component systems, the inducing signal leads to the 

autophosphorylation of a membrane-bound sensor kinase. As a result, the kinase phosphorylates its 

cognate response regulator, which then activates transcription of the genes involved in the cellular 

response (Mitrophanov and Groisman, 2008; Capra and Laub, 2012). Similarly, ECF σ factors 

typically control the cellular stress response via an interaction with a cognate anti-σ factor, which is 

usually a transmembrane protein (Mascher, 2013). In the absence of the signal, the anti-σ factor 

sequesters its cognate ECF σ factor to the membrane, inhibiting its activity. The inducing signal 

inactivates the anti-σ factor, either by causing a conformational change in the protein, or by 

proteolysis (Mascher, 2013). In either case, the result is the release of the ECF σ factor, which is then 
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able to direct RNA polymerase (RNAP) to its target promoters and elicit a specific transcriptional 

response. Streptomyces coelicolor σE, the subject of this work, is unusual in that it is not regulated by 

an anti-σ. Instead, S. coelicolor σE activity is controlled at the level of transcription of its structural 

gene (sigE) by a two-component system, CseBC (see below) (Fig. 1). 

 

The roles of the two-component system CpxAR and the ECF σ factor σE in the cell envelope stress 

response of Escherichia coli have been well established (Ruiz and Silhavy, 2005; Guest and Raivio, 

2016). The CpxAR system is induced by a variety of cell envelope stresses including alkaline pH, 

increased osmolality, overexpression of the outer membrane protein NplE, altered membrane 

composition, and the accumulation of pilus subunits or mis-folded MalE aggregates (Guest and 

Raivio, 2016). Activation of CpxAR results in the elevated expression of target genes that are 

involved in envelope protein folding and degradation, such as the periplasmic protease DegP, the 

periplasmic disulfide oxidoreductase DsbA, and the foldase chaperone PpiA (Guest and Raivio, 

2016).  The E. coli ECF σ factor σE mainly responds to stresses that affect the folding of outer 

membrane proteins (OMPs) such as heat shock (Rouvière et al., 1995). In line with this, mutations in 

the OMP folding chaperone also induce the σE stress response (Missiakis et al., 1996). The σE regulon 

includes a variety of genes involved in OMP folding (Rhodius et al., 2005; Dartigalongue et al., 2001) 

and several small RNAs that down-regulate OMP expression, thereby reducing the flow of OMPs to 

the cell envelope (Johansen et al., 2006; Thompson et al., 2007; Udekwu and Wagner, 2003). 

 

In Bacillus subtilis, four two-component systems (LiaRS, BceRS, YvcPQ, YxdJK) and at least four of 

its seven ECF σ factors, σM, σX , σV, σW, have roles in the response to cell envelope stress (Jordan et 

al., 2008; Hastie et al., 2014, 2016; Lewerke et al., 2018). For example, BceRS is strongly induced by 

bacitricin and is involved in bacitracin detoxification (Mascher et al., 2003). σM is activated by a wide 

variety of sources of envelope stress such as vancomycin, bacitracin, phosphomycin and cationic 

antimicrobial peptides (Mascher et al., 2003; Thackray and Moir, 2003; Kingston et al., 2013). Much 

effort has also been made to define the regulatory networks linked to these signalling systems. σM 

contributes to the transcription of genes whose functions are related to transcriptional control, cell 

wall biosynthesis, cell shape determination, cell division, DNA monitoring and repair, and 

detoxification (Eiamphungporn and Helmann, 2008). Approximately 57 genes (30 operons) are direct 

targets of σM under antibiotic stress conditions, including several targets that also belong to the σX 

and/or σW regulons (Eiamphungporn and Helmann, 2008). 

 

Streptomyces coelicolor is a soil dwelling, saprophytic actinobacterium with a complex differentiating 

life cycle involving filamentous growth and sporulation (Flärdh and Buttner, 2009), and it is a well-

established model organism in which to study signal transduction in the Streptomyces genus 

(Hutchings et al., 2004). S. coelicolor encodes 67 paired two-component systems (Hutchings et al., 
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2004), and 51 ECF σ factors (collected from Mist2 database, http://mistdb.com/) (Ulrich and Zhulin, 

2009). Of these, only the two-component systems VanRS and CseBC and the ECF σ factor σE have so 

far been shown to play a role in the cell envelope stress response. VanRS controls the expression of an 

inducible vancomycin resistance cluster of seven genes (vanSRJKHAX) (Hong et al., 2004; Hutchings 

et al., 2006a), and vancomycin activates the VanRS two-component system directly by binding to the 

sensor kinase VanS (Koteva et al., 2010). Expression of the vanHAX genes reprograms cell wall 

biosynthesis such that the stem pentapeptide of peptidoglycan precursors terminate in D-alanyl-D-

lactate (D-Ala-D-Lac), rather than in D-Ala-D-Ala (Hong et al., 2005). The affinity of vancomycin 

for precursors terminating in D-Ala-D-Lac is ~1000-fold lower than for precursors terminating D-

Ala-D-Ala (Bugg et al., 1991), thus rendering S. coelicolor resistant. VanRS responds specifically to 

glycopeptide antibiotics like vancomycin, ristocetin, chloroeremomycin and A47934, but not to other 

cell envelope-specific antibiotics with different modes of action like the phosphoglycolipid 

moenomycin A, the peptide bacitracin and the cyclic depsipeptide ramoplanin (Hong et al., 2004; 

Hutchings et al., 2006a). In contrast, the expression of S. coelicolor σE is induced by a diverse range 

of antibiotics that target the cell wall, including penicillins, cephalosporins, glycopeptides, 

moenomycin A, bacitracin, and ramoplanin (Hong et al., 2002). A sigE mutant shows a 50-fold 

increase in sensitivity to the cell wall hydrolytic enzyme lysozyme and a subtle alteration in its cell 

wall muropeptide profile (Paget et al., 1999a). In addition, sigE mutants require high levels of 

magnesium for normal growth and development and overproduce actinorhodin and form crenelated 

colonies in its absence (Paget et al., 1999a). It therefore seems likely that Mg2+ stabilizes the defect in 

the cell envelope of sigE mutants, thereby suppressing the phenotype. High levels of magnesium are 

known to suppress a wide range of cell envelope defects in bacteria (Formstone and Errington, 2005). 

Thus, while the VanRS system is dedicated to glycopeptide resistance, σE seems to play a much more 

general role in the response of S. coelicolor to cell envelope stress. 

 

The initial characterisation of the S. coelicolor sigE gene led directly to the discovery of the ECF 

subfamily of σ factors 25 years ago (Lonetto et al., 1994). The sigE gene is located in a four-gene 

operon, sigE cseA cseB cseC, with cseA encoding a lipoprotein, cseB encoding a response regulator 

and cseC encoding a membrane-anchored sensor kinase (Fig. 1). Approximately 90% of transcription 

terminates directly downstream of the sigE gene and transcription of sigE is completely dependent on 

the two-component system, CseBC (Paget et al., 1999b; Hong et al., 2002). By analogy with other 

two-component systems, it seems likely that in response to cell envelope stress, the sensor kinase 

CseC auto-phosphorylates before phosphorylating its cognate response regulator CseB, that in turn 

directs the transcription of sigE (Paget et al., 1999b; Hong et al., 2002) (Fig. 1). The sigE promoter 

seems to be the sole target of CseB since the sigE mutant and cseB mutant show the same phenotype 

and constitutive expression of σE complements the lysozyme sensitivity of S. coelicolor lacking CseB 

(Paget et al., 1999b). The function of the lipoprotein CseA remains unknown, but deletion of cseA 
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results in upregulation of the sigE promoter, raising the speculative possibility that CseA might 

modulate the activity of the signal transduction system by interacting with the extracytoplasmic 

domain of the CseC sensor kinase (Hutchings et al., 2006b). The absence of an anti-σ and the 

requirement of a two-component system for transcription of sigE sets this system apart from other 

well characterized ECF σ factor regulatory mechanisms. Thus, despite having the same name, S. 

coelicolor σE is distinct from both E. coli σE and Mycobacterium tuberculosis σE, which instead 

employ an anti-σ factor to control ECF σ factor activity (Sineva et al., 2017).  

 

Despite the critical role of σE in modulating the cell envelope stress response in S. coelicolor, only 

two in vivo targets have so far been described: the hrdD gene, encoding another σ factor (Paget et al., 

1999a), the function of which is poorly understood (Buttner et al., 1990; Strakova et al., 2014), and 

the 12-gene cwg operon, predicted to be involved in the biosynthesis of a cell wall glycan (Hong et 

al., 2002). To gain a broader picture of the physiological function of σE in the cell envelope stress 

response in Streptomyces, here we use a combination of ChIP-seq, microarray transcriptional profiling 

and bioinformatic analysis to define the regulon of genes under σE control. Over 50 targets were found 

to be directly involved in cell envelope-related functions and many other targets are implicated in 

signal transduction systems. Finally, we used bioinformatic analysis to identify S. coelicolor σE target 

promoters that are conserved across the Streptomyces genus. The σE-directed cell envelope stress 

response characterized here is likely to be specific to the streptomycetes, because the sigE-cseABC 

operon appears to be absent outside this genus (http://www.microbesonline.org/ [Dehal et al., 2010]). 

 

RESULTS AND DISCUSSION 

Identification of the σE regulon. To define the genes under direct control of σE, we used chromatin 

immuno-precipitation coupled with high-throughput sequencing (ChIP-seq). To do this, we first 

constructed a strain of S. coelicolor that lacked sigE at its native locus but expressed an N-terminally 

triple-FLAG-tagged version of σE from the ΦBT1 integration site. As shown in Fig. S1, expression of 

3×FLAG-σE in trans, under control of its native promoter, restores the resistance of S. coelicolor to 

lysozyme to wild-type levels. Furthermore, Western blot analysis showed that vancomycin induced 

expression of 3×FLAG-σE (Fig. 2A) in the same way that it induces expression of native σE in wild-

type S. coelicolor (Hong et al., 2002). 

 

ChIP-seq was conducted using M2 anti-FLAG antibody after 30 minutes of treatment with 

vancomycin to induce 3×FLAG-σE expression. The congenic wild-type S. coelicolor strain M600 was 

used as a negative control to eliminate any false signals that might arise from cross-reaction of the 

anti-FLAG antibody with other DNA binding proteins. In addition, total (non-immunoprecipitated) 

input DNA was also subjected to sequencing. This additional control enables non-uniform shearing of 

the chromosome to be taken into account (Teytelman et al., 2009). Using P< 10-4, as the threshold for 
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significance, a total of ~200 peaks were detected in the FLAG-tagged SigE strain (Fig. 2B and Table 

S1). Notably, only a few small peaks were detected in the wild type M600 control strain expressing 

the non-tagged version of σE (Fig. 2B). Next, we looked for candidate σE target promoter sequences 

for each ChIP-seq target, based on the conservation of AAC and TC, respectively, in the -35 and -10 

regions of the two previously characterised σE target promoters, hrdD and cwg (Paget et al., 1999a; 

Hong et al., 2002). Restricting our search to within 400 bp of the start codon of the downstream gene, 

we identified 91 putative σE target promoters through this route (Table 1).  

 

To determine how σE influences the expression of its target genes, S. coelicolor M600 and the 

congenic sigE mutant were subjected in parallel to time-resolved, genome-wide transcriptional 

profiling following treatment with vancomycin. Note that the transcriptional profiling data for the 

wild-type (but not for the sigE mutant) has been published previously (Hesketh et al., 2011). Some σE 

ChIP-seq targets were vancomycin inducible in wild-type S. coelicolor and were completely depended 

on sigE for expression (Fig. 3 and Fig. S2). However, other σE ChIP-seq targets were vancomycin 

inducible in the wild type and retained vancomycin inducibility to varying degrees in the sigE mutant 

(Figs. 4-5 and Fig. S2). This phenomenon was investigated further by analysing the transcription of a 

selection of genes using S1 nuclease protection assays, covering the full range of σE ChIP-seq target 

genes all the way from those showing complete dependence on sigE, such as sco3396, mprF 

(sco3397), sco4263 and sco7657 (Fig. 3), to those showing little or none, such as sco3194 (Fig. 5).  

 

Validation and classification of σE targets by S1 nuclease mapping. The promoters of 17 σE target 

genes [sco2334,  mreB (sco2611), sco2897, sco3044, sco3194, sco3396, mprF (sco3397), sco3712, 

sco4134, sco4263, sco4471, sco4847, sco4934, sco5030, sco5358, sco7233 and sco7657] were 

characterised using S1 nuclease protection assays. The results confirmed that the genes identified by 

ChIP-seq do indeed dependent upon σE for their expression (Fig. 6 and data not shown). This was 

further confirmed by in vitro transcription experiments using purified σE and the promoters of mreB, 

sco2334, sco3194, sco3396 and sco4471 (Fig. S3 and data not shown). Subsequently, we divided the 

17 σE target genes into three classes, based on the number of promoters upstream of each gene and 

their dependence on σE, as determined by S1 nuclease protection assays (Fig. 6) and the time-

resolved, genome-wide transcriptional profiling (Figs. 3-5 and Fig. S2). Class I genes (sco3396, 

mprF, sco4263, sco7233, sco7657) represent targets that have a single promoter that is completely 

dependent on σE for its expression (Fig. 6A). In line with the results of the S1 nuclease protection 

assays, microarray transcriptional profiling showed that the transcription of Class I targets is induced 

in the presence of vancomycin in the wild type and is entirely dependent upon sigE (Fig. 3). Class II 

genes [sco2334, sco2897, sco3044, sco3712, sco4134, sco4471, sco4847, sco5030, sco5358 and the 

12-gene cwg operon previously characterised as a σE target (Hong et al., 2002)] represent targets that 
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have a single promoter that is partially dependent on σE (Fig. 6B). Once again, in agreement with the 

S1 nuclease protection assays, microarray transcriptional profiling showed clear induction by 

vancomycin and partial dependence upon sigE (Fig. 4). Finally, Class III genes (mreB, sco3194, hrdD 

and sco4934) represent targets that have more than one promoter, one of which is partially or wholly 

dependent on σE for its expression (Fig. 6C and data not shown). The multiple promoters of S. 

coelicolor hrdD and mreB were characterised by S1 nuclease mapping previously (Buttner et al., 

1990; Burger et al., 2000). The transcription of these four genes is increased on addition of 

vancomycin but the dependence on sigE is subtle (especially for sco3194 and sco4934). (Fig. 5). 

Looking across all three classes of σE target gene, the differences in the number of promoters and the 

extent of dependence of the σE target promoter on σE allows target genes to be expressed with a wide 

range of induction ratios. 

 

The S1 mapping data were then used to identify the -10 and -35 recognition sequences for the 17 

novel targets tested, additionally including the previously characterised hrdD and cwg promoters 

(Buttner et al., 1990; Hong et al., 2002) (Fig. 7). Based on these validated promoter sequences, a σE 

consensus was generated (Fig. 7) using WebLogo (Crooks et al., 2004). It is noteworthy that no 

unambiguous distinction exists between the predicted -35 and -10 binding motifs of those promoters 

that are completely dependent on σE and those that exhibit partial dependence, although it seems that 

the latter class are significantly enriched for a G at position 2 of the -10.  

 

The majority of the σE target promoters tested by S1 mapping are only partially dependent on sigE, 

suggesting that there are additional ECF σ factors that also recognize these promoters. Further, most 

of these promoters remain vancomycin-inducible in the sigE mutant, implying the additional ECF σ 

factors involved also respond to cell envelope stress. Overall, these results suggest there is a network 

of two or more ECF σ factors that cooperate with σE to maintain cell envelope integrity in S. 

coelicolor, which is perhaps unsurprising given there are 51 ECF σ factors in this species. 

Overlapping promoter specificity between different ECF σ factors has been described in several 

bacterial genera. For example, multiple ECF σ factors are involved in the cell envelope stress 

response in B. subtilis, and three of them, σM, σW and σX, can all contribute to the transcription of a 

common promoter from the same start site (Kingston et al., 2013; Mascher et al., 2007). The 

predicted consensus binding motifs for these ECF σ factors are highly similar, with some target 

promoters belonging to one regulon or the other and other target promoters belonging to more than 

one regulon (Mascher et al., 2007). It has been shown that single nucleotide changes in the -10 motif 

can determine whether a given promoter is recognised by σX, σW, or both (Qin and Helmann, 2001). 

In addition, it has also been shown that the presence or absence of a homopolymeric T-tract between 

the -35 and -10 elements contributes to promoter selectivity between σM, σW, σX and σV in Bacillus 

(Gaballa et al., 2018). Finally, there is also a clear analogy with the oxidative stress response in 
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Streptomyces. Many promoters in S. coelicolor that are recognised by the oxidative stress response σ 

factor, σR, retain some activity in a sigR null mutant and these promoters are frequently still induced 

by oxidative stress in that background, implying that there is also a network of related ECF σ factors 

that coordinate the response to oxidative damage in Streptomyces (Paget et al., 2001; Kim et al., 

2012). 

 

Genes of the σE regulon. Over half of the genes under control of σE encode proteins relating to the 

cell-envelope (Table 1). These proteins include those involved in cell wall peptidoglycan assembly, 

cell wall teichoic acid deposition, lateral cell wall synthesis and sporulation, as well as membrane 

modification and maintenance of integrity (Table 1). A further 15 σE target genes encode proteins 

involved in signal transduction and gene regulation (including the σ factor, HrdD) emphasizing the 

pleiotropic role of σE. Indeed, HrdD itself is predicted to regulate the expression of over 80 genes, 

including a further 31 genes that themselves encode regulatory proteins (Strakova et al., 2014). 

Hesketh et al. (2015) used mass spectrometry to analyze changes in the S. coelicolor proteome upon 

vancomycin-induced stress. In line with the work presented here, they identified several proteins 

encoded by σE target genes that increased in abundance in response to vancomycin treatment, 

including σHrdD and the products of sco1647, sco2368 and sco4494. 

  

I. Cell wall peptidoglycan elongation and assembly. Six σE target genes encode pencilling binding 

proteins (PBPs). PBPs are involved in the final stage of peptidoglycan synthesis, catalysing its 

polymerization and cross-linking outside the membrane (Macheboeuf et al., 2006; Sauvage et al., 

2008). PBPs are broadly divided into two classes: the high molecular weight (HMW) PBPs and the 

low molecular weight (LMW) PBPs. Based on their structure and specific catalytic activity, the HMM 

PBPs are further sub-divided into two classes: A and B (Macheboeuf et al., 2006). Class A enzymes 

have an N-terminal glycosyltransferase domain involved in glycan chain elongation and a C-terminal 

transpeptidase domain involved in cross-linking the pentapeptide stems of the glycan units 

(Macheboeuf et al., 2006; Sauvage et al., 2008). This class of PBP is critical for cell growth in some 

bacteria such as in E. coli, where deletion of the two class A PBPs, (PBP1a and PBP1b) is lethal 

(Denome et al., 1999). Similarly, in Streptococcus pneumoniae, deletion of the class A PBPs PBP1a 

and PBP2a appears to be lethal (Hoskins et al., 1999). The σE target genes sco2897, sco3901 and 

sco5039 (sco3901 is a σE target in ChIP-seq but the bioinformatically predicted σE-binding site is 

>400 bp upstream, Table S1) encode proteins belonging to this subclass and they are the only three 

class A HMW PBPs among more than 20 PBPs in S. coelicolor. It has been shown that deletion of 

any of these three PBPs results in decreased vancomycin resistance (Hesketh et al., 2011).  
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The σE target sco1875 encodes a class B HMW PBP and a sco1875 mutant exhibits increased 

sensitivity towards both vancomycin and bacitracin (Hesketh et al., 2011). In contrast to class A 

HMW PBPs, class B HMW PBPs do not include an N-terminal glycosyltransferase domain, but rather 

an N-terminal domain thought to be involved in cell morphogenesis via interaction with partner 

proteins (Macheboeuf et al., 2006; Sauvage et al., 2008). For example, in E. coli, the class B PBP FtsI 

is recruited by the cell division protein FtsW to the site of cell division (Mercer and Weiss, 2002). In 

M. tuberculosis, a class B HMW PBP (PBPA) is required for cell division and maintenance of cell 

shape, and phosphorylation of PBPA by the serine/threonine kinase PknB is suggested to regulate the 

positioning of PBPA at the cell septum, thereby modulating peptidoglycan synthesis (Dasgupta et al., 

2006). Some class B HMW PBPs such as PBP2a from methicillin-resistant S. aureus (MRSA) 

(Chambers, 1997; Katayama et al., 2004; Lim and Strynadka, 2002) and PBP5fm from Enterococcus 

faecium (Fontana et al., 1994; Sauvage et al., 2002) have a low affinity for penicillin and thus give 

rise to β-lactam resistance.  

 

The σE targets sco4439 and sco4847 encode putative D-ala-D-ala carboxypeptidases. These are LMM 

PBPs involved in the cleavage of the terminal alanine of the pentapeptide stems of the glycan chain 

and thus modulate peptidoglycan maturation or recycling (Macheboeuf et al., 2006; Sauvage et al., 

2008).  

 

Among the six σE target genes that encode PBPs, sco2897 and sco4847 are induced by vancomycin 

(Fig. 4) and have been confirmed by S1 nuclease protection assays to be transcribed from a single 

promoter that is partially dependent on σE (Fig. 6B and data not shown). Microarray transcriptional 

profiling also shows that sco1875, sco4439 and sco5039 are induced by vancomycin and that 

transcription is partially dependent on σE (Fig. S2). These findings suggest that σE-directed PBP 

expression is likely to be an important component of the response to cell envelope damage in 

Streptomyces. 

 

II. An alternative pathway to peptidoglycan cross-linking. The target of β-lactam antibiotics is the 

D,D-transpeptidase activity of HMW PBPs, responsible for the synthesis of 4→3 cross-links between 

peptide side chains in the peptidoglycan of bacterial cell walls. The σE targets sco3194, sco4934 (both 

encoding lipoproteins, the latter secreted through the Tat pathway; Thompson et al., 2010) and 

sco0736 encode proteins that contain a L,D-transpeptidase catalytic domain (Pfam: YkuD). Such 

proteins cross-link peptidoglycan by forming 3→3 cross-links between peptide side chains (Hugonnet 

et al., 2014). This bypasses the typical 4→3 transpeptidase activity of PBPs, thus promoting 

resistance to β-lactams (Biarrotte-Sorin et al., 2006). The peptidoglycan of M. tuberculosis is rich in 

3-3 cross links, which are suggested to play a role in the adaptive response of the bacteria during 

stationary phase (Lavollay et al., 2008). L,D-transpeptidase activity is also employed by E. coli in the 
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attachment of Braun’s lipoprotein (BLP) to the peptidoglycan (Magnet et al., 2007). BLP is involved 

in cell envelope integrity through the connection of the outer membrane to the peptidoglycan layer 

(Yem and Wu, 1978; Hayashi and Wu, 1990). Transcription of sco0736, sco3194 and sco4934 is 

highly induced by vancomycin and partially dependent on σE (Figs. 5 and 6C, Fig. S2, and Table S1).  

 

III. Cell wall teichoic acid deposition. The σE targets sco3044 and sco5358 encode proteins in the 

LytR-CpsA-Psr (LCP) family and expression of sco3044 in particular depends heavily on σE (Figs. 4 

and 6B). LCP proteins are involved in the attachment of wall teichoic acid (WTA) and capsular 

polysaccharides to the peptidoglycan of the bacterial cell wall (Kawai et al., 2011). WTA can 

constitute up to 60% of the Gram-positive cell wall and has roles in the regulation of cell division, cell 

shape determination, antibiotic resistance, and pathogenesis (Brown et al., 2013). In B. subtilis, there 

are three LCP homologs and deletion of all three genes results in a failure to deposit WTA at the cell 

envelope (Kawai et al., 2011). Similarly, deletion of all three LCP genes in Staphylococcus aureus 

leads to release of WTA into the extracellular medium (Chan et al., 2013) and abnormalities in 

septum placement and cell separation (Over et al., 2011). Transcription of the LCP gene msrR in S. 

aureus is induced by cell wall disrupting agents such as β-lactams, glycopeptides, and lysostaphin, 

and deletion of msrR results in increased sensitivity to methicillin and teicoplanin (Rossi et al., 2003). 

These observations implicate the σE response in the maintenance of cell wall components other than 

peptidoglycan. 

 

IV. The cytoskeleton, cell wall synthesis and sporulation. Unexpectedly, mreB was found to be a 

σE target (Fig. 5). MreB is an actin homolog that acts in rod-shaped bacteria like E. coli, B. subtilis 

and Caulobacter crescentus as a cytoskeletal element to direct peptidoglycan biosynthesis in the 

lateral wall (Errington, 2015). However, in contrast to rod-shaped bacteria, Streptomyces hyphae do 

not grow by inserting new cell wall material in the lateral wall, but rather by tip extension and by 

initiating new branches de novo. This polar mode of growth does not require MreB and is instead 

directed by a polarisome complex involving DivIVA, Scy and FilP (Bush et al., 2015). Rather, MreB 

appears to direct spore wall thickening, localising under the membrane at spore septa at cell division 

before spreading around the immature spore (Mazza et al., 2006; Kleinschnitz et al., 2011). However, 

mreB is abundantly transcribed during vegetative growth (Fig. 5) (Burger et al., 2000), suggesting that 

MreB might have an additional role unconnected to sporulation. S. coelicolor mreB mutants sporulate 

poorly and overproduce actinorhodin (Mazza et al., 2006), and the sigE null mutant exhibits similar 

characteristics (Paget et al., 1999a). 

 

This study also identified the whiB gene, encoding the key developmental transcription factor WhiB, 

as a σE target. WhiB is essential for the initiation of sporulation septation in Streptomyces (Bush et al., 

2015, 2016; Bush, 2018), and in M. tuberculosis the expression of the WhiB orthologue WhiB2 is 
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induced by cell wall-inhibiting agents (isoniazid, ethambutol, and cycloserine) (Geiman et al., 2006). 

S. coelicolor whiB has two promoters, and the upstream promoter was previously shown to be 

recognised by σE in a run-off assay (Soliveri et al., 1992; Kang et al., 1997). The transcription of whiB 

is highly induced by vancomycin in a σE dependent manner (Table 1). Unexpectedly, these 

observations suggest that whiB might play a significant role in the σE–mediated cell envelope stress 

response.  

 

V. Membrane modification. The σE target sco3397 encodes a homolog of B. subtilis MprF (multiple 

peptide resistance factor) (24% identity, 50% similarity) (Table 1). Transcription of sco3397 is highly 

induced by vancomycin and is completely dependent on σE (Figs. 3 and 6A). MprF proteins are 

lysylphosphatidylglycerol synthases that catalyse the transfer of L-lysine from lysyl-tRNA to the 

negatively charged lipid phosphatidylglycerol, thus neutralizing the membrane surface charge. This 

enhances resistance to cationic antimicrobial peptides (CAMPs) and antibiotics through repulsion 

(Ernst et al., 2009). MprF has also been shown to affect resistance to vancomycin and daptomycin in 

S. aureus (Ruzin et al., 2003; Nishi et al., 2004; Friedman et al., 2006). In S. coelicolor, a sco3397 

mutant shows markedly increased sensitivity towards both vancomycin and bacitracin (Hesketh et al., 

2011), in line with a role in the cell envelope stress response.  In addition to Sco3397, there is a 

second homolog of B. subtilis MprF in S. coelicolor (Sco6384), but the sco6384 gene is not a σE 

target. 

 

VI. Maintenance of membrane integrity. The σE target sco2168 encodes a PspA (phage shock 

protein A) homolog (Vrancken et al., 2008). PspA is the major effector of the phage shock protein 

(Psp) system present in many bacteria. The Psp system plays a role in the adaptive response to 

multiple extracytoplasmic stresses, blocking stress-induced membrane damage and the resulting 

dissipation of the proton motive force (Joly et al., 2010). In Streptomyces lividans, the pspA gene is 

strongly induced under stress conditions that attack membrane activity and is essential for growth and 

survival under most of these conditions (Vrancken et al., 2008). Both PspA and its paralog LiaH are 

induced as part of the cell envelope stress response in B. subtilis (Jordan et al. 2008). While PspA is 

under control of σW, LiaH is the primary target of the LiaRS two-component system and is strongly 

induced by antibiotics targeting the membrane-anchored steps of cell wall biosynthesis (Wiegert et al. 

2001; Wolf et al. 2010). 

 

The σE target sco4471 encodes a novel lipoprotein that contributes to lysozyme resistance. The σE 

target gene sco4471 encodes a lipoprotein (Thompson et al., 2010) and is heavily but not completely 

dependent on sigE for its transcription (Figs. 4 and 6B). Furthermore, sco4471 expression increases 

dramatically in response to induction, being more than 20-fold higher in wild-type S. coelicolor than 
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the sigE mutant after treatment with vancomycin (Fig. 4 and Table S1). Deletion of sco4471 resulted 

in a four-fold increase in sensitivity to lysozyme compared to wild type (Fig. S4), suggesting that loss 

of sco4471 expression contributes to the ~50-fold increase in lysozyme sensitivity seen in the sigE 

mutant relative to the wild type (Paget et al., 1999a). As shown in Fig. S4, the sco4471 mutant also 

displays minor abnormalities in spore size and shape. 

 
Conservation of σE target promoters across the Streptomyces genus. Following our identification 

of the genes under σE control in S. coelicolor, we searched bioinformatically to determine if the 

promoters of these σE target genes were conserved across the panel of 19 Streptomyces species listed 

in Table S2. Given the high conservation of the σ2 and σ4 domains (that bind the -10 and -35 promoter 

elements, respectively) in the σE orthologs across the 19 species (Fig. S5), we anticipated that these 19 

σE orthologs would recognize highly similar or identical promoter motifs to S. coelicolor σE. 

Accordingly, two promoter position weight matrices (PWMs) with a 16 bp or 17 bp spacer between 

the -35 region and -10 region were generated from 19 validated σE S. coelicolor target promoter 

sequences. These two PWMs were then used to predict all possible σE binding sites that lie 10-200 bp 

of the start codon of the downstream gene across the 19 genomes. In S. coelicolor, this prediction 

detected each of the 19 in vitro validated σE targets and over 70% of the targets identified in our ChIP-

seq experiments (Table 1), suggesting suitable parameters for accurate prediction.  

 

This analysis predicts that 21 of the 91 σE target promoters identified in S. coelicolor are conserved 

across at least nine of the 19 Streptomyces genomes (Fig. 8). These 21 genes (equivalent to sco0736, 

sco1875, sco2255, sco2419, mreB, sco2807, sco2892, pkaA, sco3396, mprF, sco4120, sco4134, 

sco4439, sco4471, sco4613, sco4934, sco5030, sco5039, sco5358, sco5742, sco7657) include 9 

targets (mreB, sco3396, mprF, sco4134, sco4471, sco4934, sco5030, sco5358 and sco7657) validated 

in our S1 mapping and in vitro transcription experiments. mreB is present in all 19 predicted σE 

regulons, and the gene encoding the secreted protein that contributes to lysozyme resistance, sco4471, 

is present in 18/19 predicted σE regulons. Also among the products of these 21 genes are the PBPs 

Sco1875, Sco4439 and Sco5039, the L,D-transpeptidases Sco0736 and Sco4934, the putative MprF 

protein Sco3397, and the LytR-CpsA-Psr family protein Sco5358. sco2255, sco2892, sco3396, 

sco4134 and sco7657 encode cell envelope-associated enzymes, whereas sco2419, sco2807, sco4613, 

sco5030 and sco5742 encode cell envelope proteins of completely undefined function (Table 1). 

Finally, PkaA (Sco2974) is a Ser/Thr protein kinase and Sco4120 is predicted to be a regulatory 

protein (Table 1).   

 

Conclusions. This study reveals the complex regulatory network activated by σE in response to cell 

envelope-induced stress (Fig. 9). In particular, it shows that key proteins under σE control include the 

actin homolog MreB, multiple PBP and L,D-transpeptidases, a LytR-CpsA-Psr-family protein 
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involved in cell wall teichoic acid deposition, PspA, involved in the maintenance of membrane 

integrity, and a putative MprF protein, predicted to add lysyl groups to phosphatidylglycerol to 

neutralize membrane surface charge, potentially contributing to resistance to cationic antimicrobial 

peptides and antibiotics. 

 

EXPERIMENTAL PROCEEDURES 
 
Bacterial strains, plasmids and oligonucleotides. Bacterial strains, plasmids and primers in this 

study are listed in Table S3.  

 

Construction of a 3×FLAG-σE-complemented S. coelicolor strain. In order to engineer an S. 

coelicolor strain expressing a form of σE with an N-terminal, triple-FLAG tag 

(DYKDHDGDYKDHDIDYKDDDDK), a pMS82-derived construct was created via a two-step 

fusion-PCR approach. In the first step, the cosmid STE94 was used as a template for two separate 

PCR-reactions. The first reaction amplified the promoter region of the sigE gene using the primer pair 

P13NFLAGSigE and P23NFLAGSigE. The second reaction amplified the coding region of the sigE gene using 

the primer pair P33NFLAGSigE and P43NFLAGSigE. Together the P23NFLAGSigE andP33NFLAGSigE primers 

contain the sequence encoding the triple-FLAG tag via a 24bp overlapping section. In the second step, 

the primers P13NFLAGSigE and P43NFLAGSigE were used to amplify the entire sigE gene and its promoter, 

fusing the two products from step 1 together and incorporating the 3×FLAG tag sequence between 

them. The P13NFLAGSigE and P43NFLAGSigE primers additionally contain the HindIII and KpnI sites 

respectively to enable cloning into HindIII, KpnI-cut pMS82. The resulting vector was then 

introduced into the ΔsigE mutant J2130 (Paget et al., 1999a) by conjugation using the dam dcm hsdS 

E. coli strain ET12567 containing pUZ8002. 

 

Lysozyme sensitivity tests. Lysozyme sensitivity tests for the wild-type strain M600, the sigE mutant 

J2130, and the 3×FLAG-σE-complemented sigE mutant strain were performed as described previously 

(Paget et al., 1999a). Briefly, 2×106 spores of S. coelicolor were spread onto a Difco Nutient Agar 

(DNA) plate to make a confluent lawn. 5 µl of 1 mg/ml lysozyme was then diluted in a two-fold series 

and spotted onto the freshly spread spore lawns before incubation at 30oC for two days.  Lysozyme 

sensitivity tests were carried out on the wild-type strain M600 and the ∆sco4471 mutant in the same 

way but using lysozyme concentrations ranging from 3.75 mg/ml to 0.0075 mg/ml, generated as a 

two-fold dilution series. 

 

Western blot analysis. The sigE mutant (J2130) and the 3×FLAG-sigE complemented derivative 

were incubated in 5 ml TES buffer (250 mM N-[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic 

acid, pH7.2) for 10 min at 50oC and germination carried out in 5 ml 2×PG (0.5 ml of 10% yeast 
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extract, 0.25 ml of 20% casamino acids, 0.05 ml of 1M CaCl2 and 4.2 ml of H2O) medium for 2-3 h. 

Following this, germinated spores were span down at 4500×g for 10 min and inoculated into 50 ml 

NMMP medium in 250 ml canonical flasks with springs to achieve a final OD450 of 0.010, then grown 

at 30oC, shaking at 250 rpm. At OD450~ 0.6, vancomycin was added to a final concentration of 10 

µg/ml and samples were collected at 15 min intervals for 1 hour.  

 

For Western blotting, for each time point, 5 ml culture was taken and spun down at 3000 rpm for 1 

min. Cells were washed in 5ml ice-cold sonication buffer [20 mM Tris pH 8.0, 5 mM EDTA, 

1×EDTA-free protease inhibitors (Roche)] and finally resuspended in 1 ml before sonication (5×5 sec 

on, 15 sec off) at 4.5 micron amplitude. Lysates were then centrifuged at 16,000×g for 15 min at 4oC 

to remove cell debris. Total protein concentration was determined using the Bradford assay (Biorad). 

Equal amounts of total protein from each sample were loaded on a 12.5% polyacrylamide SDS-PAGE 

gel. After electrophoresis, transfer was carried out to a Hybond-C Extra nylon membrane (Amersham 

Pharmacia Biotech) using the Invitrogen XCell II Blot system. For detection of 3×FLAG-σE, anti-σE 

polyclonal antibody raised in rabbit was diluted in a ratio of 1:300. 3×FLAG-σE was visualised via an 

anti-rabbit IgG alkaline phosphatase secondary antibody (sigma A8025), diluted 3:5000 and detected 

directly on the membrane using the SigmaFast system (Sigma) that uses BCIP/NBT (5-Bromo-4-

chloro-3-indolyl phosphate/Nitro blue tetrazolium) as a substrate. 

 

RNA isolation and DNA microarray analysis. RNA isolation from S. coelicolor was performed as 

described previously (Hong et al., 2002). Total RNA was isolated from mycelium harvested from 5 

ml liquid cultures using an RNeasy Midi Kit (Qiagen) according to the manufacturer’s instruction 

with some modifications. The cell pellet was resuspended in TE buffer containing lysozyme (10 mM 

Tris, pH 8, 1mM EDTA, 15 mg/ml lysozyme) and incubated at room temperature for 60 minutes. 

RLT buffer (Qiagen) was added (4 ml) and samples were sonicated 3 cycles ON-OFF on ice at 18 

micron amplitude and for 20 seconds. Samples were then extracted twice with 

Phenol:Chloroform:Isoamyl Alcohol 25:24:1 saturated with 10 mM Tris, pH 8.0, 1 mM EDTA (2 ml) 

and once with chloroform (4 ml). Extracts were mixed with 100% ethanol and applied to RNeasy 

Midi columns.  Purified RNA was eluted with 300 µl RNase-free water. Affymetrix Gene Chip 

hybridization and data collection were essentially as described before (Hesketh et al., 2009; Bibb et 

al., 2012).  The CEL files received from the scanner were read into the R package for statistical 

computing (Team, 2012) using the ReadAffy function of the affy package (Gautier et al., 2004). The 

rma function of the affy package was used to compute an ExpressionSet object from the CEL files. 

This ExpressionSet object contains the expression values (log2) for each gene in each CEL file. The 

function lmFit of the limma package (Smyth, 2005) along with a suitable design matrix, was used to 

combine replicate arrays into single coefficients of expressions for each gene at each time point or 

strain into an MArrayLM object. Expression values were retrieved from the MArrayLM object and 
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subjected to a per gene normalization to the median before being used to generate the graphs shown in 

this paper. 

 

Chromatin immunoprecipitation Sequencing. Spores of the S. coelicolor wild-type strain M600 

and the congenic 3×FLAG-σE-complemented sigE mutant spores were germinated and grown as 

described for the Western blot analysis. For the Chromatin immunoprecipitation (ChIP), the cell-

envelope stress response was induced by treatment with vancomycin to a final concentration of 10 

µg/ml and for 30 min. Following this, formaldehyde was added to cultures at a final concentration of 

1% (v/v) and incubation was continued at 30oC with shaking for a further 30 min. Glycine was then 

added to a final concentration of 125 mM to stop the cross-linking. Cells were then harvested, lysed, 

sonicated and the immunoprecipitation conducted via M2 (Sigma Aldrich A2220) gel suspension. 

Subsequent steps were conducted as described by Bush et al. (2013). Notably, for each tested strain, 

while immunoprecipitated DNA was used as a ChIP (input) sample, the non-immunoprecipitated total 

DNA was used as a reference sample. Sequence analysis was conducted as described by Bush et al. 

(2013).  

 

Data availablilty. The anti-FLAG-σE ChIP-seq data and microarray transcriptional profiling data 

have been deposited at the MIAME-compliant ArrayExpress database 

(https://www.ebi.ac.uk/arrayexpress/) under accession numbers ???????? (ChIP-seq data), E-MEXP-

3032 (WT microarray transcriptional profiling data), and ???????? (sigE mutant microarray 

transcriptional profiling data). Editor - the remaining data is currently being submitted to 

ArrayExpress and these accession numbers will be added at the proof stage. 

 

S1 nuclease mapping. To generate the probes, a reverse primer within 80 bp downstream of the 

startcodon of each gene was first labelled with [ɣ-32P] ATP. Amplification was then conducted from 

a template using the labelled reverse primer and a forward primer 400 bp upstream of the start codon. 

For all assays, 30 μg of RNA and 25 pmol of labelled probe were dissolved in 20 μl of sodium TCA 

buffer and hybridized at 45oC overnight after denaturation at 65oC for 15 min. Primer sequences used 

in S1 nuclease mapping are listed in Table S3. Sequencing ladders were generated by using 

Sequenase™ Version 2.0 DNA Sequencing Kit (USB Europe GMBH).  

 

Purification of σE and in vitro transcription assays. σE was overexpressed and purified to 

homogeneity as described previously (Paget et al., 1999a). Run-off transcription assays were 

performed using [α-32P]-CTP (Perkin Elmer) at 3000 Ci mmol−1 as described previously (Buttner et 

al., 1987). Reaction mixtures contained 1.25 pmol of E. coli core RNA polymerase (Epicentre 

Technologies) and 6 pmol of σE. Transcripts were analysed on a 6% (w/v) polyacrylamide-7 M urea 
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gel using a heat-denatured, 32P-labelled HpaII digest of pBR322 as size standards. Cold RNase-free 

PCR probes generated as for the S1 mapping experiments were used as templates.  

 

Construction of a sco4471 mutant. A sco4471 mutant in which the coding region was replaced with 

an apramycin resistance (apr) cassette was generated using ‘Redirect’ PCR targeting (Gust et al., 

2003). Cosmid D65 was introduced into E. coli BW25113 containing pIJ790 and the relevant gene 

was replaced with the apr-oriT cassette amplified from pIJ773 using the primer pair SCO4471KOFW 

and SCO4471KORV (Table S3). The resulting disrupted cosmid was confirmed by restriction 

digestion and by PCR analysis using appropriate flanking primers (Table S3) and introduced into S. 

coelicolor by conjugation via the methylation-deficient E. coli strain ET12567 (dam dcm hsdS) 

carrying the driver plasmid pUZ8002. Null mutant derivatives, generated by double crossing over, 

were identified by their apramycin-resistant, kanamycin-sensitive phenotypes, and their chromosomal 

structures were confirmed by PCR analysis using appropriate flanking primers (Table S3) and by 

Southern hybridization.  

 

Scanning electron microscopy of the S. coelicolor sco4471 mutant. For scanning electron 

microscopy, five-day old colonies were mounted on the surface of an aluminium stub with optimal 

cutting temperature compound (BDH Laboratory Supplies, Poole, England). The stub was then 

immediately plunged into liquid nitrogen slush at approximately -210oC to cryo-preserve the material 

and transferred to the cryostage of an ALTO 2500 cryotransfer system (Gatan, Oxford, England) 

attached to a Zeiss Supra 55 VP field emission gun scanning electron microscope (Zeiss SMT, 

Germany). The surface frost was sublimated at -95°C for 3 min before the sample was sputter coated 

with platinum for 2 min at 10 mA at below -110oC. After sputter-coating, the sample was moved onto 

the cryo-stage in the main chamber of the microscope, held at approximately -130 oC. The sample was 

imaged at 3kV and digital TIFF files were stored. 

 

Prediction of the promoter motif associated with each ChIP-seq target. Initially, at least 200 bp 

sequences surrounding the highest enriched “25 bp” genomic region of all the ChIP-seq targets were 

extracted. Then, over-represented 2-block motifs mimicking a typical promoter with conserved “-35” 

and “-10” regions were identified in the forward strand of these sequences by the BioProspector 

program using the parameters: “W=4”, “w=5”, “G=17”, “g=16” and “G-g=1 bp” ( “W” and “w” stand 

for the length of the upstream and downstream motifs, respectively; “G” and “g” stand for the 

maximum and minimum distances between the 2 blocks, respectively) (Liu et al., 2001). 2-block 

motifs were obtained from iterative searches using all combinations of these parameters. After 40 

reinitializations, the highest scoring motifs were then selected to represent the σE binding sites since 

they highly resemble the previous reported σE promoter motif.  
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Bioinformatic analysis of the conservation of S. coelicolor σE target promoters across 19 

Streptomyces genomes. Two promoter PWMs, PWM_19_16 and  PWM_19_17, were built from the 

19 validated S. coelicolor σE promoter sequences shown in Fig. 7 by restricting the spacer between the 

-35 region and -10 region to be 16 bp and 17 bp, respectively. In the case of PWM_19_16, one base 

was removed from the non-conserved region of the sco3194 and sco4934 promoters respectively, 

whereas, in the case of PWM_19_17, one base was added into the non-conserved region of each 

promoter with 16 bp between the -35 region and -10 region. Then, these promoter PWMs were used 

to search for putative σE binding sites from 19 Streptomyces spp. chromosome sequences using the 

Virtual Footprint version 3.0 tool incorporated into the PRODORIC server 

(http://www.prodoric.de/vfp/vfp_regulon.php) (Münch et al., 2005; Grote et al., 2009) with the 

parameters: “Non-Occurrence Penalty=None”, “Sensitivity =1”, “Core Sensitivity/Size =1/6”. 

Searches were restricted to sequences between 10 and 200 bp upstream from the start codon of the 

closest predicted coding sequence. Orthologues of these targets were searched for in each 

Streptomyces genome using BlastP. S. coelicolor σE target promoters predicted to be conserved in at 

least 9 of the 19 genomes analysed are shown in Fig. 8.    
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FIGURE LEGENDS 

Fig. 1. Model for the σE cell envelope stress response.  Expression of the gene encoding σE (sigE) is 

regulated at the level of transcription by the CseB/CseC two-component signal transduction system.  

In response to signals originating in the cell envelope when it is under stress, the sensor kinase, CseC, 

becomes autophosphorylated and transfers this phosphate to the response regulator, CseB.  Phospho-

CseB activates the promoter of the sigE operon, and σE is recruited by core RNA polymerase to 

transcribe its regulon. Note that >90% transcription from the sigE promoter terminates just 

downstream of sigE and that the promoter of the sigE gene itself is not a σE target. CseA is a 
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lipoprotein localised to the extracytoplasmic face of the cell membrane and loss of the CseA results in 

upregulation of the sigE promoter. 

 

Fig. 2. (A) Western blot analysis of S. coelicolor ΔsigE attBΦBT1::3×FLAG-sigE grown in NMMP 

liquid cultures and sampled after 0, 15, 30, 45 and 60 mins treatment with 10 µg/ml vancomycin. 10 

µg total protein was loaded per lane and 3×FLAG-σE was detected using anti-σE polyclonal antibody. 

(B) Chromosome-wide distribution of σE binding sites in S. coelicolor identified by ChIP-seq 

analysis. ChIP-seq was conducted using M2 anti-FLAG antibody on the ΔsigE attBΦBT1::3×FLAG-

sigE strain after 30 minutes treatment with 10µg/ml vancomycin. The wild-type strain (expressing 

non-tagged σE from the native locus) analysed under the same conditions was used as a negative 

control. 

 

Fig. 3. ChIP-seq (above) and microarray transcriptional profiling data (below) for the Class I σE target 

genes sco3396, mprF (sco3397), sco4263, sco7233 and sco7657. Class I targets have a single 

promoter that is completely dependent on σE for its transcription (see, for example, Fig. 6A). Colour-

coding of the ChIP samples is as follows: S. coelicolor M600 (WT, blue), ΔsigE attBΦBT1::3×FLAG-

sigE (SigE-FLAG, red). Plots span approximately 3 kb of DNA sequence. Genes running left to right 

are shown in yellow, and genes running right to left are shown in blue. The black arrow indicates the 

gene subject to σE-dependent transcription. Color-coding of the microarray data is as follows: S. 

coelicolor M600 (WT, blue squares), sigE null mutant J2130 (∆sigE, red triangles). In each panel the 

x-axis indicates the time in minutes (0, 30, 60 or 90) after the addition of 10 µg/ml vancomycin, and 

the y-axis indicates the per gene normalized transcript abundance (log2). 

 

Fig. 4. ChIP-seq (above) and microarray transcriptional profiling data (below) for the Class II σE 

target genes sco2334, sco2897, sco3044, sco3712, sco4134, sco4471, sco4847, sco5030, sco5358, and 

the 12-gene cwg operon (sco6179-6190). Class II targets have a single promoter that is partially 

dependent on σE for its transcription (see, for example, Fig. 6B). In the ChIP-seq panels, the black 

arrows indicate the genes subject to σE-dependent transcription. In the microarray transcriptional 

profiling panels, the x-axis indicates the time in minutes (0, 30, 60 or 90) after the addition of 10 

µg/ml vancomycin, and the y-axis indicates the per gene normalized transcript abundance (log2). See 

the legend to Fig. 3 for explanation of the colour-coding. 

 

Fig 5. ChIP-seq (above) and microarray transcriptional profiling data (below) for the Class III σE 

target genes mreB (sco2611), sco3194, hrdD (sco3202) and sco4934. Class III targets have multiple 

promoters, one of which is partially or wholly dependent on σE (see, for example, Fig. 6C). In the 

ChIP-seq panels, the black arrows indicate the genes subject to σE-dependent transcription. In the 
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microarray transcriptional profiling panels, the x-axis indicates the time in minutes (0, 30, 60 or 90) 

after the addition of 10 µg/ml vancomycin, and the y-axis indicates the per gene normalized transcript 

abundance (log2). See the legend to Fig. 3 for explanation of the colour-coding. 

 

Fig. 6. Examples of S1 nuclease protection assays of σE target genes, divided into three classes. (A) 

Class I genes, having a single promoter that is completely dependent on σE. (B) Class II genes, having 

a single promoter that is partially dependent on σE. (C) Class III genes, having multiple promoters, 

one of which is partially dependent on σE. RNA was prepared from S. coelicolor M600 (WT) and the 

sigE null mutant J2130 (ΔsigE) after 0, 30, 60 and 90 mins treatment with 10 µg/ml vancomycin. In 

(C), p4 is the σE target promoter of the sco3194 gene. 

 

Fig 7. Alignment of the -10 and -35 recognition sequences of the 17 σE target promoters characterised 

by S1 mapping, additionally including the previously characterised hrdD and cwg promoters (Buttner 

et al., 1990; Hong et al., 2002). The target genes are divided into Class I (one promoter, completely 

dependent upon σE), Class II (one promoter, partially dependent upon σE) and Class III targets 

(multiple promoters, one at least partially dependent upon σE). The corresponding σE consensus 

sequence, generated using WebLogo (Crooks et al., 2004), is shown above the alignment.  

 

Fig. 8. Bioinformatic analysis of the conservation of S. coelicolor σE target promoters across 19 

Streptomyces genomes, showing the 21 S. coelicolor σE target promoters that are predicted to be 

conserved in at least 9 Streptomyces genomes. Black indicates no ortholog of the target gene is found 

in the designated genome. Grey indicates the ortholog of the target is found, but the σE binding 

consensus is not present between within 200 bp upstream of the open reading frame. Yellow, orange 

and red indicate that an ortholog of the target is found and that there is a σE binding consensus within 

200 bp upstream of the open reading frame. The σE binding consensus of each target was predicted by 

the Virtual Footprint version 3.0 tool incorporated into the PRODORIC server 

(http://www.prodoric.de/vfp/vfp_regulon.php) (Münch et al., 2005; Grote et al., 2009) and a 

PRODORIC score was given to reflect the quality of the prediction. The yellow to red linear gradient 

indicates the Prodoric score of the σE binding site from the minimum value to the maximum value. 

The abbreviations used for each species are the same as those listed in Table S2. The phylogenetic 

relationship between these Streptomyces strains is shown by the phylogenetic tree of their 16s rDNA 

at the bottom.  

 

Fig. 9. Mechanisms underlying the σE-dependent cell envelope stress response.  Key proteins 

under σE control include the actin homolog MreB, multiple PBPs and L,D-transpeptidases, a LytR-

CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid deposition, PspA, involved 

in the maintenance of membrane integrity, and a predicted MprF protein that adds lysyl groups to 
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phosphatidylglycerol to neutralize membrane surface charge, potentially contributing to resistance to 

cationic antimicrobial peptides and antibiotics. 
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Table 1. The σE regulon in S. coelicolor 

σE target gene Product Predicted promoter sequence 
Distance to 
start codon 

(bp) 

sco0662-0664 
Membrane transport protein; 2-hydroxyacid 
dehydrogenase; Hypothetical protein 

AGCAACCTCGGCTACAACATGGT-
GGTCTT 360 

sco0736 L,D-transpeptidase 
CGCAACCAAAGCCGCCGGACGGC-

GGTCTA 70 

sco0849-0848 Membrane protein; Putative oxidoreductase 
AGGAACGGATAGGTGTTCTTCGC-

CATCCC 306 

sco0877-0879 
LuxR-type transcriptional regulator; Hydrolase; AAA 
domain protein 

GCCAACGAGGGCCGGACGCCGGC-
CGTCCC 18 

sco1023-1024 Membrane protein; Hypothetical protein  
GGGAACCCCGTCCTGGGTCCGCG-

CGTTGG 97 

sco1168 Hypothetical protein 
CTGAACCTCACGCGCGCGGAGCA-

CGTCGT 249 

sco1647 Hypothetical protein (Pfam: Pup_ligase) 
ACCAACCCCGACGACTGGGCCCG-

CATCTC 362 

sco1738 Hypothetical protein 
TCGCACGACGCCTGCGCGCACAC-

CGTCTT 384 

sco1755 Hypothetical protein 
GACAACCAGAAGGCAGGGTTCCG-

GGTCTA 38 

sco1875 HMW PBP 
GGGAACGACCGCCGCCCGCCCGTTCGTCC

T 
18 

sco2055 Membrane protein 
CGGAACCAATTCTCTCAGACCCG-

CGTCCG 171 

sco2168-2167 
(pspA) 

Phage shock protein A homolog; Hypothetical protein 
GGGAACGATCCGGCAACGCCGGT-

CGTCTG 262 

sco2255 Membrane protein  
CGGAACTCCGCGGGACGGCCCGTACGTCC

T 105 

sco2294-2293 
Putative AraC family transcription regulator; 
Hypothetical protein (Pfam: EamA) 

GGACACCGCGGGATTCCTCTGAT-
CGTCTG 23 

sco2334 Membrane protein 
GCCAACGTTTCCGTTCGAATTAT-

CGTCTT 54 

sco2368 Hypothetical protein 
GGCAACGTCTCGCGCGCCTACGG-

CGTCTT 317 

sco2419-2410 Operon of membrane proteins 
TACGACCACTACTTCAACCTCTT-

CCTCTC 224 

sco2611-2609 
(mreBCD) 

Lateral cell wall biosynthesis 
GGGAACGGATCCCACCGTTGGCC-

CGTCTC 157 

sco2629 Membrane protein 
TTCAACTACAAGTTCCCCGACAC-

GGTCTT 171 

sco2807 Membrane protein  
GGCAACCCGAGGGGCGATGCCCG-

CGTCTA 122 

sco2892 Membrane protein (Pfam: Lipase_GDSL_2) 
CGGAACGGAACACAAGTTCCCGG-

CGTCTG 113 

sco2897 HMW PBP, cell wall biosynthesis 
GGGAACGGAACCCGCGGTGCGAG-

AGTCTT 260 

sco2939 Hypothetical protein 
GGCAACGAGTGCGTCCCCCCACG-

CGTCCT 36 

sco2974 
(pkaA) Ser/Thr protein kinase 

GGCAACCACGGGACCGGGTCGAG-
CGTCTT 108 

sco2975 Hypothetical protein 
CGTGACCGATCTCAAGCGGACGG-

CATTCG 221 

sco3034 
(whiB) 

Sporulation regulatory protein 
CGGAACGGGATCGATCGCCGGGG-

CGTCCT 238 

sco3044 
LytR-CpsA-Psr (LCP) family protein, wall teichoic acid 
deposition 

AGTGACCTGAGGGGCCCCGCACG-
CGTCTG 335 

sco3098 
Putative secreted protein (Pfam: Transglycosylase, 
LysM domain) 

GTCAACCGCCGCGTGGTCCCCGT-
CGTCTT 15 

sco3194 L,D-transpeptidase, lipoprotein 
GGGAACCCCACGGGCCGCCGGGCACCTCT

A 46 

hrdD 
(sco3202)  

RNA polymerase sigma factor 
GGCAACCCTCAGGCGGTACGGGC-

CGTCTT 375 

sco3342-3341 Glycine-rich secreted protein; Hypothetical protein 
GGGAACGGTGTGCCGGGCCGAGCGGCTCT

T 74 

sco3396 Hypothetical protein (Pfam: Esterase) 
CGGAACCTCGCCCGACATTTCCT-

CATCTG 151 

sco3397 
(mprF) 

Putative MprF lysylphosphatidylglycerol synthase, 
membrane protein 

GTGAACCTCTCCCTCCGAGACAC-
CGTCCT 95 

sco3419 Hypothetical protein 
CTCAACGGCGACACCATGCTGGA-

CGCCTT 137 
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sco3424 Putative regulator, similar to AbaA and BldB 
GGGAACGACTTCTCGGGCCCCGG-

CGTCGT 164 

sco3481 Hypothetical protein 
TGGAACGACTACCTGGTCGCCAC-

CGTCTT 207 

sco3548 Putative anti-sigma factor 
TGCAACCAGGAGCGCATTCTCAA-

GATCTT 182 

sco3559 Oxidoreductase 
GGGCACGGCGCCGGGTTGCGTAG-

GGTCTT 4 

sco3712 Putative hydrolase, similar to polysaccharide deacetylase 
GGGATCCCGCGGCGGGTTTCTCC-

CGTCCT 5 

sco3728 Membrane protein 
GGGAACGGATCGGCGGCCGGCAG-

CGTCGT 46 

sco3761 Hypothetical protein 
GGGAACCTCGGCATGACCGTGTT-

CGTCTC 47 

sco3900-3899 Hypothetical protein (Pfam: PadR); Hypothetical protein 
CAAAACCCCCGCGGCCCGAAGTT-

CACCTC 142 

sco3972 Hypothetical protein (Prim-Pol domain) 
TGGAACCCGGCGACGGACCCGGG-

CGTCCT 317 

sco4042 Membrane protein (Pfam: LytR_C) 
TCGAACCTCGGAACGTCGACTGATCATCT

A 60 

sco4069 Membrane protein 
CCGAACCCGGCAGGCCCCGGCTC-

CGTCTC 259 

sco4120 Hypothetical protein 
AGGAACTCCCCCGGCCACCGGGG-

CGTCTG 145 

sco4133 Membrane protein 
TGGAACGTATCAACGGGGACCGTGCGTTC

C 84 

sco4134 Putative lipoprotein 
GGGAACCCGCGCCCCCACACCCC-

CGTCTC 33 

sco4159-4158 GlnR transcriptional regulatory protein 
GCGAACCGGGCACGACCACAAAC-

CGTCCC 16 

sco4253 Hypothetical protein 
AGAAACGCCGGGCGTCCGCCAGG-

GGTCTT 158 

sco4263 Transcriptional regulator 
CACCACCGTTCACCGCAGTCGTT-

CGTCTG 38 

sco4289 Secreted protein 
GACAACGTCACGGACGGTTCCCC-

CGCCTG 110 

sco4439 LMW PBP; cell wall biosynthesis 
TGGAACCAGTAGGTATGTCGTTCTCGTCT

T 222 

sco4468-4467 Hypothetical proteins 
GACAACCGCCCCCAACGCCGTGC-

CGTCTG 169 

sco4471 Lipoprotein 
CGGAACCCGCTCGTTCGTCGCGT-

CCTCTC 38 

sco4494 Hypothetical protein 
AGTAACCGGGGCGTACCGTTGACCCGTCT

G 19 

sco4582 Membrane protein 
GGCAACCCGACCGGAACCTGTGC-

CCTCCC 345 

sco4613 Membrane protein 
CGCAACCACCCGGCGCGGTCGGAACGTCC

T 88 

sco4651 Putative lipoprotein 
AGAAACCACAAGATCGTTCGAAC-

CGTTTC 105 

sco4847 LMW PBP; cell wall biosynthesis 
CGCAACCCGATGACCCCGACGAC-

CGTCCC 271 

sco4849 Membrane protein  
GAGGACGTCACGGACGCCCTGAG-

CGTCCC 20 

sco4904 Membrane protein (Pfam: VanZ) 
CGGAACCGCACACGGCGGGGGGCGCGTCT

A 
7 

sco4934 L,D-transpeptidase, lipoprotein 
GGCAACCGCCGCCCGGGGTTTCGTCGTCT

C 
172 

sco4968 Membrane protein 
CGGAACGGCGTACCAGCCGCTGAAGGTCT

A 
347 

sco5030 Membrane protein  
CTCAACCTCGCGCAGCCCCTCAC-

CGTCTT 94 

sco5039 HMW PBP, cell wall biosynthesis 
CACAACCTTGAACCCCGCTCGTA-

CGTCGG 335 

sco5049 Hypothetical protein  
GCGAACTGTCCGACTTGAATTTCACCTTT

C 212 

sco5213 Membrane protein  
GCGAACCGGCTCCGGGTCCTCGA-

CGTCTT 198 

sco5255 Signal peptidase protein 
GCAAACAGGCGGGAAAGCATGAAGCGTTC

C 132 

sco5310 Hypothetical protein 
GGGAACGGGCCGCCACGCGCGCA-

CGTTCT 124 

sco5358 
LytR-CpsA-Psr (LCP) family protein, wall teichoic acid 
deposition 

TGCAACCCTGTCCCGAGTTCCGC-
CGTCTG 108 

sco5535-5336 
(accB-accE) 

Acetyl-CoA carboxylase complex subunits 
TGTGACCTCTACAAGCCAGAGGC-

CCTCTG 117 
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sco5705 Hypothetical protein  
GCGAACGCGCTCTCCCCGGCCCG-

CGTCTC 304 

sco5742 Membrane protein 
GGGCACCTGAAGGGGCGTTCGTT-

CGTCTG 49 

sco5856 Membrane protein 
CGGAACTAATGGTTTCGGCCGCA-

CGTCCC 52 

sco5981 Hypothetical protein  
GCGAACCCTCAGCCTCCTCAGAC-

CCTCTT 29 

sco6028 Putative ribonuclease 
CGGAACGTTCCGTCGGCGGGCTC-

CGTCGA 122 

sco6130 Hypothetical protein (HATPase domain) 
CTCCACCCCCGTCCCCACGTGAG-

CGCCTC 21 

sco6178-6177 Putative deacetylase; Hypothetical protein 
ATGAACCGCGTATATACACGCAG-

CGTATA 50 

sco6179-6190 
(cwg operon) 

Cell wall glycan synthesis 
CGCAACCTGGTCCCCGTTTTCGT-

CGTCTT 147 

sco6262-6263 Putative helicase; Hypothetical protein  
CGAGACCACCGGTGCCGGTCTCGACGTCT

T 389 

sco6357-6353 3 membrane proteins; Response regulator; Sensor kinase  
GGGAACGTTCCTCACTCCGCCAT-

CGTCTA 88 

sco6379 Membrane protein  
TGGAACGGTCCTCACCCCGCTGC-

CGTCTA 88 

sco6750 Putative IPP isomerase 
GCGGACGGCCCGGGGGCGCGCACGCACCG

G 234 

sco6773 Putative peptidase (Lysin motif domain) 
GGGAACCCTTCGCTTGTCCCTGTGCGTCT

T 224 

sco6832-6833 Methylmalonyl-CoA mutase; isobutyryl-CoA mutase 
GGCGACCGTGCTGCGGAGCCCAA-

CATCTT 242 

sco6979-6982 
Solute-binding lipoprotein; ABC transporter membrane 
protein; ABC transporter membrane ATP binding 
protein; Hypothetical protein  

CTCAACCTCCGCCAGGGGTACGCCCGTCT
G 322 

sco7233 Membrane protein 
GGCAACCCGAAGGATCTCCATCC-

CCTCCT 69 

sco7657-7658 Membrane protein; Hypothetical protein 
GACAACCGGGCATCCGAGCGCTC-

CCTCTC 75 

sco7730 Hypothetical protein  
CGAGACCGACGCCCCGGCGCGGACCATCC

T 245 

scot11 tRNA-Met 
GGGAACCGCGCGGCACGCTGCGG-

AGTCCT 107 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

References 
 
Biarrotte-Sorin, S., Hugonnet, J.-E., Delfosse, V., Mainardi, J.-L., Gutmann, L., Arthur, M., and 
Mayer, C. (2006) Crystal structure of a novel β-lactam-insensitive peptidoglycan transpeptidase, J 
Mol Biol 359: 533-538. 
 
Bibb, M. J., Domonkos, Á., Chandra, G., and Buttner, M. J. (2012) Expression of the chaplin and 
rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σBldN and a cognate 
anti�sigma factor, RsbN, Mol Microbiol 84: 1033-1049. 
 
Brown, S., Santa Maria, J.P., and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria, Ann 
Rev Microbiol 67: 313-36. 
 
Bugg, T.D.H., Wright, G.D., Dutka-Malen, S., Arthur, M., Courvalin, P., and Walsh, C.T. (1991) 
Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a 
depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. 
Biochemistry 30: 10408-10415.   
 
Burger, A., Sichler, K., Kelemen, G., Buttner, M.J., and Wohlleben, W. (2000) Identification and 
characterization of the mre gene region of S. coelicolor A3(2).  Mol Gen Genet 263: 1053-1060. 
 
Bush, M.J., Bibb, M.J., Chandra, G., Findlay, K.C., Buttner, M.J.  (2013) Genes required for aerial 
growth, cell division, and chromosome segregation are targets of WhiA before sporulation in 
Streptomyces venezuelae. mBio 4: e00684-13. 
 
Bush, M.J., Tschowri, N., Schlimpert, S., Flärdh, K., and Buttner, M.J.  (2015) c-di-GMP signalling 
and the regulation of developmental transitions in streptomycetes. Nature Rev Microbiol 13: 749-760. 
 
Bush, M.J., Chandra, G., Bibb, M.J., Findlay K.C., and Buttner, M.J. (2016) Genome-wide chromatin 
immunoprecipitation sequencing analysis shows that WhiB is a transcription factor that co-controls its 
regulon with WhiA to initiate developmental cell division in Streptomyces. mBio 7: e00523-16. 
 
Bush, M.J. (2018) The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 
110: 663-676. 
 
Buttner, M. J., Fearnley, I. M., and Bibb, M. J. (1987) The agarase gene (dagA) of Streptomyces 
coelicolor A3(2): nucleotide sequence and transcriptional analysis, Mol Gen Genet 209: 101-109. 
 
Buttner, M.J., Chater, K.F., and Bibb, M.J. (1990) Cloning, disruption, and transcriptional analysis of 
three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2), J Bacteriol 172: 3367-
3378. 
 
Capra, E.J., and Laub, M.T. (2012) Evolution of two-component signal transduction systems. Annu 
Rev Microbiol 66: 325-347. 
 
Chambers, H. F. (1997) Methicillin resistance in staphylococci: molecular and biochemical basis and 
clinical implications, Clin Microbiol Rev 10: 781-791. 
 
Chan, Y. G., Frankel, M. B., Dengler, V., Schneewind, O. and Missiakas, D. (2013) Staphylococcus 
aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the 
extracellular medium. J Bacteriol 195: 4650-4659. 
 
Crooks, G. E., Hon, G., Chandonia, J.-M. and Brenner, S. E. (2004) WebLogo: a sequence logo 
generator, Genome Res 14: 1188-1190. 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Dartigalongue, C., Missiakas, D. and Raina, S. (2001) Characterization of the Escherichia coli σE 
Regulon, J Biol Chem 276: 20866-20875. 
 
Dasgupta, A., Datta, P., Kundu, M., and Basu, J. (2006) The serine/threonine kinase PknB of 
Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for 
cell division, Microbiology 152: 493-504. 
 
Dehal, P. S., Joachimiak, M. P., Price, M. N., Bates, J. T., Baumohl, J. K., Chivian, D., Friedland, G. 
D., Huang, K. H., Keller, K. and Novichkov, P. S. (2010) MicrobesOnline: an integrated portal for 
comparative and functional genomics, Nucleic Acids Res 38: D396-D400. 
 
Denome, S. A., Elf, P. K., Henderson, T. A., Nelson, D. E., and Young, K. D. (1999) Escherichia coli 
mutants lacking all possible combinations of eight penicillin binding proteins: viability, 
characteristics, and implications for peptidoglycan synthesis, J Bacteriol 181: 3981-3993. 
 
Eiamphungporn, W., and Helmann, J. D. (2008) The Bacillus subtilis σM regulon and its contribution 
to cell envelope stress responses, Mol Micro 67: 830-848. 
 
Ernst, C. M., Staubitz, P., Mishra, N. N., Yang, S.-J., Hornig, G., Kalbacher, H., Bayer, A. S., Kraus, 
D., and Peschel, A. (2009) The bacterial defensin resistance protein MprF consists of separable 
domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Path 5: e1000660. 
 
Errington, J. (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13: 
241-8  
 
Flärdh, K., and Buttner, M. J. (2009) Streptomyces morphogenetics: dissecting differentiation in a 
filamentous bacterium, Nat RevMicrobiol 7: 36-49. 
 
Fontana, R., Aldegheri, M., Ligozzi, M., Lopez, H., Sucari, A., and Satta, G. (1994) Overproduction 
of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus 
faecium. Antimicrobial Agents and Chemotherapy 38: 1980-1983. 
 
Formstone, A., and Errington, J. (2005) A magnesium-dependent mreB null mutant: implications for 
the role of mreB in Bacillus subtilis. Mol Microbiol 55: 1646-57. 
 
Friedman, L., Alder, J. D., and Silverman, J. A. (2006) Genetic changes that correlate with reduced 
susceptibility to daptomycin in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 50, 
2137-2145. 
 
Gaballa, A., Guariglia-Oropeza, V., Dürr, F., Butcher, B.G., Chen, A.Y., Chandrangsu, P., and 
Helmann, J.D. (2018) Modulation of extracytoplasmic function (ECF) sigma factor promoter 
selectivity by spacer region sequence. Nucleic Acids Res 46: 134–145. 
 
Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004) affy—analysis of Affymetrix 
GeneChip data at the probe level. Bioinformatics 20: 307-315. 
 
Geiman, D. E., Raghunand, T. R., Agarwal, N., and Bishai, W. R. (2006) Differential gene expression 
in response to exposure to antimycobacterial agents and other stress conditions among seven 
Mycobacterium tuberculosis whiB-like genes, Antimicrobial Agents and Chemotherapy 50: 2836-
2841. 
 
Grote, A., Klein, J., Retter, I., Haddad, I., Behling, S., Bunk, B., Biegler, I., Yarmolinetz, S., Jahn, D. 
and Münch, R. (2009) PRODORIC (release 2009): a database and tool platform for the analysis of 
gene regulation in prokaryotes, Nucleic Acids Res 37: D61-D65. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
Guest, R.L., and Raivio, T.L. (2016) Role of the Gram-negative envelope stress response in the 
presence of antimicrobial agents. Trends Microbiol 24: 377–390. 
 
Gust, B., Challis, G. L., Fowler, K., Kieser, T., and Chater, K.F. (2003) PCR-targeted Streptomyces 
gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor 
geosmin. Proc Natl Acad Sci USA 100: 1541-1546. 
 
Hastie, J.L., Williams, K.B., Sepúlveda, C., Houtman, J.C., Forest, K.T., and Ellermeier, C.D. (2014) 
Evidence of a bacterial receptor for lysozyme: binding of lysozyme to the anti-σ factor RsiV controls 
activation of the ECF σ factor σV. PLoS Genet 10: e1004643. 
 
Hastie, J.L., Williams, K.B., Bohr, L.L., Houtman, J.C., Gakhar, L., and Ellermeier, C.D. (2016) The 
anti-sigma factor RsiV is a bacterial receptor for lysozyme: co-crystal structure determination and 
demonstration that binding of lysozyme to RsiV Is required for σV activation. PLoS Genet 12: 
e1006287. 
 
Hayashi, S., and Wu, H. C. (1990) Lipoproteins in bacteria, Journal of Bioenergetics and 
Biomembranes 22: 451-471. 
 
Hesketh A, Kock H, Mootien S, and Bibb M. (2009) The role of absC, a novel regulatory gene for 
secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol 
Microbiol 74: 1427-44. 
 
Hesketh, A., Hill, C., Mokhtar, J., Novotna, G., Tran, N., Bibb, M. and Hong, H.-J. (2011) Genome-
wide dynamics of a bacterial response to antibiotics that target the cell envelope, BMC Genomics 12: 
226. 
 
Hesketh, A., Deery, M., and Hong, H.-J. (2015) High-resolution mass spectrometry based proteomic 
analysis of the response to vancomycin-induced cell wall stress in Streptomyces coelicolor A3(2), J 
Proteome Res 14: 2915-28. 
 
Hong, H. J., Paget, M.S.P., and Buttner, M.J. (2002) A signal transduction system in Streptomyces 
coelicolor that activates the expression of a putative cell wall glycan operon in response to 
vancomycin and other cell wall�specific antibiotics, Mol Microbiol 44: 1199-1211. 
 
Hong, H. J., Hutchings, M. I., Neu, J. M., Wright, G. D., Paget, M.S.P., and Buttner, M. J. (2004) 
Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a 
novel gene (vanK) required for drug resistance Mol Microbiol 52: 1107-1121. 
 
Hong, H.-J., Hutchings, M.I., Hill, L.M., and Buttner, M.J. (2005) The role of the novel Fem protein 
VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280: 13055-13061. 
 
Hoskins, J., Matsushima, P., Mullen, D. L., Tang, J., Zhao, G., Meier, T. I., Nicas, T. I., and Jaskunas, 
S. R. (1999) Gene disruption studies of penicillin-binding proteins 1a, 1b, and 2a in Streptococcus 
pneumoniae. J Bacteriol 181: 6552-6555. 
 
Hugonnet, J.E., Haddache, N., Veckerlé, C., Dubost, L., Marie, A., Shikura, N., Mainardi, J.L., Rice, 
L.B., Arthur, M. (2014) Peptidoglycan cross-linking in glycopeptide-resistant Actinomycetales. 
Antimicrob Agents Chemother 58: 1749-56. 
 
Hutchings, M. I., Hoskisson, P. A., Chandra, G., and Buttner, M. J. (2004) Sensing and responding to 
diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces 
coelicolor A3 (2). Microbiology 150: 2795-2806. 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Hutchings, M. I., Hong, H. J., and Buttner, M. J. (2006a) The vancomycin resistance VanRS 
two�component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59: 923-935. 
 
Hutchings, M. I., Hong, H.-J., Leibovitz, E., Sutcliffe, I. C., and Buttner, M. J. (2006b) The σE cell 
envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J 
Bacteriol 188: 7222-7229. 
 
Johansen, J., Rasmussen, A. A., Overgaard, M., and Valentin-Hansen, P. (2006) Conserved Small 
Non-coding RNAs that belong to the σE Regulon: Role in Down-regulation of Outer Membrane 
Proteins. J Mol Biol 364: 1-8. 
 
Joly, N., Engl, C., Jovanovic, G., Huvet, M., Toni, T., Sheng, X., Stumpf, M. P., and Buck, M. (2010) 
Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to 
physiology. FEMS Microbiol Rev 34: 797-827. 
 
Jordan, S., Hutchings, M. I., and Mascher, T. (2008) Cell envelope stress response in Gram�positive 
bacteria. FEMS Microbiol Rev 32: 107-146. 
 
Kahne, D., Leimkuhler, C., Lu, W., and Walsh, C. (2005) Glycopeptide and lipoglycopeptide 
antibiotics, Chem Rev 105: 425-448. 
 
Kang, J.-G., Hahn, M.-Y., Ishihama, A., and Roe, J.-H. (1997) Identification of sigma factors for 
growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). 
Nucleic Acids Res 25: 2566-2573. 
 
Katayama, Y., Zhang, H.-Z., and Chambers, H. F. (2004) PBP 2a mutations producing very-high-
level resistance to beta-lactams. Antimicrobial Agents and Chemotherapy 48: 453-459. 
 
Kawai, Y., Marles�Wright, J., Cleverley, R. M., Emmins, R., Ishikawa, S., Kuwano, M., Heinz, N., 
Bui, N. K., Hoyland, C. N., and Ogasawara, N. (2011) A widespread family of bacterial cell wall 
assembly proteins. EMBO J 30: 4931-4941. 
 
Kim M-S, Dufour YS, Yoo JS, Cho Y-B, Park J-H, Nam G-B, Kim HM, Lee K-L, Donohue TJ, and 
Roe J-H. (2012) Conservation of thiol-oxidative stress responses regulated by SigR orthologues in 
actinomycetes. Mol Microbiol 85: 326-344. 
 
Kingston, A. W., Liao, X., and Helmann, J. D. (2013) Contributions of the σW, σM and σX regulons to 
the lantibiotic resistome of Bacillus subtilis. Mol Micro 90, 502-518. 
 
Kleinschnitz, E. M., Heichlinger, A., Schirner, K., Winkler, J., Latus, A., Maldener, I., Wohlleben, 
W., and Muth, G. (2011) Proteins encoded by the mre gene cluster in Streptomyces coelicolor A3(2) 
cooperate in spore wall synthesis. Mol Microbiol 79: 1367-1379. 
 
Koteva, K., Hong, H.-J., Wang, X.D., Nazi, I., Hughes, D., Naldrett, M.J., Buttner, M.J., and Wright, 
G.D. (2010) A vancomycin photoprobe identifies the His kinase VanSsc as a vancomycin receptor. 
Nat Chem Biol 6: 327-329. 
 
Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Veziris, N., Blanot, D., Gutmann, L. 
& Mainardi, J.-L. (2008) The peptidoglycan of stationary-phase Mycobacterium tuberculosis 
predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol 190: 4360-4366. 
 
Lewerke, L.T., Kies, P.J., Müh, U., and Ellermeier, C.D. (2018) Bacterial sensing: A putative 
amphipathic helix in RsiV is the switch for activating σV in response to lysozyme. PLoS Genet 14: 
e1007527. 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Lim, D., and Strynadka, N. C. (2002) Structural basis for the β lactam resistance of PBP2a from 
methicillin-resistant Staphylococcus aureus. Nature Structural & Molecular Biology 9: 870-876. 
 
Liu, X., Brutlag, D. L. & Liu, J. S. (2001) BioProspector: discovering conserved DNA motifs in 
upstream regulatory regions of co-expressed genes. Paper presented at the Pacific symposium on 
biocomputing. 
 
Lonetto, M. A., Brown, K. L., Rudd, K. E., and Buttner, M. J. (1994) Analysis of the Streptomyces 
coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma 
factors involved in the regulation of extracytoplasmic functions, Proc Natl Acad Sci USA 91: 7573-
7577. 
 
Macheboeuf, P., Contreras�Martel, C., Job, V., Dideberg, O., and Dessen, A. (2006) Penicillin 
binding proteins: key players in bacterial cell cycle and drug resistance processes, FEMS Microbiol 
Rev 30: 673-691. 
 
Magnet, S., Bellais, S., Dubost, L., Fourgeaud, M., Mainardi, J.-L., Petit-Frère, S., Marie, A., Mengin-
Lecreulx, D., Arthur, M., and Gutmann, L. (2007) Identification of the L,D-transpeptidases 
responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol 
189, 3927-3931. 
 
Mascher, T., Margulis, N. G., Wang, T., Ye, R. W., and Helmann, J. D. (2003) Cell wall stress 
responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon, Mol Microbiol 50: 
1591-1604. 
 
Mascher, T., Hachmann, A.-B. and Helmann, J. D. (2007) Regulatory overlap and functional 
redundancy among Bacillus subtilis extracytoplasmic function σ factors, J Bacteriol 189: 6919-6927. 
 
Mascher, T. (2013) Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors, 
Curr Opin Microbiol 16: 148-155. 
 
Mazza, P., Noens, E. E., Schirner, K., Grantcharova, N., Mommaas, A. M., Koerten, H. K., Muth, G., 
Flärdh, K., Van Wezel, G. P., and Wohlleben, W. (2006) MreB of Streptomyces coelicolor is not 
essential for vegetative growth but is required for the integrity of aerial hyphae and spores, Mol 
Microbiol 60: 838-852. 
 
Mercer, K. L., and Weiss, D. S. (2002) The Escherichia coli cell division protein FtsW is required to 
recruit its cognate transpeptidase, FtsI (PBP3), to the division site, J Bacteriol 184: 904-912. 
 
Missiakas, D., Betton, J. M., and Raina, S. (1996) New components of protein folding in 
extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21: 
871-884. 
 
Mitrophanov AY, and Groisman EA (2008) Signal integration in bacterial two-component regulatory 
systems. Genes Dev 22: 2601-2611. 
 
Münch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., and Jahn, D. (2005) Virtual 
Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. 
Bioinformatics 21: 4187-4189. 
 
Nishi, H., Komatsuzawa, H., Fujiwara, T., McCallum, N. & Sugai, M. (2004) Reduced content of 
lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as 
well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrobial 
Agents and Chemotherapy 48: 4800-4807. 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Over, B., Heusser, R., McCallum, N., Schulthess, B., Kupferschmied, P., Gaiani, J. M., Sifri, C. D., 
Berger�Bächi, B., and Stutzmann Meier, P. (2011) LytR�CpsA�Psr proteins in Staphylococcus 
aureus display partial functional redundancy and the deletion of all three severely impairs septum 
placement and cell separation, FEMS Microbiol Letts 320: 142-151. 
 
Paget, M. S., Chamberlin, L., Atrih, A., Foster, S. J. and Buttner, M. J. (1999a) Evidence that the 
extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces 
coelicolor A3(2), J Bacteriol 181: 204-211. 
 
Paget, M. S., Leibovitz, E. and Buttner, M.J. (1999b) A putative two�component signal transduction 
system regulates σE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor 
A3(2). Mol Microbiol 33: 97-107. 
 
Paget, M.S.B., Molle, V., Cohen, G., Aharonowitz, Y., and Buttner, M.J. (2001) Defining the 
disulphide stress response in Streptomyces coelicolor A3(2): identification of the σR regulon. Mol 
Microbiol 42: 1007-1020. 
 
Qiu, J., and Helmann, J. D. (2001) The -10 Region Is a Key Promoter Specificity Determinant for the 
Bacillus subtilis Extracytoplasmic-Function σ Factors σX and σW. J Bacteriol 183: 1921-1927. 
 
Raivio, T. L. (2005) MicroReview: Envelope stress responses and Gram�negative bacterial 
pathogenesis, Mol Microbiol 56: 1119-1128. 
 
Rhodius, V. A., Suh, W. C., Nonaka, G., West, J. and Gross, C. A. (2005) Conserved and variable 
functions of the σE stress response in related genomes. PLoS Biol 4: e2. 
 
Rossi, J., Bischoff, M., Wada, A., and Berger-Bächi, B. (2003) MsrR, a putative cell envelope-
associated element involved in Staphylococcus aureus sarA attenuation. Antimicrobial Agents and 
Chemotherapy. 47: 2558-2564. 
 
Rouviere, P., De Las Penas, A., Mecsas, J., Lu, C. Z., Rudd, K., and Gross, C. (1995) rpoE, the gene 
encoding the second heat-shock sigma factor, σE, in Escherichia coli. EMBO J 14: 1032. 
 
Ruiz, N., and Silhavy, T. J. (2005) Sensing external stress: watchdogs of the Escherichia coli cell 
envelope, Curr Opin Microbiol 8: 122-126. 
 
Ruzin, A., Severin, A., Moghazeh, S. L., Etienne, J., Bradford, P. A., Projan, S. J., and Shlaes, D. M. 
(2003) Inactivation of mprF affects vancomycin susceptibility in Staphylococcus aureus. Biochim 
Biophys Acta 1621: 117-121. 
 
Sauvage, E., Kerff, F., Fonze, E., Herman, R., Schoot, B., Marquette, J.-P., Taburet, Y., Prevost, D., 
Dumas, J., and Leonard, G. (2002) The 2.4-Å crystal structure of the penicillin-resistant penicillin-
binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin, Cellular and 
Molecular Life Sciences 59: 1223-1232. 
 
Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A., and Charlier, P. (2008) The penicillin�binding 
proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 234-258. 
 
Silhavy, T. J., Kahne, D., and Walker, S. (2010) The bacterial cell envelope, Cold Spring Harbor 
Perspectives in Biology. 2: a000414. 
 
Sineva, E., Savkina, M. and Ades, S.E. (2017) Themes and variations in gene regulation by 
extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 36: 128-137. 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Smyth, G. K. (2005) Limma: linear models for microarray data in Bioinformatics and computational 
biology solutions using R and Bioconductor.  pp. 397-420, Springer. 
 
Soliveri, J., Brown, K., Buttner, M.J., and Chater, K.F. (1992) Two promoters for the whiB 
sporulation gene of Streptomyces coelicolor A3(2) and their activities in relation to development. J 
Bacteriol 174: 6215-6220. 
 
Strakova, E., Zikova, A., and Vohradsky, J. (2014) Inference of sigma factor controlled networks by 
using numerical modeling applied to microarray time series data of the germinating prokaryote, 
Nucleic Acids Res 42: 748-763. 
 
Team, R. C. (2012) R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria, 2012 in, ISBN 3-900051-07-0,  
 
Teytelman, L., Özaydın, B., Zill, O., Lefrançois, P., Snyder, M., Rine, J., and Eisen, M.B. (2009) 
Impact of chromatin structures on DNA processing for genomic analyses. PloS One 4: e6700. 
 
Thackray, P. D., and Moir, A. (2003) SigM, an extracytoplasmic function sigma factor of Bacillus 
subtilis, is activated in response to cell wall antibiotics, ethanol, heat, acid, and superoxide stress. J 
Bacteriol 185: 3491-3498. 
 
Thompson, K. M., Rhodius, V. A., and Gottesman, S. (2007) σE regulates and is regulated by a small 
RNA in Escherichia coli. J Bacteriol 189: 4243-4256. 
 
Thompson, B. J., Widdick, D. A., Hicks, M. G., Chandra, G., Sutcliffe, I. C., Palmer, T. and 
Hutchings, M. I. (2010) Investigating lipoprotein biogenesis and function in the model Gram-positive 
bacterium Streptomyces coelicolor. Mol Microbiol 77: 943-56.  
 
Udekwu, K. I., and Wagner, E. G. H. (2007) σE controls biogenesis of the antisense RNA MicA, 
Nucleic Acids Res 35: 1279-1288. 
 
Ulrich, L. E., and Zhulin, I. B. (2009) The MiST2 database: a comprehensive genomics resource on 
microbial signal transduction, Nucleic Acids Res gkp940. 
 
Vrancken, K., Van Mellaert, L., and Anné, J. (2008) Characterization of the Streptomyces lividans 
PspA response. J Bacteriol 190: 3475-3481. 
 
Wiegert, T., Homuth, G., Versteeg, S., and Schumann, W. (2001) Alkaline shock induces the Bacillus 
subtilis  σW regulon. Mol Microbiol 41: 59-71. 
 
Wolf, D., Kalamorz, F., Wecke, T., Juszczak, A., Mäder, U., Homuth, G., Jordan, S., Kirstein, J., 
Hoppert, M., Voigt, B., Hecker, M., and Mascher, T. (2010) In-depth profiling of the LiaR response 
of Bacillus subtilis. J Bacteriol 192: 4680-93. 
 
Yem, D. W., and Wu, H. C. (1978) Physiological characterization of an Escherichia coli mutant 
altered in the structure of murein lipoprotein. J Bacteriol 133: 1419-1426.  
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
 

 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 


