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"New York Genome Center, New York, New York 10013, USA; “Department of Systems Biology, Columbia University, New York,
New York 10032, USA; 3 Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, 1211,
Switzerland; *Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, 1211, Switzerland; 3 Swiss

Institute of Bioinformatics, Geneva, 1211, Switzerland

Mapping cis-acting expression quantitative trait loci (cis-eQTL) has become a popular approach for characterizing proximal
genetic regulatory variants. In this paper, we describe and characterize log allelic fold change (aFC), the magnitude of ex-
pression change associated with a given genetic variant, as a biologically interpretable unit for quantifying the effect size of
cis-eQTLs and a mathematically convenient approach for systematic modeling of cis-regulation. This measure is mathemat-
ically independent from expression level and allele frequency, additive, applicable to multiallelic variants, and generalizable
to multiple independent variants. We provide efficient tools and guidelines for estimating aFC from both eQTL and allelic
expression data sets and apply it to Genotype Tissue Expression (GTEx) data. We show that aFC estimates independently
derived from eQTL and allelic expression data are highly consistent, and identify technical and biological correlates of
eQTL effect size. We generalize aFC to analyze genes with two eQTLs in GTEx and show that in nearly all cases the two
eQTLs act independently in regulating gene expression. In summary, aFC is a solid measure of cis-regulatory effect size
that allows quantitative interpretation of cellular regulatory events from population data, and it is a valuable approach

for investigating novel aspects of eQTL data sets.
[Supplemental material is available for this article.]

Noncoding genetic variation affecting gene regulation and other
cellular phenotypes has a key role in phenotypic variation and dis-
ease susceptibility (Albert and Kruglyak 2015). One of the most
commonly used methods to characterize genetic variants that af-
fect gene expression is expression quantitative trait loci (eQTL)
mapping (Schadt et al. 2003; Lappalainen et al. 2013; The GTEx
Consortium 2015), which identifies genetic loci where genotypes
of genetic variants are significantly associated to gene expression
in a population sample. Genes and variants with significant asso-
ciations are often called eGenes and eVariants, respectively, and
the eVariant with the best P-value in a given locus usually used
as the proxy for the causal variant. The association between geno-
type and gene expression is typically tested by regressing gene ex-
pression on the number of alternative alleles using a linear model,
and the significance of the regression slope is used to measure sig-
nificance of the eQTL (Shabalin 2012; Ongen et al. 2016). eQTLs
can occur either in trans through altering diffusible factors that af-
fect gene expression distally or in cis through allelic, physical inter-
actions on the same chromosome typically <1 Mb away from the
eGene, which are the focus of this study. The allelic effect of cis-
regulation leads to unequal expression of the two haplotypes (alle-
lic imbalance) in individuals that are heterozygous for a cis-acting
eVariant (Fig. 1A).

The effect size of an eQTL describes the magnitude of the ef-
fect that it has on gene expression and is an important statistic for
characterizing the nature of regulatory variants. Estimating the rel-
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ative effect of eQTL alleles on expression levels has applications in
computational functional genetics analysis, as well as in analysis
of genetic regulatory variants by experimental assays such as ge-
nome editing (Arnold et al. 2013; Canver et al. 2015; Vockley
et al. 2015; Tewhey et al. 2016; Ulirsch et al. 2016; Wright and
Sanjana 2016). However, thus far there has been no consensus def-
inition for eQTL effect size, with each study defining its own mea-
sure for quantifying regulatory effect size. The most widely used
measure of effect size is the linear regression slope, a readily avail-
able statistic from eQTL calling tools (Shabalin 2012; Gutierrez-
Arcelus et al. 2013; Lee et al. 2015; Tung et al. 2015). Linear regres-
sion has also been utilized on log-transformed (Flutre et al. 2013;
Battle et al. 2014, 2015) or z-scored expression data (Lappalainen
et al. 2013) to derive slope estimates that do not depend on expres-
sion levels. Other statistics include the observed difference be-
tween genotype classes, such as the mean difference in
expression between heterozygous and the more common homo-
zygote class, sometimes with log transformation or scaling by
mean (Gutierrez-Arcelus et al. 2015; Josephs et al. 2015). The pro-
portion of expression variance in the population explained by an
eQTL is a widely used statistic that is informative of population
variance but not of the molecular effect of an eQTL (Grundberg
et al. 2012; Wright et al. 2014; Kirsten et al. 2015). A recent meth-
od, developed simultaneously and independently from our work,
uses the ratio between the slope and intercept of the linear regres-
sion in a variance stabilized model (Palowitch et al. 2016). While
all these approaches provide estimates that are generally correlated
with cis-regulatory effect of a given variant and have a specific

© 2017 Mohammadietal. This article, published in Genome Research, is avail-
able under a Creative Commons License (Attribution 4.0 International), as de-
scribed at http://creativecommons.org/licenses/by/4.0/.

1872 Genome Research
www.genome.org

27:1872-1884 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org


mailto:pmohammadi@nygenome.org
mailto:pmohammadi@nygenome.org
mailto:tlappalainen@nygenome.org
mailto:tlappalainen@nygenome.org
http://www.genome.org/cgi/doi/10.1101/gr.216747.116
http://www.genome.org/cgi/doi/10.1101/gr.216747.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on May 13, 2019 - Published by Cold Spring Harbor Laboratory Press

Quantifying cis-regulation using allelic fold change

A N B
™ N \4 O R 7
e S N X X
Regulatory o &S < & \ o S /
factor k i P‘\\e\\ <@ % 400 7
e k, ’ (e e,) . 3 /
h B » e() é_ ‘D 1
() Q.
hl o — ] “” z H 8 100 //
rram T @ =
X ﬂl|l| Q S 7
€p o e(hr) 3 / Het.
® 0
i k : 0 100 400
e, f e, 5 (o] eVar. ref. hap. expression
/B — 3
: - s o) @ 7
hyoivem i 1 5 e S 5000 o
: ) @ o
9 4000 2
€y € e(h) 8
! £ 3000
()
X 2 2000
. e [}
eli (e, €) 5 & 1000 ]
h 5 @
1 L — - :’J . 0
i } <& c o Hom. ref.  Het. Hom. alt.
L — % 3 D _
' > e iy
s ' (hn) e
c
k S 1
%]
i o
e k, . £ 10
B gl = 3
h] L — II” R @ o 9
! 9 N o}
i i < o o)
hy e s i“v“ 8 S 8| %
e e o 4 Hom.ref. ~ Het.  Hom. alt.
B ! e(h) eQTL genotype (h1/h2)

Figure 1.

(A) Schematic representation of cis-regulatory eQTL model in Equations 1 and 2. (B) Example of allelic expression associated with each of the

alleles of a cis-eQTL (eVariant Chr 5: 96252589 T/C; eGene ERAP2) in GTEx adipose subcutaneous. Each dot corresponds to allelic imbalance in one indi-
vidual heterozygous for the eVariant, measured using reads that overlap heterozygous SNPs (aeSNP) in the eGene. Phasing between the aeSNP and the
eQTL SNP is utilized to associate the measured allelic expression with each of the eQTL alleles. (C,D) eGene expression for the same example eQTL. The
green dashed line connects the median expression of the two homozygous classes. Expression is linear with number of alternative alleles (C), but the lin-

earity is lost after log transformation (D).

statistical interpretation in the context of eQTL data, they often
lack a straightforward biological interpretation in the greater con-
text of cis-regulation that is comparable across different studies,
conditions, or data types. Furthermore, many of these easily acces-
sible statistics systematically depend on other variables such as
gene expression level, allele frequency, or the amount of technical
variation or other noise, which hinders their broad usability across
different studies. Finally, a group of statically involved cis-eQTL
calling methods include regulatory effect size as one of the many
parameters for the models that map regulatory variants using
both allele-specific expression (ASE) and total gene expression
data (Pickrell et al. 2010; Sun 2012; Hu et al. 2015; van de Geijn
et al. 2015; Kumasaka et al. 2016), but these methods are distinct
from standard, commonly used methods for cis-eQTL mapping.

In this study, based upon the mechanistically justified model
of cis genetic effects on gene expression, we advocate using the log-
ratio between the expression of the haplotype carrying the alterna-
tive allele to the one carrying the reference allele, the log allelic fold
change (aFC), as a biologically interpretable and mathematically
convenient measure of cis-regulatory effect size, applicable to
eQTLs discovered by standard eQTL calling methods. This measure
is equivalent to the expected log-fold expression ratio of the indi-
viduals homozygous for the alternative allele to those homozy-
gous for the reference allele of an eQTL. We provide a thorough
description of the derivation and properties of aFC and its general-
izations, present practical guidelines and tools for calculating aFC
from eQTL as well as allelic expression data, and demonstrate how
the extended aFC model can be applied to study more complex
regulatory scenarios.

Results
Model

Additive model of regulation

For a given gene and a given cis-regulatory variant, v, with two al-
leles in the population, vy and v;, we define allelic expressions e,
and e; as the amount of transcript produced from the gene when it
is located on the same chromosome copy as alleles vy, and v, re-
spectively. We assume that the allelic expression is determined
by a shared basal expression of the gene, eg, driven by the cellular
regulatory environment, and allele-specific factors ko, k>0,
which represent distinctive effect of the allele vy, and v, on tran-
scription, respectively (Fig. 1A):

e = koes,
€1 = k1€B.

€Y

Under the cis-regulatory model, the regulatory effect of an allele
does not depend on the genotype on the other chromosome
copy, and e;;, the total expression of the gene in an individual
with alleles v; and v; on the first and second haplotype is

Cij= (ki + k,-)eB, i,j € {0, 1}. 2)

By using §; ; = ki/k; in Equation 1, the expression of haplotype car-
rying the alternative allele v, is given as

e = 5106‘0, (3)

relative to ey, the expression of the haplotype carrying the
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reference allele. Similarly, the total relative expression of the
gene is

eij = (80 + 800, i,j € {0, 1}. 4)

For a given cis-acting eVariant, we define log aFC,
s1,0 = log, 61,0, as the relative cis-regulatory strength of the allele
vy versus the reference allele vy. This quantity is similar to the wide-
ly used log expression fold change of differentially expressed genes,
but defined between two alleles of a genetic variant. The aFC of a
biallelic eVariant can be directly quantified from allelic gene ex-
pression in heterozygous individuals (Fig. 1A,B; Supplemental
Fig. S1; Box 1) or from summary statistics of standard eQTL linear
regression between genotypes and total expression levels (Fig. 1C;
Box 2). A further challenge in eQTL effect size estimation is the het-
eroscedasticity of noise in expression data, which violates the data
normality assumptions of linear regression. Although different
RNA measurement platforms such as RNA sequencing, microar-
rays, and other techniques have distinct technical variation pro-
files, biological variation in gene expression data is generally
considered to be log-normally distributed (Tu et al. 2002; White-
head and Crawford 2006; Anders and Huber 2010). However, after
the commonly used variance stabilization by log transformation,
gene expression is no longer a linear function and, as such, cannot
be characterized efficiently (Fig. 1D; Methods). Thus, we introduce
an efficient approximation method to estimate aFC from log-trans-
formed total gene expression data in linear time (Box 3; Methods).
The method generates a set of four candidate aFC estimates: The
first three estimates are calculated by using only two out of the
three eQTL genotype classes at a time. The fourth estimate is de-
rived using log-linear regression, utilizing the fact that log-trans-
formed eQTL data approach a linear function in weak eQTLs as
log aFC goes to zero (s1,0 — 0; Methods). The candidate aFC that
minimizes the residual variance in log-transformed data is reported
as the final estimate (Methods).

Generalization to multiple eVariants with multiple alleles

Beside clear biological interpretation, log aFC has several conve-
nient mathematical properties that facilitate downstream analysis
of the values (Box 4, Supplemental Methods) and allow generaliza-
tion to analysis of multiallelic genetic variants, as well as to joint
analysis of multiple independent eQTLs for the same eGene.
Here we consider the case of N eVariants, v1, ..., vn, ...vN acting
on the same eGene independently with m, ... my,, ... my alleles,
respectively. Let i;...i,...iNy denote a haplotype carrying the i,-th

allele of the vn; the relative expression on this haplotype is

N
_ vn
Cir..ipiv =€ | | 8" ®)
n=1

where 8" denotes the aFC associated with allele iy, at the nth
eVariant vn versus its reference allele 0, and ¢, is the reference ex-
ries reference alleles for all eVariants. Thus, the log allelic fold
difference between two haplotypes ij... iy...iy and ji... ju...jx IS

N
_ vn
Siyc by, oo ey = Z Si s (6)
n=1

wheres}"; denotes the logaFC associated with two alleles in, and jy,
at the nth eVariant. The total expression of the eGene given the ge-
notype is

N N
L — VI v
€. iy.in, j1o jnjn = €0 l_[ 81‘,1,() + 1_[ 5/',,.() . )
n=1 n=1

Following the cis-regulatory model, this inherently takes spe-
cific configuration of the alleles on each of the two haplotypes into
account. The last two equations can be used to simultaneously es-
timate effect sizes of N eVariants from allelic expression or tran-
scription profiles of genotyped individuals, respectively.

Calculating aFC

We used simulation to evaluate how our three alternative methods
for calculating aFC perform under a realistic expression noise level:
M1, linear method that uses linear regression coefficients from
eQTL data as benchmark for speed (Box 2); M2, nonlinear method
that directly solves the regression problem in Equation 17 using a
standard nonlinear least square optimization tool (Methods) as a
benchmark for accuracy; and M3, nonlinear approximation that
solves the nonlinear regression problem from Equation 17 in linear
time (Box 3, Fig. 2C). In this simulation, we used simulated data of
10,000 eQTLs with varying allele frequencies and effect sizes
(Equations 3, 4), with noise added to the expression levels at
40% coefficient of variation within genotype groups (logio €n ~
norm|0, o =0.17]; Equation 17) similar to what is observed in real
data from GTEx (Supplemental Fig. S2). We found that at this level
of noise all three methods provide highly accurate and similar es-
timates (Fig. 2). All estimates, especially the linear method (M1),
deteriorate in eQTLs in which the lower expressed allele has also
a low frequency (Fig. 2B). This problem is inherent to cis-eQTL
data and is expected to occur regardless of the expression measure-
ment platform. Overall, all three methods achieved comparable
performances. Specifically, the aFC estimates from the nonlinear

BOX 1. Calculating aFC from allelic expression data. Allelic expression associated with each of the eQTL alleles can be
measured in individuals that are heterozygous for the eQTL and that are heterozygous for at least one variant in the
eGene (aeSNP). Since allelic expression is measured at the aeSNPs, haplotype phasing data are utilized to obtain the
allelic expression from each of the eQTL alleles (Supplemental Fig. S1).

Input:

* Allelic expression of the haplotypes carrying the reference (o), and the alternative allele (¢;,») of an eQTL in N individuals: (con, C1,n),

where ne{1,2,...,
1. Get median ratio of the allelic counts:

q (&]
81,0 = median—=.
S

Output: Report effect size: s7,0=1092 81,0

=1..N Co,n
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BOX 2. Calculating aFC from gene expression data
(for derivations, see Methods).

Input:
e eGene expression in N individuals: y; ... yn, where y, €[0,
+00)
e Number of alternative alleles in each individual: t; ... t\,

where t, € {0,1,2}

1. Use simple linear regression to model expression as a
function of t,:

Yn = bo + b1 t, + noise.
2. Use the slope b; and intercept b, to calculate

2b,
51,0 _b—0+1‘

Output: Report effect size: s; o =109, 819

model (M2) provided the lowest root mean squared deviation
(RMSD) from the true values. The linear model was 84 times faster
than the nonlinear model but provided 64% higher RMSD. Finally,
the nonlinear approximation (M3) presented a trade-off between
the speed and accuracy, providing only 10% higher RMSD than
the nonlinear model at only 1.8 times the runtime of the linear
model.

Next, we applied the three methods for effect size estimation
to the cis-eQTLs discovered in the Genotype Tissue Expression
(GTEx) (The GTEx Consortium 2013, 2015) v6p data set, with
eQTL data from 44 tissues (70 to 361 individuals per tissue) (The
GTEx Consortium 2017), calculating aFC for all the reported
eQTLs in each tissue using the eVariant with the best P-value for
each eGene. aFCs were estimated from both ASE (Box 1) and
eQTL data (Boxes 2-3), independently. For ASE data, we used hap-
lotypic expression at eGenes calculated by summing allelic expres-
sion from all phased heterozygous SNPs within the gene
(Supplemental Fig. S1). aFC was reported for an average of 57%
of eGenes per tissue, requiring haplotypic coverage of at least 10
reads in at least five individuals (The GTEx Consortium 2017).
For eQTL-based aFC estimates, we log transformed normalized
read counts and corrected for significant linear effects by con-
founding factors identified using PEER (Stegle et al. 2012) and
the top three principal components of the genotype matrix (see
Methods, Equations 23, 24). The log aFCs for the eQTLs were cal-
culated using the three models as in the simulation study and con-
strained to tlog 100. All three eQTL methods provided highly
similar aFC estimates with high concordance to ASE-based esti-
mates (Fig. 3A,C). The effect sizes were more discordant between
ASE- and eQTL-based estimates when the rare allele was the lower
expressed allele, as predicted by the simulation study (Fig. 3B). The
nonlinear model provided the best estimates as evaluated by
RMSD from ASE-based estimates, and was closely trailed by the
nonlinear approximation method (Fig. 3C). Thus, for the rest of
the analyses, we used only the nonlinear approximate method as
it provided both high accuracy and speed.

Accounting for confounding variation by methods such as
PEER is commonly used to improve the statistical power in eQTL
calling. Next, we evaluated the effect of this correction on aFC es-
timates from eQTL data (Supplemental Fig. S3). We found that it
has a minimal impact on the aFC estimates (Pearson R=0.96).
However, correcting for confounding sources of variation leads

to narrower confidence intervals for the aFC estimates, which is
consistent with the increased power in eQTL calling. Finally, we
tested the effect of quantile normalization that enforces log-nor-
mality of expression data within each genotype. While this is com-
monly used to avoid outlier effects, we did not observe
improvement of the effect size estimates (Fig. 3D).

Comparison of aFC to slope of linear regression

Linear regression slope is the most common measure used for esti-
mating cis-eQTL effect size. aFC is closely related to this familiar
statistic. From an analytical point of view, the aFC estimation
method presented in Box 2 (M1) is a normalization technique to
appropriately account for gene expression level. Furthermore,
the nonlinear eQTL model provided for estimating aFC from log-
transformed gene expression data (M2; Equation 17) is well ap-
proximated by log-linear regression for weak eQTLs (for proof,
see Supplemental Information). In this case, the regression slope
is approximately half of the log aFC; a property we used in the non-
linear approximation method provided in Box 3 (M3) to derive
one of the four candidate aFC estimates (Fig. 2C,D).

We used the simulations with realistic expression noise de-
scribed above to compare the slope of linear regression to aFC. In

BOX 3. Linear time algorithm for estimating aFC from
log-transformed gene expression data (for
derivations, see Methods).

Input:
e eGene expression in N individuals in log, scale: z; ... zy,
where z, € [-o0, +0)

Number of alternative alleles in each individual: t; ... ty,
where t, €{0,1,2}

. Calculate mg, m;, m, as geometric mean of expression for
individuals with t,=0, 1, and 2, respectively.

—_

2. Calculate the following three candidate estimates:

m
&3 =2—"1_1
1,0 mo

w

. Use simple linear regression to model log, expression as a
function of t:

Zn = Gty + ¢ + noise.
4. Use the slope c; times two as the fourth candidate estimate:

x4 20
8% =29

(%]

. Use each of the four estimates 8}*’:0, k=1...4 to calculate
(i) = Zn — 10G,[(2 = ta) + ta8}'5 ],
where (2 —t,) + t,,ST’:o is predicted gene expression in nth

individual using the ith estimate.

6. Pick the estimate that provides the lowest variance in the
residuals:

S0 = Sﬂo, I = argmin V[r(i)].

i€l..4

Output: Report effect size: s; =109 81,9
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BOX 4. Mathematical properties of log aFC as a
relative measure of cis-regulatory effect size (for
proofs, see Supplemental Methods).

1. Zero log aFC indicates the absence of regulatory difference:
Sii= 0.
2. Choice of reference allele only affects the sign of log aFC: s;;

==
3. Log aFC is additive:
Sik = Sijj + Sjk-

4. Log aFC associated with joint effect of independent
regulatory variants, v1...vN is sum of their individual aFCs:

N
AR AR A A = vn
Siy e iy 1o frein = Z Sin:/n s
n=1

where ... ip...iy and ji... jn...jn are the set of present
alleles on each of the haplotypes.

5. Absolute value of log aFC, d;;=|s;, is a pseudometric:
(@) d;;j>0,

(i) d;i=0,

(iii) d,;,»= dj,i,

(iV) di,kS di,/+ dj,k~

addition to using linear regression on untransformed expression
data, we considered log transformation and z-scoring as two com-
mon approaches used for eliminating the effect of gene expression
level on regression estimates. The results demonstrated that the two

transformations largely remove the effect of gene expression level
fromregression slopes and yield estimates that are highly correlated
with aFC estimates (Fig. 4A-C; Supplemental Fig. S4). However, in
both cases the transformation introduces systematic biases in the
effect size estimates that manifest as distinct deviation patterns
from the simulated aFC with respect to allele frequency and eQTL
strength. Specifically, in log-transformed data, the slope of linear
regression is skewed proportional to frequency of the lower ex-
pressed allele, and in z-scored data, the slope is inflated as allele fre-
quency deviates from 50% (Fig. 4A-C; Supplemental Fig. S5). We
used GTEx data from adipose subcutaneous to see if these biases
can be observed in real data using aFC estimates as a baseline.
This analysis recapitulated the patterns observed in simulations
(Fig. 4D-F). Altogether, these results show that while regression
slope is a useful statistic for many purposes, its direct use as eQTL
effect size leads to suboptimal results compared with aFC.

Application to GTEx eQTLs

Next, we used GTEx data to explore empirical properties and gene-
ral trends in eQTL effect size data measured by log aFC. We found
that the distributions of aFCs for eQTLs detected in different GTEx
tissues are highly dependent on the sample size, due to the fact
that tissues with lower sample size lack the power to detect weak
eQTLs (Fig. 5A). The effect size estimates from eQTL and ASE
data are highly similar but overall 6.35% smaller (CI: [4.6, 8.1]; es-
timated by errors-in-variables linear regression fit) across the tis-
sues when estimated from eQTL data (Fig. 5B,C). However, this
pattern is reversed in effect sizes involving weaker eQTLs, which
is consistent with potential winner’s curse in the eQTL calling
stage (Fig. SD). This highlights the added value of ASE-based esti-
mates alongside eQTL data. We next analyzed the correlation of
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Figure 2. Comparison of the aFC estimation methods using simulated data. We simulated 10,000 eQTLs with noise (40% coefficient of variation), and
uniformly selected log, aFC (range: [-5,5]), and reference allele frequency (range: [0,1]). (A) True aFC used in simulation versus identified values using
linear model (M1), nonlinear model (M2), and the nonlinear model approximation (M3). At this level of noise, M2 performed the best, with M1 and
M3 having RMSDs of 164% and 110% of M2. (B) Quality of the effect size estimates as a function of allele frequency and the true effect size, evaluated
by average error relative to the true log, aFC. All three estimates, and particularly M1, deteriorate when the lower expressed allele is the minor allele.
(G D) Schematic representation of the nonlinear model approximation method (Box 3) based on four different candidate estimates (C), and the selected
estimate with minimum residual variance for each simulated eQTL as a function of reference allele frequency and the true aFC (D).
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within each genotype group. Each dot represents one tissue in GTEx.

aFC with other properties of the eVariant or eGene. Low-frequency
eVariants tend to have higher effect sizes (Fig. SE), likely a com-
pound effect of increased selection pressure on stronger eQTLs as
well as reduced statistical power in calling weak low-frequency
eQTLs with limited data. eGenes with high expression levels, ex-
pression in multiple tissues, and high coding region conservation
measured by RVIS (Petrovski et al. 2013) have lower effect sizes
(Fig. 5F-H), which suggests that genes under strong selective con-
straints are less likely to tolerate regulatory variants with high ef-
fect sizes. Further biological interpretation of effect sizes across
eVariants in different annotations, eGenes of different biotypes,
and eQTLs that are tissue specific or shared is described by The
GTEx Consortium (2017). In these and other downstream analyses
of eQTL effect sizes, it is important to correct for correlated factors
such as sample size and allele frequency. Even though our simula-
tions demonstrate that aFC is highly robust to key confounders,
differences in the power of eQTL mapping will always affect the
properties of discovered eQTLs, including effect size distribution.

The aFCs of GTEx eQTLs are provided in the GTEx portal
(http://gtexportal.org). Additionally, we implemented the linear
model (M1) and the nonlinear approximation model (M3) in a py-
thon script (see Software Availability) that takes as input the stan-
dard file formats used also by the FastQTL software for eQTL
calling. This makes calculation of aFC for other eQTL data sets
straightforward and fast.

Application to genes with two distinct eQTL signals in GTEx

Iterative greedy procedures have been utilized to find multiple dis-
tinct eQTLs signals for each eGene in the GTEx data (Methods)
(The GTEx Consortium 2017). We used GTEx eGenes with two

distinct eQTLs to demonstrate how the aFC calculation can be
extended to gain mechanistic insight into more complex eQTL
patterns. The expression model in Equation 7 written for two
biallelic eVariants was used in a nonlinear regression to simultane-
ously estimate the aFC associated with both eQTLs (Fig. 6A;
Supplemental Table S1). These estimates were used to predict the
relative expression of the two haplotypes between the 16 possible
haplotypic combinations. We found that the predicted values
from eQTL data correlate well with the observed values in ASE
data across the genotypes (median r=0.81) (Fig. 6B-D). Our gener-
alized expression model inherently accounts for specific arrange-
ment of the alleles for the two eVariants on haplotypes (e11,00 >
€10,01) (Supplemental Fig. S6A). Specifically, according to the mod-
el, in individuals that are heterozygous for both eQTLs, the eGene
is expected to have higher expression when the two higher ex-
pressed alleles occur on the same haplotype (eym,L> €nr,Ln)
(Supplemental Fig. S6B). By using eGenes with two eQTLs in adi-
pose subcutaneous, we found that this predicted effect of haplo-
type arrangement on eGene expression is consistent with the
observed expression data (r=0.43, P=1072%) (Supplemental Fig.
S6C-F).

Next, we considered the modeling assumption that the two
eVariants actindependently. Under this assumption, regulatory ac-
tivity of the alleles from the first eQTL does not depend on the ge-
notype at the second eQTL site and vice versa; therefore, the change
in expression of the haplotype carrying the alternative allele for
both eVariants is the multiplication of the two aFCs for each indi-
vidual eVariant (e;; = eooﬁ‘{}oa‘{?o; Equation 5). In order to analyze
how well the data are described assuming the independence of
the two eVariants, we relaxed this assumption to allow for interac-
tions by defining the joint genotype of the two eVariants as the
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genotype of a hypothetical variant with four possible alleles. We
used Equation 7 written for one four-allelic eVariant to separately
estimate the aFC associated with each of the two eVariants, as
well as the aFC of their co-occurrence. We found that the estimates
from the two models generally agree very well (Fig. 6C). We used
the Bayesian information criterion (BIC) within a bootstrapping
scheme to decide if relaxing the regulatory independence assump-
tion provides a significantly better description of the data. This
could be a sign of biological mechanisms such as epistasis or dosage
compensation, as well as confounding factors such as linkage dise-
quilibrium or expression quantification artifacts (Brown etal. 2014;
Hemani et al. 2014; Wood et al. 2014; Fish et al. 2016). After ac-
counting for the increased model complexity and uncertainty asso-
ciated with sampling distribution, we found that only in 0.2%
(range across tissues [0, 0.42]) of the two eQTLs for the same gene
in GTEx data does the regulatory independence model fail to pro-
vide an adequate fit (Fig. 6D; Supplemental Fig. S7; Supplemental
Table S1). This finding suggests that distinct eQTL signals identified
using the iterative approach are largely driven by independent
regulatory mechanisms. We note that the popular iterative discov-
ery approach may be biased toward better discovery of indepen-
dently acting eQTLs, and future work applying our method to
distinct eQTLs discovered by other methods will be required to fully
quantify the joint effects of cis-regulatory variants in human
populations.

Discussion

Despite over a decade of eQTL analysis and its increasingly wide-
spread use in functional and medical genetics, eQTL effect size
has lacked a consensus definition that is founded upon molecular
interpretation of cis-regulation and is analytically convenient for
broad use. Here, we described log aFC, a generalizable measure of
cis-regulatory effect size that captures the mechanistic regulation
of haplotype expression in cis. Log aFC is consistent across expres-
sion levels and allele frequencies and holds mathematically conve-
nient properties that facilitate its application for downstream
analysis. We show that aFC model for a single biallelic eQTL SNP
is analytically equivalent to linear regression under the additive
noise assumption, and therefore, it can be used to obtain effect siz-
es for eQTLs discovered with standard eQTL calling methods, as
well as confidence intervals for aFC estimates that are consistent
with eQTL significance. In addition to the aFC that captures the
molecular effect, the proportion of expression variation explained
by an eQTL in population data remains useful as a complementary
measure valuable for describing population-level effect of an
eQTL. aFC provides uniform estimates from both allelic expression
and cis-eQTL data, and replication of cis-eQTLs using orthologous
ASE data from the same samples can complement classical replica-
tion with an independent sample. Furthermore, estimating aFC
from ASE and from eQTL data can prove useful in other scenarios.
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For instance, ASE-based estimation allows for exploring effects of
cis-regulatory variation in single individuals, while this is not pos-
sible using total expression data (Kukurba et al. 2014; Rivas et al.
2015; The GTEx Consortium 2015).

While the correlation between effect sizes estimated from ASE
and eQTL data is high, this is still likely an underestimate and
could be improved by using methods that produce more accurate
measures of haplotypic expression (Castel et al. 2016). The two al-
ternative aFC calculation methods provided use untransformed
and log-transformed eQTL data to account for additive and multi-
plicative noise, respectively. We showed that the estimates that
utilize log-transformed data are generally better. However, both
methods perform well, and the preferred noise model can vary de-
pending on the expression measurement platform and upstream
preprocessing pipelines that have been utilized. We benchmarked
aFC for RNA sequencing data, the most popular platform for ex-
pression level quantification that provides both ASE and eQTL
data, but aFC is a general measure, and the presented methods
provided for eQTL data can be directly applied to data from other
quantification platforms such as microarray and qPCR. Systematic
extension of aFC-based model of cis-regulation to multiple alleles
and multiple eQTLs, as demonstrated for the eGenes with two
eQTLs in GTEx, allows investigating more complex problems
while maintaining mechanistic interpretability of the results. By
using the extended model, we showed that the haplotypic arrange-
ment of the alleles of two distinct eQTLs affecting the same gene is
important for accurate estimation of gene expression. We also

found that the overwhelming majority of distinct eQTLs for the
same gene found using the popular iterative eQTL discovery ap-
proach are likely to be driven by independent regulatory mecha-
nisms, although future work is needed to study whether this
applies to cis-regulatory variants in general. Finally, we introduced
practical guidelines and a tool for estimating aFC from real data
and provided a catalog of cis-eQTL effect sizes across all GTEx tis-
sues as a resource for future studies.

A biologically interpretable and well-defined eQTL effect size
estimate enables diverse downstream applications. By using the
GTEx data set (The GTEx Consortium 2017), we have investigated
differences in effect sizes among eGene types, eVariant annota-
tions, and eQTL tissue specificity. Even though aFC itself is unbi-
ased with respect to allele frequency and expression level, we
showed here that it is essential for all downstream analyses to
take into account factors that indirectly confound the effect size
distribution via differences in eQTL discovery power. eQTL effect
size quantification will be valuable for making quantitative com-
parisons between effects on gene expression and other phenotypes
at the cellular and physiological level. Indeed, our method is gen-
erally applicable to estimating effect size of cis-regulatory variants
affecting other cellular traits such as methylation, chromatin state,
and protein levels as long as the general cis-regulatory assumption
underlying the model remains realistic. Furthermore, due to the
additive nature of log aFC, the magnitude of difference between
two effect sizes is a readily interpretable statistic. This feature
makes log aFC a useful tool for future characterization of variation
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Figure 6. Joint analysis of aFCs for GTEx eGenes with two eQTLs. (A) An example of relative expression of eGene ZC3H3 and the model fits for different
genotype groups of its two eQTLs (eVariant1: Chr 8: 144633728 A/G; eVariant2: Chr 8: 144556836 G/A) in GTEx adipose subcutaneous. The effect size of
the first and the second eQTLs are —0.77 and —0.14 as measured by log, aFC. Each dot represents observed expression in one individual, scaled relative to
the expression at all-reference genotype. The blue bars show model fits from the two-eQTL model based on regulatory independence assumption.
Reference and alternative alleles are denoted by 0 and 1, respectively, and haplotypes are separated by “|” sign (e.g., 10|11 corresponds to the cases
that one haplotype carries alternative and reference alleles of eVariant1 and eVariant2, respectively, and the other haplotype carries the alternative allele
of both eVariants). (B) Expression of the second haplotype relative to the first haplotype, observed in ASE data. The red bars show expected haplotype
expression ratios based on the model in panel A, learned on the eQTL data. (C) aFC between two haplotypes as predicted from eQTL data compared
with median aFC observed in ASE data for all eGenes with two eQTLs in adipose subcutaneous. Each dot represents one randomly selected genotype
for one eGene. Red line indicates the robust linear fit (y=0.9x+ 0.002). (D) Predicted and observed median aFC for all eGenes with two eQTLs calculated
from eQTL and ASE data, respectively, in each tissue with more than 200 eGenes with two eQTLs. (E) cis-Regulatory effect size associated with co-occur-
rence of the alternative alleles of the two eQTLs, as predicted under regulatory independence model or learned using the relaxed model. (F) Percentage of
the two eQTLs that are not well described using the independent regulatory assumption across all tissues with more than 200 eGenes with two eQTLs.

in eQTL activity across cellular or environmental contexts. For dis-
ease-associated eQTLs, understanding the relationship between
the quantitative expression effect in the cells and disease risk
will be important for understanding molecular mediators of dis-
ease risk. Finally, the recent development of experimental ap-
proaches such as MPRA (Tewhey et al. 2016; Ulirsch et al. 2016),
STARR-seq (Arnold et al. 2013; Vockley et al. 2015), and CRISPR ge-
nome editing assays (Canver et al. 2015; Wright and Sanjana 2016)
has created demand for translating summary statistics of eQTL
mapping to quantifications that are interpretable as reflecting mo-
lecular events in the cell. Our biologically interpretable estimates
of cis-eQTL effect sizes from population data can be directly com-
pared with in vitro quantification of regulatory variant effects.

Methods

Estimating cis-regulatory effect of an eVariant from allelic
expression data
Standard RNA sequencing reads can be used to measure the expres-

sion of each of the two gene copies, via allelic counts in individuals
carrying a heterozygous SNP (aeSNP) inside the transcribed region

of the gene (Castel et al. 2015). Allelic counts provide measure-
ment of the true allelic expression e, and e; from Equation 1 in a
given sample on a relative scale (Supplemental Fig. S1). Since
both measurements are drawn from the same sample, they share
the same basal expression (eg in Equation 1), and thus in absence
of noise, the ratio between the two allelic counts directly reflects
the effect of the cis-regulatory variant. Given allelic expression
data from a set N of individuals heterozygous for an eVariant of in-
terest, the aFC can therefore be robustly estimated as

810 = mediancl—‘", ®)
n=1.N Con

where ¢, and ¢ ,, are the allelic counts in the nth individual for
haplotype carrying reference and alternative allele for the cis-regu-
latory variant, respectively. Here we assume phasing between the
regulatory alleles and the aeSNP alleles are known. In cases when
phasing information is not available, the magnitude of the regula-
tory effect size can be calculated as

. )

dy,0 = |log, 81,0 = median|log,
n=1..N

Cl,n
Co,n

However, this estimate without phasing information is more sen-
sitive to noise and will systematically overestimate the effect size,
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particularly in cases where the true effect size is small in magnitude
and the variation in allelic counts is dominated by measurement
noise.

Estimating cis-regulatory effect of an eVariant from gene
expression data

Gene expression is linear with the number of alternative alleles for biallelic
eVariants

By using Equation 4, we can derive gene expression in an individ-
ual as function of the number of alternative alleles, t:

e(t) =[(2 —t)+td1.0]e0, (10)

where tis 0, 1, and 2 for individuals homozygous for reference al-
lele, heterozygous, and homozygous for alternative allele, respec-
tively. This equation can be written as

e= bit+bo, 1n

where

bo = 260, (123.)

by =ep(610 — 1), (12b)

showing that total gene expression under a cis-regulatory model is
linear for the number of alternative alleles of the variant (Fig. 1C).
For estimating the aFC from expression data, we consider two cases
of noise distribution: additive and multiplicative noise.

Estimating aFC from eQTL data with additive noise

Under an additive noise model, the measured gene expression in
the nth individual, y,, is the true expression, e(t), plus a normally
distributed noise, €, with zero mean and unknown variance. By
using e(t) from Equation 10,

Vn = [(2 —ty) + tnsl.O]eO + &n, (13)

where t,, is the number of alternative allele in the individual.
Similar to Equation 10, Equation 13 can be written in linear form:

Vn :bltn+b0+8n- (14)

Maximum likelihood estimates for by and b, can be derived effi-
ciently using ordinary least squares, and solving Equations 12a
and 12b, for &, o, the aFC is

o010 = +1. (15)

0

Estimating aFC from eQTL data with multiplicative noise

Assuming a multiplicative noise model, the measured gene expres-
sion in the nth individual, y,, is the true expression, e(t), multiplied
by a noise, €,, such that log e, is normally distributed with zero
mean and unknown variance. Substituting e(f) from Equation 10
again,

Vn = [(2 — )+ tn51,0]6’08n- (16)

Due to the multiplicative noise, this equation can no longer be
solved as a simple linear regression problem. Applying log transfor-
mation to both sides,

zp =1og, yn =10g,[(2 — ) + t,610] + log, e0 +10g, &,  (17)

The noise is captured by log, €,, which is additive and normally
distributed, but the right side of the equation is no longer linear

for the number of alternative alleles (Fig. 1D). By using nonlinear
least squares optimization, Equation 17 can be solved to derive
maximum likelihood estimates for the effect size §; o directly.

Efficient approximation of aFC from eQTL data with multiplicative noise

Nonlinear least squares optimization needed for solving regression
problem in Equation 17 is done using iterative numerical optimi-
zation that is a relatively slow procedure and not always straight-
forward to implement. In order to improve efficiency, we use
four simplified linear models to derive four candidate estimates
of the effect size and choose the one that provides the highest like-
lihood of the data. First, we derive three estimates of the regulatory
effect size using the ratio of the expressions between each of the
two genotypes:

M
5l = e (18a)
1
8% = , (18b)
’ 2@ -1
my
M
8l =25~ L. (18¢)

where my, m;, and m, are the geometric means of expression in the
samples homozygous for reference allele (¢, =0), heterozygous (t,
=1), and homozygous for the alternative allele (¢, = 2), respectively
(see Supplemental Methods). When the cis-regulatory effect size
approaches zero, the log-transformed gene expression is linear
with number of alternatives alleles (See Supplemental Methods).
Therefore, the nonlinear model in Equation 17 can be well approx-
imated with linear regression in cases where the effect size is small
(log 81,0 — 0). We regress log-transformed expressions on the ge-

notype,
Zy = C1ly + o + 1082 €n, (19)

and calculate the fourth effect-size estimate as (see Supplemental
Methods)

84y =229, (20)

Residual of the fit, r,, in the nth sample for a given effect size esti-
mate, &%), is

rn(k) =2Zn— 10g2[(2 - tn) + tng{],(()]- (21)

The estimate with lowest variance of the residuals among the four
candidates is reported:

810 =8, I=argminV[r(i)]. (22)

i€l.4

Simulation experiment

The simulated data set includes 200 individuals and 10,000 eGenes
each associated to exactly one eQTL. Each eQTL has two alleles; fre-
quency of the reference allele, fo, was drawn from a uniform distri-
bution for each eQTL (fy ~ uniform[0,1]). The eQTL genotype in
each individual was decided using two Bernoulli trials. Reference
and alternative alleles induce expressions e, and e; =81 ¢ ¢y in the
eGene in cis, respectively (Equations 1, 2). The expression e is gen-
erated for each eGene randomly across four orders of magnitude
(logi1o eo ~ uniform|0,4]). Similarly, the aFC, 8;, was assumed to
be uniformly distributed in logarithmic scale (log, 8, ~ uniform
[-5,5]) across simulated eQTLs. In order to choose a realistic noise
level, we used data from all eGenes associated with eQTLs in GTEx.
For each eQTL genotype class, expression mean and variance of
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the associated eGene was calculated. As expected, gene expression
was highly heteroskedastic with the mean-variance relationship
resembling that of multiplicative noise by log-normal distribution
(Supplemental Fig. S2). We used average within genotype standard
deviation of log;o-transformed gene expression to add log-normal
noise in the simulation (logo €, ~ norm[0, 6 =0.17]; Equation 17).

Estimating aFC for GTEx eQTLs

ASE-based estimates

Haplotypic counts were generated as described by The GTEx
Consortium (2017). Briefly, allelic counts for each sample were
generated from uniquely aligned RNA-seq reads for all heterozy-
gous SNPs from OMNI Array imputed genotypes using the GATK
ASEReadCounter tool (Castel et al. 2015). SNPs covered by less
than eight reads, those that showed bias in mapping simulations
(Panousis et al. 2014), those that had a UCSC 50-mer mappability
lower than one, or those without evidence for heterozygosity
(Castel et al. 2015) were excluded. The expression associated
with each eQTL allele haplotype was obtained by summing up al-
lelic counts within a gene using population phasing relative to the
eQTL variant (eVariant) for each sample. All individuals that are
heterozygous for the eVariant were used in Equation 8 to calculate
eQTL effect size from haplotypic counts. Bias-corrected and accel-
erated bootstrap was applied to infer 95% confidence intervals for
the aFC estimates (Efron 2012).

eQTL-based estimates

For eQTL data, expression counts were scaled for the total library
size, and one pseudocount was added to smooth the normalized
counts. Log-transformed expression data were corrected for con-
founding factors identified using PEER (Stegle et al. 2012) and
the three top principal components of the genotype matrix uni-
formly for all three tested methods: linear, nonlinear, and nonlin-
ear approximation. The correction was done in two steps: First, the
log-transformed expression profile of the eGene in nth sample, z,,
was modeled using linear regression:

Zn = p+aCy + Bt,, + é&n, (23)

where C,, is the nth column of the matrix Cy, containing M con-
founding factors, and £, € {0, 1, 2} indicates the number of alterna-
tive alleles in the nth sample. All nonsignificant columns, for
which the 95% confidence interval of the regression coefficient
in o overlapped zero, were discarded from C. In the second step,
the regression was repeated using the reduced covariate matrix,
and corrected expression was derived as

zZ=2z—aC. (24)

The corrected expression vector, z, was used for effect size calcula-
tions. For direct estimation of aFC from Equation 17 (the nonlinear
method, M2, in Figs. 3, 4), we used the Matlab generic nonlinear
least square solver (Isqnonlin). The effect size estimates used in
Figure 5, as well as those published on GTEx portal (http
://gtexportal.org), were calculated using the nonlinear approxima-
tion method (M3), and the 95% confidence intervals for the aFC
estimates were calculated using the bias-corrected and accelerated
bootstrap (Efron 2012). The full data of the GTEx V6p release are
available in dbGaP (study accession phs000424.v6.p1), and eQTL
summary statistics, including the effect size estimates for the top
eVariant—-eGene pair per tissue, are available from the GTEx portal
(http://gtexportal.org).

Mapping multiple eQTL signals per eGene

Multiple distinct signals for a given expression phenotype were
identified by forward stepwise regression followed by a backward
selection step. The gene-level significance threshold was set to be
the maximum beta-adjusted P-value (correcting for multiple test-
ing across the variants) over all eGenes in a given tissue. At each it-
eration, we performed a scan for cis-eQTLs using FastQTL (Ongen
et al. 2016), correcting for all previously discovered variants and
all standard GTEx covariates. If the beta-adjusted P-value for the
lead variant was not significant at the gene-level threshold, the for-
ward stage was complete and the procedure moved on to the back-
ward stage. If this P-value was significant, the lead variant was
added to the list of discovered cis-eQTLs as a distinct signal and
the forward step moves on to the nextiteration. The backward stage
consisted of testing each variant separately, controlling for all other
discovered variants. To do this, for an eGene with n eVariants, we
ran n cis scans (in effect n — 1 cis scans, as one replicates the final
stage of the forward analysis). For each cis scan, we control for all
covariates and all but one of the discovered eVariants (the one
dropped is the genetic signal that is being tested, conditioned on
the full model). If no variant was significant at the gene-level
threshold, the variant in question was dropped, otherwise the
lead variant from this scan, which controls for all other signals
found in the forward stage, was chosen as the variant that repre-
sents the signal best in the full model.

Joint analysis of two eQTLs

Regulatory independent model

Let us assume two biallelic eVariants, v, and v,, regulating expres-
sion of the same eGene in cis (Supplemental Fig. S6A). This is a spe-
cial case of Equations 5 through 7 where N=2 and m; =m,=2.
Under the independence assumption, the regulatory effect of
each eVariant allele on the expression of the carrying haplotype
does not depend on the present allele for the other eVariant, and
therefore, the expression of a haplotype carrying alleles i, and i,
for the two eVariants is

_ vl qv2
eii, = €00 08}, o, (25)

where indices iy, i € {0, 1} indicate reference (zero) and the alterna-
tive allele (one); S}fl{(), and 5}’50 are the aFCs associated with the pre-
sent alleles relative to the reference allele for v, and v, respectively;
and ¢, is the expression of a haplotype carrying reference allele for
both eVariants. Under this model, the log ratio between the ex-
pressions of the two haplotypes is

e ;
Siyiz.jnj, = 108, ﬂ E (26)

where indices iy, i, € {0, 1} and jj, j» € {0, 1} indicate the present al-
leles on the first and second haplotype, respectively. From defini-
tion of Afc,

8i0 = 6ij6j0; 27)

thus after substituting haplotypic expressions from Equation 25 in
Equation 26, the log ratio between the expressions of the two hap-
lotypes is

Sivig iz = IOgZ (8;/11,/'1 6}/221/.2) = s‘{llvfl + S}/zzjz' 28)
This equation presents the expected log aFC for a given genotype.
Therefore, under the regulatory independence model, the joint ef-
fect of the two alternative alleles is sum of their individual effects:

1 2
$11.00 = S10 + ST (29)
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Quantifying cis-regulation using allelic fold change

Under the cis-regulatory model, total expression of the eGene for
each genotype is the some of the individual haplotype expres-
sions:

Cirig.jija = Ciriy T €jijy- (30)

Substituting haplotypic expressions from Equation 25, we can use
measured expression profiles of genotyped individuals to estimate
aFC associated with the two eVariants. The observed expression
value for the eGene in the nth sample after log transformation is

1 2 1 2
Ziysinz juaine = 108 €0 + 10g<3ivn,l,o 80+ 5?,,_1,0521_20) a1

+ aCp + &,

where indices i,,1, in,2, jn,1, jn,2 € {0, 1} indicate the present alleles,
and C,, is the provided column vector of the confounding factors
for the sample. The nonlinear regression problem can be solved
to estimate reference expression ¢, individual aFC effects 8%,
8%, and the cofactor weight vector o (by definition 8§, and 845
are each equal to 1).

In order to estimate aFCs for eGenes with two eQTLs in GTEx
data, we used PEER (Stegle et al. 2012) and top three principal com-
ponents of the genotype matrix as the confounding factors in
matrix C. Generic nonlinear least square optimizer in Matlab
(Isqnonlin) was used to derive parameter estimates for the
Equation 26 regression problem. Confidence intervals of the pa-
rameters were derived using the t-statistic estimated via Jacobean
matrix calculated at the optimal function values (Matlab function:
nlparci). Predicted aFCs for regulatory independence model pre-
sented in Figure 6, B through E, and Supplemental Figure S7C
(blue bars) were derived using Equation 28. The prediction of hap-
lotype arrangement effects in Supplemental Figure S6 were derived
using Equations 30 and 31.

Relaxed model

In this model, we relax the regulatory independence assumption,
allowing the regulatory effect associated with co-occurrence of the
two alternative alleles to be potentially different from sum of their
individual effects. In contrast to Equation 25, haplotype expres-
sion is

€ii, = €00ii,,00 (32)

where §;,;, o0 is the aFC associated to copresence of the alleles i; and
i of the eVariants v, and v, compared with a haplotype carrying
reference allele for both eVariants. This model is equivalent to a
special case of models in Equations 5 through 7, where N=1 and
my = 4. From the aFC definition,

8irir,00 = Sivinjajo B, 005 (33)
and the log ratio between the expressions of the two haplotypes is
Siripjij = 1082 Birin jijo = Siriz 00 = Sjj>,00- (34

The total expression is the sum of the individual haplotypic ex-
pressions (Equation 30); thus, the observed expression value for
the eGene in the nth sample under the relaxed regulatory model
after log transformation is

Ziyrinsjurins = 108 €0 +108(8i, 1i,,.00 + 8,1j,,.00) + aCp + &n,  (35)

where indices in,1, in,2, jn,1, jn,2 indicate the present alleles and C,
the covariates as described in Equation 31. The nonlinear regres-
sion problem can be solved for reference expression ¢, joint aFC
effects 810,00, 601.00, 811.00, and the cofactor weight vector o (by def-
inition 80,00 is equal to one).

To estimate aFCs in GTEx data, regression parameters and
their confidence intervals were estimated as described for the reg-
ulatory independence model. Predicted aFCs for the relaxed model
presented in Figure 6E and Supplemental Figure S7C (red bars)
were derived using Equation 34.

Model comparison

In order to compare the two models of cis-regulation, the indepen-

dence and the relaxed model, we calculated total data likelihood
for each of the models under the log-normality assumption:

N 7 f

L(zIM) = e 202, 36

(zIM) 1:[1 T 36)

where z is the vector of N samples, r, is the fit residual at the nth
sample using the model considered M, and ¢ is the standard devi-
ation of the fit residuals. Bayesian information criterion (BIC) for
each of two models was calculated:

BIC(M) = —21ogL(z]M) + AlogN, (37)

where A, the number of parameters in each model, is the number of
cofactor coefficients plus three and plus four for the regulatory in-
dependence and the relaxed model, respectively. We used bias-
corrected and accelerated bootstrap (Efron 2012) to estimate
confidence intervals for ABIC=BIC(Relaxed model)- BIC
(Independence model) in cases where ABIC is negative. The relaxed
model was selected in cases where the upper bound for the 95%
confidence interval for ABIC fell below zero, and for the rest of
the cases, the independence model that has fewer parameters was
deemed adequate. The calculated aFCs for all eGenes in GTEx
with two associated eQTLs are provided in Supplemental Table S1.

Software availability

Software for calculating aFC from standard eQTL data is provided
in Supplemental Software S1 and is available online on GitHub
(https://github.com/secastel/aFC).
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