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Background 

We are, of course, pleased that the paper Finlay and Fenchel (2004) has received so many citations 

although several of them reflect disagreement regarding its contents (according to Clarivate’s Web 

of Science the article received 180 citations by ay 02, 2019). The article treated a subject to which 

we had already contributed substantial research - reflected by the fact that the paper refers to 

twelve of our previous contributions to the topic (e.g. Finlay 2002). 

 It all started as a response to a paper by May (1988) that attempted to estimate the 

global number of terrestrial species according to size groups. It was found that the number of 

species increases with decreasing body size, but only down to a size around 1 cm; below that size 
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species numbers declined with decreasing size. May suggested that many small-sized species 

remain to be discovered and also that taxonomic resolution is poorer for small organisms. That 

species numbers should increase with decreasing size seemed in line with theoretical 

considerations that the environmental patchiness is a question of scale: a given area may seem 

like a homogenous habitat for a large mammal, but constitutes a myriad of different habitats for 

small organisms. And in fact, within a given limited area, for example one ha of sandy sea floor or 

forest, the biota contain many more small than large species. Fenchel (1993) argued that the 

immense population sizes of small organisms mean that they have a greater ability for dispersal. 

Therefore they do not have a biogeography in the sense that their distribution depends only on 

environmental parameters, but not on historical contingencies over geological time. So what 

applies on a local scale does not apply on a global scale and the observation that global species 

numbers decline for species below a size of about 1 cm is a true phenomenon. And actually only 

about 17,000 species of free-living protists have been described which is modest compared to e.g., 

insects with more than one million species or molluscs that include about 85,000 described 

species. The correlation between absolute population size and dispersal ability has been 

confirmed both empirically and by theoretical population biology (e.g. MacArthur and Wilson 1967 

and Hubbell 2001).       

 Actually, the considerations in Fenchel (1993) were not really very original. Already 

e.g., Darwin and Ehrenberg had suggested that protist species have a cosmopolitan distribution. 

With regard to bacteria Baas Becking had already in 1931 stated that for bacteria: “Everything is 

everywhere, (but) the environment selects” (see Finlay 2002, de Wit and Bouvier 2006). This was 

based on the observation that by using enrichment cultures it is possible to obtain isolates of all 

kind of bacteria everywhere and this has been confirmed over and over again. Thus it is possible, 

for example, to isolate obligate thermophiles from ice cold sea water and obligate anaerobes from 

the aerobic water column. The argument was that the immense population sizes of bacteria 

combined with dispersal by wind, water currents or other mechanisms such as migrating birds 

constantly spread bacteria worldwide. The cells would remain viable for some time under 

unsuitable conditions, but may proliferate if the environment becomes suitable for growth. With 

respect to protozoa the monumental treatise on ciliates (Kahl 1930-35) had the subtitle : “eine 

Bearbeitung der freilebenden  und ectocommensalen Infusorien der Erde” (A Treatise on the Free-
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Living and Ecto-Commensal Infusoria on Earth) . The work was published in a series of books on 

the fauna of Germany and at the time there were very few surveys of ciliate biota outside of 

Europe and North America. And so the subtitle implied that the author took it for granted that 

ciliate species have a cosmopolitan distribution.   

 It has also been discussed to which extent the so called meiofauna (small metazoan 

species usually defined as measuring <2 mm) display biogeographical patterns or whether 

“everything is everywhere” (Giere 2009). It cannot be considered a settled question, but as in the 

case of protozoans it is to a large extent a problem of undersampling. 

 The question – in the case of protozoa – induced the present authors to collaborate 

in resolving the question: do protozoa have a biogeography or are they more like bacteria in that 

their presence is only contingent on the environment. The paper that we are “revisiting” (Finlay 

and Fenchel 2004) was based on two localities: a eutrophic freshwater pond in the English Lake 

District and a marine sandy bay north of Copenhagen. Both localities have over many decades 

been studied intensively with respect to the flora and fauna including the protists. For both sites 

we attempted to evaluate the fraction of species that could be considered to have a cosmopolitan 

distribution.  To consider a species to have “cosmopolitan distribution” entails a set of criteria and 

we chose that it required the presence on both hemispheres, in all oceans and in at least two 

biogeographical regions. The result was that there was a clear relation between size and 

distribution: for the freshwater pond, heterotrophic eukaryote species those measuring < 0.2 mm 

in size were about 90% “cosmopolitan”, and among those measuring >2 cm there were none.  The 

marine bay provided a similar picture, but the fraction of “cosmopolitan species” among the 

smallest organisms reached only about 70%.    

Further Evidence 

Our investigations into protists (mainly ciliates) geographical distributions initially used the 

morphospecies concept that we had previously proposed (Finlay et al 1996) in order to bring 

underpinning consensus to our studies (and those of others wishing to undertake similar 

examinations thereafter, e.g. Azovski and Mazei 2012). Also, ciliate species are relatively easy to 

identify by morphological characteristics, and we had the right taxonomic expertise within the 

research group.   
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 To further pursue evidence for Baas Becking’s “everything is everywhere, but the 

environment selects”, and armed with the “morphospecies” concept, we focused research on two 

key areas: (1) protists thriving in distant and/or geographically-isolated aquatic habitats, i.e. 

biogeographical “islands” (McArthur and Wilson, 1967), and (2) presence and significance of 

protist “seedbanks”.  For the former, we must allude to our unexpected discovery of common 

brackish-water ciliate species (like those previously recorded from, e.g. the sandy sediments in 

Nivå Bay, Denmark) in an isolated crater lake in southern Australia, most likely as result of 

“dispersal and colonization” due to enduring sea-sprays from the Southern Ocean (Esteban et al 

2000).  Other “islands” that we sought out to investigate were closer to “home” (i.e. Europe, 

where a wealth of ciliate faunistic lists and their habitats are available), but they equally rendered 

interesting results; for instance, the finding of typical marine ciliates thriving in inland salt pans (of 

salinity like that of sea water) in central Spain at more than 300 km from the nearest coast line 

(Esteban and Finlay 2004).  The environmental conditions in these isolated habitats made 

population growth of the ciliate species possible, independently of the habitats’ geographical 

locations. 

 Ubiquitous dispersal of protists implies that every habitat may support a “seedbank” 

of species imported to that habitat by random dispersal. However, many of the species in the 

seedbank may never thrive due to lack of environmental conditions to develop population growth 

and, hence, they persist dormant/encysted (albeit viable) waiting for favourable conditions to 

emerge (Esteban and Finlay 2010). Finlay et al (1996) and Fenchel et al (1997) had demonstrated 

that natural habitats do support species-rich ‘seedbanks’ by manipulating natural samples using a 

large variety of enrichment cultures in order to offer micro-habitats to a variety of ‘dormant’ 

protist species.  A few milliliters of pond sediment collected in one single occasion from one single 

pond depth and using multiple enrichment techniques increased the recorded ciliate species from 

27 (first day of observations) to 137 after four months of painstakingly culturing subsamples. 

 There is also evidence for the rapid dispersal of protists over great distances.  Thus 

Cairns Jr., Ruthven JA (1972) and McCormick, Cairns Jr. (1990) demonstrated the colonization of 

isolated freshwater ponds, Frederiksen et al.(2001) proved the rapid colonization of protozoa in 

soil on the volcanic island Surtsey that originated in a volcanic eruption in 1963 and is situated 33 

km from the south coast of Iceland. Villerslev et al. (1999) using the detection of SSU rRNA genes 
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in cores from the Greenland glacier ice, demonstrated a long list of protists (and fungal spores) 

that had rained down on the ice cap during the Holocene period. 

 Some of the soundest evidence of random dispersal followed by cryptic (i.e., 

dormant or very low abundance) persistence in the ‘seedbank’ is probably the detection of species 

that would not thrive in the habitat where they have been found.  The search of such ciliates was 

the target of work that we also published in PROTIST (Esteban and Finlay 2003), in which 

freshwater and other ciliates (not adapted to high salt concentrations) were found in a hypersaline 

lagoon after gradually diluting the original samples over a long period of time until the 

environment eventually became favorable for the ciliates’ development. 

 For most rare protist species, undersampling is inevitable (Finlay and Fenchel 2004), 

and for that reason, “endemic” species are not (yet) found elsewhere. After all, all surveys are 

based on few ml of water or sediment, which is a minor fraction of even the smallest of lakes that 

include a great amount of different microhabitats. Having said that, there are superb examples of 

‘endemics’ being ‘dethroned’ when sampling ranges expand to wider geographical regions, with 

Loxodes rex providing one of the finest examples; the ciliate has a cell size of 1-1.5 mm, with cyst 

formation (so far) unknown. The species was described as endemic to tropical Africa (Dragesco 

1970), but when sampling expanded to other world regions it was found in swamps  in Thailand 

(Esteban et al. 2001) and, more recently, all across Florida,  USA (Hines et al 2016). The occurrence 

of a bipolar distribution of cold-adapted protists is also striking. For example, the ciliate Euplotes 

nobilii has been found in both the Arctic and the Antarctic and the two isolates share common 

pheromone-mediated cell signaling and display cross-mating (Di Guiseppe et al 2011). 

Cryptic Species and Genotypes 

 

With respect to sexual outbreeding in ciliates it has been found that nominal species may 

represent a complex of forms that cannot interbreed although they are morphologically very 

similar or identical; such sibling species or syngenes are then separate species in terms of the 

biological species concept. The classic example is the Paramecium aurelia complex (Sonneborn 

1975). A similar complex has been found within the genus Tetrahymena (e.g. Nanney and McCoy 

1976); given that the two genera are among the most intensively studied ciliates it is probable that 

the phenomenon is more widespread. A geographical distribution pattern of these forms has also 
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been suggested (Nanney 2004), but again this may be an effect of undersampling – most syngenes 

have been found in North America where search for different Tetrahymena genotypes has been 

most intensive.  

 All species show some genetic polymorphism which, to a large extent, represents 

neutral or near neutral mutations. The number of such neutral mutations that is maintained in 

populations is a function of absolute population size (Kimura 1983). And so it has also been 

considered whether such genetic differences show biogeographical patterns. The problem with 

this approach is, of course, that it requires an a priori idea of how many such variations in a given 

gene exist: when the number is high it is quite likely that when a representative of a species is 

collected at site A it will show another genotype than one collected at site B.  

 It has been attempted to demonstrate biogeographical distribution patterns of 

different genotypes of SSU rRNA genes (Bass et al. 2007), but the above mentioned problem of 

undersampling has not been taken into account. Finlay et al. (2006) obtained SSU rRNA sequences 

from isolates of the ciliate Cyclidium glaucoma collected in various freshwater sites in Europe, 

South East Asia, Japan, Africa, Australia, North American and South America and in adjacent 

marine localities. It resulted in 31 genotypes, but there were no geographical patterns, and 

identical genotypes were found in e.g., Australia and Denmark. The species occurs in salinities 

ranging from freshwater to hyperhaline water and there was a correlation between genotype and 

the salinity in which they occur and different isolates display differences with respect to their 

growth response to different salinities in laboratory cultures (Fenchel and Finlay 2006). But, for 

example, identical genotypes were found  in Great Salt Lake in Utah and in a hyperhaline pond in 

Spain so that there is a correlation between their tolerance range to different salinities and their 

rRNA genes. It is unclear whether C. glaucoma is a sexual out breeder and if so, the different 

genotypes may represent sibling species such as in the Tetrahymena complex, but there is no 

indication that the different genotypes are confined to particular parts of Earth’s surface.    

 

Conclusion 

 

The idea of a cosmopolitan distribution of protists and that their distribution depends exclusively 

on the habitat has met opposition (e.g. Nanney 2004, Stoeck et al 2007) and it seems to be almost 
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impossible to provide a final “proof” or “disproof” one way or the other. It is always possible to 

declare a species for being “endemic” (e.g. to a continent, a hemisphere, or a lake) as long as it has 

not been detected elsewhere. And it is not impossible that endemics within a certain geographical 

region actually do exist. But examples of such putative endemics are rare and the species in 

question have so far often later turned up in other locations. It is clear that some species display 

what botanists refer to as “ecotypes”, i.e. that populations within a nominal species somehow 

display genetically determined differences with respect to environmental preferences, e.g. the 

different  salinity preferences in isolates of  the ciliate Cyclidium glaucoma complex (Finlay et al. 

2006) and in the flagellate Bodo designis (Koch and Ekelund 2005). But at least in these two cases 

such ecotypes (and identical genotypes) have also been found to have a widespread geographical 

distribution. And as far as asexual forms are concerned there is no theoretically based species 

concept. 

 The essential difference between macroscopic organisms and microbes is the 

immense absolute population sizes of the latter. This again explains the greater potential for 

dispersal and also for a high degree of genetic polymorphism. The great genetic distances in, e.g. 

rRNA genes, within complexes of syngenes or sibling species (Nanney et al. 1988) testify that the 

extant phenotypes of different species are ancient in a geological time scale – perhaps because 

allopatric speciation does not play a role for microbes. 

 

  

ACCEPTED M
ANUSCRIP

T



8 
 

 

References 

Azovsky  A, Mazei Y (2013) Do microbes have macroecology? Large‐scale patterns in the diversity 

and distribution of marine benthic ciliates. Glob Ecol Biogeogr 22:163-172     

Bass D, Richards TA, Matthai L, Marsh V, Cavalier-Smith T (2007) DNA evidence for global 

dispersal and probably endemicity of protozoa. BMC Evol Biol 7:162-174 

Cairns J Jr, Ruthven JA (1972) A Test of the cosmopolitan distribution of freshwater protozoans. 

Hydrobiologia 39:405 -427  

De Witt R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did 

Baas Becking and Beijerinck really say? Environ Microbiol 8:755-758 

Di Giuseppe G, Erra F, Dini F, Alimenti C, Vallesi A, Pedrini B, Wüthrich K, Luporini P. (2011) 

Antarctic and Arctic populations of the ciliate Euplotes nobilii sahow common pheromone-

mediated cell-cell signaling and cross-mating. Proc Natl Acad Sci USA 108:3181-3186 

Dragesco J (1970) Ciliés libres du Cameroun. Ann Fac Sci Yaoundé (Hors série):1–141. 

Esteban GF, Finlay BJ, Olmo JL, Tyler PA (2000) Ciliated protozoa from a volcano crater lake in 

Victoria, Australia. J Nat Hist 34:159-189 

Esteban GF, Finlay BJ, Charubhun B, Charubhun N (2001) On the geographic distribution of 

Loxodes rex (Protozoa, Ciliophora) and other alleged endemic species of ciliates. J Zoology 

255:139–143 

Esteban GF, Finlay BJ (2003) Cryptic freshwater ciliates in a hypersaline lagoon. Protist 154:411-

418. 

Esteban GF, Finlay BJ (2004) Marine ciliates (protozoa) in central Spain. Ophelia  58:12-22 

Fenchel T (1993) There are more small than large species? Oikos 68:375-378 

Fenchel T, Esteban GF, Finlay, BJ (1997) Local versus global diversity of ciliated protozoa. Oikos 80: 

220-225 

Fenchel T, Finlay BJ (2006). The diversity of microbes: resurgence of the phenotype. Philos Trans R 

Soc B 361:1965-1973 

Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061-1063 

Finlay BJ, Esteban GF, Fenchel T (1996) Global diversity and body size. Nature 383:132-133 

ACCEPTED M
ANUSCRIP

T



9 
 

Finlay BJ, Esteban GF, Brown S, Fenchel T, Hoef-Emden K (2006) Multiple cosmopolitan ecotypes 

within a microbial eukaryote morphospecies. Protist 157:377-390  

Finlay BJ, Fenchel T (2004) Cosmopolitan metapopulations of free-living microbial eukaryotes. 

Protist 155:237-244  

Frederiksen HB, Kraglund H-O, Ekelund F (2001) Microfaunal primary succession on the volcanic 

island of Surtsey, Iceland. Polar Res 20:61-73 

Giere O (2009) Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments. Second 

Edition, Springer, Berlin, Heidelberg, 548p 

Hines HN, McCarthy PJ, Esteban GF (2016) The first record for the Americas of Loxodes rex, a 

flagship ciliate with an alleged restricted biogeography. Microb Ecol 71: 5-8 

Hubbell SP (2001) The United Neutral Theory of Biodiversity and Biogeography. Monographs in 

Population Biology vol 32. Princeton University Press, Princeton, 392p  

Kahl A (1930-1935) Urtiere oder Protozoa. 1. Wimpertiere oder Ciliata (Infusoria), eine 

Bearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unter Ausschluss der 

marinen Tintinnidae. In Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 

18 (1930), 21 (1931), 25(1932), 30(1935). G. Fischer, Jena, 886p 

Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, 

Cambridge, 367p 

Koch TA, Ekelund F (2005) Strains of the heterotrophic flagellate Bodo designis from different 

environments vary considerably with respect to salinity preference and SSU rRNA genes. Protist 

156: 97-112.  

MacArthur, RH, Wilson EO (1967) The Theory of Island Biography.  Princeton University Press, 

Princeton, N. J., 203p 

May RM (1988) How many species are there on Earth? Science 241:1441-1449 

McCormick PV, Cairns J Jr (1990) Microbial colonization dynamics in temporary aquatic systems. 
Hydrobiologia 196:229-253 

Nanney DL (2004) No trivial pursuit. BioScience 54:720-721 

Nanney DL, McCoy JW (1976) Characterization of the species of the Tetrahymena pyriformis 

complex. Trans Am Microsc Soc 95:664-682 

Nanney DL, Park C, Preparata R, Simon EM (1988) Comparison of sequences in a variable 23S 

rDNA domain among sets of cryptic species of ciliated protozoa. J Eukaryot Microbiol 45:91-100 

ACCEPTED M
ANUSCRIP

T



10 
 

Sonneborn TM (1975) The Paramecium-aurelia complex of 14 sibling species. Trans Am Microsc 

Soc 94:155-178 

Stoeck T, Bruemmer F, Foissner W (2007) Evidence for local ciliate endemism in an alpine anoxic 

lake. Microb Ecol 54:478-486 

Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P (1999) Diversity of Holocene 

life forms in fossil glacier ice. Proc Natl Acad Sci USA 96:8017-8021 

 

ACCEPTED M
ANUSCRIP

T


