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Abstract 20 

The need to understand the impacts of land management for conservation, agriculture and 21 

disease prevention are driving demand for new predictive ecology approaches that can reliably 22 

forecast future changes in population size. Currently, although the link between habitat 23 

composition and animal population dynamics is undisputed, its function hasn’t been quantified in 24 

a way that enables accurate prediction of population change in nature. Here, using 12 house 25 

sparrow colonies as proof-of-concept, we apply recent theoretical advances to predict population 26 

growth or decline from detailed data on habitat composition and habitat selection. We show, for 27 

the first time, that statistical population models using derived covariates constructed from 28 

parametric descriptions of habitat composition and habitat selection can explain an impressive 29 

92% of observed population variation. More importantly, they provide excellent predictive 30 

power under cross-validation, anticipating 81% of variability in population change. These 31 

models may be embedded in readily available Generalised Linear Modelling frameworks, 32 

allowing their rapid application to field systems. Furthermore, we use optimisation on our 33 

sample of sparrow colonies to demonstrate how such models, linking populations to their 34 

habitats, permit the design of practical and environmentally sound habitat manipulations for 35 

managing populations. 36 

 37 

Keywords: habitat engineering, habitat selection, habitats-to-populations (HTP), house sparrow 38 

(Passer domesticus), population declines, population modelling 39 

 40 

 41 

  42 



Habitat composition & population change 

Matthiopoulos, Field & MacLeod  3 

Introduction  43 

Accelerating environmental change is driving widespread demand for predictive ecology 44 

approaches that are able to make reliable forecasts about our impacts on biological populations 45 

(Evans et al. 2011, Mouquet et al. 2015, Dietze et al. 2018). Currently, ecology is particularly 46 

successful at explaining the population impacts of measured environmental variables (Mouquet 47 

et al. 2015). However, much more needs to be achieved if we are to produce accurate forecasts of 48 

how ecological systems will respond to future change (Evans et al 2011, Dietze et al. 2018). The 49 

ability to make reliable anticipatory predictions will have widespread applications in species and 50 

land management, whether for conservation, environmentally sustainable agriculture, the 51 

management of wildlife for food stocks or defence against disease vectors and alien species.  52 

 A priority focus in such new predictive ecology approaches is the crucial relationship between 53 

habitat quality and population growth, a link whose existence is undisputed but whose form and 54 

strength are harder to quantify (Morales et al. 2010, Matthiopoulos et al. 2011, Matthiopoulos et 55 

al. 2015). The proliferation of spatial modelling in ecology in recent decades is beginning to see 56 

data on the spatial distribution of populations being connected to individual aspects of population 57 

demography (Johnson et al. 2004, McLoughlin et al. 2006, 2007, Aldridge & Boyce 2007, 2008, 58 

Blouin-Demers & Weatherhead 2008, Erickson et al. 2014). By harnessing the predictive power 59 

of the link between habitats and populations, such efforts can help build the sort of anticipatory 60 

ecological science we urgently need. 61 

 The growth rate of a population is ultimately driven by a mosaic of spatially heterogeneous 62 

habitat covariates representing conditions, resources and risks (Guisan & Zimmermann 2000, 63 

Matthiopoulos et al. 2015). To understand and manage population change via habitat 64 

composition, we need to identify which habitat variables are likely to be influential. This requires 65 
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two types of methods, used in tandem. First, transferrable models of habitat selection (Yates et 66 

al. 2018) that can successfully capture a species’ distribution at both fine and coarse scales and, 67 

second, frameworks for connecting habitat use to concurrent population change data. In this 68 

paper, we exploit recent developments in both of these directions integrated in a statistical 69 

approach recently developed by Matthiopoulos et al. (2015). This framework, henceforth called 70 

Habitats-To-Populations (HTP), was derived from first principles, and is thus well supported 71 

theoretically, but its utility and power have yet to be tested in a real system. Here, we make the 72 

first test in nature of the ability of the HTP framework to predict population change from habitat 73 

composition. We do so using a set of house sparrow (Passer domesticus) colonies, a species that 74 

has experienced rapid, but poorly understood, population declines in parts of its global range, 75 

while becoming a highly invasive species elsewhere (Hole et al 2002). Further, we use this 76 

quantitative link between habitat composition and change in population size to examine how 77 

nascent habitat engineering approaches could be developed to achieve – often elusive –  78 

ecological objectives of conservation or pest management.  79 

Materials and Methods 80 

Population change was monitored over a two-year period in a total of 12 sparrow colonies where 81 

the colony’s nesting area had been identified at the start of monitoring. In these, and a further 20 82 

colonies, added to provide a broader representation of habitat scenarios, the composition of all 83 

the gardens within each colony’s spatial range was documented and observations of habitat use 84 

by sparrows were made. Following the paradigm illustrated in Fig. 1 (adapted from 85 

Matthiopoulos et al. 2015), our analysis approaches the combined data on habitat use and 86 

population change by linking a flexible modelling framework of habitat preferences with a 87 
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habitat-sensitive model of population growth. In order to test the performance and utility of the 88 

HTP theoretical framework for achieving the goals of predictive ecology, we investigated the 89 

model’s explanatory power, its predictive power under cross-validation and its ability to generate 90 

specific, testable recommendations regarding habitat improvements.  91 

 92 

Study species 93 

Although increasingly considered as an invasive species in many parts of the world, the house 94 

sparrow has been suffering heavy declines in much of its native range in the last decades. 95 

Declines have been particularly severe in North-Western Europe and in the UK, where the 96 

breeding population has dropped by 71% since the 1970s to 5.1 million today, placing the 97 

species on the UK conservation red-list (Robinson et al. 2016).  The causes of sparrow declines 98 

in urban/suburban environments, where the majority of the population are found, remain 99 

uncertain but are probably connected to changing habitat composition of gardens brought on by 100 

changes in socioeconomic status and home-improvement trends (Shaw, Chamberlain & Evans 101 

2008). It has been suggested that garden paving reduces suitable foraging area, that the use of 102 

introduced plants reduces native vegetation and leads to a reduction in invertebrate prey (Chace 103 

& Walsh 2004, Shaw et al. 2008, Seress et al 2012), while tidier gardens and modern roofing 104 

techniques reduce the availability of cover from predation and the number of nesting sites 105 

(Daniels & Kirkpatrick 2006). However, none of these variables have been definitively linked to 106 

population change at a landscape scale using population replicates. This requirement, as well as 107 

the ease with which sparrows can be observed and their urban and suburban environment can be 108 

manipulated, make the species particularly suitable as a test-bed for new modelling ideas and 109 

subsequent validation experiments.  110 
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Data collection 111 

The set of 32 colonies for our study lay within an area of 200km2 in and around the city of 112 

Glasgow in Scotland and were chosen to maximise the diversity of structural habitat 113 

characteristics and observed colony size.  114 

 To achieve the fine spatial scales needed for modelling habitat selection, the habitat usage and 115 

availability study was carried out by surveying all the individual gardens (150 in total) within the 116 

range of each sparrow colony. High-resolution (2x2m grid square size) habitat and space use 117 

survey data were collected covering the gardens in each colony. During the habitat usage survey, 118 

all the cells in each colony were continually observed until a total of 20 separate sparrow visits to 119 

grid cell locations were recorded. We aimed to distribute our observation equally for each unit of 120 

area within the complex of gardens belonging to each colony’s domain. An additional 20 121 

locations were then randomly selected from all the grid squares within the colony. This provided 122 

us with a use-availability data set comprising an equal number of ones and zeroes.  For our 32 123 

colonies, this led to 1280 distinct spatial cell observations of habitat usage. Using Google Earth 124 

imagery (GOOGLE EARTH, 2016), for each of the 1280 cells we estimated the percentage 125 

covered by hedge, grass, bush, roof, artificial surfaces and trees to the nearest 10%. We also 126 

calculated the distance of each cell from the nearest hedge and roof. For 12 focal sparrow 127 

colonies, baseline population surveys were available from a citizen science programme, the 128 

Glasgow House Sparrow Project, part of a partnership between the Royal Society for the 129 

Protection of Birds (RSPB) and the University of Glasgow. This provided data on house sparrow 130 

colony size as measured by counting all males present in each colony during the main part of the 131 

breeding season (April to July) in 2014.  The population surveys were undertaken by trained 132 

sparrow surveyors who repeatedly walked every street and back lane in their survey area and 133 
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counted the total number of adult sparrows in each colony. House sparrows are confident around 134 

humans, very vocal and easily identifiable, making exact determination of colony population size 135 

in the breeding season straightforward in urban areas. During the breeding season, house 136 

sparrows are extremely site faithful to their nest area, with radio tracking showing maximum 137 

travel distances of <100m (Shaw 2009). However, even this distance is rare given that 95% of 138 

the foraging locations during breeding occur in an area that can be represented by a 16m radius 139 

circle (calculated from data in Shaw 2009), allowing precise population counts for each survey 140 

area. House sparrows breed in pairs and males are particularly easy to detect and count because 141 

they sing for long periods from highly visible song posts next to their nests. We therefore used 142 

the maximum number of males recorded in each colony as the measure of colony size. 143 

Population growth rates were established as the difference in colony sizes recorded between the 144 

years 2014 and 2016 using follow-up colony surveys in the 2016 breeding season based on the 145 

same methodology as the first citizen science surveys. The increased sample size (N=32) for the 146 

habitat usage survey part of the modelling was chosen to help ensure that the habitat model was 147 

provided with adequate data (our habitat use model was particularly data hungry because of the 148 

multiple pairwise interactions it contained - see next sub-section). 149 

 150 

Statistical analysis of habitat use 151 

Within the broad field of Habitat Selection Functions (HSFs, a term that we use here to describe 152 

closely related approaches such as Resource Selection Functions – Manly et al. 2004 – and 153 

Maximum Entropy models – Philips, Anderson & Schapire 2006), it is widely recognised that 154 

animals respond not merely to the habitat characteristics of their immediate location but also to 155 

the overall habitat composition of their surrounding area (e.g., the availability of all habitats 156 
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within their entire home range). Matthiopoulos et al. (2011) proposed the framework of 157 

Generalised Functional Responses (GFR), which capture nonlinearities in the habitat preferences 158 

of animals by modelling the regression coefficients of an HSF as functions of local habitat 159 

availability. By using data from multiple scenarios of availability (e.g., the different sparrow 160 

colonies in our study) a GFR can interpolate (in environmental space) the response of the species 161 

under as-yet unobserved scenarios of habitat availability. For n explanatory variables 162 

 with  regression coefficients , the general HSF takes the 163 

form. h   164 

   (1) 165 

These functions can be obtained from statistical models that are fitted equivalently to count, use-166 

availability or point-process data (Aarts et al. 2012), either via likelihood or maximum entropy 167 

criteria. To extend the HSF framework to account for the regional availability of all habitats 168 

influencing local usage, the Generalised Functional Response writes each beta coefficient as a 169 

function of habitat availability 170 

   (2) 171 

Where  is the jth order expectation of the ith covariate.  These expectation terms provide 172 

statistical summaries for the distribution of explanatory variables in the neighbourhood of each 173 

spatial point of interest. Their inclusion allows the model to quantify the environmental context 174 

within which utilisation decisions are made by animals (Paton & Matthiopoulos 2016). Including 175 

expectations up to the maximum kth order allows the GFR to account for the average, variance, 176 

skewness, kurtosis  etc. of the distribution of variables in surrounding space. However, in the 177 
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simplest case (requiring the least amount of usage data to be estimated), only the averages (i.e. 178 

1st order expectations) are used. When the coefficients in eq. (2) are placed into the model of eq. 179 

(1), they result in interaction terms between local covariate values and their regional 180 

expectations.  181 

Eq. (2) implies that each sampling scenario (in our study, data within the home range of each 182 

sparrow colony) is characterised by a unique response (i.e. a unique regression slope) to each of 183 

the covariates, based on characteristics of regional habitat availability. It is, however possible to 184 

calculate this unique numerical value of each coefficient for each sampling scenario and to 185 

compare the response of animals to covariates between different sampling scenarios. In practice, 186 

the GFR takes the form of a generalised linear (or additive) model that comprises all the pairwise 187 

interactions between the values of environmental variables at any one sampled location and their 188 

(1st, 2nd, etc.) expectations in the vicinity of a location across the sampling scenario 189 

(Matthiopoulos et al. 2011, 2015, Aarts et al. 2013, Paton & Matthiopoulos 2016). The specific 190 

form of the GLM depends on the data to be analysed (Aarts et al. 2008, Aarts et al. 2012). In our 191 

case, the value of use or availability (1 or 0) was used as the response variable in a logit GLM 192 

with binomial likelihood, modelling the probability that a cell with particular habitat 193 

characteristics contained one of our sparrow detections. To create the GFR, we distinguished 194 

between spatially referenced variables (i.e. the characteristics of each 2x2m cell in a garden) and 195 

colony/survey-specific variables (e.g. the known size of a colony, or prevailing weather 196 

information). Colony size was used as a colony-specific covariate in the habitat model to account 197 

for the effect of crowding on apparent habitat suitability (i.e. the possibility that suboptimal 198 

habitats are used by birds when they are displaced from optimal habitats by conspecifics).  199 
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 Analysis was performed using R v3.3.0 (R Core Team 2016) with the aid of the R library 200 

HaToPo (HAbitats-TO-POpulations, available from https://github.com/JasonMat/HATOPO.git). 201 

Linking habitat to population growth 202 

The second stage of the HTP analysis links population change data to habitat composition and 203 

was recently derived by Matthiopoulos et al. (2015). Here, and in Fig. 1, we briefly outline the 204 

components of HTP, but the mathematical details can be found in that earlier paper. HTP utilises 205 

estimated parameters, generated by two distinct statistical models, namely, a detailed 206 

approximation of habitat availability and a species-habitat association model (the HSF/GFR, see 207 

previous subsection). Both of these constituent models need to be fitted to multiple sampling 208 

scenarios, to give them the opportunity to learn how the same organisms respond to a diversity 209 

of habitat compositions. A sampling scenario corresponds to a definable population or sub-210 

population and its spatial range during a short time window. In this study, it refers to individual 211 

house-sparrow colonies. The parameter estimates from these two models are then used in pre-212 

derived mathematical formulae (Matthiopoulos et al. 2015) to construct candidate covariates to 213 

be regressed against observations of population change. These new, constructed covariates, 214 

although not explicitly spatial, nevertheless contain information about the combinations of 215 

habitats experienced by the individuals living in different sampling scenarios. The theoretical 216 

motivation behind these new covariates (and consequently, the hypothesis put to the test in the 217 

present paper, using real data) is that, by more precisely encompassing the portfolio of habitats 218 

exploited by the study individuals, a population model will be better able to retrieve predictive 219 

signal from data of population change. This theoretical approach currently entails a set of 220 

simplifying assumptions (see also Matthiopoulos et al. 2015), whose relevance to the sparrow 221 

system we examine below: 222 
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1) Accessibility: The entire home range of each colony is assumed equally accessible to each 223 

sparrow, such that points are not likely to receive differing degrees of usage due to their distance 224 

from the nest. Given the very strong site fidelity of sparrows (see earlier discussion) and 225 

resulting short range of movements, this assumption is likely to hold.  226 

2) Spatial-pseudoequilibrium: We assume (in a way similar to most habitat analyses - Guisan and 227 

Thuiller 2005) that our space-use data come from a population whose distribution is not currently 228 

undergoing radical adjustments.  229 

3) Negligible individual variation: We assume that habitat use by any one individual is 230 

representative of the use of space by the entire colony and that individuals are similar to each 231 

other in their behaviour and reproductive potential.  232 

4) Non-depletable covariates: Although the approach does take into account secondary effects in 233 

distribution and colony growth resulting from crowding and density dependence, we are not 234 

explicitly modelling resource depletion. Consequently, our sparrow case study has used habitat 235 

characteristics, rather than measurements of prey abundance, as the candidate covariates. 236 

5) Exclusion of more sophisticated features: Finally, the model does not currently examine 237 

genetic change during the window of observations, formulations with non-additive habitat effects 238 

on population fitness, Allee effects in population growth, or saturating responses to 239 

superabundant resources. 240 

 The constructed covariates are employed in a generalised linear model of population change 241 

to investigate their impact on population change data in a set of sampling scenarios. This stage of 242 

the analysis (corresponding to boxes 3-6 in Fig. 1) relates population growth rates to habitat 243 

composition. The deterministic population model used as a platform by Matthiopoulos et al. 244 
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(2015) has extensive roots in ecology and was most recently proposed by Turchin (2003) as a 245 

convenient starting point for population inference 246 

   (3) 247 

where  is some function of habitat composition  and past population densities 248 

 . The stochastic version of this model takes the form  249 

   (4) 250 

The Poisson distribution is used here purely for illustrative purposes. Alternative distributions 251 

such as the negative binomial may be used to capture over-dispersion in population count data. 252 

Eqs (4) can be conveniently fitted to population count data as a generalised linear model (GLM) 253 

with linear predictor given by  254 

   (5) 255 

In regression terminology,  is the GLM’s offset. Two types of statistical population 256 

models were fitted to the colony growth data. The first, used here as a baseline, we call the 257 

“mean-field” model. It relates population growth to the average values of the habitat variables 258 

across the range of each colony (based on samples from gardens around the nesting colony). This 259 

model ignores the nuances of habitat availability and habitat usage. The second, called here the 260 

“spatial” model was based on the HTP approach and relates population change to the detailed 261 

profile of habitat composition in the domain of each colony. As an example of implementation of 262 

eq. (5) for the two cases, our selected mean-field model in the sparrow analysis (see results 263 

below) was a GLM with linear predictor 264 
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   (6) 265 

Here, log-linear population growth is predicted by the average availability of bushes across the 266 

domain of each colony, with the added effect of the colony’s size (representing density 267 

dependence). Such a model, employing average conditions across the domain of a colony, may 268 

be able to capture coarser aspects of habitat dependence but it ignores the fact that members of 269 

the population are exposed to combinations of covariates spatially, and they can modulate that 270 

exposure (whether beneficial or otherwise) by differentiating their use of different habitat types 271 

within their range. This is where information from the habitat model can extend the predictive 272 

reach of mean-field models such as eq. (6). The effect of habitat availability and habitat use on 273 

population growth was estimated via the HTP model, implemented in the HaToPo library for R 274 

(R-Core 2016). HaToPo yields a set of constructed candidate covariates of population change, 275 

each of which is a function of previously estimated parameters from the models of habitat 276 

availability and habitat use. Furthermore, it captures the spatial features of conspecific 277 

interference to create a constructed covariate for density dependence. Our final spatial model 278 

was, once again, a GLM of the form of eq. (5) but this time, the linear predictor comprised 279 

constructed covariates in bush, grass, roof and density dependence (see results, below). 280 

   (7) 281 

Model fitting and selection 282 

It was possible to subject our habitat model (the GFR) to autonomous selection via the Akaike 283 

Information Criterion (AIC – e.g. Burnham and Anderson, 2002). This would lead to the most 284 

parsimonious model of habitat preference and use. However, we found that this approach led to 285 

habitat models that were over-parameterised for the later purposes of population prediction. Thus 286 
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far, this is a unique problem in the literature, because previous studies on habitat preferences did 287 

not historically need to consider predictions of population growth. We decided to perform a 288 

search for parsimonious habitat models evaluating each candidate GFR on the basis of how well 289 

it ultimately enabled the population model to predict population change. This was done by means 290 

of leave-one-out cross-validation on our 12 colonies for which population change data were 291 

available.  292 

Our model fitting and model selection protocol was as follows (the full R-code is provided in 293 

the Appendix, subdivided in sections): We first specified a candidate model (Section 2 of R-294 

code) and fitted it to the aggregate space-use data from all 32 colonies (Section 3 of R-code). The 295 

gfr() function in the HaToPo library automatically extends the dataframe to include habitat 296 

availability expectations and specifies the necessary interaction terms for the fully expanded 297 

GFR model formula. Using the functions favail() and ga.gfr() in the HaToPo library, we obtained 298 

two objects containing 1) parametric approximations of habitat availability for each colony and 299 

2) the colony-specific habitat selection coefficients. These two objects were then passed to the 300 

pop.covariates() function in HaToPo (Section 5 in R-code) which constructed a set of candidate 301 

covariates for population growth. Population growth was regressed against these constructed 302 

covariates (Section 5 in R-code). Since we only had population data for 12 colonies, we 303 

subjected this population GLM to model selection by AIC. The ability of the combined habitat 304 

(HSF/GFR) and population (HTP) model to explain population data was evaluated by the 305 

percentage deviance explained in the final population model. The ability of the combined models 306 

to predict new data was evaluated by the Sum of Squared Residuals (SSR) under leave-one-out 307 

cross validation applied to the entire modelling workflow (Section 6 in R-code). We selected the 308 
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combined habitat and population model based on predictive ability (all the habitat models 309 

examined are listed at the final section of the R-code).  310 

Optimising population growth via habitat manipulation 311 

The resulting fully fitted spatial population model (in eq. (7)) connects habitat composition to 312 

population growth. To evaluate how responsive the species might be to conservation actions 313 

through changes in gardening practices, we carried out the following optimisation protocol 314 

(Section 8 in R-code). We perturbed the non-structural aspects of different garden cells in our 315 

data set (i.e. the percentages of grass, tree, hedge and bush), until we obtained the maximum 316 

improvement in predicted growth rates in all 12 of our colonies. However, we constrained our 317 

optimisation so that we only accepted proposed landscaping improvements if the confidence 318 

intervals associated with the predicted growth rates did not also include a wide range of possible 319 

deteriorations (specifically, no proposed improvement was accepted if its lower confidence 320 

interval was less than 70% of the previously accepted mean improvement). There is considerable 321 

precedent in the reserve design literature for such constrained optimisation that incorporates 322 

objective functions constructed from combinations of point and interval model estimates 323 

(Moilanen & Wintle 2006). As part of our optimisation, we sought to understand 1) whether all 324 

colonies could benefit from such manipulations, 2) how much improvement we might expect and 325 

3) how drastic a manipulation would be required to generate these improvements. 326 

Results 327 

Habitat usage 328 

Following model selection, the preferred model of habitat use contained three main effects 329 

(percentage of grass, bush and roof in each cell) and 16 other terms representing average habitat 330 
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values across the colony and interactions between the model’s main terms and colony-specific 331 

averages. The combination of main effects and interactions in the GFR allows the construction of 332 

colony-specific coefficients of habitat selection arising from the response of the animals to the 333 

particular habitat configuration in the vicinity of each colony, a phenomenon, known in the 334 

literature as a functional response in habitat selection (Arthur et al. 1996, Mysterud & Ims 1998, 335 

Mauritzen et al. 2003, Matthiopoulos et al. 2011, Aarts et al 2013). We examined the histograms 336 

and pairwise correlations between different habitat-selection coefficients, estimated for different 337 

colonies (Fig. 2). Looking at the single-coefficient histograms (on the diagonal of Fig. 2) we see 338 

that sparrows predominantly avoid areas with grass (histogram centred at negative values in Fig. 339 

2aa) and prefer areas with bush cover (histogram centred at positive values in Fig. 2bb). The 340 

histogram of coefficients for roof (Fig. 2cc) does not present a predominantly positive or 341 

negative bias, indicating that in different colonies (depending on habitat composition) sparrows 342 

may use roofs more, or less than expected by chance. However, the variable has been retained by 343 

model selection because it lends the habitat model explanatory power. The off-diagonal plots in 344 

Fig. 2 also provide evidence of strong pairwise correlation between modelled responses to all 345 

three environmental variables. The specific coefficient values estimated are determined by the 346 

existence of trade-offs and synergies between coefficients for different variables.  Trade-offs 347 

(negative correlations) would indicate that these covariates are substitutable. Synergies, shown 348 

by a positive relationship between coefficients, indicate that the associated covariates operate in 349 

a complementary way, increasing each-other’s apparent preference.  350 

 The habitat usage model explained a modest percentage (33%) of the null deviance, 351 

suggesting either an inherently high noise-to-signal ratio in habitat use by sparrows (e.g. 352 

individual variation), or that not all relevant features (e.g. direct measures on availability of food) 353 
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were included in the analysis. The parameters of the GFR model were next embedded in the HTP 354 

approach (see next section), to represent the expected frequency of interactions between 355 

sparrows and different features of their environment.  356 

Linking habitat to population growth 357 

The 12 focal house sparrow colonies at which we measured population growth varied in size 358 

from 2 to 24 pairs, with a mean colony size in the 2014 breeding season of 6.5+1.7 pairs  359 

increasing to a mean colony size of 8.2+1.7 pairs in the breeding season of 2016. 360 

Cross-validation served as the ultimate arbiter for the best spatial and mean-field models (Table 361 

S1). Despite using such a numerically greedy approach to model selection, computational 362 

requirements were very low (in the order of seconds) because HTP is based on pre-derived 363 

mathematical expressions (Matthiopoulos et al. 2015) and generalised linear models. Both the 364 

mean-field and spatial models found relationships between population change and their 365 

respective bush covariates, as well as evidence for density dependence. The spatial model 366 

additionally found links with grass and roof. The best-performing spatial model explained 92% 367 

of the deviance in the observed population growth rates (  r
2 = 0.9  - Fig. 3a) and was able to 368 

retain high performance under prediction, where it achieved an   r
2
 of 0.81 (Fig. 3b). The spatial 369 

model (Table S1) was characterised by a large, positive intercept, expressing a tendency for 370 

population growth, which was moderated strongly by too much exposure to grass and roof 371 

structures, but also (to a lesser extent) exposure to bushes. This was somewhat unexpected since 372 

the habitat model indicated an overall preference for bushes. The mean-field model explained a 373 

comparatively lower but still respectable percentage of deviance (72% with   r
2 = 0.68  - Fig. 3c) 374 

but suffered a greater drop when tested for predictive ability under cross-validation (  r
2 = 0.5 - 375 
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Fig. 3d). The mean-field model was also poorer at detecting factors linked to population growth 376 

with the overall availability of bushes and density dependence the only main explanatory 377 

variables identified as important.  378 

 Therefore, the HTP approach was able to extract considerably more explanatory and 379 

predictive power by looking at the exact composition of habitats and whether they were over- or 380 

under-used by sparrows, rather than the average of single environmental variables on which most 381 

existing modelling approaches would be based. We also observed a difference in specificity 382 

between mean-field and spatial models. In particular, whereas several of the mean-field 383 

candidate models had similar cross-validation scores to the best model of that category, the 384 

spatial model category comprised highly variable cross-validation scores (therefore, it strongly 385 

differentiated between the high-performance model selected, and several others that were similar 386 

in structure but poorer in performance than the mean-field equivalents).  387 

Optimising population growth via habitat manipulation 388 

Our optimisation exercise aimed at using the HTP approach to predict how colony growth rates 389 

might be increased by judiciously manipulating habitat composition. We arrived at 390 

recommendations for improving growth for 10 out of 12 colonies (Fig. 4). Our results suggested 391 

that six out of seven colonies with currently zero or negative growth rates could be pushed to 392 

positive growth. Notably, the recommended changes (increases or decreases in any one type of 393 

habitat) were not proportional across colonies, underlining the point that joint availability of all 394 

habitats is important for determining habitat use and population impacts. For the specific set of 395 

colonies we focused on, a reduction in the amount of grass was the most frequently 396 

recommended habitat manipulation (suggested as a way to increase population growth rate in 11 397 

out of the 12 colonies, colonies in Fig. 4). The other habitat manipulations were more colony-398 
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specific but involved offsetting the reduction in grass with recommended increases to the various 399 

habitat variables that represent potential cover from predators (bushes, hedges or trees depending 400 

on the specific colony). All these increases were achievable with low potential for unpleasant 401 

surprises (i.e. the confidence intervals shown as rhombuses in the proposed growth rates of Fig. 4 402 

did not encompass the possibility of population declines).  403 

Discussion 404 

Here, we have exploited new theoretical developments in statistical ecology to demonstrate, for 405 

the first time, that predictive modelling of population growth in nature is possible based on 406 

habitat composition. Further, we have demonstrated an early example of an optimisation process 407 

for habitat composition that shows how a predictive ecology modelling approach can be used to 408 

derive tailored land management recommendations that could be used to promote, or control 409 

population growth for conservation, sustainable agriculture, wildlife stock management and 410 

defence against disease vectors. 411 

In our study species, habitat selection was noisy. Our habitat model was able to account for 412 

only 33% of the variability in the space use data. Its modest explanatory power could be because 413 

important covariates of usage were absent. Examples might include the actual (Barnard 1980, 414 

Gotmark & Post 1996), or perceived (Brown & Kotler 2004, Zanette et al. 2011) risk of 415 

predation. Alternatively, sparrow behaviour in response to habitat could be genuinely very noisy 416 

due to unmodelled individual variation or due to the time of year at which habitat usage was 417 

being measured (the survey was carried out during a period when resources are less constrained 418 

than they would be in winter (MacLeod et al. 2006)). Despite this, inclusion of habitat use and 419 

availability into our statistical model of colony growth rates pushed explanatory power from 420 
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72% to 92% (compare Figs. 3c and 3a) with even greater gains (50% to 81%) in predictive 421 

power (compare Figs 3d with 3c). To our knowledge this is the first modelling approach to 422 

successfully predict the majority of population growth variation across replicate populations 423 

based on habitat composition and usage.  424 

It should be noted that this is a proof-of-concept study on a relatively small sample of 12 425 

populations, and the above metrics of predictive performance are based on the same cross-426 

validation procedure used to carry out model selection. More work will be needed to examine if 427 

the high percentages of predictive power can be sustained for other species and out-of-data 428 

predictions for larger samples of independent populations. It is nevertheless possible to evaluate 429 

our results based on a comparison between the spatial and mean-field approaches. Our 430 

constructed covariates, based on habitat availability and expected use, had much greater 431 

predictive power than the average availability of habitat variables. The conclusion therefore is 432 

that, even if the animals’ usage of the different components of their habitat has elements of 433 

randomness (as the noisy GFR seems to suggest), the signal of habitat composition may remain 434 

strong within population growth data.  435 

 The HTP framework in its current form is particularly suited to the life history of house 436 

sparrows. However, future research could be directed to make the HTP approach applicable to 437 

populations with variable accessibility constraints, non-equilibrium distributions, population age- 438 

or stage-structure, depletable covariates, genetic change, non-additive habitat effects on 439 

population fitness, Allee effects in population growth, or saturating responses to superabundant 440 

resources. From the point of view of statistical inference, in future implementations, the two 441 

model components of habitat selection and population growth would ideally be implemented as 442 

simultaneous (or, at least connected) inference, so that uncertainty from both models is 443 
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propagated through the full workflow to the final results. Such joint inference is, as yet 444 

unavailable in the literature. Our cross-validation approach in the present paper (applied to the 445 

full workflow) was a step in this direction. 446 

Our garden habitat composition manipulation exercise (Fig. 4) is mainly a sensitivity analysis 447 

used to illustrate the extent of garden modifications required to improve colony viability and the 448 

improvements that might be possible. Even though we chose a simplistic algorithm that altered 449 

garden cells independently of each other (an approach that is too fragmented from a garden 450 

landscaping point of view), our analysis does demonstrate that habitat manipulation can have 451 

large impacts on expected population growth, in several cases even reversing population 452 

declines. Such emerging exemplars of the possibilities for habitat engineering for the purposes of 453 

management have considerable future potential, and deserve further algorithm development and 454 

experimental testing. Since the habitat modifications suggested here were achieved by focusing 455 

just on changing vegetation types in gardens, rather than changes to more fixed structural 456 

elements of the landscape, the predictions from these types of models should be practical to test. 457 

Ultimately, this type of testing could enable conservation organisations, such as the Royal 458 

Society for the Protection of Birds in the UK, to provide bespoke guidance to individual 459 

homeowners and other land owners who wish to enhance the wildlife potential of their 460 

properties. 461 

Quite apart from its applied importance, our study contributes several conceptual 462 

developments relating to habitat. For example, it casts a critical light on the implicit assumption 463 

(pervading the broad class of applied habitat models) that hotspots in spatial usage are indicative 464 

of fitness-conferring habitats. Although it is understood that, biologically, the relationship 465 

between space use and population growth may not be straightforward (Pulliam 2000, Morales et 466 
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al. 2010, Peterson et al. 2011), high-usage and high-fitness are often conflated in contemporary 467 

literature (e.g. Stockwell, 2006), in order to provide solutions to urgent applied problems. 468 

However, the fact that usage is observed and modelled directly, but fitness is not, leaves open the 469 

possibility of mismanaging wildlife whose distribution does not directly reflect habitat 470 

suitability. The predictive ecology modelling approach we demonstrate here shows how such 471 

problems could be overcome by the generation of fully estimable population models, able to 472 

predict how populations would change under specific management and environmental change 473 

scenarios. 474 

Packaging habitat selection and population fitness in simple qualitative rules of thumb will 475 

continue to be a challenge long into the future, because such rules cannot apply indiscriminately 476 

across different species or even subpopulations. This challenge means that models, such as the 477 

one presented here, could prove valuable in the design of conservation and landscape 478 

management strategies, particularly when it is imperative to exploit efficiencies in management 479 

to navigate human-wildlife conflicts, where only narrow strips of common ground can reconcile 480 

conservation with human exploitation (Redpath et al. 2013). Much work remains to be done 481 

before habitat manipulations can be designed with regularity and without the close supervision of 482 

ecological experts. However, such efficiencies now appear more achievable, given our finding 483 

that, at least in this study system, moderate manipulations in habitat are predicted to have large 484 

effects on population growth, even reversing ongoing declines.   485 
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 620 

Figure legends 621 

Figure 1: The six building blocks of the Habitats-To-Populations framework (HTP, modified 622 

from Matthiopoulos et al. 2015) can be divided into categories: Three steps (in blue background) 623 

modelling habitat use, and three steps (in white background) accounting for the effects of habitat 624 

on population growth. The environment can be characterised by the availability of different 625 

habitat types (Step 1). Animals have habitat preferences (Step 2) which may lead them to use 626 

habitats disproportionately to their availability. Together, the combination of habitat availability 627 

and habitat preferences are assumed to give rise to the observed spatial distribution of a 628 

population (Step 3). These first three steps comprise the Habitat Selection Model and they 629 

determine the exposure of individuals to different habitat types that influence their fitness (Step 630 

4), which, in turn, determines the collective capability of a population to grow (Step 5). 631 

Processes of population growth determine current population density (Step 6), which has the 632 

opportunity to mould habitat availability but also the potential to feed back directly into 633 

population growth and habitat preferences (via density dependent and spatial crowding). The key 634 

advantage of this approach is that all six processes can be estimated from field data. Statistical 635 

inference for the steps in dark blue requires spatial data on habitat availability and use. The steps 636 

shown in white require additional temporal data on population change. 637 

 638 

Figure 2: Analysis of the colony-specific habitat selection coefficients obtained via the GFR 639 

model, incorporating main effects and relevant interactions for each covariate. The histograms on 640 

the diagonal summarise the coefficient values obtained for each environmental covariate (green 641 
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curves are smoothed versions of the same information). The pairwise scatter-plots, off the 642 

diagonal show the correlations (in this example, all synergistic) between regression coefficients.  643 

 644 

Figure 3: Goodness-of-fit and predictive ability for the spatial model (a and b, respectively) and 645 

for the mean-field model (c and d, respectively). The spatial model uses information extracted 646 

from models of habitat availability and use in each garden cell around the colonies. The mean 647 

field model only uses average availability. For the goodness of fit plots (a & c), the regression 648 

line and corresponding prediction intervals come from a linear model fitted to the observations 649 

against the population model fit. For the prediction plots, each dot represents an iteration of our 650 

leave-one-out cross-validation algorithm.  651 

 652 

Figure 4: Results of the garden improvement optimisation. The black line segments show the 653 

improvements possible in each of our 12 colonies (sorted in order of low-to-high observed 654 

growth rate). The pie charts show the alterations in composition of the gardens around each 655 

colony in terms of six habitat categories (explained in the key), two of which (artificial surface 656 

and roof) were constrained to starting conditions and four of which (bush, grass, hedge and tree) 657 

were allowed to be varied to optimise population growth. The confidence intervals of the 658 

predicted growth rates are represented as the top and bottom vertices of the grey rhombuses 659 

surrounding each line segment.  660 
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