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Abstract:  Estimating the number of dolphins in a group is a challenging task.  To assess the 12 

accuracy and precision of dolphin group size estimates, observer estimates were compared to 13 

counts from large-format vertical aerial photographs.  During 11 research cruises, a total of 2,435 14 

size estimates of 434 groups were made by 59 observers.  Observer estimates were modeled as a 15 

function of the photo count in a hierarchical Bayesian framework.  Accuracy varied widely 16 

among observers, and somewhat less widely among dolphin species.  Most observers tended to 17 

underestimate, and the tendency increased with group size.  Groups of 25, 50, 100, and 500 were 18 

underestimated by <1%, 16%, 27%, and 47%, respectively, on average.  Precision of group size 19 

estimates was low, and estimates were highly variable among observers for the same group.  20 

Predicted true group size, given an observer estimate, was larger than the observer estimate for 21 

groups of more than about 25 dolphins.  Predicted group size had low precision, with coefficients 22 

of variation ranging from 0.7 to 1.9.  Studies which depend on group size estimates will be 23 

improved if the tendency to underestimate group size and the high uncertainty of group size 24 

estimates are included in the analysis. 25 

 26 

 27 
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Introduction 31 

 Estimation of group size is an important component of ecological and behavioral studies 32 

of animals which occur in groups.  However, estimation of group size in wildlife studies can be 33 

difficult.  Replicate counts of birds showed high variation (Ryan and Cooper 1989), the number 34 

of birds was undercounted in aerial surveys (Bayliss and Yeomans 1990), and known group sizes 35 

of elk were underestimated from a helicopter (Cogan and Diefenbach 1998).  Even counting the 36 

number of birds in photographs had a negative bias (Erwin 1982).  Experiments in visual 37 

perception have shown a tendency to underestimate the size of large groups of objects (Krueger 38 

1972), apparently related to distortions produced by saccadic (“jerky”) eye movements (Binda et 39 

al. 2011).  Determining the size of a group of cetaceans is particularly challenging because of 40 

several characteristics that make group size estimation difficult: (1) the animals are moving; (2) 41 

an unknown fraction of the group is underwater at any moment; (3) the fraction underwater 42 

changes with behavior; (4) groups can be large; and (5) the distribution of group sizes is usually 43 

skewed, with a few groups much larger than the mean.  44 

Accurate estimation of group size is necessary for unbiased estimation of abundance.  In 45 

standard distance sampling (e.g., line transects), the density of groups is estimated and then 46 

multiplied by an estimate of expected group size (Buckland et al. 2001).  Alternatively, group 47 

size may be a covariate of the detection process and expected group size is not estimated 48 

explicitly (Borchers and Burnham 2004).  In either case it is assumed that group sizes are 49 

measured accurately.  Using earlier subsets of the photographic calibration data presented here, 50 

some line-transect analyses have used group size estimates corrected by observer-specific 51 

calibration factors (Gerrodette and Forcada 2005, Barlow and Forney 2007).  In most studies, 52 

however, correction factors for group size estimation are not available.   53 
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Assessing precision of group size estimates is equally important.  Even if group sizes 54 

were to be estimated accurately on average, there is measurement error associated with each 55 

group size estimate.  Including the variability associated with group size estimates is necessary 56 

for proper assessment of uncertainty.  If measurement error is not included, variance of estimates 57 

of abundance and other quantities that depend on group size estimates will be too small.  In other 58 

words, an important source of uncertainty will not be included in the analysis, and conclusions 59 

may appear to be more precise than they should be.  60 

In this large field study, we measured the accuracy and precision of dolphin group size 61 

estimates.  True group size was assessed with counts from high-quality vertical aerial 62 

photographs, and ship-based observer estimates were calibrated against these counts.  The 63 

tendencies of different individual observers to under- or over-estimate group size were estimated 64 

in a hierarchical Bayesian framework, for different group sizes, species, and sea-state conditions.  65 

The performance of a new (out-of-sample) observer was predicted by integrating over observer 66 

and/or species effects.  Given an observer estimate, we inferred true group size by sampling 67 

posterior distributions. 68 

 69 

Methods 70 

Field methods  71 

Photographs of dolphin groups were collected during 11 research cruises between 1987 72 

and 2006 in the eastern tropical Pacific Ocean.  During all cruises except the last, the NOAA 73 

vessel David Starr Jordan carried a Hughes 500D helicopter equipped with two large-format 74 

military reconnaissance cameras mounted below the fuselage.  During the 2006 cruise, images 75 
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were collected with the same camera systems mounted in a NOAA Twin Otter fixed wing 76 

aircraft.  Under conditions of sun angle (generally mid-morning and mid-afternoon) and sea state 77 

(generally Beaufort 0-4) that allowed dolphins to be clearly visible from above, vertical 78 

photographs of dolphin groups were taken from an altitude of 200-300m (Gilpatrick 1993).  The 79 

camera recorded images on 114mm negatives, and had a motion-compensation system that 80 

moved the film at the same speed that the image was moving within the camera, thus eliminating 81 

blurring due to the forward motion of the aircraft.  The cycle rate of the camera was adjusted to 82 

achieve 80% overlap between adjacent frames during a photographic pass over a dolphin group.  83 

The number of photographic passes of each dolphin group varied with group size, configuration 84 

and behavior. 85 

 After a group of dolphins had been photographed, the group was approached by the ship 86 

in a way to give the marine mammal observers on the ship the best possible view of the whole 87 

group, considering wind, swell, and sun angle.  All observers who had adequate views of the 88 

group, usually all six observers on the ship, made their best estimates of group size.  We refer to 89 

these estimates as the “observer estimates.”  Observers usually first detected dolphins with 25X 90 

binoculars, but switched to 7X binoculars and then to naked eye as the ship approached the 91 

group.  The minimum approach distance varied with group size and behavior, but typically was 92 

10-50m.   Observers made group size estimates independently and did not discuss their estimates 93 

with each other, either during the sighting or afterward.  Independence in this context refers to 94 

the behavioral independence of the observers, not to the statistical independence of their 95 

estimates.  All observers had previous experience in cetacean field work.  Before each cruise, 96 

observers were given training on group size estimation, including tests with known numbers of 97 
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static objects, computer simulations of moving, intermittently visible objects, and instruction on 98 

counting by subgroups (e.g., by tens or fifties) for more consistent estimation.  99 

Laboratory methods   100 

The aerial photographs of dolphin groups were reviewed on light tables equipped with 101 

dissection microscopes (Gilpatrick 1993).  Photographs were compared with notes recorded 102 

during the photographic passes to ensure that the entire group was captured within the series of 103 

images that made up a photograph pass.  For groups that were successfully photographed, the 104 

best pass was selected, and three readers independently counted the number of dolphins in the 105 

group from the series of images.  If the CV among counts was > 0.1, or if notes by aerial and 106 

shipboard observers indicated that there was confusion over the identity of the group, the group 107 

was not included in the data analyzed here (Gilpatrick 1993). 108 

To qualify as a “calibration school” for this analysis, the whole group had to be 109 

photographed from the air with a series of overlapping photographs, the photo counts of the three 110 

independent readers had to agree closely, and the shipboard observers had to view the whole 111 

group for a sufficient time to make good estimates.  Calibration schools were thus not a random 112 

sample of all dolphin groups, but rather a selected set for which we were confident that true 113 

group size could be accurately determined.  We omitted as outliers eight cases for which there 114 

was a large (greater than a factor of four) discrepancy between mean photo count and mean 115 

observer estimate, probably a result of undetected splitting or coalescence of groups after 116 

photography but before observer estimates.  A total of 434 groups met these criteria as 117 

calibration schools, with 2,435 estimates of group size by 59 observers.  118 

Statistical model 119 
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To evaluate observer estimates of group size, we used the mean of the counts by the three 120 

photograph readers for each calibration school, and refer to this as the “photo count.”  This 121 

measure of true group size had some error (variation among the three readers), but this variation 122 

(mean photo count CV over all groups = 0.047) was much smaller than the variation among 123 

observer estimates of the same groups (mean CV = 0.42).  Preliminary exploration of the data 124 

suggested that, on a log-log scale, observer estimates could be linearly related to photo counts 125 

and that variance was approximately constant over a large range of group sizes (Fig. 1A).  In 126 

addition, observers varied widely in the accuracy of their group size estimates (Fig. 1B).  We 127 

evaluated a variety of linear and nonlinear models in a frequentist setting, with both fixed and 128 

random effects, with R function lmer, and used likelihood ratio tests, information criteria such as 129 

AIC and DIC, and visual examinations of residual and q-q plots to identify a reasonable set of 130 

candidate models. We found that dolphin species and Beaufort sea state could possibly affect the 131 

accuracy of group size estimates, and that a linear model of the logarithm of photo counts 132 

provided a more parsimonious fit to the data than a quadratic model.  133 

Let yij be the observer estimate of the size of group i by observer j, and let xi be the photo 134 

count of group i.  We modeled differences among observers as random effects, and dolphin 135 

species and wind conditions as fixed additional effects that might affect group size estimates.  136 

The full hierarchical model may be written as  137 
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where 
1 was the coefficient associated with the log of the photo counts, 

k were coefficients 139 

associated with six species Sik, k=2,…7, and
8 was the coefficient associated with Beaufort sea 140 

state Bi.  Two random effects, 0 1and ,j j  allowed the relationship between log(yij) and log(xi) 141 

to vary among observers, 𝛼0𝑗 in terms of the intercept and 𝛼1𝑗 in terms of the slope coefficient 142 

𝛽1.  The two sets of random-effects coefficients had means of zero, variances 
2

0  and
2

1 , and 143 

correlation .  The assumption was that the 59 observers were a random selection from a larger 144 

pool of possible observers whose group size estimation tendencies were normally distributed. 145 

 Species Sik entered the model as an indicator variable, with a value of 1 if group i was 146 

species k and 0 otherwise.  Species were recorded in the field at the lowest possible taxonomic 147 

level, including subspecies.  We combined the field identifications into six species categories: 148 

pantropical spotted dolphins (Stenella attenuata, 51 groups), spinner dolphins (S. longirostris, 40 149 

groups), mixed spotted-spinner dolphin groups (78 groups), striped dolphins (S. coeruleoalba, 150 

114 groups), common dolphins (Delphinus delphis and D. capensis, 87 groups) and other (64 151 

groups).  “Other” was a heterogeneous category including Risso’s dolphins (Grampus griseus), 152 

common bottlenose dolphins (Tursiops truncatus), rough-toothed dolphins (Steno bredanensis), 153 

short-finned pilot whales (Globicephalus macrorhynchus), and other groups which did not fit 154 

into the previous categories, such as mixed common-striped dolphin groups.  In the eastern 155 

tropical Pacific Ocean, mixed spotted-spinner dolphin groups are common, so we included these 156 

as a distinct category.  Sea state B was recorded on the Beaufort scale as an integer from 0 to 5; 157 

however, only one of the 434 calibration schools occurred in Beaufort 5 conditions, so the 158 

effective range of the model was Beaufort 0-4.  Because the Beaufort scale is ordered, we 159 

modeled sea state as a continuous variable with a single linear coefficient.  Models with sea state 160 
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as a categorical variable are addressed in the Discussion.  Si and Bi were the same for all 161 

observers for a given group i, so we omitted subscript j for these covariates in Eq. 1.  162 

 We considered four variants of Eq. 1 as candidate models:  model 1, without species or 163 

sea-state effects (k=0 and 8=0); model 2, with species but without sea-state effects (8=0); 164 

model 3, with sea-state but without species effects (k=0); and model 4, the full model with both 165 

species and sea-state effects.  All four models included observers as a random effect.  166 

Bayesian inference 167 

To include model selection in a Bayesian framework, we fitted the models in R using 168 

reversible jump Markov Chain Monte Carlo (RJMCMC) methods (King et al. 2009, Oedekoven 169 

et al. 2014).  In this approach, the model itself was treated as an additional parameter to be 170 

estimated, and the joint posterior distribution included both parameters and models (Appendix 171 

1).  A uniform discrete prior was specified for the four models, and uniform continuous priors 172 

were specified for all coefficients   and standard deviations  in Eq. 1.  Model probabilities 173 

were calculated as the fraction of iterations of the RJMCMC chain in each model after burn-in 174 

(Appendix 1).    175 

The four models were also fitted in the BUGS language (Lunn et al. 2000) and compared 176 

with the Watanabe-Akaike (or Widely Applicable) Information Criterion (WAIC) (Watanabe 177 

2010).  WAIC can be viewed as an improvement to the Deviance Information Criterion (DIC) 178 

(Spiegelhalter et al. 2002), which has some shortcomings for hierarchical models (Plummer 179 

2008, Millar 2009, Lunn et al. 2013).  WAIC was calculated using pointwise predictive density 180 

at the observer level from the MCMC posterior samples for each model (Gelman et al. 2014, 181 

Vehtari et al. 2016).  We used standard procedures to assess burn-in, autocorrelation, and 182 
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convergence of the MCMC samples (Appendix 2).  BUGS code is given in Appendix 3 and R 183 

code for the RJMCMC analysis in Appendix 4. 184 

For prediction, we sampled from the BUGS posterior samples of model 2, which had the 185 

most support (see Results).  We made two kinds of predictions: an observer estimate given true 186 

group size and true group size given an observer estimate.  For each, we predicted conditionally 187 

and unconditionally on both observer and species.  A conditional prediction for an observer or 188 

species meant a prediction given that it was made by a particular observer or given that it was 189 

made of a group of a particular species.  An unconditional prediction was calculated to infer 190 

estimation tendencies for a new (out-of-sample) observer and/or species – that is, estimation 191 

tendencies integrated over observers or species effects.  Unconditional predictions were 192 

approximated by sampling observers and/or species randomly.  We sampled the MCMC chain 193 

50,000 times with replacement, each time also randomly sampling an observer and a species for 194 

unconditional inference.  For the model error term 
2 ,  we made random draws from normal 195 

distributions with the MCMC sample variances.  To preserve the covariance structure, we used 196 

the whole set of parameter values for each selected MCMC iteration, and computed observer 197 

estimate y given group size, or group size x given observer estimate, based on Eq. 1.  We 198 

checked the accuracy of our predictions by comparing them to the photo counts (Appendix 5).  199 

For each of the 2,435 observer estimates, we determined if the central 95% credibility interval of 200 

predicted size included the photo count. 201 

   202 

Results 203 

Calibration schools 204 
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 Group sizes of calibration schools ranged from 5 to 6,012 (Fig. 1).  The set of 434 205 

calibration schools represented about 8% of dolphin groups of the same species detected during 206 

the 11 surveys.  On average, calibration schools were larger in size (because we did not 207 

photograph groups containing only a few dolphins) and were photographed in lower Beaufort sea 208 

states (because it was harder to obtain clear images in windy conditions) than for all dolphin 209 

groups.  Importantly, the variation among independent observer estimates for a dolphin group 210 

was similar for calibration schools (mean CV 0.42, interquartile range 0.29-0.50) and all detected 211 

groups (mean CV 0.39, interquartile range 0.24-0.51).  The number of calibration schools per 212 

observer ranged from 6 to 159, with a median of 33 and a mean of 41.3.  213 

Observer estimates of dolphin group size 214 

 The raw data indicated that observers generally tended to underestimate dolphin group 215 

size; 69% of observer estimates were less than the photo count (Fig. 1).  Both model selection 216 

methods indicated that the accuracy of observer estimates was affected by the species of the 217 

group but less so by Beaufort sea state.  Posterior model probabilities indicated by the RJMCMC 218 

chain were 0.0, 0.984, 0.0, and 0.016 for models 1-4, respectively (Fig. 2).  With proper selection 219 

of proposal distributions, models 2 and 4 had stationary distributions throughout the history of 220 

the chain (Fig. A1 in Appendix 1).  WAIC scores showed a similar pattern favoring model 2 but 221 

with some support for model 4, with values of 3766.0, 3596.0, 3769.3, and 3598.5 for models 1-222 

4, respectively.      223 

  Marginal posterior distributions of parameters for models 2 and 4 were similar (Table 1).  224 

For model 4, the sea-state coefficient 8 was small in absolute value and the 95% credibility 225 

interval included 0, further indications that wind conditions in the range Beaufort 0-4 had little 226 
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effect on the accuracy of group size estimation.  The coefficient for log(photo count), 1, was 227 

<1.0 (mean 0.80, 95% credibility interval 0.76 to 0.83 for model 2), which meant that the 228 

tendency to underestimate increased with group size.  Species coefficients decreased in the order 229 

mixed spotted-spinner, common, spotted, spinner, striped, and other (Fig. 3A).  However, the 230 

posterior distributions of species coefficients overlapped (Table 1), indicating that the differences 231 

among species were modest.  The random-effects coefficients were negatively correlated (mean 232 

 = -0.79, 95% credibility interval -0.59 to -0.91). 233 

Observers differed in accuracy of group size estimation (Fig. 3B).  Among the 59 234 

observers, some tended to underestimate and others tended to overestimate.  For spotted dolphin 235 

groups of 25, 50, 100, and 500 animals, the observers with the lowest estimation tendency had 236 

mean posterior estimates of 18, 29, 45 and 132, respectively, while the observers with the highest 237 

estimation tendency had mean posteriors of 42, 72, 125, and 585 (Table 2).  The “average 238 

observer” (actually four different observers, one for each of the four group sizes in Table 2) had 239 

estimates of 25, 44, 78, and 290 for spotted dolphin groups of 25, 50, 100, and 500, respectively.  240 

Thus, over all observers, groups of 25 spotted dolphins were estimated accurately on average, 241 

but the range among observers was from underestimation by 29% to overestimation by 66% 242 

(Table 2).  There were similarly large ranges in accuracy among observers for larger groups: for 243 

groups of 50, -43% to +45%; for groups of 100, -55% to +25%; and for groups of 500, -74% to 244 

+17%.  The “average observer” underestimated spotted dolphin groups of 50, 100, and 500 245 

animals by 11%, 22%, and 42%, respectively.  We chose spotted dolphins for these numerical 246 

comparisons because spotted dolphins were near the middle of the species effect (Table 1).  247 

There would be less underestimation of group size for common dolphins and mixed groups of 248 

spotted-spinner dolphins, and more underestimation of group size for spinner, striped, and other 249 
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dolphins.  Averaged over all species, the mean figures of underestimation were <1%, 16%, 27%, 250 

and 47% for groups of 25, 50, 100, and 500 animals. 251 

The random-effects model allowed intercept and slope parameters to be estimated for 252 

each observer (Fig. 4), constrained by the hierarchical assumptions of normal distributions and 253 

correlation between slope and intercept.  Visually, the greater importance of the observer effect 254 

relative to the species effect can be judged by comparing Fig. 3B with Fig. 3A.  Numerically, the 255 

range of plausible values for observer intercepts (1.5  2
0 ) was greater than the range of 256 

species effects ( 0.4), based on the mean posterior values in Table 1. 257 

Accuracy decreased with group size (Fig. 5).  Groups of 25 spotted dolphins were slightly 258 

underestimated, but groups of 500 were severely underestimated.  For groups of 25, 50, 100, and 259 

500 dolphins, posterior means for an out-of-sample observer (gray lines in Fig. 5) were 24.2, 260 

42.2, 73.1, and 264.4, respectively.  To show conditional estimates, we used observer #53 as an 261 

example.  The black lines in Fig. 5 for observer #53 were slightly to the left of the gray lines 262 

unconditioned on observer, indicating that this observer tended to underestimate more than the 263 

average over all observers.  264 

The posterior distributions of observer estimates were approximately normal on a natural 265 

logarithmic scale (Fig. 5).  The distributions were quite wide, illustrating the high uncertainty (or 266 

low precision) in observer estimates of group size.  Conditional estimates had higher precision 267 

than unconditional estimates.  Estimates made by a particular observer (observer #53) for a 268 

particular species (spotted dolphins) had slightly higher precision (less uncertainty) than 269 

estimates by the same observer for an unknown species (compare thin dashed with thick solid 270 

black lines in Fig. 5).  Unconditional estimates for any observer or species had the least precision 271 
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(thick gray lines in Fig. 5).  The differences between conditional and unconditional estimates 272 

were small, however, in the context of the overall high variability of group size estimates.   273 

Predictions of dolphin group size from observer estimates 274 

Conversely, given an observer estimate, predicted true group size was usually larger than 275 

the estimate, especially for larger groups (Fig. 6).  For observer estimates of 25, 50, 100, and 500 276 

dolphins, posterior means were 26.0, 63.5, 154.0, and 1,194.5, respectively, for an out-of-sample 277 

observer (gray lines in Fig. 6).   As with posterior distributions of observer estimates given group 278 

size, predicted group sizes conditional on observer and species had higher precision than 279 

unconditional estimates (compare black and gray lines in Fig. 6).  Because observer #53 tended 280 

to underestimate more than average, predicted group size was larger for this observer than for the 281 

average over all observers.    282 

Dolphin group size predicted from an observer estimate had high uncertainty.  283 

Coefficients of variation for predicted group size conditional on species ranged from 284 

approximately 0.7 to 0.9 (Table 3).  Coefficients of variation for unconditional predictions were 285 

even larger, ranging from 0.9 to 1.9, due to the additional uncertainty of predicting group size for 286 

an unknown species.  Given an observer estimate of 100 dolphins, the 95% credibility interval 287 

for the true size of the group ranged from 43 to 621 for a group of spotted dolphins, and from 37 288 

to 776 for a group unconditional on species.  Posterior distributions accurately captured the 289 

uncertainty in predicting dolphin group size from an observer estimate (Appendix 5, Fig. A4).   290 

The degree to which an observer estimate was increased to estimate true group size 291 

depended on species.  For an observer estimate of 25 dolphins, for example, the median 292 

predicted group size was smaller than 25 for mixed spotted-spinner and common groups, and 293 
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larger than 25 for spotted, spinner, striped, and other groups (Table 3).  Because the 294 

exponentiated posterior distributions were lognormal, means were larger than medians.  295 

Therefore, we used the median (50% quantile) as the best measure of central tendency for these 296 

distributions, because there was equal probability of a value being higher or lower than the 297 

median.  Integrated over species and observer effects, estimates of 25, 50, 100, and 500 were 298 

increased by 4%, 24%, 47%, and 122%, respectively, to obtain the medians of the posterior 299 

distributions of predicted group size (Table 3).  In other words, given an observer estimate of 500 300 

dolphins, the most probable true size of the group would be more than twice that number. 301 

   302 

Discussion 303 

Accuracy and precision  304 

The discrepancy between an observer estimate of dolphin group size and the true number 305 

can be discussed in terms of two components: accuracy and precision.  Accuracy is measured by 306 

the difference between the true number and the mean of repeated observations.  Inaccurate 307 

measurement of group size leads to biased results.  Precision is assessed by the random error 308 

among repeated observations.  Random error will be positive for some observations and negative 309 

for others, but with a mean of zero.  Low precision means high variance and greater uncertainty 310 

in results.  311 

We found that accuracy of dolphin group size estimates depended on group size, 312 

observer, and species.  Within the Beaufort 0-4 range of the calibration schools, Beaufort sea 313 

state had less effect on accuracy, once group size and observer effects had been accounted for. 314 
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There was a general tendency to underestimate dolphin group size, and this tendency 315 

increased with group size.  The coefficient of the log of photo count (1, Table 1) was < 1.0, 316 

which meant that large groups were underestimated more than small groups.  Observer estimates 317 

were accurate (on average) for dolphin groups of 25 animals, but were too low by 16% for 318 

groups of 50, too low by 27% for groups of 100, and too low by 47% for groups of 500 (Fig. 5).  319 

These estimates of accuracy averaged over all observers do not measure the accuracy of a 320 

particular observer, nor the discrepancy between an observer estimate and true group size for a 321 

particular group.  Accuracy of dolphin group size estimation in this study applies within the 322 

range of calibration school sizes with a reasonable number of samples, roughly between 10 and 323 

1000 animals (Fig. 3). 324 

These results were broadly consistent with previous studies which showed that humans 325 

tend to underestimate group sizes in wildlife studies (Caughley 1974, Bayliss and Yeomans 326 

1990, Cogan and Diefenbach 1998).   The rate of decline in accuracy with group size (1 = 0.80, 327 

Table 1) falls in the range of perceptual experiments measuring underestimation of the number of 328 

dots on paper (Krueger 1972).  Underestimation of large groups may have a physiological basis 329 

related to eye movement; estimation of small groups (about 10 or fewer objects) does not have 330 

this negative bias and seems to involve a different perceptual mechanism (Binda et al. 2011). 331 

The degree of underestimation also varied by species.  For the six species categories in 332 

this study, dolphin group size estimates were lower in the order:  mixed spotted-spinner, 333 

common, spotted, spinner, striped, and other (Table 1, Fig. 3A).  This order of species 334 

coefficients corresponded roughly to mean group size among the six species groups, with mixed 335 

spotted-spinner and common dolphin groups being largest, and striped and other dolphin groups 336 



17 

 

smallest.  This correspondence suggests that the effects of group size and species were somewhat 337 

confounded.   338 

Accuracy varied among the 59 observers.  While there was an overall tendency to 339 

underestimate dolphin group size, some observers had a stronger tendency to underestimate, 340 

while others had a tendency to overestimate (Table 2).  The random-effects model allowed the 341 

estimation of separate effects for each observer (Fig. 3B), but connected the observers as a group 342 

and allowed the tendency of all observers together to support estimation for each single observer 343 

(Fig. 4).  A random-effects model is often understood in terms of “partial pooling.”   It represents 344 

an intermediate approach between complete pooling (treating all observers as a single group, Fig. 345 

1A) and no pooling (treating each observer independently, Fig. 1B).  The random-effects 346 

approach spans a range of models between these extremes, and includes complete pooling and 347 

complete separation as special cases at the limits (Gelman and Hill 2007).  The degree of pooling 348 

is related to the amount of shrinkage of individual effects toward the mean (Gelman and Pardoe 349 

2006). 350 

Precision of observer estimates of dolphin group size was strikingly low (Fig. 5).  For a 351 

group of 100 dolphins, for example, estimates could range from about 30 to 200 with 95% 352 

probability.  Regardless of an observer’s accuracy, it was common for the observer to estimate 353 

50% high for one group and 50% low for the next.  As a consequence, there was high variability 354 

among the independent observer estimates of group size, both for calibration schools as well as 355 

for non-calibration dolphin groups.  The mean CV among observer estimates was 0.4 across a 356 

wide range of group sizes.  Clearly, estimating the size of a dolphin group is a challenging task. 357 

Statistical issues 358 
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As a measure of true group size, we used the mean of photo counts by three independent 359 

readers.  A binomial moment estimator has been proposed for repeated counts with imperfect 360 

detection, i.e., false negatives (DasGupta and Rubin 2005, Walsh et al. 2009), but in our study 361 

variation among counts of the three readers was also due to false positives.  Large tuna, which 362 

frequently accompany dolphin groups in the eastern tropical Pacific, can be mistaken for a 363 

submerged dolphin in the photographs.  Splashes and reflections might also be counted as a 364 

partially hidden dolphin. 365 

RJMCMC and WAIC are two fully Bayesian approaches to model selection (Hooten and 366 

Hobbs 2015).  RJMCMC treats the model itself as an additional unknown parameter to be 367 

estimated, while WAIC is a score function based on the predictive ability of the model.  Both 368 

indicated that the accuracy of dolphin group size estimates varied by observer and species 369 

(model 2).  There was little posterior support for model 4, which included Beaufort sea state 370 

(Fig. 2).  The posterior odds of models 2 and 4 (the Bayes factor, Kass and Raftery 1995) was 371 

60.6, indicating strong support for model 2 over model 4.  The WAIC difference of 2.5 also 372 

indicated support of model 2 over model 4.  If sea state was modeled as a categorical variable, 373 

model 4 had a posterior probability of zero (it was never selected in the RJMCMC algorithm), 374 

but if sea state was modeled as a continuous variable, model 4 was selected 2% of the time (Fig. 375 

2, Fig. A1 in Appendix 1).  Thus, it appeared that modeling sea state as a continuous variable 376 

rather than as separate factor variables was a more parsimonious approach.  As there was little 377 

support for model 4, and because parameter estimates were similar for models 2 and 4 (Table 1), 378 

we focused on model 2 for inference and did not use model-averaged estimates. 379 

Because Bayesian inference is based on conditional probabilities, it was possible to make 380 

inference regardless of observer and/or species, by integrating over observer and species effects.  381 
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The estimation tendency of a new, out-of-sample observer included the uncertainty of not 382 

knowing which observer, out of the “universe” of possible observers with different estimation 383 

tendencies, might be chosen.  Such estimates unconditional for observer and species are shown 384 

as gray lines in Figs. 5 and 6.  The greater uncertainty of the unconditional estimates is indicated 385 

by the wider probability distributions in those figures, relative to the conditional estimates shown 386 

with black lines.   387 

Application of results 388 

To obtain the best estimates of group size, we can use the estimation tendencies revealed 389 

in this study to adjust observer estimates of dolphin group size.  We wish to predict true group 390 

size, given an observer estimate.  The Bayesian approach allowed us to solve this inverse 391 

problem with proper accounting of uncertainty.  Since, for groups larger than about 25 dolphins, 392 

there was a tendency to underestimate group size, predictions of true group size tended to be 393 

larger than the estimate (Fig. 6).  Because the degree of underestimation depended on group size, 394 

species, and observer, the amount that a group size estimate had to be increased to predict true 395 

group size also depended on group size, species, and observer (Table 3).  The amount that an 396 

estimate had to be increased could be substantial.  For example, a group size estimate of 100 397 

dolphins had to be increased by 47% to obtain the unconditional best (median) estimate of true 398 

group size.   399 

Because an estimate of group size had low precision, predicted group size based on an 400 

estimate also had low precision.  Posterior distributions had CVs of approximately 0.7 to 0.9 for 401 

groups of known species, and 0.9 to 1.9 for groups of any species (Table 3).  For an out-of-402 

sample observer estimate of 25 dolphins, for example, median predicted true group size was 25.9 403 
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animals (accuracy was good), but the 50% credibility interval extended from 16 to 42 dolphins, 404 

and the 95% credibility interval from 6 to 111 dolphins (Table 3).  This source of uncertainty is 405 

usually ignored in distance sampling analyses, although Gerrodette and Forcada (2005) included 406 

uncertainty in group size through a bootstrap procedure.  Most line-transect analyses compute the 407 

variance in expected group size from the sizes of the observed groups.   408 

On cetacean line-transect surveys conducted by the Southwest Fisheries Science Center, 409 

three independent estimates of group size are recorded for each sighting.  For the best estimate of 410 

group size, Gerrodette and Forcada (2005) used an average of the three calibration-adjusted 411 

observer estimates, weighted by the inverse of the group size estimation variance of each 412 

observer.  The value of making several independent estimates of group size will be examined in 413 

a future paper.   414 

Given our findings of inaccuracy for groups larger than 25 dolphins and low precision for 415 

groups of all sizes, it is worth noting that the estimates of group size in this study were a selected 416 

set of estimates made in optimal circumstances.  Each group was approached with the specific 417 

objective of obtaining group size estimates, the observers had good views of the entire group, 418 

and the ship remained with the group until the observers had made their best possible estimates.  419 

Almost certainly the behavior of dolphin groups affects the accuracy and precision of group size 420 

estimates, but our set of calibration schools consisted of well-behaved groups that could be 421 

observed and photographed in their entirety.  422 

Accuracy and precision may be lower for groups estimated in less optimal conditions.   423 

Schwarz et al. (2010) found that estimates of delphinid group sizes were 58% lower when the 424 

ship did not approach groups (passing mode) than when it did (closing mode).  Barlow et al. 425 
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(1997) also found that group size estimates were smaller in passing mode.  Barlow and Taylor 426 

(2005) found that an extended 90-min period of observation improved group size estimates of 427 

asynchronously diving sperm whales (Physeter microcephalus).  The position of the observer 428 

may also matter.  The estimates of group size in this study were made from a platform 429 

approximately 10 m above the water.  The estimation tendencies reported here may not apply to 430 

other situations, such as estimates made from higher or lower platforms on a ship, or estimates 431 

made from land at various elevations and distances to sightings.  Caughley et al. (1976) found 432 

that the accuracy of aerial counts varied with aircraft speed, height, and observer. 433 

We conclude with two recommendations for studies that depend on estimates of cetacean 434 

group size.  First, we recommend training to improve group size estimation.  Although we were 435 

not able to measure how our pre-cruise training affected observers’ estimates, we believe that the 436 

training had a positive effect.  Training may include displays of groups of objects of known size, 437 

and instructions on estimating group size by counting subgroups of multiple animals.  Second, 438 

we recommend assessment of accuracy and precision of group size estimation under the 439 

particular conditions of a study.  The large budget of this study is unlikely to be replicated, but 440 

digital photography by drones is a more economical and much safer option today.  Laake et al. 441 

(2012) used two observer teams to assess the accuracy of pod size estimates for migrating gray 442 

whales (Eschrichtius robustus).  Although pod size was usually only one or two animals, 443 

correcting pod size estimates had an important effect on abundance estimates and inferred 444 

population trajectory. 445 

If a study is unable to assess accuracy of group size estimates, the results of this study can 446 

be applied with appropriate caution.  We have noted that biases might be different for group size 447 

estimates made under other conditions, such as greater distances.  One of our central results was 448 
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that people varied widely in their group size estimation tendencies; therefore, the ideal is to 449 

calibrate particular individual observers.  However, the random-effects model for the observer 450 

effect allowed inference for observers outside this study.  Table 3 and Figures 5 and 6 show 451 

posterior distributions for a new, out-of-sample observer – that is, accuracy and precision of 452 

group size estimates which include the uncertainty of not knowing which observer, out of the 453 

large number of possible observers with different estimation tendencies, might have been chosen.  454 

Unless more specific information can be obtained, it would be reasonable to assume that the 455 

estimation tendencies of the 59 observers in this study are representative of all observers.  456 
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Table 1.  Marginal posterior distributions of parameters for the two models with posterior 550 

support.  Distributions are summarized by means, standard deviations (SD) and three quantiles.  551 

All parameters had uniform prior distributions.  RE = random effects for observers.  See Eq. 1 552 

for definitions of parameters. 553 

 Model 2 Model 4 
Parameter Mean SD 2.5% 50% 97.5% Mean SD 2.5% 50% 97.5% 

Log(photo count), 1 0.796 0.018 0.761 0.796 0.832 0.797 0.018 0.760 0.798 0.831 

Sp: spotted-spinner, 2 0.805 0.087 0.635 0.803 0.974 0.818 0.087 0.653 0.816 0.995 

Sp: common, 3 0.757 0.084 0.592 0.755 0.926 0.776 0.087 0.613 0.774 0.951 

Sp: spotted, 4 0.656 0.082 0.497 0.654 0.816 0.674 0.083 0.521 0.672 0.843 

Sp: spinner, 5 0.603 0.088 0.433 0.604 0.778 0.620 0.091 0.448 0.618 0.806 

Sp: striped, 6 0.513 0.075 0.370 0.511 0.660 0.531 0.078 0.386 0.530 0.687 

Sp: other, 7 0.423 0.076 0.273 0.424 0.576 0.442 0.079 0.291 0.440 0.601 

Beaufort sea state, 8 na na na na na -0.010 0.010 -0.030 -0.010 0.010 

SD intercept RE,
0  0.382 0.073 0.245 0.377 0.534 0.385 0.073 0.252 0.381 0.540 

SD slope RE,
1  0.104 0.017 0.073 0.102 0.138 0.104 0.017 0.073 0.103 0.139 

Correlation RE,  -0.792 0.085 -0.912 -0.808 -0.586 -0.792 0.088 -0.912 -0.809 -0.578 

SD model,
  0.497 0.008 0.482 0.497 0.512 0.497 0.007 0.482 0.497 0.511 

 554 
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Table 2.  Summary of estimation tendencies among observers.  For each group size, the entries in 556 

the table show the distribution of the means of the posteriors of the 59 observers for estimates of 557 

a group of spotted dolphins.  “Mean diff.”, “Min diff.” and “Max diff.” are the differences 558 

between the mean (or minimum or maximum) of the mean observer estimates and true group 559 

size, expressed as percentages of group size. 560 

Group 

size 

Distribution of means of observer estimates Mean 

diff. 

Min 

diff. 

Max 

diff. Mean Min 25% 50% 75% Max 
25 25.4 17.7 21.2 25.9 28.7 41.5 2% -29% 66% 

50 44.4 28.5 35.5 45.0 51.1 72.4 -11% -43% 45% 

100 77.7 44.9 60.3 78.3 89.1 124.6 -22% -55% 25% 

500 289.7 131.7 201.8 293.0 355 585.3 -42% -74% 17% 

  561 
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Table 3.  Predicted dolphin group sizes given observer estimates of 25, 50, 100, and 500 animals 562 

by a new (out-of-sample) observer, for six dolphin species and integrated over species (“any 563 

species”).  Posterior distributions have been exponentiated to show values on the scale of the 564 

number of dolphins.  Distributions of predicted group size are approximately lognormal, and are 565 

summarized by means, standard deviations (SD), coefficients of variation (CV) and five 566 

quantiles.  “Difference” is the difference between the median (the 50% quantile) of predicted 567 

group size and observer estimate, expressed as a percentage of the observer estimate.  568 
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 570 

Observer 

estimate 

Dolphin   

species 

Predicted group size Differ-

ence 
Mean SD CV 2.5% 25% 50% 75% 97.5% 

25 

spotted-spinner 26.4 19.6 0.74 5.3 13.3 21.2 33.3 78.2 -15% 

common 28.2 21.1 0.75 5.5 14.3 22.6 35.8 83.4 -10% 

spotted 32.3 24.4 0.76 6.6 16.3 25.9 40.8 95.7 4% 

spinner 34.6 26.3 0.76 6.9 17.4 27.7 43.6 103.6 11% 

striped 39.0 29.1 0.75 7.9 19.9 31.4 49.3 113.9 26% 

other 43.8 33.3 0.76 8.8 22.1 35.2 55.3 130.3 41% 

any species 34.1 30.0 0.88 6.2 16.1 25.9 42.0 110.6 4% 

50 

spotted-spinner 66.6 50.4 0.76 13.9 33.8 53.5 83.6 196.6 7% 

common 70.7 53.2 0.75 14.7 36.1 56.7 88.7 209.9 13% 

spotted 81.1 61.6 0.76 17.0 41.2 65.1 101.4 239.7 30% 

spinner 87.3 66.7 0.76 18.1 44.3 70.3 110.1 256.5 41% 

striped 98.6 75.2 0.76 20.2 49.9 78.6 123.9 294.5 57% 

other 110.6 84.1 0.76 23.1 56.1 88.8 138.8 325.8 78% 

any species 84.5 79.6 0.94 15.7 38.8 62.1 102.6 286.9 24% 

100 

spotted-spinner 167.2 128.0 0.77 34.7 84.6 133.2 208.8 502.4 33% 

common 179.5 137.4 0.77 37.7 90.9 143.3 224.6 538.7 43% 

spotted 206.2 160.0 0.78 43.4 103.9 163.4 257.5 620.8 63% 

spinner 222.2 175.1 0.79 46.7 111.4 175.4 276.6 680.3 75% 

striped 247.3 191.0 0.77 52.7 124.6 195.8 308.9 748.2 96% 

other 281.7 219.6 0.78 59.4 142.1 223.3 349.7 847.5 123% 

any species 211.2 241.4 1.14 37.4 90.2 147.4 248.5 776.3 47% 

500 

spotted-spinner 1466.7 1215.5 0.83 305.0 723.5 1137.9 1810.4 4557.1 128% 

common 1581.4 1335.3 0.84 326.1 766.7 1218.6 1956.9 4981.8 144% 

spotted 1801.7 1518.8 0.84 367.9 876.1 1386.9 2227.2 5629.0 177% 

spinner 1941.8 1651.7 0.85 400.7 938.3 1490.8 2399.8 6192.8 198% 

striped 2181.9 1972.4 0.90 447.1 1057.2 1674.9 2689.5 6898.4 235% 

other 2483.6 2145.0 0.86 498.4 1190.7 1892.8 3053.4 7876.5 279% 

any species 1944.2 3600.3 1.85 250.6 626.9 1108.2 2103.6 8468.8 122% 

 571 
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Figure captions 573 

 574 

Fig.  1:  Dolphin group size calibration data plotted on logarithmic scales.  (A) Photo counts and 575 

observer estimates of group size for 434 calibration schools.  The size of each group was 576 

estimated independently by multiple (usually 6) shipboard observers.  The dashed line is a 577 

regression of log(observer estimate) on log(photo count), while the solid gray line is a 1:1 578 

relationship.  (B) Regressions of log(observer estimate) on log(photo count) for each of the 59 579 

observers. 580 

Fig. 2.  Prior and posterior probabilities of four models of dolphin group size estimation based on 581 

RJMCMC.  Differences among observers were modeled as random effects (RE) in all four 582 

models; species and sea state were fixed effects. 583 

Fig.  3.  Estimates of (A) species and (B) observer effects on dolphin group size estimation.  584 

Regression lines are based on means of posterior distributions. 585 

Fig. 4.  Posterior distributions of random effects for each observer for (A) intercept 
0  and (B) 586 

slope 
1  (see Eq. 1).  Points are means and lines are central 95% credibility intervals. 587 

Fig. 5.  Posterior distributions of observer estimates for dolphin groups of 25, 50, 100, and 500 588 

animals.  Thin dashed lines are the distributions of estimates for a given observer (#53) whose 589 

tendencies were estimated in this study, for a given species (spotted dolphins).  Thick black lines 590 

are the distributions for the same observer for any species (integrated over species).  Thick gray 591 

lines are the distributions for a new, out-of-sample observer with unknown tendencies, for any 592 

species (integrated over observers and species).  The probability densities (vertical scale) of all 593 

distributions are scaled relative to the maximum value. 594 
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Fig. 6.  Predicted dolphin group sizes given observer estimates of 25, 50, 100, and 500 animals.  595 

Thin dashed lines are the distributions of group size for a given observer (#53) whose tendencies 596 

were estimated in this study, for a given species (spotted dolphins).  Thick black lines are the 597 

distributions for the same observer for any species (integrated over species).  Thick gray lines are 598 

the distributions for a new, out-of-sample observer with unknown tendencies, for any species 599 

(integrated over observers and species).  The probability densities (vertical scale) of all 600 

distributions are scaled relative to the maximum density value. 601 
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Fig. 2  608 
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Fig. 4  615 
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Fig. 5 619 
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Fig. 6 625 
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Appendix 1.  Reverse Jump Markov Chain Monte Carlo (RJMCMC) 627 

Random-effects models such as Eq. (1) can be implemented in a Bayesian framework 628 

using hierarchical models where each parameter, including the random-effects standard 629 

deviations, are assumed to have a distribution.  Markov Chain Monte Carlo (MCMC) simulation 630 

can be used to obtain summary statistics of the posterior distributions of the parameters given the 631 

data.  To include model selection in our analysis, we treated the model itself as a parameter and 632 

formed the joint posterior distribution of both parameters and models.  An RJMCMC algorithm 633 

(Green 1995) explored this posterior distribution.  The RJMCMC algorithm represented a 634 

random walk, where each iteration consisted of two steps: (1) the reversible jump (RJ) step 635 

where we proposed to move to a different model (the between-model move), and (2) the 636 

Metropolis-Hastings (MH) step where we updated the parameters from the current model (the 637 

within-model move).  We placed uniform priors on all parameters with an upper bound of 1, and 638 

a lower bound of -1 for coefficients and a lower bound of 0 for standard deviations.  639 

All models included in the analysis contained the intercept and the log of the photo 640 

counts as well as their corresponding random-effects coefficients (Eq. 1).  Hence, the RJ step at 641 

each iteration consisted of proposing to add or delete each of the two remaining covariates (sea-642 

state and species) in turn, depending on whether the covariate was in the current model or not.  643 

Four different models were possible that differed only in the inclusion or exclusion of species 644 

(k, with k = 2,…,7) and sea state (8) coefficients in Eq.(1): for model 1, k=0 and 8=0; for 645 

model 2, 8=0; for model 3, k=0; and for model 4, both species and sea-state coefficients were 646 

non-zero (full model) .  A proposal to add a covariate to the model involved drawing random 647 

samples from the respective proposal distributions for the parameters and accepting this proposal 648 

based on the calculated acceptance probability (see, e.g., King et al. 2009 on how to obtain the 649 
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acceptance probability).  A proposal to delete a covariate from a model involved setting its 650 

coefficients to zero and accepting this proposal based on the calculated acceptance probability.   651 

The four models were considered equally likely a priori.  652 

 The MH step at each iteration consisted of updating the parameters that were currently in 653 

the model using an MH update (Metropolis et al. 1953, Hastings 1970).  This included the 654 

coefficient associated with the log of the photo counts, the standard deviations associated with 655 

the random effects and model errors as well as the coefficients for species and sea-state if these 656 

covariates were in the current model.  Furthermore, all random-effects coefficients were updated 657 

during each iteration.  In particular, this update involved a random walk single-update with 658 

normal proposal distributions, where the mean was equal to the current value of the parameter 659 

(or random-effects coefficient) and the standard deviations were fine-tuned during pilot tuning to 660 

achieve appropriate acceptance rates (Gelman et al. 1996).  661 

 The chain was started with the full model and completed 210,000 iterations.  We 662 

discarded the first 10,000 as burn-in and thinned the chain by retaining every 50th value, thus 663 

obtaining a posterior sample of 4000 values.  Posterior model probabilities were the fraction of 664 

iterations that the chain spent in the respective model.  Models 1 and 3 were never selected; 665 

model 4 was selected 1.6% of the time consistently through the history of the chain (Fig. A1).  666 

Similar results were obtained regardless of which model was used to initiate the chain.  667 

  668 
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 669 

Fig. A1.  Sequence of RJMCMC jumps among models after burn-in.  Results were similar 670 

regardless of which model was chosen to initiate the chain.  To show separate points, random 671 

values have been added to each point (jittering). 672 
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Appendix 2.  BUGS models and diagnostics for MCMC sampling  674 

Each of the four variants of Eq. 1 was implemented in the BUGS language.  Uniform 675 

priors were specified for all parameters except the random-effects coefficients, which were 676 

latent.  Due to the large amount of data, specification of other priors, such as normal distributions 677 

(lognormal distributions for variance parameters) with means far from values supported by the 678 

data, had no effect on posterior distributions.  For each model, we ran three chains of 120,000 679 

iterations each, discarding the first 20,000 as burn-in from different random initial starting 680 

values.  For the remaining 100,000 iterations, we retained every 100th value (thinning) to reduce 681 

autocorrelation.  Thus the final sample consisted of 1000 values for each of three chains.  The 682 

effective sample size for each parameter, calculated with R package coda, was near 1000, 683 

indicating that autocorrelation was low.  The chains were well-mixed for all parameters (Fig. 684 

A2), and converged to similar values (Fig. A3).  685 

 686 

 687 

  688 
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 689 

Fig. A2.  Traces of posterior samples.  Green, red and blue lines show three independent MCMC 690 

chains of 1000 iterations each, with different initial values.  See Eq. 1 and Table 1 for definitions 691 

of parameters.  692 
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 693 

Fig. A3.  Marginal posterior probability density distributions for parameters.  Green, red and blue 694 

lines show three independent MCMC chains with different initial values.  The histogram is the 695 

total sample of all three chains.  See Eq. 1 and Table 1 for definitions of parameters. 696 
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Appendix 3.  BUGS code 699 

BUGS.model <- function() { 700 

  for (i in 1:n) { 701 

     y[i] ~ dnorm(y.hat[i],tau.model) 702 

     y.hat[i] <- a0[obs[i]] + a1[obs[i]]*x[i] + b.sp[sp[i]]                 # model 2 703 

#   y.hat[i] <- a0[obs[i]] + a1[obs[i]]*x[i] + b.sp[sp[i]] + b.bf*bf[i]    # model 4 704 

  } 705 

  tau.model <- pow(sigma.model,-2) 706 

  sigma.model ~ dunif(sigma.min,sigma.max)     # prior 707 

 for (i in 1:6) {b.sp[i] ~ dunif(b.min,b.max)}    # 6 species factor levels 708 

 # b.bf ~ dunif(b.min,b.max)                        # sea state 709 

 for (j in 1:n.obs) { 710 

   a0[j] <- A[j,1] 711 

   a1[j] <- A[j,2] 712 

   A[j,1:2] ~ dmnorm(A.hat[j,],Tau.A[,]) 713 

   A.hat[j,1] <- 0        # mean of intercept random effects 714 

   A.hat[j,2] <- b1        # mean of slope random effects 715 

 } 716 

 b1 ~ dunif(b.min,b.max)          # prior 717 

 Tau.A[1:2,1:2] <- inverse(Sigma.A[,]) 718 

 Sigma.A[1,1] <- pow(sigma.a0,2) 719 

 Sigma.A[2,2] <- pow(sigma.a1,2) 720 

 Sigma.A[1,2] <- rho*sigma.a0*sigma.a1 721 

 Sigma.A[2,1] <- Sigma.A[1,2] 722 

 sigma.a0 ~ dunif(sigma.min,sigma.max)  # prior 723 

 sigma.a1 ~ dunif(sigma.min,sigma.max)  # prior 724 

 rho ~ dunif(-1,1)                                            # prior 725 

} 726 

  727 
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Appendix 4.  R code for RJMCMC analysis 728 

# RJMCMC calibration analysis for ETP dolphin school size estimation 729 

# 730 

library(tcltk2)    # for progress bar 731 

## Proposal distributions for parameters for RJ step 732 

rjprop.mean.sp <- rep(0,5)  733 

rjprop.mean.bft <- 0   734 

rjprop.sd.bft <- 0.1    735 

rjprop.sd.sp <- rep(0.3,5) 736 

## Proposal distributions for parameters for MH step 737 

mhprop.sd.int <- 0.035    738 

mhprop.sd.ph <- 0.007    739 

mhprop.sd.sp <- rep(0.04,5)  740 

mhprop.sd.bft <- 0.005   741 

mhprop.sd.sd.model <- 0.01 l 742 

mhprop.sd.sd.obs.int = 0.01 743 

mhprop.sd.sd.obs.ph = 0.01  744 

mhprop.sd.params <- c(mhprop.sd.int, mhprop.sd.ph, mhprop.sd.sp, mhprop.sd.bft, 745 

mhprop.sd.sd.model, mhprop.sd.sd.obs.int, mhprop.sd.sd.obs.ph) 746 

names(mhprop.sd.params) <- c('sd.int','sd.ph',rep('sd.sp',5),'sd.bft', 747 

'sd.sd.model','sd.sd.obs.int','sd.sd.obs.ph') 748 

 749 

############# model set-up ################################################## 750 

## Starting values for the parameters 751 

 # fixed effects 752 

int.0 <- 0.7     # intercept 753 

ph.0 <- 0.8      # slope for photo 754 

sp.0 <- rjprop.mean.sp # factor covariate with 6 levels (first level absorbed in the intercept) 755 

bft.0 <-rjprop.mean.bft # beaufort coefficient 756 

sd.model.0 <- 0.5   # standard deviation of model errors 757 

 # random effects for observers 758 

sd.obs.int.0 <- 0.2      # intercept for regression 759 

re.obs.int <- rnorm(n.obs,0,sd.obs.int.0) 760 

names(re.obs.int) <- sort(unique(observers)) 761 

sd.obs.ph.0 <- 0.05 762 

re.obs.ph <- rnorm(n.obs,0,sd.obs.ph.0) 763 

names(re.obs.ph) <- sort(unique(observers)) 764 

params <- c(int.0,ph.0,sp.0,bft.0,sd.model.0,sd.obs.int.0,sd.obs.ph.0) 765 

names(params) <- 766 

c('int','ph',paste("sp",levels(species)[2:6],sep="."),'bft','sd.model','sd.obs.int','sd.obs.ph') 767 

param.list <- matrix(0,4,8) 768 

param.list[1,c(1,2)] <- 1 769 

param.list[2,c(1:7)] <- 1 770 
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param.list[3,c(1,2,8)] <- 1 771 

param.list[4,1:8] <- 1 772 

 773 

# choose the model 774 

cur.mod <- 1 775 

# which parameters are switched on 776 

cur.p <- param.list[cur.mod,] 777 

params[1:8] <- params[1:8]*cur.p 778 

 779 

## Prior limits for parameters 780 

prior.params.lo <- -1 781 

prior.params.hi <- 1 782 

prior.sd.lo <- 0 783 

prior.sd.hi <- 1 784 

 785 

# number of iterations, about 3000 per hour 786 

n.iter <- 3000*70               # total number of iterations 787 

n.thin <- 10            # thinning; number of posterior samples will be floor(n.iter/n.thin) + 1 788 

 789 

 # setting up matrices that will store the posterior samples 790 

nr <- round(n.iter/n.thin,0)+1      # number of rows is thinned no. of updates + starting value 791 

params.mat <- matrix(NA,nr,length(params)) 792 

colnames(params.mat) <- names(params) 793 

params.mat[1,] <- params 794 

re.obs.int.mat <- matrix(NA,nr,n.obs) 795 

colnames(re.obs.int.mat) <- paste("obs",levels(observers),".int",sep="") 796 

re.obs.int.mat[1,] <- re.obs.int 797 

re.obs.ph.mat <- matrix(NA,nr,n.obs) 798 

colnames(re.obs.ph.mat) <- paste("obs",levels(observers),".ph",sep="") 799 

re.obs.ph.mat[1,] <- re.obs.ph 800 

 801 

# vector for storing model choices 802 

model <- array(NA,nr) 803 

# the predictor 804 

x <- l.photo 805 

# the response 806 

y <- l.best 807 

 808 

###### the likelihood equations 809 

log.lik <- function(y = y, x = x, params = params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph){ 810 

  sp.params<-params[3:7]       # these will be zero if beaufort is not included in the model 811 

  bft.params<-params[8]        # these will be zero if species is not included in the model 812 

  mu <- params['int'] +  re.obs.int[observers] + (params['ph'] + re.obs.ph[observers]) * x +      813 

c(0,sp.params)[match(species,levels(species))] + bft.params[1]*beaufort 814 
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  log.lik <- sum(log(dnorm(y,mu,params['sd.model']))) + 815 

sum(log(dnorm(re.obs.ph,0,params['sd.obs.ph']))) + 816 

sum(log(dnorm(re.obs.int,0,params['sd.obs.int'])),na.rm=T) 817 

  log.lik 818 

} 819 

 820 

# test 821 

log.lik(y = l.best, x = l.photo, params = params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph) 822 

 823 

##################################################### 824 

 # progress bar 825 

pb <- tkProgressBar(title = "progress bar", min = 0,max = n.iter, width = 200) 826 

 827 

# the RJMCMC algorithm 828 

isave <- 1              # set the counter; first value is starting value 829 

for (b in 2:n.iter){ 830 

 newparams <- params 831 

 832 

##### the RJ step 833 

 if(cur.p[3]==0){  # if species is currently not in the model, propose to add it 834 

   newparams[3:7] <- rnorm(5,rjprop.mean.sp,rjprop.sd.sp)   ################ changed from 835 

1 to 5 836 

   new.lik <- log.lik(y = y, x = x, params = newparams, re.obs.int = re.obs.int, re.obs.ph = 837 

re.obs.ph) 838 

   cur.lik <- log.lik(y = y, x = x, params =    params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph) 839 

     num <- new.lik + sum(log(dunif(newparams[3:7],prior.params.lo,prior.params.hi))) # add 840 

priors for new parameters 841 

     den <- cur.lik + sum(log(dnorm(newparams[3:7],rjprop.mean.sp,rjprop.sd.sp)))   # add 842 

proposal densities for new parameters 843 

   A<-min(1,exp(num-den)) 844 

   V<-runif(1) 845 

   ifelse(V<=A,{params[3:7]<-newparams[3:7];cur.p[3:7]<-1},{newparams[3:7]<-params[3:7]}) 846 

 } 847 

   else{  # if species is currently in the model, propose to delete it 848 

   newparams[3:7] <- 0 849 

   new.lik <- log.lik(y = y, x = x, params = newparams, re.obs.int = re.obs.int, re.obs.ph = 850 

re.obs.ph) 851 

   cur.lik <- log.lik(y = y, x = x, params =    params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph) 852 

     num <- new.lik + sum(log(dnorm(params[3:7],rjprop.mean.sp,rjprop.sd.sp)))   # add proposal 853 

densities for current parameters 854 

     den <- cur.lik + sum(log(dunif(params[3:7],prior.params.lo,prior.params.hi))) # add priors for 855 

current parameters 856 

   A<-min(1,exp(num-den)) 857 

   V<-runif(1) 858 
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   ifelse(V<=A,{params[3:7]<-newparams[3:7];cur.p[3:7]<-0},{newparams[3:7]<-params[3:7]}) 859 

 } 860 

 if(cur.p[8]==0){  # if beaufort is currrently not in the model, propose to add it 861 

   newparams[8] <- rnorm(1,rjprop.mean.bft,rjprop.sd.bft) 862 

   new.lik <- log.lik(y = y, x = x, params = newparams, re.obs.int = re.obs.int, re.obs.ph = 863 

re.obs.ph) 864 

   cur.lik <- log.lik(y = y, x = x, params =    params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph) 865 

     num <- new.lik + sum(log(dunif(newparams[8],prior.params.lo,prior.params.hi))) # add priors 866 

for new parameters 867 

     den <- cur.lik + sum(log(dnorm(newparams[8],rjprop.mean.sp,rjprop.sd.sp)))   # add 868 

proposal densities for new parameters 869 

   A<-min(1,exp(num-den)) 870 

   V<-runif(1) 871 

   ifelse(V<=A,{params[8]<-newparams[8];cur.p[8]<-1},{newparams[8]<-params[8]}) 872 

 } 873 

   else{  # if beaufort is currently in the model, propose to delete it 874 

   newparams[8] <- 0 875 

   new.lik <- log.lik(y = y, x = x, params = newparams, re.obs.int = re.obs.int, re.obs.ph = 876 

re.obs.ph) 877 

   cur.lik <- log.lik(y = y, x = x, params =    params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph) 878 

     num <- new.lik + sum(log(dnorm(params[8],rjprop.mean.bft,rjprop.sd.bft)))   # add proposal 879 

densities for current parameters 880 

     den <- cur.lik + sum(log(dunif(params[8],prior.params.lo,prior.params.hi))) # add priors for 881 

current parameters 882 

   A<-min(1,exp(num-den)) 883 

   V<-runif(1) 884 

   ifelse(V<=A,{params[8]<-newparams[8];cur.p[8]<-0},{newparams[8]<-params[8]}) 885 

 } 886 

 # which model did we end up with? 887 

 cur.mod<-match(sum(cur.p),apply(param.list,1,sum)) 888 

 889 

##### the MH step 890 

 newparams <- params 891 

 new.re.obs.int <- re.obs.int 892 

 new.re.obs.ph <- re.obs.ph   893 

 # updating the parameters 894 

 # the first level of species coefficients or beaufort coefficients are always zero, don't need 895 

updating 896 

 for (p in which(cur.p==1)) {                # paramters which can be negative 897 

  u <- rnorm(1,params[p],mhprop.sd.params[p]) 898 

  newparams[p] <- u 899 

  new.lik <- log.lik(y = y, x = x, params = newparams, re.obs.int = re.obs.int, re.obs.ph = 900 

re.obs.ph) 901 

  cur.lik <- log.lik(y = y, x = x, params =    params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph) 902 
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    num <- new.lik + log(dunif(newparams[p],prior.params.lo,prior.params.hi)) 903 

    den <- cur.lik + log(dunif(   params[p],prior.params.lo,prior.params.hi)) 904 

  A<-min(1,exp(num-den)) 905 

  V<-runif(1) 906 

  ifelse(V<=A,params[p]<-newparams[p],newparams[p]<-params[p]) 907 

 } 908 

 for (p in 9:11) {                            # st dev cannot be negative 909 

  u <- rnorm(1,params[p],mhprop.sd.params[p]) 910 

  newparams[p] <- u 911 

  new.lik <- log.lik(y = y, x = x, params = newparams, re.obs.int = re.obs.int, re.obs.ph = 912 

re.obs.ph) 913 

  cur.lik <- log.lik(y = y, x = x, params =    params, re.obs.int = re.obs.int, re.obs.ph = re.obs.ph) 914 

    num <- new.lik + log(dunif(newparams[p],prior.sd.lo,prior.sd.hi)) 915 

    den <- cur.lik + log(dunif(   params[p],prior.sd.lo,prior.sd.hi)) 916 

  A<-min(1,exp(num-den)) 917 

  V<-runif(1) 918 

  ifelse(V<=A,params[p]<-newparams[p],newparams[p]<-params[p]) 919 

 } 920 

 921 

# random effects coefficients - no priors on the coefficients 922 

 for (r in 1:n.obs){ 923 

  new.re.obs.int[r] <- rnorm(1,re.obs.int[r],mhprop.sd.sd.obs.int) 924 

  num <- log.lik(y = y, x = x, params = params, re.obs.int = new.re.obs.int, re.obs.ph = re.obs.ph) 925 

  den <- log.lik(y = y, x = x, params = params, re.obs.int =     re.obs.int, re.obs.ph = re.obs.ph) 926 

  A<-min(1,exp(num-den)) 927 

  V<-runif(1) 928 

  ifelse(V<=A,re.obs.int[r]<-new.re.obs.int[r],new.re.obs.int[r]<-re.obs.int[r]) 929 

 } 930 

 for (r in 1:n.obs){ 931 

  new.re.obs.ph[r] <- rnorm(1,re.obs.ph[r],mhprop.sd.sd.obs.ph) 932 

  num <- log.lik(y = y, x = x, params = params, re.obs.int = re.obs.int, re.obs.ph = new.re.obs.ph) 933 

  den <- log.lik(y = y, x = x, params = params, re.obs.int = re.obs.int, re.obs.ph =     re.obs.ph) 934 

  A<-min(1,exp(num-den)) 935 

  V<-runif(1) 936 

  ifelse(V<=A,re.obs.ph[r]<-new.re.obs.ph[r],new.re.obs.ph[r]<-re.obs.ph[r]) 937 

 } 938 

 939 

 # each "n.thin-th" iteration, store the parameter values in matrices 940 

if (b %% n.thin < 1) { 941 

  isave <- isave + 1 942 

  params.mat[isave,] <- params 943 

  re.obs.int.mat[isave,] <- re.obs.int 944 

  re.obs.ph.mat[isave,] <- re.obs.ph 945 

  model[isave] <- cur.mod 946 
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} 947 

 # display progress 948 

 Sys.sleep(1) 949 

 setTkProgressBar(pb, b, label=paste(round(b/n.iter*100),"% completed",sep="")) 950 

}                                        ### end of iteration loop 951 

close(pb); date() 952 

 953 

 ############### end of RJMCMC sampling  954 

#################################################### 955 

  956 
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 957 

Appendix 5.  Coverage of predicted group sizes 958 

 For each group size estimate for each observer, we predicted group size using Eq. 1 and 959 

sampling the MCMC chains from model 2 as described in Methods.  For each of the 2,435 960 

observer estimates, we determined if the 95% credibility interval of predicted size included the 961 

photo count (our measure of true group size).  Coverage of the 95% interval, measured as the 962 

fraction of intervals which included the photo count, was 0.955.  We note that this procedure was 963 

an inverse prediction – that is, although the model fitted y to x, we predicted x given y.  We also 964 

note that this procedure was not cross-validation, since the model was not refit for each of the 965 

2,435 observer estimates.  Therefore, since the value being predicted (photo count) was included 966 

in the model fitting, coverage was expected to be positively biased.  Given the large sample size, 967 

however, we believe the positive bias due to the inclusion of a single datum would be small, as 968 

indeed it seemed to be.  Fig A4 shows observer estimates and posterior distributions of predicted 969 

group size plotted against photo count for a selection of the 59 observers.   970 

  971 



51 

 

 972 

Fig. A4. Observer estimates (x), and group sizes predicted from those estimates, plotted relative 973 

to photo count (gray line) for selected observers.  Circles are the means and vertical line 974 

segments the 95% credibility intervals of predicted group sizes.  Cases for which the 95% 975 

credibility interval did not include the photo count are shown in red. 976 
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