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Circular statistics meets practical
limitations: a simulation-based Rao’s
spacing test for non-continuous data
Lukas Landler1, Graeme D. Ruxton2 and E. Pascal Malkemper1*

Abstract

Background: For data collected on a circular rather than linear scale, a very common procedure is to test whether
the underlying distribution appears to deviate from circular uniformity. Rao’s spacing test is often used to evaluate
the support the data offers for the null hypothesis of uniformity. Here we demonstrate that the traditional version
of this test fails to adequately control type I error rate when the data is non-continuous (i.e. is rounded/grouped to
a finite number of discrete values, e.g. to the nearest degree, a common situation). To overcome this issue, we
provide a numerically-intensive simulation version of the test.

Methods: We use a simulation study to explore the performance of the traditional and our novel variant on Rao’s
spacing test, both in terms of control of type I error rate and statistical power.

Results: When data is measured on a continuous circular scale then both methods offer good control of type I
error and similar statistical power. If the data is rounded (even to a relatively fine scale such as to the nearest
degree – giving 360 possible values), however, the traditional method produces highly inflated type I error rates,
particularly with high sample sizes, that make it inappropriate for application to such data. In contrast, our
simulation method retains good control of type I error while offering levels of statistical power similar to the
traditional Rao test.

Conclusions: The traditional method of applying Rao’s spacing test should be replaced by the simulation-based
variant introduced here. The two methods offer similar performance but only the simulation method retains good
control of the type I error rate when circular data is rounded to a finite set of values (likely due to limited precision
of measuring equipment). Adoption of the simulation variant will substantially improve the reliability of this
regularly-used test in the commonplace situation where data values are rounded.

Keywords: Circular statistics, Limited precision, Rayleigh test, Testing for circular uniformity, Randomisation testing,
Statistical power, Oriana

Background
Circular data is commonly generated whenever re-
searchers measure angles (such as the distribution of
compass directions that seeds disperse from a parent
plant) or have hypotheses related to cyclic behaviour
(e.g. looking for variation in rate of animal movement
over the daily cycle). Such data needs different treatment
to data measured on linear scales, and a number of

monographs are available on the statistical treatment of
circular data (e.g. Batschelet [1]; Fisher [2]; Jammalama-
daka and SenGupta [4]; Mardia and Jupp [7]; Pewsey,
Neuhäuser, and Ruxton [8]; Ley and Verdebout [6]). The
most common procedure in circular statistics is testing
to see if a sample of values suggests deviation from
being uniformly distributed around the circle. If any de-
viation is expected to be unimodal then the most
commonly-applied test for this is the Rayleigh test
(introduced by Lord Rayleigh in 1880 [9], but also de-
scribed in the monographs listed previously). If, however,
the deviation might have more than one mode (e.g.
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when several dispersal directions or activity periods are
expected) the power of the Rayleigh test to detect these
deviations is low. A number of alternatives are available
– and the Rao spacing test [11–13] is one commonly
recommended (e.g. Batschelet [1]; Fisher [2]; Jammala-
madaka and SenGupta [4]). In a recent comparison of
the power of different non-Rayleigh alternative tests in
circular statistics, Rao’s test performed well [5], specific-
ally in multimodal cases when the modes are distributed
symmetrically around the circle. The Rao spacing test
may also be preferred when the shape of the potential
deviation might be expected to deviate from the sym-
metric bell-shaped von Mises distribution on which the
Rayleigh test is based, because the theoretical underpin-
ning of the Rao spacing test makes no assumption about
the potential shape of any deviation from uniformity.
For these reasons Rao’s spacing test remains in common
use. The test is based on the simple idea that if n indi-
vidual data points are distributed perfectly uniformly
around a circle then the length of arc between neigh-
bouring points is simply 2π/n in radian measure or 360/
n in degrees. The test statistic is based on the sum of
the deviations of the actual arc lengths from this expect-
ation, and a sufficiently high test statistic suggests de-
parture from uniformity.
One attraction of this test is its universal applicability,

since it rests on no particular assumption about the na-
ture of any departure from normality, unlike many alter-
native tests [4] and it has been shown to have good
power compared to alternative tests in some circum-
stances (e.g. when sample sizes are low: [11]). However,
here we highlight a rarely-discussed but significant limi-
tation to the test in its traditional form, and simple pro-
cedures that we demonstrate overcome this limitation.

Methods
Defining the test
We define the test for n observations ϕ1, …,ϕn taken in
radian measure so as to lie within [0,2π). We further as-
sume that the observations are ordered from smallest to
largest: ϕ1 < ϕ2 <…. < ϕn-1 < ϕn. We can then define the
set of n arc lengths between neighbouring points as

Ti ¼ ϕiþ1−ϕi; if i < n
2π−ϕn þ ϕ1 if i ¼ n

�

The test statistic U is then the sum of the differences
between the actual arc lengths and their expected values
under uniformity (2π/n).

U ¼ 0:5
Xn
i¼1

Ti−
2π
n

����
����

If U exceeds a critical value then the null hypothesis of
uniformity is rejected. Based on the moments of the

underlying distribution, Russell & Levitin [10] provide
critical values for alpha = 0.001, 0.05, 0.01, 0.5, 0.1, 0.5
and 0.9 for every sample size from 4 to 30, and for a se-
lection of higher values: 35, 40, 45, 50, 75, 100, 150, 200,
300, 400, 500, 600, 700, 800, 900, 1000. These values are
used by the R function rao.spacing.test in the package
circular, and all implementations of the test we have
seen in the literature (see [1] for some examples) use the
traditional approach of comparing calculated values
against these critical values. Alternatively, the p-value
can be estimated by simulation, where the p-value is the
fraction of samples drawn from a uniform distribution
that have a U value higher than the observed one. Here
we argue for greater use of this second method.
To obtain a p-value for this test by simulation the fol-

lowing approach was taken for continuously-distributed
data. First, the value of the test statistic is obtained for
the observed sample (call this value Uo). We then gener-
ate NR samples from a continuous uniform distribution,
each with the same sample size as the original sample.
For each of these simulated samples we calculate the
value of the test statistic, and calculate the number Ne of
these simulated samples that produce a test statistic
value equal to or greater than Uo. The estimated p value
is then (Ne+ 1)/(NR + 1). In our simulations we used NR

= 10,000. In the case of discrete (rounded) data, this ap-
proach needs to be modified because the restrained
number of options the random distribution can be
drawn from (e.g. 360 when rounded to one degree)
would otherwise create many identical distributions. To
obtain a p-value for discrete (rounded) data by simula-
tion the following approach was taken. First, we added
very small random perturbations selected independently
from a von Mises distribution with mean zero to each
data-point in our sample. That is for data point ϕi we
obtain a perturbation εi drawn from a von Mises with
mean zero and with concentration parameter κ. We then
calculate the value of the test statistics for the observed
sample with added perturbations (call this value Uo). No-
tice that if the sum of the original value and perturb-
ation is outside of [0,2π) then we add or subtract 2π
(modulo 360) as required to correct this prior to calcu-
lating the test statistic. We then generate NR samples
from a continuous uniform distribution, each with the
same sample size as the original sample. For each of
these simulated samples we (i) round values to the same
precision as the original sample, then (ii) add perturba-
tions in the same way as we did for the original sample
(again correcting to make sure that the perturbed
values still lie in [0,2π)), and then finally (iii) calculate
the value of the test statistic for each perturbed simu-
lated sample. We then calculate the number Ne of these
perturbed simulated samples that produce a test statis-
tic value equal to or greater than Uo. The estimated p
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value is then (Ne+ 1)/(NR + 1). In our simulations we
used NR = 10,000, and κ = 1000. The higher the value of
κ the more concentrated the distribution. A value
should be chosen that is high enough that the perturba-
tions are much smaller than the granularity of the im-
precision. That is, if (for example) original values were
obtained to the nearest 10 degrees, then a value of κ
should be selected to ensure that almost all perturbations
are less than 1 degree. See supplementary files for R codes
for both simulation-based approaches (Additional file 2;
the input sample can be in in radians or degrees and
between − 4 and 6*pi or − 720 to + 1080 degrees for the
function to work).

Simulations for type I error
We estimate the type I error rate as the fraction of
10,000 samples each drawn from a uniform distribution
that cause the test to generate a p-value of less than
0.05. We expect the type I error rate of an effective test
to remain close to the nominal value (0.05 in this case).
We evaluate the p-value both in the traditional way
using the R function rao.spacing.test in the package
circular and using our simulation approach. Because
Rao’s spacing test considers the distribution of arcs
between data points we might expect it to be sensitive to
any rounding of the values due (for example) to finite
precision of equipment used to record values. Therefore,
we repeated this analysis using circular uniform distribu-
tions rounded to the next degree (360 bins) and to the
next 10 degrees (36 bins), two situations, due to practical
reasons, commonly encountered in biological studies.

Power comparisons for von Mises and skew normal
distributions
We estimated the power of the different approaches to
correctly detect deviation from uniform distribution. For
this we first generated von Mises (κ = 2, μ = pi) and skew
normal distributions (ε = pi, α = 30, ω = 2) with continu-
ous data of different sample sizes and calculated the
power as the fraction of 10,000 samples that generate a
p-value equal to or less than 0.05, using both ap-
proaches. In a next step we rounded the von Mises dis-
tribution to the next degree and also the next 10 degrees
and repeated the analysis using the simulation approach.

Results
We found that control of type I error is generally good
for both methods when using samples measured on a
continuous circular scale (Fig. 1a). However, when data
are rounded to the nearest degree, we can see that type I
error rate for the traditional variant remains near the
nominal 5% level only for small sample sizes, but for
sample sizes greater than 50 begins to climb higher
(Fig. 1c). This is an unusual circumstance where the

robustness of a test to deviation from its underlying as-
sumptions declines with increasing sample size. This can
be seen as being caused by increasing commonness of
ties in the data with increasing sample size. In other
words the Rao’s spacing test is detecting the ‘clustering’
of 360 modes in the data, essentially showing the power
of the test to detect all types of divergence of uniformity.
Turning to rounding to the nearest 10 degrees we see
the issue of inflation of type I error rate when using the
traditional method is a much greater problem than
under the previous scenario (Fig. 1e). Here, the type I
error rate remains near the nominal 5% level only for
the smallest sample size of 10 and drastically increases
with larger samples. In contrast, we can see that the
simulation methodology offers good control of type I
error rate for all sample sizes considered.
Next, we tested the power of the two Rao spacing test

variants. The power of the simulation-based approach is
almost identical to the traditional method when applying
it to continuous data, showing a good performance of
our Rao test variation (Fig. 1b for von Mises and
Additional file 1: Figure S1 a for skew normal distribu-
tions). When data is rounded to the nearest degree or
ten degrees prior to evaluation by simulation then power
remains largely unchanged (Fig. 1d, f, see Additional file 1:
Figure S1 b, c for skew normal distributions). Thus,
evaluation of Rao’s spacing test by simulation remains a
viable means for testing for departure for uniformity
even if the data is grouped, but the traditional method
cannot be recommended in this case because of the po-
tential for very serious inflation of type I error rates.

Discussion
A recent study suggested that rounding to a finite num-
ber of values was the norm for recently published papers
in the field of behavioural ecology at least [3]. That
study found that rounding to 4, 8 and 12 possible values
was by no means uncommon, and so the rounding to
either 360 or 36 values used here can be considered con-
servative. The problems with inflation of the type I error
rate in the traditional version of the test increase as the
number of possible values for data points decreases. Fur-
thermore, the type I error rapidly increases with sample
size, leading to situations where users of the traditional
test might be very confident about the validity of the test
outcome, due to large sample sizes, but they might be
deceived by the unusual way the type I error of this test
behaves. In many cases, in particular when studying ani-
mal behaviour, it is almost impossible to measure angles
(with confidence) more precisely than to the next five or
ten degrees. Using the traditional Rao test in these cases
would mean high risk for false positive findings. Our
simulation-based approach corrects for the described
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issues with the traditional method, while the power re-
mains similar.
However, our simulation results are by no means

exhaustive. The robustness of our results could be ex-
panded in several ways: nominal type I error rates other
than 5% could be explored, and/or a wider range of sam-
ple sizes and levels of rounding for individual data

points (e.g. to five degrees). Further, the statistical power
of our new method could be explored for a broader
range of shapes of deviation from uniformity. Finally, the
sensitivity of our method to selection of the size of the
perturbations added to data-points could be explored.
However, our own preliminary explorations (not shown)
give us no reason to expect that the results presented

a b

c d

e f

Fig. 1 Type I error rates (a, c, e) and power for a von Mises distribution (b, d, f) of the traditional Rao and the simulation-based Rao test with
different sample sizes. (a, b) First, we tested a continuous uniform distribution (type I error) and a von Mises distribution (power), p-values are
evaluated by the R function rao.spacing.test in the package circular and by simulation, showing similar type I error probabilities and power. (c, d)
Second, we tested simulated data rounded to the next degree (360 bins) and applied either the traditional or the simulation-based test. (e, f)
Then we repeated the type I error and power estimation for data binned in 36 equal bins (rounded to the next 10°). The dashed line indicates
the nominal 5% level for type I errors. The traditional Rao test shows inflated type I error rates when used on rounded data (c, e). The simulation-
based test has low type I error rates and offers power similar to the traditional Rao test (d, f)
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here are unrepresentative. We hope that our simulations
provide the basis of further development of circular stat-
istical methods and spark comprehensive evaluation of
different methods. False positive results are a large con-
cern in life sciences; our provided functions therefore
might help to avoid some unintentional statistical mis-
takes, when dealing with circular data.

Conclusion
Here we highlight a critical hitherto overlooked limita-
tion of Rao’s spacing test for departure from circular
uniformity. If data is grouped (for example because of
finite precision of measurement) then this causes infla-
tion of type I error rates, i.e. the test is detecting the
non-uniformity of rounding the data. Such rounding is
very common throughout practical science. We show
that this inflation of type I error rate can be very sub-
stantial even for moderate rounding (to the nearest
degree or 10 degrees), and that the problem is exacer-
bated by large sample sizes. We advocate evaluation by
simulation, comparing the sample to a test set of similar
samples drawn from a uniform distribution. We demon-
strate that this avoids type I error problems and main-
tains power. We provide R functions to perform this test
by simulation in the two cases where sample values can
be considered continuous or where the data is grouped
into a specified number of equal divisions around the
circle (Additional file 2). The widespread adoption of
these methods would greatly improve the applicability
and reliability of Rao’s spacing test to a fundamental hy-
pothesis testing situation for circular data.

Additional files

Additional file 1: Figure S1. Power (a, b, c) of the traditional Rao and
the simulation-based Rao test with different sample sizes on a skew
normal distribution. (PDF 70 kb)

Additional file 2: R code for the simulation-based Rao test. (R 5 kb)
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