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RIGOROUS DIMENSION ESTIMATES FOR CANTOR SETS ARISING IN

ZAREMBA THEORY

O. JENKINSON & M. POLLICOTT

Abstract. We address the question of the accuracy of bounds used in the study of Zaremba’s
conjecture. Specifically, we establish rigorous estimates on the Hausdorff dimension of cer-
tain Cantor sets which arise in the analysis of Zaremba’s conjecture in [5, 18, 19, 23].

1. Introduction

Given any rational number p
q ∈ (0, 1) a simple application of Euclid’s algorithm shows

there exist coefficients a1, · · · , an ∈ N such that

p

q
= [a1, · · · , an] :=

1

a1 + 1
a2+

1

a3+···+
1
an

(see e.g. [15, Thm. 161]). Given a finite subset A ⊂ N, however, a natural question is to
enquire as to what restriction is imposed on the denominators of such rational numbers in
the case where a1, · · · , an ∈ A, in other words to study the corresponding denominator set

QA =

{
q ∈ N : ∃p ∈ N, a1, · · · , an ∈ A such that

p

q
= [a1, · · · , an]

}
.

More specifically, Zaremba [28] conjectured that when A = {1, 2, 3, 4, 5}, all natural numbers
occur as denominators q for suitable choices of a1, · · · , an ∈ A, i.e. that Q{1,2,3,4,5} = N.

The choice of numbers up to 5 in this conjecture is natural, since the corresponding result
fails for the smaller set A = {1, 2, 3, 4}, where for example it is known that the numbers 6,
54 and 150 do not lie in the denominator set Q{1,2,3,4} (see [23, p. 193]).

The original motivation of Zaremba to study this problem was related to numerical inte-
gration and the use of the method of “good lattice points”. Although Zaremba’s conjecture
remains open, there is various numerical evidence supporting it (see e.g. the discussion in [23,
§2]); indeed in the article [4], the authors cite work of Borosh showing that all the denomi-
nators q ≤ 104 occur in Q{1,2,3,4,5}, and quote Knuth as having established the same result

in the range 104 ≤ q ≤ 3.2× 106.
In a significant recent paper, Bourgain & Kontorovich [5] showed that for the larger set

A = {1, 2, · · · , 50}, the corresponding denominator set QA has density one as a subset of N,
in other words

lim
N→+∞

QA ∩ {1, . . . , N}
N

= 1.
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There is known to be a close connection between this kind of problem and the Hausdorff
dimension of certain related sets. For a finite subset A ⊂ N, let EA denote the set of all
x ∈ (0, 1) such that the digits a1(x), a2(x), . . . in the (infinite) continued fraction expansion

x = [a1(x), a2(x), a3(x), . . .] =
1

a1(x) + 1
a2(x)+

1
a3(x)+···

all belong to A. Sets of the form EA are said to be of bounded type (see e.g. [23, 26]);
in particular they are Cantor sets, and study of their Hausdorff dimension has attracted
significant attention (see e.g. [7, 8, 9, 10, 13, 14, 16, 17, 20, 21, 22]).

In the context of the Zaremba conjecture, the following result of Huang [18, 19] illustrates
the connection with bounds on the Hausdorff dimension of bounded type sets EA:

Theorem 1 (Huang). For the set A = {1, 2, 3, 4, 5}, the corresponding denominator set QA
has density one in N provided dim(EA) > 5

6 .

In particular, Huang’s theorem represents an improvement on the above result of Bourgain-
Kontorovich (in that the set {1, 2, . . . , 50} is replaced by the smaller set {1, 2, 3, 4, 5}), pro-
vided the lower bound dim(EA) > 5

6 does indeed hold. In fact Huang [18, 19] cites as evidence
of this bound a paper of the first author [20], where the techniques of [21] were used to give
a non-rigorous indication that dim(EA) ≈ 0.8368 > 0.8333 . . . = 5

6 . Although the method
introduced in [21] yielded high quality empirical approximations, it is only in our more recent
paper [22] that effective techniques have been introduced for converting these heuristics into
a rigorous proof of the quality of a specific computation. In view of the conditional nature of
Huang’s Theorem 1, and the recent availability of techniques potentially capable of rendering
rigorous the heuristic estimate of dim(EA) in [20], in this paper we employ the technology of
[22] in order to rigorously prove the following:

Theorem 2. If A = {1, 2, 3, 4, 5} then dim(EA) > 5
6 .

Indeed in §5 we give a rigorous proof, stated as Theorem 8, of a significantly more ac-
curate estimate on dim(E{1,2,3,4,5}). Combining Theorems 1 and 2 we deduce the following
unconditional version of Huang’s Theorem.

Corollary 1 (after Huang). For the set A = {1, 2, 3, 4, 5}, the corresponding denominator
set QA has density one in N.

A stronger conjecture due to Hensley [17, Conj. 3, p. 16] was that provided dim(EA) > 1
2

then every sufficiently large natural number occurs as a corresponding denominator, i.e. that
QA contains all sufficiently large natural numbers. However, Bourgain & Kontorovich [5]
indicated that A = {2, 4, 6, 8, 10} provides a counterexample to this conjecture, noting that
in this case QA does not contain any natural numbers which are equal to 3 (mod 4), and that
moreover dim(EA) ≈ 0.517 > 1/2 (see [5, p. 139]). Their approximation to dim(E{2,4,6,8,10}),
using an implementation of the algorithm of [21], is a heuristic one, in the spirit of the
empirical computations in [20, 21] rather than the rigorously validated version of [22]. In view
of the importance of this Bourgain-Kontorovich counterexample to Hensley’s conjecture, it
is of interest to rigorously establish the lower bound on the dimension of E{2,4,6,8,10} (which
we present in §4 as Theorem 7):
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Theorem 3. If A = {2, 4, 6, 8, 10} then dim(EA) > 1
2 .

In particular, this confirms the assertion of [5, p. 139], yielding:

Corollary 2 (after Bourgain-Kontorovich). The set A = {2, 4, 6, 8, 10} provides a counterex-
ample to the Hensley conjecture.

Finally, we recall that Bourgain & Kontorovich proved [5, Thm. 1.26] the existence of
h ∈ N such that there are infinitely many prime numbers d which have a primitive root b
(mod d) with the property that the partial quotients of the rational b/d are bounded by h,
and they indicated that h could be chosen to equal 51. The following sharpening of this result
due to Huang [19, Cor. 1.1.12] is reliant on a lower bound for the Hausdorff dimension of the
Cantor set E{1,2,3,4,5,6}:

Theorem 4 (Huang). If dim(E{1,2,3,4,5,6}) >
19
22 then there are infinitely many prime numbers

d which have a primitive root b (mod d) such that the partial quotients of b/d are ≤ 7.

Although Huang indicates that dim(E{1,2,3,4,5,6}) >
19
22 is true, citing the empirical approx-

imation dim(E{1,2,3,4,5,6}) ≈ 0.8676 > 0.86363636 . . . = 19
22 of [20], there was no rigorous proof

of this result. Once again, therefore, there is considerable interest in rendering Theorem 4
an unconditional result by providing a rigorous validation of the Hausdorff dimension bound.
This we do in our third main result:

Theorem 5. If A = {1, 2, 3, 4, 5, 6} then dim(EA) > 19
22 .

In fact we give a rigorous proof of a significantly more accurate estimate on dim(E{1,2,3,4,5,6})
as Theorem 9 in §6. A corollary of Theorem 5 is the unconditional analogue of Huang’s The-
orem 4:

Corollary 3 (after Huang). There are infinitely many prime numbers d which have a prim-
itive root b (mod d) such that the partial quotients of b/d are ≤ 7.

The organisation of this article is as follows. After some preliminaries in §2 on Hausdorff
dimension and the thermodynamic underpinnings of our computational approach, in §3 we
describe (after [22]) the way in which these computations can be converted into rigorous
effective bounds. In §4 we prove that the Hausdorff dimension of E{2,4,6,8,10} is greater than
1/2, in §5 we establish a rigorous bound on dim(E{1,2,3,4,5}) which in particular shows this
dimension to be larger than 5/6, and in §6 we rigorously approximate the dimension of
E{1,2,3,4,5,6}, which in particular implies it is larger than 19/22.

2. Preliminaries

In this section we collect a number of results (see also [21, 22]) which underpin our algorithm
for approximating Hausdorff dimension.

We begin by recalling some results for continued fractions. For a non-empty finite subset
A ⊂ N, let EA denote the set of all x ∈ (0, 1) such that the digits a1(x), a2(x), . . . in the
continued fraction expansion

x = [a1(x), a2(x), a3(x), . . .] =
1

a1(x) + 1
a2(x)+

1
a3(x)+···
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all lie in A. Equivalently, if

Tn(x) := (n+ x)−1

then EA is the smallest non-empty closed set satisfying the self-similarity condition

EA = ∪n∈ATn(A) .

The Gauss map

T (x) =
1

x
(mod 1)

is such that T ◦Tn is the identity map for each n, and all of the sets EA satisfy T (EA) = EA.
Each of the sets EA ⊂ [0, 1] is a Cantor set of zero Lebesgue measure, and a natural way

to describe their size is via Hausdorff dimension.

Definition 1. For a general set E ⊂ R, if we define

Hδ
ε (E) := inf

{∑
i

diam(Ui)
δ : U = {Ui} is an open cover of E such that each diam(Ui) ≤ ε

}
,

and Hδ(E) := limε→0H
δ
ε (E), then the Hausdorff dimension of E, denoted dim(E), is defined

to be the infimum of the set inf{δ : Hδ(E) = 0}.

For the sets EA, their Hausdorff dimension coincides with their box dimension (see e.g. [12]).
For a general continuous function f : EA → R, its pressure P (f) is defined to be

P (f) = lim
n→+∞

1

n
log

 ∑
Tnx=x
x∈EA

ef(x)+f(Tx)+...+f(T
n−1x)

 ,

and making the particular choice f = −s log |T ′| leads to an important characterisation of
the Hausdorff dimension of EA (see [3, 6, 12, 24]):

Lemma 1. The function R→ R defined by s 7→ P (−s log |T ′|) is strictly decreasing, and its
unique zero is precisely the Hausdorff dimension dim(EA).

For s ∈ R, and finite A ⊂ N, define the transfer operator LA,s by

LA,sf(x) =
∑
n∈A

f(Tnx)

(n+ x)2s
.

This operator is known to leave invariant a number of natural function spaces, notably the
Hilbert Hardy spaces considered below, or for example the Banach space of Lipschitz functions
on [0, 1]. On these spaces the value eP (−s log |T ′|) is an eigenvalue of strictly largest modulus,
and is a simple eigenvalue. Consequently, Lemma 1 implies that the Hausdorff dimension of
EA is the unique value s ∈ R such that LA,s has spectral radius equal to 1.

When acting on suitable Hilbert Hardy spaces, the trace tr(LnA,s) of each n-th power LnA,s
is given (see [21, 25]) by

tr(LnA,s) =
∑
i∈An

|T ′i (zi)|s

1− T ′i (zi)
=
∑
i∈An

∏n−1
j=0 T

j(zi)
2s

1− (−1)n
∏n−1
j=0 T

j(zi)2
, (1)
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where the point zi is the unique fixed point in (0, 1) of the n-fold composition Ti = Ti1 ◦Ti2 ◦
· · · ◦ Tin (and hence a period-n point for the Gauss map T ), and in particular is a quadratic

irrational. The function defined on the complex disc |z| < e−P (−s log |T ′|) (i.e. the disc of
convergence of

∑∞
n=1

zn

n tr(LnA,s)) by

∆(z, s) = exp

(
−
∞∑
n=1

zn

n
tr(LnA,s)

)
(2)

extends by analytic continuation to an entire function of C, called the determinant of LA,s.
When acting on suitable Hilbert Hardy spaces, the eigenvalues of LA,s are precisely the

reciprocals of the zeros of its determinant. In particular, the zero of the function ∆(s, ·) with

smallest modulus is e−P (−s log |T ′|), therefore the Hausdorff dimension of EA is precisely the
value of s such that 1 is the zero of minimum modulus of ∆(s, ·).

In fact, when LA,s acts on such a space of holomorphic functions, its approximation num-
bers decay at an exponential rate (see [22, Cor. 2]), so that LA,s belongs to an exponential
class (cf. [1, 2]) and is in particular a trace class operator, from which the existence and above
properties of trace and determinant follow (see [27]).

This allows us (cf. [21, 22]) to write ∆(z, s) as the series ∆(z, s) = 1 +
∑∞

n=1 δn(s)zn , and
then set z = 1 to define the dimension determinant D by

D(s) := ∆(1, s) = 1 +
∞∑
n=1

δn(s) ,

a holomorphic function which is known to be entire (see [21, 25]). Solutions s of

0 = 1 +
∞∑
n=1

δn(s) = D(s) (3)

are such that the value 1 is an eigenvalue for the operator LA,s, and in particular the largest
real zero of D is precisely the dimension dim(EA) (cf. Proposition 1), being the value of s
such that 1 is the leading eigenvalue (i.e. of maximum modulus) for the operator LA,s.

The coefficients δn(s) are computable (to arbitrary precision, for a given s) in terms of
those periodic points of T |EA

whose period is ≤ n, using the formula (1). Therefore, for any
given N ∈ N, we may define DN by

DN (s) := 1 +
N∑
n=1

δn(s) , (4)

so that a solution sN to the equation DN (s) = 0 will be an approximate solution to (3), and
the smaller

∑∞
n=N+1 δn(s) is the better this approximation will be. In what follows, we use

rigorous upper bounds on (the absolute value of)
∑∞

n=N+1 δn(s) to yield rigorous estimates
on |sN − dim(EA)|.

3. Bounding dimension determinant coefficients

We now begin the serious task of converting these theoretical estimates into practical
bounds that can be used to complete the proofs of the results stated in the introduction. The
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key point is that we can employ a number of technical innovations introduced in [22] in order
to make estimates both effective and rigorous.

Let A ⊂ N be finite. An open disc D ⊂ C is said to be admissible (for A) if ∪i∈ATi(D) ⊂ D.
For an admissible disc D of radius %, centred at c, let D′ be the smallest disc, concentric

with D, such that ∪i∈ATi(D) ⊂ D′, and let %′ denote the radius of D′. The associated
contraction ratio θ = θA,D is then defined as

θ = θA,D :=
%′

%
.

Introducing the notation

En(θ) :=
θn(n+1)/2∏n
i=1(1− θi)

, (5)

we note the super-exponential decay En(θ) = O(θ
n2

2 ) as n→∞.

Definition 2. The Hilbert Hardy space H2(D) consists of those functions f which are holo-

morphic on D such that ‖f‖2 := supr<%
∫ 1
0 |f

∗(c+ re2πit)|2 dt <∞, with inner product given
by

(f, g) =

∫ 1

0
f∗(c+ %e2πit)g∗(c+ %e2πit) dt ,

where f∗ and g∗ denote the respective non-tangential limit functions of f and g.

The monomials
mk(z) = %−k(z − c)k (6)

constitute an orthonormal basis of H2(D).
Admissibility of D ensures that for s ∈ R, the transfer operator LA,s preserves H2(D). In

particular,

LA,s(mk)(z) =
∑
j∈A

(Tj(z)− c)k

%k(z + j)2s
,

and we may use numerical integration to explicitly compute (to arbitrary precision) the norm
‖LA,s(mk)‖ as

‖LA,s(mk)‖2 =

∫ 1

0

∣∣∣∣∣∣
∑
j∈A

(Tj(γ(t))− c)k

%k(γ(t) + j)2s

∣∣∣∣∣∣
2

dt , (7)

where γ(t) = c+ %e2πit.
For j ∈ A the functions

wj,s(z) =
1

(z + j)2s

are holomorphic on the admissible disc D, and we use their uniform norms

‖wj,s‖∞ = sup
z∈D
|wj,s(z)| ,

together with the contraction ratio θ, to define the constant

Ks = Ks,A,D :=

∑
j∈A ‖wj,s‖∞
θ
√

1− θ2
. (8)
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For s ∈ R and n,Q,M,N ∈ N with n ≤ Q ≤M ≤ N , if we introduce the quantities

αn,N,+(s) :=

 N∑
k=n−1

‖LA,s(mk)‖2 +

∑
j∈A
‖wj,s‖∞

2

θ2(N+1)

1− θ2

1/2

, (9)

βM,−
l,N,+(s) :=

∑
i1<...<il≤M

l∏
j=1

αij ,N,+(s) , (10)

JQ,N,s := Ks

(
1 + θ2(N+2−Q)

)1/2
, (11)

βM,+
n,N,+(s) := βM,−

n,N,+(s) +
n−1∑
l=0

Jn−lQ,N,s β
M,−
l,N,+(s) θM(n−l)En−l(θ) . (12)

then the following bound was established in [22]:

Theorem 6. Let A ⊂ N be finite, and D an admissible disc, with contraction ratio θ = θA,D.
If s ∈ R, and Q,M,N ∈ N with n ≤ Q ≤ M ≤ N , then the dimension determinant
coefficients δn(s) satisfy

|δn(s)| ≤ min
(
Kn
s En(θ) , βM,+

n,N,+(s)
)
.

Remark 1. Theorem 6 was proved in [22] using the theory of approximation numbers in
Hilbert space. The inequality |δn(s)| ≤ Kn

s En(θ) from Theorem 6 is referred to as the Euler
bound, acknowledging Euler’s work [11] on the identity En(θ) =

∑
i1<...<in

θi1+...+in . The

term Kn
s En(θ) has a simple closed form, and is O(γn

2
) as n → ∞ for any γ ∈ (θ1/2, 1),

though the constant Ks = Ks,A,D may be large enough (if A is large) to render the tail
estimate |

∑
n>Q δn(s)| ≤

∑
n>QK

n
s En(θ) insufficiently sharp if Q is chosen to be small. The

terms βM,+
n,N,+(s), referred to as upper computed Taylor bounds in [22], have the virtue of

being readily computable to arbitrary precision, but are not available in closed form; their
utility, therefore, is in bounding |δn(s)| for n ≤ Q, where Q is chosen so that the tail es-
timate derived from the Euler bound is sufficiently sharp. In practice M and N will be

chosen so that βM,+
n,N,+(s) agrees with βM,−

n,N,+(s) (which is given by a notably simpler formula)

to very high precision (e.g. several hundred decimal places), i.e. the more complicated term∑n−1
l=0 J

n−l
Q,N,s β

M,−
l,N,+(s) θM(n−l)En−l(θ) in (12) effectively plays no computational role; simi-

larly, αn,N,+(s) will in practice agree with (
∑N

k=n−1 ‖LA,s(mk)‖2)1/2 to very high precision,

so that the term (
∑

j∈A ‖wj,s‖∞)2 θ
2(N+1)

1−θ2 in (9) effectively plays no computational role.

4. The Hausdorff dimension of E{2,4,6,8,10} is greater than 1/2

Motivated by the work of Bourgain & Kontorovich [5] described in §1, specifically [5, p. 139]
(see also [23, Lem. 2.20]), our aim in this section will be to provide a rigorous proof of the
fact that the Hausdorff dimension of E{2,4,6,8,10} is greater than 1/2, a result which heretofore
has enjoyed a folklore status, based on convincing but non-rigorous numerical work.

Our approach is motivated by the following observation:
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Proposition 1. For any finite alphabet A, if s0 ∈ R is such that the corresponding dimension
determinant D = DA satisfies D(s0) < 0, then dim(EA) > s0.

Proof. The method is to show firstly that D cannot have real zeros that are larger than
dim(EA), so that D, being a continuous function, does not change sign on the interval
(dim(EA),∞), and secondly that the derivative D′(s) is strictly positive at its zero s =
dim(EA). This then implies that D is strictly positive on (dim(EA),∞), or in other words
the desired result that if D(s0) < 0 then necessarily dim(EA) > s0.

To show that if s > dim(EA) then D(s) 6= 0, recall that s 7→ p(s) = P (−s log |T ′|) is strictly

decreasing on R, with s = dim(EA) its unique zero. Therefore s 7→ z1(s) = e−p(s), which
is the zero of minimum modulus of ∆(·, s), is a strictly increasing function. In particular,
z1(dim(EA)) = 1, so if s > dim(EA) then z1(s) > 1; thus all zeros of ∆(·, s) must have
modulus strictly larger than 1. Therefore in particular the equation ∆(1, s) = 0 has no
solutions for s > dim(EA), i.e. the equation D(s) = 0 has no solutions for s > dim(EA),
i.e. D has no zeros that are strictly larger than dim(EA).

To complete the proof it remains to show that the derivative D′(s) is strictly positive at
s = dim(EA). To see this we use the infinite product

∆(z, s) =
∞∏
r=1

(1− zλr(s)),

where λr(s) are the eigenvalues of LA,s, listed according to algebraic multiplicity, and ordered
so that their absolute values are non-increasing, with in particular λ1(s) > |λr(s)| for all r ≥ 2
(since the leading eigenvalue λ1(s) is simple).

If Γ(s) :=
∏∞
r=2(1− λr(s)) then D(s) = (1− λ1(s))Γ(s), so

D′(s) = −λ′1(s)Γ(s) + (1− λ1(s))Γ′(s) ,

and since λ1(dim(EA)) = 1 then

D′(dim(EA)) = −λ′1(dim(EA))Γ(dim(EA)).

But s 7→ λ1(s) = ep(s) is strictly decreasing, so −λ′1(dim(EA)) > 0, and therefore it remains
to show that Γ(dim(EA)) > 0. For this, note that if s ∈ R (in particular if s = dim(EA)),
the coefficients in the power series expansion of ∆(z, s) are all real, by (1). Therefore non-
real zeros of ∆ arise as conjugate pairs, both with the same multiplicity. Multiplying out
those factors in the product representation of Γ corresponding to conjugate pairs, we see that
Γ(dim(EA)) is an infinite product of strictly positive terms (since |λr(dim(EA))| < 1 for each
r ≥ 2). The sequence of terms converges to 1, since |λr(dim(EA))| → 0, therefore the infinite
product converges to a strictly positive value. That is, Γ(dim(EA)) > 0, as required. �

Having established Proposition 1, our strategy for proving that dim(E{2,4,6,8,10}) > 1/2 will
be to show that D(1/2) < 0 for the corresponding dimension determinant D = D{2,4,6,8,10}.

In view of the central role of the value s = 1/2 in this section, we shall write

LA := LA,1/2 ,

and

δn := δn(1/2) ,
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so that

D(1/2) = 1 +
∞∑
n=1

δn .

It will turn out to be sufficient to work with Gauss map orbits of periods 1, 2 and 3, and in
Lemmas 2, 3, 4 below we record exact formulae for the corresponding traces of the operator
LA.

Lemma 2. If A = {2, 4, 6, 8, 10} then u1 = tr(LA) is given by the exact formula

u1 =

√
2− 1

1 +
(√

2− 1
)2 +

√
5− 2

1 +
(√

5− 2
)2 +

√
10− 3

1 +
(√

10− 3
)2 +

√
17− 4

1 +
(√

17− 4
)2 +

√
26− 5

1 +
(√

26− 5
)2

=
1

2
√

2
+

1

2
√

5
+

1

2
√

10
+

1

2
√

17
+

1

2
√

26
.

Proof. From (1), u1 =
∑

n∈A zn/(1 + z2n), where

zn = [n, n, n, . . .] =
√
k2n + 1− kn ,

for kn = n/2, and the result follows. �

Lemma 3. If A = {2, 4, 6, 8, 10} then u2 = 1
2tr(L2A) is given by the exact formula

u2 =
1

2

(
3− 2

√
2

1−
(
3− 2

√
2
)2 +

19− 6
√

10

1−
(
19− 6

√
10
)2 +

33− 8
√

17

1−
(
33− 8

√
17
)2 +

51− 10
√

26

1−
(
51− 10

√
26
)2

+
3
(
9− 4

√
5
)

1−
(
9− 4

√
5
)2 +

2
(
17− 12

√
2
)

1−
(
17− 12

√
2
)2 +

2
(
7− 4

√
3
)

1−
(
7− 4

√
3
)2 +

2
(
5− 2

√
6
)

1−
(
5− 2

√
6
)2

+
19− 6

√
10

1−
(
19− 6

√
10
)2 +

2
(
31− 8

√
15
)

1−
(
31− 8

√
15
)2 +

2
(
11− 2

√
30
)

1−
(
11− 2

√
30
)2 +

2
(
25− 4

√
39
)

1−
(
25− 4

√
39
)2

+
2
(
13− 2

√
42
)

1−
(
13− 2

√
42
)2 +

2
(
41− 4

√
105
)

1−
(
41− 4

√
105
)2 +

2
(
21− 2

√
110
)

1−
(
21− 2

√
110
)2
)
.

Proof. From (1),

u2 =
1

2

∑
(m,n)∈A2

zm,n
1− z2m,n

,

where it can be shown that

zm,n = km,n −
√
k2m,n − 1 ,

for

km,n = 1 +
mn

2
.

Note that z4,4 = z2,8 = z8,2 = 9 − 4
√

5, contributing the term with coefficient 3 in the
above expression for u2. Otherwise the four remaining fixed points contribute the terms with
coefficient 1, and the 9 remaining period-2 orbits contribute the terms with coefficient 2 (since
zm,n = zn,m). �
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Lemma 4. If A = {2, 4, 6, 8, 10} then u3 = 1
3tr(L3A) is given by the exact formula

u3 =
1

3

(
5
√

2− 7

1 +
(
5
√

2− 7
)2 +

17
√

5− 38

1 +
(
17
√

5− 38
)2 +

37
√

10− 117

1 +
(
37
√

10− 117
)2 +

65
√

17− 268

1 +
(
65
√

17− 268
)2

+
101
√

26− 515

1 +
(
101
√

26− 515
)2 +

3
(√

145− 12
)

1 +
(√

145− 12
)2 +

3
(√

290− 17
)

1 +
(√

290− 17
)2 +

3
(√

442− 21
)

1 +
(√

442− 21
)2

+
3
(√

485− 22
)

1 +
(√

485− 22
)2 +

3
(√

730− 27
)

1 +
(√

730− 27
)2 +

6
(√

901− 30
)

1 +
(√

901− 30
)2 +

6
(√

1522− 39
)

1 +
(√

1522− 39
)2

+
6
(√

2305− 48
)

1 +
(√

2305− 48
)2 +

3
(√

3026− 55
)

1 +
(√

3026− 55
)2 +

6
(√

3137− 56
)

1 +
(√

3137− 56
)2 +

6
(√

4762− 69
)

1 +
(√

4762− 69
)2

+
3
(√

5185− 72
)

1 +
(√

5185− 72
)2 +

3
(√

5330− 73
)

1 +
(√

5330− 73
)2 +

3
(√

6401− 80
)

1 +
(√

6401− 80
)2 +

3
(√

7922− 89
)

1 +
(√

7922− 89
)2

+
6
(√

8101− 90
)

1 +
(√

8101− 90
)2 +

6
(√

11026− 105
)

1 +
(√

11026− 105
)2 +

3
(√

12322− 111
)

1 +
(√

12322− 111
)2 +

6
(√

16901− 130
)

1 +
(√

16901− 130
)2

+
3
(√

19045− 138
)

1 +
(√

19045− 138
)2 +

3
(√

23717− 154
)

1 +
(√

23717− 154
)2 +

6
(√

29242− 171
)

1 +
(√

29242− 171
)2 +

3
(√

36482− 191
)

1 +
(√

36482− 191
)2

+
3
(√

41210− 203
)

1 +
(√

41210− 203
)2 +

3
(√

44945− 212
)

1 +
(√

44945− 212
)2 +

6
(√

63505− 252
)

1 +
(√

63505− 252
)2 +

3
(√

97970− 313
)

1 +
(√

97970− 313
)2

+
3
(√

110890− 333
)

1 +
(√

110890− 333
)2 +

3
(√

171397− 414
)

1 +
(√

171397− 414
)2 +

3
(
5
√

74− 43
)

1 +
(
5
√

74− 43
)2
)
.

Proof. From (1),

u3 =
1

3

∑
(l,m,n)∈A3

zl,m,n
1 + z2l,m,n

, (13)

where it can be shown that

zl,m,n =
√
k2 + 1− k ,

for

k = kl,m,n =
1

2
(lmn+ l +m+ n) . (14)

The 35 terms in the above expression for u3 correspond to the 35 distinct values of zl,m,n as
(l,m, n) ranges over A3. Of the 125 terms in (13), five correspond to fixed points, and the
remaining 120 correspond to points of least period 3. Of the 40 period-3 orbits, half of them
are such that l, m, and n are distinct elements of A; in such cases the distinct orbits coded
by (l,m, n) and (l, n,m) satisfy zl,m,n = zl,n,m (note that (14) is symmetric in l, m, n), thus
contributing 6 identical terms in the sum (13), i.e. the terms with coefficient 6 in the above
expression for u3. The other 20 period-3 orbits, for which precisely two of l, m, n are equal,
contribute 3 identical terms in the sum (13), i.e. the terms with coefficient 3 in the above
expression for u3. Thus u3 is naturally written as a sum of 35 = 5 + 10 + 20 terms. �

Using the exact formulae of Lemmas 2, 3, and 4 we are now able to evaluate the order-3
approximation D3(1/2) to D(1/2):
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Lemma 5. For E = E{2,4,6,8,10}, the order-3 approximation D3(1/2) satisfies

D3(1/2) = 1 + δ1 + δ2 + δ3 < −
1

20
. (15)

Proof. Using the definitions of the δi, and Lemmas 2, 3, and 4, we bound1

δ1 = −u1 < −954/1000 ,

δ2 =
1

2
u21 − u2 < −102/1000 ,

δ3 = u1u2 − u3 −
1

6
u31 < 2/1000 ,

therefore
D3(1/2) = 1 + δ1 + δ2 + δ3 < −54/1000 < −1/20 .

�

Lemma 6. The error term for the approximation of D(1/2) by D3(1/2) is bounded by

|D(1/2)−D3(1/2)| < 1

20

Proof. Let D ⊂ C be the disc of radius % = 3/2 centred at c = 1/2. For the alphabet
A = {2, 4, 6, 8, 10} this disc has contraction ratio θ = 1/3 (the point −1 ∈ ∂D satisfies
T2(−1) = 1, which has distance 1/2 = θ% from the centre of D, see Figure 1).

For each n ∈ A = {2, 4, 6, 8, 10} the function wn(z) = 1/(z+n) has maximum modulus on
D when z = c− % = −1, in other words

‖wn‖∞ =
1

n− 1
, (16)

and therefore ∑
n∈A
‖wn‖∞ = 1 +

1

3
+

1

5
+

1

7
+

1

9
=

563

315
,

so

K =

∑
n∈A ‖wn‖∞
θ
√

1− θ2
=

563

70
√

2
< 6 .

Now

|δn| ≤ KnEn(θ) < 6nEn(1/3) =
6n3−n(n+1)/2∏n
i=1(1− 3−i)

=: Fn ,

from which we readily derive2 the required bound

|D(1/2)−D3(1/2)| ≤
∞∑
n=4

|δn| <
∞∑
n=4

Fn < 1/20 .

�

1These bounds are conveniently checked by numerically evaluating the explicit formulae for u1, u2, u3 given
in Lemmas 2, 3, and 4, using either a pocket calculator or a package such as Mathematica. One finds that
u1 = 0.95459995 . . ., u2 = 0.55800098 . . ., and u3 = 0.38595811 . . ..

2Note that F4 = 81/2080 ≈ 0.0389, F5 = 243/251680 ≈ 0.000965512, F6 = 729/91611520 ≈ 0.0000079,
etc., and in fact

∑∞
n=4 Fn = 0.039915 . . ..
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-1.0 -0.5 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 1. Inner disc D′ (dashed) contains images T2(D), T4(D), T6(D),
T8(D), T10(D) of the outer disc D (centre 1/2, radius 3/2), in the proof that
dim(E{2,4,6,8,10}) > 1/2

Remark 2. The specific disc D used in the proof of Lemma 6 ensures that error bounds
are both reasonably sharp and take a conveniently simple form. Its contraction ratio 1/3
is fairly close to optimal, though in fact the minimum possible contraction ratio is slightly
smaller than 3/10, and if we were wishing to establish very high accuracy rigorous bounds
on dim(E{2,4,6,8,10}) then it would be preferable to work with a disc whose contraction ratio
is (close to) optimal. Note that our choice of D here is not available in the case of alphabets
A containing the number 1, since the point −1 on the boundary of D is then a pole for the
function 1/(z + 1) which arises in defining the associated transfer operator.

We can now prove the desired result:

Theorem 7. The Hausdorff dimension of E{2,4,6,8,10} is strictly larger than 1/2.
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n sn
1 0.48423601174084654015914428125801664463082136184352
2 0.51785646889922347669500264756892828759037033720127
3 0.51735835552554373712759333961028665424316762904677
4 0.51735703035327082175724494790903719578904071340121
5 0.51735703093697422452618598486769311779169231777479
6 0.51735703093701730520259909968044128779914246471704
7 0.51735703093701730466662960310305782115301520544050
8 0.51735703093701730466662847483603679980173115413977
9 0.51735703093701730466662847483643973376603352818029

10 0.51735703093701730466662847483643973379049172430329

Table 1. Approximations sn to dim(E{2,4,6,8,10})

Proof. For A = {2, 4, 6, 8, 10}, Lemmas 5 and 6 together give D(1/2) < 0 where D = DA.
Proposition 1 then implies that dim(EA) > 1/2. �

To end this section we provide (see Table 1) a sequence of approximations to the dimension
of E{2,4,6,8,10}, indicating that

dim(E{2,4,6,8,10}) = 0.5173570309370173046666284748364397337 . . . .

With extra work, the majority of these empirically observed decimal digits could be rigorously
justified using the techniques involving computed bounds (along the lines of §5 and §6),
though in this section our preference was to establish, in a rather explicit way not relying on
computer assistance, the more conservative lower bound dim(E{2,4,6,8,10}) > 1/2 which is of
specific number-theoretic interest (see [5, p. 139] and [23, Lem. 2.20]).

5. The Hausdorff dimension of E{1,2,3,4,5}

Here we consider the set E{1,2,3,4,5}, corresponding to the choice A = {1, 2, 3, 4, 5}. The
approximation sN to dim(E{1,2,3,4,5}), based on periodic points of period up to N , is the zero
(in the interval (0, 1)) of the function DN defined by (4); these approximations are tabulated
in Table 2 for 1 ≤ n ≤ 8. We note that the 7th and 8th approximations to dim(E{1,2,3,4,5})

share the first 13 decimal digits3 0.8368294436812.
It turns out that we can rigorously justify 8 of these decimal digits. Define

s− = 0.83682944

and

s+ = 0.83682945 = s− + 10−8 .

We then claim:

Theorem 8. The Hausdorff dimension dim(E{1,2,3,4,5}) lies in the interval (s−, s+).

3Note that Hensley [17, p. 16] gives the ten decimal digit approximation 0.8368294437, where the first 9
digits are correct, and the final digit is rounded up.
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n sn
1 0.705879459442766674905124438813
2 0.848104427201487198901594372491
3 0.837214988477016376170810547613
4 0.836824477038318042493697933421
5 0.836829420428362177143803729319
6 0.836829443722239849891499678185
7 0.836829443681235947667216097180
8 0.836829443681208815677961682649

Table 2. Approximations sn to dim(E{1,2,3,4,5})

Proof. Since EA is a subset of R, its Hausdorff dimension is smaller than 1, and by Proposition
1 we know that dim(EA) is the largest real zero of D. Our strategy is to firstly show that
D(s−) < 0 < D(s+), so that the continuous function D has a zero in (s−, s+), and secondly
show that D is strictly increasing on (s+, 1), from which it follows that D has no real zeros
larger than s+, hence that dim(EA) must lie between s− and s+.

Let D ⊂ C be the open disc centred at c, of radius %, where c is the largest real root of
the polynomial

5c7 + 60c6 + 243c5 + 309c4 − 225c3 − 459c2 + 225c− 21 ,

so that

c ≈ 0.871259267043988728104853432066954096301642480251564013290706298815 ,

and

% = −2 +
√
c2 + 6c+ 8− 3/c , (17)

so that

% ≈ 1.24705349298248245984837857517910962469791117416655000430012735 .

The relation (17) ensures that T1(c−%) and T5(c+%) are equidistant from c, and this common
distance is denoted by %′ = T1(c− %)− c = c− T5(c+ %), so that

%′ ≈ 0.730776538381714937358210535581775862495407050089163969996563349 .

The specific choice of c is to ensure that the contraction ratio θ = %′/% is minimised, taking
the value

θ =
%′

%
≈ 0.586002559227810334771610807887260173705711718278460922051957 .

Having computed the points of period up to P = 8 we can form the functions s 7→ δn(s)
for 1 ≤ n ≤ 8, and evaluate these at s = s− to give

D8(s
−) = 1 +

8∑
n=1

δn(s−) = (−7.23265042091732132359 . . .)× 10−9 < −7× 10−9 < 0 , (18)
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and at s = s+ to give

D8(s
+) = 1 +

8∑
n=1

δn(s+) = (1.24148369391570553114 . . .)× 10−8 > 10−8 > 0 . (19)

We now aim to show that the approximation D8 is close enough to D for (18) and (19)
to imply, respectively, the negativity of D(s−) and the positivity of D(s+). In other words,
we seek to bound the tail

∑∞
n=9 δn(s), and this will be achieved by bounding the individual

Taylor coefficients δn(s), for n ≥ 9 = P + 1. It will turn out that for n ≥ 13 the cruder
Euler bound on δn(s) is sufficient, while for P + 1 = 9 ≤ n ≤ 12 = Q we will use the upper

computed Taylor bound (cf. Remark 1) βM,+
n,N,+(s) for suitable M,N ∈ N.

Henceforth let Q = 12, M = 150, N = 200, and consider the case s = s−. We first evaluate
the H2(D) norms of the monomial images LA,s(mk) for 0 ≤ k ≤ N = 200, as

‖LA,s(m0)‖ = 1.18094153698482882249447608084779380079799521014296 . . .
‖LA,s(m1)‖ = 0.50373481635455365839901987777081994881907010494221 . . .
‖LA,s(m2)‖ = 0.25538908510961660244036590250705094646855677581007 . . .

...
‖LA,s(m200)‖ = (9.2211490601699406685842370009793893017 . . .)× 10−48.

Using these norms ‖LA,s(mk)‖ we then evaluate, for 1 ≤ n ≤ M = 150, the terms
αn,N,+(s) = αn,200,+(s) defined (cf. (9)) by

αn,N,+(s) =

 N∑
k=n−1

‖LA,s(mk)‖2 +

(
5∑
i=1

‖wi,s‖∞

)2
θ2(N+1)

1− θ2

1/2

to be

α1,200,+(s) = 1.31924766289256695924356827596610055341618618514631 . . .
α2,200,+(s) = 0.58804037469497804159060266597641325581551232133109 . . .
α3,200,+(s) = 0.30338542658416252872670480452558662518433118485741 . . .

...
α150,200,+(s) = (8.4073197947570136649265418048602686584245204793167 . . .)× 10−36.

The terms αn,200,+(s) are then used to form the upper computed Taylor bounds βM,+
n,N,+(s) =

βM,−
n,N,+(s) +

∑n−1
l=0 J

n−l
Q,N,s β

M,−
l,N,+(s) θM(n−l)En−l(θ), where

βM,−
n,N,+(s) = β150,−n,200,+(s) =

∑
i1<...<in≤150

n∏
j=1

αij ,200,+(s) ,

which for 9 ≤ n ≤ 12 = Q are4

βM,+
9,N,+(s) = (3.869148479201423350100950886266017856266325933993 . . .)× 10−9

4Although not needed in this proof, we record here that the values of βM,+
n,N,+(s) for 1 ≤ n ≤ 8 are

βM,+
1,N,+(s) ≈ 2.58, βM,+

2,N,+(s) ≈ 2.22, βM,+
3,N,+(s) ≈ 0.84, βM,+

4,N,+(s) ≈ 0.16, βM,+
5,N,+(s) ≈ 0.015, βM,+

6,N,+(s) ≈ 0.00085,

βM,+
7,N,+(s) ≈ 0.000025, βM,+

8,N,+(s) ≈ 4.15 × 10−7.
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βM,+
10,N,+(s) = (2.041028155630093895625799528930764710962712003414 . . .)× 10−11

βM,+
11,N,+(s) = (6.130924622613936837872004195147235402486502450229 . . .)× 10−14

βM,+
12,N,+(s) = (1.0522363626350277460656303574730842052357778811099 . . .)× 10−16

so in particular
12∑
n=9

|δn(s)| ≤
12∑
n=9

βM,+
n,N,+(s) < 3.9× 10−9. (20)

It remains to derive the Euler bounds on the Taylor coefficients δn(s) for n ≥ 13. For s > 0
and i ∈ {1, 2, 3, 4, 5}, the function wi,s(z) = 1/(z + i)2s has maximum modulus on D when
z = c− %, so

‖wi,s‖∞ = 1/(i+ c− %)2s . (21)

A computation using (21) gives

‖w1,s‖∞ ≤ 2.200652531203248404044479104226642405462553341431015058177155 ,

‖w2,s‖∞ ≤ 0.444077465889954989420982559661627815714819270961004072921669 ,

‖w3,s‖∞ ≤ 0.198948407046876624291927334956495986322487588119823603200126 ,

‖w4,s‖∞ ≤ 0.115896001097710230802023825180791690553618611817392771206340 ,

‖w5,s‖∞ ≤ 0.077082300149426430401659913390892369783863063355289787925134 ,

thus
5∑
i=1

‖wi,s‖∞ ≤ 3.036656705387216678961072737416450267837341875684525293430 ,

and therefore

Ks =

∑5
i=1 ‖wi,s‖∞
θ
√

1− θ2
≤ 6.395071652440547917777437764079486107 .

Now |δn(s)| ≤ Kn
s En(θ), and we readily compute that

K13
s E13(θ) < (1.40011020114202973438010314635460316413126280165 . . .)× 10−10 ,

K14
s E14(θ) < (5.04481723697163767907422523105683213038944634054 . . .)× 10−13 ,

and the super-exponential decay of the terms Kn
s En(θ) means we easily bound∣∣∣∣∣

∞∑
n=13

δn(s)

∣∣∣∣∣ ≤
∞∑

n=13

Kn
s En(θ) < 1.5× 10−10 . (22)

Combining (22) with (20) gives, for s = s−,∣∣∣∣∣
∞∑
n=9

δn(s)

∣∣∣∣∣ < 4× 10−9 . (23)

Combining (23) with (18) then gives

D(s−) = 1 +

∞∑
n=1

δn(s−) < −3× 10−9 < 0 . (24)
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We now show that D(s+) is positive. In view of (19), for this it is sufficient to show that
|
∑∞

n=9 δn(s)| < 10−8 for s = s+. In fact the stronger inequality (23) (which we have proved
for s = s−) can also be established for s = s+, using the same general method as for s = s−,
since the intermediate computed values for the norms ‖LA,s(mk)‖, the terms αn,N,+(s), the

computed Taylor bounds βM,+
n,N,+(s), and the Euler bounds Kn

s En(θ), are sufficiently close to

those for s = s− = s+ − 10−8. Combining (19) with inequality (23) for s = s+ gives the
required positivity

D(s+) = 1 +
∞∑
n=1

δn(s+) > 0 . (25)

Since D is continuous, (24) and (25) imply that it has a zero in (s−, s+), and in particular
that dim(EA), as the largest zero of D (by Proposition 1), is larger than s−. To prove that
dim(EA) < s+ it now suffices to show that D is strictly increasing on (s+, 1), and hence has

no zeros in this interval. For this we use that the function D8(s) = 1+
∑8

n=1 δn(s) is available
to us in closed form, together with an estimate on the derivative of the remainder function

R8(s) := D(s)−D8(s) =

∞∑
n=9

δn(s) .

In particular, D8 can be shown to be both strictly increasing and strictly concave on the
interval (s+, 1) (cf. Figure 2, showing the restriction of D8 to [0, 1]), with

D′8(s) > D′8(1) = 1.3546901785 . . . >
13

10
for all s ∈ (s+, 1) . (26)

0.2 0.4 0.6 0.8 1.0

-6

-5

-4

-3

-2

-1

Figure 2. Order-8 approximation D8 to the dimension determinant for E{1,2,3,4,5}.
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Let U denote the ε-neighbourhood in C of the real interval (s+, 1), where for concreteness
we choose ε = 1/10. We shall bound the modulus of R8 on U via Euler bounds on the
coefficients δn(s) for n > 8, s ∈ U , and then use Cauchy’s integral formula to derive a
bound on R′8(s) for s ∈ (s+, 1). Recall (see Theorem 6) that |δn(s)| ≤ Kn

s En(θ), where

En(θ) = θn(n+1)/2
∏n
i=1(1− θi)−1 is independent of s, and

Ks =

∑5
i=1 ‖wi,s‖∞
θ
√

1− θ2
=

∑5
i=1(i+ c− %)−2s

θ
√

1− θ2
.

It is readily shown that

sup
s∈U
|Ks| = K1+ε = K11/10 = 7.11229430658606518348 . . . ,

so that

sup
s∈U
|δ9(s)| ≤ K9

11/10E9(θ) = 0.01024367095233740092 . . . ,

sup
s∈U
|δ10(s)| ≤ K10

11/10E10(θ) = 0.00034957413642133622 . . . ,

sup
s∈U
|δ11(s)| ≤ K11

11/10E11(θ) = 0.00000697687020201114 . . . ,

sup
s∈U
|δ12(s)| ≤ K12

11/10E12(θ) = 0.00000008150368808892 . . . ,

and we can therefore bound

sup
s∈U
|R8(s)| ≤

∞∑
n=9

sup
s∈U
|δn(s)| < 11

1000
. (27)

If Cs denotes the positively oriented circular contour of radius ε = 1/10, centred at s, then

Cauchy’s integral formula gives the derivative formula R′8(s) = 1
2πi

∮
Cs

R8(t)
(t−s)2dt, and U is the

union over s ∈ (s+, 1) of the open discs bounded by the Cs, so (27) yields

|R′8(s)| ≤
1

ε2
sup
t∈Cs

|R8(t)| ≤ 100 sup
t∈U
|R8(t)| <

11

10
for all s ∈ (s+, 1) .

In particular,

R′8(s) > −
11

10
for all s ∈ (s+, 1) , (28)

so combining (26) and (28) gives

D′(s) = D′8(s) + R′8(s) > 0 for all s ∈ (s+, 1) ,

so indeed D is strictly increasing on (s+, 1), as required. �

Remark 3. The analysis of Bourgain-Kontorovich and Huang also applies to more general
finite subsets A ⊂ N, see [18]. More precisely, if dim(EA) > 5

6 then the corresponding subset
QA ⊂ N has density one. Therefore, it is natural to consider other non-sequential finite
subsets A for which we can rigorously show dim(EA) > 5

6 .
Using the same method as that used in this section, one can show rigorously that the di-

mensions of the sets EA associated to the choices A = {1, 2, 3, 5, 6, 8} or A = {1, 2, 3, 4, 6, 18},
for example, are greater than 5

6 .
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n sn
1 0.742538972647559226233764770933
2 0.878373312250454078800953132613
3 0.867983314494266000322362181011
4 0.867614537223019698282665367406
5 0.867619151810964612388367917252
6 0.867619173277394444047871397558
7 0.867619173240135215103752503105
8 0.867619173240110928010919906321

Table 3. Approximations sn to dim(E{1,2,3,4,5,6})

6. The Hausdorff dimension of E{1,2,3,4,5,6}

Here we consider the set E{1,2,3,4,5,6}, corresponding to the choice A = {1, 2, 3, 4, 5, 6}. The
approximation sN to dim(E{1,2,3,4,5,6}), based on periodic points of period up to N , is the zero
(in the interval (0, 1)) of the function DN defined by (4); these approximations are tabulated
in Table 3 for 1 ≤ n ≤ 8. We note that the 7th and 8th approximations to dim(E{1,2,3,4,5,6})
share the first 13 decimal digits 0.8676191732401.

It turns out that we can rigorously justify 7 of these decimal digits. Define

s− = 0.8676191

and

s+ = 0.8676192 = s− + 10−7 .

We then claim:

Theorem 9. The Hausdorff dimension dim(E{1,2,3,4,5,6}) lies in the interval (s−, s+).

Proof. The strategy of proof is similar to that used for Theorem 8, firstly showing that
D(s−) < 0 < D(s+) so that D has a zero in (s−, s+), and secondly arguing that this is the
largest zero of D, hence must be dim(EA).

Let D ⊂ C be the open disc centred at c, of radius %, where this time

c ≈ 0.888786621704996501948480357049568065602437524401186717911139539201

is chosen as the largest real root of the polynomial

384c7 + 5376c6 + 25872c5 + 42560c4 − 16660c3 − 67228c2 + 26803c− 2744 ,

and

% = −5

2
+

1

2

√
4c2 + 28c+ 45− 14/c ≈ 1.284639341742533191143484074021163452454469 .

It follows that

%′ = T1(c−%)−c = c−T6(c+%) ≈ 0.76643890552427727077005511585427320750401107808160 ,

and therefore

θ =
%′

%
≈ 0.596617961648792936828996037574102515963872474543358842308573 .
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The points of period up to P = 8 determine the functions s 7→ δn(s) for 1 ≤ n ≤ 8, which
when evaluated at s = s− and s = s+ give

D8(s
−) = 1 +

8∑
n=1

δn(s−) = (−1.498373759369204270864 . . .)× 10−7 < −10−7 < 0 , (29)

D8(s
+) = 1 +

8∑
n=1

δn(s+) = (5.474638165609240513579 . . .)× 10−8 > 5× 10−8 > 0 . (30)

We now claim that D8 is close enough to D for the inequalities (29) and (30) to imply
that D(s−) < 0 < D(s+), and will establish this by bounding δn(s), for n ≥ 9 = P + 1.
As previously, for n ≥ 13 the Euler bound on δn(s) turns out to be sufficient, while for

9 ≤ n ≤ 12 =: Q we use upper computed Taylor bounds βM,+
n,N,+(s), where once again we set

M := 150, N := 200. To introduce some variety in the part of the proof presented in full,
and in recognition of the fact that in the present case D8(s

+) is closer to zero than D8(s
−)

is, we here consider the case s = s+.
The norms ‖LA,s(mk)‖ are computed via numerical integration, and then used to form the

terms αn,200,+(s), which are then used to form the upper computed Taylor bounds which for
9 ≤ n ≤ 12 take the values

βM,+
9,N,+(s) = (1.2621946246695406685698419986501410410894484475601 . . .)× 10−8

βM,+
10,N,+(s) = (8.314966430413518627081622024687687663503710477628 . . .)× 10−11

βM,+
11,N,+(s) = (3.176610018228192242136810148998407171840692198466 . . .)× 10−13

βM,+
12,N,+(s) = (7.061524069747938884792482724386219757269895805839 . . .)× 10−16 ,

from which
12∑
n=9

|δn(s)| ≤
12∑
n=9

βM,+
n,N,+(s) < 1.3× 10−8. (31)

To compute the Euler bounds on δn(s) for n ≥ 13 we note, as previously, that ‖wi,s‖∞ =
1/(i+ c−%)2s, whence ‖w1,s‖∞ = 2.39 . . ., ‖w2,s‖∞ = 0.44 . . ., ‖w3,s‖∞ = 0.18 . . ., ‖w4,s‖∞ =
0.10 . . ., ‖w5,s‖∞ = 0.07 . . ., ‖w6,s‖∞ = 0.05 . . ., and

6∑
i=1

‖wi,s‖∞ ≤ 3.25697706521837422093384125065777 ,

therefore

Ks =

∑6
i=1 ‖wi,s‖∞
θ
√

1− θ2
≤ 6.802359696999181386288200501725510191455 .

It follows that5

K13
s E13(θ) < (1.751608670306048305544710571625984526147775 . . .)× 10−9 ,

K14
s E14(θ) < (8.632960731433444691012413481027827464799512 . . .)× 10−12 ,

5Note that K12
s E12(θ) = (2.119 . . .) × 10−7, which is slightly too large for our purposes, thus justifying the

choice of Q = 12 as the largest index for which the computed Taylor bound, rather than the Euler bound, is
used.
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and ∣∣∣∣∣
∞∑

n=13

δn(s)

∣∣∣∣∣ ≤
∞∑

n=13

Kn
s En(θ) < 2× 10−9 , (32)

so (31), (32) together give, for s = s+,∣∣∣∣∣
∞∑
n=9

δn(s)

∣∣∣∣∣ < 1.5× 10−8 , (33)

and combining (33) with (30) gives

D(s+) = 1 +

∞∑
n=1

δn(s+) > 3.5× 10−8 > 0 . (34)

It remains to show that D(s−) is negative. In view of (29), for this it is sufficient to show
that |

∑∞
n=9 δn(s)| < 10−7 for s = s−. In fact the stronger inequality (33) (which we have

proved for s = s+) can also be established for s = s−, using the same general method as

for s = s+, since the intermediate computed values for ‖LA,s(mk)‖, αn,N,+(s), βM,+
n,N,+(s),

and Kn
s En(θ), are sufficiently close to those for s = s+ = s− + 10−8. Combining (29) with

inequality (33) for s = s− gives the required negativity

D(s−) = 1 +
∞∑
n=1

δn(s−) < 0 . (35)

Since D is continuous, (34) and (35) imply that it has a zero in (s−, s+), and in particular
that dim(EA), as the largest zero of D (by Proposition 1), is larger than s−.

To prove that dim(EA) < s+ it now suffices to show that D has no zeros in (s+, 1). For
this, it is technically convenient to deviate slightly from the approach used in the proof of
Theorem 8, by firstly establishing that D is strictly increasing on (s+, 9/10) (hence has no
zeros in this interval, since D(s+) > 0), and then showing directly that D is strictly positive
on [9/10, 1].

The function D8 can be shown to be both strictly increasing and strictly concave on the
interval (s+, 9/10), with

D′8(s) > D′8(9/10) = 1.8898838248 . . . >
3

2
for all s ∈ (s+, 9/10) . (36)

Define R8(s) := D(s)−D8(s) =
∑∞

n=9 δn(s), and let U denote the ε-neighbourhood in C of
the interval (s+, 9/10), where ε = 1/5. Now |δn(s)| ≤ Kn

s En(θ) (by Theorem 6), where

Ks =

∑6
i=1 ‖wi,s‖∞
θ
√

1− θ2
=

∑6
i=1(i+ c− %)−2s

θ
√

1− θ2
,

and it is readily shown that

sup
s∈U
|Ks| = K9/10+ε = K11/10 = 7.56580745219371800335 . . . ,

so that

sup
s∈U
|δ9(s)| ≤ K9

11/10E9(θ) = 0.04376686701280541755 . . . ,
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sup
s∈U
|δ10(s)| ≤ K10

11/10E10(θ) = 0.00190306136091161412 . . . ,

sup
s∈U
|δ11(s)| ≤ K11

11/10E11(θ) = 0.00004925505297772416 . . . ,

sup
s∈U
|δ12(s)| ≤ K12

11/10E12(θ) = 0.00000075953226513723 . . . ,

and we can therefore bound

sup
s∈U
|R8(s)| ≤

∞∑
n=9

sup
s∈U
|δn(s)| < 1

20
. (37)

If Cs denotes the positively oriented circular contour of radius ε = 1/5, centred at s, then
Cauchy’s integral formula together with (37) yields

|R′8(s)| ≤
1

ε2
sup
t∈Cs

|R8(t)| ≤ 25 sup
t∈U
|R8(t)| <

5

4
for all s ∈ (s+, 9/10) ,

and in particular,

R′8(s) > −
5

4
for all s ∈ (s+, 9/10) , (38)

so combining (36) and (38) gives

D′(s) = D′8(s) + R′8(s) > 0 for all s ∈ (s+, 9/10) ,

so indeed D is strictly increasing on (s+, 9/10), as claimed.
It remains to show that D has no zeros in the interval [9/10, 1]. Since D8 is increasing on

this interval,

D8(s) ≥ D8(9/10) = 0.06368315529812853238 . . . >
1

20
for all s ∈ [9/10, 1] . (39)

Now s 7→ Kn
s is increasing on [9/10, 1], so if s ∈ [9/10, 1] then

|δn(s)| ≤ Kn
s En(θ) ≤ Kn

1En(θ) =
Kn

1 θ
n(n+1)/2∏n

i=1(1− θi)
< AKn

1 θ
n(n+1)/2

where A :=
∏n
i=1(1− θi)−1 = 6.780731869 . . ., therefore

∞∑
n=9

|δn(s)| < A
∞∑
n=9

Kn
1 θ

n(n+1)/2 < AK9
1θ

45
∞∑
i=0

(K1θ
10)i =

AK9
1θ

45

1−K1θ10
= 0.02845 . . . <

3

100
,

and hence

sup
s∈[9/10,1]

|R8(s)| ≤ sup
s∈[9/10,1]

∞∑
n=9

|δn(s)| < 3

100
. (40)

From (39) and (40) it follows that

D(s) = D8(s) + R8(s) >
1

20
− 3

100
> 0 for all s ∈ [9/10, 1] ,

so indeed D has no zeros in the interval [9/10, 1], and the proof is complete. �
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