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A B S T R A C T

We introduce a special issue that aims to simultaneously motivate interest in uncertainty assessment (UA) and
reduce the barriers practitioners face in conducting it. The issue, “Demonstrating transparent, feasible, and
useful uncertainty assessment in ecosystem services modeling,” responds to findings from a 2016 workshop of
academics and practitioners that identified challenges and potential solutions to enhance the practice of un-
certainty assessment in the ES community. Participants identified that one important gap was the lack of a
compelling set of cases showing that UA can be feasibly conducted at varying levels of sophistication, and that
such assessment can usefully inform decision-relevant modeling conclusions. This article orients the reader to
the 11 other articles that comprise the special issue, and which span multiple methods and application domains,
all with an explicit consideration of uncertainty. We highlight the value of UA demonstrated in the articles,
including changing decisions, facilitating transparency, and clarifying the nature of evidence. We conclude by
suggesting ways to promote further adoption of uncertainty analysis in ecosystem service assessments. These
include: Easing the analytic workflows involved in UA while guarding against rote analyses, applying multiple
models to the same problem, and learning about the conduct and value of UA from other disciplines.

1. Introduction: Why promote “transparent, feasible, and useful”
uncertainty assessment?

1.1. Background and motivation

Over the last decade, as the ecosystem services (ES) framework has
proliferated, multiple researchers have expressed the need for ES ana-
lysts to improve consideration of the uncertainties that are embedded in
applied modeling efforts (Seppelt et al., 2011; Hou et al., 2013; Hamel
and Bryant, 2017). There are signs trends may be moving in the right
direction, reflected by recent articles giving significant attention to
major uncertainty, sensitivity, and validation issues in the ES realm
(e.g. Santos de Lima et al., 2017; Bagstad et al., 2018; Ochoa and
Urbina-Cardona, 2017). However, we do not yet have evidence that

context-appropriate uncertainty assessment1 is becoming a routine part
of ES modeling practice.

Hamel and Bryant (2017) argue that, while there are a few legit-
imate challenges specific to conducting uncertainty assessment (UA) in
the ES realm,2 for the most part relevant methods exist and are more
commonly applied within other disciplines (e.g., hydrology and policy
analysis, and the broader realm of integrated environmental modeling,
cf Refsgaard et al., 2007; Bennett et al., 2013; Uusitalo et al., 2015).
Though the use of comprehensive and consciously-framed UA may not
be routine in these other disciplines (see, e.g., Guillaume et al., 2017 in
the water resources realm), it does feature more prominently, and
modelers are able to draw on at least some default UA techniques
within their respective discipline. This raises two questions: Why are
these methods not more widely adopted within the ES realm, and what
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can be done to promote adoption of context-appropriate uncertainty
assessment?

These questions were explored as part of a three-day workshop held
in November 2016 at the National Center for Socio-Environmental
Synthesis (SESYNC), in the United States. Bringing together 18 aca-
demics and practitioners (including most authors of this article), this
three-day workshop systematically identified many challenges limiting
widespread adoption of UA by ES practitioners, as well as ways in which
those challenges could be addressed (Bryant and Hamel, 2017). While
the group determined a host of interacting causes and potential solutions,
most causes could be categorized under two broad justifications: that UA
was perceived as “too hard” to conduct (i.e., too time consuming relative
to available resources, or requiring sophisticated methodological skills),
or relatedly, not worth doing (i.e., even when done, UA is not likely to
change conclusions or affect decisions). Among other recommended so-
lutions, participants determined that a set of clear and compelling case
studies showing the feasibility and value of UA could help address this
problem. To do so, such a set would include cases demonstrating that UA
can be feasibly conducted at varying levels of sophistication, and that
such assessment can usefully inform decisions or research conclusions,
rather than just put ranges on the predicted outcomes or valuations – in
other words, that UA can provide useful information and build con-
fidence, rather than just complicate or obfuscate. As indicated by its
straightforward name “Demonstrating transparent, feasible, and useful un-
certainty assessment in ecosystem services modeling,” this special issue aims
to serve as such a collection.

We recognize that the issue of promoting uncertainty assessment is a
many-faceted one – in terms of what success looks like, and in the
pressures, incentives and constraints facing analysts and the stake-
holders with whom they interact and communicate (see Merritt et al.,
2017 for a useful collection of examples). Many of these complications
are illustrated by articles in this special issue and also detailed in Sec-
tion 2.5 of the workshop report (Bryant and Hamel, 2017). What is
appropriate is also context- and resource dependent, with different
techniques and levels of effort appropriate at different times for dif-
ferent decisions. But overall, some assessment of model adequacy for
the purposes to which the model may be put is critical – not just for the
quality of scientific findings, but also for communication and legitimacy
in the eyes of stakeholders (Willcock et al., 2016). Formal or not, so-
phisticated or not, consideration of uncertainty plays an important role
in such assessment.

1.2. Purposes of this article and special issue

Given the above, we created this special issue under an open call, to
serve as a resource with two related but distinct purposes:

• Provide exemplar cases of the many ways that uncertainty analysis
can be conducted (“transparent and feasible”).

• Provide a succinct body of articles that demonstrate why it is useful
to conduct uncertainty analysis in the ES realm (“useful”).

The contributions of some articles lean more heavily to the first
bullet and some more to the second. Different readers will find different
value in the assembled articles, depending on their background and the
way in which they interact with the modeling process (e.g., as analyst,
project manager, scientist, stakeholder, or decision-maker). Some may
be exposed to new methods, and some will be inspired to try methods
with which they only had loose familiarity, but which they had not
considered worth understanding deeply enough to implement. Above
all, we hope that many readers will find convincing demonstration of
the value that uncertainty assessment can bring to a modeling effort.
For those already convinced, we hope they will find helpful material
with which to engage others on this topic.

This article itself aims to (1) orient the reader to the content of the
special issue while drawing out key messages on the practice and utility

of uncertainty assessment, and (2) provide critical reflections in the
form of lessons and recommendations on remaining challenges and how
to overcome them. These are based on the included articles as well as
our own experiences as applied ES modelers and participants in the
SESYNC workshop noted above.

2. Overview: Diverse applications, modeling methods, and
approaches to uncertainty assessment

2.1. Orientation to articles

This special issue presents papers spanning a broad array of methods
and application areas, with domains including forests, fisheries, cultural
landscapes, urban green infrastructure, and others. On the methods front,
it includes examples ranging from simple variation of input data, to
Monte Carlo methods combined with stochastic dominance tests, to
scenario considerations treated probabilistically, to those treated with
participatory assessment. The work described includes ES modeling ap-
proaches that encompass process-based, proxy-based,3 and qualitative
considerations, and covers applications on four continents. Table 1 pro-
vides an overview of the key dimensions of each article, and in the text
below we draw out key lessons for the ES community, focusing in par-
ticular on the “useful” aspect of the uncertainty analysis.

The issue begins with a review article (Baustert et al., 2018, this
issue) that many readers unfamiliar with formal conceptions of un-
certainty may find useful for assessing the special issue papers and
considering uncertainty in their own work. Baustert et al. describe and
cross-walk the steps, frameworks and elements of uncertainty assess-
ment that have already been brought forth in the literature, orienting
the reader to common concepts and terminology and where they differ
(e.g., those of Walker et al., 2003; Refsgaard et al., 2007; Warmink
et al., 2010). They review sources of uncertainty, help interpret the
underlying frameworks, and their overview can assist an analyst in
judging whether the nuances of the different frameworks are important
for their work. Their paper will also help readers of other articles in this
special issue consider uncertainty more systematically.

The remainder of the papers all demonstrate a complete or partial
ecosystem services assessment that includes an examination of one or
more key uncertainties, and how those uncertainties can be treated
using available methods. As Table 1 provides a concise overview of
topics and methods, we do not explicate these further, but instead use
the rest of this section to highlight how the articles demonstrate the
value of uncertainty assessment.

2.2. Demonstrating how uncertainty assessment can matter

To realize the goals of the special issue, this section highlights the
ways in which the uncertainty-oriented analysis in the papers provides
benefits to modelers and potential stakeholders. Note that these are not
necessarily the primary contributions of the papers mentioned, but
rather, our view of key points related to UA. We of course encourage
readers to review Table 1 and examine abstracts of the relevant papers
to read them for their own substantive contributions as well.

2.2.1. More complete uncertainty assessment can change the recommended
course of action

Changing the recommended decision is perhaps the most obvious
and compelling way that UA could make a difference in a modeling

3 Adopting the language of Lavorel et al. (2017, p. 243) we “define proxy
models as models that relate ES indicators to land or marine cover, abiotic and
possibly biotic variables by way of calibrated empirical relationships or expert
knowledge.” A classic example would be assuming particular levels of provi-
sioning or carbon sequestration are associated with each category in a land-use/
land-cover map.
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effort – and while it does not always happen, there are cases where
combinations of better data and assessment processes led to alternate
recommendations. Using European Union climate policy around forest
carbon sequestration as a case study, Vauhkonen and Packalen (2018,
this issue) demonstrate how common default assumptions regarding
forest management can lead to inefficient outcomes compared to ap-
proaches that consider the ways in which future trends on climate in-
teract with forest management. By highlighting the dependence on
management with a dynamic model, they show how better considera-
tion of interacting management actions and external forcings can have
significant benefits for policy implementation (sequestering up to one
third more carbon), and thereby contribute to more effective climate
mitigation efforts.

Morzaria-Luna et al. (2018, this issue) use Monte Carlo simulations
and a statistically-derived emulator to better consider uncertainties in a
large dynamic aquatic ecosystem model (Atlantis), with a focus on the
response to an oil spill. The analyzed model is used, among other
purposes, to make damage assessments in lawsuits, so the outputs can
have considerable policy impact. Their thorough analysis of the impact
of uncertainties reveals plausible conditions under which the impact
following an oil spill could actually be positive for some fisheries,
contrary to intuition. In this case, their final analysis did not “flip the
sign” of the expected impact from net damages to net benefits, although
UA may do so under other conditions. It also revealed complex dy-
namics and high sensitivities to uncertain input data that can guide
future efforts to estimate key policy-relevant outcomes, such as damage
assessments.

Monge et al. (2018, this issue) provide an example that illustrates
the role of probabilistic risk characterization in determining the ap-
propriate course of action. They combine deterministic exploration of
discount rates with probabilistic (Monte Carlo) modeling to map out
how stakeholders with given discounting and risk aversion profiles
should prefer each of three erosion and carbon-oriented reforestation
strategies in coastal New Zealand. Using a variety of what are called
“stochastic dominance tests” (a tool for comparing options under risk),
they map these profiles to public and private entities, and show how
their discount rates affect the preferred option. They also show that
climatic uncertainty changes the level of return required for programs
to be cost-effective. These results provide a compelling case of how
complex numerical modeling can still be distilled to simple decision-
relevant lessons.

2.2.2. Promoting transparency via uncertainty assessment allows decision-
maker assessment of appropriate confidence levels

A slightly more subtle – but still highly valuable – benefit of un-
certainty assessment is that it can make it easier for stakeholders to
comprehend the implication of model results within the broader con-
text that they are navigating. That is, by more diligently exposing and
exploring a model, as is required for uncertainty assessment, modelers
can improve transparency of the model and also illuminate how specific
conclusions are dependent on assumptions of varying credibility. Even
when these implications may not be “formally” assessed, they can still
have value to stakeholders – and to modelers, who may improve models
or collect additional data as a result.

In this vein, Harmáčková and Vačkář (2018, this issue) show that
diversity in narrative scenarios does not necessarily translate into di-
versity in quantified scenarios. Using the example of a UNESCO bio-
sphere reserve located in the Czech Republic, they show how, during
the process of capturing and then quantifying participatory scenarios of
landscape futures, the diversity of outcomes is narrowed. The im-
plication here is that analysts and decision-makers need to carefully
consider the issue of “false robustness” – i.e., they may think that cer-
tain policies work well in a variety of plausible futures (as captured by
narrative scenarios), when in fact the futures they have explored do not
vary as significantly when actually considering the numbers. In their
case, the convergence occurs due to a combination of assumptions inTa
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how qualitative scenarios of future development paths are translated
into land use scenarios, and in the mechanics of how land use scenarios
propagate through ecosystem service models.

Somewhat conversely, Huber et al. (2018, this issue) show how
seemingly disparate final metrics of interest may not be significantly
different from each other. They conduct a meta-analysis of valuation
studies to identify the economic value of hunting opportunities for
different animals in different regions of the United States. They apply a
meta-regression approach and show that the application of confidence
intervals from the meta-regression reveals that in many cases non-tri-
vial differences in valuation estimates are actually contained within
wide uncertainty ranges – ranges that would be difficult to identify
without the meta-regression framework. Therefore, what may seem like
differences that would guide prioritization of one action over another
may not be grounds for doing so, meaning that ancillary considerations
could justifiably hold more sway over a decision process.

Ashley et al. (2018, this issue) inventory and quantify uncertainties
in an ecosystem service valuation tool for blue and green stormwater
infrastructure (B£ST4), and explore how these uncertainties influence
outcomes directly within the tool. The analytic techniques included vary
in their level of sophistication, from straightforward sensitivity analysis
using default scalars on benefits, to proxy indicators for flexibility of the
system, to allowing for stakeholder-based or analyst-based scenario and
robustness assessment. By making uncertainty considerations a prominent
part of the tool interface, the approach helps the analyst keep uncertainty
at the forefront of the process and provides important contextual in-
formation for decision-makers. In their case study, applied to a blue and
green infrastructure proposal in Leeds in the United Kingdom, they show
that accounting for estimates of how transferable database benefit values
are to the design context dramatically scaled down the benefit estimates,
though the blue and green infrastructure option still outperforms piped
drainage systems. They also use an index-based approach to show that
adaptability of the green infrastructure design to future conditions ranks
more highly than piped drainage, but not drastically so – suggesting that
decision-makers will need to be proactive to ensure that performance will
be maintained depending on the future that emerges.

In the context of multi-criteria decision support, Martin and
Mazzotta (2018b, this issue) show how outranking methods can facil-
itate more transparent comparison of options under consideration. In
their case, they are helping decision-makers prioritize among a small
set of wetland restoration projects to undertake, where each site is
ranked on 22 benefit indicators in five categories, which are not ob-
viously directly comparable (e.g., flood water regulation and bird
watching opportunities). Outranking methods are a class of multi-cri-
teria decision aid that allows for fuzziness and varying strength of
evidence in stakeholder preferences themselves. It facilitates greater
transparency in part by eliciting values in the process of directly com-
paring outcomes associated with specific options, rather than assuming
pre-existing preference structures can be captured with precision (e.g.,
economic utility functions, or trade-off weights).

Martin and Mazzotta also clearly identify the ways in which dif-
ferent choices should be contingent on particular preference combina-
tions that were mapped by stakeholders to anticipated funding sce-
narios. Highlighting such dependencies helps stakeholders better think
through their problem. Their related work outside of this special issue
(Martin and Mazzotta, 2018a) also touches on the issue of false ro-
bustness mentioned earlier: They show that even within a common
conceptual framework of scoring and aggregating multiple ES out-
comes, plausible and similar-seeming alternatives for aggregation result
in the recommendation of different management alternatives – a fact
that would not be illuminated without the comparison across ag-
gregation methods, which could be considered a form of sensitivity
analysis for a multi-criteria decision aid.

More broadly, by characterizing uncertainty transparently, UA al-
lows decision-makers to set their own thresholds of what level of un-
certainty is acceptable for their decision context. They are then able to
use their own judgement for potentially contentious decisions, where
uncertainty is higher and may involve a mix of uncertain values and
outcomes. For example, in the context of prioritizing land for its ability
to provision biodiversity and ecosystem services, Willcock et al. (2018,
this issue) suggest that while it is relatively obvious that highly certain,
high value ES sites should be appropriately managed, it is unclear
which sites should be the next highest management priority. They ask
whether a medium-ES value site with high certainty or a potentially
high-value site with medium or low certainty should be the next
priority, which is essentially a question of values and risk tolerance,
which cannot be posed in the absence of UA on the ES provisioning
levels. Willcock et al. highlight how machine-learning techniques and
Bayesian networks can be used to perform UA to distill the choices
facing decision-makers.

Other papers demonstrate what may be considered more “classical”
uncertainty assessment in the form of exploring whether key input
variables to the modeling process can have significant impacts on
model results, while showing how sensitivity can be highly dependent
on the metric used. Morzaria-Luna et al. (above) provide a complex
example, while van Soesbergen and Mulligan (2018, this issue) de-
monstrate that the uncertainty methods do not need to be complex to be
useful. They explore how six different spatial precipitation datasets
affect the predicted runoff in a region of Madagascar, under baseline
conditions and under a common deforestation scenario (though runoff
is not an ecosystem service, it will heavily drive multiple other eco-
system services). In addition, they consider the potential impact that
population datasets may have on estimation of the number of bene-
ficiaries of hydrologic ES (and by extension, the magnitude of total
benefits). By simply running a full interaction of the precipitation and
population datasets they show that the population predicted to ex-
perience various levels of runoff varies tremendously in magnitude and
even sign (see Fig. 7 of their paper). This analysis provides an important
cautionary note while demonstrating that significant insights can be
gained from relatively straightforward UA workflows (even if they re-
quire some effort to acquire inputs). We suggest it makes a good case for
going beyond individual parameter exploration to engage in routine
consideration of multiple spatial input layers in ES modeling studies.

2.2.3. Processes and methods that facilitate uncertainty assessment help
build understanding in other ways

Importantly, the modeling frameworks and workflows set up to
enable UA often provide other insights in the process. In the analysis of
Huber et al. above, the meta-regression structure not only helps provide
uncertainty ranges for benefits transfer estimates, but also identifies
important contextual information for interpreting evidence. In their
case, they show how an interesting outlier result related to Alaskan
game values is also associated with studies sharing one particular
methodological feature: To put them into a comparable unit of analysis
for the meta-regression (value per day), they required converting from
the “natural” units (i.e., the units each study was originally conducted
in) to the per-day values, a step where conceptual error or invalid ad-
justment may be introduced. Decision-makers can bring this contextual
information into other unmodeled contexts to inform their decisions,
and researchers can use it to identify where additional study would
have highest value.

Along the same theme, in their extensive numerical sensitivity
analysis mentioned above, Morzaria-Luna et al. not only identify sig-
nificant ranges on potential fish provisioning levels, but they also de-
termine sensitivities, as well as conditions under which performance of
the emulator requires greater attention to ensure correct interpretation
in light of model instabilities.

Lastly, Maldonado et al. (2018, this issue) blend participatory
methods that aim to capture cultural concerns as well as more4 https://www.susdrain.org/resources/best.html.
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concretely-defined biophysical services in Andalusia, Spain. In the de-
velopment of the Object-Oriented Bayesian Network (OOBN) describing
the socio-ecological system, they demonstrate the elicitation, aggrega-
tion, and structuring of the complex relationships by which drivers of
landscape condition affect outcomes of interest. This transparency is
valuable in and of itself, with the identification and sharing of model
structure facilitating participation and representation of diverse con-
cerns and actions (Landuyt et al., 2013). This is in addition to the direct
value of the OOBN in helping propagate the impact of scenarios in a
more formal yet feasible manner, one which avoids reliance on data-
intensive process-based modeling and formal valuation frameworks, yet
is also able to incorporate information from those more traditional
frameworks when available.

3. Discussion: considering the special issue in the broader context
of promoting uncertainty assessment

Overall, we were pleased by the range of methods and utility of UA
demonstrated in the articles within this issue. At the same time, it is
important to critically reflect on the extent to which such a collection
can help address the overall problem of inadequate attention to un-
certainty, and also consider additional issues raised by the papers
themselves. We begin with the latter, and then zoom out to consider the
bigger picture challenges of promoting context-appropriate uncertainty
assessment.

3.1. “Transparent and feasible” does not imply “low-capacity” or “low-
effort”

While showing that uncertainty assessment can usefully be con-
ducted in a variety of contexts, the articles in this special issue raise a
number of challenges that might face an ES practitioner attempting to
implement good UA practice. In some cases, these are tied specifically
to the uncertainty assessment approach used, but some stem from the
use of modeling approaches that facilitate consideration of ES.

Many of these are simply related to effort: For example, the out-
ranking approach demonstrated by Martin and Mazzotta (2018b) helps
directly consider strengths of evidence in decision-maker beliefs, but
ultimately still relies on transforming beliefs into quantitative func-
tional forms and parameters. The elicitation requires non-trivial en-
gagement efforts, and structural and parametric uncertainty present in
the value structures may require yet more sensitivity analysis to be
included within the workflow. Similarly, by identifying that the rules
for translating narrative scenarios to land cover are a primary driver of
scenario ES outcomes, Harmackova and Vackar highlight that stake-
holder engagement, vetting, and uncertainty communication may need
to focus on key intermediate steps, potentially adding effort to the
engagement process.

Second, the quantitative methods utilized by a majority of the pa-
pers – from Bayesian analyses (Maldonado et al., Willcock et al.) to
numerical uncertainty propagation (Vauhkonen and Packalen, Ashley
et al., Morzaria Luna et al.), to Monte Carlo assessment to sensitivity
analyses (Monge et al., van Soesbergen and Mulligan) – are recognized
within their subfields as requiring special knowledge and detailed at-
tention. For example, Bayesian networks require expert judgment or
additional testing to determine appropriate discretizations of con-
tinuous variables, while complex uncertainty propagation in integrated
models may require time and computing skills beyond the toolkit of the
typical ES analyst. This is, of course, not an insurmountable barrier, but
one that does require appropriate resources.

Third, while ES modeling tools that include “built-in” uncertainty
assessment (such as those described in Ashley et al., Huber et al.,
Willcock et al.) facilitate uptake, without careful interface design they
may allow an analyst to think they have treated uncertainty without
necessarily having carefully engaged with it and its implications. In
particular, built-in uncertainty assessments tend to focus on parameter

uncertainty and in so doing they may reduce the likelihood users con-
sider structural and contextual uncertainty factors, as these are harder
to include in an interface. Interfaces (such as B£ST) that guide a user to
consider sources of uncertainty by requiring some active user input may
go some way to mitigating this problem. However, the challenges are
particularly acute in the realm of integrated models, where true insight
comes from considering the dynamics of individual components and
their interaction. In these cases it is difficult to extract that insight by
applying semi-automated approaches that treat the integrated model
simply as a single entity translating inputs to outputs.

3.2. How can the ES community help?

In addition to calling for demonstration of success stories, the
workshop that motivated this special issue identified a broad range of
challenges to promoting wider adoption of UA, with implications for
how various actors in the ES realm can work to address them. Below we
present a combination of recommendations for the ES community that
emerged from the workshop, and from reflections on our diverse ex-
perience with ES and with the special issue process itself.

3.2.1. Continue lowering the burden of uncertainty assessment
Programming skill does not go hand in hand with an interest in

uncertainty assessment. In our own work we have heard from model
users that user interfaces that help easily explore scenarios and para-
metric uncertainty would be highly valuable. These users see the value
of uncertainty assessment, but for some of them it really is “too hard” to
conduct it (Bryant and Hamel, 2017). Good progress is being made on
this front by developers of ES software, with Huber et al. and Ashley
et al. providing custom tools with built-in uncertainty considerations.
Willcock et al. (2018, this issue) demonstrate how the broader ARIES
modeling architecture5 allows ES assessment within a Bayesian fra-
mework and therefore provides uncertainty assessments with no addi-
tional effort beyond that required for the modeling itself. WaterWorld,6

used in van Soesbergen and Mulligan (2018, this issue), contains a
built-in scenario tool (Mulligan et al., 2015). New products from the
Natural Capital Project complement InVEST on this front as well:
MESH7 eases the task of multi-scenario, multi-service assessment by
providing an integrated interface in which to conduct them, while the
multi-objective spatial prioritization tool ROOT8 automatically pro-
vides a visual assessment of how robust results are to uncertainty in
weights on different ecosystem service objectives.

Providing guidance on the treatment of specific sources of un-
certainty can also help. For example, Mandle et al. (2016) assembled
guidance on how climate change considerations enter into InVEST
model inputs and where modelers can find key inputs, reducing the
effort for a user who wants to consider climate change uncertainty but
does not have a good grounding with which to begin the process. Si-
milar efforts could be made for drivers like population and land use
change.

3.2.2. Embrace the use of multiple models even for single ecosystem services
The above enhancements are certainly welcome and we hope will

usefully advance UA in the ES realm. However, by default they mainly
facilitate parametric and scenario uncertainty, leaving structural un-
certainty untouched in the absence of conscious effort by savvy users.
This is not the norm in other disciplines. For example, climate modeling
has utilized multiple models (sometimes known as ensemble modeling)
for quite some time (e.g., Murphy et al., 2004). Schulp et al. (2014)
conducted a comparison of ecosystem service mapping approaches, but

5 http://aries.integratedmodelling.org/.
6 http://www.policysupport.org/waterworld.
7 https://www.naturalcapitalproject.org/mesh/.
8 https://www.naturalcapitalproject.org/root/.
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this was for scholastic purposes, and the approach has not diffused into
common ES practice. Therefore, modelers and those demanding ES
results can advocate for the consideration of multiple models to address
the same service or overlapping services. While platforms to facilitate
ensemble modeling can help immensely in realizing this goal, they are
not critical: Even in the absence of an integrated platform, some models
are low effort to run because they come with pre-populated data (e.g.,
WaterWorld), while other models share many inputs across each other,
in effect requiring diminishing levels of effort to run additional models
beyond the first.

3.3.3. Where using multiple models is not feasible, avoid relying on a default
model

Building expertise on a particular model is an investment, and it is
understandable that analysts would wish to capitalize on that invest-
ment by applying models that are familiar to them. Nevertheless ES
analysts must strive to avoid treating every ecosystem services question
as a nail suitable for their hammer. For consulting firms and NGOs this
may mean keeping diverse skill sets on staff or on retainer; for academic
collaborations it might mean budgeting changes and openness to
bringing in outside expertise from different “camps” – whether on
contract or via informal collaboration. Regardless of the ultimate
models chosen for a particular effort, the act of deliberating on model
selection benefits uncertainty assessment by creating awareness of
model features that require attention (e.g., resolution in time versus
space).

3.3.4. Deliberately assess the value of UA and communicate successes
The SESYNC workshop identified a lack of obvious cases where

uncertainty assessment mattered as one reason for less-than-desirable
uptake of UA. This special issue is a first step in that direction, but
applies a looser criteria for impact than may be compelling to some.
While we focus on how conducting UA provides potential benefits,
whether those benefits are truly capitalized on in decision contexts is
demonstrated by only a few articles in our issue. However, demon-
strating the use of knowledge in decision making is generally a chal-
lenging prospect – indeed, it is difficult enough to show instrumental
use of ecosystem services information in real decision processes
(McKenzie et al., 2014) without the added challenge of demonstrating
how uncertainty framing plays a role. Efforts to assess the impact of
ecosystem services knowledge should continue and give attention to the
role of uncertainty. However, given that showing the impact of pro-
viding quantitative ES information is a precondition for showing that
formal uncertainty assessment matters, and that even this first step
remains a research frontier, ES analysts should be open to pluralistic
forms of evidence on this topic. Evidence of demand for uncertainty
information is certainly helpful in this regard (as provided by Willcock
et al. (2016) and Willcock et al. (2018, this issue)).

3.3.5. Learn lessons from other disciplines – not just techniques
Hamel and Bryant (2017) argued that many challenges to con-

ducting uncertainty assessment were addressed in the practices adopted
by other disciplines, and our comments above on the importance of
multi-model approaches echo that theme. However, the relevance of
other disciplines also applies to “lessons learned” and evidence gener-
ated about the value of uncertainty analysis in affecting decisions.
While our own anecdotal experience suggests that ES practitioners find
ES-specific examples most compelling, an efficient path may lie in
compiling examples of the value of uncertainty assessment across in-
tegrated modeling applications, and carefully packaging those lessons
specifically for ES practitioners. Evidence from other methods-oriented
fields like risk analysis (Morgan and Henrion, 1990), structured deci-
sion making (Gregory et al., 2012), and decision making under deep
uncertainty (Maier et al., 2016) can help as well. None of the papers
included in this special issue, for example, were explicitly focused on
identifying robust policies in the face of uncertainty – efforts to do so

would presumably more frequently lead to cases where consideration of
uncertainty changes decisions.

3.3.6. Use transparency to promote “model thinking” and shared
understanding of the goals of UA

Ultimately, applied ES assessments engage people with very dif-
ferent backgrounds: Stakeholders of course may come with a variety of
perspectives, and even the project team may hold diverse competencies
and interests. These differences mean that the individuals involved may
have very different perceptions of UA. Furthermore, given that ES
modeling efforts are generally embedded in more complex systems
(Clark et al., 2016), no analysis will be able to comprehensively con-
sider all uncertainties. It is therefore important that the project manager
or key analysts work to bridge the gaps in understanding by facilitating
a process for co-determining those uncertainties that are most likely to
matter.

We believe that promoting a goal-oriented approach starting with –
and continually revisiting – why ES analysis is being conducted can
help. In this broad sense, UA then takes the form of examining the re-
lationship between assumptions in the modeling process relative to the
ability to inform the goals of the ES analysis. In a transparent process of
knowledge co-production, decision-makers can be encouraged to poke
holes in analyses that may need to be improved. Conversely, sometimes
this means that formalized uncertainty assessment may not actually be
necessary. For example, Martin and Mazzotta (this issue) note that,
based on their close engagement in a facilitated process of knowledge
co-production, the decision-makers “were comfortable defending” there
preference representations as they stood, so that a sensitivity analysis of
the parameters in the outranking method was not deemed necessary.
We agree that transparency in process and results is key and may often
substitute for quantitative uncertainty assessment. However, some – at
least qualitative – attention to sources of uncertainty and their potential
impact on conclusions is, almost by definition, a necessary element of
transparency.

4. Conclusion

Challenges remain in determining the most appropriate ways to
conduct uncertainty assessment in applied ES modeling efforts, and in
promoting the adoption of those methods. To address some of these
challenges, this special issue provides a consolidated set of examples
that ES analysts can follow to understand how to conduct many dif-
ferent forms of uncertainty assessment, and why conducting it adds
value to the modeling process. Importantly, while some uncertainty
assessment does change recommended decisions or policy actions, we
show that uncertainty assessment has benefits even when it does not
cause such changes. Specifically, it can contribute new understanding
of the focal system, contribute new understanding regarding the nature
of available evidence, and allow decision-makers to assess the value of
new information or whether the level of confidence they can place in
the modeling results is adequate with respect to the decision at hand.

Ecosystem services assessment is, and will remain, a fundamentally
multidisciplinary endeavor. Other arguably less integrative disciplines
have been able to converge around commonly accepted standards for
modeling practice, and some have called for such standards in ES (e.g.,
Polasky et al., 2015), noting they have yet to take hold within the ES
realm. We agree that more clear expectations about what successful UA
looks like – or at least guidelines to avoid common pitfalls – can be
helpful. However, the multidisciplinary nature of ES may preclude clear
cut standards that will effectively speak to the diversity of applications
that fall under the ES banner, and the variation in prominence that
different disciplines will have in each application. Therefore, those who
practice in the ES realm need to be aware of appropriate techniques
across multiple disciplines and their relevance to the decision-making
contexts in which they work. The articles in this issue demonstrate that,
notwithstanding the challenges, a combination of awareness, time, and
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attention can go a long way towards producing decision-relevant in-
sights through transparent and feasible uncertainty assessment.
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