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1. Introduction 1 

The growth of computational science has been observed as a multidisciplinary trend in the late 2 

20th century and is one which has been well documented within Geography and GIScience as well as 3 

many other disciplines. Computational movement analysis (the topic of this special issue) reflects 4 

the embeddedness of computational thinking and methods in modern movement data analysis 5 

(Laube, 2014). 6 

Studying how things move is an inter-disciplinary problem (Demšar et al., 2015) and one that 7 

reflects the diversity of domain research interests within GIScience. For example, in this special 8 

issue, applications include both human (including pedestrians, fleet vehicles, cyclists) and animal 9 

movement (terrestrial wildlife, birds, and livestock). One of the key challenges of current movement 10 

analysis research is the breadth of applications and methods being explored to rapidly expanding 11 

and often complex datasets across a range of research areas and spanning various spatial and 12 

temporal scales. 13 

This special issue is a legacy of previous activities (both by the editorial team and many others) 14 

to unify the diverse research encompassed by movement analysis under the banner of GIScience and 15 

consolidate movement-related research literature. Specifically, this special issue was proposed as 16 

part of a pre-conference workshop on movement analysis at the GIScience meeting, Sep. 27-30, 17 

2016 in Montreal, Canada. A number of previous special issues within IJGIS complement the suite of 18 

papers we present here. Specifically, Andrienko et al. (2010) focusses on visualization of spatial-19 

temporal data where movement data is emphasised, Zook et al.  (2015) looks at human mobility and 20 

mobile applications, Dodge et al. (2016) explores the breadth of approaches encountered in the 21 

analysis of movement data, and Shaw et al. (2016) looks at human dynamics in the big-data era. 22 

Here in this issue we focus on the development of computational methods and computational 23 



thinking in movement analysis owing to the rapid growth of movement datasets and new 24 

computational paradigms. 25 

2. Summaries of the articles featured in this special issue 26 

We present 12 original papers in this special issue on computational movement analysis. Given 27 

the rapid change that has occurred in the way we collect movement data (Purves, Laube, Buchin, & 28 

Speckmann, 2014), it is not surprising that many of the papers represent new methodological 29 

contributions. Over half of the papers in this issue employ large datasets comprising of over one 30 

million records, which are also being combined with ancillary data on, for example, urban structure 31 

or other environmental covariates. All papers explore computational problems associated with pre-32 

processing, processing, linking, analysing, visualizing, and synthesising large, diverse, and complex 33 

movement datasets and how they are influenced by underlying geographic context. 34 

Tao et al. (2018) present a new modelling framework for movement defined by flows between 35 

spatially positioned checkpoints. Checkpoints are defined as being either transaction or presence-36 

based checkpoints. The modelling framework is easy to comprehend and makes the contribution of 37 

defining how transaction and presence-based sensors can be combined into a single analysis.  38 

Gao et al. (2018) demonstrate an extension to the popular spatial scan statistic (Kulldorff, 39 

1997) for movement flows between regions. The method is appropriate for both aggregate flows 40 

(e.g., origin-destinations by region, such as state migrations) and for individual spatially-explicit flows 41 

(e.g., taxi origin-destination data). Using the multi-dimensional scan statistic, the authors 42 

demonstrate how spatial hotspots can be identified within large flow datasets.  43 

Guo et al. (2018) present a new visualization method — Spatial Tabu Optimization for 44 

Community Structure (STOCS) — for community detection in origin-destination flows. The broad 45 

applicability of the approach is demonstrated through two examples, one employing wildlife tracking 46 



data and another studying human movement behaviour from call detail records in Shanghai. Their 47 

method can detect spatial regions reflected by the movement patterns in the data. The regions can 48 

then be used, for example, to characterize boundary features associated with movement patterns. 49 

Kempinska et al. (2018) develop a new method for studying interactional regions, as a way to 50 

derive spatial communities from network-based movement data. GPS traces of police patrol vehicles 51 

in London, UK are used to demonstrate how the method can be applied in practice. Interactional 52 

regions are densely connected areas within the network. They represent fine-scale mappings of 53 

movement flows along edges in a spatial network and, in particular, this method is able to detect 54 

longer activity movements, for example between key nodes.  55 

Wang et al. (2018) present a new spatial optimization algorithm to study meet-up locations in 56 

an urban context. Specifically, a network-based algorithm is employed to identify optimal, centrally 57 

located meet-up locations between two or more individuals. The method is demonstrated on 58 

simulated meet-up scenarios on actual road and POI datasets. The approach has significant potential 59 

for adoption in location-based mobile applications. 60 

Hwang et al. (2018) demonstrate a new segmentation method for partitioning movement data 61 

into stops and moves. The focus of this paper is especially important as the method is demonstrated 62 

using high resolution (< 10 seconds interval) GPS tracking data. A fuzzy inference approach is taken, 63 

which allows it to be particularly sensitive with data that contains significant time gaps, a common 64 

problem encountered in GPS tracking studies. 65 

Yang & Gidófalvi (2018) present a data mining approach for visualizing recurrent and 66 

sequential patterns in large tracking datasets. They propose what they call a Bidirectional Pruning 67 

based Closed Contiguous Sequential Pattern Mining (BP-CCSM) algorithm, which draws on frequent-68 

pattern trees to derive movement pattern sequences within the tracking data. Then a visualization 69 



tool called the Spatial Pattern Explorer for Trajectories (SPET) is developed to explore recurrent and 70 

sequential patterns within the larger dataset. 71 

Loglisci (2018) presents a new approach for studying interactive groups, called ‘crews’, in 72 

movement databases. The definition of crews is more relaxed than previous attempts at finding 73 

groups or flocks in large tracking datasets, as crews have relaxed spatial and shape constraints in 74 

comparison with other approaches (Benkert, Gudmundsson, Hubner, & Wolle, 2008). Specifically, 75 

the crews approach considers both the movement patterns of each individual and pairwise 76 

interactions between individuals. An efficient algorithm for processing crews in large datasets is also 77 

proposed.  78 

Skov-Peterson et al. (2018) study navigational preferences by cyclists in the Netherlands using 79 

an edge-based route choice model, which is a local approach to wayfinding (termed locomotion). 80 

They find that there is evidence that such localized models of route choice perform better than 81 

global-path based analysis, and that local, edge-based route-choice models offer new potential for 82 

understanding human navigation and wayfinding. The implications of this research are that cyclists 83 

may be making navigational decisions locally in conjunction with global knowledge when travelling 84 

and future modelling efforts should account for this. 85 

Paul et al. (2018)  explore the question how much GPS tracking data is sufficient for 86 

delineating human activity spaces. A mobile-phone based tracking application is used to study 87 

different cohorts of student participants and to derive spatial measures of activity spaces at 88 

incrementally increasing time periods. They find that an approximately 2-week period was sufficient 89 

for generating spatially stable activity spaces. The implications of this research are clear for the 90 

design of future tracking studies, relating directly to privacy concerns of individual participants. 91 

Downs et al. (2018) study differences in methods for mapping spatial ranges in wildlife 92 

tracking studies. Specifically, the time-geographic density estimator (TGDE) is compared with two 93 



commonly used home range estimators, a classical kernel density estimation and characteristic hull 94 

polygons. A simulation study, using an agent-based model, of Muscovy duck movement is used to 95 

test each method and provide a cross-comparison. In their analysis kernel density estimation 96 

performed worse than both TGDE and characteristic hull polygons and TGDE was found to be 97 

comparable to characteristic hull polygons for estimating home range areas, but more accurate at 98 

estimating core areas.  99 

Liao et al. (2018) present a study of the movement behaviour of free-ranging cattle tracked by 100 

GPS collars in southern Ethiopia. Satellite and environmental data are combined with the high-101 

resolution GPS tracking data along with in-situ videography used to ground truth different 102 

behaviours. From statistical models, they demonstrate that different behaviours are associated with 103 

different movement velocities and environmental covariates. Their findings on how cattle use 104 

foraging resources has important implications for rangeland management in the region.  105 

3. Computational Movement Analysis: A Possible Future 106 

As demonstrated by the rich content of this issue – and comparing with previous special issues 107 

edited by some of us (Purves et al., 2014; Dodge et al., 2016) – computational movement analysis 108 

continues to be a strongly developing research domain. At the workshop leading up to this special 109 

issue a panel session was thus devoted to discussing future research trends. In the following, we 110 

briefly touch on a selection of points that were mentioned in the panel session and that found the 111 

support of the workshop participants, without claim of completeness. 112 

3.1. Lagrangian vs Eulerian movement analysis 113 

One of the key distinctions used in the analysis of movement data is the choice of a Lagrangian 114 

or Eulerian world-view (Laube, 2014). Specifically, the Lagrangian view involves tracking individuals 115 

directly, while the Eulerian view involves monitoring individuals as they pass by defined spatial 116 



locations. In practice, this relates to the type of movement data that is being explored, for example 117 

flows between nodes in a network (Eulerian; e.g., cell phone tower call records, check in/out 118 

records, or data from camera traps), or individual movement traces (Lagrangian; e.g., via GPS 119 

tracking). The distinction between these two fundamentally different world-views (and data models) 120 

is nicely demonstrated in this special issue.  We have seen rapid growth of studies employing a 121 

Lagrangian approach to movement analysis and the associated methods-base in this area are 122 

substantially more developed (Laube, 2015). However, in the future we are likely to see much more 123 

Eulerian-based data associated with diverse types of technology (e.g., cell phone towers, Bluetooth 124 

beacons, WLAN hot spots, gates of public transport systems, camera traps) employed to study 125 

movement. The growth of the smart cities movement offers the potential to collect and analyse 126 

massive amounts of check-in data (e.g., bike share records, social media check-ins) and other 127 

technologies are employing similar approaches in attempt to make cities easier to navigate. Another 128 

reason we have seen rapid growth of Eulerian data in academic research is the privacy concerns 129 

associated with individual  tracking (see AUTHOR, 2018), but Eulerian data poses similar but unique 130 

challenges for maintaining individual privacy. The methods for studying Eulerian data presented in 131 

this issue (Gao et al., 2018; Guo et al., 2018; Tao et al., 2018) offer new avenues for further analysis 132 

in the Eulerian domain. 133 

3.2. Computationally Intensive Movement Analysis 134 

The expansion computational paradigms in both the sciences and social sciences has been 135 

enabled both by the availability of powerful personal desktop computers and the rapid development 136 

of high powered computing facilities. In the analysis of movement data, we have still only really seen 137 

developments that are taking advantage of the former. In the future, we are likely to see new 138 

algorithms capable of leveraging high-performance computing (HPC) facilities (e.g., clusters, parallel 139 

computing using graphics processing units). This may fraction the research base between those that 140 

have to the requisite expertise required to take advantage of available facilities and those that do 141 



not.  The emergence of HPC practices seems all but inevitable and will continue to revolutionize 142 

modern movement analysis. As movement datasets increase in volume and complexity, techniques 143 

for processing and simplifying these datasets are necessary (e.g., many of the papers in this special 144 

issue employ datasets with millions of records). The data reduction process is especially important 145 

for high-resolution tracking data, where much of the data are redundant when studying the salient 146 

broad scale behavioural patterns. Massive movement datasets contain a wealth of information, but 147 

this can in turn lead to major challenges in visualizing and contextualizing this information. Thus, the 148 

attention of the human analyst needs to be allocated efficiently in such large movement datasets in 149 

order to reduce the overabundance effect in data visualization -  as a wealth of information is known 150 

to “consume the attention of its recipients” (Simon, 1971; p40). One of the take-home messages 151 

from this special issue is that efficient tools for reducing big movement datasets almost exclusively 152 

revolve around the use of geographic space. For example, several papers in this special issue employ 153 

spatial metrics (e.g., home ranges or activity spaces) to simplify the analysis of movement data. 154 

Future work aimed at synthesising massive movement datasets should follow on this lead and 155 

explore more complex spatial methodologies. However, we should not forget about the rich 156 

temporal information stored within movement data and look to develop time-centred metrics for 157 

movement data.  158 

3.3. Inter-individual Interactions 159 

It is now extremely easy to collect movement data, owing to the rapid technological 160 

development of tracking systems (e.g., GPS) and embedded wireless sensors (e.g., Bluetooth). In 161 

fact, most of us readily participate in the generation of different forms of movement data on a daily 162 

basis. While most considerations of the impacts of increasing data are associated with having more 163 

data about individuals within the sample (e.g., higher resolution tracking), we are also witnessing a 164 

concurrent rapid growth in the number of individuals being tracked. The ability to simultaneously 165 

track many individuals (humans or animals) is providing new opportunities to study inter-individual 166 



dynamics within movement datasets. Within this special issue, specific papers (e.g., Loglisci, 2018; 167 

Wang et al., 2018) highlight some exciting new avenues for research in the study of inter-individual 168 

interactions. This is an area primed for more significant development within computational 169 

movement analysis. 170 

3.4. Sensor Fusion and Data Integration 171 

Recent advances in multi-modal sensors have enabled computational science to integrate 172 

multiple sources of data (e.g. GPS tracks, accelerometers, fitness tracking sensors) to fill information 173 

gaps and decrease uncertainty in analysis of activity patterns and increase our understanding of 174 

individual behaviour at fine levels of detail. This provides a promising opportunity to advance 175 

computational movement analysis by developing fine-scale and comprehensive movement models 176 

for understanding and predicting movement. Sensor fusion and data integration is perhaps most 177 

prominent in the domain of wildlife tracking, where we are witnessing a rapid advancement in 178 

methodologies combining remotely sensed data, accelerometer, and other on-board sensors with 179 

individual tracking devices. Designing analysis frameworks capable of integrating and synthesising 180 

these complex and diverse data sources will remain a challenge in future movement analysis. 181 

3. Conclusion 182 

Computational movement analysis is a rapidly expanding area of research within GIScience, 183 

but also within complementary domains. It is worth noting that two of the future research areas that 184 

we identified during our workshop were also identified in an earlier special issue (‘moving towards 185 

massive data’, ‘multi-sensor measurement and analysis’ ; Dodge et al., 2016) which shows that these 186 

areas remain ongoing challenges within computational movement analysis. Dodge et al. (2016) and 187 

Birkin et al (2017) also identified other problem areas that remain ongoing in computational 188 

movement analysis, including prediction, multi-scale modelling, and visualization of movement. 189 

Owing to continued technological developments the breadth of movement research is still growing 190 



rapidly and offering new insights in a range of topic domains and the application of movement 191 

research continues to expand to help understand new problems (Demšar et al., 2015). This special 192 

issue highlights many of the emerging areas of research within computational movement analysis 193 

and should serve as a valuable resource for future work in this area.  194 
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