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Abstract

Macroeconomists working with multivariate models typically face
uncertainty over which (if any) of their variables have long run steady
states which are subject to breaks. Furthermore, the nature of the
break process is often unknown. In this paper, we draw on meth-
ods from the Bayesian clustering literature to develop an econometric
methodology which: i) �nds groups of variables which have the same
number of breaks; and ii) determines the nature of the break process
within each group. We present an application involving a �ve-variate
steady-state VAR.

1 Introduction

Macroeconomists working with multivariate models such as VARs face a
myriad of modelling choices. Traditionally, such choices have involved re-
strictions on parameters. For instance, cointegration, lag length selection
or the economic theory used by DSGE modelers all involve restrictions on
the coe¢ cients of a VAR (or similar multivariate time series model). How-
ever, the increasing realization of the importance of parameter change has led

�Joshua Chan would like to acknowledge �nancial support from the Australian Research
Council under Grant DP0987170.

yGary Koop thanks the ESRC for support under grant RES-062-23-2646. He is a Fellow
at the Rimini Centre for Economic Analysis.
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macroeconomists to work with more parameter-rich models which allow for
such change. Examples include time-varying parameter (TVP) VAR mod-
els (see, among many others, Cogley and Sargent, 2001, 2005 or Primiceri,
2005), multivariate Markov switching models such as Sims and Zha (2006) or
structural break VAR models such as Jochmann, Koop and Strachan (2010).
Often the researcher is unsure of the nature of parameter change (e.g.

is it associated with VAR coe¢ cients or the error covariance matrix? is it
associated with time such as in a structural break model or does change oc-
cur over the business cycle?, etc.). Multivariate time series models such as
VARs are parameter-rich even with constant parameters. Allowing for para-
meter change in VARs increases the number of parameters to be estimated.
This raises worries about over-�tting and over-parameterization. The pres-
ence of model uncertainty relating to time-variation in parameters greatly
exacerbates these worries.
The present paper is motivated by these considerations. Faced with uncer-

tainty over the nature of parameter change, we want an econometric method
which will discover its nature in a data-based fashion. And faced with over-
�tting, we want to do this in as parsimonious manner as possible. In many
cases, this latter goal can be achieved by focussing on economically impor-
tant parameters. For instance, a VAR may have hundreds of parameters (or
even more, see Banbura, Giannone and Reichlin, 2010). These parameters
control the dynamics (short-run and long-run) of the variables in the model
as well as the economic relationships of interest to the macroeconomists (e.g.
impulse responses are functions of VAR coe¢ cients and the error covariance
matrix). But VAR coe¢ cients are hard to directly interpret and allowing
for parameter change in all of them can lead to a very parameter-rich model.
When considering ways of allowing for parameter change, the researcher may
wish to focus on some economically meaningful function of the parameters
(e.g. allowing for only the monetary transmission mechanism to change).
And it is typically most important to model parameter change in the eco-
nomic feature under study. For instance, in a study of the monetary policy
transmission mechanism it is very important to correctly model parameter
change in this relationship, but it may be less important to correctly model
parameter change in other parts of the model.
In this paper, we develop an econometric methodology which is more

parsimonious than other approaches (such as TVP-VARs) and uncovers pa-
rameter change of an unknown sort in features of economic importance. We
focus on the long run steady states of VAR dependent variables (although the
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general ideas can be adapted to any feature of interest). These are features
that have a straightforward economic interpretation and theoretical macro-
economic models such as DSGE models typically have strong implications
for long run steady states. We extend the steady state VAR of Villani (2009)
to allow for the steady states to change over time. Of course, it would be
straightforward to adapt any of the existing modelling approaches described
above (e.g. Markov switching or structural break models) so as to apply
only to the steady states. However, such an approach would assume all of
the steady states change in a particular way (e.g. a structural break model
would imply they all change at the break time). The econometric methodol-
ogy developed in this paper (drawing on ideas from the Bayesian clustering
literature, see Tadesse, Sha and Vannucci, 2005) is more sophisticated than
this. It determines (in an automatic, data-based fashion) which variables
exhibit breaks in their steady states (i.e. some variables can exhibit breaks
and others not) and the nature of the break process (e.g. it can estimate
structural breaks which occur at a point in time or parameter change over
the business cycle or anything else).
The paper is organized as follows. The next section of this paper describes

the modelling framework and provides a general outline of the Markov chain
Monte Carlo (MCMC) algorithm used to estimate the model. Full technical
details on prior, posterior andMCMC algorithm are provided in the Technical
Appendix. The third section of the paper illustrates the usefulness of our
methods in an empirical application relating to one presented in Del Negro
and Schorfheide (2008). We use a �ve-variate VAR and �nd that breaks exist
in the steady states of some of the series but not others.

2 Modelling Framework

Bayesian VAR analysis traditionally works with a VAR of the form:

Ay (L) yt = �y + "t

where yt is an n�1 vector of dependent variables for t = 1; :::; T , "t isN (0;�)
and Ay (L) = I � Ay1L � :: � AypL

p is a polynomial in the lag operator.
Conventional Bayesian VAR approaches such as the Minnesota prior (see
Doan, Litterman and Sims, 1984) place a prior on the parameters in Ay (L)
and �y. This parameterization can be hard to directly interpret (e.g. �y is
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not the unconditional mean of the series). In contrast to this, the steady
state VAR (see Villani, 2009) can be written as

A (L) (yt � �) = "t: (1)

This speci�cation for the VAR has the advantage that � is the unconditional
mean of yt and, thus, can be interpreted as the steady state of yt. As argued
in Villani (2009), the steady state is often something that researchers have
strong prior beliefs about (unlike A1; ::; Ap). Thus, it may be preferable to
focus prior elicitation e¤orts on �. The parameters in A (L), controlling
the short run dynamics for deviations from steady states, may be of less
interest to the macroeconomist. For instance, DSGE modelers often have
strong prior information about steady states and elicit their priors in terms
of such structural parameters (see, among many others, Smets and Wouters,
2007 and Del Negro and Schorfheide, 2008). A drawback of the steady state
VAR relative to the traditional VAR is that MCMC methods must be used.
However, the gain in interpretability and the ability to elicit priors directly
o¤ of parameters with an economic interpretation are large bene�ts which
may outweigh this drawback.
In empirical macroeconomic work, it is likely that the steady states of

some variables remain constant over time, while others change at a partic-
ular point in time (i.e. structural breaks might occur), while others might
change in some other fashion (e.g. they may di¤er between expansions and
recessions). However, the researcher is typically unsure about which of these
possibilities holds for which variable. Unless n is small, the number of mod-
elling choices can be daunting. In this paper, we draw on ideas from the
Bayesian clustering literature (see, e.g., Tadesse, Sha and Vannucci, 2005) to
propose a modelling framework which allows us to group the dependent vari-
ables into clusters which have the same structure. For instance, one cluster
might have constant steady states, another cluster might include dependent
variables whose long run steady states exhibit a break, etc. This grouping is
done in an automatic data-based manner.
Since the contributions of this paper relate to �, we will draw out the

basic intuition of our methodology ignoring the role of A (L) and the error
covariance matrix. Of course, in our empirical application A (L) will be
included as well as a time-varying error covariance matrix. Complete details
of the full model are given in the Technical Appendix.
Accordingly, let us begin with a simple model:
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yt = �1 + "t (2)

where "t is N (0;�1). In the spirit of Tadesse, Sha and Vannucci (2005), we
begin by extending this to a mixture of Normals speci�cation where

p (ytjq; �;�) =
GX
j=1

qj�
�
ytj�j;�j

�
; (3)

where �
�
ytj�j;�j

�
is the p.d.f. of the Normal distribution with mean �j

and variance �j, q = (q1; ::; qG)
0, � = (�01; ::; �

0
G)
0 and � = (�1; ::;�G). Or,

equivalently, we can introduce the discrete random variables: �t 2 f1; ::; Gg
such that:

ytj�t = j � N
�
�j;�j

�
(4)

where p (�t = j) = qj. For future reference, let � = (�1; ::; �T )
0 and y =

(y01; ::; y
0
T )
0.

This is a standard mixture of Normals representation which has been
used in many papers. Mixtures of Normals are very �exible as discussed,
e.g., in Geweke and Keane (2007) and Geweke and Amisano (2011). For our
purposes, we stress that (4) allows for clustering over time and so would be
able to pick up features like structural breaks or regime switching, where the
steady states of all variables change. That is, it says each yt for t = 1; ::; T
can be drawn from one of G di¤erent distributions. For instance, if y1; ::; y�
were drawn from one distribution and y�+1; ::; yT were drawn from a second,
then we would have a structural break at time � . But it is also possible
that yj is drawn from the �rst distribution where j denotes times when the
economy is in recession (and other time periods are drawn from a second
distribution). Then we have a model with properties similar to a Markov
switching model where properties di¤er over the business cycle. In general,
any grouping is possible.
It is also worth noting that (4) allows for the error covariance matrix to

di¤er across regimes. So formally, if we �nd evidence for G > 1 this implies
either that the steady states are changing or that the error covariance matrix
is changing. It is possible to restrict �1 = :: = �G if the researcher wishes to
focus solely on steady-state changes in the context of a homoskedastic VAR.
Alternatively, at the cost of adding extra blocks to the MCMC algorithm, the
error covariance matrix could be modelled separately from the mixtures of
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Normal component of the model (e.g. as a multivariate stochastic volatility
process).
Simple mixtures of Normals model such as (4) allow for all parameters

to di¤er across elements in the mixture. For high-dimensional models such
as VARs such �exibility can lead to an over-parameterized model. This
�exibility can be unnecessary and lead to undesirable consequences. If the
steady states in only one or two variables change and n is large, it is distinctly
possible that the econometric model will indicate no change. That is, the
model (4) o¤ers the choice between �steady states of all variables are constant
over time�and �all n steady states change�. Given these alternatives, and
the reward for parsimony built into Bayesian model selection methods, it will
only choose the latter if most of the steady states change or if the change
in the steady state in one variable is huge. These considerations motivate
the development of a model designed to pick up breaks which occur only in
some subset of the variables. In practice, the researcher rarely knows which
subsets of variables might have breaks in their steady states, so the model
should be able to �nd these subsets in an automatic data-based fashion. The
following extension of the standard mixture of Normals model can achieve
these goals.
Let 
 = (
1; ::; 
n)

0 be a vector of dummy variables where 
j = 1 implies
that the jth dependent variable follows a mixture of Normals representation
such as that given in (4). If 
j = 0 then the jth dependent variable does
not follow a mixture of Normals, but rather has a time-invariant steady state
(and error covariance matrix) such as (2). In other words, 
 serves to divide
our dependent variables into two groups, where one group allows for up to
G changes in steady states over time or across regimes and the other group
has constant steady states.
Formally, let yt(
=1) denote the vector containing the elements of yt which

have 
j = 1 and yt(
=0) the vector containing the remaining elements of
yt. And adopt the same �subscript (
 = 0=1)�notational convention for the
parameters in the model (e.g. �(
=0) will be the unconditional mean for all
variables which have a time-invariant steady state, n(
=0) will be the number
of such variables, etc.). This leads to the following distribution for y; � which
Tadesse et al (2005) use as their likelihood function:1

1In the terminology of, e.g., Fruhwirth-Schnatter and Wagner (2008) this is the com-
plete data likelihood, as opposed to the integrated likelihood which would be p (yj
; q; �;�).
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p (y; �j
; q; �;�) = 2��n(
=0) T2
���(
=0)���T

2

� exp
(
�1
2

TX
t=1

�
yt(
=0) � �(
=0)

�0
��1(
=0)

�
yt(
=0) � �(
=0)

�)

�
GY
j=1

2��n(
=1)
Tj
2

���j;(
=1)���Tj
2 q

Tj
j

� exp

8<:�1
2

X
t2Cj

�
yt(
=1) � �j;(
=1)

�0
��1(j;
=1)

�
yt(
=1) � �j;(
=1)

�9=;
(5)

where Tj is the number of observations in the jth element in the Normal
mixture given in (4) and t 2 Cj denotes observations belonging to cluster j
(i.e. Cj is the set of observations for which �t = j). Note that � enters this
likelihood function since it determines Tj.
To carry out posterior simulation in the steady state VAR version of this

model, we require a prior to combine with the likelihood function (5) and
an MCMC algorithm for drawing the parameters 
; q; �;�; � and A1; ::; Ap.
Note that the relationship p (�t = j) = qj given after (4) provides us with a
hierarchical prior for �. For 
 we assume a Bernoulli prior which implies, a
priori, each variable is equally likely to exhibit no breaks as exhibit breaks.
Complete details of these priors and priors for other parameters are given in
the Technical Appendix.
The basic idea of our MCMC algorithm can be described very simply:

it combines the algorithm of Tadesse et al (2005) with a Bayesian VAR
algorithm. Complete details are given in the Technical Appendix. Finally,
we choose G using the Bayesian information criterion (BIC) as detailed in
the Technical Appendix.

3 Empirical Illustration with a Five-variate
VAR

3.1 Data

The data set is obtained from Del Negro and Schorfheide (2008). It runs
from 1954Q3 through 2005Q4 and consists of �ve commonly-used US macro-
economic variables: GDP per capita (Yt), hours worked per capita (Lt), labor
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income share (lsht), the GDP de�ator (Pt) and interest rates (the Fed Funds
rate, Rt). The variables are constructed and transformed exactly as in Del
Negro and Schorheide (2008). The de�nitions of the variables which enter
the VAR are reproduced below:

Output growth 400(lnYt � lnYt�1)
Hours 100 lnLt
Labor share 100 ln lsht
In�ation 400(lnPt � lnPt�1)
Interest rates 400 lnRt

3.2 Empirical Illustration

Table 1 presents BICs for various values of G and p and it can be seen that
G = 2 and p = 2 are the preferred choices. There is strong support for
models with breaks in steady states (since G = 1 receives little support), but
a small number of breaks seems adequate (since there is little evidence for
G = 3). In the remainder of this section, we set G = p = 2.

Table 1: BIC�s.
G = 1 G = 2 G = 3

p = 1 2814.2 2823.7 2872.5
p = 2 2755.3 2742.2 2798.3
p = 3 2885.3 2875.0 2931.2

The evidence in favor of G = 2 suggests breaks are occurring in some
of the steady states. But which ones? The estimated posterior mode for
the cluster label, 
; is (0; 0; 0; 1; 1)0; suggesting only in�ation and interest
rates experienced changes in their steady states. The posterior mean is very
similar to the posterior mode, indicating the clustering algorithm is clearly
identifying which variables have breaks and which ones do not. If we re-
run the MCMC algorithm, conditional on 
 = (0; 0; 0; 1; 1)0, we can obtain
parameter estimates which arise from a single model with a clear interpreta-
tion. This model is parameterized in terms of �(
=0) = (�

1
(
=0); �

2
(
=0); �

3
(
=0))

0

(i.e. a 3� 1 vector with elements being the steady states for output growth
per capita, hours worked per capita and labor income share respectively),�
�11;(
=1); �

1
2;(
=1)

�
(i.e. these are the steady states in the two regimes for

in�ation) and
�
�21;(
=1); �

2
2;(
=1)

�
(i.e. these are the steady states in the two
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regimes for interest rates). The error covariances are labelled with a simi-
lar notational convention where subscripts denote regimes and superscripts
particular parameters within a regime. The estimated posterior means and
standard deviations for some of the key parameters are reported in Table 2.
Most of the parameter estimates are similar to those found in a standard

VAR, so we will focus our discussion on those which di¤er. Table 2 provides
strong evidence of a large change in the steady state for in�ation, with slightly
weaker evidence in favor of a smaller change in the steady state for the
interest rate. But note also that the regime change we are �nding looks to
be associated with a change in the volatility of both variables. Remember
that our approach allows for di¤erent regimes to have di¤erent means and
di¤erent error variances. Clearly, this latter aspect is important in this data
set. For both in�ation and interest rates we are �nding volatilities to be much
lower in the second regime than the �rst regime. Since the point estimate
of q1 = 0:071 the high volatility regime occurs much less frequently than the
low volatility regime.

Table 2: Posterior Means and Standard Deviations of Parameters
parameter E(�jy)

p
Var(�jy) parameter E(�jy)

p
Var(�jy)

�1(
=0) 0.449 0.042 q1 0.071 0.030
�2(
=0) 552.6 8.954 �1;1(
=0) 0.827 0.085
�3(
=0) �55.44 0.911 �2;1(
=0) 0.466 0.059
�11;(
=1) 6.969 1.176 �3;1(
=0) �0.967 0.051
�21;(
=1) 6.938 1.883 �2;2(
=0) 0.525 0.055
�12;(
=1) 3.377 0.240 �3;2(
=0) �0.101 0.037
�22;(
=1) 5.658 0.467 �3;3(
=0) 0.452 0.046
�1;11;(
=1) 5.157 2.378 �1;12;(
=1) 2.288 0.259
�2;11;(
=1) 0.323 1.730 �2;12;(
=1) �0.162 0.142
�2;21;(
=1) 6.975 3.168 �2;22;(
=1) 0.689 0.110

Figure 1 presents evidence on when the two regimes are occurring. That
is, it reports the estimated probabilities P (�t = 1jy) for t = 1; : : : ; T . Of
course, the reader can �gure out P (�t = 2jy) since it is 1 � P (�t = 1jy). It
can be seen that our econometric methodology is clearly �nding changes in
steady states and volatilities in interest rates and in�ation to be associated
with the period 1973-1983 (i.e. outside this time there is strong evidence that
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the second regime holds). This is the period after the collapse of the Bretton-
Woods agreement and OPEC oil price shock up until the great moderation of
the business cycle. Of course, macroeconomists could debate as to whether
the changes in steady states we are �nding truly were long run changes
(as opposed to persistent responses to exogenous shocks). Nevertheless, the
pattern we have �agged in Figure 1 is a sensible one. And it is interesting
to note that it does not apply to the real variables in our model, but the
nominal variables: the interest rate and in�ation.

Figure 1: Probability of First Regime: P(�t = 1 j y).

4 Conclusion

In this paper, we have developed an econometric methodology for multivari-
ate macroeconomic models, based on Tadesse et al (2005), which di¤ers from
existing methods in that it allows both for clustering in terms of variables
and in terms of regimes. That is, it automatically divides the variables into
groups. Within each group, variables exhibit a common pattern (e.g. they
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can exhibit structural breaks at the same time). We apply this methodology
to the case of the steady-state VAR of Villani (2009). We focus on the issue
of breaks in long-run steady states, although we argue that the methodology
could be useful in a wide variety of empirical macroeconomic contexts.
Our empirical illustration, using a moderately-sized VAR, indicates that

the methodology works well and leads to parsimonious representations. In-
stead of allowing for breaks in the steady states (and error covariance ma-
trices) of all variables (as would be done in a conventional structural break
model) or allowing for breaks in dozens or hundreds of VAR coe¢ cients (as
would be done in a Markov-switching VAR or TVP-VAR), our methodology
indicates breaks are occurring in the steady states of only two variables.
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Technical Appendix
The Model
Write the steady state VAR as:

(yt���t)�A1(yt�1���t)�� � ��Ap(yt�p���t) = "t; "t � N(0;��t); (6)

where �t 2 f1; 2; : : : ; Gg denotes regimes and Ai; i = 1 : : : ; p are n � n ma-
trices of VAR coe¢ cients such that yt is stationary (the companion matrix
of A = (A1; : : : ; Ap) has roots outside the unit circle). Let 
 = (
1; : : : ; 
n)

0

be a vector of cluster labels: if 
j = 0, then �
j
�t
, the j-th component of ��t,

are the same for all �t 2 f1; : : : ; Gg, i.e., �j1 = � � � = �jG; otherwise, they are
di¤erent. De�ning y�t = A(L)yt, we have

y�t � N(A(1)��t ;��t);

where A(1) = I �
Pp

i=1Ai. Let y
� = (y�1; : : : ; y

�
T ).

The Prior
For the variable selection indicator, we assume that its elements are i.i.d.

Bernoulli random variables, i.e., 
j � Ber( ), with joint density

p(
) =
nY
i=1

 
i(1�  )1�
i ;

where  can be elicited as the proportion of variables expected a priori to
exhibit multiple changes in steady states. In our application we set  = 0:5.
The regime labels �t; t = 1; : : : ; T are i.i.d. discrete random variables with
a hierarchical prior given by P(�t = j) = qj � 0 with

PG
i=1 qi = 1: In

turn, q = (q1; : : : ; qG) is a random variable with a symmetric Dirichlet prior,
q � Dir(�0; : : : ; �0), where �0 is set to be 3 in our application.
The prior for a = vecA0 = vec([A1; : : : ; Ap]

0) is Normal with mean and
covariance matrix obtained as follows: we �rst estimate the VAR coe¢ cients
in the time-varying intercept model

yt = ~�t + ~A1yt�1 + � � �+ ~Apyt�p + vt; vt � N(0;
);

with a random walk state equation

~�t = ~�t�1 + wt; wt � N(0; Q);
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where Q is a diagonal matrix. Then the prior mean is set to be E( ~A j y)
with prior covariance matrix 0:012 � I, i.e., a � N(a0; 0:01

2 � I), where
a0 = vec(E( ~A j y)0).
Finally, we assume the following natural conjugate priors for �1; : : : ; �G

and �1; : : : ;�G:

�(
=0)jA(1)(
=0);�(
=0) � N(�0(
=0); h0A(1)
�1
(
=0)�(
=0)A(1)

�10
(
=0));

�j;(
=1)jA(1)(
=1);�j;(
=1) � N(�0(
=1); h1A(1)
�1
(
=1)�j;(
=1)A(1)

�10
(
=1));

�(
=0) � IW (� + n� n
; Q0(
=0));

�(
=1) � IW (� + n
; Q1(
=1)):

where IW (�; �) denotes the inverse-Wishart distribution. The degree of free-
dom parameter, �, is set to be n, while �0 = 0 and h0 = h1 = 10 to indicate
weak prior information. Finally, we take Q0 = 1=� 0I and Q1 = 1=� 1I, where
� 0 and � 1 are chosen as suggested in Tadesse et al (2005).
MCMC Algorithm
Our posterior simulator is based on the collapsed sampler proposed in

Tadesse et al (2005). Speci�cally, we sample the parameters and latent vari-
ables marginally of �1; : : : ; �G and �1; : : : ;�G. Note that given 
 and a,
p(y�; �jq; 
; a), the joint distribution of (y�; �) marginal of �1; : : : ; �G and
�1; : : : ;�G, is available analytically (see equation 7). Using derivations sim-
ilar to Tadesse et al (2005), page 605, it can be shown that

p(y�; �jq; 
; a) = ��Tn=2
GY
k=1

�
Kk(
=1)jQ1(
=1)j(�+n
�1)=2jQ1(
=1) + Sk(
=1)j�(Tk+�+n
�1)=2

	
�H(
=0)jQ0(
=0)j(�+n�n
�1)=2jQ0(
=0) + S0(
=0)j�(T+�+n�n
�1)=2;

(7)
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where

Kk(
=1) = qTkk (1 + h1Tk)
�n
=2

n
Y
j=1

�((Tk + � + n
 � j)=2)

�((� + n
 � j)=2)
;

H(
=0) = (1 + h0T )
�(n�n
)=2

n�n
Y
j=1

�((T + � + n� n
 � j)=2)

�((� + n� n
 � j)=2)
;

Sk(
=1) =
X
t2Cj

(y�t(
=1) � �y�t(
=1))(y�t(
=1) � �y�t(
=1))0

+
Tk

h1Tk + 1
(A(1)(
=1)�0(
=1) � �y�t(
=1))(A(1)(
=1)�0(
=1) � �y�t(
=1))0;

S0(
=0) =

TX
t=1

(y�t(
=0) � �y�t(
=0))(y�t(
=0) � �y�t(
=0))0

+
T

h0T + 1
(A(1)(
=0)�0(
=0) � �y�t(
=0))(A(1)(
=0)�0(
=0) � �y�t(
=0))0;

n
 =
Pn

i=1 
i, Tk is the number of �t that are equal to k, i.e., Tk =PT
t=1 1(�t = k), �y�t(
=1) and �y

�
t(
=0) are the sample means of y

�
t(
=1) and y

�
t(
=0)

respectively.
The posterior simulator now consists of the following four steps:

(1) sample 
jy; �; q; a;
(2) sample �jy; 
; q; a;
(3) sample qjy; �; 
; a;
(4) sample ajy; �; 
; q;
The details of Steps (1)-(2) are given in Tadesse et al (2005) equations

(10)-(12) and the discussion in their subsections 5.1�5.2, with the likelihood
given in (7). Step 3 is a simple Gibbs step as (conditional on �), q has a
Dirichlet distribution: qjy; �; 
; a � Dir(�1; : : : ; �G), where �k = �0 + Tk
and Tk is the number of �t that are equal to k. To avoid the label-switching
problem, we impose the restriction that q1 � � � � � qG. Such a draw can be
obtained, for example, by rejection sampling. To implement Step 4, recall
that the prior for a is a � N(a0; 0:01

2�I). Since the prior is tight, we can use
p(a) as the proposal density in an independence-chain sampler. Speci�cally,
given the current draw a, a candidate draw ac is generated fromN(a0; 0:01

2�
I). If the characteristic roots of the companion matrix associated with ac are

15



all within the unit circle, we accept ac with probability minf�MH; 1g, where

�MH =
p(y�c; �jq; 
; ac)
p(y�; �jq; 
; a) ;

y�ct = Ac(L)yt and Ac(L) is the lag polynomial associated with ac; otherwise,
retain the draw a. Since a is a high-dimensional vector, in our implementation
we divide a into several blocks. In particular, each row of A constitutes a
block, and each block is sampled sequentially.
The BIC used in the paper is de�ned as BIC = �2 ln bL+m lnT , where bL

is the maximized likelihood value and m is the number of parameters in the
model. For G = 1, bL is obtained as follows: �rst the likelihood function is
evaluated (in this model we don�t have any latent variables so the likelihood
value can be easily obtained) at each posterior draw, and bL is set to be the
maximum value. For G > 1 cases, bL is approximated by the average of the
complete data likelihood values evaluated at each posterior draw.
Posterior results in the empirical application are based on 50000 posterior

draws, following a burn-in period of 1000. Results pass standard checks of
MCMC convergence.
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