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BACKGROUND AND PURPOSE 

There is a lack of potent, selective antagonists at most subtypes of P2Y receptor. The aims of this 

study were to characterise the pharmacological properties of the proposed P2Y2 receptor antagonist, 

AR-C118925XX, and then to use it to determine the role of P2Y2 receptors in the action of the 

P2Y2 agonist, UTP, in human vascular endothelial cells. 

EXPERIMENTAL APPROACH 

Cell lines expressing native or recombinant P2Y receptors were superfused constantly and agonist-

induced changes in intracellular Ca2+ levels monitored using the Ca2+-sensitive fluorescent 

indicator, Cal-520. This set-up enabled full agonist concentration-response curves to be constructed 

on a single population of cells. 

KEY RESULTS 

UTP evoked a concentration-dependent rise in intracellular Ca2+ in 1321N1- hP2Y2 cells (EC50 = 82 

nM). AR-C118925XX (10 nM-1 µM) had no effect per se on intracellular Ca2+, but shifted the UTP 

concentration-response curve progressively rightwards, with no change in maximum (pA2=8.43). 

The inhibition was fully reversible on washout. AR-C118925XX (1 µM) had no effect at native or 

recombinant hP2Y1, hP2Y4, rP2Y6 or hP2Y11 receptors. Finally, in EAhy926 immortalised human 

vascular endothelial cells, AR-C118925XX (30 nM) shifted the UTP concentration-response curve 

rightwards, with no decrease in maximum (KB =3.0 nM). 

CONCLUSIONS AND IMPLICATIONS 

AR-C118925XX is a potent, selective and reversible, competitive P2Y2 receptor antagonist, which 

inhibited responses mediated by endogenous P2Y2 receptors in human vascular endothelial cells.  

As the only P2Y2-selective antagonist currently available, it will greatly enhance our ability to 

identify the functions of native P2Y2 receptors and their contribution to disease and dysfunction. 

 

 

Keywords: AR-C118925XX, P2Y2 receptor, competitive antagonist, endothelial cells 
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Bullet point summary 

What is already known 

 P2Y receptors are expressed throughout the body, but their functions are largely unclear 

 There is a lack of potent, selective antagonists at most subtypes of P2Y receptor 

What this study adds 

 AR-C118925XX is a potent, selective and reversible, competitive P2Y2 receptor antagonist 

 AR-C118925XX inhibited responses evoked by UTP in EAhy926 immortalised human 

vascular endothelial cells 

Clinical significance 

 AR-C118925XX is the only potent, selective and competitive P2Y2 antagonist currently 

available 

 AR-C118925XX will help identify the functions of native P2Y2 receptors and their contribution 

to disease 
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Introduction 

P2Y receptors are a family of eight GPCR that mediate the actions of the endogenous nucleotides, 

adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), uridine 5'-triphosphate (UTP) 

and uridine 5'-diphosphate (UDP) (Abbracchio et al., 2006; Kennedy et al., 2013; Refehi & Müller, 

2018). They are expressed in cells and tissues throughout the body, but their physiological functions 

are largely unclear. In part, this is because the endogenous agonists all act at multiple P2Y subtypes, 

but the major factor is the low potency and selectivity of many of the available antagonists. 

Currently, potent, selective antagonists have only been developed for P2Y1 (eg. MRS2179, 

MRS2279, MRS2500) and P2Y12 (e.g. ticagrelor, cangrelor, clopidogrel) receptors (see Abbracchio 

et al., 2006; Kennedy et al., 2013). These played a major role in identifying physiological roles, 

such as that of P2Y1 receptors in peristalsis in the gut (see Kennedy, 2015) and of P2Y1 and P2Y12 

receptors in platelet aggregation (Abbracchio et al., 2006; von Kügelgen, 2017). Clearly, the 

development of potent and selective antagonists at the other P2Y subtypes would greatly enhance 

our ability to determine their functions in health and disease. 

 AR-C118925XX was developed by AstraZeneca around 20 years ago as a P2Y2 antagonist, 

but only a conference abstract was published at the time (Meghani, 2002), which did not include 

crucial pharmacological properties, such as its KB or pA2. Several studies have since been published 

that used AR-C118925XX to investigate the role of native P2Y2 receptors in the actions of P2Y 

agonists in various cell types (Kemp et al., 2004; Hochhauser et al., 2013; Onnheim et al., 2014; 

Magni et al., 2015; Wang et al., 2015; Cosentino et al., 2016; Gabl et al., 2016; see also review by 

Refehi & Müller, 2018). They did not, however, report the KB or pA2 of AR-C118925XX, or relate 

the concentrations used (mostly 1 and 10 µM) to its potency or selectivity. Inhibition of other P2Y 

subtypes could not, therefore, be ruled out based on the data published at this time. 

 Accurate values of antagonist potency are essential for effective experimental use. Recently, 

AR-C118925XX became commercially available, so the aims here were to quantify the pA2 of AR-

C118925XX at recombinant P2Y2 receptors stably expressed in a cell line. Selectivity was then 

determined by studying its effects at other P2Y subtypes. Finally, AR-C118925XX was used to 

investigate native P2Y2 receptors in human vascular endothelial cells. Using a system that enabled 

full agonist concentration-response curves (CRC) to be constructed in the absence and presence of 

AR-C118925XX on a single population of cells, we found that AR-C118925XX is a very potent, 

selective and reversible P2Y2 receptor antagonist. Furthermore, it inhibited responses evoked by 

UTP in human vascular endothelial cells, indicating expression of endogenous P2Y2 receptors. Thus 

the development of AR-C118925XX and characterisation of its pharmacological properties removes 

a substantial barrier to our ability to identify the functions of native P2Y2 receptors.

http://www.guidetopharmacology.org/GRAC/DatabaseSearchForward?searchString=p2y&searchCategories=all&species=none&type=all&comments=includeComments&order=rank&submit=Search+Database
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1712
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1734
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1749
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=323
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1720
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1721
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1724
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=328
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1765
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1776
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7150
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5907
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=324
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Methods and Materials 

Cell culture 

1321N1 (ECACC Cat# 86030402, RRID:CVCL_0110) is a human astrocytoma cell line that does 

not endogenously express any of the eight P2Y receptor subtypes or respond to the naturally-

occurring nucleotide agonists, such as UTP and ATP (Filtz et al., 1994; Parr et al., 1994; 

Abbracchio et al., 2006). 1321N1 cells stably expressing recombinant human P2Y1 (1321N1-

hP2Y1), hP2Y2 (1321N1-hP2Y2), P2Y4 (1321N1-hP2Y4), P2Y11 (1321N1-hP2Y11) or rat P2Y6 

(1321N1-rP2Y6) receptors, tSA201 (ECACC Cat# 96121229, RRID:CVCL_2737) and EAhy926 

cells (ATCC Cat# CRL-2922, RRID:CVCL_3901) were used. They were maintained in 5% CO2, 

95% O2 in a humidified incubator at 37C, in Dulbecco’s Modified Eagles Media (Life 

Technologies, Paisley, UK, catalogue numbers 21969-035 - 1321N1, tSA201 cells, 41965-039 - 

EAhy926 cells), supplemented with 10% foetal calf serum, 1% non-essential amino acids, 1% 

penicillin (10,000 units/ml) and streptomycin (10 mg/ml). Prior to recording intracellular Ca2+, the 

cells were plated onto 13 mm glass coverslips coated with poly-L-lysine (0.1 mg/ml) and 

experiments performed once a confluent monolayer of cells had developed. Experiments were 

performed unblinded and unrandomised, as the experimenter (MM) carried out all cell culture and 

was aware of which cell line was being used. 

 

Ca2+ imaging 

Cells were bathed in a buffer composed of (mM): NaCl 122; KCl 5; HEPES 10; KH2PO4 0.5; 

NaH2PO4 0.5; MgCl2 1; glucose 11; CaCl2 1.8, titrated to pH 7.3 with NaOH. Intracellular Ca2+ was 

monitored using the Ca2+-sensitive fluorescent indicator, Cal-520. Cells on a coverslip were 

incubated for 1 hr at 37°C in the dark in buffer containing Cal-520-AM ester (5 μM) and Pluronic™ 

F-127 (0.05% w/v in DMSO). The coverslip was then placed vertically in the recording chamber of 

a Perkin Elmer LS50B luminescence spectrophotometer and the cells superfused continuously with 

buffer, applied under gravity at 4 ml min-1 and room temperature.  

 Cal-520 fluorescence, measured as arbitrary units (AU) in a population of cells, was sampled 

at 10 Hz following stimulation at 490±15 nm and the emission recorded at 525±15 nm using FL 

Winlab software (V4.00.02). Resting Ca2+ levels were stable over the course of the experiment. 

Agonists were added in the superfusate until the response reached a peak (60-90 sec) at 10 min 

intervals. For each drug addition, the data were exported to GraphPad Prism v7.01, GraphPad, San 

Diego, CA), where peak response amplitude was determined by the experimenter (MM) manually 

placing a cursor on the baseline and peak. All measurements were inspected and confirmed by CK. 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=325
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=327
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=326
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Experimental protocols 

The experimental protocols and design adhere to the recommendations of Curtis et al., (2018). 

Determining the effects of UTP and AR-C118925XX at hP2Y2 receptors 

This experimental set-up enabled full agonist CRC to be constructed on a single population of cells. 

All coverslips of 1321N1-hP2Y2 cells were first exposed to UTP (1 µM) twice to confirm cell 

viability. CRC were then generated by superfusing cells with increasing concentrations of UTP at 

10 min intervals, hence drug addition was not randomised. Reproducibility of these responses was 

determined by then generating a second CRC on the same population of cells. To facilitate 

comparison of the two curves, the data were normalised by calculating each response in AU as a 

percentage of that to UTP (1 µM) in the first CRC. This concentration is close to, but not quite at 

the top of the UTP CRC. The second CRC also served as a time-matched control for the effects of 

AR-C118925XX, as described next. EC50 and maximum values calculated by fitting the Hill 

equation to the two sets of data were compared using Student’s paired t test. 

 The effects of AR-C118925XX at hP2Y2 receptors were determined by generating two UTP 

CRC for each coverslip of 1321N1-hP2Y2 cells. The first, to UTP alone, served as the control. The 

cells were then superfused with a given concentration of AR-C118925XX for 5 min. Thereafter, the 

second UTP CRC was constructed in the continuous presence of that concentration. Again, the data 

were normalised by calculating each response in AU as a percentage of that to UTP (1 µM) in the 

first CRC. The dose-ratio (DR) for the rightwards shift induced by AR-C118925XX was calculated 

from the EC50 values of the two curves. The data generated using a range of concentrations of AR-

C118925XX were pooled and used to construct a Schild plot. To determine if the maximum 

responses to ADP was reduced by AR-C118925XX, the maximum values calculated by fitting the 

Hill equation to the second CRC were compared with those from the time-matched controls 

described in the previous paragraph, using one way ANOVA with Tukey’s comparison. 

 Reversibility of the inhibitory effects of AR-C118925XX on washout were investigated by 

first exposing cells to UTP (1 µM) twice to confirm cell viability and then repeatedly adding UTP 

(100 nM), a concentration that is just above the EC50, at 10 min intervals. Under these conditions, 

UTP (100 nM) elicits highly reproducible responses. Once a control response to UTP was obtained, 

AR-C118925XX was applied to the cells for 5 min, before co-administration with UTP. The 

antagonist was then washed out and the recovery of the UTP response monitored over the next 20-

70 min, as appropriate. Since the point of this experiment was to determine if the responses fully 

recovered, the data were normalised by calculating the response in AU as a percentage of the 

control response to UTP. No statistical tests were applied to these data. 
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Selectivity of AR-C118925XX 

In preliminary experiments, CRC for an appropriate agonist were constructed in cells expressing the 

other P2Y subtypes that couple to Ca2+ mobilisation and from these two concentrations were chosen 

that evoked responses that were i) close to the top of the CRC (reference concentration) and ii) 50-

75% of the maximum response (test concentration), as follows: 1321N1-hP2Y1 - ADP (1 µM/100 

nM), 1321N1-hP2Y4 - UTP (10 µM/1 µM), 1321N1-rP2Y6 - UDP (1 µM/100 nM), 1321N1-hP2Y11 

- ATP (10 µM /2 µM) and tSA201 cells - ADP (10 µM/1 µM). All coverslips were first exposed to 

the higher concentration of agonist twice to confirm cell viability. The response also served as a 

reference for statistical analysis, as described in the next paragraph. The lower, test concentration 

was then applied repeatedly at 10 min intervals and once a control response was obtained, AR-

C118925XX (1 µM) was applied to the cells for 5 min before co-administration with the agonist.  

 Since the aim of this experiment was to determine if AR-C118925XX acts as an antagonist at 

the other P2Y subtypes, the data are presented as percentage of the agonist control response. To 

enable parametric statistical analysis, however, responses in a given cell line to the agonist test 

concentration were calculated as a percentage of the initial response to the agonist reference 

concentration. The values obtained in the absence and then presence of AR-C118925XX were then 

compared using Student’s paired t test. 

 

Investigating the presence of P2Y2 receptors in EAhy926 cells 

Ca2+ imaging UTP CRC were constructed in the absence and presence of AR-C118925XX and 

analysed statistically in the same manner as described above for 1321N1-hP2Y2 cells, except that i) 

cells were first exposed to UTP (10 µM) twice to confirm cell viability and ii) data were normalised 

by calculating each response in AU as a percentage of that to UTP (10 µM) in the first CRC. 

 

Immunostaining P2Y2 receptor protein expression was studied using a modified version of the 

methods we used recently to demonstrate P2Y2 expression in rat isolated carotid arteries (Lee et al., 

2018). Briefly, cells were fixed in 4% paraformaldehyde for 20 min at room temperature, washed 

three times in 100 µM glycine solution, then three times with a buffer composed of (mM): NaCl 

137; KCl 2.7; NaH2PO4 1.5; Na2HPO4 15.2, pH 7.4. Cells were permeabilised with 0.2% Triton-

X100 in 5 mM NH4Cl solution for 10 min and washed three times with buffer. They were then 

incubated in antibody buffer solution containing 5% BSA for 1 hr at room temperature, followed by 

three washes with antibody wash solution containing 5% BSA. Next, they were incubated with a 

rabbit anti-P2Y2 receptor antibody (sc-20124, 1:100, Santa Cruz, Dallas, TX, USA) in buffer 
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containing 5% BSA and 2% donkey serum, overnight at 4°C. They were then washed three times 

with antibody wash solution containing 5% BSA, followed by incubation with Alexa Fluor 488 

donkey anti-rabbit antibody (Invitrogen, Carlsbad, CA, USA) in antibody buffer solution for 1 hr at 

room temperature, followed by three washes with antibody wash solution without BSA and finally 

incubated in buffer before imaging. Negative controls were performed in the absence of 1º or 2º 

antibody. To visualise their nucleus, cells were incubated in buffer containing 0.5 mg ml-1 DAPI. 

 The Alexa Fluor 488 antibody was excited using 488 nm wide-field epifluorescence 

illumination provided by a LED (CoolLED pE-300ultra, CoolLED Ltd, Andover, UK) and visualised 

using a back-illuminated electron-multiplying charge coupled device (EMCCD) camera (iXon Life 

888; Andor, Belfast, UK; 13 μm pixel size) through a 40X (oil immersion; numerical aperture 1.3; 

Nikon S Fluor) objective lens. Fluorescence emission was recorded at 10 Hz. Fluorescence 

illumination was controlled, and images (16-bit depth) captured, using ImageJ (National Institutes 

of Health, Bethesda, MD, USA). DAPI was excited at 365 nm and fluorescence recorded and 

visualised in the same way. Images (8 bit depth) were then analysed and prepared for publication 

using ImageJ. 

  

Data and statistical analysis 

The data and statistical analysis comply with the recommendations on experimental design and 

analysis in pharmacology (Curtis et al., 2015). Experiments were designed to have an equal n per 

group within each protocol based on previous studies on the individual cell lines (Kennedy et al., 

2000; Morrow et al., 2014) and preliminary experiments (Kennedy et al., unpublished). Coverslips 

were excluded if the initial responses to the high concentration of agonist were too small for 

responses to lower concentrations to be measured accurately and with confidence. Values in the text 

and figures refer to mean  SEM or geometric mean with 95% confidence limits (95% cl) for EC50 

values. When appropriate, CRC were fitted to the data by logistic (Hill equation), nonlinear 

regression analysis (GraphPad Prism v7.01, San Diego, CA), and EC50 and maximum values 

calculated. The Gaddum-Schild equation was used to calculate the dissociation constant (KB) of 

AR-C118925XX in EAhy926 cells. Statistical analysis was performed using Student’s paired or 

unpaired t test, or one way ANOVA, as appropriate and as described in each experimental protocol 

above. Differences were considered significant when P<0.05. 

 

Drugs, materials and solutions 
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ATP (Na2 salt, cat. no. A7699), ADP (Na salt, cat. no. A2754), UTP (Na3(H2O)2 salt, cat. no. 

94370) and UDP (Na salt, cat. no. U4125) (Sigma-Aldrich Co, Gillingham, Dorset, UK) were 

dissolved in deionised water as 10 mM stock solution. AR-C118925XX (Tocris, Bristol, UK) was 

dissolved in DMSO as a 10 mM stock. All were frozen immediately and stored at -20°C, then 

diluted in buffer on the day of use. This was performed unblinded, as the experimenter was aware 

of which compound was being diluted. Cal-520-AM ester (Life Technologies, Paisley, UK) was 

dissolved in DMSO as a 1 mM stock solution, frozen immediately and stored at -20°C. On the day 

of use, it was diluted in buffer, as described above. Pluronic™ F-127 (Life Technologies, Paisley, 

UK) was supplied as a 20% w/v solution in DMSO and stored at room temperature. DAPI was 

obtained from Fisher Scientific UK (Loughborough, UK). Common chemicals were supplied by 

Sigma-Aldrich Co, Fisher Scientific UK (Loughborough, UK) and VWR International, 

(Lutterworth, UK) and were of the highest purity available. 0.1% DMSO has no effect on Ca2+ 

levels or nucleotide evoked responses in 1321N1 cells expressing recombinant P2Y receptors 

(Kennedy, unpublished observations). 

 

Nomenclature of targets and ligands  

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www. guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide 

to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the Concise Guide 

to PHARMACOLOGY 2017/2018 (Alexander et al., 2017). 

  

 

http://www.guidetopharmacology.org/
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Results 

Determination of the pA2 of AR-C118925XX 

The first aim of this study was to calculate the pA2 value of AR-C118925XX at human P2Y2 

receptors. Initial experiments determined the potency of the P2Y2 agonist, UTP, in 1321N1- hP2Y2 

cells and the reproducibility of its action. UTP (10 nM - 3 µM) evoked a concentration-dependent 

rise in intracellular Ca2+ with an EC50 = 82 nM (95% cl = 52 - 112 nM) (Figure 1A,B). There was 

no significant change in the EC50 of a second CRC generated on the same population of cells (107 

nM, 95% cl= 51 - 163 nM), but the maximum response according to the fit of the Hill equation was 

significantly decreased from 103 ± 1% to 97 ± 1% of the response to UTP (1 µM) in the first CRC 

(Figure 1B).  

  Preincubation with AR-C118925XX (10 nM - 1 µM) had no effect per se on intracellular 

Ca2+ levels, but produced a progressive rightwards shift in the UTP CRC (Figure 2A). The 

inhibition was surmountable and there were no differences in the maxima of the second CRCs 

obtained in the absence and presence of AR-C118925XX. A Schild plot of these data has an X-

intercept = -8.30 and slope = 0.985±0.028 (Figure 2B), giving a pA2 = 8.43 Thus AR-C118925XX 

appears to be a potent, competitive antagonist at hP2Y2 receptors. 

 

Reversibility of the actions of AR-C118925XX 

To determine if the inhibitory effects of AR-C118925XX are reversible on washout, UTP (100 nM), 

which is just above its EC50, was applied repeatedly at 10 min intervals and evoked highly 

reproducible responses in the absence of AR-C118925XX (Figure 3). Coapplication of AR-

C118925XX (30 nM - 1 µM), abolished the effect of UTP, but this recovered to time-matched 

control values when UTP was reapplied after AR-C118925XX washout. Thus the inhibitory actions 

of AR-C118925XX reverse fully on washout. 

 

Selectivity of AR-C118925XX 

The selectivity of AR-C118925XX was then investigated by determining the effects of 1 µM, a 

concentration that is 270 times greater than its KB at P2Y2 receptors (3.7 nM), at the other P2Y 

subtypes that couple to Ca2+ mobilisation. This high concentration had no effect on basal 

intracellular Ca2+ levels in any of the cell lines used, nor did it affect the rise evoked by ADP (1 

µM) in tSA201 cells, a modified HEK-293 cell line that expresses endogenous P2Y1 receptors 

(Shakya-Shrestha et al., 2010) (Figure 4A,B). Likewise, AR-C118925XX did not inhibit responses 

mediated via recombinant hP2Y1, hP2Y4, rP2Y6 or hP2Y11 receptors stably expressed in 1321N1 

cells (Figure 4B). Thus AR-C118925XX displays a high degree of selectivity for P2Y2 receptors. 
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The presence of functional P2Y2 receptors in EAhy926 endothelial cells 

The final aim of this study was to determine the role of native P2Y2 receptors in the actions of UTP. 

EAhy926 cells are an immortalised human vascular endothelial cell line (Edgell et al., 1983) that 

we previously showed to be responsive to UTP (Graham et al., 1996; Paul et al., 2000). UTP (100 

nM - 30 µM) increased intracellular Ca2+ in EAhy926 endothelial cells in a concentration-

dependent manner (EC50 = 670 nM, 95% cl = 535 - 837 nM) (Figure 5A,B). There was no 

significant change in the EC50 value when a second CRC was then constructed on the same 

population of cells (EC50 = 680 nM, 95% cl = 506 - 912 nM), but the maximum response was 

significantly decreased from 108 ± 3% to 96 ± 4% of the response to UTP (10 µM) in the first CRC 

(Figure 5B). 

 Preincubation with AR-C118925XX (30 nM), a concentration that is less than 10-fold higher 

than its KB at P2Y2 receptors and substantially lower than the concentration that we showed above 

to be inactive at other P2Y-subtypes 

 

 1.5 orders of magnitude lower than  

a concentration that is 270 times greater than its KB at P2Y2 receptors (3.7 nM) 

 had no effect on the basal intracellular Ca2+ level, but shifted the UTP curve rightwards (EC50 = 7.6 

µM, 95% cl. = 4.4 - 13.2 µM), with no decrease in maximum response (92 ± 8% of the response to 

UTP (10 µM) in the first CRC) relative to that of the time-matched control (96 ± 4%) (Figure 5C). 

Gaddum-Schild analysis gave a KB = 3.0 nM. 

 

Expression of P2Y2 receptors in EAhy926 endothelial cells 

To support these pharmacological data, P2Y2 receptor expression in EAhy926 cells was visualised 

using an anti-P2Y2 antibody that was previously used to identify an immunoreactive band of the 

predicted molecular weight of the P2Y2 receptor in Western blots of EA926hy cell lysates (Raqeeb et 

al., 2011). Furthermore, we recently demonstrated the same antibody displayed immunoreactivity in 

1321N1-hP2Y2, but not wild-type 1321N1 cells (Lee et al., 2018). Figure 6A shows P2Y2 receptor-like 

immunoreactivity in EAhy926 cells. Negative controls show a lack of staining when either the 2º or 

1º antibody was omitted (Figure 6B,C). 
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Discussion 

A major impediment to determining the functions of the majority of P2Y receptor subtypes is the 

lack of useful antagonists. By measuring changes in Ca2+ levels in cell lines expressing recombinant 

or native P2Y receptors, we demonstrated that AR-C118925XX is a very potent, selective and 

apparently competitive antagonist at the P2Y2 subtype. Furthermore, by recording from a single 

population of constantly superfused cells, we were able to show that the inhibitory effects of AR-

C118925XX reversed fully on washout. Finally, combining our knowledge of the pharmacological 

profile of AR-C118925XX, with demonstration of P2Y2-like immunoreactivity, revealed functional 

expression of endogenous P2Y2 receptors in human vascular endothelial cells. Thus AR-

C118925XX is a powerful new tool for determining the functions of P2Y2 receptors in health and 

disease and identifying new therapeutic targets. 

 

Mode of action of AR-C118925XX 

In this study, UTP evoked a concentration-dependent rise in cytoplasmic Ca2+ levels in 1321N1-

hP2Y2 cells, with an EC50 of 82 nM, which is close the value (73 nM) we reported previously 

(Morrow et al., 2014). AR-C118925XX did not affect basal Ca2+ levels on its own, but 

progressively shifted the UTP CRC rightwards, in a parallel manner and with no decrease in the 

maximum response. The slope of the Schild plot constructed from these data was almost one and 

the pA2 was 8.43, equivalent to a KB of 3.7 nM. Thus classical Schild analysis indicates that AR-

C118925XX is a competitive P2Y2 antagonist rather than a negative allosteric modulator (NAM). 

Thus far, however, the antagonist properties of AR-C118925XX have only been determined using 

Ca2+ changes as a bioassay. This is relevant because it is now clear that the apparent mode of 

antagonism of NAMs can vary depending upon the agonist used, the signalling pathway studied and 

the extent of signalling amplification. For example, BPTU, a P2Y1 NAM, caused a progressive 

rightwards parallel shift of the 2-methylthioADP CRC, with no decrease in maximum, when 

inositol phosphate production or ERK1/2 stimulation were measured, but suppressed the maximum 

when β-arrestin2-mediated P2Y1 receptor internalisation was studied (Gao and Jacobson, 2017). 

Furthermore, BPTU had a different activity profile against another P2Y1 agonist. This biased 

functional antagonism suggests that each signalling event may be mediated via a specific receptor 

conformation. 

 In the present study, AR-C118925XX had no effect on resting Ca2+. This is important because 

superfusion-induced shear stress may induce release of ATP and UTP from endothelial cells, which 

can then act in an autocrine/paracrine manner to stimulate P2Y receptors in the same or 

neighbouring cells (Wang et al., 2015; Burnstock, 2017). The lack of effect indicates that either 
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superfusion did not induce nucleotide release or, if it did, the flow rate was fast enough to wash the 

nucleotides away from the cell surface and so prevent P2Y2 receptor activation. This is consistent 

with other projects in our laboratory using constant superfusion. In no instance has an antagonist 

that inhibits an agonist-induced rise in Ca2+, caused any change in resting Ca2+ level in cells 

expressing native or recombinant P2Y receptors (Kennedy, unpublished observations). 

 While this report was in preparation, Rafehi et al., (2017a) published an improved procedure 

for synthesis of AR-C118925XX and details of its pharmacological actions at hP2Y2 receptors 

expressed in 1321N1 cells. It is notable that the reported potency of AR-C118925XX (pA2=7.43, 

KB=37.2 nM) is an order of magnitude lower than ours. Furthermore, it appeared to increase the 

maximum response induced by UTP and the Schild slope (0.816) was substantially less than one. 

Interestingly, in a subsequent study, Rafehi et al., (2017b), the IC50 of AR-C118925XX against 

responses evoked by the EC80 of UTP was 62.9 nM. EC80 is theoretically 4 times EC50, which was 

5.61 nM. Applying the Cheng-Prusoff equation generates a KB for AR-C118925XX of 

approximately 13 nM, which is closer to the value calculated here. Shortly afterwards, a group from 

AstraZeneca described the original design and synthesis of AR-C118925XX and reported pA2 and 

KB values of 7.8 and 15.8 nM respectively at hP2Y2 receptors expressed in Jurkat cells (Kindon et 

al., 2017). Neither the Schild plot nor the slope of the plot were included, however, so the mode of 

antagonism cannot be confirmed.  

 The biggest methodological difference between our study and those of Rafehi et al., (2017a,b) 

and Kindon et al., (2017) is that they used multi-well plates and a microplate reader to record 

changes in cytoplasmic Ca2+ levels. To generate a CRC, multiple populations of cells were 

stimulated once only, with a single concentration of UTP. In contrast, we constantly superfused a 

single population of cells, first generating a control CRC by repeatedly applying UTP in increasing 

concentrations and then repeating the process in the presence of AR-C118925XX. This is analogous 

to organ bath-type studies, where multiple sets of data can be generated on a single tissue. Such 

systems have an inbuilt control and less variability than microplate readers, which may be why our 

Schild plot slope was close to one. Disadvantages are that superfusion uses more drug and takes 

longer to generate data. Unsurprisingly, multi-well plates and microplate readers are much more 

widely used, but their limitations do need to be noted and considered. Accurate determination of 

antagonist KB values is essential when considering an effective concentration of antagonist to use 

when studying native receptors in healthy and diseased cells and tissues. 

 

Selectivity of AR-C118925XX 

In this study, 1 µM AR-C118925XX, a concentration 270-times greater than its KB, had no effect at 
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P2Y1, P2Y4, P2Y6 or P2Y11 receptors, so AR-C118925XX is highly selective for P2Y2 receptors 

over the other P2Y subtypes that mobilise Ca2+. This is important, as the endogenous P2Y agonists 

have complex pharmacological profiles and each stimulates at least two of the eight subtypes. UTP 

activates not only P2Y2, but also P2Y4 and possibly P2Y6 receptors (Abbracchio et al., 2006; Guns 

et al., 2006; Bar et al., 2008; Kennedy et al., 2013; Haanes et al., 2016; Refehi & Müller, 2018), so 

sensitivity of a cell or tissue to UTP isn’t proof of P2Y2 receptor expression. Furthermore, no P2Y4 

antagonists are currently commercially available, and whilst the P2Y6 antagonist, MRS2578, has 

reasonably high potency, its action is non-surmountable and irreversible (Mamedova et al., 2004) 

and effects at sites other than P2Y6 receptors have been noted (Mitchell et al., 2012). Kemp et al., 

(2004) reported that 10 µM AR-C118925XX had no effect at 37 other GPCR and ion channels. The 

only clear indication of an off-target action of sub-µM concentrations is at P2X3 receptors, with an 

IC50 of 819 nM (Rafehi et al., 2017a). The KB was not calculated, however. Nonetheless, AR-

C118925XX is clearly highly selective for P2Y2 receptors and its introduction into the P2Y 

pharmacopoeia is a major advance in the purinergic field. 

 

Native P2Y2 receptors in human endothelial cells 

We showed here that AR-C118925XX also inhibited the rise in Ca2+ evoked by UTP in human 

EAhy926 vascular endothelial cells, in a surmountable manner. The KB, 3.0 nM, is close to that 

seen at recombinant hP2Y2 receptors and 333-fold lower than a concentration (1 µM) that is 

inactive at other P2Y-subtypes. Thus UTP appears to act via P2Y2 receptors to mobilise Ca2+ in 

EAhy926 cells. This is consistent with our demonstration of P2Y2-like immunoreactivity and the 

detection of P2Y2 mRNA and protein in these cells (Raqeeb et al., 2011).  

 UTP has long been known to have multiple actions on endothelial cells, including inducing 

inositol phosphate metabolism, Ca2+ mobilisation, PGI2 and NO release and vasodilation (Needham 

et al., 1987; O’Connor et al., 1991; Ralevic et al., 1991; Raqeeb et al., 2011; Lustig et al., 1992; 

Motte et al., 1993; Wilkinson et al., 1993), but its site of action was unclear. As noted above, UTP 

stimulates several P2Y subtypes, and mRNA and, to a lesser extent protein, for most P2Y subtypes 

are found in endothelial cells (Burnstock & Knight, 2004; Erlinge & Burnstock, 2008). Some 

insight has been provided by P2Y2 receptor knockout (Guns et al., 2006; Bar et al., 2008; Haanes et 

al., 2016) and knockdown (Raqeeb et al., 2011), but although these are powerful techniques, they 

have limitations. Potent, selective, competitive antagonists, like AR-C118925XX, have the 

advantages of ease of use and applicability in humans and are a powerful, complimentary tool for 

studying receptor function. We recently used the dual approach of AR-C118925XX and 

immunoreactivity to show that P2Y2 receptors are present in rat carotid artery endothelial cells and 
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couple to Ca2+ mobilisation (Lee et al., 2018). Thus P2Y2 receptors may be a major site of action of 

UTP in vascular endothelial cells in general. 

 

Conclusion 

P2Y2 receptors are expressed in many tissues and cell types in humans, but the lack of useful 

antagonists has hindered determination of their physiological and pathophysiological roles. 

Nonetheless, potential therapeutic targets have been proposed, including colorectal cancer (Gendron 

et al., 2017), atherosclerosis, nephrogenic diabetes insipidus and osteoporosis (see Rafehi et al., 

2017a; Rafehi & Müller, 2018). As the only potent, selective and competitive P2Y2 antagonist 

currently available, AR-C118925XX will be invaluable in identifying native P2Y2 receptor function 

and their relevance as a target for the development of novel therapeutic agents. 
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Figure 1 UTP elicits reproducible CRC in 1321N1-hP2Y2 cells. 

A) The superimposed traces show changes in Cal-520 fluorescence evoked by superfusion of cells 

with UTP (10 nM - 3 μM), as indicated by the horizontal bar. All records are from the same 

population of cells. B) The mean peak amplitude of responses evoked by UTP are shown (n=6). 

Two consecutive CRC were constructed per coverslip of cells. The data are expressed as a 

percentage of the response to UTP (1 µM) in the first CRC. Vertical lines show SEM. For some 

points, the error bars are shorter than the height of the symbol. The curves represent the fit of the 

Hill equation to the data. 
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Figure 2 AR-C118925XX is a competitive antagonist at hP2Y2 receptors. 

A) The mean peak amplitude of responses evoked by UTP (10 nM - 300 μM) in 1321N1-hP2Y2 

cells in the absence and presence of AR-C118925XX (10 nM - 1 μM) is shown (n=6 each). The 

data are expressed as a percentage of the response to UTP (1 µM) in the control CRC for each 

coverslip of cells. Vertical lines show SEM. For some points, the error bars are shorter than the 

height of the symbol. The curves represent the fit of the Hill equation to the data. B) A Schild plot 

constructed from the data in panel A) is shown. The straight line represents the fit of the data by 

linear regression (r2 = 0.0996). The horizontal lines indicate the mean of the values.
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Figure 3 The inhibitory actions of AR-C118925XX are reversible. 

The graph shows the time-course of responses evoked by repeated addition of UTP (100 nM) to 

1321N1-hP2Y2 cells at 10 min intervals in the absence (0 min), presence (10 min) and following 

washout of AR-C118925XX (30 nM - 1 μM) (20-80 min) (n=5 each). AR-C118925XX was added 

for 5 min as indicated by the horizontal bar. The data are expressed as a percentage of the control 

response to UTP, obtained before AR-C118925XX addition (0 min). The open circles and dashed 

line show the time-matched control when AR-C118925XX was not applied to the cells. Vertical 

lines show SEM. 
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Figure 4 AR-C118925XX is selective for hP2Y2 receptors. 

A) The superimposed traces show changes in Cal-520 fluorescence evoked by superfusion of 

tSA201 cells with ADP (1 µM), as indicated by the horizontal bar, in the absence (black line) and 

presence (blue line) of AR-C118925XX (1 µM). All records are from the same population of cells. 

B) The peak amplitude of responses evoked by ADP (1 µM) in tSA201 cells, ADP (100 nM) in 

1321N1-hP2Y1 cells, UTP (1 µM) in 1321N1-hP2Y4 cells, UDP (100 nM) in 1321N1-rP2Y6 cells 

and ATP (2 µM) in 1321N1-hP2Y11 cells in the presence of AR-C118925XX (1 µM) are shown 

(n=5 each). They are expressed as a percentage of the agonist control response, obtained before AR-

C118925XX addition. The horizontal and vertical lines indicate mean and SEM. 
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Figure 5 UTP acts at P2Y2 receptors in EAhy926 endothelial cells. 

A) The superimposed traces show changes in Cal-520 fluorescence evoked by superfusion of 

EAhy926 cells with UTP (100 nM - 30 µM), as indicated by the horizontal bar. All records are from 

the same population of cells. B) The mean peak amplitude of responses evoked by UTP (100 nM - 

30 μM) when two consecutive CRC were constructed per coverslip of cells, is shown (n=5). C) 

shows the same when the 2nd curve was generated in the presence of AR-C118925XX (30 nM) 

(n=5). The data are expressed as a percentage of the response to UTP (10 µM) in the first CRC. 

Vertical lines show SEM. For some points, the error bars are shorter than the height of the symbol. 

The curves represent the fit of the Hill equation to the data. 
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Figure 6 P2Y2 receptor immunostaining in EAhy926 endothelial cells. 

Representative images show; nuclear staining by DAPI (blue, left hand column), P2Y2 receptor-like 

immunoreactivity (green, middle column) and overlay of both (right hand column), when cells were 

incubated with A) both 1º and 2º antibodies, B) the 1º antibody only and C) the 2º antibody only. 

Scale bars = 50 μm. 

A) 1º+2º ab 

B) 1º ab only 

C) 2º ab only 
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