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Abstract 

Traffic-related air pollution has been a serious concern amongst policy-makers and the public due to its 

physiological and environmental impacts. An early warning system based on accurate forecasting tools must 

therefore be implemented to circumvent the adverse effects of exposure to major air pollutants. A multilayer 

perceptron neural network was trained and developed using air pollution and meteorological data over a two-year 

period from a monitoring site in Marylebone Road, Central London to predict roadside concentration values of NO2 

24 hours ahead. Several hybrid models were also developed by applying feature selection techniques such as 

stepwise regression, principal component analysis, and Classification and Regression Trees to the neural network 

model. Most roadside pollutant variables, e.g., oxides of nitrogen, were found to be significant in predicting NO2. 

The statistical results reveal overall prediction superiority of the hybrid models to the standalone neural network 

model. 
 
© 2017 The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility of the scientific committee of the 9th International Conference on Applied Energy. 
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1. Introduction and Literature Review 

Traffic-related air pollution has been one of the major concerns amongst researchers and legislators due to its 

consequent impacts on human health and environment. In 2012, one-eighth of the total number of deaths worldwide 

was reportedly attributed to air pollution [1]. Air pollution poses a huge challenge in most metropolitan areas, such  
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as Central London which recently breached the European Union (EU) legal limit of 40 ȝg/m3 of nitrogen dioxide 

(NO2) on average per year. A brown toxic gas resulting from road traffic emission, NO2 has been linked to several 

respiratory illnesses, including asthma in children [2]. Immediate action must therefore be made to manage and 

minimise pollution-related mortalities in the future. While the installation of monitoring devices on pollution 

hotspots for mitigation and policy-making purposes is necessary, a prognostic approach is needed to take preventive 

actions when pollution concentrations exceed imposed limits. Hence, the development of tools for accurate short-

term forecasting and control of air pollution is of paramount importance.  

Air pollution models can be generally categorised into two types: namely, deterministic (or mechanistic) and 

statistical (or data-driven) approaches. Deterministic models rely on the mathematical representation of various 

physical transport and chemical reactions of pollutants, making them time-consuming and computationally 

expensive [3]. Because of these limitations, statistical models have become popular alternatives to the said approach 

due to their ability to establish a relationship between the predictors and the output variables without scrutinising all 

the physical parameters behind the transformation and dispersion processes of the pollutants.  

Amongst these statistical models, artificial neural networks (ANNs) have often been employed in forecasting. 

ANNs are mathematical models that can mimic the learning processes of a biological brain. Compared to its 

conventional linear counterparts such as multiple linear regression (MLR) and partial-least squares regression (PLS) 

models, ANNs are capable of modelling complex and nonlinear relationships between input and output variables. 

Several forms of ANNs have been recently used in the field of atmospheric modelling, including the multilayer 

perceptron (MLP), radial basis function (RBF), and Elman neural networks [4]�[6]. 

Due to the black box nature of the modelling scheme of ANNs, neural networks are, however, unable to detail the 

underlying physical or chemical processes of air pollutants. This leaves the modellers the dilemma of choosing the 

more significant variables for a specific forecasting application, thus relying on a large set of available data. 

However, model complexity tends to increase as the number input dimensionality increases, resulting to poor model 

performance. Previous works highlighted the need to apply the process called feature selection to rectify this issue 

[7]-[10]. Feature selection identifies an optimal set of predictors to minimise model complexity and consequently 

improve the performance of any model.  

ANN modelling tends to be site-specific, i.e., the developed ANN models are applicable only for the area where 

the data were obtained [11]. In the context of the successful implementation of several feature selection techniques 

in past case studies, this work will further investigate the effectiveness of the said technique in the development of 

forecasting tool that can estimate the hourly levels of NO2 at a different location. This is achieved by developing 

several MLP models based on Classification and Regression Trees (CART), stepwise regression, and principal 

component analysis (PCA) techniques. 

 

2. Methodology 

The modelling methodology of the study is illustrated in Fig.1 (a). Data was first gathered and preprocessed 

before being fed to train a neural network model. Several variants of the model were then developed based on the 

various sets of model predictors identified by some feature selection techniques. Lastly, several metrics were used to 

measure and compare the performance of the models. The following sections shall describe the aforementioned 

procedures in details. 

 

2.1 Data collection and preprocessing 

The site selected in this case study is Marylebone Road, London, which is a busy road comprising of three lanes 

of traffic in each direction and carrying approximately 80,000 vehicles per weekday. Hourly air pollution and 

meteorological data from January 2008 to December 2009 were collected from two monitoring sites, namely, 

London Marylebone Road (LMR) (latitude/longitude: 51.522530, -0.154611; altitude: 35m) and London 

Bloomsbury (LB) (latitude/longitude: 51.522290, -0.125889; altitude: 20m), both belonging to Automatic Urban and 

Rural Network (AURN) of the UK. Fig. 1 (b) depicts the location and the urban layout of LMR station. LMR is a 

kerbside site while LB is an urban centre site in a small square surrounded by less busy roads 2 km to the east [12]. 

The latter accounts for the urban background for the former site. Table 1 shows a summary of collected hourly 
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pollutant data and meteorological values from both urban and background settings. The variable names of predictors 

that were collected from the background site are followed by the code �bg�. 

Variables with large magnitudes have the tendency to mask those with small ones which, in effect, would create 

some discrepancies in the model results [4]. Hence, all input data were initially normalised into values ranging from 

0 to 1 based on the maximum and minimum of each variable. Moreover, time steps with at least a missing parameter 

value were excluded from the input in order to avoid any estimation error for the lacking data. 

Fig. 1. (a) Flowchart of the modelling methodology; (b) London Marylebone Road monitoring site [13]. 

 

Table 1. Descriptive statistics of hourly air pollutant and meteorological data for the period January 2008 to December 2009 

 

 

 

 

 

 

 

2.2 Multilayer Perceptron (MLP) network 

2.2.1  MLP Architecture 

A multilayer perceptron (MLP) neural network was selected due to its popularity to model highly nonlinear 

functions [9][14]. An MLP network is composed of interconnected neurons or nodes, namely, the input, output and 

hidden layers. The number of nodes in the input layer depends on the number of input variables, while the output 

layer consists of a single node resembling the target variable, e.g. NO2 concentration. On the other hand, a network 

can have more than one hidden layer, each having multiple neurons. An approximation result by Kolmogorov was 

used to bypass this uncertainty [15]. Figure 2(a) illustrates an MLP with three layers. The network operates by 

feeding a set of values, i.e., x1, x2,�, xN, through the nodes of the input layer, and transmitting the sum of their 

weighted values to the hidden layer through some nonlinear activation function. Mathematically, the process can be 

expressed as 

 

,
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where ݇ is the number of nodes in the hidden layer, ܰ is the number of nodes in the input layer, ݔො௝ is the output 

value of node ݆ , ݓ௝ǡଵǡ ௝ǡଶǡݓ ǥ ǡ  ௝ǡே  and ௝ܾ are, respectively, the weighting and bias factors of node ݆ in the hiddenݓ

layer, and ݂ is the logistic sigmoid activation function given by 
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NO  ug/m3 [1, 713] 135.70 106.55 

 
CO_bg mg/m3 [0.1, 1.6] 0.26 0.17 

NOX  ug/m3 [10, 1398] 322.33 215.47 
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where ݁ ൎ ʹǤ͹ͳͺʹͺ. Given the weighting and bias factors wj and b, the single node in the output layer computes its 

output yt, the target at time t, in the same way: 
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2.2.2  Model training, validation and testing 

Out of the 7566 collected temporal data points, 5296 points (70%) were allocated for training, while 1135 points 

(15%) were used for both validation and training sets. The partitioning was done randomly to ensure that every 

element of the subsets represents the entire dataset. The training set was used to determine the optimal values of the 

individual weights of the MLP network. The network was trained using the Levenberg-Marquardt backpropagation 

algorithm, which adjusts the values of weights between interconnecting neurons based on some error function of the 

model and target values to minimise the overall error [16]. The algorithm is based on a non-linear optimization 

method called the gradient descent. The simplified outline of the algorithm is depicted in Figure 2(b). The trained 

network was then applied to the validation and test data set to estimate the target output using the lagged values for 

24 hours of the aforementioned pollutant and meteorological data. All of these methods were implemented in 

MATLAB R2017a software.  

Fig. 2. (a) The MLP model architecture; (b) The backpropagation algorithm 

 

2.3 Feature Selection 

The three feature selection methods considered in the study are the following:  

• Stepwise regression is a linear search strategy that is based on two known predictor selection techniques, 

namely, forward selection and backward elimination methods. Forward selection begins with no predictors in 

the model and subsequently adds the one that improves the model performance, e.g., having the highest 

correlation with the target output. Backward elimination commences with all inputs and iteratively eliminates 

one that provides the least increase in the squared error.  

• PCA operates by transforming the original input space via singular value decomposition into a set of 

orthogonal vectors, called principal components (PCs). The PCs would represent the predictors that provide the 

maximum value of variation in the input space.  
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• CART is a machine learning technique capable of building regression and categorisation models based on 

several input data. CART works by examining each predictor and partitioning the set of inputs into two classes 

(or child nodes) based on the predictor value that maximises the variance between the two groups. 

These methods are fully covered in [17][18]. The said techniques were then applied to the original dataset to 

generate new sets of input variables, thus creating three hybrid variants of the MLP model using such sets. All 

computations were implemented in MATLAB R2017a software. 

 

2.4 The Performance Indicators 

To assess the performance of the models, the following statistical descriptors were calculated:  

a) the root mean squared error (RMSE) which serves as the error function during the network testing, given by 
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b) the coefficient of determination (r2) which describes the association between the model predicted and actual 

values, given by 
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and, c) the fractional bias (FB) which measures the tendency of the model to over or under predict, given by 

 













�

�-
 2  FB  (6) 

where ǔt and yt denote the t-th predicted and actual pollutant concentration values, respectively, NS is the number of 

samples, and ߤƸ  are the overall mean and standard deviation of the predicted and the actual pollutant ߪ ො andߪ ,ߤ ,

values, respectively. 

 

3. Results and Discussion 

The of predictors and number of hidden nodes of the developed models are summarised in Table 2. The MLP 

model that did not undergo feature selection is represented by Model 1. 

The table reveals the success of the three techniques in reducing the complexity of the input space by removing 

almost more than half of the original set of input variables. The common variables that were retained in all the 

models are on-site measurements of NO and NOx, indicating which variables are significant in the characterization 

of NO2. The second most common predictors selected were temperature, hour of the day, the particulate matters, and 

CO. This finding seems to account for the close association between the said predictors and NO2 in the atmosphere 

[19]. 

The number of hidden nodes, NH, was determined by considering values from (2N+1) to 45, N being the number 

of predictors. The performance error of each model incorporating the various estimates of NH were then recorded. 

The process was repeated three times to account for the random initialization of weights between neurons. The NH 

associated with the model yielding the least average MSE results was considered the optimum value. 

 The performance metrics of each model are shown in Table 3, where the labels (1) and (0) indicate the ideal 

values for r2 and FB, respectively. Overall, the hybrid models performed better than the stand-alone MLP model. 

The given RMSE values indicate that the feature selection techniques are effective in improving the forecasting 

accuracy of the MLP model. Based on the RMSE and r2 values, Model 3 gave the best prediction results. On the 

other hand, the FB values suggest that Model 4 has the least tendency to overestimate or underestimate NO2 

measurements. Lastly, Figure 3 illustrates the predicted NO2 values by Model 3 against the actual pollutant readings 

on the test set. The time series clearly agrees with the satisfactory overall performance of the model as it captured 

the actual hourly fluctuations of NO2.  
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Table 2. List of MLP models with their respective predictors and number of nodes in the hidden layer 

Model Name Predictors NH 

Model 1: MLP All 39 

Model 2: MLP + CART Hour, NO, NOx, PM10, O3_bg, NO_bg, Temperature 15 
Model 3: MLP + PCA Hour, Month, O3, NO, NOx, CO, PM10, PM2.5, NO2_bg, Temperature, Wind Direction 23 

Model 4: MLP + Stepwise regression NO, NOx, CO, PM2.5, Wind Speed 11 

 
Table 3. Model Performance Statistics 

Fig.3. Predicted (Model 3) vs. actual NO2 values 

4. Conclusions 

The study investigated the effect of implementing feature selection techniques on neural network models for the 

prediction of roadside NO2 concentrations. Hybrid ANN models based on stepwise regression, principal component 

analysis, and Classification and Regression Trees were developed and tested.  

Results showed that the most significant variables in predicting roadside NO2 concentrations are roadside and 

background pollutant variables, e.g., oxides of nitrogen, and O3. This is in accordance with the strong underlying 

chemical relationship between the said atmospheric species and NO2 in ambient environment. Furthermore, a few 

meteorological variables were found to be vital in predicting NO2. Since most of these variables are atmospherically 

related to each other, applying the input selection techniques would seem practical to avoid redundancy without 

losing much information of the input space. Other feature selection techniques can be employed to further 

investigate the most important pollutant and meteorological predictors of NO2.  

The study reveals the overall prediction superiority of the hybrid models to the plain neural network model. The 

results clearly demonstrate the ability of the said models to provide accurate NO2 readings while employing only a 

few elements in the input space. In general, the current work reveals the potential of hybrid neural network models 

to be implemented in real-time forecasting of NO2 concentrations in urban settings, and confirms the results of the 

past case studies that also dealt with ANN modelling. These prediction tools coupled with smart implementation of 

air quality management plans could minimise pollution-related mortalities in the future. 
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