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ABSTRACT

We present an investigation into counter-streaming electron beams converging towards, and diverging from, a
single point in two dimensions, leading to two-stream and current filamentation instabilities, which have radial
and azimuthal density modulations, respectively. Using a semi-analytical approach and numerical simulations,
we find no evidence for the two-stream instability in this geometry, but show that the system is unstable to the
development of current filamentation.
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1. INTRODUCTION

Fluid flow can lead to several types of interactions in multiple fluid flow, which can result in instabilities. These
occur in a wide range of fluids that are common in nature, for example the Kelvin-Helmholtz instability observed
in cloud formation. Instabilities occur in fluids with a velocity sheer, where two fluids with different velocities
flowing relative to each other or at boundaries between fluids. The discontinuity in velocity causes the fluid
to “curl” into the opposite population causing waves to be formed. This is observed in wind flowing above
water, clouds, and even in the sun’s corona.1 As instabilities progress, the energy of the fluids is transferred to
turbulence, which can lead to an overall disruption of the flow. Plasma is also subject to instabilities,2–4 driven
by, e.g., anisotropic temperatures,5 counter-propagating particle flows,6,7 or inhomogeneous densities.7 These
include two-stream and current filamentation, Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Plasmas
are central to achieving nuclear fusion in magnetic (tokamaks)3 or inertial confinement, acceleration of charged
particles using wakefields,8 and astrophysical phenomena such as gamma ray bursts from galaxies2 and first-order
Fermi acceleration.2 The study presented here focuses on two-stream and current filamentation instabilities in
converging geometries, which should have wide application.

2. TWO-STREAM AND CURRENT FILAMENTATION INSTABILITIES

Plasma instabilities can arise from particle populations flowing relative to each other where a classic example is the
two-stream instability (TSI).3,7 Modes develop with wavevectors parallel to the direction of propagation, making
this instability electrostatic in nature. When particle populations overlap, their mutual perturbation leads to
out-of-phase oscillations and bunching of particle populations and corresponding electric fields. Using a fluid
model we linearise the continuity and momentum equations, and use Gauss’s Law to obtain a dispersion relation
for wavenumber and frequency. We assume perturbations with a harmonic dependence ψ(r, t) = ψ exp[i(kkk·rrr−ωt)]
where ω is the frequency and kkk is the wave vector of the perturbation. The growth rates are given by the positive
imaginary parts of the complex solutions of the frequency. In the cold, non-relativistic and homogeneous case,
the dispersion relation has the form

D(ω, k) = ω2
p

(

1

(ω − kū)2
+

1

(ω + kū)2

)

− 1 = 0, (1)
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where ū is the equilibrium velocity of the particles, ωp =
√

n̄e2/(mǫ0) the plasma frequency, e is the electron
charge, n̄ is the equilibrium number density, m is the mass of the particles, and ǫ0 the free space permittivity.
There are two singularities in this dispersion relation, ω = ±ku, corresponding to the frequency shifts for the
fluids streaming with, or counter to, the propagating modulations. Furthermore, the growth rate can be obtained
by solving for the square of the frequency

ω2 = k2ū2 + ω2
p ± ω2

p

√

1 +
4k2ū2

ω2
p

. (2)

One is negative for 0 < kū <
√
2ωp, which corresponds to the growth rate

ΓTSI =

√

√

√

√ω2
p

√

1 +
4k2ū2

ω2
p

− k2ū2 − ω2
p. (3)

The cutoff at k =
√
2ωp/ū restricts the two-stream instability to small wavenumbers.

The current filamentation instability, on the other hand, leads to density modulations with wavevectors
perpendicular to the propagation direction. These are electromagnetic in nature. As the streams of charged
particles propagate through each other, they interact through magnetic repulsion of counterstreaming current
filaments, while attracting co-moving particles. An imbalance due to density modulations gives rise to a net
force that enhances the modulation.5,6

In the same way as for the two-stream instability, the current filamentation instability can be studied by
obtaining a dispersion relation from the linearised continuity, momentum and Maxwell’s equations

D(ω, k) = ω2 − c2k2 − 2ω2
p −

2ω2
pk

2ū2

ω2
= 0, (4)

which can be solved to obtain the unstable modes that have a growth rate

ΓCFI ≈ ūk
√

1 + c2k2

2ω2
p

. (5)

This increases asymptotically to
√
2ωpū/c as k → ∞. One can compare the two-stream and current filamen-

tation growth rates and the ranges where their growth is finite. The two-stream and the current filamentation
instabilities are observed in Fig 1 to have the same growth rate for small k. However, the current filamentation
instability exhibits growth over a larger range of wavenumbers. The unstable modes grow as long as the particle
populations interact and the instability reaches saturation when the modulation becomes comparable with the
background density. From Fig 1, one can observe how the difference in modulation direction can change the
growth rate. Note that arbitrary angles between the streaming velocity and the modulation wave vector results
in hybrids of both instabilities.9,10 Due to the larger range of wave numbers, it is more common to observe the
current filamentation instability in nature than the two-stream instability.

3. SEMI-ANALYTICAL APPROACH

Plasma streams flowing in converging geometries are found in nature and man-made “laboratories”, including
stellar, space plasma and inertial confinement fusion. Converging geometry refers to a flow that converges to a
specific point, which leads to a number density that depends on position. The specific type of geometry to be
studied in this case is a disk with two particle populations, one propagating radially inwards, whilst the other
propagates radially outwards. Both populations, in this case electrons, interact when they pass through each
other. In a homogeneous system, this would satisfy the criteria for streaming instabilities to occur. The dynamics
of the electrons in this geometry is studied for a cold, non-relativistic plasma using the the continuity, momentum,
and Maxwell’s equations to obtain dispersion curves. This is a challenging task because the equilibrium number



Figure 1. The growth rate for the two-stream and current filamentation instabilities, showing that they have different
ranges. The two-stream instability has a cutoff at k =

√

2ωp/ū, while the current filamentation instability continues to
exhibit growth beyond this cutoff.

density is not homogeneous. We assume a constant unperturbed radial velocity in the continuity equation and
a time independent unperturbed number density when deriving the general form for the equilibrium number
density, n̄ ∝ 1/r, where r is the distance from the centre of the disk and the bar denotes the equilibrium
solutions. Since the equilibrium number density depends on r, it is no longer useful to take the Fourier transform
with respect to r. It would involve convolutions with the Fourier transforms of the background density and
therefore would not lead to a simple replacement of the derivative ∂r → ikr. However, we can still assume
that the perturbations of number density ñ , velocity ũ and electromagnetic fields Ẽr, Ẽθ, B̃z have a harmonic
dependence ψ(r, θ, t) = ψ(r) exp[i(lθ − ωt)] on time t and azimuthal angle θ, allowing substitutions of the form
∂θ = il, ∂t = −iω. Local or WKB approximations can only be utilized for large r, where the density varies
slowly. The latter assumes |∂rkr| ≪ |kr|2 and as r → 0 the wavenumber can vary rapidly.

The radial dependence of the perturbations is determined from a set of coupled ordinary differential equations
for a general case with azimuthal dependence

∂rñ± =

[

iω

ū±
− 1

r

]

ñ± − iωn̄ũ±,r −
iln̄

ū±, r
+

n̄

ū2±
Ẽr, (6)

∂rũ±,r = − e

mū±
Ẽr +

iω

ū
ũ±,r, (7)

∂rũ±,θ = − e

mū±

[

Ẽθ − ū±B̃z

]

+
iω

ū±
ũ±,θ, (8)

∂rẼr = −(ñ+ + ñ−)−
1

r
Ẽr −

il

r
Ẽθ, (9)

∂rẼθ = iωB̃z −
Ẽθ

r
+
il

r
Ẽr, (10)

∂rB̃z = iωẼθ + n̄[ũ+,θ + ũ−,θ], (11)

where the subscripts ± denote the populations propagating radially outwards and inwards, respectively, tilde
denotes perturbations, bar the equilibrium components with ū+ = −ū− = ū, and both populations have the
same equilibrium number density n̄+ = n̄− = n̄. These equations can be summarized as

N ′ − ΛN = 0, (12)

where N is a vector containing the perturbed components, N ′ is the derivative of vector N with respect to
the radial coordinate r, and Λ is a matrix with the coefficients (some of which depend on r) multiplying the



perturbations. The boundary conditions are set so that every vector is 0 at the origin, and to be continuous,
∂rẼr = 0 at r = 0, therefore the number densities are ñ+ = −ñ−. The general matrix enables solutions for the

Figure 2. Real parts (left) and imaginary parts (right) of ik of the reduced matrix Λ for the two-stream case. The former
correspond to inward and outward propagation of perturbations, while the latter corresponds to decay or growth of their
amplitudes with r.

two-stream instability to be obtained by setting l, the azimuthal electric field and velocities, and the magnetic
field to zero, which eliminates an azimuthal dependence.

The results for this case do not show evidence of an instability. The eigenvalues λ = ik of the matrix Λ
yield radial wave numbers k that depend on r. The real parts of the wave numbers correspond to inward and
outward propagating waves for Re[k] < 0 and Re[k]> 0, respectively. The imaginary part of k gives the radial
dependence of the modulation amplitude; Im(k) > 0 corresponds to decreasing amplitudes as r increases. Fig 2
shows no coalescence of k-branches corresponding to incoming and outgoing waves, which implies no instability.
There is a solution that is purely decaying, but this is due to the geometric effect resulting from convergence or

Figure 3. Real parts (left) and imaginary parts (right) of the eigenvalues ik of the full matrix Λ for the current
filamentation case, with l = 23. The former correspond to inward and outward propagation of perturbations while the
latter to decay or growth of their amplitudes with r.



divergence of the flow and does not indicate an instability.

As the current filamentation instability exists over a larger range of wavenumbers in homogeneous plasma, it
is likely that instabilities also occur in the inhomogeneous case. The search for this kind of instability proceeds in
the same way as for the two-stream case described above, but now the analysis includes the azimuthal components
of the velocity perturbation and electric field, an axial magnetic field, and dependence on the azimuthal angle θ.

Fig 3 demonstrates that negative and positive real parts of the complex wave number k (incoming and
outgoing waves) coalesce for decreasing r, near r = 22.1 and r = 2.1, respectively, while simultaneously the
corresponding imaginary components of k bifurcate. This provides evidence of an instability.

4. SIMULATIONS

The converging plasma beams are simulated using the particle-in-cell code, EPOCH.11 The initial conditions are
two ring-shaped electron bunches respectively propagating radially inwards and radially outwards arranged so
they can cross and interact in a similar way to that of the semi-analytical approach described above.

The two annular bunches will propagate with opposite equal velocities and because their charge density varies
as the bunches propagate, they are set up to have the same charge at the time of complete overlap with a number
density of n± = 1025 m−3, with a relativistic factor of γ = 2. The bunches have a width of 2.2 µm and are
separated by 4.4 µm.

Figure 4. The initial conditions for two counterstreaming
electron bunches. LHS/RHS showing inward/outward prop-
agating bunches (bunch 1 and bunch 2) in a colour coded
plot. A number density per angle of both bunches is beneath
bunch 1 and a Fourier transform of the density as a function
of angle is shown below bunch 2.

Figure 5. Plot showing the density and Fourier
transform after the beams have crossed.)

One would expect filament-like structures to develop due to the current filamentation instability. However,
Fig. 4 and Fig. 5 do not show obvious emergence of any structures provoked by this instability. It is reasonable
to assume that the lack of growth is due to the short interaction time for instabilities to develop from noise
and geometrical effects due to radial expansion. To test this, an initial modulation of one of the bunches
is implemented to initiate the instability. This requires a radial modulation for the two-stream instability, i.e.,
parallel to the propagation of the bunches with a wavelength chosen to be in the unstable regime. This is achieved
by imposing a small amplitude (10% of the average) sinusoidal modulation in the number density. When the
bunches interact, this should instigate modulation as in the initially homogeneous bunch, which should, in turn,
enhance the original modulations if there is an instability. This should show as an increase in signal strength,
i.e., modulation amplitude in both bunches. Furthermore, the modulations should be out of phase by a factor
of π.

In Fig 7 showing the density after interaction, no modulation develops in the unmodulated bunch. This
confirms the semi-analytical results, which show that two-stream type instability does not develop.



Figure 6. As in the previous figure but with a 10% sinusoidal
modulation in the number density of bunch 1 whilst bunch 2
is unmodulated. Below, the azimuthal density plot for both
bunches and its Fourier transform.

Figure 7. As in Fig. 6 but after interaction.

The current filamentation instability leads to current modulations with wavevectors perpendicular to the
propagation direction. To seed such instabilities, a sinusoidal modulation in the number density of strength 10%
is imposed in the azimuthal direction. Apart from this, the simulation parameters are exactly the same as in

Figure 8. initial conditions with 10% of the average density
modulation in the azimuthal direction (bunch 1).

Figure 9. Timestep at 20 fs demonstrating a mod-
ulation present in bunch 1 post-interaction.

the previous case. An instability would result in modulations of both bunches out of phase by π. A modulation
develops in the unmodulated bunch with a phase difference of ≈ π. Fig. 8 and Fig. 9 show evidence of the current
filamentation instability through an increase in signal strength of the modulation, and a phase difference of π
between the two modulations. The amplitude of the seed modulation grows before interaction with the second
bunch because of the increase in density as the seeded bunch moves inwards. However, during interaction the
second bunch picks up the modulation at l = 23 even though the density of this bunch decreases, which suggests
that the effect of the instability is stronger than the geometric effects of the expansion. The extra modulation
at l = 4, is an effect of the Cartesian simulation grid.

5. CONCLUSIONS

We have investigated instabilities when counter-streaming electron beams interact as they converge/diverge
towards/away from a point in two dimensions. Semi-analytical results provide no evidence of a two-stream
instability, corresponding to radial density modulations, in this geometry. PIC simulations confirm the semi-
analytical results because there is no evidence of instabilities. In contrast, we have shown that the system is
unstable to azimuthal filamentation in the semi-analytical approach, which PIC simulations confirm.
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