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Abstract

Pre-processing is an essential step in the analysis of spectral data. Mid-IR spectroscopy of 
biological samples is often subject to instrumental and sample specific variances which may 
often conceal valuable biological information. Whilst pre-processing can effectively reduce 
this unwanted variance, the plethora of possible processing steps has resulted in a lack of 
consensus in the field, often meaning that analysis outputs are not comparable. As pre-
processing is specific to the sample under investigation, here we present a systematic 
approach for defining the optimum pre-processing protocol for biofluid ATR-FTIR 
spectroscopy. Using a trial-and-error based approach and a clinically relevant dataset 
describing control and brain cancer patients, the effects of pre-processing permutations on 
subsequent classification algorithms were observed, by assessing key diagnostic performance 
parameters, including sensitivity and specificity. It was found that optimum diagnostic 
performance correlated with the use of minimal binning and baseline correction, with 
derivative functions improving diagnostic performance most significantly. If smoothing is 
required, a Sovitzky-Golay approach was the preferred option in this investigation. Heavy 
binning appeared to reduce classification most significantly, alongside wavelet noise 
reduction (filter length ≥ 6), resulting in the lowest diagnostic performances of all pre-
processing permutations tested. 

Page 2 of 24Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

N
ov

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
St

ra
th

cl
yd

e 
on

 1
1/

22
/2

01
8 

10
:3

1:
07

 A
M

. 

View Article Online
DOI: 10.1039/C8AN01384E

http://dx.doi.org/10.1039/c8an01384e


Introduction

A single IR spectrum obtained from a biological specimen contains not only the information 
of interest, but also underlying contributions from unwanted signals. Optimised sampling 
methods are essential to reducing this variability; however, these contributions are often still 
apparent in the subsequent dataset. Pre-processing can be defined as the reduction of these 
uncontrolled variables and can improve the experimental outcomes of spectral investigations.

Extracting biological variance arising from the sample itself is often the key aim of 
spectroscopic studies of biological materials. Whether this is exploratory or diagnostic, 
differences in biological content, molecular structure and distribution can allow differences to 
be observed within the dataset. However, spectra can also contain variance as a result of 
environmental, experimental and technical conditions. Respectively, factors such as 
humidity, sample morphology, and instrumental drift can all have negative impacts on 
spectral quality, repeatability and reproducibility (1). 

The purpose of pre-processing is to reduce this unwanted variance, thus exposing the 
important underlying information from the spectral dataset. Consequently, pre-processing can 
improve exploratory analysis, classification and calibrations models, and interpretability 
whilst also removing outliers and trends, and reducing dimensionality (2) . It is important to 
acknowledge that pre-processing is not a solution to poor spectral data that arises from 
inherent issues with sample preparation and spectral acquisition. Whilst pre-processing may 
improve poor spectra, it is first imperative to obtain the highest quality spectra possible, 
within the constraints of sample and instrument (3) . 

Fourier-transform Infrared (FTIR) spectroscopy has been widely applied to biological 
applications, due to its ability to identify chemical bonds characteristic of biological samples. 
More specifically, FTIR spectroscopy has been increasingly used as a tool to identify and 
differentiate disease status, in combination with machine learning and classification 
algorithms (4). For such approaches to perform optimally – that is with the highest 
sensitivity, specificity, accuracy and precision, in combination with low false positive and 
negative rates – the data must be pre-processed to ensure the important biological information 
is not concealed or diluted by systematic variance. Different combinations of pre-processing 
techniques have been shown to have a drastic impact on the diagnostic performance of 
machine learning algorithms, and thus an optimised approach to data handling must be 
employed prior to this form of analysis (Trevisan et al., 2012; Gajjar et al., 2013) 

Sources of variance in FTIR spectroscopy

One of the primary sources of unwanted variance in an infrared (IR) spectrum derives from 
the phenomena of light scattering. Biological molecules absorb light in the mid-IR (MIR) 
region due matched frequencies between the incoming light and specific chemical bond 
vibrations (8). FTIR spectroscopy is able to produce an information rich spectrum that is 
indicative of the sample’s discrete biochemical fingerprint. Due to this, the technology is 
widely implemented in the field of biological sciences, with applications spanning clinical, 
microbiological, pharmaceutical and food fields (9,10). However, despite the suitability of 
MIR light for analysing molecular vibrations of interest, the wavelength of this light (2.5 – 25 
µm) is also highly correlated with the size of many biological samples, including cells and 
their subcellular components. These are ideal conditions for light scattering which can cause 
aberrations to the spectral baseline, and thus presents one of the most common issues in FTIR 
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investigations (11). This particular form of scattering is defined as Mie scattering and results 
in spectra that do not obey the principles of Beer-Lambert’s Law, often altering the intensity 
and position of the amide I band  (12,13). Scattering is also apparent in the analysis of 
powders, or other solids with uneven surfaces. As scattering is wavelength dependent (shorter 
wavelengths are more prone to scattering), a subsequent spectrum will often have higher 
absorption in the high wavenumber region (14) .

Furthermore, noise is an inherent issue with FTIR and other photonic techniques, that is 
apparent as high frequency signals within a spectrum. This noise can arise from electrical 
signals, mechanical vibrations, and environmental parameters, which are often unavoidable. 
A cooled detector, such as a deuterated triglycine sulfate detector (DGTS) can reduce 
thermal, or dark, noise in an IR system although not entirely (3) . Increased spectral noise can 
often overshadow subtle spectral features, and thus spectral quality is often assessed as a 
value of signal-to-noise, or the signal-to-noise ratio (SNR). 

The optical pathlength of a system is directly implicated in Beer-Lambert’s Law, and as such, 
FTIR spectra can also contain evidence of pathlength heterogeneity. This can commonly arise 
as a consequence of disparity in sample thickness, but can also occur due to intensity changes 
in the IR source (2) . The evidence of this is what may initially appear are gross spectral 
differences in absorbance, but are in actual fact indicative of inconsistencies in the sampling. 
Although not exhaustive, these factors can conceal interesting biological information by 
reducing the quality, accuracy and precision of IR spectra. By pre-processing data with 
evidence of such spectral features, the repeatability and reproducibility of the approach can 
be improved dramatically, leading to more insight in the data.

Pre-processing for FTIR spectroscopy

There is a wealth of pre-processing options available for spectral datasets, often providing 
more than one solution. Although this flexibility allows for optimised signal processing, the 
number of processing options available can often prove too large to systematically determine 
the best approach (15) . In this instance, we focus upon relevant pre-processing steps for 
FTIR spectroscopy, although this may draw from information from other techniques. Some 
processes are technique-specific, such as cosmic ray removal in Raman spectroscopy, but 
many are applicable to a wide range of spectroscopies including NMR and near-infrared 
(NIR) spectroscopy (16) .The development of spectral pre-processing methods has been 
largely developed in the field of NIR spectroscopy, and also has much overlap with Raman 
spectroscopy, due to similar susceptibilities to scattering and noise (14). 

For an in depth overview of pre-processing applications in IR (and Raman) spectroscopy, the 
authors direct the reader to the following comprehensive review, which covers an array of 
pre-processing steps, namely: exclusion, normalisation, filtering, de-trending, 
transformations, feature selection, folding and other methods (2). In short, FTIR datasets 
often first undergo a form of quality control; an exclusion step where spectra with poor SNR 
or high water contributions for example, can excluded from the subsequent analysis. It is 
often important to undergo this step first, so that highly variable spectra do not influence 
subsequent analysis (such as processes that use the dataset mean, such as mean centering)(17) 
. Normalisation steps are required to negate differences in optical pathlength, allowing 
spectra to scaled relative to each other (18) . Baseline correction procedures are also 
commonly acquired to remove scattering as well as additive or multiplicative baselines (19). 
Additionally, filtering, or smoothing, can reduce the appearance of noise regions, thus 
potentially improving the clarity of spectral features and SNR. Spectral derivation is a useful 
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filtering tool that can be remove baseline effects and deconvolute complex spectra, whilst 
also improving diagnostic performances of classification algorithms (20,21) 

As spectral datasets are highly dimensional, with a single spectrum alone often containing 
nearly around 3600 absorbance values, the computational burden of data processing can be 
high. A feature selection step that selects only the variables that are important to the post-
analysis, can often make a large dataset more manageable, whilst also improving overall 
analysis accuracy (22). This can often be as simple as reducing the spectral range under 
investigation, or more sophisticated multivariate approaches such as principal component 
analysis (PCA) and partial least squares (PLS) which can also describe spectral differences 
between given experimental classes (23).

Consensus in the community

Although, there have been several attempts to unify the field of biological FTIR spectroscopy 
(3,24), there still remains a distinct lack of consensus with regards to pre-processing (16). 
This issue has been directly highlighted as one of the key objectives of The International 
Society of Clinical Spectroscopy, stressing the importance of establishing consensus between 
researchers (25).

Due to the variability between biological samples, spectral artefacts will be specific for each 
sample type, and even each individual experimental set-up. This therefore requires a priori 
knowledge of the sample, and the spectral response, in order to apply appropriate pre-
processing steps. Through visual inspection of the dataset, indicators of unwanted spectral 
variance may be noticeable and thus pre-processing steps can be applied when deemed 
necessary by the analyst (16)

fig. This highly subjective approach may be the efficient with regards to analysis time, but 
will be variable between individuals. It has been shown that this may be improved using a 
trial-and-error based approach which systematically implements a range of pre-processing 
options, with the highest performing choice determined as the optimum protocol (26). A 
search algorithm, such as a genetic algorithm (GA), can optimise this process using machine 
learning to predict the optimal pre-processing steps (27) . However, despite the obvious 
benefits of this method, it can still be considered computationally heavy and is often not 
easily implemented in each spectroscopic experiment. 

The order in which pre-processing steps are implemented is also another aspect of pre-
processing to be optimised. It could be suggested that the largest source of spectral variance 
is minimised in the first instance, so that this is not influential in the next stage of analysis. 
For instance it is suggested that baseline effects should be removed prior to a normalisation 
step (15,28) . It has been suggested that the most effective approach for pre-processing is 
often the simplest, and as such the number of processes in a pre-processing protocol should 
be kept to the minimum (15). 

The optimum sample pre-processing procedure is likely entirely sample specific, with 
suggestions that this may even be specific to the classification question being asked of the 
dataset (29). For instance, samples prone to contamination, such as paraffin embedded tissue, 
may undergo specific quality tests to automatically exclude spectra containing evidence of 
the contaminant (in this case, paraffin) (30). Whereas in contrast, a cell based investigation 
may be more prone to scattering and thus require a specific baseline correction (31). 

Biofluid FTIR spectroscopy
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The analysis of biofluids, such as blood serum, using IR spectroscopy is a rapidly progressing 
field that is nearing ever closer to clinical translation (17,32,33). Due to its simplicity and 
robust methodology, the analysis of easily obtained bodily fluids using ATR-FTIR 
spectroscopy lends itself well to a rapid and cost-effective technology for clinical diagnostics 
(34,35). 

The diagnostic capabilities of this approach have been explored in a range of cancers and 
disease (6,22,36–41). The application of ATR-FTIR serum analysis for the early detection of 
brain tumour provides an example of where a spectroscopic technique is distinctly addressing 
an unmet clinical need. Due to a combination of non-specific symptoms, pressure in the 
health service diagnostic pathway, expensive neuroimaging and highly invasive biopsies – 
the diagnosis of brain tumours is often made in the case of an emergency, when the patient 
will likely have a well-developed tumour. A method of early detection would greatly benefit 
this patient pathway, allowing screening or triage into secondary healthcare (33). Recently, 
we have shown that glioblastoma (GBM) patients can be correctly identified at sensitivities 
and specificities of 91.5% and 83% respectively, using a feature-fed support vector machine 
(SVM) analysis (42). This same dataset was reanalysed using a random forest (RF) approach, 
which resulted in an improved classification performance (92.8% and 91.5%, sensitivity and 
specificity respectively) (43). The classification process was iterated up to 96 times to 
generate a robust result, and thus small differences in sensitivity and specificity can be 
expected due to effectively altering the population of patients in the training and test sets.

The range of pre-processing methods for biofluid spectroscopy described in the literature are 
variable, with a baseline correction, normalisation step the most commonly implemented. A 
specific review of pre- and post-processing in ATR-FTIR has been recently published, 
highlighting technique specific approaches to data analysis (44) . It is evident therefore, that 
even in this highly specific application there is no defined pre-processing approach that has 
been accepted. 

This study aims to optimise the spectral pre-processing approach for biofluid ATR-FTIR 
spectroscopy, for the purpose of improving a subsequent classification model. Although 
largely specific to this sample-technique scenario, the optimum pre-processing approach as 
defined by this thorough investigation may also be applicable to other sample types and 
techniques, as the approaches highlighted address many sources of variance non-
discriminately. The spectral investigation of samples, such as bodily fluids, using techniques 
that are sensitive to differences in sample thickness and inherent heterogeneity, would be 
considered the best suited application of this approach. 
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Experimental

Data processing was conducted using the PRRFECT toolbox written the R programming 
language (https://github.com/Palmer-Lab/PRFFECT (45)).The aim of this programme is to 
provide a comprehensive, robust, and interpretable system for pre- and post-processing of 
spectral datasets. In its current format, this programme follows pre-processing steps 
commonly implemented in the field of biospectroscopy, with scope for altering the order and 
parameters inputted into the processing options available. An overview of the pre-processing 
dataflow investigated in this study can be seen in Figure 1. 

Figure 1. Schematic overview of pre-processing steps explored in this study. Numbers 
describe the cumulative total of pre-processing combinations.

Each pre-processing permutation from this point onwards will be described by a 6 (or 7, in 
the case of binning with a factor of 16 or 32) identifier, which is described by Table 1. The 
calculations were run in serial on Dual Intel Xeon X5650 2.66 GHz processors at the 
ARCHIE-WeSt supercomputing center located at the University of Strathclyde in Glasgow, 
Scotland and each run performed took approximately 2 – 3 minutes.
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Dataset and Spectral Acquisition
The dataset explored in this study is that from Hands et al. 2016, where more detail can be 
found. In short, ATR-FTIR spectra obtained from 433 patients; 122 control patients and 311 
brain cancer patients. Each patient was analysed in triplicate, with three spectra obtained per 
sample, providing a total of 3,897 spectra. Spectra were obtained at a spectral resolution of 4 
cm-1, and a data spacing of 1.9 cm-1 (42). Spectra were collected using a triangular 
apodization, no zero filling factor, a 5kHz collection speed, 1.28 kHz electronic low pass 
filter, an interferogram sample interval of 2, a sensitivity factor of 1 and an asymmetric single 
sided interferogram symmetry. Primarily, the binary classification between cancer and 
control is explored as an indicator of pre-processing optimisation. However, as a further post-
comparative analysis, the effect of pre-processing on determining more difficult clinical 
questions, specifically differentiating between primary and metastatic brain cancer, is also 
explored. The research described in this paper was performed with full ethical approval 
(Walton Research Bank BTNW/WRTB 13_01/BTNW Application #1108). 

Pre-processing Options
A concise overview of the pre-processing options explored in this study are presented; full 
details are described here can be found in the article by Smith et al., 2018. The option that 
have been selected for this study encompass a range of approaches that are commonly 
implemented in IR studies of biological materials. A total of 3,528 possible pre-processing 
permutations were considered initially in this study, each generating a new dataset that is 
subsequently fed into the same classification algorithm (Figure 1). Some permutations were 
excluded from the study due to an insufficient number of data points that resulted in unviable 
spectral outputs; this was particularly significant with increased binning and larger processing 
parameters. 

Table 1. -  Explanation of identifiers for each pre-processing combinations, using numerical values. 
Each column represents each respective digit of the code, with some parameters dependent upon the 
option (or digit) before it. For example, 212133 would refer to a binning factor of 2, a SG smoothing 
with a filter order of 2, a min-max normalisation, and a rubberband baseline correction with a 
quadration equation of 3. 
Binning 
Factor*

Smoothing Smoothing 
Parameters

Normalisation Baseline 
Correction

Baseline 
Correction 
Parameters

1 0 – None 0 – None 0 – None 0 – None 0 – None 
2 1 – SG Filter 1,2,3,4,5,6 

Filter Order 
1 – Min/Max 1 – 1st 

Derivative
4 2 – Wavelet 

Denoise
4 or 6 Length 
of Filter

2 – Vector 2 – 2nd 
Derivative

8 3 – Local 
Polynomial

1,2,3,4,5,6 
Bandwidth of 
Gaussian

3 – Amide I 3 – 
Rubberband 

1,2,3,4,5,6 
Factor of 
Quadratic 
Equation

16 4 – Polynomial 1,2,3,4,5,6 
Polynomial 
Degree

32
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Binning
The spectral resolution of a spectrometer system will determine how well a spectrometer can 
distinguish between features in an IR spectrum, with a resolution of 4 and 8 cm-1 considered 
common in biological applications of IR spectroscopy. Alongside zero filling and 
interpolation of data points, the spectral resolution influences the data spacing of the resultant 
spectrum and its relative smoothness. Spectral resolution can be lost by increasing the data 
spacing within a spectrum, whilst also often increasing SNR. Binning is a method that finds 
the average of adjacent data points, thus physically reducing the number of data points in the 
dataset, that can also help reduce the dimensionality of a dataset. This can reduce 
computational burden when conducting multivariate and classification algorithms. In this 
instance, the binning factor describes the how many data points are averaged and replaced; 
for example, a bin factor of 8, represents that every 8 data points are averaged, and replaced 
by the mean value of absorbance intensity. A bin factor of 1 can be considered no binning. 

Smoothing
Smoothing is a process that will reduce the appearance of inherent noise in the dataset; 
specifically retaining low frequency components of the spectrum, whilst removing high 
frequency noise. The significant risk of smoothing is the potential loss of information from 
smoothing unresolved peaks, or spectral features that may be mistaken for noise. Savitzky-
Golay (SG) filtering is one of the most widely implemented smoothing techniques in FTIR 
spectroscopy due to its ability to minimise high frequency noise, whilst maintaining peak 
morphology. This is a local least-squares approximation of a given window size (the number 
of data point considered; always odd) that is fitted with a polynomial of a fixed degree. Here 
we describe alterations to the polynomial order rather than window size. SG filtering is often 
conducted in conjunction with derivative filtering, to overcome the reduction in SNR. There 
is a risk that incorrect tuning of these parameters will lead to peak distortions. Wavelet 
denoising could be considered an alternative approach that is suited to IR spectra (5). The 
discrete wavelet transformation that is used can visible improve spectral quality, particularly 
when the input dataset is of a high SNR (46). Also investigated was local polynomial fitting 
with Gaussian weighting, where Gaussian curves are fitted to the spectrum with varying 
Gaussian bandwidths (45).

Normalisation
Due to intrinsic differences between samples or within instruments – for instance varying 
thicknesses of a dried blood serum film – it is possible that pathlength variations can have an 
impact on IR spectra. This unwanted variance can be addressed by a normalisation step, 
which reduces intra-dataset discrepancies that can inhibit comparison of spectra (47). Min-
max scaling (0,1) as a first option, allows the user to scale all areas of the spectrum so that 
are shifted in relation to each other. The minimum and maximum absorbance values are 
always assigned to 0 and 1 respectively, with all other data points scaled accordingly. 
Alternatively, vector normalisation works by calculating the average intensity across the 
spectrum, subtracting this average value from the spectrum, then dividing by the square root 
of the sum of the squares of all intensity values. As a result of this process, the subsequent 
vector norm of the spectrum is 1, effectively mean centering and scaling the spectra (48). 
Feature-led normalisation, such as normalisation to Amide I band, scales all data point in 
the spectrum by the maximum intensity of the given feature. The amide I peak can be found 
between 1600-1700 cm-1 and is often the most intense peak in the biological IR spectrum, 
thus a commonly used feature for scaling (24). By normalising to this region, one can 
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introduce exaggerated spectral alterations in lower wavenumber regions, and minimise 
differences in protein related bands (3). 

Baseline correction 
As a technique that fundamentally observes the interaction of light with matter, IR 
spectroscopy is also influenced by scattering, as well as absorbance, of radiation. Scattering is 
undesirable in IR spectroscopy as it can reduce reproducibility and repeatability of studies.  
The wavelength of MIR (2.5 – 25 µm) used in IR spectroscopy almost matches the 
dimensions of a biological cell, meaning that there are ideal conditions for scattering (13). 
Furthermore, unless a sample can be described as truly flat, without the presence of surface 
features such as cracks, there is the possibility of scattering (49). Baseline correction 
algorithms can reduce the impact of scattering artefacts in IR datasets, as well as generally 
reducing unwanted slopes and offsets. Derivative filters are arguably the most powerful 
processing options used for pre-processing of IR spectroscopy, as they not only reduce 
baseline differences, but can also resolve overlapping spectral bands based on differentiation 
of the spectra. By deconvolution of the broad peaks of an IR spectrum further information 
can be resolved visually, as well as the benefit of often improved classification performance 
in diagnostic studies (22). Whilst the use of first and second derivatives can be beneficial, it is 
recommended only on spectra with a high SNR due to the introduction of noise during this 
process (50). Rubberband baseline correction fits a convex polygonal to troughs of the 
spectrum, typically beneath spectral peaks and effectively pulls the baseline down at these 
points (5). Whilst this is more common for processing of IR spectra, polynomial baseline 
correction is perhaps more common in Raman spectroscopy analysis, where baselines are 
often found to be less consistent than IR spectroscopy (50). In this instance, a localised 
polynomial is used to estimate the baseline, requiring user input defined the polynomial order 
of choice (51). 

Assessment of Performance
Initially, each pre-processing combination was analysed using a random forest (RF) machine 
learning algorithm. This approach uses a defined number of decision trees (in this case, 500 
trees), which subdivide during training at each or fork, or node, using randomly chosen 
descriptors (wavenumbers). The number of descriptors used was determined as the square 
root of the total number of wavenumbers in the dataset, and a minimum of 5 nodes for each 
tree was chosen (45). Each of the pre-processed datasets were split into training and test sets 
at a ratio of 2:1 based upon patient identity, with no spectra from a single patient appearing in 
both the training and test sets. The process is iterated a total of 96 times, in order to produce 
the average results of the classification for both the training and test sets. It is possible to 
identify which descriptors contribute to the split at each node using the relative Gini 
importance. This useful aspect of RF is considered in ‘Further classification’.

The output of this process is a binary classification between cancer versus non-cancer (and 
afterwards metastatic versus GBM) with the following metrics; prediction accuracy (PAC), 
sensitivity, specificity, Matthew’s correlation coefficient (MCC), positive predictive value 
(PPV) and negative predictive value (NPV). A description of each of these metrics can be 
found in the following articles (43,45). There are also corresponding standard error values for 
each metric. The model is iterated 96 times in order to ensure the population of the training 
and test set is changed at each iteration, providing results more representative of the total 
patient population. As such, there is less opportunity for bias in the test set. To encompass all 
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measures of performance, a representative metric was created (Equation 1). This found the 
cumulative total of the standard error (se) for all test measures, and subtracted this value from 
the cumulative total performance of each measure over 96 iterations. As such, a simple 
method of observing overall stability of the pre-processing method, as well as overall 
performance can be conducted. 

(PAC + MCC + Spec + Sens + PPV + NPV) - (PACse + MCCse + Specse + Sensse + PPVse + NPVse) 
Equation 1. Equation representing the Overall Metric

In order to visualise the overall results for each of these metrics, the performance of each 
combination was ranked in terms of test performance, and displayed as a line chart of 
decreasing efficiency. The corresponding validation dataset performance was shown for 
comparative purposes. Standard error bars are shown to display the variance across the 96 
iterations.

Order of Pre-processing 
The initial processing ordered as described, with first binning (B), followed by smoothing 
(S), normalisation (N) and baseline correction (C). However, as this order is somewhat 
debated in the literature, the impact of order was assessed. The top 12 performing pre-
processed datasets were re-analysed using RF classification in a variety of orders, denoted by 
their ‘B’, ‘S’, ‘N’, ‘C’ label. Re-analysis of the data results in alterations to performance 
values previously derived. The overall performance metric, sensitivity and specificity were 
compared against the default ‘BSNC’ results ascertained through this reanalysis. To reduce 
the number of order options and to take advantage of data reduction, binning was kept at the 
first position throughout.Net percentage change was used to visualise these differences. 

Further Classification
The 12 permutations that had the best diagnostic performance occording to the overall metric 
were recorded, as were the worst performing permutations. These best performing pre-
processing combinations were than re-analysed using; (i) a RF-fed support vector machine 
(SVM), and (ii) a genetic algorithm (GA) fed SVM.

This was conducted to compare alternative classification approaches and to observe any 
relationships between specific pre-processing protocols and classifiers. A SVM was 
employed as a non-linear model that is known to minimise empirical error and maximise 
inter-class geometric margin (52). The top 30 Gini descriptors that were extracted from the 
orginal RF analysis were thus fed into the SVM, producing a feature-fed classification system 
which should focus on wavenumbers that best describe the variance in the dataset. 30 Gini 
descriptors were chosen due to preliminary investigation that suggested this provided the 
optimum performance in comparison to higher and lower values (data not shown). A GA was 
used as a comparison to the trial-and-error based approach described here, in order to 
optimise the pre-processing combination. The output of this was then also fed into an SVM. 
Net percentage change in the overall performance metric was used to describe the effect of 
alternative classifiers on overall classification.
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Results and Discussion

Figure 2. Performance of each pre-processing permutation within the training (validation) 
and test stage with regards to: (A) overall performance metric, (B) prediction accuracy, (C) 
Matthew’s correlation co-efficient, (D) specificity, (E) sensitivity, (F) positive predictive 
value and (G) negative predictive value. The original, non-processed dataset is marked 
upon each test and validation set as a vertical marker, and a standard pre-processing option 
combination ‘112236’ is marked with a triangle marker.  
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In order to assess general trends in classification performance of the pre-processed datasets, 
test and training sets were ranked according to each metric (Figure 2). By plotting the 
distribution of each pre-processing permutation it is possible to identify how pre-processing 
effects the overall classification between brain cancer and control, in comparison to the raw 
data (shown as a circle on each plot). Both training and test datasets are displayed in order to 
identify any discrepancies and stability within the model. The raw, unprocessed dataset is 
highlighted as a marker for classification performance, as is a standard processing step 
commonly used in the literature (3).

Initially it is clear that the trend in overall performance is similar across the board, with a 
number of permutations yielding higher results than the vast majority, and similarly a number 
of permutations that have detrimental effects on the overall classification. Generally, it 
appears that around 2000 or so options in the central area do not drastically alter the 
classification. What is also apparent in Figure 2, is a dip in efficiency at around the 500th 
ranked combination. From investigating the data further (data not shown), this corresponds 
with the use of a min-max normalisation and subsequent rubberband or polynomial baseline 

Table 2. Top twelve pre-processing combinations following random forest binary classification between 
cancer and non-cancer and the relative diagnostic performances of the test dataset.  
Rank Overall Metric Prediction 

Accuracy Matthew's CC Sensitivity Specificity PPV NPV

1 100220 5.319 ± 0.021 100220 0.920 ± 0.002 100220 0.799 ± 0.005 100220 0.930 ± 0.002 100220 0.892 ± 0.004 100220 0.960 ± 0.002 100220 0.817 ± 0.006

2 100020 5.262 ± 0.021 100020 0.913 ± 0.002 100020 0.783 ± 0.005 100020 0.925 ± 0.002 100020 0.884 ± 0.005 100020 0.957 ± 0.002 100020 0.805 ± 0.006

3 416220 5.215 ± 0.023 416220 0.907 ± 0.002 416220 0.769 ± 0.006 416210 0.924 ± 0.002 416210 0.868 ± 0.006 100210 0.951 ± 0.002 3215310 0.802 ± 0.006

4 100210 5.192 ± 0.021 416320 0.905 ± 0.002 416320 0.762 ± 0.005 100210 0.924 ± 0.002 100210 0.857 ± 0.004 416210 0.946 ± 0.002 416320 0.801 ± 0.006

5 416210 5.172 ± 0.021 100210 0.902 ± 0.002 100210 0.757 ± 0.005 416320 0.923 ± 0.002 416320 0.847 ± 0.005 416320 0.941 ± 0.002 100210 0.799 ± 0.006

6 416310 5.122 ± 0.023 416210 0.895 ± 0.002 416310 0.742 ± 0.005 416220 0.923 ± 0.002 3215310 0.830 ± 0.005 416220 0.935 ± 0.002 416220 0.798 ± 0.005

7 100010 5.101 ± 0.023 416310 0.894 ± 0.002 416210 0.735 ± 0.005 3215310 0.919 ± 0.002 416310 0.825 ± 0.005 3215310 0.934 ± 0.002 415032 0.797 ± 0.005

8 416133 5.084 ± 0.024 100010 0.891 ± 0.002 100010 0.731 ± 0.006 416310 0.918 ± 0.002 134136 0.824 ± 0.005 416310 0.934 ± 0.002 416310 0.790 ± 0.005

9 414144 5.060 ± 0.023 416133 0.889 ± 0.002 424210 0.724 ± 0.005 134136 0.918 ± 0.002 416220 0.824 ± 0.005 213035 0.933 ± 0.002 416210 0.790 ± 0.006

10 413132 5.060 ± 0.022 414144 0.888 ± 0.002 414010 0.724 ± 0.005 132143 0.918 ± 0.002 815042 0.823 ± 0.006 412136 0.933 ± 0.003 416335 0.790 ± 0.006

11 413136 5.058 ± 0.024 413132 0.888 ± 0.002 413132 0.723 ± 0.005 100010 0.918 ± 0.002 435042 0.821 ± 0.005 235043 0.932 ± 0.002 135135 0.789 ± 0.006

12 414132 5.053 ± 0.021 413136 0.888 ± 0.002 413136 0.722 ± 0.005 234144 0.917 ± 0.002 435034 0.820 ± 0.005 114134 0.932 ± 0.002 132035 0.789 ± 0.006

Table 3. Twelve worst pre-processing combinations following random forest binary classification 
between cancer and non-cancer and the relative diagnostic performances of the test dataset.  
Rank Overall Metric Prediction 

Accuracy Matthew's CC Sensitivity Specificity PPV NPV

1 3226141 4.179 ± 0.023 3226141 0.782 ± 0.002 3226144 0.465 ± 0.005 3226141 0.849 ± 0.002 3226141 0.618 ± 0.004 3226136 0.847 ± 0.003 3226134 0.615 ± 0.005

2 3232131 4.187 ± 0.020 3232131 0.783 ± 0.002 3226132 0.468 ± 0.004 3226132 0.849 ± 0.002 3226132 0.618 ± 0.004 3226135 0.847 ± 0.003 3226145 0.616 ± 0.006

3 3226134 4.195 ± 0.020 3226134 0.784 ± 0.002 3226131 0.470 ± 0.005 3226146 0.850 ± 0.002 3226146 0.619 ± 0.004 3226146 0.847 ± 0.003 3226144 0.617 ± 0.006

4 3226136 4.195 ± 0.021 3226145 0.784 ± 0.002 3226131 0.470 ± 0.005 3226136 0.850 ± 0.002 3226131 0.620 ± 0.004 3226133 0.848 ± 0.003 3226135 0.620 ± 0.005

5 3226145 4.195 ± 0.023 3226136 0.784 ± 0.002 3226145 0.470 ± 0.004 3226131 0.850 ± 0.002 3226145 0.621 ± 0.004 3226132 0.849 ± 0.003 3226131 0.621 ± 0.006

6 3226143 4.197 ± 0.020 3226133 0.785 ± 0.002 3226143 0.471 ± 0.004 3226143 0.851 ± 0.002 3226144 0.621 ± 0.004 3226141 0.849 ± 0.003 3226141 0.621 ± 0.006

7 3226133 4.198 ± 0.020 3226143 0.785 ± 0.002 3226146 0.471 ± 0.005 3226145 0.851 ± 0.002 3226136 0.621 ± 0.004 3226143 0.849 ± 0.003 3226132 0.621 ± 0.005

8 3226132 4.201 ± 0.019 3226142 0.786 ± 0.002 3226134 0.471 ± 0.004 3226133 0.851 ± 0.002 3226143 0.621 ± 0.004 3226131 0.849 ± 0.003 3226146 0.622 ± 0.005

9 3226146 4.202 ± 0.022 3226146 0.786 ± 0.002 3226135 0.472 ± 0.005 3226135 0.851 ± 0.002 3226134 0.624 ± 0.004 3226145 0.851 ± 0.003 3226136 0.622 ± 0.006

10 3226135 4.208 ± 0.021 3226135 0.786 ± 0.002 3226141 0.474 ± 0.005 3226134 0.851 ± 0.002 3226135 0.625 ± 0.004 3226142 0.853 ± 0.003 3226142 0.624 ± 0.006

11 3226142 4.214 ± 0.020 3226132 0.786 ± 0.002 3226133 0.476 ± 0.005 3226144 0.853 ± 0.002 3226133 0.626 ± 0.004 3226144 0.853 ± 0.003 3226143 0.626 ± 0.006

12 3226144 4.235 ± 0.023 3226144 0.789 ± 0.002 3226136 0.482 ± 0.005 3226142 0.854 ± 0.002 3226142 0.631 ± 0.005 3225134 0.854 ± 0.003 3226133 0.630 ± 0.006
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correction. The combination of these approaches may be well suited to diagnostic studies 
using IR spectra. 

The overall metric (Figure 2A) encompasses this trend, and is also evident in each of the 
other performance measures. It is noticeable that the unprocessed dataset appears at a slightly 
higher rank in both the training dataset, coinciding with smaller standard error in this dataset 
too. This is as expected given the cross validation of the training dataset will not be as 
variable as the predicting test data. The sharp incline represents the best performing 
combinations, of which the top 12 are given in Table 2. Consistently, the top performing 
processing combination was a simple vector normalised and second derivative filtered 
dataset. Similarly, the second best classification result also came from the dataset only 
corrected using a second derivative, indicating the suitability of this processing step for the 
analysis of FTIR data. As this method removes baseline effects, has an in-built smoothing SG 
step, and also has the ability to resolve spectral features, it is a simple yet powerful approach 
for diagnostic applications. The minimal number of steps in these approaches could also be 
considered preferable (15). 

Below the two highest ranked pre-processing options, there is less uniformity across the 
different classification metrics (Table 2). Whilst simple procedures such as first order 
derivation with and without a normalisation step appear spordically in this table, the majority 
of pre-processing permutations have multiple steps. Using PAC as an example, options 
ranked 3 to 12 vary quite significantly, with binning, smoothing, normalisation, and baseline 
corrections having a postive effect on the overall accuracy. This metric is indicative of the 
correct prediction of true positives and negatives, in this case predicting the presence or 
absence of brain cancer, and ranges from 92.0 – 88.8% in the top pre-processing approaches. 
Interestingly, a binning factor of 4 appears more regulary than any other binning option, 
representing a four-fold reduction in the number of data points within the dataset. Binning is 
known to improve the SNR across the spectrum, by averaging out the signal of a given 
number of wavenumbers. With a data spacing of every four wavenumbers, closer matched to 
the original spectral resolution of 4 cm-1, this binning option may increase SNR without 
smoothing out spectral features important for classification. 

In this clinical dataset, a binning step is usually associated with a smoothing procedure, with 
SG filtering being the most commonly chosen option. Looking at the top 12 permutations 
with regards to optimum MCC, SG filtering with a filter order of 6 generates the best 
classification. It is worth noting that the value of MCC is lower than the other metrics, with 
values ranging between 0.799 – 0.722 (Table 2). Rather than being expressed as a 
percentage, MCC is representative of a scale between -1 and +1; with positive values 
indicating a strong correlation between the observed and predicted classifications and 
negative values indicating a worse performance than random choice. As expected, in the test 
dataset the classification error is higher than in cross validation, and unprocessed spectra as a 
comparion differ between these two datasets (Figure 2C).

For the remaining classification metrics, a number of processing combinations already 
mentioned also perform well. For sensitivity, our ability to detect brain cancer patients in this 
case, ranges from 93.0 – 91.7%. Local polynomial smoothing appear to have a postiive 
impact on sensitivity on this dataset, as well as on the NPR. However, it appears as though 
pre-processing generally has a greater impact on sensitivity of the classifier, shown by a 
steady increase in performance from the unprocessed dataset (Figure 2E). In cross validation 
of the algorithm, this raw dataset is ranked 470th in specificity, compared to a 2247th in 
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sensitivity; indicating that our ability to identify true negatives, or control patients, without 
pre-processing is higher than our ability to detect disease patients. This may be an inherent 
characteristic of this classifier, also influenced by the patient population. An unbalance in 
patient numbers in each class may be further investigated with up- or down-sampling 
methods (53). 

Somewhat surprisingly, data processed with a binning factor of 32 appears to perform 
favourably with regards to sensitivity (7th), specificity (6th), PPR (7th), and NPR (3rd). Whilst 
‘heavy’ binning has the benefit of improved SNR in the dataset, there is also the likelihood of 
removing spectral information, with some spectral features broader than the 32 wavenumber 
spacing. The evidence for this can be seen when exploring the pre-processing permutations 
that contribute to the worst classification values, visualised as the steep drop in performance 
across Figure 2. Of the 12 least efficient pre-processing models, a binning factor of 32 
appears in every combination (Table 3), as well as wavelet denoising (with a filter length of 
6), min-max normalisation and a baseline correction of either rubberband or polynomial 
corrections (with varying parameters). It is likely that the binning aspects of these 
permutations is reducing spectral resolution to a point where few features are visible, and 
thus classification is reduced. However, in the instance where a binning factor of 32 performs 
well, it is coupled with a standard SG filter (filter order of 5), but also with Amide I 
normalisation and a first derivative filter. The latter of these processes can resolve spectral 
features and may account for an improvement in classification, whilst Amide I may be 
amplifying subtle differences between cancer and control patients. 

To further explore the impact of pre-processing on classification of IR spectra, the un-
processed dataset was used to split the ranked pre-processing permutations into two portions; 
a list of pre-processing protocols that improves classification performance compared to the 
raw data, and a list that reduced classification performance. The frequency that each 
processing option occurred to both increase or decrease the performance was recorded. 
Figure 3A displays the how frequently each binning choice occurred, and how this impacted 
the overall classification with regards to the overall metric.  It is clear to see that when an 
increase in diagnostic performance was seen overall, a binning factor of 2 or 4 was more 
common, whilst no binning made up a total of 22%. Increasing the binning factor was more 
influential in decreasing the overall classification in comparison to raw spectra, with a clear 
shift towards 16 and 32 seen.

Normalisation looks to have less influence on the overall metric, as the frequency of each of 
the options appears relatively equally. Min-max and amide I normalisation contribute to 
improved classification more commonly than no or vector normalisation, yet both only make 
up 57% of the overall selections (Figure 3B).  The parameters are all standard choices for use 
in pre-processing and have been used extensively in the literature. This could indicate that 
normalisation, in any capacity, is beneficial to diagnostic performance, regardless of the 
approach chosen. It is also of considerable interest that no normalisation performs well. 
Comparisons of smoothing and baseline correction, as well as their respective parameters are 
shown in Supplementary Information. As some steps, such as rubberband baseline 
correction, have multiple parameters compared to others, these graphs are not shown to avoid 
confusion. For smoothing, the parameters have little effect on overall performance 
particularly in SG filtering, which appears equally across all the ranked permutations 
(Supplementary Information: Figure S1). Local polynomial smoothing has a more positive 
impact on classification, although again the relative parameters have little effect. The same is 
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seen with baseline corrections that have tuneable parameters, namely rubberband and 
polynomial corrections. (Supplementary Information: Figure S2). 

 
Figure 3. The frequency of pre-processing options that increase and decrease the 
classification performance of the unprocessed clinical dataset; (A) binning and (B) 
normalisation choices

Figure 4. The comparative change (%) in diagnostic performance measured by the overall 
metric by altering the order of the top twelve pre-processing permutations. Each order 
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combination is compared to an order of Binning (B), Smoothing (S), Normalisation (N) and 
Baseline Correction (C).

The order in which processing steps are implemented is explored in the top twelve processing 
combinations. By comparing each new arrangement of these processing steps against the 
default order described previously (Binning (B), Smoothing (S), Normalisation (N) and 
Baseline correction (C)), the impact of order can be seen. It is important to note that these 
comparisons are made from BSCN values generated separately from the previously described 
analyses. This can result in slight variations in performance metrics and can suggest 
unexpected variance in some combinations. A full breakdown of these comparisons can be 
found in Supplementary Information; Table S1-2and Figures S3-5. 

As expected, when only a single processing step is conducted, such as a first or second 
derivative (100020 and 10010), order has no impact on the overall performance. Some 
permutations are equivalent yet not identical; for example, BSNC, BNSC and BNSC for 
‘100220’, and other combinations where only two variables are altered. The result of this is 
only small changes to overall performance values.

Beginning with the highest ranked combination (100220: No binning or smoothing, vector 
normalised and second derivative correction), it is clear that any alteration to the default order 
has a negative impact on the overall classification by an average of 5% (Figure 4). Most 
significantly affected was the permutation ‘416320’, that appears sensitive to order of 
implementation. Other pre-processing protocols with smoothing steps also appear to be 
sensitive to order, suggesting that smoothing may be better implemented earlier in the 
processing order.  

Altering the order can also have positive impacts, shown particularly in ‘100210’ 
representative of a vector normalisation and a first derivative filter. Each different 
arrangement improved the overall classification, illustrating that each processing protocol 
may require bespoke tuning with regards to order. With regards to the analysis of clinical data 
of biofluids, it remains clear that the top permutation of 100220 is well suited for this 
application, however, may lose diagnostic accuracy if re-ordered. 

Throughout this study, a RF model has been used to classify patients as either cancer or non-
cancer; the computational burden of such approach is low and allows rapid analysis of 
multiple datasets and was thus ideal for this application. However, there are a wide variety of 
machine learning algorithms available, which may be more appropriate for this study and 
yield better diagnostic results. To investigate this, two additional algorithms were explored as 
alternatives to a standalone RF classifier (Table 4). Comparing the overall metric, sensitivity 
and specificity of all three approaches shows that feature fed classification can improve 
overall performance. This is more clearly visualised in Figure 5, where the percentage 
change in diagnostic performance (compared to RF) is illustrated. The pattern described by 
the overall metric indicates that for each of the permutations, RF-SVM improves 
classification to some degree, whereas GA-SVM has a more variable response (Figure 6A). 
It is also clear that the top performing pre-processing combinations do not vary much 
between the three classifiers. This could indicate stability in the dataset due to pre-processing 
steps revealing an optimum level of diagnostic information. 

In contrast, RF-SVM and GA-SVM both dramatically increase the sensitivity of these pre-
processed datasets, with only small decreases apparent (Figure 5B). Sensitivity was found to 
be high in this clinical dataset using RF classification, tentatively associated with the 3:1 
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imbalance of cancer to control patients. This may contribute to heightened sensitivity with 
feature fed classifiers, which should contain specific information for distinguishing cancer. 
Specificity on the other hand is more likely to be decreased when using these classifiers 
(Figure 5C). Apart from a couple of improvements in performance, on the whole RF-SVM 
and GA-SVM reduce the specificity of the model. Again, this could be attributed to the fact 
that these approaches extract disease specific information from the dataset, and thus the 
capabilities of identifying true negatives, or control patients, is inhibited. 

Figure 5.  Percentage change in overall performance metric (x-axis), sensitivity and 
specificity of random forest fed support vector machine (RF-SVM) and genetic algorithm 

Table 4. A comparison of random forest (RF), RF fed support vector machine (SVM), and genetic 
algorithm fed SVM classifiers with regards to overall metric, sensitivity and specificity.
 Random Forest Random Forest - SVM Genetic Algorithm - SVM

Permutation Overall Sens Spec Overall Sens Spec Overall Sens Spec

100220 5.319 0.930 0.892 5.315 0.936 0.869 5.300 0.934 0.868
100020 5.262 0.925 0.884 5.289 0.938 0.855 5.307 0.929 0.881
416220 5.215 0.923 0.868 5.273 0.929 0.868 5.215 0.946 0.807
416320 5.192 0.923 0.857 5.219 0.937 0.829 5.008 0.919 0.787
100210 5.172 0.924 0.847 5.209 0.947 0.803 5.147 0.935 0.806
416310 5.101 0.918 0.830 5.146 0.948 0.776 5.072 0.945 0.754
416210 5.122 0.924 0.824 5.279 0.927 0.874 4.915 0.930 0.727
100010 5.084 0.918 0.825 5.229 0.936 0.835 5.294 0.942 0.848
424210 5.023 0.913 0.811 5.083 0.937 0.775 4.770 0.906 0.723
424010 5.044 0.914 0.817 5.071 0.927 0.794 4.964 0.925 0.756
412132 5.009 0.913 0.805 5.320 0.937 0.870 5.380 0.950 0.864
412136 5.038 0.917 0.807 5.159 0.923 0.835 5.403 0.951 0.872
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fed SVM (GA-SVM) classifiers. The top twelve performing permutations are uses a sub-
selection of the total pre-processing options (y-axis). 
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Conclusions
For all metrics, it is evident that there are a number of highly favourable pre-processing 
permutations, a larger group of that have incremental improvements in classification, and a 
group of unfavourable pre-processing combinations. The overall metric is a good method of 
viewing all the statistical patterns in the data, and mimics the morphology of all performance 
curves. Variability between the validation and test sets is evident throughout, however this is 
expected due to the nature of predictions on unknown populations. 

With regards to the best pre-processing combination for discriminatory biofluid analysis, two 
clear permutations came out on top; a simple second order derivative filter, or a first 
derivative filter with a vector normalisation. Differentiation, of first or second order, has the 
benefit of removing baseline effects as well as revealing further spectral information by peak 
deconvolution. 

Although no binning features highly in the top performing combinations, a binning factor of 
4, also appears to be a beneficial step in pre-processing. This moderate binning factor has the 
benefit of dimension reduction, thus improving analysis times, as well as enhancing SNR 
across the spectral; all of which can have a positive influence on the diagnostic performance 
of the RF classifier. On the other hand, binning factors above four tend to have a detrimental 
effect on diagnostic performance. This approach may reduce the information contained in the 
spectrum and is consistent with the worst diagnostic performers. A normalisation step 
appears to be preferable, although of the approaches discussed in this study, none are clear 
frontrunners. The same can also be said for smoothing and baseline correction approaches, 
despite derivative and SG filters featuring prominently in the top twelve pre-processing 
permutations. The order in which pre-processing steps are implemented can have significant 
impact on overall classification. This could be dependent on specific combinations of 
processes, such as normalisation alongside derivative filters. 

Whilst it is important to explore the range of classification algorithms available, it is 
important to first note the desired output of the study. In this given example, the diagnosis of 
brain cancer would require a high level of sensitivity, in order to ensure the false negative 
rate is low and no tumours are missed. The use of feature fed algorithms that have been 
trained on datasets with a higher proportion of positives, may provide this higher sensitivity. 
However, if sensitivity, or another metric is desirable, the choice of machine learning 
approach should be carefully considered. 
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