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The	forty-year	history	of	the	Journal	of	Structural	Geology	has	recorded	an	32	

enormous	increase	in	the	description,	interpretation	and	modelling	of	33	
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deformation	structures.	Amongst	factors	that	control	deformation	and	the	34	

resulting	structures,	mechanical	anisotropy	has	proven	difficult	to	tackle.	Using	a	35	

Fast	Fourier	Transform-based	numerical	solver	for	viscoplastic	deformation	of	36	

crystalline	materials,	we	illustrate	how	mechanical	anisotropy	has	a	profound	37	

effect	on	developing	structures,	such	as	crenulation	cleavages,	porphyroclast	38	

geometry	and	the	initiation	of	shear	bands	and	shear	zones.	39	

40	

1.	Introduction41	

42	

Structural	geologists	have	used	a	range	of	structures	to	determine	deformation	43	

histories	of	rocks	(e.g.	Treagus,	1982;	Ramsay	and	Huber,	1987;	Hudleston	and	44	

Lan,	1993;	Passchier	and	Trouw,	2005).	Many	of	these	structures,	such	as	folds	45	

and	structures	around	rigid	objects	(i.e.	porphyroclasts	and	porphyroblasts)	are	46	

controlled	by	contrasts	in	the	mechanical	properties	of	the	different	minerals	47	

involved.	These	structures	are	therefore	typically	treated	as	inclusion-matrix	48	

(IM)	systems,	with	typically	a	stronger	inclusion	phase	(porphyroclasts,	boudins,	49	

folding	layers)	embedded	in	a	softer	matrix.	50	

To	improve	and	quantify	the	interpretation	of	structures	observed	in	the	51	

field,	geologists	have	developed	increasingly	complex	models	for	IM	systems.	52	

Initially	these	were	based	on	pioneering	analytical	models,	such	as	those	by	53	

Jeffery	(1922),	Eshelby	(1957)	and	Ramberg	(1962)	for	rotation	of	elliptical	54	

inclusions	and	Biot	(1961)	for	folding	of	a	single	layer	in	a	softer	matrix.	Taylor	55	

(1938)	recognised	the	importance	of	the	anisotropy	of	crystal	plasticity	to	the	56	

development	of	crystallographic	preferred	orientations,	and	Kamb	(1972)	first	57	

explained	how	this	could	modify	dynamic	recrystallization	in	ice.	The	40-year	58	

history	of	the	Journal	of	Structural	Geology	has	seen	the	advent	and	blossoming	59	

of	numerical	modelling	to	simulate	a	range	of	IM	structures,	thus	helping	60	

geologists	to	understand	how	they	form.	Since	the	earliest	computer	simulations,	61	

models	have	steadily	increased	in	sophistication	and	resolution.	Early	computers	62	

were	usually	restricted	to	linear,	Newtonian	rheology	(e.g.	Dieterich,	1970).	Non-63	

linear	rheology,	assumed	common	in	rocks	(Kirby,	1983;	Carter	and	Tsenn,	64	

1987),	has	now	become	a	standard	ingredient	in	models	(Huddleston	and	Lan,	65	

1994;	Bons	et	al.,	1997;	Jessell	et	al.,	2009;	Mancktelow,	1999;	2011;	Schmalholz	66	
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and	Maeder,	2012;	Llorens	et	al.,

	

	2013a;	Gardner	et	al.	2017).	Boundary	67	

conditions	in	early	models	were	usually	restricted	to	pure	shear	conditions.	68	

However,	many	natural	high-strain	structures	of	interest	typically	develop	in	69	

mylonites	that	deform	close	to	simple	shear	(e.g.	Passchier	and	Trouw,	2005;	70	

Gomez-Rivas	et	al.,	2007).	Simple	shear	deformation	was	therefore	already	71	

applied	to	these	IM	systems	early	on	(Jezek,	1994;	Bons	et	al.	1997),	but,	for	72	

example,	systematic	modelling	of	folding	in	simple	shear	started	much	later	73	

(Viola	and	Mancktelow,	2005;	Llorens	et	al.,	2013a,b).	The	steadily	increasing	74	

calculation	speed	of	computers	has	allowed	modellers	to	reach	ever-higher	finite	75	

strains	(e.g.	Schmalholz	et	al.,	2001;	Jessell	et	al.,	2009;	Dabrowski	and	Schmid,	76	

2011;	Dabrowski	et	al.,	2012;	Grasemann	and	Dabrowski,	2015).	Additional	77	

factors	and	processes,	such	as	shear	heating,	strain	softening,	slipping	phase	78	

boundaries,	grain-size	effects,	etc.	have	also	been	incorporated	in	models	79	

(Schmalholz	and	Podladchikov,	1999;	Marques	et	al.,	2005a,b,	2014;	Schmalholz,	80	

2006;	Hobbs	et	al.,	2008;	Mancktelow,	2013;	Montagnat	et	al.,	2014;	Gardner	et	81	

al.,	2017,	among	others).	82	

Despite	the	enormous	progress	in	IM-system	modelling,	there	seems	to	be	83	

one	elephant	left	in	the	room	that	is	still	commonly	overlooked	or	ignored	in	84	

these	numerical	models:	anisotropy.	Many	material	properties	are	known	to	be	85	

highly	anisotropic	in	rocks	and	minerals,	including	magnetism,	thermal	86	

expansion,	elasticity,	surface	energy	and	mineral	slip	system	activity.	Early	87	

numerical	simulations	studies	recognised	the	importance	of	mechanical	88	

anisotropy	to	the	production	of	crystallographic	preferred	orientations	in	rocks	89	

(Taylor,	1938;	Kröner,	1961;Etchecopar,	1977;	Lister	et	al.,	1978),	and	these	90	

have	also	been	shown	to	be	significant	in	the	formation	of	larger-scale	geological	91	

structures.	For	example,	a	field	geologist	would	probably	interpret	the	structure	92	

in	Fig.	1a	as	follows	(Druguet	et	al.,	1997):	the	rock	is	a	foliated	biotite	schist	93	

with	a	first	foliation	S1	formed	by	aligned	biotite	grains.	The	foliated	schist	and	a	94	

younger	quartz	vein	were	then	deformed	in	a	second	event	(D2),	which	led	to	95	

buckle	folds	in	the	vein	and	the	formation	of	an	axial-planar	crenulation	cleavage	96	

(S2)	in	the	schist.	The	quartz	vein	folds	are	comparable	with	those	in	numerical	97	

simulations	and	these	folds	from	Cap	de	Creus	(Spain)	have	indeed	been	used	to	98	

compare	with	and	validate	numerical	models	(Llorens	et	al.,	2013a,b).	However,	99	
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folds	in	the	matrix	look	completely	different.	Whereas	the	quartz	vein	forms	100	

approximately	parallel	buckle	folds,	the	crenulations	in	the	schist	are	closer	to	101	

similar	folds	(Fig.	1a).	Structural	geologists	are	aware	that	this	is	because	the	102	

schist	already	has	a	distinct	S1-foliation,	and	is,	therefore,	strongly	anisotropic.	103	

Although	the	importance	of	anisotropy	for	folding	is	known	for	decades	(e.g.	104	

Baily,	1970;	Cobbold	et	al.,	1971;	Fletcher,	1974;	Watkinson,	1983;	Weijermars,	105	

1992;	Zhang	et	al.,	1993),	most	numerical	simulations	have	been	of	buckle	folds	106	

in	isotropic	matrices	(see	Hudleston	and	Treagus	(2010)	for	a	review),	with	107	

relatively	few	exceptions,	mostly	dealing	with	chevron	folds	(Mühlhaus	et	al.,	108	

2002;	Kocher	et	al.,	2006,	2008;	Jansen	et	al.,	2016;	Schmalholz	and	Mancktelow,	109	

2016).	This	example	illustrates	clearly	that	mechanical	anisotropy	needs	to	be	110	

taken	into	account	when	realistically	modelling	geological	structures.	Below	we	111	

give	examples	of	incorporating	the	effect	of	mechanical	anisotropy	in	simulations	112	

of	folding,	σ-/δ-clast	formation	and	shear	localisation.	113	

In	the	following	section,	we	present	a	numerical	method	that	allows	114	

geologists	to	assess	the	influence	of	anisotropy	in	the	development	of	geological	115	

structures.	This	is	followed	by	a	number	of	examples	of	models	highlighting	the	116	

fact	that	anisotropy	of	material	properties	may	be	one	of	the	“missing”	keys	to	117	

understand	geological	structures,	holding	much	promise	for	future	118	

investigations.	119	

120	

2.	The	full-field	crystal	plasticity	approach121	

At	the	grain	scale,	the	crystal	structure	results	in	anisotropic	behaviour	of	many	122	

physical	properties.	This	is	particularly	relevant	for	viscous	deformation	123	

accommodated	by	dislocation	glide	along	particular	slip	systems	(Frost	and	124	

Ashby,	1983).	Montagnat	et	al.	(2014)	provide	an	example	of	the	many	125	

approaches	that	have	been	applied	to	model	single-	and	polycrystal	deformation	126	

of	the	mechanically	highly	anisotropic	mineral	ice	Ih.	Here,	our	simulations	of	127	

polycrystalline	aggregates	with	intrinsic	anisotropy	(i.e.	anisotropy	well	128	

developed	at	all	scales)	are	based	on	the	full-field	VPFFT	crystal	plasticity	code	129	

(Lebensohn,	2001),	which	calculates	the	viscoplastic	deformation	for	a	130	

polycrystalline	aggregate	using	a	Fast	Fourier	Transform-based	numerical	solver.	131	

The	VPFFT	code	solves	the	micromechanical	problem	by	finding	the	strain	rate	132	
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and	stress	fields	that	minimize	the	average   local work-rate satisfying the 133	

constitutive	relation	at	local	level,	under	the	constraints	of	strain	compatibility	134	

and	stress	equilibrium	(see	Lebensohn	(2001),	Lebensohn	et	al.	(2008;	2009)	135	

and	Montagnat	et	al.	(2014)	for	a	more	detailed	description	of	the	theoretical	136	

framework	and	the	numerical	algorithm,	and	Griera	et	al.	(2013)	and	Llorens	et	137	

al.	(2016a,b)	for	the	coupling	with	the	ELLE	microstructural	simulation	138	

platform).	139	

In	geology	the	coupling	of	the	full-field	crystal	plasticity	VPFFT	140	

(Viscoplastic	Full-Field	Transform)	method	by	Lebensohn	(2001),	Lebensohn	et	141	

al.	(2008)	and	the	ELLE	microstructural	simulation	platform	(Jessell	et	al.,	2001;	142	

Bons	et	al.,	2008;	Piazolo	et	al.	2010;	http://www.elle.ws)	has	allowed	the	143	

systematic	simulation	of	deformation	and	recrystallization	of	polycrystalline	144	

rocks	(such	as	ice	and	halite,	e.g.	Griera	et	al.,	2011;	2013;	Llorens	et	al.,	2016a,b;	145	

2017;	Steinbach	et	al.,	2016,	2017;	Gomez-Rivas	et	al.,	2017).	In	these	cases,	the	146	

polycrystalline	aggregate	is	discretised	into	a	periodic,	regular	mesh	of	nodes	147	

that	store	properties	such	as	lattice	orientation	and	dislocation	density.	These	148	

nodes	act	as	Fourier	Points	in	the	VPFFT	code	and	as	unconnected	nodes	149	

(unodes)	in	ELLE	routines.	Therefore,	the	integration	between	VPFFT	and	ELLE	150	

is	based	on	the	direct	one-to-one	mapping	between	the	data	structures	of	the	151	

two	approaches.	It	is	important	to	note	that	the	VPFFT	method	is	essentially	152	

scale	independent	and	can	therefore	be	used	to	simulate	geological	structures	153	

that	have	an	inherent	mechanical	anisotropy	ranging	from	small-scale	(e.g.	shear	154	

sense	indicators,	grain	scale	stress	heterogeneities)	to	large-scale	features	(e.g.	155	

layers	with	contrasting	rheology).	156	

Here,	we	present	a	number	of	examples	utilizing	the	VPFFT-ELLE	method.	157	

In	these	examples	the	mechanical	properties	of	the	polycrystal	are	simulated	158	

assuming	a	"numerical	mineral"	with	hexagonal	symmetry,	as	was	used	by	159	

Griera	et	al.	(2011;	2013)	to	model	porphyroclast/-blast	systems.	With	this	160	

symmetry,	deformation	is	allowed	to	be	accommodated	by	glide	on	the	basal	161	

plane	(basal	slip)	and	along	non-basal	planes	(pyramidal	and	prismatic	slip).	In	162	

this	approach	the	grain	anisotropy	parameter	(A)	that	accounts	for	the	degree	of	163	

anisotropy	is	defined	as	the	ratio	of	the	critical	resolved	stresses	(τcr)	of	the	non-164	

basal	basal	and	basal	slip	systems	(e.g.	Lebensohn	et	al.,	2009).	A	is	comparable	165	
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to	the	ratio	between	normal	and	shear	viscosity	as	employed	by	e.g.	Mühlhaus	166	

(2002)	and	Kocher	et	al.	(2006,	2008).	For	all	examples,	a	stress	exponent	of	n=3	167	

is	assumed	for	all	slip	systems.	168	

169	

3.	Examples170	

171	

In	the	following,	examples	we	contrast	the	effect	of	different	material	behaviour	172	

in	terms	of	anisotropy	on	the	characteristics	of	developing	geological	structures	173	

during	deformation.	174	

175	

3.1.	Single	layer	folding:	The	effect	of	matrix	anisotropy	176	

177	

In	our	example,	we	first	show	deformation	of	a	layer	embedded	in	an	isotropic	178	

matrix,	using	a	non-linear	viscous	finite	element	method	(BASIL,	Houseman	et	al.,	179	

2008)	within	ELLE	(Fig.	1b-c).	BASIL	is	a	finite	element	deformation	module	that	180	

simulates	viscous	deformation	of	a	2D	sheet	in	plane-strain.	BASIL	can	be	181	

coupled	within	ELLE	in	order	to	calculate	the	viscous	strain	rates	and	the	182	

associated	stress	field	for	different	boundary	conditions	(i.e.	from	pure	to	simple	183	

shear).	The	grid	of	regularly	spaced	unconnected	nodes	(unodes)	is	used	to	track	184	

the	deformation	history	and	deformation	field	through	passive	lines	initially	185	

parallel	to	the	folding	layer.	ELLE	uses	both	horizontally	and	vertically	wrapping	186	

boundaries,	allowing	the	model	to	be	periodic	in	all	directions.	This	approach	187	

reduces	detrimental	boundary	effects	and	simplifies	visualisation	of	the	model	at	188	

very	high	strains.	See	Jessell	et	al.	(2005),	Bons	et	al.	(2008),	and	Jessell	et	al.	189	

(2009)	for	details	about	BASIL	and	ELLE.	190	

In	our	simulations,	we	assigned	homogeneous	rheological	properties	to	191	

the	polygons	(Fig.	1b-c)	that	define	the	layer	and	matrix.	With	no	variation	in	192	

properties	within	the	material,	perturbations	in	the	layer	surface	are	critical	for	193	

the	resulting	folds	(Mancktelow,	1999;	Zhang	et	al.,	2000).	Small	variations	in	194	

layer	thickness	were	therefore	introduced	to	initiate	folding,	as	in	Llorens	et	al.	195	

(2013a,b).	196	
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Figures	1b	and	1c	show	the	results	for	folding	a	single	layer	in	simple	and	197	

in	pure	shear,	respectively.	In	BASIL,	the	rheology	is	defined	by	a	power-law	of	198	

the	type:	199	

!ε =σ n / B ,	 (1)	200	

with	 !ε 	the	strain	rate	and	σ	the	differential	stress.	The	competence	contrast	201	

between	layer	and	matrix	is	defined	here	by	the	ratio	of	Blayer/Bmatrix,	set	to	50	202	

here	(Table	1).	Passive	grid	lines,	originally	parallel	to	the	competent	layer,	show	203	

the	deformation	within	the	matrix.	Folding	decreases	in	intensity	away	from	the	204	

"zone	of	contact	strain"	(Ramberg,	1962)	near	the	layer,	and	strain	is	205	

approximately	homogeneous	at	the	lateral	edges	of	the	model.	206	

In	Fig.	1d-e,	we	present	two	numerical	simulations	of	single	competent	207	

layer	folding	in	an	anisotropic	matrix	using	the	VPFFT-ELLE	code	with	power-208	

law	rheology.	Initially,	the	basal	slip	plane	of	grains	(individual	square	elements	209	

in	the	256x256	element	model)	in	the	matrix	were	aligned	approximately	210	

parallel	to	the	layer.	Therefore,	starting	models	can	be	regarded	as	representing	211	

a	foliated	or	mica-rich	rock	with	anisotropy.	The	noise	to	initiate	folding	now	212	

derives	from	the	small	random	variations	in	lattice	orientation	in	the	layer	and	213	

matrix.	The	competent	layer	was	set	to	be	isotropic,	with	a	τcr	five	times	higher	214	

than	the	non-basal	slip	systems	of	the	matrix.	Their	τcr	in	turn	was	set	at	20	times	215	

that	of	the	basal	slip	system,	giving	an	anisotropy	factor	A	of	20	(Table	1).	Under	216	

pure	and	simple	shear,	the	geometry	of	the	folded	single	layer	in	the	anisotropic	217	

matrix	is	similar	to	that	in	isotropic	matrix	(Fig.	1b-c).	However,	the	geometry	of	218	

microfolds	represented	by	passive	gridlines	in	the	anisotropic	matrix	is	very	219	

different	from	those	in	isotropic	cases.	The	grid	lines	are	folded	in	similar-type	220	

folds	or	crenulations	that	do	not	decay	away	from	the	competent	layer	(similar	221	

to	results	obtained	by	Kocher	et	al.,	2006).	Fold	hinges	align	to	form	an	axial-222	

planar	crenulation	cleavage.	The	resulting	geometry	is	similar	to	that	of	the	223	

natural	example	(Fig.	1a),	with	the	passive	gridlines	representing	S1	and	the	224	

crenulation	cleavage	S2.	225	

226	

3.2.	Mantled	porphyroclasts:	δ-	or	σ-clasts?	227	

228	
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σ-	and	δ-clasts,	or	more	general	mantled	porphyroclasts	are	extremely	useful	229	

shear-sense	indicators	(Passchier	and	Simpson,	1986;	Hanmer	and	Passchier,	230	

1991;	Grasemann	and	Dabrowski,	2015).	These	typically	consist	of	a	core	231	

porphyroclast	with	wings	or	tails	of	recrystallised	material.	Most	studies	232	

addressed	the	rotation	rate	of	isolated	competent	inclusions	during	deformation	233	

as	a	function	of	factors	such	as	the	object	shape,	stress	exponent,	and	slipping	234	

object-matrix	boundaries	(e.g.	Ghosh	and	Ramberg,	1976;	Bons	et	al.,	1997;	235	

Mandal	et	al.,	2000;	ten	Grotenhuis	et	al.,	2002;	Schmid	and	Podladchikov,	2005;	236	

Fay	et	al.,	2008;	Dabrowski	and	Schmid,	2011;	Griera	et	al.,	2011,	2013;	237	

Mancktelow,	2011,	2013;	Jiang,	2016).	Although	the	role	of	anisotropy	was	238	

recognised	early	on	(e.g.	Passchier	et	al.,	1992),	only	Dabrowski	and	Schmid	239	

(2011)	and	Griera	et	al.	(2011;	2013)	actually	included	anisotropic	flow	240	

properties	in	their	numerical	models.	Main	outcomes	of	these	studies	are	that	241	

the	rotation	rate	and	the	strain	field	around	an	object	are	affected	by	anisotropy.	242	

With	a	strong	emphasis	on	the	ongoing	rotation	versus	non-rotation	of	243	

porphyroblats	debate	(Bell	et	al.,	1992;	Passchier	et	al.,	1992),	little	attention	has	244	

been	given	to	the	question	what	causes	mantles	porphyroclasts	to	either	form	δ	245	

or	σ	geometries.	The	main	model	is	that	this	depends	on	the	weakness	of	the	246	

mantle	(or	slipping	interface)	and	its	thickness	relative	to	the	size	of	the	central	247	

object,	with	thick	mantles	forming	σ-clasts	and	thin	ones	δ-clasts	(Passchier	and	248	

Sokoutis,	1993;	and	review	of	Marques	et	al.,	2014).	Bons	et	al.	(1997)	already	249	

suggested	that	anisotropy	of	the	matrix	would	inhibit	rotation,	leading	to	the	250	

formation	of	σ-clasts.	Here	we	show	an	example	of	the	effect	of	anisotropy	on	the	251	

developing	shape	of	a	mantled	porphyroclast,	again	using	the	VPFFT-ELLE	code.	252	

In	the	isotropic	case	(all	slip	systems	of	one	phase	have	the	same	τcr;	Table	253	

1),	the	core	object's	τcr	was	set	at	50x	that	of	the	matrix,	while	that	of	the	mantle	254	

was	0.8x	that	of	the	matrix.	Deformation	is	homogeneous	in	case	of	an	isotropic	255	

mantle	and	the	central	object	rotates	at	a	rate	close	to	the	analytical	solution	of	256	

Jeffery	(1922)	(Griera	et	al.,	2011;	2013)	(Fig.	2a).	Wings	develop	by	smearing	257	

out	of	the	mantle	and	as	the	points	where	the	wings	attach	to	the	object	rotate	258	

along	with	the	object,	a	δ-clast	develops	(Fig.	2a).	When	the	mantle	is	distinctly	259	

softer	(τcr=4)	than	the	object	(τcr=50),	and	the	matrix	is	anisotropic	(A=10,	with	260	
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τcr=1	for	the	basal	slip	system	and	τcr=10 for non-basal slip systems),261	

deformation	in	the	matrix	is	highly	heterogeneous	and	folds	and	shear	bands	262	

develop	(Griera	et	al.,	2011;	2013).	Rotation	of	the	object	is	now	inhibited	263	

(contrary	to	the	analytical	model	of	Fletcher,	2009)	and	the	attachment	points	of	264	

the	wings	do	not	rotate	enough	to	develop	the	distinct	embayments	of	δ-clasts	265	

(Fig.	2b).	Instead,	a	σ-clast	forms.	266	

These	results	confirm	the	observations	of	Griera	et	al	(2013)	that	the	267	

incorporation	of	anisotropy	provides	an	elegant	way	to	explain	controversies	in	268	

structural	geology	regarding	the	duality	between	rotation	or	non-rotation	of	269	

porphyroblasts	(Bell	et	al.,	1992;	Passchier	et	al.,	1992).	Spiral	geometries	of	270	

inclusions	preferentially	develop	in	isotropic	conditions,	while	an	increase	in	271	

anisotropy	tends	to	reduce	rotation	of	porphyroblasts	of	which	the	inclusion	272	

trails	then	indicate	growth	over	a	crenulated	matrix.	273	

274	

3.3.	Shear	bands	in	composite	materials	275	

276	

Structures	in	natural	and	modelled	shear	zones	are	determined	in	part	by	the	277	

strength	contrast	between	minerals	and	slip	systems	within	minerals.	Weak	278	

minerals	define	the	foliation	(S-surface)	at	45°	from	the	shear	zone	boundary,	279	

and	planes	progressively	rotate	into	parallelism	with	the	shear	zone	boundary	280	

and	the	C-surface	(Fig.	3a).	Less	well	understood	is	the	development	of	C'	shear	281	

bands	(fig.	3a),	despite	their	ubiquity	in	shear	zones	in	nature,	experiments,	and	282	

models	(White,	1979;	Platt	and	Vissers,	1980;	Platt,	1984;	Dennis	and	Secor,	283	

1987).	C'	shear	bands	dip	at	an	angle	of	~15–35°	from	the	shear	zone	boundary,	284	

in	the	opposite	direction	to	the	main	foliation	(or	S	plane;	White,	1979;	Platt	and	285	

Vissers,	1980)	and	show	synthetic,	normal	shear	sense	(Fig.	3a).	They	are	most	286	

common	in	well-foliated	rocks	such	as	schists	and	phyllites	(Passchier,	1991;	287	

Delle	Piane	et	al.,	2009)	and	so	it	has	been	suggested	that	anisotropy	is	required	288	

for	their	development	(Wilson,	1984;	Goodwin	and	Tikoff,	2002).	289	

We	used	VPFFT-ELLE	to	model	the	development	of	C'	shear	bands	in	290	

anisotropic	materials,	building	on	the	work	of	Jessell	et	al.	(2009)	by	testing	the	291	

proportion	of	weak	phase	required	for	the	development	of	C'	shear	bands	in	292	

three-phase	models	and	by	introducing	anisotropy	to	the	crystallography	of	the	293	
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weakest	phase.	The	model	shown	(Fig.	3b)	included	a	strong,	intermediate,	and	a	294	

weak	phase,	the	latter	of	which	had	a	basal	plane	ten	times	weaker	than	295	

prismatic	and	pyramidal	planes	(i.e.	A=10).	We	found	that	C'	shear	bands	formed	296	

in	all	models	with	>1%	weak	phase	and	were	more	abundant	in	models	with	a	297	

higher	proportion	of	weak	phase.	In	nature	(Fig.	3a)	and	in	models	(Fig.	3b)	C'	298	

shear	bands	are	dominantly	defined	by	the	weakest	phase.	299	

300	

3.4.	Shear	localisation	301	

302	

Shear	localisation	develops	at	almost	all	scales	in	ductile	rocks.	For	example,	the	303	

shear	zones	in	Cap	de	Creus	(NE	Spain)	are	linked	in	an	anastomosing	304	

framework	with	self-similar	properties,	where	a	pre-existing	foliation	in	the	305	

metasediments	have	led	to	instabilities,	forming	shear	zones	at	a	wide	range	of	306	

scales	(Druguet	et	al.,	1997;	Carreras,	2001;	Fusseis	et	al.,	2006;	Schrank	et	al.,	307	

2008).	In	polar	ice	sheet	dynamics,	the	behaviour	of	large	ice	masses	is	strongly	308	

influenced	by	visco-plastic	anisotropy	of	grains	and	their	ability	to	form	a	lattice	309	

preferred	orientation	(LPO)	by	lattice	rotation	(Azuma	and	Higashi,	1985;	Alley,	310	

1988).	The	flow	of	glaciers	and	polar	ice	sheets	is	controlled	by	the	highly	311	

anisotropic	rheology	of	Ice	Ih	crystals	(Azuma,	1994;	Bons	et	al.,	2016;	Llorens	et	312	

al.,	2016a,b;	Llorens	et	al.,	2017),	which	may	lead	to	high	strain	zones	in	the	313	

glaciers	and	polar	ice	sheets	(Marmo	and	Wilson,	1998)	and	folding	(Bons	et	al.,	314	

2016;	Jansen	et	al.,	2016).	315	

To	show	how	anisotropy	(defined	by	the	parameter	A)	affects	localisation,	316	

we	simulate	the	deformation	of	a	pure,	single-phase	polycrystal	in	dextral	simple	317	

shear	(Fig.	4)	up	to	a	shear	strain	of	1.5	with	VPFFT-ELLE	described	above.	Basal	318	

planes	were	initially	randomly	oriented.	Strain	localisation	occurs	only	in	319	

anisotropic	cases	(A>1),	as	can	be	seen	by	the	passive	deformation	of	the	320	

polygon	boundaries	that	originally	had	a	foam	texture	(Fig.	4a)	and	the	map	of	321	

the	normalised	Von	Mises	strain	rate	field	(Fig.	4b).	High	strain-rate	rate	bands	322	

oriented	at	a	low	angle	to	the	horizontal	shear	plane	are	clearly	visible	(Fig.4a	323	

and	b),	especially	at	high	anisotropy	values	(A>>1).	324	

The	frequency	distribution	of	normalised	strain	rates,	at	a	shear	strain	of	325	

three,	in	the	isotropic	material	(A=1)	is	approximately	normal	(Fig.	4c).	326	
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Simulations	with	A>1	show	frequency	distribution	that	deviate	from	normal	327	

distribution	(Fig.	4c)	and	are	closer	to	log-normal.	However,	they	are	not	exactly	328	

log-normal,	as	they	become	heavy	tailed	for	large	strain-rate	values.	Higher	329	

strain	rate	values	become	overrepresented	with	values	up	to	20	times	the	mean	330	

for	A=20.		Therefore,	a	material	with	a	higher	degree	of	anisotropy	will	reach	331	

significantly	higher	strain	rate	values	due	to	strain	localisation.	As	a	result,	most	332	

of	the	material	deforms	at	a	significantly	lower	rate	than	the	mean	strain	rate,	as	333	

can	be	seen	by	the	leftward	shift	of	the	frequency	peak	in	Fig.	4c.	334	

335	

4.	Discussion	and	conclusions336	

337	

The	examples	described	in	previous	sections	provide	a	brief	glimpse	into	the	338	

effect	of	intrinsic	mechanical	anisotropy	(Griera	et	al.	2013)	on	deformation	339	

structures	in	rocks.	In	all	cases,	anisotropy	caused	heterogeneous	strain:	340	

expressed	in	the	axial	planar	crenulation	cleavage	in	Fig.	1d-e;	folds	and	shear	341	

bands	in	the	matrix	of	the	σ-clast	in	Fig.	2b;	and	shear	bands	in	shearing	342	

multiphase	(Fig.	3)	and	single-phase	(Fig.	4)	models.	The	strain	localisation	may	343	

be	the	most	interesting	aspect	here.	Processes	such	as	shear	heating	and	grain-344	

size	reduction	have	been	considered	in	detail	as	causes	for	strain	localisation	345	

(Tullis	and	Yund,	1985;	Braun	et	al.,	1999;	de	Bresser	et	al.,	2001;	Bercovici,	346	

2003;	Jessell	et	al.,	2005;	Kaus	and	Podladchikov,	2006;	Platt	and	Behr,	2011;	347	

Montési	2013).	Mechanical	anisotropy	may	be	of	equal	importance,	leading	to	348	

shear	zones	from	the	grain	scale	(Fig.	3)	to	possibly	continental	sutures,	similar	349	

to	the	damage	model	of	Bercovice	(2014).	350	

In	this	paper	we	have	used	to	VPFFT+ELLE	numerical	code	to	illustrate	351	

the	effect	of	intrinsic	mechanical	anisotropy.	We	do	not	claim	that	this	is	the	only	352	

available	approach.	We	use	this	anniversary	issue	to	encourage	structural	353	

geologists	to	develop	more	analytical	and	numerical	models	to	finally	elucidate	354	

the	role	of	mechanical	anisotropy	on	all	scales.	355	
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Figure	captions	656	

657	

Fig.	1.	(a)	Folded	quartz	vein	in	biotite-schist	matrix	at	Puig	Culip	(Cap	de	Creus,	658	

Eastern	Pyrenees,	Spain).	The	matrix	has	a	first	cleavage	(S1,	solid	yellow	lines)	659	

that	is	crenulated	to	develop	an	S2-cleavage	(white	dashed	lines),	axial	planar	to	660	

the	vein	folds.	One	Euro	coin	for	scale,	Ø=23	mm.	(b-c)	Finite-element	661	

simulations	of	folding	of	a	single	competent	layer	embedded	in	a	weaker,	662	

isotropic	matrix	(same	as	presented	in	Llorens	et	al.,	2013a,b).	(b)	dextral	simple	663	

shear	up	to	a	shear	strain	of	2,	and	(c)	vertical	pure	shear	up	to	55%	shortening.	664	

(d-e)	VPFFT-ELLE	simulations	of	single	layer	folding	in	an	anisotropic	matrix	665	

(A=20)	in	(d)	dextral	simple	shear	up	to	a	shear	strain	of	1,	and	(e)	vertical	pure	666	

shear	up	to	50%	shortening.	Note	that	the	anisotropy	in	the	matrix	results	in	an	667	

axial	planar	crenulation	cleavage,	comparable	to	the	one	shown	in	(a).	Grey	area	668	

in	insets	is	area	of	model	shown.	669	

670	

Fig.	2.	VPFFT-ELLE-simulations	of	a	circular	hard	object	(dark	red),	deformed	to	671	

a	dextral	simple	shear	strain	of	ten,	with	a	softer	mantle	(black),	embedded	in	an	672	

(a)	isotropic	or	(b)	anisotropic	matrix	(A=10).	Strain	distribution	is	illustrated673	

by	the	boundaries	of	the	originally	equidimensional	elements.	White	arrows	674	

show	the	total	amount	of	rotation	of	the	objects.	Ongoing	rotation	of	the	object	in	675	

the	isotropic	matrix	leads	to	the	development	of	a	δ-clast,	while	an	anisotropic	676	

matrix	leads	to	strongly	heterogeneous	matrix	deformation,	reduced	object	677	

rotation	and,	hence,	development	of	a	σ-clast.	678	

679	

Fig.	3.	C'	shear	bands	in	(a)	a	naturally	deformed	rock	and	(b)	an	VPFFT-ELLE	680	

simulation	with	a	weak	(black),	intermediate	(white)	and	strong	(pink)	phase.	St	681	

=	staurolite,	Qtz	=	quartz,	Bt	=	biotite.	The	S-foliation	is	highlighted	with	blue	682	

lines,	C-planes	with	green	lines	and	C'-planes	with	dashed	green	lines.	683	

684	

Fig.	4.	VPFFT-ELLE	simulations	of	polycrystals	deformed	in	dextral	simple	shear	685	

up	to	a	shear	strain	of	3	and	with	increasing	degree	of	grain	anisotropy	(A)	from	686	

1	to	20.	Anisotropy	is	defined	as	the	ratio	between	the	critical	resolved	shear	687	

stress	(τcr)	required	to	activate	the	non-basal	and	basal	slip	systems.	(a)	Grain	688	
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boundary	network	and	(b)	Von-Mises	shear	strain	rate	field,	normalized	with	689	

respect	to	the	bulk	value.	For	better	visibility	figures	of	Von	Mises	strain	rate	690	

field	have	been	enlarged	two	times,	only	showing	the	lower	right	quarter	of	the	691	

model.	(c)	Frequency	distribution	of	normalised	Von-Mises	strain	rates	for	692	

different	anisotropy	values.	Whereas	the	distribution	for	A=1	is	approximately	693	

normal	with	a	mean	of	one,	higher	A-values	lead	to	a	frequency	peak	below	the	694	

mean	and	a	"heavy	tail"	of	high	strain	rate	values.	Inset	shows	the	same	data,	but	695	

with	a	linear	vertical	scale.	696	

	697	

	698	

Table	caption	699	

	700	

Table	1.	Summary	of	method,	deformation	and	properties	of	the	models	701	

described	in	the	text.	All	models	were	run	using	the	ELLE	platform.		702	

	703	

	704	

	705	











Table 1

Figure Method1 Deformation Properties
Layer Matrix

Fig. 1b FEM simple shear B=50 B=1
Fig. 1c FEM pure shear B=50 B=1
Fig. 1d VPFFT simple shear cr(all)=100 cr(basal)=1

cr(other)=20
Fig. 1e VPFFT pure shear cr(all)=100 cr(basal)=1

cr(other)=20
Core object Mantle Matrix

Fig. 2a VPFFT simple shear cr(all)=50 cr(all)=0.8 cr(all)=1
Fig. 2b VPFFT simple shear cr(all)=50 cr(all)=4 cr(basal)= 1

cr(other)=10
Strong phase Intermediate Weak phase

Fig. 3b VPFFT simple shear cr(all)=30 cr(all)=15 cr(basal)= 1
cr(other)=10

Whole model
Fig. 4 VPFFT simple shear cr(basal)= 1

cr(other)=1, 5, 20
1FEM = finite element method with BASIL (Houseman et al., 2008). VPFFT= Viscoplastic Full-
Field Transform method (Lebensohn, 2001), using 256x256 elements.




