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Abstract

This thesis aims to examine the parametrisation of coarse-grained models for

the simulation of soft matter systems. The strengths and weaknesses of a range of

methods are examined, and suggestions for improvements are made.

Initially, two bottom-up methods, iterative Boltzmann inversion (IBI) and hy-

brid force matching (HFM) are applied to a liquid octane/benzene mixture and

compared to a top-down model based on a version of statistical associating fluid

theory, the SAFT-γ Mie equation of state. These models are tested for their ability

to represent the structure and thermodynamics of the underlying atomistic system,

as well as their transferability between temperatures and concentrations. Attempts

are then made to address the poor transferability of the bottom-up models using a

variant of IBI, multi-state IBI (MS-IBI). MS-IBI allows concentration transferable

potentials to be generated but is not successful in improving temperature transfer-

ability. The state-point dependence of pair potentials is identified as the cause of

poor temperature transferability, and initial attempts to address this are discussed.

A range of coarse-grained models of the non-ionic liquid crystal TP6EO2M is ex-

amined. HFM is able to give a structurally accurate coarse-grained model; however,

the difficulty of sampling all relevant configurations within an atomistic reference

system appear to cause problems with calculating accurate association free energies.

The new MARTINI 3 top-down force field is shown to improve upon the struc-

tural and thermodynamic properties of MARTINI 2, allowing larger system sizes to

be studied. The nematic and hexagonal columnar chromonic phases are observed,

and the concentration dependence seen in the experimental phase diagram is repro-

duced. This represents the first simulations of chromonic liquid crystal phases using

systematic coarse graining.
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Chapter 1

Introduction to coarse-grained

modelling

1.1 Levels of computational chemistry

Molecular modelling is a valuable scientific tool for studying chemical systems.

Increasingly, it is being used to complement experiment, due to its ability to look at

systems from a molecular perspective. However, in computational chemistry, there

must always be a balance between the accuracy of the method used and its com-

putational cost. There are many computational chemistry methods available, some

of which are able to treat a small system with very high accuracy, others of which

can be used on very large systems by applying appropriate levels of approximation.1

The range of available method types is summarised in Figure 1.1

The study of individual small molecules is often carried out using methods based

on quantum mechanics, such as density functional theory,2 or more accurate (and

expensive) ab initio methods.3 These allow the study of the electronic structure

of small molecules and, depending on the method used, can allow very accurate

calculations of molecular structures and properties. Such methods can also be used

to study the dynamics of small systems over very short timescales (usually no more

than 1 ns), for example using Car-Parrinello molecular dynamics.4

For larger systems, such as polymers or bulk quantities of small molecules, quan-

tum methods are prohibitively expensive, and atomistic methods based entirely on

classical mechanics must be employed. These methods treat molecules as a series

of spheres (atoms) connected by springs (bonds), with no explicit treatment of the

1



1.1. Levels of computational chemistry 2

Figure 1.1: General levels at which molecular modelling can be carried out, as a
function of the accessible time and length scales at each level.

electrons in the system. They can allow the study of dynamics on the ns - µs scale,

and as such are extremely useful for studying the behaviour of larger systems. Force

fields are parametrised either from ab initio methods or from experimental ther-

modynamic data. Atomistic force fields have been used to obtain a large amount

of useful data, particularly for biomolecular systems where ab initio methods are

prohibitively expensive in terms of computer time.5,6

At the very large end of the spectrum are mesoscale methods; these range from

particle-pased methods such as dissipative particle dynamics,7 to grid-based Lattice

Boltzmann simulations,8 which do not explicitly consider individual particles. These

methods can scale to very large systems, up to millimetres or even centimetres on

second timescales. However, in going to these scales, they lose the ability to model

the underlying chemistry of a system in a detailed way.

There are some processes, like protein dynamics, self-assembly and phase changes,

which occur on µs or ms time scales but are driven by chemical interactions. These

processes require a middle ground between classical all-atom simulations and mesoscale

methods. This has been the driving force for the recent development of coarse-

grained molecular dynamics, where the accuracy of atomistic models is retained as

far as possible, but at smaller computational cost.9

The basic idea behind coarse graining is the removal of unimportant degrees

of freedom from atomistic models, by grouping together several atoms as a single
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interaction site, often called a coarse-grained bead. This comes with the obvious

benefit of reducing the number of force calculations needed at each time step, but

there are further benefits. Removing degrees of freedom results in a simpler potential

energy surface. There will therefore be fewer local minima for the system to get stuck

in, which means that equilibration of a coarse-grained system will be faster than an

atomistic one. Finally, many coarse-grained models use softer interaction potentials

than atomistic models, allowing for longer time steps. The result of all these factors

is that coarse graining facilitates the study of much larger systems over longer time

scales than atomistic models.9

A large amount of research has been carried out into combining these different

scales, so that the area of particular interest can be modelled in detail, and the

surroundings at a coarser level. QM/MM, where part of a system is treated at a

quantum level and the rest with all-atom classical forcefields, is particularly pop-

ular.10 However, this idea has also been extended to a coarse-grained level. For

example, the AdResS method allows the combination of a detailed classical all-

atom region with coarse-grained surrounding, by means of an intermediate hybrid

region.11 There have even been examples of a hybrid QM/CGMM system, which

would combine a detailed quantum mechanical region with surroundings modelled

at the coarse-grained level.12 The idea of backmapping, in which coarse-grained sim-

ulations are used to rapidly equilibrate a system, after which it is converted back to

an atomistic representation for accurate data collection, has also been used.13

Whether a system is being modelled at a fully coarse-grained level or using a

hybrid method, it is important to make the sure the coarse-grained model adequately

represents the system. The two main steps to constructing a coarse-grained model

are choosing a mapping scheme, which defines how the coarse-grained beads are

related to the underlying atomistic structure, and parametrising the interaction

potentials. Both of these steps are the subject of significant research efforts.

1.2 Coarse-grained mapping

The choice of coarse-grained mapping is the first decision which must be made

when coarse graining a system, and is one of the most important features of the

model. Although the removal of degrees of freedom can significantly speed up sim-

ulations, it is important that sufficient chemical accuracy is retained. Lower level
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degrees of freedom may be crucial, particularly to the behaviour of more complex

molecules and polymers. Therefore, the coarse-grained mapping scheme used must

be based on a balance between cost and accuracy, which requires detailed knowledge

of the system being studied.

There are a number of approaches to selecting a mapping scheme. Several studies

have been published detailing automated methods which ensure that the important

degrees of freedom are not neglected, and that the coarse-grained model retains

the important structural features of the atomistic system.14,15 However, in most

cases, mapping is done by hand, using a knowledge of which groups are chemically

important. Regardless of the approach used, the level of coarse graining must first

be chosen.

On the boundary between all-atom and coarse grained models are united atom

(UA) schemes, where a united atom is defined as 1 heavy atom with all of its associ-

ated hydrogens. Since, for most organic molecules, hydrogen is the most abundant

element, this removes a significant number of degrees of freedom, and makes calcula-

tions more efficient. Prominent examples of force fields which use united atoms are

the OPLS-UA16, Amber United Atom17 and TraPPE-UA18 force fields; these were

parametrised from a combination of ab initio and experimental data. These models

compare very well to all-atom models; however the speed-up is relatively modest.

Some studies have used significantly larger coarse grained beads. For exam-

ple, Dama et al. recently proposed a method for constructing ultra coarse grained

models, where coarse grained beads could represent tens or even hundreds of heavy

atoms.19 At this resolution, common methods for parametrising coarse grained in-

teractions, such as multiscale coarse graining (MS-CG)20 and iterative Boltzmann

inversion (IBI)21, are no longer effective, and internal degrees of freedoms must be

introduced into the coarse grained beads. The Integral Equation coarse graining

method works well on very large beads, which can be up to the size of an entire

polymer chain.22

In most of the coarse grained models discussed in this thesis, a mapping of

2 - 4 heavy atoms to every coarse grained bead is used. These are based on a

number of factors including the separation of the molecules into distinct functional

groups, retaining the cyclic nature of molecules like benzene or cycloalkanes, as

well as the desire to keep a consistent level of mapping within a system as much

as possible. These mappings are able to give a significant speed-up compared to
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all-atom models, and work well for simple molecules and polymers. The molecules

retain enough internal degrees of freedom to exhibit realistic behaviour; for example,

the flexibility of longer chains can still be modelled well. For systems, such as many

liquid crystals or lipids, where the molecules cannot be easily split into equally

sized beads, a variable level of coarse graining may be used, where different beads

include a different number of heavy atoms.23–25 Alternatively, when using a coarse

grained force field with predefined mappings, such as MARTINI (see Section 2.4.1),

individual atoms may be missed out to retain a consistent mapping scheme.26

1.3 Systematic coarse-graining

There are a number of goals of coarse graining, which influences the type of

coarse-grained model which is most appropriate. Often, the objective is gain qual-

itative information about the properties of a particular type of soft matter system.

In these cases, coarse-grained models which capture the shape and relative interac-

tion strengths of the molecules in question are often sufficient. For example, simple

shape-based models have frequently been used to model the phase behaviour of liq-

uid crystals.27 DPD simulations have also been used to efficiently investigate the

effects of changing molecular geometries or relative interaction strengths.28

Such studies are, however, limited in their ability to represent real systems.

In some cases the aim is to obtain more quantitative information about a specific

chemical system or systems, but at length and timescales which are not accesible to

atomistic models. Systematic coarse graining refers to methods used to include real

chemical data in the parametrisation of coarse-grained models, allowing for more

accurate and in-depth studies of the effect of chemistry on the properties of soft

matter systems.

Parametrising coarse-grained models which accurately represent the chemistry of

a system is not straightforward. Several methods for systematically constructing CG

potentials have been developed, each with their own advantages and disadvantages,

but as yet no single method has been found to consistently produce good results

for all systems. The introduction of software packages, such as VOTCA29,30and

BOCS31, has allowed CG models to be produced more easily, using some of the

more common coarse-graining methods.

Broadly speaking, there are two approaches to systematic coarse-graining. The
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first is the top-down approach, where a coarse-grained force field is parametrised to

reproduce experimental thermodynamic data, in a similar manner to many atom-

istic force fields. The other is the bottom-up approach, where the coarse-grained

potential is constructed from an accurate atomistic reference system. Many bottom-

up methods have been developed; some involve parametrising a potential so that

it reproduces certain structural or thermodynamic features of the reference system,

while others involve directly calculating interactions from the reference.9

Currently, the world of coarse-grained modelling is dominated by models based

on the MARTINI forcefield, a top-down model originally parametrised for lipid bi-

layers,32 but which has been extended to a range of other systems.26 At the time of

writing, the original MARTINI paper had been cited over 2000 times. This popular-

ity can be attributed to MARTINI’s ease of use and transferability to a wide range

of systems. The forcefield is based on Lennard-Jones potentials, and as such is easily

compatible with major molecular dynamics simulation packages such as Gromacs.

While MARTINI is the most widely used coarse grained model, many other

methods have been proposed. On the top-down side, the SAFT-γ Mie equation of

state, a variation of statistical associating fluid theory in which the free energy of

a system is written in terms of the parameters of a Mie potential, has been used

to develop coarse-grained models.33 There have been other publications presenting

bespoke top-down coarse-grained models, using a range of different optimisation

algorithms and matching to various thermodynamic properties.34,35

When large amounts of experimental data are available, it is possible to construct

coarse-grained models which very accurately represent a system over a range of con-

ditions. However, sufficient experimental data may not be available for all systems;

in these cases, bottom-up models parametrised from atomistic simulation data may

be the better option. Two of the earliest, and most widely used, bottom-up coarse

graining methods are iterative Boltzmann inversion (IBI),21 based on matching the

structure of an atomistic reference, and the multi-scale coarse graining (MS-CG)

method,20 also known as force matching, which focusses on matching the forces

in the atomistic reference. The relative entropy method has also been growing in

popularity in recent years,36 and there have been a huge number of other methods

presented in addition to these three.

A detailed overview of the methods used in systematic coarse-graining is provided

in Sections 2.4–2.6.
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1.4 Issues with coarse-graining

Regardless of the method used to parametrise a coarse-grained model, there are

two major issues which arise: those of representability and transferability. The

former is concerned with the ability of a coarse-grained model to represent physical

properties at the thermodynamic state point at which it is parametrised; the latter

is its ability to be predictive at different state points, where parametrisation data is

not available. Both issues are problematic and exist whether or not a coarse-grained

model was developed by top-down or bottom-up methods.

The problem of representability arises from the fact that a coarse-grained model

parametrised to reproduce one observable will not necessarily be able to reproduce

other observables of the system at the same state-point.37,38 Representability is dis-

cussed in depth by Wagner et al.39 While it is of course possible to improve the

accuracy of a coarse-grained model through the parametrisation of the interactions,

the ability of the model to represent a system well is limited by the degree of coarse

graining. It is only reasonable for a coarse-grained model to represent observables

which are compatible with the resolution of the model, and do not significantly

depend on the degrees of freedom which were removed from the all-atom represen-

tation. In some cases, the expression for calculating a particular observable in an

all-atom representation may not be valid for a coarse-grained representation (see

Section 2.2.5). The fact that most coarse-grained potentials are state-dependent

means that the calculation of many thermodynamic properties is affected; for ex-

ample, the standard virial expression for the pressure is invalid if the coarse-grained

potentials are volume-dependent. Some representability issues are subtle. For exam-

ple, coarse-graining through the elimination of degrees of freedom typically changes

the balance of enthalpic and entropic contributions to free energy within a model of

a molecular system.40,41 However, the coarse-grained model might still capture the

correct phase behaviour, provided free energy changes are well-represented.

Representability and transferability both have similar origins; the state-dependence

of effective pair potentials also naturally affects the ability of coarse-grained mod-

els to work at multiple state points.42,43It is noticeable that transferability differs

significantly between different types of coarse-grained models and different types

of coarse-grained systems. Typically, top-down models parametrised from experi-

mental data measured over a range of conditions have better transferability than
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bottom-up models, which are parametrised using reference systems at a much more

limited range of conditions (often only one state point). In the early days of system-

atic coarse-graining from reference atomistic models, it was noted that approaches

such as iterative Boltzmann inversion (IBI)44 could be used to provide coarse-grained

models of homopolymers that were (sometimes) transferable across a range of tem-

peratures and molecular weights.45–47 However, it is now recognised that for mix-

tures containing many types of interaction sites, where chemical environment often

changes with concentration and/or temperature, transferability becomes far more

problematic.

A further issue is the connection between the dynamics of a coarse-grained model

and the underlying atomistic system. The removal of degrees of freedom results in

faster dynamics, and a more computationally efficient model, but the exact rela-

tionship between the coarse-grained and atomistic dynamics can be complex. As

polymer melts are usually isotropic, it was initially hoped that simple time-scale

scaling could be used to link dynamic properties between atomistic and coarse-

grained levels.48 However, for systems with anisotropy or inhomogeneity, or simply

with different activation barriers for different processes, there is no guarantee that

different dynamic quantities are not accelerated by different amounts in moving

from an atomistic to a coarse-grained model. This must be taken into account when

interpreting the results of any coarse-grained simulation. Some progress has been

made in addressing the dynamics of coarse-grained models in a systematic way, by

introducing additional terms which account for the removed degrees of freedom.49,50

However, such methods do increase the complexity of the model, so may not be

necessary in cases where only equilibrium structural or thermodynamic properties

are of interest.

From a chemical perspective, two key areas where more accurate coarse-grained

models are most needed are in the prediction of local structure and free energy

changes, as a function of changing temperature and concentration. The former un-

derpins the use of coarse-grained models to predict complex supramolecular or self-

organised structures. This is vital in many areas of biochemical modelling, including

prediction of membrane structure and stability51–53 and protein/nucleic acid inter-

actions.54 Structure prediction also underpins many important areas of soft mat-

ter chemistry, such as micelle formation55,56 and the formation of the microphase-

separated structures seen in lyotropic liquid crystal28,41,57,58 and block copolymer
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Figure 1.2: Molecular structures of a) benzene, b) octane and c) TP6EO2M.

phase diagrams.59–61 An accurate representation of free energy changes underpins

the prediction of thermotropic liquid crystal phase diagrams,62,63 liquid-liquid misci-

bility and the phase boundaries in many industrially important soft matter systems

formed from polymers and/or surfactants. Hence, there is considerable interest

in methods that can automatically generate a coarse-grained model (either from a

bottom-up or top-down perspective) which is both representative in terms of local

structure and free energy changes, and sufficiently transferable to be used over a

range of temperatures and concentrations.

1.5 Aims and scope of thesis

There is now a very wide range of methods for constructing coarse-grained mod-

els. However, there is currently no coarse graining method that can reproduce all the

relevant characteristics of a system to the required degree of accuracy, and with suf-

ficient thermodynamic and chemical transferability; in fact, the question of whether

this is possible in a model which also significantly improves upon the computational

efficiency of atomistic models is yet to be answered. Therefore, there is still work to

be done before the most effective coarse graining method becomes apparent.

The overall aim of this thesis is to investigate a range of methods for parametris-

ing coarse-grained models, both bottom-up and top-down, for two contrasting sys-

tems: an octane-benzene liquid mixture and the chromonic liquid crystal TP6EO2M,

the structures of which are shown in Figure 1.2. The octane-benzene mixture was

chosen because it forms a miscible mixture across the full composition range, has
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both flexible (octane) and rigid (benzene) components, and requires different coarse-

grained bead types, resulting in multiple, distinct bead-bead partial radial distri-

bution functions (RDFs). The TP6EO2M system is considerably more challenging

to coarse grain. The TP6EO2M molecule consists of distinct hydrophilic and hy-

drophobic groups which affect its behaviour in aqueous solution, and as a liquid

crystal it is structurally more complex than a homogenous liquid. These factors

make constructing a coarse-grained model significantly more challenging. In both

cases, the representability and transferability of coarse-grained models parametrised

using different methods will be examined, and approaches for improving the models

investigated.

Chapter 2 will give the theoretical background to this project. It will begin

by describing, in general terms, the simulation and analytical methodology used in

this thesis. Details of the theory and implementation of a range of coarse-grained

methods will then be provided, along with examples of past applications.

Chapters 3 and 4 will deal with the testing of several coarse graining methods

on a binary liquid mixture of octane and benzene. Initially, the common bottom-up

methods, HFM and IBI, will be compared to top-down coarse graining via the SAFT-

γ Mie equation of state. Methods for improving on the transferability of the bottom-

up methods will then be investigated, including the use of multiple reference systems

with the multi-state IBI (MS-IBI) method and addressing the problem of overfitting

using simple Morse potentials. Finally, preliminary work on the use of local density-

dependent potentials, which represent a compromise between transferability and the

complexity of a coarse-grained model, will be described.

Chapters 5 and 6 will then focus on parametrising coarse-grained models for the

non-ionic chromonic liquid crystal TP6EO2M in aqueous solution. The first aim

here will be to examine whether it is possible to parametrise an effective bottom-up

model using HFM for a system such as this, where the atomistic reference simulation

is more difficult to perform. A range of top-down methods will then be applied,

and tested for their ability to produce molecular stacking and liquid crystal phase

formation.

Finally, Chapter 7 will provide a summary of the results and conclusions of the

thesis, and suggest future research directions which build on what has been done.



Chapter 2

Simulation methods and

coarse-graining theory

2.1 Introduction

Throughout this thesis, a range of simulation and analysis methods will be used

to test the representability and transferability of coarse-grained models. These

coarse-grained models will be parametrised using several coarse graining methods,

both bottom-up and top-down. The aim of this chapter is to provide details of the

methods used and other, related, methods and to act as a reference for the rest of

the thesis.

The chapter will begin by describing the theory behind molecular dynamics sim-

ulations, then the methods used to analyse the structure and thermodynamics of

the simulations carried out. Since there is a wide variety of simulation methods

available, the advantages of using particular methods will also be discussed. These

sections will cover the methods in general terms, with specific details of how they

were applied to particular systems given in the relevant results chapters.

The remaining sections will give the theoretical basis behind various coarse grain-

ing methods, starting with top-down coarse-graining, moving on to bottom-up coarse-

graining based on matching structure and forces/energies, and then describing more

recent work on coarse-grained models extended beyond pair potentials. This will

include all of the coarse graining methods used in later chapters; however, other com-

mon methods will also be discussed to provide further context for how the different

coarse-graining methods are linked.

11
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2.2 Molecular dynamics

2.2.1 Equations of motion

Molecular dynamics (MD) is the simulation of the behaviour of atoms and

molecules with time. In classical MD, this is accomplished by solving Newton’s

equations of motions:

F = m
d2x

dt2
, (2.1)

where m is the mass of a particle, x is its positions and t is time. The forces, F , on

each atom are calculated using a force field, as described in Section 2.2.2. There are

a number of algorithms for calculating the motions of the particles. The simplest of

these is the Verlet algorithm:

xi+1 = 2xi − xi−1 + ∆t2ai, (2.2)

where xi is the position of a particle at time step i, a is its acceleration and ∆t is

the time step.

The Verlet algorithm is time-reversible and provides good energy and momentum

conservation. However, the addition of a small number (∆t2ai) to a larger number

can cause numerical errors which can propagate over longer trajectories. This issue

was addressed in the leapfrog64 and velocity Verlet65 algorithms, both of which make

use of the velocity at the midpoint between two time steps, vi− 1
2
. The leapfrog

algorithm calculates the positions and velocities of the particles using:

xi = xi−1 + vi− 1
2
∆t

vi+ 1
2

= vi− 1
2

+ ai∆t
(2.3)

These equations do not contain a term proportional to ∆t2, and so the numerical

errors associated with the Verlet algorithm will not occur in the leapfrog algorithm.

No matter which algorithm is chosen, the choice of ∆t is very important to the

stability of an MD simulation. All of the motions being modelled will occur on

different timescales, and it is crucial that ∆t is small enough to capture them all. In

general, this means a timestep which is at least 10 times shorter than the period of

the highest frequency motion in the simulation. In most all-atom simulations, the
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bond vibrations are the limiting factor, and time-steps are on the order of 1 fs.

2.2.2 Force fields

Running a molecular dynamics simulation requires a way to calculate the forces

acting upon the particles in the system. In classical molecular dynamics, this is

done using a force field, in which the total energy of the system is split up into a

number of different contributions which approximate the true energy of the system.

In general, the total potential energy in a classical force field is given by:

Utot = UvdW + Uelec + Ubond + Uangle + Udihedral. (2.4)

These contributions can be split into two categories: bonded interactions (Ubond,

Uangle and Utorsion) and non-bonded interactions (UvdW and Uelec).

The terms in Equation 2.4 are used in most force fields, but many force fields will

use additional terms. The specific terms which are used will be decided based on a

trade-off between accuracy and computational cost. Many force fields have been de-

veloped for a range of different purposes, particularly for simulating biomolecules66,67

and small organic molecules18,68, and these force fields often have poor transferabil-

ity to different system types. Therefore, the choice of which force field to use will

have a big effect on the reliability of a simulation, and depends heavily on the system

and properties of interest. In some cases, where existing force fields perform poorly,

it may be necessary to either develop new force fields or reparametrise existing ones

to accurately describe a system.

All-atom force fields are often parametrised using a combined top-down/bottom-

up approach, in which parameters are fitted to combination of experimental data

and quantum mechanical calculations. For example, in the GAFF force field,68 the

bonded parameters were fitted to reproduce structural data from high level quan-

tum calculations and experimental crystal structures. Non-bonded parameters were

taken from the Amber force field,69 some of which derives from the earlier OPLS70

force field; these non-bonded parameters were all originally fitted to reproduce ex-

perimental thermodynamic data. This reuse of parameters between force fields is

relatively common, since it allows more time to be spent on parametrising the in-

teractions which are judged to need improvement.

The functional form of the terms in Equation 2.4 can vary considerably between
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force fields. In all-atom force fields, and some coarse-grained models, they usually

take simple analytical forms. However, many coarse-grained force fields use nu-

merical potentials, in which U is tabulated and is not described by any analytical

function; this allows for much greater flexibility when parametrising a force field.

Bonded interactions

The internal structure of individual molecules has a significant effect on the

behaviour and properties of most chemical systems. It is therefore very important

that force fields are able to enforce the correct molecular geometry, and this is

achieved using bonded interactions.

The bond stretching potential Ubond acts between sites which are directly con-

nected, and is usually represented by a harmonic potential:

Ubond(rij) = K

2 (rij − r0)2, (2.5)

where rij is the distance between sites i and j, r0 is the equilibrium bond length,

and K is the force constant. This potential form has a minimum at the equilibrium

bond length, so enforces the correct bond lengths in the system.

Uangle is the angle bending potential, and acts between sites separated by two

bonds. Similarly to the bond length, it is often represented by a harmonic potential:

Uangle(θijk) = Kθ

2 (θijk − θ0)2, (2.6)

where θijk and θ0 are the angle connecting sites i, j and k, and the equilibrium bond

angle, respectively.

Udihedral acts on groups of four atoms. If these atoms are consecutively linked

by bonds, this is called a proper dihedral; otherwise it is an improper dihedral. In

general, these interactions describe the flexibility of a molecule. Proper dihedrals

define the potential energy for rotation around a chemical bond. A common choice

of functional form is the Ryckaert-Bellemans function:

Uproper(φijkl) =
5∑

n=0
Kn(cos(φijkl))n, (2.7)

where φijkl is the proper dihedral connecting sites i, j, k and l (defined as the angle

between the ijk and jkl planes), and Kn are a set of coefficients. This functional
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form gives a large amount of flexibility in terms of the periodicity and general shape

of the dihedral potential, allowing it to be applied to wide range of bond rotations.

Improper dihedrals are commonly used to keep aromatic rings planar. This can

be achieved using a simple periodic potential form:

Uimproper(ξijkl) = K(1 + cos(nξijkl − ξ0)) (2.8)

where ξijkl is the improper dihedral connecting sites i, j, k and l, n defines the

periodicity of the potential and ξ0 is the angle at which the potential is at its

maximum.

Constraints

While getting the molecular geometry correct is crucial in MD simulations, di-

rectly modelling the vibrations of bonds and angles comes at a computational cost.

The main reason for this is that these motions limit the timestep which can be used,

as discussed in Section 2.2.1. It is possible to replace bonds (and sometimes angles)

with constraints. Constraints ensure that the bond lengths are correct, while remov-

ing the need to explicitly model bond vibrations, therefore allowing larger timesteps,

generally of 2–4 fs, to be used.

The general idea behind constraints is that, at each time step, the coordinates of

the particles are updated as usual, and these coordinates are then modified so that

the constraints are satisfied. One of the more efficient constraints algorithms is the

Linear Constraint Solver (LINCS).71 In the LINCS algorithm, the modification of

the coordinates is done in two steps. Firstly, for each bond constraint, the updated

bond is projected onto the same bond from the previous time step. The length of

the bond is then corrected to the specified constraint length. The more intercon-

nected the system, the more difficult it becomes to simultaneously satisfy all of the

constraints.71

Non-bonded interactions

All of the important interactions not covered by the bonded terms in the force

field are covered by non-bonded interactions. This includes the interactions between

molecules (intermolecular interactions) and between atoms in the same molecule

(intramolecular interactions). In most force fields, the non-bonded contribution to
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the potential energy is split into two parts: the van der Waals energy (UvdW) and

the electrostatic energy (Uelec).

UvdW is a combination of a number of different interactions, including steric

repulsion, induction and dispersion. In atomistic force fields, it is most commonly

described by the Lennard-Jones potential:

ULJ(r) = 4ε
[(
σ

r

)12
−
(
σ

r

)6
]
, (2.9)

where ε is the potential well depth, and σ is the distance where ULJ = 0. The

important features of this potential are the repulsive wall, which prevents sites from

overlapping, and the attractive well, which defines the distance at which two sites

interact the most strongly, and the strength of this interaction. Another important

feature is that, at larger distances, the force goes to zero, so the particles do not

interact at all. Lennard-Jones potentials are ideally suited for the interactions be-

tween atoms. However, in coarse-grained models, softer potentials are often desired.

There are a number of other functional forms which can be used this purpose; these

include the Mie potential, which is a generalised Lennard-Jones potential where the

exponents are not restricted to 12 and 6, and the Morse potential, which is given

by:

UMorse(r) = ε
(
e−2α(r−r0) − 2e−α(r−r0)

)
, (2.10)

where r0 is the distance where UMorse(r) = −ε, and α controls the curvature of

the potential. The Morse potential shares the key features of the Lennard-Jones

potential described above. However it, along with numerical potentials, is useful for

coarse-grained models because it allows greater control over the softness or hardness

than the Lennard-Jones potential.

Calculating UvdW for each pair of interactions in the system would be extremely

computationally expensive. However, since UvdW tends to zero for larger distances, it

is possible to employ a potential cut-off. This means that UvdW is only calculated for

pairs of sites where r is less than a chosen cut-off, rcut. The value of rcut must be large

enough that important interactions are not neglected. This can be implemented by

simply shifting the entire potential by a constant such that it goes to zero at rcut.

However, this does not guarantee that the forces are smooth at the cut-off, and so

often a shifting function is added to the potential, such that both the potential and
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the forces are smooth:

U(r) = ULJ(r) + Ushift(r) (2.11)

Electrostatics

In most classical models, each atom or site will have a partial charge associated

with it. The interactions between these partial charges are described by Uelec. The

simplest and quickest method is to calculate:

Uelec = qiqj
4πε0r

, (2.12)

where qi is the charge on atom i and ε0 is the vacuum permittivity, for all particles

within a given cut-off. However, this approach neglects long-range electrostatics,

which are important to the behaviour of many systems. While Uelec does tend

towards 0 as r increases, it does so much more slowly than UvdW, so the cut-off

needed to include important long-range interactions would be very large.

A number of methods for including long-range electrostatics have been developed

over the years. One of the more commonly used ones is the particle-mesh Ewald

(PME) method. In PME, an electrostatic cut-off is defined which splits the elec-

trostatic energy into a short-range and long-range contribution, depending on the

distance between two particles. The short-ranged part is calculated as before using

Equation 2.12, and the long-ranged part is calculated by a summation in Fourier

space;72,73 this requires that the system is periodic, so is used alongside periodic

boundary conditions, as described in Section 2.2.3. This is much cheaper than cal-

culating all of the electrostatics with Equation 2.12, and including the long-range

electrostatic contribution gives a significant increase in accuracy.

It is possible to go beyond simple point-charge models, and introduce polaris-

ability to classical force fields. Polarisable models are able to react dynamically to

their electrostatic environment, and so are often more transferable than point-charge

models. Polarisation can be included by simply adding an extra particle which is

attached by a spring to an atom, and interacts only electrostatically with the rest

of the system; this is the approach taken in the Drude water model.74 Alternatively,

the AMOEBA force field includes dipoles and quadrupoles, the strength of which

can vary according to their environment.75
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2.2.3 Periodic boundary conditions

The computational cost of running an MD simulation increases with the number

of atoms in the system. Therefore, while it is possible in principle to model an

extremely large number of atoms, the system size is limited by the computational

power available. For example, accurately modelling even a simple bulk liquid would

require an unfeasibly large number of molecules; there must be enough molecules

that are far enough away from the liquid/vapour phase boundary to capture the

behaviour of a liquid. Periodic boundary conditions76 can dramatically reduce the

computational cost, and so are very commonly used for the simulation of a large

system like this.

Simulations with periodic boundary conditions involve modelling a small unit

cell which is repeated infinitely in three dimensions. This effectively allows one

to model an infinite number of atoms in all directions, significantly reducing the

computational cost of modelling bulk systems. However, care is still needed when

setting up the periodic boundary conditions; the unit cell must be large enough that

a molecule cannot interact with its periodic images. Cubic or rectangular unit cells

are the most common, and are sufficient for the majority of liquid-state simulations.

However, particularly when simulating solid crystalline materials, more complex unit

cells can also be used.77

2.2.4 Thermodynamic ensembles

For a simulation to have physical meaning, there must be some way of control-

ling the set of conditions under which they system is being studied. In statisti-

cal thermodynamics, these conditions are known as ensembles. The two ensembles

most commonly used in molecular dynamics are constant-NV T and constant-NPT ,

where N is the number of particles, V is the volume of the simulation box, T is tem-

perature and P is pressure. The difference between these two ensembles is that in

constant-NV T the volume of the box is fixed, and in constant-NPT the box volume

is allowed to vary so that the average pressure remains constant. The best choice

of ensemble depends on the properties of interest; for example, the NPT ensemble

allows one to study the influence of pressure on other system properties. Modelling

a fixed number of particles or box volume is straightforward; however, keeping the

temperature or pressure constant is less simple, and in practice this is done using,
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respectively, thermostats and barostats.

Thermostats

The temperature of a system can be calculated from its kinetic energy, Ekin using:

T = 2Ekin

3NkB
, (2.13)

where N is the number of atoms.

Ekin = 1
2

N∑
i

miv
2
i . (2.14)

If the temperature is proportional to the velocities of the particles, then a simple

way to change the temperature of the system is to alter the velocities; this is how

thermostats work.

One of the simplest, and most computationally efficient, thermostats is the

Berendsen thermostat78, which scales the velocities of all particles by the same

factor, λ:

λ =
[
1 + ∆t

τT

(
T0

T
− 1

)] 1
2

, (2.15)

where τT is the temperature coupling constant, T is the temperature, and T0 is the

reference temperature. This method will scale the velocities so that the total kinetic

energy, and therefore the temperature, is correct. However, since all velocities are

scaled by the same factor, the Berendsen thermostat does not generate a Boltzmann

distribution of velocities, so the system will not accurately describe the canonical

ensemble. Therefore, it is often used just for equilibration, and thermostats that

generate the correct canonical ensemble, such as the Nosé-Hoover thermostat79,80,

are used in production runs.

The Nosé-Hoover thermostat modifies the equations of motion to introduce a

friction coefficient, ζ:

dζ(t)
dt

= 1
Q

[∑
mv(t)2 − (X + 1) kBT

]
, (2.16)

where Q is a coupling constant and X is the number of degrees of freedom in the sys-

tem. Alternatively, a stochastic thermostat can be used, which introduces random

fluctuations to the motions of the particles. Both of these methods will generate a
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Boltzmann distribution of velocities, and so correctly describe the canonical ensem-

ble.

Barostats

In molecular dynamics simulations pressure is calculated using the virial formula:

Pvir = 1
V

(
NkBT + 1

3

〈
N∑
i

ri · F i

〉)
, (2.17)

where V is the system volume. Pressure is inversely related to volume, and so

pressure coupling can be carried out by scaling the size of the simulation box. The

Berendsen barostat78 works in a similar way to the Berendsen thermostat, by scaling

the coordinates and box vectors by a factor of µ:

µ = 1− κT∆t
3τP

(P0 − P ) , (2.18)

where κT is the approximate isothermal compressibility of the system, τP is a pres-

sure coupling constant, P is the pressure and P0 is the reference pressure. This

barostat generates very large pressure fluctuations. Like the Berendsen thermo-

stat, the Berendsen barostat is usually only used for equilibration, with the more

complex Parrinello-Rahman barostat81 used for production runs. The Parrinello-

Rahman barostat has two major advantages: it generates more realistic pressure

fluctuations than the Berendsen method; and it allows the cell vectors to change

independently, so that the shape as well as the volume of the simulation box can

change. It is, however, more expensive than the Berendsen barostat.

2.2.5 State-point dependent potentials

As mentioned in Chapter 1, the use of state-point dependent potential in molec-

ular dynamics simulations will impact the correct expressions for calculating various

thermodynamic observables. One important example is the case of calculating pres-

sure. The virial expression for calculating pressure given in Equation 2.17 is only

valid in cases where the pair potentials used are not volume/density dependent. In

cases where they are volume dependent the correct expression is:

P = 1
V

(
NkBT + 1

3

〈
N∑
i

ri · F i

〉)
−
〈
∂U

∂V

〉
. (2.19)
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This is very similar to the virial expression, but includes an additional term describ-

ing the volume dependence.82

Other observables are also affected by state-point dependent potentials. For

example, when the potential depends on temperature, the total energy of a system,

E, should be given not simply by the Hamiltonian, H, but by:

E =
〈
H + ∂H

∂ ln β

〉
, (2.20)

where β = 1
kBT

.83

It should be noted that, throughout this work, the standard expressions for

thermodynamic observables have been used, rather than those modified to take

account of state-point dependence.

2.3 Simulation analysis

2.3.1 Radial distribution functions

MD simulations are often used to study the structure of chemical systems. This

can be done visually, by looking at how the simulation trajectory evolves over time,

but it is often useful to have a more quantitative way to look at structure. The radial

distribution function, g(r), describes the probability of a particle being present at a

distance r from another particle in the simulation box. This is normalised relative

to the distribution expected for an ideal gas of the same density:

g(r) = 1
4πr2Nρ

N∑
i

N∑
j 6=i
〈δ(r − rij)〉, (2.21)

where δ is the Kronecker delta function. The shape of g(r) indicates how ordered a

system is, and can therefore be used to distinguish between different states of matter.

The shape of the peaks may also be used to look at finer structural features.

It is possible to define partial radial distribution functions for different pairs of

particle types. For example, gAB(r) would be the probability of two particles of type

A and B being found a distance of r from each other. In this case, the Nρ term in

Equation 2.21 is replaced by NANB/V
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2.3.2 Free energy calculations

The Bennett acceptance ratio (BAR) method is a commonly used method for

calculating the free energy difference (∆FBA)between two states:

∆FBA = RT ln 〈f(HA −HB + C)〉B
〈f(HB −HA − C)〉A

+ C, (2.22)

where C is a shift constant and f(x) is the Fermi function:

f(x) = 1
1 + ex

, (2.23)

A separate simulation is run for each state, A and B. At regular intervals in the

simulation, the Hamiltonian (H) is calculated separately using the force fields for

states A and B, and the difference between these two values is determined. The

value of C for which 〈f(HA −HB + C)〉B = 〈f(HB −HA − C)〉A is then calculated

numerically. This gives an estimate of the energy shift required such that the prob-

abilities of the forward and reverse processes are equal, and therefore an estimate of

the free energy difference as ∆FBA ' C.84

The free energy estimate will only be accurate if there is sufficient overlap be-

tween the energy distributions of the two states. Therefore, for most real cases,

it is necessary to consider a series of alchemical states between A and B, so that

each neighbouring state has a large energy overlap. The total free energy difference

is then calculated as the sum of all the intermediate free energy differences (see

Equation 2.24

∆FBA =
n−1∑
i=1

∆Fi+1,i (2.24)

Linear decoupling of van der Waals interactions can result in singularities close

to the end points of the decoupling. When the interaction is almost fully decoupled,

U will be close to zero at all distances except very close to r = 0, where U jumps to a

high value. This problem is solved by using soft-core potentials for the intermediate

states:

Usc(r) = (1− λ)UA(rA) + λUB(rB) (2.25)

rA =
(
ασ6

Aλ
p + r6

) 1
6 (2.26)
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rB =
(
ασ6

B(1− λ)p + r6
) 1

6 (2.27)

where λ is the coupling parameter, α is the soft-core parameter and p is a positive

integer. α and p are usually chosen to be 0.5 and 1, respectively.

2.3.3 Potentials of mean force

The potential of mean force (UPMF), the potential which reproduces the average

forces over a particular reaction coordinate, is often used as a measure of the free

energy profile for that coordinate.85 In the case of a PMF for the separation of

two particles, this is the reversible work associated with moving the particles from

infinity to a distance of r, which is related to the radial distribution function by:

UPMF(r) = −kBT ln g(r). (2.28)

PMFs can be calculated by carrying out a series of simulations where the molecule

or molecules of interest are constrained at a range of points along the reaction

coordinate of interest, s. When s is the separation distance between two molecules,

UPMF can be calculated at s = r by integrating the average constraint force between

r and rmax, where UPMF = 0, as described in Equation 2.29. rmax must be large

enough that UPMF does not change on increasing r further.

UPMF(r) =
∫ rmax

r

[
〈fC〉+ 2kBT

s

]
ds. (2.29)

The second term here is an entropic term which accounts for the increased rotational

volume which is available at larger separation distances.86

2.4 Top-down coarse graining

2.4.1 MARTINI force field

The most frequently used top-down force field is MARTINI, developed by Mar-

rink et al in 200732. This model, based on an earlier top-down lipid model by

the same authors,87 consists of a large set of pre-defined coarse grained interac-

tion sites, each of which represents a different type of functional group commonly

found in biomolecular systems. The non-bonded interaction potentials for these
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sites are represented by 12-6 Lennard-Jones functions, parametrised to reproduce

the partitioning of small molecules between a set of organic solvents. Matching to

partitioning free energies is advantageous, as it ensures that the overall free energy

of a system is reproduced reasonably well, even if the entropy/enthalpy balance is

incorrect because of the coarse graining process. The bonded interactions are repre-

sented by weak harmonic oscillators, and are parametrised to reproduce molecular

structures from atomistic simulations. The particle types and interaction potentials

for a particular system are chosen based on the thermodynamic properties of that

system, as well as comparison with atomistic simulations.

One clear advantage of the MARTINI force field is its ease of use compared to

other coarse-graining methods. Since all of the bead types and their interactions are

predefined, one only has to select an appropriate bead type for each coarse grained

site. However, this clearly limits the flexibility of the method, and means that it

cannot always be fine-tuned for every system.

Because of this ease of use, MARTINI has been extended to many different

systems types, including proteins88,89, carbohydrates90 and polymers91,92 and has

given some useful qualitative and semi-quantitative results relating to their structure

and dynamics which would not have been accessible at the atomistic level.

The use of sharp 12-6 functions for the non-bonded potentials in MARTINI is

advantageous because the majority of existing MD codes are capable of handling

this type of function. However, the process of coarse graining should result in

softer interaction potentials, and the 12-6 functions implemented in MARTINI are

generally too hard. This is particularly apparent in the case of MARTINI water,

which freezes at around 300 K in the presence of a nucleation site. This issue

was addressed by the addition of ’antifreeze’ particles, which disturb the lattice

packing of the water, and prevent freezing. However, the addition of antifreeze

particles lowers the density and self-diffusion constant of bulk water by around

10%, and therefore reduces the accuracy of the model.32 A more recent version of

MARTINI uses a polarisable water, consisting of a central particle interacting via

LJ interactions, and two additional oppositely charged beads which give the model

orientational polarisability; this model improves many of the properties of MARTINI

water, including the poor representation of the melting point.93
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2.4.2 Statistical Associating Fluid Theory (SAFT)

Statistical associating fluid theory (SAFT) is an equation of state originally de-

veloped to calculate the thermodynamic properties and phase behaviour of fluids.94

It describes the Helmholtz free energy of a system as:

A = Aideal + Amono + Achain, (2.30)

where Aideal is the ideal Helmholtz energy, Amono is the free energy of the monomers,

and Achain is the free energy due to chain formation.

SAFT has recently been used to parametrise coarse grained models for use in

molecular dynamics, using a framework called SAFT-γ. In this framework, inter-

molecular interactions are described by a Mie potential, which is a generalised form

of the 12-6 Lennard-Jones potential.33,95

UMie = Cε

[(
σ

r

)λr
−
(
σ

r

)λa]
, (2.31)

where ε is the well depth, σ is the radius of the interaction, r is the inter-particle

distance, and λr and λa are repulsive and attractive exponents. The constant C is

given by:

λr
λr − λa

(
λr
λa

) λa
λr−λa

. (2.32)

When λr and λa are 12 and 6, respectively, C equates to 4, and so the Mie

potential is the same as a Lennard-Jones potential. The advantage of a Mie potential

over a Lennard-Jones potential is that the variable exponents give the Mie potential

a greater degree of flexibility, allowing the hardness or softness of a particle to be

tuned depending on its properties.95

The SAFT-γ approach has been used to develop coarse grained potentials for

a number of systems. These include small molecules such as carbon dioxide33 and

water96, long chain linear alkanes97, aromatic compounds98 and a range of binary

and ternary mixtures99. The SAFT-γ force field was parametrised to reproduce

thermodynamic properties, and as such it performs very well for the calculation

of thermodynamic properties such as vapour liquid equilibria, heat capacities and

thermal expansion coefficients. The potentials are generally transferable over a large

range of temperatures.
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2.5 Bottom-up coarse graining: structure-based

methods

2.5.1 Boltzmann inversion (BI)

One of the simplest methods for creating a coarse-grained interaction potential is

by Boltzmann inversion of a probability distribution, as shown in Equation 2.33.100

U(q) = −kBT lnP (q), (2.33)

where U(q) is the interaction potential, and P (q) can refer to a coarse-grained bond,

angle or dihedral distribution, or a non-bonded radial distribution function (RDF).

The main assumption made here is that the interaction in question is not correlated

with other interactions, meaning that the effective pair interaction is not affected

by the presence of other particles in the system. This often works well for bonded

interactions, and so is often the method used for parametrising these potentials. In

the case of non-bonded interactions, Boltzmann inversion works well for gas-phase

systems, but fails for liquids where there are significant correlations between the

interactions.29,100

2.5.2 Iterative Boltzmann inversion (IBI)

According to the Henderson uniqueness theorem, if a potential is found which

exactly matches the structure of the reference, then that potential is a unique solu-

tion to the structure-matching problem.101 However, for non-bonded interactions in

liquids, the potentials from Boltzmann inversion do poorly at matching the atomistic

structure. Because these interactions are strongly correlated with other interactions,

the potential of mean force will include contributions from multi-body correlation

functions which must be considered when parametrising effective pair potentials.

One method which implicitly includes these correlations is iterative Boltzmann in-

version (IBI), in which an iterative scheme can be used to match the structure.21

Un+1(r) = Un(r) + kBT ln gn(r)
gtarget(r)

(2.34)

An initial guess is made by Boltzmann inversion of the radial distribution func-

tion for the interaction, obtained after mapping the atomistic trajectory to a coarse-
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grained representation. A short coarse grained simulation is carried out using this

potential, and the potential is updated according to the difference between the RDF

from this simulation and the target RDF, as shown in Equation 2.34. This procedure

is carried out iteratively until the two RDFs match to an acceptable degree.

Additional potential updates can also be applied to match other properties of

the reference system. For example, the interaction potentials from IBI do not re-

produce the pressure of the atomistic reference, since coarse-grained pair potentials

are volume dependent, and this affects the representation of many thermodynamic

properties such as pressure. For this reason, pressure correction is usually carried

out along with IBI, where the potential is updated according to Equation 2.35, which

applies a linear correction.21,29,102

∆U(r) = A

(
1− r

rcut

)
, (2.35)

where

A = sgn(∆P )0.1kBT min(1, |f∆P ). (2.36)

This form of A scales the potential update according to the difference in pressure

between the coarse-grained and reference systems, ∆P , and a tuning parameter f ,

which is used to help with the convergence of the iterations.

It should be noted that matching the pressure of the reference means that the

compressibility will no longer be accurately reproduced. Isothermal compressibility

is obtained by integration of g(r) and so is very sensitive to small errors in g(r) caused

by including the additional pressure correction in the IBI procedure. Therefore, one

must choose which of the two quantities is most important for the system being

studied.103

The potentials constructed using IBI have been parametrised specifically to re-

produce the radial distribution functions of a system; therefore, this method works

very well for studying structural features. There have been several studies in which

IBI has been used to investigate structural features of polymers; these features are

often inaccessible to atomistic simulations due to the long timescales and large sys-

tems involved. This was done in one of the very first IBI studies in 2005, where the

experimental dependence of the gyration radius of polystyrene on molecular weight

was reproduced extremely well using IBI potentials.104 The method has also been

applied to polymer blends, such as a mixture of polyisoprene and polystyrene; in this
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case the aggregation behaviour of the different chain types agreed only qualitatively

with experiment.105.

IBI has also been applied to molecular liquids. It is able to accurately reproduce

the bulk density of a range of compounds, including hydrocarbons such as hexane30

and toluene106, and polar compounds such as water107. In all of these cases, pressure

correction was necessary to obtain the correct density.

There are also a number of disadvantages of using IBI. One is that, in systems

with many types of interaction site, where many different potentials must be param-

eterised, it can be difficult achieve convergence of all of the RDFs simultaneously.

This is because there will be cross-correlations between the different interactions,

therefore updating one interaction potential to improve its RDF may adversely affect

the RDFs for other interactions.29

A recent extension to IBI has allowed more accurate modelling of the solvation

behaviour of materials. This involves adding a linear correction to the potentials,

similar to the linear pressure correction described above, so that the Kirkwood-Buff

integrals (KBIs), which are related to the solvation free energy, match those of the

atomistic reference; this is called KB-IBI. It was shown that KB-IBI reproduces the

solvation behaviour of benzene-water and urea-water mixtures better than standard

IBI.108,109

2.5.3 Inverse Monte Carlo (IMC)

Inverse Monte Carlo (IMC) is similar to IBI in that it involves iteratively updat-

ing potentials to match the structures of atomistic and coarse-grained systems. It

also begins with an initial guess from Boltzmann inversion of a radial distribution

function; however, the potential update is calculated from:

〈Sα〉 − Sref
α = Aαγ∆Uγ. (2.37)

Here, the interaction potential is grid-based, and α and γ are indices which refer

to the grid-points (across all pair potentials in a multi-component system). Sα is

the number of pairs of particles corresponding to grid-point α, ∆Uγ is the potential

update, and Aαγ is ∂〈Sα〉
∂Uγ

.

Unlike IBI, IMC explicitly includes cross-correlations in the potential update

(withinAαγ). This means that, for systems with a large number of interactions, fewer
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iterations are required to achieve convergence. However, in order to calculate these

cross-correlations, more statistics are needed than in IBI, and so longer simulations

are required for each iteration. IMC is therefore more computationally demanding

than IBI.29

IMC has been less commonly used than IBI; however, there have been some

notable studies. It was used to construct a potential for water from a vapour/liquid

reference system, which allowed the RDF and pressure of liquid water to be matched

without the need for additional pressure correction.110 In one study, it was used to

model several lipid bilayers, and was used to show events normally inaccessible to

atomistic simulations, such as the self-assembly of the bilayer.111 In another study,

it was used to construct a model for a phospholipid/cholesterol bilayer, and was

able to predict the presence of certain domains in the system; however, the authors

noted that this information was qualitative rather than quantitative.112

2.5.4 General-purpose optimisation algorithms

It is also possible to use more general optimisation algorithms to parametrise

coarse-grained force fields. The VOTCA package,113 includes two such methods:

the downhill simplex algorithm114 and the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES)115.

In the simplex method, a simplex with n+ 1 vertices, where n is the number of

parameters to be optimised, is constructed. Each vertex on the simplex represents

a point in parameter space. A function can be minimised by performing a series

of geometric transformations on the simplex to explore parameter space. In the

context of coarse-graining, the parameters will be parameters of the coarse-grained

model, and the objective function could be any property measured using that coarse-

grained model. An example would be the difference between the coarse-grained and

atomistic reference RDFs.

The algorithm is initialised by running coarse-grained simulations using the pa-

rameters represented by the n + 1 starting vertices, and calculating the objective

function for each of these vertices. The vertices are then sorted from best to worst,

according to the objective function. A combination of reflections, expansions, con-

tractions and reductions is then carried out to try to find a minimum in parameter

space.114
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CMA-ES performs an optimisation by evaluating the objective function for a set

of points in parameter space, randomly chosen to sample a normal distribution. The

mean and width of the distribution are then updated according to the relative fitness

values of each of the points; the new mean and width are then used to generate a

new set of points in parameter space. This method performs better than the simplex

method in cases where a large number of parameters must be optimised.113,115

2.5.5 Parametrisation from multiple states

In common with other bottom-up coarse graining methods, the potentials gen-

erated using IBI are highly state-point dependent, meaning that they cannot nec-

essarily be transferred to systems with different temperatures or concentrations to

the reference system. A number of methods have been developed to achieve better

temperature transferability. For example, in one study, a temperature dependent

scaling factor was applied, which allowed the density of toluene to be determined

more accurately at different temperatures, although this was only possible over a

certain temperature range.46 An extension of this method was published by Farah

et al. in which an IBI model for hexane was derived at two reference temperatures,

and the temperature dependent coarse-grained potential was then determined by

linear interpolation between those two reference temperatures:

U(r, T ) = T − TU
TL − TU

U(r, TL) + TL − T
TL − TU

U(r, TU) (2.38)

The resulting range of models reproduced both the structures and densities of

liquid hexane between the reference temperatures studied.116 However, the method

assumes that the potential is linearly dependent on temperature. This will not

always be a valid assumption, particularly in cases where there is a phase transition

between the two reference temperatures.

Multi-state IBI (MS-IBI) was proposed by Moore et al. to address the transfer-

ability problem. The idea behind MS-IBI is to use multiple reference simulations to

parametrise a single coarse-grained model; this should allow the model to be trans-

ferable between the state points used for the reference simulations. This method has

been used to model simple linear alkanes117 as well as more complex lipid bilayers118.

The potential update in MS-IBI is given by taking the average of the IBI potential

updates for each reference system:
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∆UMSIBI = 1
N

N∑
i=1

ηi∆U IBI
i , (2.39)

where N is the number of reference systems, and ηi is a scaling factor for reference

system i, chosen to aid with the convergence of the MS-IBI scheme.

Moore et al. only address the ability of MS-IBI to accurately reproduce structural

properties across a range of state points. However, bulk properties such as density

are not addressed. It is claimed that the MS-IBI approach could be extended to

pressure correction, but this has so far not been tested.117

2.6 Bottom-up coarse-graining: force- and energy-

based methods

2.6.1 Force matching (FM)

Force matching (FM), sometimes known as the multiscale coarse-graining method

(MS-CG) is a method for the construction of coarse-grained potentials by mapping

the interatomic forces from an atomistic simulation onto a coarse-grained system.

It is based on a variational principle (see Equation 2.40) which states that, by

minimising the objective function (which is related to the difference between the

potential of mean force (PMF) of the reference and coarse-grained systems), one

approaches the true effective PMF for that system.20 The variational principle was

rigorously derived from statistical thermodynamics by Noid et al.,119 and so the

method has a much sounder basis in fundamental physics than other methods like

IBI.

χ2 = 1
3LN

L∑
l=1

N∑
i=1

∣∣∣Fref
il − Fp

il(x1, ..., xM)
∣∣∣2 , (2.40)

where Fp
il and Fref

il are the total force on bead i in snapshot l, for the coarse-grained

and reference systems, respectively, and x1, ..., xM are coefficients of the functions to

which the coarse-grained forces are fitted. The reference forces on a coarse-grained

bead are obtained by summing the forces on each of the atoms which map onto

that bead. In practice, there are several algorithms for the minimisation of χ2, as

described by Lu et al.120

In the block averaging approach, implemented in the VOTCA package, force
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matching is done by solving a series of linear equations shown in Equation 2.41.

The coarse grained PMF is constructed from a series of spline functions, and the

coefficients of these functions are obtained from solving Equation 2.41, with the

additional constraint that the first derivatives of the spline functions are continuous.

In order to reduce the memory required for this calculation, the trajectory is split

into blocks. Force matching is carried out separately for each block, the final result

is calculated by averaging the results from all of the blocks. The maximum feasible

block size is dictated by the memory available, although it should be large enough

that Equation 2.41 is overdetermined.20,29 It has been suggested that results could

be improved by randomising the selection of frames in each block, which could help

to prevent potential issues with blocks being correlated.121

Fcg(x1, ..., xM) = Fref , (2.41)

Alternatively, the BOCS package implements the normal equation algorithm.

This approach significantly reduces the memory requirements of force matching by

reducing the set of equations to be solved to Equation 2.42. This allows force

matching to be carried out over the whole trajectory at once, without the need for

block averaging.31

FT
cgFcg(x1, ..., xM) = FT

cgFref (2.42)

A number of different systems have been studied using the MS-CG method. Ini-

tially, it was applied to a simple lipid bilayer,20 as well as to water and methanol,122

and for both systems the coarse-grained RDFs showed reasonable agreement with

the atomistic ones, although not as close as structure-based methods like IBI. Since

then, it has been used to model a range of more complex systems, such as mixed lipid

bilayers123 and ionic liquids,124 and in these cases a similar level of structural accu-

racy has been obtained. More recently, the MS-CG method was applied, along with

a centre-of-charge mapping system, to model a series of polar organic molecules.125

Several possible improvements have been made since MS-CG was first intro-

duced. Some of these involved the improvement of the basis functions used in the

spline fitting. In one study by Das and Andersen, it was shown that using multi-

resolution basis functions could reduce statistical noise in the PMF obtained by

MS-CG, although this was only tested on a simple two-component Lennard-Jones
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fluid.126 In another, it was shown that by using 3-body terms in the spline fitting, it

was possible to achieve a much better match between the coarse-grained and atom-

istic RDFs of water.127 This could prove important when coarse-graining aqueous

systems, and other systems dominated by hydrogen bonding.

Like IBI, the potentials created using MS-CG do not reproduce the pressure of

the atomistic system. Two possible ways have been developed of getting around

this problem. Das and Anderson proposed the inclusion of an additional, volume-

dependent, constraint during the force matching procedure.128 This was tested on

a simple two-component Lennard-Jones mixture, and gave accurate results for the

pressure in the NVT ensemble, and the bulk density in the NPT ensemble. This

volume dependent term is discussed further in Section 2.7.1. Izvekov et al. intro-

duced an additional constraint to the force-matching equations so that the virial of

the reference was matched.129 On application of this method to nitromethane, it

was found that this resulted in an approximately linear pressure correction term,

similar to that used in IBI pressure correction.

Hybrid force matching (HFM) is a method which allows the combination of two

different coarse graining methods for one system. In this case, the bonded potentials

are obtained through simple Boltzmann inversion, while the non-bonded potentials

are obtained as usual through force matching. The use of easily obtainable in-

tramolecular potential functions guarantees sensible molecular geometries and helps

eliminate some of the problems that can be associated with a lack of sampling of

higher energy conformations in the atomistic reference system. In particular, this

poor sampling can cause a poor representation of bonded interactions in standard

MS-CG models, which is fixed by the use of bonded interactions from Boltzmann

inversion.29,130 A number of studies using this hybrid approach have found that

is able to give good structural accuracy when applied to a range of soft matter

systems.30,124,131

2.6.2 Generalised Yvon-Born-Green (g-YBG)

The generalised Yvon-Born-Green method (gYBG) is based on the Yvon-Born-

Green equation in liquid state theory, and describes the relationship between a

pair potential and the two- and three- body correlation functions in a molecular
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system.132 The g-YBG equation can be written as:

− kBT∇ ln g(r) = ∇U(r) + ρ
∫
∇U(r′)

[
G3(r, r′)
g(r) − g(r′)

]
dr′, (2.43)

where G3(r, r′) is a three-body correlation function and ρ is the concentration.

This leads to a system of linear equations which can be solved to give the PMF

for a particular interaction. It has been shown that this solution is the same as the

optimal solution to the variational principle in MS-CG, so gYBG can in principle

be used as a direct alternative to MS-CG, which does not involve force matching.133

The gYBG method has been shown to give similar results to MS-CG when ap-

plied to molecular liquids such as toluene134 and heptane135, although larger atom-

istic reference simulations were required to achieve this level of accuracy. It has

also been used for more complex systems, specifically a poly(ethylene oxide) based

ionomer, for which it was able to give a reasonably accurate picture of the solvation

structure of the system.136

2.6.3 Conditional Reversible Work (CRW)

Figure 2.1: Thermodynamic cycle used to calculate CRW interaction potentials.
Reproduced from Ref. 106 with permission from the PCCP Owner Societies.

Unlike the other bottom-up methods discussed so far, where coarse grained mod-

els are parametrised based on matching certain properties of the atomistic reference,

the conditional reversible work method (CRW) involves directly calculating the in-

teraction potentials. This is done by utilising a thermodynamic cycle, shown in

Figure 2.1, and using Equation 2.44. Figure 2.1 shows the procedure for calculating

the interaction between two coarse-grained beads, each consisting of the two central

carbon atoms of a UA hexane. W (r) is obtained by calculating the PMF for the
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separation of two hexane molecules, where r is the distance between the COMs of

the two pairs of central atoms. Wexcl(r) is the same PMF, but this time calculated

with the van der Waals interactions between the central carbons turned off. The

difference betweenWr) andWexcl(r) gives the coarse-grained potential at a distance

of r.106 This method is usually combined with Boltzmann inversion for calculating

bonded interactions.

Ueff(r)− Ueff(∞) = W (r)−Wexcl(r) (2.44)

Since CRW potentials have been directly calculated, it is argued that they have

more physical meaning than potentials obtained through other methods, and that

this gives them greater transferability. It was shown that CRW potentials more

accurately reproduce the atomistic thermal expansion coefficient when modelling

liquid toluene than IBI potentials.106 It should be noted that, for the temperature

at which the potentials were derived, IBI was better able to reproduce the bulk

density. In another study, it was shown that, in the case of simple linear alkanes,

potentials generated for dodecane were able to accurately reproduce the atomistic

reference density in coarse grained simulations of decane, octane and hexane.137

2.6.4 Relative entropy

The relative entropy for a coarse-grained trajectory, defined in Equation 2.45, can

be used as a measure of how the coarse-grained system and the mapped atomistic

system differ from each other36:

Srel =
∑

r
pAA(r) ln

(
pAA(r)

pCG[M(r)]

)
+ Smap, (2.45)

where p(r) are probability distributions as a function of the configurations of the

system, M is a mapping operator between a coarse-grained and an atomistic config-

uration, and Smap is the mapping entropy which accounts for the degrees of freedom

which are removed upon coarse-graining. Smap does not depend on the coarse-

grained interaction potential, so is not considered in the relative entropy parametri-

sation. This can be written in terms of coarse-grained and atomistic potential energy

functions, as:
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Srel = β 〈UCG − UAA〉AA − β (ACG − AAA) + Smap, (2.46)

where β = kBT and Smap is the mapping entropy, which depends only on the coarse-

grained mapping used.

The relative entropy can also be thought of as a measure of the quality of a

coarse-grained model. Therefore, coarse-grained models can be parametrised by

minimising the relative entropy in terms of a set of parameters of the model,138 λ,

using:

1
β

∂Srel

∂λ
=
〈
∂UCG

∂λ

〉
AA
−
〈
∂UCG

∂λ

〉
CG

. (2.47)

This can be done by running a simulation for a test set of parameters, and then

iteratively altering the parameters to minimise Srel. However, to avoid running a

separate simulation for each λ, an energy reweighting method was developed which

allows the same trajectory to be used for a range of trial coarse-grained models.138

This reduces the problem to a minimisation of:

∆Srel = −β (〈∆UCG〉AA + 〈∆UCG〉CG,λ0) , (2.48)

where λ0 is the set of parameters used to generate an initial coarse-grained trajectory.

New coarse-grained trajectories must be generated periodically, to reduce the errors

arising from large differences between λ and λ0.

2.7 Beyond simple pair potentials

2.7.1 Volume potentials

As mentioned in Section 2.5.2, bottom-up coarse-grained models rarely match

the pressure of their atomistic reference, requiring some sort of pressure correction

term. While this is often a simple correction to the pair potential, other methods

have been proposed. In 2010, Das and Andersen introduced a volume-dependent

contribution to the coarse-grained potential, giving a non-bonded potential with the

form:

Unb = Upair(r) + UV (V ), (2.49)
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where

UV (V ) = N

(
ψ1
V

v̄
+ ψ2

(
V

v̄
− 1

)2)
(2.50)

V is the volume of the simulation box, v̄ is the average volume of the atomistic

reference andN is the number of coarse-grained beads in the system.128 psi1 and psi2
are coefficients which are parameterised so that the pressure of the coarse-grained

system matches that of the reference system. This is done by using force matching

to find a non-bonded pair potential, then using a pressure matching procedure to

optimise the parameters of the volume potential.

Dunn and Noid introduced an iterative pressure matching algorithm in 2015,

which improved the representation of density and pressure fluctuations over Das

and Andersen’s method.139 This method was then applied to hexane/toluene mix-

tures,140 and it was shown that a concentration-transferable model could be obtained

by using the same pair potential across concentrations, and carrying out pressure

matching to determine the volume-dependent potential at each concentration of

interest.

More recently, Rosenberger and van der Vegt applied pressure matching to obtain

temperature-transferable models for a range of liquid alkanes.141 In their approach,

pressure matching was carried out only at the two end points of a temperature

range of interest. The model for any temperature within that range can then be

obtained by linear interpolation between UV at the end points, in an analogous way

to Equation 2.38.

2.7.2 Local density potentials

Volume-dependent potentials are a useful way of improving the transferability of

coarse-grained models over those using using simple pair potentials. However, the

volume-dependent contribution to the energy depends only on the global volume of

the system. In systems with local variations in density, for example those containing

phase boundaries, this may not be sufficient to accurately represent the interactions

in the system.

The use of local density potentials in coarse-grained models originated in multi-

body DPD142, in which the interaction between two particles depends on the local

particle density around each of the particles. This interaction type was first included

in a bottom-up coarse-grained model by Sanyal and Shell143, where the non-bonded
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potential is a the sum of a traditional pair potential and a local density dependent

potential:

Unb = Upair + ULD, (2.51)

where

ULD =
∑
i

f(ρi). (2.52)

Here, f is a function of the local density, ρi, around an interaction site i. This

local density is recalculated at every simulation timestep by:

ρi =
∑
j 6=i

ψ(rij), (2.53)

where ψ is an indicator function which determines how much site j contributes to

the local density. A number of functional forms for ψ have been used; in general,

the function should decay smoothly from 1 to 0 around a given cutoff, ensuring the

continuity of forces with rij. The choice of cutoff for ψ is particularly important

for multiphasic systems, where the cutoff should not exceed the width of the phase

boundary. This allows the local density to be a clear indicator of which phase a

given bead is part of.

An important aspect of this interaction type is that, while ULD is not a simple

pair potential, the computational cost of calculating forces scales like a simple pair

potential. The local density contribution to the pair force on site i due to a second

site j can be written as:

Fi = −
[
df(ρi)
dρ

+ df(ρj)
dρ

]
dψ(rij)
dr

ri − rj
rij

(2.54)

In Sanyal and Shell’s initial study, the relative entropy method was applied to

parametrise an implicit solvent model for a model super-hydrophobic polymer. In

this case, ULD contains implicit information about the amount of water surrounding

a polymer bead, and so allows the coarse-grained model to capture the hydrophobic

effects which lead to the polymer’s collapse in aqueous solution.143

Since then, a number of studies have explored the use of this interaction type for

systems with phase boundaries. In 2017, DeLyser and Noid presented a method for

parametrising a volume dependent potential using pressure matching, as described in

Section 2.7.1, and then converting this to a local density potential.144 The resulting
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model, parametrised using a homogeneous liquid as reference, was transferable to a

liquid-vapour interface. In 2018, Sanyal and Shell145, and Jin and Voth146, presented

models for liquid-liquid mixtures, parametrised using the RE and UCG methods

respectively, which described the phase boundary more accurately than simple pair

potentials. These two studies both showed how a local density dependent model for

a multicomponent system may be parametrised, and showed that it may be not be

necessary to include LD potentials for all pairs of beads.



Chapter 3

Assessing the accuracy and

transferability of common

coarse-graining methods

3.1 Introduction

As detailed in Chapter 2, a huge number methods for parametrising coarse-

grained models have been developed over the years. There have been a number of

review articles which have described various methods and their applications.9,147,148

However, there have only been a few studies which provide a detailed comparison

between different coarse graining methods,106 and particularly few which have crit-

ically compared the accuracy of bottom-up and top-down methodology on the same

system and using the same criteria. Such a study would be of great benefit to

the coarse-grained modelling community by providing insights into the strengths

and weaknesses of different methods, and therefore informing the choice of coarse

graining method.

Many publications which showcase coarse graining methods test their mod-

els on homogeneous single-component liquids, either small molecules with no in-

ternal structure after coarse graining,20 or simple linear hydrocarbons and poly-

mers.21,100,137 While such systems provide a good initial test of the effectiveness of

a coarse-grained model, to really get an idea of the effectiveness of a method, it

is necessary to test it on more complex systems. The octane-benzene system has

a number of properties which make it a good choice for this purpose. Firstly, the

40
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two components have very different molecular geometries. This requires any coarse-

graining method to be able to deal with cross-interactions, as well as with both

flexible and rigid molecules. It also forms a miscible liquid mixture right across

the composition range, which avoids complications associated with coarse-graining

a system with an interface.

Of the bottom-up methods described in Chapter 2, iterative Boltzmann inversion

(IBI)21 and force matching122 are perhaps the two most widely used. They each

parametrise to match an entirely different quantity (radial distribution functions

and forces, respectively); it would be useful to study to what extent this causes

differences in the properties of the resulting models. The aim of this chapter will be

to test the structural and thermodynamic representability, as well as the chemical

and temperature transferability, of coarse-grained models produced using these two

bottom-up methods, and to compare them to a top-down model parametrised using

the SAFT-γ Mie framework.

The work within this chapter is included in the publication: "Assessing the

transferability of common top-down and bottom-up coarse-grained molecular models

for molecular mixtures."149 It is reproduced from Ref. 138 with permission from the

PCCP Owner Societies.

3.2 Computational details

3.2.1 Atomistic simulations

The IBI and MS-CG coarse-graining methods both require a reference atom-

istic model. The reference employed for the octane-benzene mixture was a modified

version of the GAFF68 force field. The modified force field, GAFF-LCFF, was

parametrised by Boyd and Wilson to accurately capture the experimental densities

and heats of vaporization of a range of molecules, including medium chain alka-

nes.150,151 All simulations were performed using the GROMACS 4.6 package.152 We

used a leap-frog algorithm, with a time step of 2 fs. A Nosé-Hoover79,80 thermostat

was used to keep the temperature constant, at 298 K unless stated otherwise, and

a Parrinello-Rahman81 barostat was used to keep the pressure constant at 1 bar for

constant NPT simulations. A particle mesh Ewald73 (PME) was used to calculate

electrostatic interactions, employing a short-range cutoff of 1.2 nm. A 1.2 nm cut-off



3.2. Computational details 42

was used for Lennard-Jones interactions, and a long-range dispersion correction was

applied. All bonds were constrained using the Linear Constraints Solver71 (LINCS)

algorithm within GROMACS.

A series of binary mixtures of octane and benzene were simulated with octane

mole fractions (xoct) of 0.0, 0.2, 0.3, 0.5, 0.7, 0.8 and 1.0. For each system, a total

of 1600 molecules was simulated. Initially, for each system, a short constant NV T

equilibration run was carried out, followed by equilibration at constant NPT to

allow the density to reach equilibrium. The reference data for coarse-graining were

then obtained from a 2 ns production run at constant NPT , at 298 K and 1 bar.

3.2.2 Parametrisation of coarse-grained models

Coarse-grained mapping and the parametrisation of the IBI and HFM models

were carried out using the VOTCA-CSG package, versions 1.2.429,30 and 1.3.113 Full

descriptions of these methods can be found in Chapter 2.

Coarse-grained mapping.

Coarse-grained mapping was carried out by assigning two heavy atoms and their

associated hydrogen atoms to a coarse-grained bead, and setting the interaction site

for that bead as the centre of mass of those atoms.

RI =
n∑
i

rimi∑n
i mi

, (3.1)

where RI is the positions of coarse-grained bead I, ri is the position of an atom i

which is included in the coarse-grained bead, mi is the mass of bead i and n is the

number of atoms which are mapped to the bead I.

The coarse-grained mapping schemes used are shown in Figure 3.1. For octane,

a 4-site representation was used, with an outer bead type (A) and an inner bead

type (B). This gives rise to 3 bonds, 2 angles and 1 dihedral. For benzene, a 3-

site representation, with only one bead type (R) and three bonds, was used. This

gives rise to a number of nonbonded interactions to parametrise: 3 for pure octane

(A-A, A-B and B-B), 1 for pure benzene (R-R), and 2 additional cross interactions

(A-R and B-R) for the octane/benzene mixtures. It should be noted that for the

bottom-up models, no intramolecular 1-3 or 1-4 nonbonded interactions are included.

However, they are included in the top-down models (see below).
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Figure 3.1: Coarse-grained mapping scheme for octane and benzene. Each coarse-
grained bead represents two carbon atoms and their associated hydrogens.

Bonded interactions

Bonded potentials, U(q), were obtained from the equilibrated reference atomistic

simulations of pure octane and benzene by simple Boltzmann inversion:

U(q) = −kBT lnP (q), (3.2)

where q is a particular coarse-grained degree of freedom (e.g. a distance, angle or

dihedral) and P (q) is the normalised probability distribution of q. Final potentials

were extrapolated into poorly sampled regions. For these simple systems, the as-

sumption that bonded interactions are not correlated with other interactions is a

good one. As the bond stretching potentials calculated for coarse-grained benzene

were very steep, the LINCS algorithm was used instead to constrain bonds for that

molecule, with the bond length taken as the minimum of the Boltzmann inverted

potential at 0.2203 nm. The bonded interactions parametrised from pure octane and

benzene were used in coarse-grained simulations for all concentrations. The bonded

potentials and distributions are shown in Figures 3.2 and 3.3.

Iterative Boltzmann inversion (IBI).

For the (softer) nonbonded potentials, where multi-body effects are important,

the potentials from Boltzmann inversion are unable to reproduce the structure of the

reference system. For these interactions, an iterative Boltzmann inversion method

was required.21 Here, for each system, separate reference RDFs were calculated for

each non-bonded interaction. The RDFs for pure octane and benzene were calculated

from trajectories containing 1000 snapshots. For the mixtures, it was found that
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Figure 3.2: Coarse grained bonded potentials from Boltzmann inversion of the
pure reference systems at 298 K: a) octane A-B (black) and B-B (red) bonds, b)
octane angle, c) octane dihedral and d) benzene bond (not used in simulations).
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Figure 3.3: Bonded distributions for 50% octane system from atomistic, IBI and
HFM simulations at 298 K. a) octane A-B bond, b) octane angle, c) octane dihedral
and d) benzene bond distribution.
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5000 snapshots were required for a smooth RDF, due to the decreased sampling of

each interaction. These RDFs were used as targets for the IBI procedure.

At each stage of IBI, a coarse-grained simulation was run using a set of test po-

tentials. The first stage used potentials from direct Boltzmann inversion. After each

simulation, an update was applied to one of the potentials, according to Equation

3.3, with each interaction being updated in turn

Un+1(r) = Un(r) + αkBT ln gn(r)
gtarget(r)

, (3.3)

where r is the inter-site distance and g(r) is the radial distribution function. The

potential updates from this are often too large, so α is a scaling factor which is

chosen to speed up the convergence of the scheme. This procedure was carried

out iteratively until the reference and test system RDFs matched to an acceptable

degree. Once each interaction had been updated another simulation was run, and a

linear pressure correction was applied to all of the potentials simultaneously:

∆U(r) = A

(
1− r

rcut

)
, (3.4)

where

A = sgn(∆P )0.1kBT min(1, |f∆P |). (3.5)

In these expressions, rcut is the cut-off distance for the interaction, ∆P is the dif-

ference in pressure between the reference and the coarse-grained system and f is a

scaling factor, which is chosen to prevent the pressure from oscillating around the

desired value. Since the magnitude of the pressure correction depends on ∆P , the

correction can be iteratively applied until the pressure of a coarse-grained system is

correct.21,29 The parameters used in the IBI procedure for each of the models are

given in Table 3.1

This procedure was repeated until the coarse-grained and target RDFs matched,

and the pressure of the system was within 5 bar of the target pressure of 1 bar.

For the 70% and 80% octane systems, the R-R (benzene-benzene) interaction was

very difficult to converge compared to the other interactions. For these systems,

the procedure was adapted to allow several steps in which only the R-R potential

was updated, with care taken to ensure that the other interactions and pressure

remained converged. The non-bonded potentials parametrised using IBI are plotted
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Table 3.1: Scaling factors used, and iterations required, for IBI optimisation and
pressure correction for the HFM model. The numbers in parentheses are, respec-
tively, the number of iterations after which only the R-R interaction and pressure
were optimised, and the α used for the iterations after this.

xoct
IBI HFM

Iterations α f Iterations f

0.0 62 0.1 0.0005 20 0.0001
0.2 183 0.4 0.0005 8 0.0005
0.3 248 0.3 0.0005 10 0.0005
0.5 278 0.35 0.0005 12 0.0005
0.7 300 (297) 0.35 (0.15) 0.0005 12 0.0005
0.8 266 (271) 0.35 (0.2) 0.0005 10 0.0005
1.0 56 0.5 0.001 5 0.0005

in Figure 3.4

Hybrid force matching (HFM)

The hybrid force matching (HFM) method was also applied to the octane-

benzene mixture. Coarse-grained bonded interactions were modelled using the

Boltzmann inverted potentials (or constraints) described above. Non-bonded poten-

tials were obtained using force matching. The reference non-bonded forces, exclud-

ing all intramolecular interactions, were calculated by passing through the reference

trajectory and outputting only the forces resulting from intermolecular interactions.

The trajectories obtained contained 1000 snapshots taken at intervals of 2 ps; force

matching was carried out on blocks of 25 frames each, and the coarse-grained force

functions were obtained by averaging over all of the blocks. The resulting force

functions were integrated and extrapolated to low inter-site distances to give the

HFM coarse-grained potentials for that system.

While the atomistic reference simulations were carried out in the constant NPT

ensemble, it should be noted that, strictly speaking, the MS-CG method is only valid

using a constant NV T reference, because the an reference simulation will include

density fluctuations which could not be captured by the resulting effective pair po-

tential. A version of the method consistent with the constant NpT ensemble, which

includes a volume dependent part, was suggested by Das and Andersen.128 This was

later extended to a volume matching method, which can act as a pressure correc-

tion.43,144 However, this requires including additional, volume-dependent, terms in
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Figure 3.4: Non-bonded potentials parametrised using IBI for the a) A-A, b) A-B,
c) B-B, d) A-R, e) B-R, f) R-R interactions. Each potential in each plot parametrised
at a different octane concentration: 20% (blue), 30% (green), 50% (red), 70% (cyan),
80% octane (purple) and pure octane/benzene (yellow).
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Figure 3.5: Non-bonded potentials parametrised using HFM for the a) A-A, b)
A-B, c) B-B, d) A-R, e) B-R, f) R-R interactions. Each potential in each plot
parametrised at a different octane concentration: 20% (blue), 30% (green), 50%
(red), 70% (cyan), 80% octane (purple) and pure octane/benzene (yellow).
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the pair potential. To avoid these additional terms, a pressure correction was ap-

plied to the force-matched potentials using the iterative ramp correction described

in Equation 2.35 (noting that this does not strictly address the state-point depen-

dence). This was applied to each system to give a pressure of close to 1 bar at the

experimental density of the system. At each iteration of the pressure correction, a

250 ps simulation was run, and the pressure of the system was calculated based on

the final 200 ps of the trajectory. Each of the non-bonded potentials was updated

at each iteration, with a small scaling factor (see Table 3.1) to ensure that the pres-

sure converged. The non-bonded potentials parametrised using HFM with pressure

correction are given in Figure 3.5

SAFT-γ Mie model

The SAFT-γ Mie model was provided by Jos Tasche, and details of its parametri-

sation are given in this section.149 All simulations using the model were carried out

by the author.

Within the SAFT-γ Mie equation of state (EoS), a molecule is represented by a

chain of tangentially connected beads interacting with the Mie potential:

UMie = Cε

[(
σ

r

)λr

−
(
σ

r

)λa
]
, (3.6)

where ε and σ are the well depth and the segment diameter, respectively. λr and λa

are the repulsive and attractive exponents, for which λr = 12 and λa = 6 is the usual

Lennard–Jones potential. Fitting of the parameters, ε, σ, λa and λr to reproduce the

available experimental data (which could include temperature and concentration-

dependent data) leads directly to a coarse-grained molecular model.33,97

The Mie parameters for the cross-interactions can be obtained from the following

mixing rules:

σij = σii + σjj
2 , (3.7)

λij − 3 =
√

(λii − 3)(λjj − 3), (3.8)

εij = (1− kij)

√
σ3
iiσ

3
jj

σ3
ij

√
εiiεjj. (3.9)

The kij parameter allows the well-depth of the cross-interaction, εij, to be adjusted

(if necessary) to fit experimental mixture data.
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Table 3.2: Mie potential parameters obtained for benzene and n-octane using the
SAFT-γ Mie framework.

Interaction σ/nm ε/K λr λa

R–R 0.3490 258.28 11.58 6.0
A/B–A/B 0.3768 255.92 12.70 6.0
A/B–R 0.3629 256.53 12.13 6.0

SAFT-γ Mie includes no parameters for the intramolecular interactions apart

from the Mie potential for non-bonded interactions and σ as a bond length. There-

fore chains are effectively modelled as semi-flexible without angle or dihedrals inter-

actions but including 1-3 and 1-4 nonbonded interactions.

The SAFT calculations were performed with our own implementation of the

SAFT-γ Mie expressions, based on the recent publication by Papaioannou et al.153

The SAFT-γ Mie model used the same mapping as the bottom-up models, with the

one exception that the same interaction potentials were used for beads A and B.

The Mie potential parameters of the benzene model were taken from Lafitte et al.,98

who parametrised the Mie potential parameters to match the vapour pressure and

liquid density of benzene over a range of temperatures (300–562 K). For octane,

Mie potentials were developed using the corresponding state correlation by Mejia

et al.,154 in which Mie potential parameters are determined from just three exper-

imental data points: the acentric factor, the critical temperature and the liquid

density. The cross-interaction parameters were calculated using Equations 3.7-3.9,

with kij = 0. The Mie potential parameters are given in Table 3.2. The interaction

potentials were cut at short distances (around 0.5σ, where the value of UMie is at

least 10000× kT ) and extrapolated quadratically to lower distances using the same

procedure used for bottom-up potentials. This results in a slightly softer interaction

potential than a pure Mie potential, which is helpful when carrying out free energy

calculations. Because SAFT is based on tangentially bonded spheres, bond lengths

were constrained at σ for MD simulations.

3.2.3 Coarse-grained simulations

The equations of motion were integrated using the leap-frog algorithm of GRO-

MACS with a time step of 2 fs. A Nosé-Hoover thermostat was used to keep the

temperature constant at 298 K, and, for constant pressure simulations, a Parrinello-
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Rahman barostat was used to keep the pressure constant at 1 bar.

For bottom-up models, a 1.5 nm cut-off was used for non-bonded interactions.

For each coarse-grained model, a 1 ns constant-NpT production run was carried out,

with coordinates output every 0.2 ps. At temperatures other than 298 K, a 500 ps

constant-NpT equilibration run was carried out before the production run. Starting

structures were obtained from atomistic snapshots, after implementing the mapping

shown in figure 3.1.

For the SAFT-γ Mie model, a 2.0 nm cut-off was used, and all coarse-grained

bonds were constrained using LINCS. Since the molecular geometry (tangentially

bonded spheres) in these models is slightly different to the atomistic structure

mapped onto a coarse-grained representation, starting structures were constructed

by randomly placing 1600 molecules into a box using the Gromacs genbox tool,

which prevents insertion of particles within a given van der Waals radius of an ex-

isting particle. A steepest-descent energy minimisation and a 200 ps equilibration

run were carried out. Production runs were then carried out as for the bottom-up

models.

3.2.4 Free energy calculations

Free energy calculations were carried out using the Bennett Acceptance Ratio

(BAR) method. A full description of this method can be found in Section 2.3.2.

The free energies of solvation were calculated for octane and benzene in solvents

consisting of octane/benzene mixtures of various concentrations. The solvation free

energy is the thermodynamic process of transferring a molecule from an ideal gas into

solution, at 298 K and 1 bar. These were calculated by decoupling the intermolecular

interactions of one molecule of octane or benzene with the surrounding solvent, while

leaving all intramolecular interactions intact; the solvation free energy is the negative

value of the free energy calculated from the decoupling process. All simulations using

atomistic and pressure corrected coarse-grained models were run in the constant

NPT ensemble, so the energies calculated are Gibbs free energies. Simulations of

coarse-grained models without pressure correction were run in the constant NV T

ensemble, at the equilibrium density of the atomistic system; the energies from these

systems are therefore Helmholtz free energies.

For atomistic systems, Coulombic interactions were decoupled linearly, then van
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der Waals interactions were decoupled using soft-core potentials with α = 0.5 and

p = 1. Nineteen intermediate λ values were chosen between 0 and 1, with a λ

spacing of 0.05.

For coarse-grained systems, van der Waals interactions were decoupled linearly.

Between λ = 0 and λ = 0.9, a λ spacing of 0.05 was used. In order to prevent

singularities just as the interactions were about to disappear, a much higher con-

centration of λ points was used for λ > 0.9: typically a spacing of 0.01 up to λ =

0.99, 0.002 up to λ = 0.998 and then progressively smaller spacings down to 0.0001

between λ = 0.9999 and λ = 1.0. Errors were calculated for each λ spacing to check

where additional λ points were required.

3.3 Results

3.3.1 Densities of single-state models

With a pressure correction applied, the density of each atomistic reference system

was reproduced well by both bottom-up coarse-grained models parametrised for that

concentration, with errors of less than 0.6%, as shown in Figure 3.6. The accuracy

is highly dependent on applications of the pressure correction. Without pressure

correction, constant-NV T simulations of the IBI and HFM models at the correct

density give pressures of up to 2000 bar, leading to significant errors in density if

the same potentials are run at constant NpT . After the application of pressure

correction, all of the models gave pressures of 1 ± 3 bar. Within a force matching

methodology, it is usually accepted that the pressure will not be predicted correctly

and that these simulations should be run at constant volume, although pressure

correction based on a volume-dependent term has been proposed.43,128 However,

Figure 3.6 shows that a simple linear pressure correction can successfully be applied

to force matched potentials within the hybrid scheme employed here.

3.3.2 Densities from the SAFT-γ Mie model

The densities obtained from molecular dynamics simulations using the poten-

tials developed via SAFT-γ Mie are shown in Figure 3.7. The results are good with

respect to transferability across concentration and temperature ranges, and are in-

dicative of the accuracy of SAFT-γ Mie model as a theory. Here the good quality
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Figure 3.6: Comparison of densities calculated using atomistic and bottom-up
coarse-grained models. The IBI and HFM models were parametrised and run at the
specified concentration, 298 K and 1 bar. The green line shows results from HFM
potentials without pressure correction.

predictions across changing concentrations rely on the reliability of mixing rules and

the corresponding state correlation of Mejia et al.154 SAFT is very versatile in terms

of the nature of experimental data that can be fitted and so could be directly fitted

to experimental densities to reproduce density data for mixtures. However, these

data will not generally be available for many practical coarse-graining applications.

3.3.3 Structural accuracy of bottom-up and top-down mod-

els

Figure 3.8 gives site-site radial distribution functions for the xoct = 0.3 octane

system. These results are representative of the accuracy observed for other values

of xoct. Unsurprisingly, given the RDF fitting procedure used, the models created

using IBI were able to match the radial distribution functions (RDFs) of the atom-

istic references almost exactly. Although not as good as IBI, HFM is also able to

reproduce atomistic RDFs with good accuracy. Similar levels of accuracy have been

seen for many systems using full force matching20,122 (where the bonded interac-
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Figure 3.7: a) Concentration dependence of mixture densities at 1 bar and 298
K, b) temperature dependence of density at xoct = 0.5 and 1 bar. Results obtained
from simulations of SAFT-γ Mie derived potentials and experiment.155,156
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tions are also determined using force matching), and for pure liquid hexane using

HFM.30 However, the results for octane/benzene mixtures confirm that the separa-

tion of bonded and non-bonded terms, which is the basis of HFM is also valid for

multicomponent systems with a greater number of interactions.

Interestingly, the use of a pressure correction did not significantly affect the

RDFs in either the pure components or the mixtures. The linear pressure correction

has the greatest effect on the long-range tail of the potential, which has significant

effects on thermodynamic properties such as pressure. While the absolute value of

∆U is larger at smaller r (see Equation 2.35), the attractive well and short-range

repulsion are still preserved by the pressure correction. The local packing in liquids is

most heavily influenced by short-range interactions; even hard sphere models which

include only short-range repulsions are able to capture the structures of liquids.157

Therefore, it is not surprising that the pressure-corrected models are still able to

capture the RDFs.

The SAFT-γ Mie RDFs are particularly poor, with high first and second peaks

of the RDFs appearing at distances that are too short. The more complex peak

shapes present in the atomistic and bottom-up coarse-grained RDFs are also absent

in the SAFT-γ Mie RDFs. This is the case for mixtures (as shown in Figure 3.8)

and the pure components. Here, the constraint of using tangential spheres leads to

longer bond lengths and shorter van der Waals radii, compared to the bottom-up

models where adjacent beads are allowed to overlap. As will be discussed in detail

in Chapter 5, this can cause significant issues in more structurally complex systems

such as chromonic liquid crystals,40 where an incorrect molecular structure can cause

unphysical molecular aggregation. Such effects are perhaps less important at higher

levels of coarse-graining, where local structure prediction is not expected, and it is

more important to capture the average thermodynamic properties of the fluid.

The ability of the models to reproduce three-body structural correlations was also

investigated; this is essential to the ability of a coarse-grained model to represent

the underlying atomistic model well.158 The quantity G3(r, r′), given by:

G3(r, r′) =
〈∑

i

∑
j 6=i,k

∑
k 6=i,j

(cos(ûij · ûik)δ(rij − r)δ(rik − r′)
〉
, (3.10)

where ûij is the unit vector between sites i and j and rij is the distance between the

two sites, is a useful measure of how well a model describes three-body correlations,
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Figure 3.8: Intermolecular radial distribution functions calculated at 298 K, 1
bar and xoct = 0.3, from atomistic reference simulations, IBI and HFM models
parametrised at the given concentration and the SAFT-γ Mie model, for the: a)
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as described by Noid et al.158 G3(r, r′) is a measure of the average angle between

the vectors ûij and ûik, as a function of the distances between the sites. This

quantity was calculated for the RRR and RAA triplets from simulations of the

xoct = 0.5 mixture, using the IBI, HFM and SAFT-γ Mie models, and also for the

atomistic trajectory mapped to a coarse-grained representation. These results are

shown in Figure 3.9 for r′ = 0.5 nm, which corresponds to the first peak in the

RDF. The IBI and HFM models both compare well to the atomistic reference in

both cases. However, the HFM results are slightly less accurate; this is expected,

given that HFM performs slightly worse than IBI in reproducing RDFs. These

results are encouraging given that the target of both methods is to match two-body

correlations. The negative peaks at around r = 0.6 nm indicate the exclusion of

particle j from the immediate surroundings of particle k, while the positive peaks

at around r = 0.9 nm represent the strong probability of finding particle j at a

distance corresponding to the second peak on the RDF. The SAFT-γ Mie model

does not represent three-body correlations well, which is not surprising given its

poor representation of the site-site RDFs.

3.3.4 Transferability

The potentials obtained from both bottom-up methods differ somewhat when

obtained from different reference system concentrations. This can be clearly seen

in Figures 3.4 and 3.5. Here, particularly for the HFM case, there is considerable

variation in the overall shape of the effective pair potential across the concentration

range. The HFM potentials show a double well structure, which can be explained

by the fact that these are two-body potentials which implicitly include three-body

correlations in their parametrisation. Each R bead has two bonded neighbours,

while B beads have one and A beads have none. Therefore, at higher benzene

concentrations the influence of three-body correlations where two of the beads are

bonded to each other will increase, leading to the growth of the second peak at

higher benzene concentrations. The A-A potential varies most with concentration

and there is a smaller change for other pair potentials, particularly the R-R potential.

This immediately suggests that the models will not be particularly transferable,

and this turns out to be the case. Figure 3.10 shows a comparison with the A-A

partial RDF obtained from atomistic simulations at xoct = 0.2, using HFM models
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Figure 3.9: Three-body correlations calculated for the xoct = 0.5 system, for the
a) RRR and b) RAA triplets, calculated using atomistic, IBI, HFM and SAFT-γ
Mie models. Note that intramolecular pairs are excluded from these calculations.

parametrised at xoct = 0.2 and xoct = 0.5. The HFM results are noticeably worse for

the model parametrised at the higher concentration. Moreover, the HFM and IBI

potentials parametrised at xoct = 0.5, are unable to reproduce the correct density

for any other concentration, as shown in Figure 3.11a.

Both single-state bottom-up models show poor temperature transferability when

compared to the atomistic reference system. For pure octane, the densities of the

coarse-grained systems diverged from the atomistic density on increasing or decreas-

ing the temperature from 298 K, as shown in Figure 3.11b. The poor temperature

transferability of IBI potentials for simple liquids has been shown in the past.106

These results show that HFM suffers from exactly the same problem. The similarity

of the results from the two methods likely comes from the fact that the same method

was used for pressure correction in each case. The ad hoc nature of the linear pres-

sure correction means that there is no guarantee of transferability to different state
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xoct = 0.2 at 298 K and 1 bar: atomistic reference, HFM parametrised for xoct = 0.2,
and HFM parametrised for xoct = 0.5

points. As discussed above, this is in contrast to the excellent thermal expansion be-

haviour seen for simple Mie potentials fitted via the SAFT-γ Mie EoS (Figure 3.7).

It should also be noted that the atomistic model does not show perfect agreement

with experiment. The purpose of this work is to examine the connection between

bottom-up models and the underlying reference, but this highlights that there are

also issues with the transferability of atomistic models which must be considered if

bottom-up models are to be used predictively.

3.3.5 Solvation free energies

The solvation free energies of octane and benzene are consistently overestimated

by pressure-corrected HFM for all of the systems studied. However, as can be seen

in Figure 3.12, there is no systematic relationship between the atomistic and HFM

solvation free energies, with the difference between the two varying significantly over

the concentration range.

HFMwithout pressure correction performed extremely poorly, as shown in Figure

3.12. All of the solvation free energies from these models are very far off the atomistic
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values; most notably, benzene is predicted to be insoluble in pure benzene.

The difference between the pressure corrected and non-pressure corrected HFM

models highlights the problem of coarse-grained models properly representing ther-

modynamic properties. It is known that the state-dependence of coarse-grained po-

tentials affects the ability of coarse-grained models to reproduce the pressure, since

the virial formula does not take into account the volume dependence of the poten-

tials.39 This has ramifications for the calculation of free energies for coarse-grained

models. The incorrect representation of the pressure of the coarse-grained model

leads to an incorrect representation of free energy changes, since (∂A/∂V )T = −P ;

this explains the poor performance of the non-pressure corrected models, where P

is 2–3 orders of magnitude too large. The application of pressure correction also im-

proves the accuracy of free energy changes at a single state-point. However, because

the linear pressure correction does not properly address the volume dependence of

the coarse-grained potentials, this is unlikely to be transferable to other state-points.

For all systems, the IBI model predicts the solvation free energy of both benzene

and octane more accurately than the HFM model. This could be attributed to

the way in which the pressure correction is carried out for each method. In the

IBI procedure, the pressure correction is carried out in conjunction with structure

matching, and so the resulting model is guaranteed to reproduce both the structure

and the pressure. This is only possible due to the iterative nature of IBI; it is

trivial to add extra steps to the structure matching procedure to introduce the

extra constraints. For force matching, on the other hand, the pressure correction

is applied after the force matching procedure, and so there is less of a guarantee

that both the forces and the pressure will be correct. Matching the pressure at

the same time as the forces would require either the introduction of another set of

equations or terms to the force matching equations (as shown, for example, by Das

and Andersen)128 or adapting the iterative force matching method suggested by Lu

et al. to self-consistently match the pressure.160

The SAFT-γ Mie model is also able to predict solvation free energies, and their

trend with respect to concentration, with fairly good accuracy. The SAFT equation

of state is designed to accurately calculate free energies, so it is encouraging that a

coarse-grained force field based on it performs reasonably well on such quantities.
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Figure 3.12: Free energies of solvation of a) octane and b) benzene as a function
of solvent concentration, for atomistic, IBI, MS-IBI, HFM with pressure correction,
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3.4 Discussion

The Henderson uniqueness theorem101 states that a pair potential which is able

to reproduce the RDF of a simple liquid will be unique. This unique potential is

the target of IBI and other structure-based coarse-graining methods. However, it is

known from previous studies of IBI potentials that, even if a coarse-grained model

exactly matches the RDFs from an atomistic system, this provides no guarantees

that the thermodynamic properties will be reasonable.108 Moreover, as seen in some

previous work106 potentials generated with the IBI method tend to have limited

transferability, both in terms of concentration and temperature (though the degree

of transferability is clearly system-dependent). The form of the effective pair po-

tential differs significantly with concentration. This seems to be exaggerated by

the presence of physically undesirable oscillations in the potential as a function of

distance; so that the concentration-dependent pair potential changes even at large

separations.

The HFM used in this work does remarkably well in terms of prediction of local

structure, noting that it is not fitted to reproduce this. The simple linear pres-

sure correction term that was introduced does not noticeably change local structure

but does allow the pressure to be corrected by small changes to the effective pair

potential, and thereby allows HFM to work under conditions of constant NPT . Un-

fortunately, for the octane-benzene mixture the effective pair potentials produced

with HFM change even more than IBI potentials with concentration. For both meth-

ods, this translates to poor transferability. Chemically transferable models, whether

between different concentrations or between similar chemical systems, are crucial,

as they reduce the time otherwise spent parametrising models for each state point.

Models developed by the conditional reversible work method have been shown to

be transferable between different alkane chain lengths.137 However, as the authors

note, this method is not necessarily applicable to more complex systems. The ex-

tended ensemble approach of Mullinax and Noid,132 in which the coarse-grained

pair potentials are parametrised for an ensemble of systems simultaneously, allows

for concentration transferable models, although at the cost of some representability

compared to models parametrised for a single system. This approach was extended

by Dunn and Noid140 to include volume potentials, yielding a set of related models

which, together, can give both temperature and concentration transferability.
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The linear pressure correction which has been applied to the IBI and HFM mod-

els is very effective at correcting the coarse-grained pressure for a given state-point,

without requiring the inclusion of any other parameters in the coarse-grained force

field. However, it does not do so in a transferable way; in fact, it has been shown

by Wang et al.107 that correcting the pressure in this way means that the compress-

ibility of the model will no longer be correct. The reason for this is that the linear

correction does not take into account the underlying issue with the representation of

pressure in coarse-grained models; the effective pair potentials generated by bottom-

up coarse graining methods are volume-dependent, and so the virial formula for

calculating pressure is not valid.39 The volume potentials first suggested by Das and

Anderson128, on the other hand, are able to simultaneously represent pressure and

compressibility,139 because they explicitly take into account the volume-dependence

of coarse-grained potentials. This approach has recently been used to construct a

temperature transferable coarse-grained model,141 although this is, of course, at the

expense of adding extra parameters to the model, and therefore slowing down the

coarse-grained simulations.

The SAFT-γ Mie EoS is an intriguing approach to top-down coarse-graining. As

an EoS, SAFT-γ Mie is remarkably accurate when fitted to produce a wide range of

experimental data. The possibility of being able to fit Mie potentials to reproduce,

for example, vapour-liquid coexistence data over a range of temperatures guaran-

tees that optimised effective pair potentials will be produced that are transferable in

terms of thermodynamic free energies. However, there are problems with SAFT-γ

Mie potentials in terms of local structure prediction. The origin of these problems

arises mainly from the use of tangential spheres. This leads to a local structure

that is fundamentally different to that seen in bottom-up coarse-grained models, and

which does not directly map onto an atomistic representation of the system. Chap-

ter 5 contains further discussion on the problems this can cause in a coarse-grained

model. Within the SAFT framework, the use of shape factors161 has recently been

suggested as a method for creating structurally representative coarse-grained mod-

els.162 However, this would be difficult to implement for systems with multiple bead

types. Alternative top-down approaches may also be effective; for example, a recent

study by An et al. presents a coarse-grained model for alkane chains parametrised

using a particle swarm optimisation strategy. This model is thermodynamically

transferable, and exhibits reasonably good structural accuracy.163
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It is worth noting that in the current work, standard combining rules were used

for benzene-octane cross-interactions. This is superficially very attractive because

the parametrisation task for systems with many beads becomes far less onerous when

all the cross-interaction terms do not need to be fitted. Unfortunately, for many

systems the combining rules do not work as well.164 However, simple improvements

to the fitting of thermodynamic data within SAFT-γ Mie can be made by allowing

the kij parameter to vary from zero.165

A further interesting comparison between the bottom-up and top-down approaches

is the shape of the potentials they produce. As shown in Figure 3.8, the bottom-

up methods produce a wide variety of potential shapes, which do not correspond

to a common functional form. In principle, the use of numerical or spline poten-

tials allows for greater flexibility when trying to match the reference properties. In

practice, however, it can result in overfitting the model to a particular state point.

The reason for the irregular bumps present in many of these potentials is that they

are effective pair potentials, in which any multi-body contributions resulting from

the coarse graining of the system are included only in an averaged way. This will

only be applicable to the state point at which the model was parametrised since

the local environment of a given bead will vary depending on the temperature and

concentration. SAFT-γ Mie models, on the other hand, are based entirely on Mie

potentials, with a distinct functional form described in Equation 3.6. Because of

this well-defined shape, there is less danger of overfitting; therefore, they are likely

to have much better transferability than IBI or HFM models.

Finally, given the difficulties in achieving the two key chemically desirable at-

tributes (i.e. local structure and thermodynamics) within a single coarse-grained

model, it is appropriate to ask the question as to whether it is possible to have

this level of representability, together with transferability to other state points. We

would argue that, in principle, it is; however in practice this may require some degree

of compromise with computational cost, either in terms of a model which is more

expensive to simulate, or a more expensive parametrisation procedure. In one sense,

all classical models can be thought of as existing on a continuum scale of complexity:

atomistic models are largely successful because typical force fields have achieved a

reasonably high degree of representability and transferability. Yet we know that if,

for example, a TIP4P water molecule is transferred from bulk water into the gas

phase (an environment with a different density) or transferred to the surface of a
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protein (an environment with a dielectric constant) then the TIP4P water is not as

good a model as it is for bulk water. The way around this transferability problem is

partly being tackled by polarizable models, such as AMOEBA;166 i.e. models that

can respond to environmental changes. For coarse-grained models it is desirable

to do the same, without the obvious but prohibitively expensive addition of full

three-body forces to a method such as HFM. Recent work provides some encour-

agement that this can be achieved due to the improvements of the transferability in

DPD models via addition of a local density-dependent term (MDPD).167 Crucially,

the computational cost of this local density-dependent term scales with system size

like a simple pair potential. A similar approach has been applied to transferable

bottom-up coarse-grained models of a range of systems, including liquid-liquid and

liquid-vapour equilibria.143–146,168

3.5 Conclusions

In this chapter, the accuracy and transferability of coarse-grained models parametrised

using top-down (SAFT-γ Mie) and bottom-up (IBI, HFM) methods has been com-

pared. Both approaches were found to have distinct advantages and disadvantages.

In terms of structural accuracy, IBI was found to be superior to both HFM and

SAFT-γ Mie. HFM models were able to reproduce the structure of the systems

studied fairly well, while SAFT-γ Mie models were not able to give an accurate pic-

ture of the local structure of any of the systems. Unfortunately, even for this simple

system, the effective pair potentials derived using IBI and HFM vary considerably

between state points, limiting transferability.

In terms of thermodynamics, although neither bottom-up method was able to

reproduce exactly the solvation free energies of the atomistic system, the accuracy

was good enough that the correct phase behaviour was observed. Pressure correction

was found to be crucial for the reproduction of solvation free energies, confirming

that matching structure or forces alone does not guarantee thermodynamic con-

sistency when moving to a coarse-grained representation of a system. The model

derived from SAFT-γ Mie was found to be thermodynamically transferable across

the entire concentration range.

The main concern with bottom-up coarse graining appears to be transferability.

All of the IBI and HFM models studied were parametrised for a specific state point,
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and were less accurate when applied to a different state point. This can partially

be attributed to the coarse graining process. Removing degrees of freedom will

always reduce the entropy of the system, so in order to match the free energy, the

enthalpy/entropy balance must be shifted. Since the entropic contribution to the

free energy is temperature dependent (including the contribution to the entropy

from degrees of freedom that have been removed), the overall free energy of the

system will not scale correctly with temperature, and the force field will not be

completely transferable. SAFT -γ Mie models tend to be considerably better in

terms of thermodynamic transferability, due to fitting over a range of state points.

Unfortunately, this is at the expense of very poor structural accuracy. However, as

discussed, it may be possible to improve this transferability. Possible approaches to

achieving this will be discussed in detail in the next chapter.



Chapter 4

Improving the transferability of

bottom-up coarse-grained models

4.1 Introduction

One of the key shortcomings of the bottom-up models described in Chapter 3

is their poor transferability across both concentrations and temperatures, partic-

ularly in the context of reproducing densities. Poor transferability significantly

reduces the usefulness of a coarse-grained model, as it necessitates reparametrising

the interactions for different state points. Investigating methods for improving the

transferability of bottom-up coarse-grained models will be the aim of this chapter.

The MS-IBI method has previously been shown to improve the chemical trans-

ferability of coarse-grained models.117 This includes relatively complex biological

systems with multiple bead types, although for such systems the structural repre-

sentability is not consistently good.118 However, the method has so far only been

employed using the radial distribution functions of a range of states as targets.

Also, the thermodynamic transferability of models parametrised with MS-IBI has

not been well studied. With the findings of the previous chapter on the relation-

ship between accurate pressures and free energies in mind, it is likely that accurate

pressures across a range of state-points will be necessary for thermodynamic trans-

ferability. Moore et al. describe the use of both NVT and NPT states to account

for the pressure density relationship.118 However, it also seems plausible that a lin-

ear pressure correction21 may be applied within the MS-IBI framework to match

the pressures of multiple states; this would have the advantage of requiring fewer

68
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reference states, reducing the complexity of the parametrisation process. The first

aim of this chapter will be to investigate to what extent MS-IBI is able to yield

transferable coarse-grained models in terms of both structure and thermodynamics,

across the concentration and temperature ranges, by applying the same tests which

were applied to the IBI and HFM models in Chapter 3.

One feature shared by the majority of top-down coarse-grained models which

may partially explain their good transferability is that they are usually composed of

pair potentials with defined functional forms rather than numerical potentials.32,33

This has the advantage of preventing the over-fitting of the model to a particular

state-point. However, top-down models often have rather poor structural repre-

sentability when compared to bottom-up models, which can limit their usefulness.

It will therefore be investigated whether requiring a defined functional form for the

pair potentials (in this case a Morse potential) using a bottom-up structure-based

parametrisation can result in a more transferable coarse-grained model, which still

has good structural accuracy. This also has the advantage of simplifying the opti-

misation of the coarse-grained model by reducing the number of parameters to be

fitted.169

Finally, the possibility of improving transferability using local-density dependent

potentials in coarse-grained models will be discussed, and the preliminary steps

which have been taken towards this aim will be described.

Some of the work within this chapter is included in the publication: "Assessing

the transferability of common top-down and bottom-up coarse-grained molecular

models for molecular mixtures", specifically the results described in Sections 4.3

and 4.4.1. It is reproduced from Ref. 138 with permission from the PCCP Owner

Societies.

4.2 Methodology

4.2.1 Simulations

Atomistic reference simulations and coarse-grained simulations were carried out

using the parameters and methods described in Chapter 3. The specific simulation

conditions used will be described in the relevant sections.
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Table 4.1: Scaling factors used, and iterations required, for the MS-IBI optimisa-
tion. The numbers in parentheses are the number of MS-IBI iterations which were
carried out, after which pressure correction was applied. For the MS-3c and MS-4c
models the same η value was used for each reference system, for the MS-2t and
MS-lv models, a different η value was used for each reference.

Model Iterations η f

MS-3c 319 (300) 0.2 0.0004
MS-4c 310 (295) 0.2 0.0004
MS-2t 248 (200) 0.7 (238 K), 0.5 (378 K) 0.0001
MS-lv 96 0.5 (liquid), 0.1 (vapour) -

4.2.2 Parametrisation of multi-state IBI models

Coarse-grained models were parametrised using a version of the VOTCA 1.3113

package modified to carry out MS-IBI. This used the existing iterative framework

from the VOTCA package, but with the structure of the code modified by myself to

allow for multiple simulations at each iteration, and scripts added to calculate the

potential update from these simulations according to:

∆U = 1
N

N∑
i=1

ηi∆Ui. (4.1)

In this implementation, ∆Ui may be either the IBI update calculated for reference

system i, or a pressure correction update.

The initial guesses for non-bonded potentials were obtained by taking the average

of the Boltzmann inverted potentials of the reference systems included in the fits.

At each MS-IBI step, a simulation was run for each of the reference systems, and

the RDFs calculated. A single potential was then updated using Equation 4.1,

using the IBI updates for each reference system scaled by a factor of η. Each

potential was updated in turn. Once the RDFs had converged as much as possible,

as determined by visual inspection, additional iterations were carried out in which

only pressure correction was applied; here, η was set to 1 for each reference system

and the potential updates were scaled by a factor of f .

Several MS-IBI models were considered. The MS-3c and MS-4c models used

three and four octane/benzene mixtures of different concentrations as references.

The MS-2t model used octane at two different temperatures. The MS-lv used oc-

tane references in the liquid and vapour states. The scaling factors used in the

parametrisation of these models are shown in Table 4.1. The coarse-grained poten-
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Figure 4.1: Non-bonded potentials parametrised using MS-IBI for the a) A-A, b)
A-B, c) B-B, d) A-R, e) B-R, f) R-R interactions.

tials from each of the models discussed in this chapter are given in Figure 4.1.

4.2.3 Morse potentials using the simplex method

The simplex algorithm, as implemented in the VOTCA 1.3 package,113,114 was

used to optimise the parameters of Morse potentials, using the difference between

the coarse-grained and reference atomistic RDFs as an objective function:

y(x) =
rcut∑
r=0
|gref(r)− gCG(r,x)| , (4.2)
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where x is the set of Morse potential parameters for the vertex being evaluated. In

these models, the A and B beads in octane were treated as the same bead type, O;

therefore, the non-bonded interactions to be parametrised for the octane-benzene

mixture were O-O, O-R and R-R. The bonded interactions used were the same as

those used in the other bottom-up models. Treating A and B as the same bead type

reduces the number of interactions to be parametrised from 6 to 3, which speeds

up the optimisation procedure. Although A and B do show different intermolecular

RDFs in the reference system, these can largely be attributed to different intermolec-

ular environments.

Models were parametrised using the simplex algorithm for pure octane and pure

benzene. The vertices of the initial simplexes were calculated by carrying out Boltz-

mann inversion, and fitting the parameters of a Morse potential to the resulting

numerical potential. These parameters were used for one vertex, and the remaining

vertices were calculated by applying small random perturbations to these parame-

ters.

Two models were then parametrised for an octane-benzene mixture with xoct =

0.5. The first used the like interactions from the octane and benzene models and

used the simplex algorithm to optimise the unlike interaction; this will be known

as the Morse-MS model. The second re-optimised all interactions simultaneously

for the mixture; this will be called the Morse-50 model. Both models used the

Boltzmann inversion of the atomistic O-R partial RDF as a starting point for the

unlike interaction. The Morse potentials from the single-component models were

used as a starting point for the optimisation of the like interactions in the Morse-50

model.

The Morse potential parameters obtained from the simplex algorithm optimisa-

tions are given in Table 4.2.

4.3 Concentration transferability

Two MS-IBI models were parametrised to test concentration transferability.

Each of these models used pure benzene and pure octane as reference systems for the

benzene-benzene and octane-octane interactions, respectively. Additionally, one of

the models used an xoct = 0.5 mixture of octane and benzene (where xoct is the mole

fraction of octane); this model is referred to as MS-3c. The second model, called



4.3. Concentration transferability 73

Table 4.2: Morse potential parameters obtained from the simplex algorithm opti-
misations. The parameters are given to 5 significant figures.

Model Interaction r0 / nm ε / kJ mol−1 α / nm−1

Morse-MS
O-O 0.51399 0.79819 10.558
R-R 0.46921 0.79806 10.532
O-R 0.49286 0.79815 10.530

Morse-50
O-O 0.50841 0.80022 10.511
R-R 0.47341 0.79800 10.428
O-R 0.48989 0.79668 10.522

MS-4c, used two mixtures, with xoct = 0.3 and xoct = 0.7, as references in addition

to the pure components. In both cases, the mixtures were used as references for

all interactions, including like-like interactions. The results from these models were

compared to results from a single-state IBI model parametrised at xoct = 0.5. The

interaction potentials for the MS-3c and MS-4c models are shown in Figure 4.1.

The performance of each model was tested across the concentration range, at

xoct = 0.0, 0.2, 0.3, 0.5, 0.7, 0.8 and 1.0. At each concentration, a constant NPT

simulation was carried out at 298 K and 1 bar to calculate the density and RDF.

The solvation free energies at each concentration were also calculated as described

in Section 3.2.4.

The RDFs calculated using the MS-3c and MS-4c models at xoct = 0.2 and 0.8,

compared to atomistic results, are shown in Figures 4.2 and 4.3. In contrast to

the results for standard IBI, MS-IBI was successful in constructing a concentration

transferable model. The MS-3c model reproduced all of the RDFs quite well at

xoct = 0.0, 0.5 and 1.0. However, it should be noted that, at low octane concen-

trations (xoct = 0.2 and 0.3), the RDFs involving benzene were reproduced slightly

better than those involving octane and this was reversed at higher octane concen-

trations (xoct = 0.7 and 0.8). However, the difference between the models is rather

small, indicating that the additional computational expense of including an addi-

tional reference system does not result in a significant improvement in structural

representabiliy or transferability in this case. While the MS-4c encompasses a wider

concentration range for all of the interactions, including a single mixture concen-

tration as a reference in addition to the pure components appears to be enough to

capture all of the relevant contributions to the effective pair potential.

After the application of pressure correction during the MS-IBI process, the MS-
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Figure 4.2: Non-bonded distributions for xoct = 0.2 from simulations of the MS-3c
and MS-4c models, compared to atomistic simulation results, calculated at 298 K
and 1 bar. The plots show the: a) A-A, b) A-B, c) B-B, d) A-R, e) B-R and f) R-R
interactions.
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Figure 4.3: Non-bonded distributions for xoct = 0.8 from simulations of the MS-3c
and MS-4c models, compared to atomistic simulation results, calculated at 298 K
and 1 bar. The plots show the: a) A-A, b) A-B, c) B-B, d) A-R, e) B-R and f) R-R
interactions.
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Figure 4.4: Density as a function of xoct, calculated using atomistic, MS-3c, MS-4c
and IBI parametrised at xoct = 0.5.

3c and MS-4c models both gave pressures of close to 1 bar at the atomistic density

for all of the reference concentrations used in the parametrisation. Therefore, both

models were able to reproduce the density across the concentration range equally

well, as shown in Figure 4.4. This is a marked improvement over the performance

of the IBI model parametrised at xoct = 0.5.

The solvation free energies calculated using the MS-3c and MS-4c models, here

compared to IBI models parametrised at the relevant concentration, are shown in

Figure 4.5. Different single state IBI models are used at each concentration, because,

as shown in Figure 4.4, the densities (and therefore the pressures) will be incorrect

at concentrations other than xoct = 0.5. As shown for HFM models with incorrect

pressures in Chapter 3, this will lead to incorrect free energy calculations.

The MS-IBI models show a marked improvement over the IBI models in the cal-

culation of free energy changes, in terms of both representability and transferability.

It was shown in Figure 4.4 that the MS-4c model is able to reproduce the atomistic

pressure right across the concentration range; this translates to an accurate repro-

duction of the trend in solvation free energy across the same concentration range, as

seen in Figure 4.5 The compromise of matching to multiple state-points does result
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in a systematic error for both MS-IBI models. This is in contrast to the IBI models,

where a single model will not be thermodynamically transferable across the con-

centration range, and so accurate representation of the pressure and solvation free

energy at a given concentration requires the use of a model parametrised specifically

for that concentration. The necessity of using a separate coarse-grained model for

each state-point impacts the ability of IBI to replicate the trend in solvation free

energy across the concentration range; this is shown by the differing line-shapes

produced by the IBI models, compared to those of the atomistic and MS-4c models.

4.4 Transferability of octane models

4.4.1 Using two temperature references for MS-IBI

Initially, the temperature transferability of MS-IBI models was tested by con-

structing a model using two reference systems of pure octane at 238 K and 378 K.

This model is referred to as MS-2t.

During the parametrisation of the MS-2t model, a point was reached where it

was no longer possible to improve the structural accuracy of the model for both

references simultaneously. This occurred at the point where the potential update

for the high temperature and low temperature systems nearly cancelled out, so the

net potential update was close to zero. Changing the weighting of the two systems in

determining the potential update changed the point at which the updates began to

cancel out, but did not allow both systems’ RDFs to be matched at the same time.

During the pressure correction, the same effect was observed when one system’s

pressure reached a negative value while the other remained positive; this is shown

in Figure 4.7. Again, changing the weighting of the potential updates did not fix

the problem.

Figure 4.6 shows the site-site RDFs for the MS-2t model measured at 238 K

and 298 K. Despite the issues matching the RDFs exactly at both state-points,

the structural representability of the MS-2t model is still reasonably good. More

problematic is that the model was not able to reproduce the atomistic densities

across the range of temperatures any better than the IBI model, as shown in Figure

4.8. This was expected given that the pressures of the reference systems did not

converge to 1 bar.
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Figure 4.6: Site-site RDFs from simulations of pure octane using the MS-2t and
MS-lv models, compared to the atomistic references. The plots show a) A-A at 238
K, b) A-A at 378 K, c) A-B at 238 K, d) A-B at 378 K, e) B-B at 238 K and f) B-B
at 378 K.
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4.4.2 Using constant NPT simulations in the MS-IBI pro-

cess

Moore et al. have shown that constant NPT simulations may be used during

the MS-IBI process to give the correct pressure/density relationship at a single ther-

modynamic state-point.118 Therefore, the use of constant NPT simulations at the

two reference temperatures, in place of constant NVT simulations, was tested as a

method of achieving an MS-IBI model which was transferable across the temperature

range.

The very high pressures associated with bottom-up coarse-grained models will of

course cause issues when running constant NPT test simulations. Care was therefore

necessary when selecting starting potentials for the MS-IBI iterations. Simulations

of the average Boltzmann-inverted pair potentials at constant NPT, which gave pres-

sures of 2887 and 1597 bar for the low and high temperature references respectively,

were not stable; the system expanded rapidly, and the simulations crashed within

100 ps. The potentials from the final MS-2t model were therefore chosen as a more

stable starting point, with the hope that attempting to match the RDFs exactly in

the constant NPT ensemble would improve both the structural accuracy and the

pressure/density relationship of the model across the temperature range.

This methodology was not successful in producing a temperature transferable

model. Figure 4.9 shows how the densities at the two reference temperatures changed

over the MS-IBI iterations. The densities at both temperatures decreased steadily

throughout the process. For the low temperature reference, this meant that the

pressure/density relationship actually worsened. The high temperature reference

crossed the correct density, but there is no indication that it was close to converging

at that point.

4.4.3 Liquid-vapour references for MS-IBI

A study by Lyubartsev et al. describes the parametrisation of a coarse-grained

water model using a liquid-vapour water system as a reference system.110 An inter-

esting aspect of the resulting model is that, although it was parametrised to match

the RDF of the liquid-vapour system, it is able to match both the structure and

pressure of the system reasonably well at the experimental liquid density of water.

However, the method presented is not without issues. The authors found a signifi-
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cant correlation between the relative sizes of the liquid and vapour phases and the

pressure of the resulting coarse-grained system; in principle, by altering the density

of the system, any desired pressure could be achieved. Although the authors do

not directly address the reasons for this correlation, it seems likely that, at different

densities, the extent to which the RDF of the system is dominated by the interface

varies, and this has a large effect on the pressure of the coarse-grained model.

A similar approach would be to carry out an MS-IBI parametrisation, using

separate liquid and vapour systems as references. This would have the advantage of

removing the influence of the phase boundary on the pressure of the coarse-grained

model. A model which is able to match the structure of a system on different

sides of the vapour/liquid phase transition has the potential to improve upon the

transferability of a standard IBI model. This approach was tested on the pure octane

system.

The octane liquid reference system was the same system used for the xoct = 1.0

IBI model in Chapter 3. The vapour phase reference also contained 1600 molecules

simulated at constant NVT, at 298 K and a volume of 216000 nm−3 (corresponding

to a density of 1.41 kg m−3). MS-IBI iterations were carried out, with no pressure

correction steps. Atomistic and coarse-grained vapour phase simulations were run

using a stochastic integrator, and the simulation time was increased by a factor of

4 to gather sufficient statistics for calculating RDFs.

During various attempts at the parametrisation using different scaling factors, a

correlation was observed between the MS-IBI iterations converging to good struc-

tural accuracy and good accuracy with regards to the pressure. This was particularly

encouraging, given that pressure was not a target of the MS-IBI procedure. After

96 MS-IBI steps, the RDFs of both reference systems were matched to a high level

of accuracy, with a pressure of -17 bar. When the same vapour system was simu-

lated using the octane IBI model, the structural accuracy was worse than the octane

MS-lv model; this is shown in Figure 4.10. From these plots, it appears that the

atomistic vapour system includes some small octane clusters, which are cpatured

by the MS-lv model, but not by IBI. Therefore, the MS-lv model has improved on

the transferability of IBI to different densities at the same temperature. The MS-lv

potentials also lack the pronounced hump which is present in the IBI potentials.

Including the vapour reference in the parametrisation, which has a less structured

RDF, prevents overfitting of the potentials to the more complex shapes of the liquid
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RDFs, which occurs when using IBI and HFM.

However, the transferability of the MS-lv model across temperatures is not sig-

nificantly better than the other coarse-grained octane models studied. The thermal

expansion behaviour is similar to the IBI and MS-2t models, as shown in Figure 4.8.

The radial distributions across the range are reasonably accurate, and are in fact

extremely similar to those calculated from simulations of the MS-2t model. There-

fore, transferability between volumes does not necessarily translate to transferability

across temperatures.

4.5 Morse potentials

The RDFs calculated using the Morse-MS and Morse-50 models, at the concen-

trations for which they were parametrised and other concentrations, are shown in

Figures 4.11 and 4.12. The level of detailed structural accuracy which can expected

of these models is of course less than models employing numerical potentials. Nev-

ertheless, the models all do reasonably well at reproducing the pairwise structure

across the concentration range. This indicates that a good level of accuracy and

transferability can be achieved for liquid structure without the overfitting that was

observed in IBI and HFM.

There is relatively little difference between the Morse-MS and Morse-50 models

in terms of their structural accuracy across the concentration range. Re-optimising

the like–like interactions for the mixture does not appear to be worth the additional

computational cost, at least for this system. This hybrid approach could lead to

the efficient parametrisation of coarse-grained models for a range of liquid mixtures.

The use of analytical potentials may also allow combination rules to be tested. A

recent study suggested a set of combination rules for Morse potentials:

ε12 = 2ε11ε22

ε11 + ε22
(4.3)

r0,12 = r0,11r0,22
r0,11 + r0,22

r2
0,11 + r2

0,22
(4.4)

σ12 = σ11σ22
σ11 + σ22

σ2
11 + σ2

22
(4.5)
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Table 4.3: Weightings given to matching pressure and RDFs during the attempted
pressure correction of the octane Morse model, and the pressure achieved.

Weight (pressure) Weight (RDF) P / bar
0.0 1.0 1262
0.01 10.0 1119
0.05 10.0 412
0.01 1.0 55
1.0 0.0 3.1

Here, σ is the distance at which UMorse = 0. α can be calculated using:

α12 = ln 2
r0,12 − σ12

(4.6)

These mixing rules were effective for noble gas mixtures,170 and it would be interest-

ing to test whether this could further improve the efficiency of parametrising Morse

potentials. This would, however, require extensive validation on a range of liquid

mixtures, since simple combination rules are not guaranteed to be effective for all

coarse-grained models.171

Of course, as observed in Chapter 3, if we are interested in studying thermody-

namics, it is vital that the coarse-grained model is able to represent the pressure

of the atomistic system well. The linear pressure correction method is not applica-

ble to potentials with fixed functional form like the Morse potential. However, in

principle, the simplex method provides a framework for matching any simulation

observable, including pressure. Therefore, an attempt was made to parametrise a

Morse potential which matches the pressure of pure octane by using the difference

between the coarse-grained pressure and the target pressure (1 bar) as a target.

If pressure alone was used as a target, then the resulting coarse-grained model

had the correct pressure. However, looking more closely at the potential and struc-

ture obtained showed serious issues: the Morse potential obtained was purely attrac-

tive, resulting in overlapping octane molecules. If the pressure and the RDF were

used as dual targets for the optimisation, then the weights of the two targets could

be altered such that either the pressure or the RDF was matched well, but never

both simultaneously. As an illustration of this, Table 4.3 shows the pressures ob-

tained with different scaling factors, and Figure 4.13 shows the RDFs of the different

models.
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Figure 4.11: Site-site RDFs calculated at 298 K and 1 bar using the Morse-MS
and Morse-50 models, compared to the atomistic references, from simulations of a)
pure octane, b) pure benzene and a mixture with xoct = 0.5, the c) O-O d) R-R and
e) O-R interactions.
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Figure 4.12: Site-site RDFs calculated at 298 K and 1 bar using the Morse-MS
and Morse-50 models, compared to the atomistic references, from simulations of
octane/benzene mixtures with xoct = 0.2: a) O-O, c) O-R, e) R-R, and xoct = 0.8:
b) O-O, d) O-R, f) R-R.
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Figure 4.13: RDFs from simulations of octane at 298 K and the atomistic density
using a range of pressure-corrected Morse potentials. The pressures of these models
are indicated.

Therefore, while the fixed functional form of a Morse potential is advantageous

in preventing overfitting to a single state-point and simplifying the optimisation of

the coarse-grained model, the lack of flexibility does appear to have downsides when

it comes to simultaneously representing structural and thermodynamic properties,

even at a single state-point. The key advantage of the linear pressure correction to

numerical potentials is that it has the largest effect on the long-range part of the

potential, while the attractive well, to which structural properties are most sensitive,

is mostly unaffected. When the functional form is constrained to a Morse potential,

however, it becomes very difficult to alter one part of potential while keeping other

parts unaffected, and so pressure correction becomes more difficult.

4.6 Local-density potentials - preliminary work

The linear pressure correction is useful for obtaining the correct pressure in a

coarse-grained model at a single state point. However, as shown in Chapters 3 and

4, it does not guarantee a transferable model, particularly across a range of tem-
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peratures. This is because it does not address the underlying reason for the poor

representation of pressure in coarse-grained models, the state point dependence of

the pair potentials.39 Therefore, while the idea of a coarse-grained model based on

simple pair potentials, which is transferable and has good structural and thermody-

namic representability, is very attractive, actually obtaining such a model proves to

be extremely difficult.

One solution to this is to use a top-down approach, where transferability and

good thermodynamics appear to be easier to come by, and to attempt to improve

the representability of structures for these models, which are often rather poor.

From a bottom-up perspective, however, improving transferability may require in-

cluding additional terms in the potentials. For example, three-body terms could be

included in a coarse-grained model. For simple systems, this is known to improve

representability.127,172 It may also allow a coarse-grained model to react better to its

environment, for example in the modelling of a phase-separated liquid mixture.173

However, it is not guaranteed that three-body terms alone would address all the

causes of poor transferability in coarse-grained models; specifically, the multi-body

PMF for the system contains many contributions that are state-point dependent,

which it may not be possible to match using only configuration-dependent poten-

tials.43,174

The use of local-density dependent potentials (described in Chapter 2) is a

promising idea, which has been explored in the literature recently.144–146 Given their

connection to volume-dependent potentials,144 which allow the volume-dependence

of a coarse-grained model to be correctly addressed139, local density potentials may

be useful as a form of pressure correction.

Recent publications on the use of local-density potentials have generally involved

the simultaneous parametrisation of numerical pair and local-density potentials,

for example using the relative entropy method. However, given the promise of

the Morse potentials described in the previous section as a simplified method for

efficiently obtaining structurally representative and chemically transferable coarse-

grained models, it would be interesting to see whether these existing potentials could

be combined with local-density potentials to give a coarse-grained forcefield which

was also thermodynamically representative, and transferable across temperatures.

Methodology for pressure correction with volume potentials,140 and for convert-

ing volume potentials to local density potentials already exists.144 However, it would
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be advantageous to have a way to directly carry out pressure correction with local

density potentials without the intermediate stage. Aside from reducing the number

of steps in the parametrisation of a coarse-grained model, this would be particularly

useful for structurally complex systems, and those with many bead types. Volume

potentials, by their nature, only consider bulk properties; local density potentials,

on the other hand, inherently consider changes to the local environment of a bead,

and so by directly parametrising them we avoid missing crucial contributions to the

energy of the system.

4.6.1 Implementation in DL_POLY

There is no widely available molecular dynamics software package which includes

local-density potentials as standard; therefore, it was necessary to modify a package

to include this interaction type. The DL_POLY 4.08 package was chosen for this

purpose because: a) it is open-source; and b) it was written in a modular way, with

the intention that users could easily write and include their own modules.175

Local-density potentials were implemented in DL_POLY according to the equa-

tions given in Section 2.7.2. The functional form of ψ(rij) implemented by Sanyal

and Shell143 was used. This is given by:

ψ(rij) =



1 rij ≤ r0

c0 + c2r
2
ij + c4r

4
ij + c6r

6
ij r0 < rij < rc

0 rij ≥ rc

, (4.7)

where r0 and rc are in inner and outer cutoff, and the coefficients are given by:

c0 = 1− 3r2
0/r

2
c

(1− r2
0/r

2
c)3 , c2 = 1

r2
c

6r2
0/r

2
c

(1− r2
0/r

2
c)3 ,

c4 = − 1
r4

c

3 (1 + r2
0/r

2
c)

(1− r2
0/r

2
c)3 , c6 = 1

r6
c

2
(1− r2

0/r
2
c)3 .

(4.8)

The potentials were implemented as a tabulated potential, to allow for total

flexibility in the functional form. Multiple local density potentials may be defined

between different pairs of sites, and it is possible for U ij
LD and U ji

LD to have different

functional forms.
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Figure 4.14: RDFs from simulations of octane at 298 K and 1 bar, using the same
Morse potential with Gromacs and DL_POLY.

4.6.2 Testing the code

Before any parametrisation of local-density potentials, it was necessary to con-

firm that stable molecular dynamics simulations could be run on DL_POLY using

the Morse pair potentials, and that these simulations gave the same results as those

run using Gromacs. Small differences between simulation packages are unavoidable

due to small differences in the way various algorithms are implemented; however, it

is important that the results are at least closely comparable.

Initial tests were carried out on the pure octane system, using the Morse potential

parameters optimised using the simplex algorithm. Immediate issues were found

with tabulated dihedral potentials, which would regularly cause simulations to crash.

Similar issues were found when an analytical dihedral potential was used. However

when no dihedral potential was used, and 1–4 interactions were described with the

Morse potential, the simulations no longer crashed. It was verified that doing the

same thing in Gromacs made little difference to the RDF or pressure of the system.

Once a working model had been established in DL_POLY, the results obtained

using it were compared to those from the same model simulated using Gromacs.
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Figure 4.15: Example of a local density potential obtained during the attempted
parametrisation using CMA-ES

The RDFs from simulations using the two packages are given in Figure 4.14; it can

be seen that these are very similar. The pressures obtained from the two packages

are also very similar (1.27 kbar for Gromacs and 1.28 kbar for DL_POLY).

Finally, a basic check of the new code was carried out by doing a simulation

of the working model with a flat local-density potential (i.e. one with the same

potential for all values of the local density). This simulation gave the same results

as one without a local-density potential, indicating that the new code does not affect

the functioning of the existing code.

4.6.3 Implementation in VOTCA

Preliminary work was also carried out to allow the parametrisation of local-

density potentials using the iterative framework of VOTCA 1.3. Since this iterative

framework is extremely flexible, this involved adding scripts to automate the con-

struction of tabulated local-density potentials from a set of grid-points. The values

of these grid-points are to be parametrised using the existing optimizers in VOTCA

(either the simplex or CMA-ES method).
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In an initial test, the CMA-ES method115 was used to try to optimise a numerical

local-density potential for octane at 298 K, simulated using the octane Morse model

described in Section 4.5. The CMA method was used because it is often more effec-

tive than the simplex algorithm for optimising a large of number of parameters.113

The local-density potentials seen throughout the optimisation all resembled the one

shown in Figure 4.15. The target pressure used was 1 bar; however, at no point was

convergence to this value observed. The likely reason for this is that the starting

point used (a flat potential) is not close to the optimal potential, which makes it

difficult for the optimiser to find a minimum in parameter space.

Further work here is clearly required. This should focus on finding a good starting

point for the algorithm, including whether there are any convenient functional forms

for the local density-dependent potential which may simplify the optimisation. Since

the high pressure causes the system to expand, a local density potential which

counteracts this may be a good starting point. For example, a simple linear potential

which favours higher local densities, and therefore acts as an attractive potential,

may be sufficient.

4.7 Conclusions

The MS-IBI approach clearly improves on the results from IBI. In practice, MS-

IBI offers a compromise where slightly worse fits to pairwise RDFs allows a bet-

ter representation of some thermodynamic properties and improved transferability.

However, this is at some additional computational cost in terms of fitting. Moreover,

the oscillations of the effective potential are not eliminated by this method and for

pressure-consistent potentials to be produced, further pressure corrections may be

required. This can make it more difficult to achieve a single temperature transferable

potential, since a high pressure in one reference system can be balanced by a too

low pressure in another. It is also important to note that the burden of producing

MS-IBI potentials increases dramatically both with the number of different types of

coarse-grained beads and the number of reference systems. As each pair interaction

needs to be fitted, the practical application of IBI/MS-IBI for complex systems is

extremely computationally expensive.

The failure of MS-IBI to produce a single temperature transferable model high-

lights the difficulty of achieving this in a coarse-grained model. Some success has
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been achieved by scaling or reweighting a model developed at one temperature to

other temperatures, using the MS-CG176 and IBI46,116 methods. In terms of cap-

turing densities, the conditional reversible work method has also been fairly suc-

cessful at achieving temperature transferablity, although the model has worse rep-

resentability at the temperature for which it was parametrised when compared to

pressure-corrected IBI.106 Ultimately, the issue of temperature transferability in a

pair potential is one that is yet to be solved, and doing so will require addressing

the differences in the free-energy decomposition with temperature which come to

the fore when coarse-graining.177

The simplex algorithm was shown to be a successful method for parametrising

structurally accurate coarse-grained models. The resulting models also have good

chemical transferability. However, attempts to improve their thermodynamic repre-

sentability without compromising on their good structural accuracy proved difficult.

Overall, the use of a fixed functional form in bottom-up coarse-grained models does

simplify their parametrisation considerably, but does not necessarily represent a so-

lution to the transferability problem. The models from such a method do in fact

share the state-dependence of other bottom-up coarse-grained models, as shown by

their inability to correctly represent pressure.

Ultimately, the issue of transferability in coarse-grained models is one which is

yet to be solved, and it seems that coarse-grained models with good transferability,

structural representability and thermodynamic representability may not be feasible

when the interactions are limited to only pair potentials. The groundwork has

therefore been laid for parametrising local density-dependent potentials; these may

be able to address the issue of state-point dependence in coarse-grained models,

which is crucial to solving the transferability problem. Future work could focus on

efficient methods for parametrising these potentials to reproduce the pressure of the

underlying atomistic system.



Chapter 5

Parametrising coarse-grained

models of a chromonic liquid

crystal

5.1 Introduction to liquid crystals

5.1.1 Liquid crystal phases

Liquid crystals are a class of soft matter which exhibit fluid-like behaviour char-

acteristic of a liquid, along with some kind of anisotropic ordering of the molecules,

like a crystal.178 The different liquid crystal phases are characterised by the degree

and type of positional and orientational order present. The phases exhibited, and

the conditions under which they are formed, are highly system-dependent, result-

ing from a subtle balance between the interactions between components. Broadly

speaking, liquid crystals can be divided into thermotropics and lyotropics, which

form a variety of liquid crystal phases depending on temperature and concentration,

respectively.178,179

Thermotropic liquid crystal phases are formed by anisotropic molecules, at a

range of temperatures between the usual liquid and crystalline phases. A number

of thermotropic phases exist, but the most common is the nematic phase; here, the

orientations of the molecules are aligned, but the positional order is like that of a

liquid. The driving force for the alignment of the molecules can be explained by

excluded volume arguments, initially suggested by Onsager.180 A pair of direction-

ally aligned, rod-shaped, molecules will have a smaller excluded volume than two

95
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molecules at an angle to each other; alignment therefore maximises the positional

entropy of the system. In thermotropic liquid crystals, liquid crystal phases will

occur when there is sufficient thermal motion for the system to flow like a liquid,

but not so much that the alignment of the molecules is lost.

Thermotropic mesogens can be split into two general types: calamitic (rod-like)

and discotic (disc-like).178 Each of these types has a characteristic set of phases which

it generally forms, although there is significant variation between different mesogens.

Thermotropics are most commonly found in liquid crystal displays; however, their

unique physical properties have given rise to many more applications.181,182

Most lyotropic liquid crystals are formed from amphiphilic molecules in aqueous

solution. These molecules typically consist of a hydrophilic head group and a hy-

drophobic tail. In aqueous solution, the differing solubility of the two groups leads to

the formation of micelles, in which the head is preferentially exposed to the solvent.

This behaviour is driven by the hydrophobic effect, a phenomenon whereby hy-

drophobic molecules aggregate to avoid contact with water. This is favoured above

a certain concentration (the critical micelle concentration) for both entropic and

enthalpic reasons. The formation of structured, hydrogen-bonded solvation shells

of water molecules around solute molecules has an entropic cost; the aggregation

of solute molecules therefore increases entropy by reducing the surface area in con-

tact with water. Additionally, there is an enthalpic driving force which arises from

favourable interactions between hydrophobic chains inside micelles, and between the

hydrophobic tails and water.183,184 Different aggregate structures are seen depending

on the concentration, from spherical micelles at low concentrations, to cylindrical

and lamellar aggregates at higher concentrations. These differing shapes give rise

to distinct liquid crystal phases. Lyotropics are extremely common, particularly in

the surfactants found in soap, and the lipids which form cell membranes.185,186

5.1.2 Chromonic liquid crystals

Chromonic liquid crystals are a class of lyotropics characterised by the self-

assembly of molecules in aqueous solution into columnar aggregates, rather than

micelles, which go on to form liquid crystal phases. The molecules which form

chromonics tend to consist of a hydrophobic, usually aromatic, core surrounded

by hydrophilic groups, which can be either ionic or non-ionic. While the driving
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a)

b)                                                                                                c)

Figure 5.1: Liquid crystal phases commonly observed in chromonic systems: a)
isotropic (I), b) nematic (NC) and c) hexagonal columnar (CH).

force behind aggregate formation (the hydrophobic effect) is similar to conventional

lyotropics, the different aggregate shape leads to a distinctive set of chromonic liquid

crystal phases.187,188 Due to their polyaromatic cores, they are often found in dyes.

Their optical properties do not arise directly from their liquid crystalline behaviour,

although the formation of aggregates in dyes is known to affect the position of the

absorption spectrum bands, and therefore the colour.189,190

Unlike conventional lyotropics, where the formation of micelles occurs only above

the critical micelle concentration, the formation of short chromonic stacks occurs

even at very low concentrations.186 These stacks can be categorised according to

whether there is an offset between molecules in the stack; stacks with large offsets

are called J-aggregates and those without an offset are H-aggregates. In general,

the phase diagram of a chromonic liquid crystal consists of: the isotropic (I) phase,

in which the columns have no orientational order; the nematic (NC) phase, which

is analogous to that found in thermotropic liquid crystals; and the hexagonal (CH)

phase, in which the aligned columns pack in a hexagonal manner. At high concen-

trations, chromonics often lose their liquid crystalline nature, forming a crystalline

phase. These phases are illustrated in Figure 5.1.191

One of the more commonly studied examples of a non-ionic chromonic is 2,3,6,7,10,11-
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Figure 5.2: Molecular structure of TP6EO2M.

hexa-(1,4,7-trioxa-octyl)-triphenylene, more commonly known as TP6EO2M, the

structure of which is shown in Figure 5.2. Like other chromonics, the molecule

consists of a hydrophobic aromatic core and hydrophilic arms, in this case short

ethylene oxide chains. As with all liquid crystal mesogens, the molecule’s ability

to form chromonic liquid crystal phases is extremely sensitive to the relative sizes

of these two portions of the molecule.192 For example, shortening the arms signifi-

cantly reduces the water solubility, while lengthening them prevents the molecules

from forming any sort of aggregate.193–195

TP6EO2M has been studied extensively both experimentally193–197 and by atom-

istic simulation.86,198 The formation of TP6EO2M stacks has been suggested to be

"quasi-isodesmic", which means that the free energy of assocation of a molecule onto

a stack is the same regardless of the stack size, with the exception of the formation

of the initial dimer.86 The same simulation study showed, by analysis of the tem-

perature dependence of the free energy of association, that it arises from favourable

enthalpic and entropic contributions in roughly equal proportions. These are likely

to be similar in nature to the hydrophobic effect seen in conventional lyotropics,

with the π–π stacking favoured enthalpically and an entropic contribution arising

from the structuring of water in the solvation shell.86 This agreed with an earlier

experimental study in which the free energy of association was calculated at different

temperatures using NMR.199 The phase diagram of TP6EO2M is shown in Figure

5.3. Like most chromonics, it shows transitions from isotropic to nematic, and then
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Figure 5.3: Part of the experimental phase diagram for the TP6EO2M/water sys-
tem, showing the isotropic (I), nematic (NC) and hexagonal columnar (CH) phases.
Reprinted from Ref. 193 with permission from the Taylor & Francis Group.

to hexagonal, as the concentration increases.195

5.1.3 Simulating chromonics

The simulation of chromonic liquid crystals presents a number of challenges.

Self-assembly into stacks occurs over periods of tens or, in most cases, hundreds of

nanoseconds. Moreover, formation of liquid crystal mesophases, by self-organisation

of stacks, takes place over time scales that are considerably longer. In two recent

studies, progress has been made in understanding and validating the structures ex-

pected in short chromonic stacks via long atomistic simulations.86,200 There have also

been previous attempts to produce coarse-grained models of chromonics. Chromonic

self-assembly and phases have been seen in simple disc models201,202 and, at longer

length scales, dissipative particle dynamics studies have recently demonstrated the

first full simulations of chromonic liquid crystal phase diagrams using up to 5000

mesogens in water.28,41

However, there is a real challenge to produce coarse-grained models that cap-

ture the key structural features responsible for the local molecular packing within
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stacks and yet are computationally tractable, allowing longer time scale events to

be seen. Such a model would provide a bridge between atomistic models and sim-

ple phenomenological models and would potentially shed light on the mechanisms

involved in chromonic self-assembly. The chemical specificity of systematic coarse-

grained models would also allow comparisons to be made between specific systems,

going beyond the general trends which have been observed in generic coarse-grained

models.

The parametrisation of systematic coarse-grained models of liquid crystals comes

with a range of issues beyond those seen for simple homogeneous systems. Despite

the issues surrounding representability and transferability which have been discussed

in previous chapters, there is still a relatively large parameter space which will give

qualitatively correct liquid behaviour in these simple systems. This is less true

for the more complex structures found in liquid crystals. Chromonics present a

particular challenge, since the formation of chromonic stacks and the subsequent

alignment of these stacks to form liquid crystal phases must both be stabilised.

In order for both of these processes to occur, a very delicate balance between the

different interactions in the system must be satisfied. Firstly, the hydrophilicity and

hydrophobicity of the tails and core must be correct to stabilise the stacking process;

secondly, the interactions between stacks, and between stacks and water, must be

balanced correctly so that liquid crystal phases are able to form. This has already

been seen in an atomistic study of this system by Akinshina et al.,86 where the OPLS

force field showed chromonic stacking, while the GAFF force field did not. Previous

attempts to parametrise bottom-up coarse-grained models of chromonics have been

unsuccessful in modelling chromonic stacking,203 so further work is clearly needed

in this area.

5.1.4 Aims

The aim of this chapter will be to investigate methods for the systematic coarse

graining of the chromonic liquid crystal TP6EO2M in water. This system was cho-

sen because it has a phase diagram which includes multiple liquid crystal phases

(nematic and hexagonal), and because there are experimental and atomistic simula-

tion studies against which results can be tested. In addition to this, there are only

three distinct chemical environments (aromatic core, ethylene oxide tails and water)
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and there are no strongly charged particles. This takes away some complications

which were faced in previous attempts to coarse grain an ionic chromonic,203 so that

the fundamental challenges involved in modelling liquid crystals at the systematic

coarse-grained level may be more easily investigated.

In the case of bottom-up coarse graining, even carrying out appropriate reference

simulations is not straightforward. The ordered structures mean that it is difficult

for an atomistic reference simulation to adequately sample all distances and orien-

tations. This is especially true for chromonic liquid crystals; modelling an entire

liquid crystal phase, for a sufficient amount of time, would require an extremely

large all-atom simulation. Therefore, the feasibility of running a smaller reference

simulation, and whether this results in a representative coarse-grained model, will

be examined using the HFM method. Methods for achieving a more computation-

ally efficient coarse-grained mapping (implicit water and clustering algorithms) will

also be tested and discussed.

Given the difficulty in parametrising bottom-up coarse-grained models of liquid

crystals, top-down coarse graining methods will also be examined. The MARTINI

2 force field, while it is mainly intended for biomolecules, has been used for a wide

range of systems, and so its application to the TP6EO2M system will be tested.

These results will be compared to results from the new, and currently unpublished,

MARTINI 3 forcefield, where four different parametrisations will be examined. Re-

cent work using the SAFT-γ Mie approach will then be discussed as an alternative

top-down method. The degree of success of each model will be interpreted in terms

of its balance of hydrophilic and hydrophobic interactions. The parts of this section

which discuss the MARTINI 2 and SAFT-γ Mie models have been previously pub-

lished by this author in "Development of new coarse-grained models for chromonic

liquid crystals: insights from top-down approaches".40 These sections are reproduced

and adapted with permission from the Taylor & Francis Group.

Finally, a series of large-scale coarse-grained simulations of TP6EO2M will be

carried out using the MARTINI 3 forcefield. The ability of the model to self assemble

liquid crystal phases from a dispersed starting configuration will be tested. The

transferability of the model across concentrations (in terms of its ability to represent

the different chromonic liquid crystal phases) will then be examined, by carrying out

a range of simulations with pre-assembled columnar starting configurations.
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Figure 5.4: Coarse-grained mapping used in this chapter for TP6EO2M.

5.2 Computational methodology

5.2.1 Coarse-grained mapping

The mapping scheme used for TP6EO2M is shown in Figure 5.4. The TP6EO2M

model consists of four bead types: the central core (CC), outer core (CO), inner arm

(AI) and outer arm (AO). With the exception of the MARTINI 3 model, the CC and

CO beads, and the AI and AO beads, use the same interaction parameters, and differ

only by their masses. The mapping used for water varies between coarse-grained

models. The MARTINI water models map four water molecules to one coarse-

grained bead. For the HFM model (with the exception of the models discussed in

Sections 5.3.5), a single water molecule was mapped to one coarse-grained bead.

The same set of bonded interactions was used for all of the coarse-grained models

of TP6EO2M. Bonds and angles were described by simple harmonic potentials,

with bond lengths and angles taken from the energy minimized atomistic structure,

mapped onto a coarse grained representation. Six improper dihedrals were required

to keep the core of the molecule planar, but no other dihedral interactions were used

in this model. Bonded interaction parameters are given in Tables 5.1, 5.2 and 5.3.
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Table 5.1: TP6EO2M bond parameters. The CO–CO* bond is along the long edge
of the aromatic core (see Figure 5.6.

Bond r0 / nm kbond / kJ mol−1 nm−2

CC–CC 0.212 15000
CC–CO 0.212 15000
CO–CO 0.212 15000
CO–CO* 0.424 15000
CO–AI 0.276 10000
AI–AI 0.328 10000
AI–AO 0.282 10000

Table 5.2: TP6EO2M angle parameters.

Angle θ0 / deg kangle / kJ mol−1 deg−2

CC–CO–AI 180 85.0
CO–AI–AI 130 85.0
AI–AI–AO 130 85.0

5.2.2 Atomistic reference simulations

Atomistic simulations of TP6EO2M in water were used as references for the

HFM model of TP6EO2M. The system was modelled using the OPLS forcefield,70

with the same parameters used by Akinshina et al. to model the same system.86

The equations of motion were solved using the leap-frog integrator with a time step

of 1 fs. All simulations were carried out at a temperature of 280 K and a pressure of

1 bar, using the Nosé-Hoover thermostat79,80 and the Parrinello-Rahman barostat.81

The van der Waals, neighbour list and coulomb cutoffs were set to 1.2 nm.

Two separate reference systems were used for different HFM models: an equi-

librated chromonic stack of 10 TP6EO2M molecules in 20928 waters (2.5 wt%);

and a pre-equilibrium mixture of short stacks of varying sizes, with 50 TP6EO2M

and 14433 water molecules (15.3 wt%). The starting configuration for the stacked

reference was provided by Martin Walker, and obtained by equilibration of a pre-

assembled stack for 300 ps at constant NVT, followed by 80 ns at constant NPT.

These systems were each simulated for 20 ns, and snapshots of positions and forces

were taken every 5 ps.
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Figure 5.5: C-C interaction potential calculated using HFM, after excluding only
coarse-grained bonds and angles from the reference trajectory. The sharp peaks in
this are due to 1–4 C-C interactions, and disappear when these pairs are excluded.

Figure 5.6: Connectivity of the coarse-grained TP6EO2M model. All 1-3 and 1-4
interactions, as well as the 1-5 interactions of the type indicated by the black beads,
were excluded from the reference trajectory.
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Table 5.3: TP6EO2M improper dihedral parameters.

Dihedral φ8 / deg kφ / kJ mol−1

CO–CC–CC–CC 0 30.0

5.2.3 Force matching calculations

Force matching calculations for the TP6EO2M model were carried out using the

Bottom-up Open-source Coarse-graining Software (BOCS) package, which imple-

ments the normal equation method for force matching shown in Equation 2.42.31

BOCS was chosen over VOTCA for this system because of its significantly lower

memory usage, and the fact that it can be run in parallel; these features make it more

feasible to run the larger reference systems which are required for the TP6OE2M

system.

The molecular structure of TP6EO2M introduces some complications to the

HFM procedure. The rigidity of the aromatic core of TP6EO2M means that, at

some distances, the intramolecular interactions dominate the forces in the reference

system. The effect of this on the interaction potentials is highlighted in Figure

5.5. A solution to this was to determine which pairs of coarse-grained beads were

causing the sharp peaks by examining the effect on the coarse-grained forcefield of

excluding certain pairs. The interactions which were found to contribute to the

issue were then excluded from the atomistic reference. These include all 1-3 and 1-4

interactions, as well as the 1-5 interaction shown in Figure 5.6. When carrying out

coarse-grained simulations, the interactions between these additional excluded pairs

were modelled using the non-bonded potentials obtained from the force matching

calculations. This is a valid approach in the HFM framework, in which there are no

restrictions on which interactions are excluded, and how the excluded interactions

are modelled.

A number of HFM models of TP6EO2M are discussed in Section 5.3. The FM-N

and FM-Q model use neutral and charged coarse-grained beads, respectively, and

differ in how electrostatics are treated in the reference system (details are given

in Section 5.3.1). Pressure correction was applied to the FM-Q model, yielding

the FM-QP model. The FM-D model uses a dispersed mixture of stack sizes as a

reference system, as discussed in Section 5.3.4. Finally, the FM-4S and FM-4N use

a 4-to-1 coarse-grained mapping for water, and differ in how the forces on water

beads are treated (see Section 5.3.5).
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Table 5.4: Non-bonded parameters used in the MARTINI 2 model. ’C’ refers to
both the CC and CO beads and ’A’ refers to the AI and AO beads. P4 and BP4
refer to standard and antifreeze water particles, respectively.

Interaction σ / nm ε / kJ mol−1

C–C 0.43 2.625
A–A 0.43 3.375
C–A 0.43 2.325
P4–P4 0.47 5.000

BP4–BP4 0.47 5.000
P4–BP4 0.57 5.600
P4–C 0.47 2.700
P4–A 0.47 4.000
BP4–C 0.47 2.700
BP4–A 0.47 4.000

5.2.4 MARTINI parametrisation

MARTINI 2 model

The bead types for the MARTINI 2 model were taken from the MARTINI ben-

zene32 and polyethylene oxide91 models, which use the SC4 and SNa bead types.

Here, "S" denotes a small bead compared to the MARTINI standard of 4 heavy

atoms, and "a" denotes a hydrogen-bond acceptor. MARTINI water (P4) with an-

tifreeze particles (BP4) was used, as this has been shown to prevent problems with

the crystallisation of water in MARTINI simulations. BP4 has the same interac-

tions with all other MARTINI bead types as P4, with the exception that the P4-BP4

interaction has larger σ and ε values, disrupting the formation of any crystal struc-

ture. Lennard-Jones parameters were obtained by consulting the interaction matrix

provided in the original MARTINI paper. For interactions between two S beads,

σ was reduced to 0.43 nm and ε scaled by a factor of 0.75, according to the rules

provided.32 Table 5.4 contains the Lennard-Jones parameters for the interactions in

this system.∗

MARTINI 3 model

The MARTINI 3 forcefield has not yet been formally published, and so full details

of its parametrisation are unfortunately not yet available; however, it is currently in
∗Note that this description of how the interactions were determined has been corrected from

the original publication.40
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open beta, and parameters (and some documentation) are freely available online.204

This new version of MARTINI includes more parameters for different levels of coarse-

graining. The standard mapping is, as in MARTINI 2, four heavy atoms to a

coarse-grained bead. However, for each standard bead type, there are separate

parameters for beads with three and two heavy atoms, denoted by S (small) and T

(tiny) prefixes in the bead name. The MARTINI 3 model for TP6EO2M, therefore,

uses different Lennard-Jones parameters for the AO and AI beads. MARTINI 3 no

longer uses antifreeze water particles, instead having one water bead (WN) which,

again, represents four water molecules. The interactions between water beads are

weaker than in MARTINI 2 (see Tables 5.4 and 5.5, which seems to have lowered

the melting point of water.

The MARTINI 3 open beta documentation includes suggestions for the mapping

of different chemical groups to bead types, which were used to determine bead

types for the TP6EO2M model. The TC4 bead type was chosen for the aromatic

core. For the arms, four bead types were considered: N1, N0, N1a and N0a (N

denotes the non-polar bead type, where N0 has a lower polarity than N1, and ’a’

denotes a hydrogen bond acceptor). For the purposes of this molecule, the N1-WN

interaction has a higher ε than the N0-WN interaction, so the N1 bead is more

soluble in water. Beads with the ’a’ descriptor have both weaker self-interactions

and weaker interactions with water than their non-hydrogen bonding counterparts.

The Lennard-Jones parameters used in the MARTINI 3 models are given in Table

5.5. Throughout this chapter, the MARTINI 3 models will be referred to according

to bead type used for the arms.

5.2.5 Coarse-grained simulations

All molecular dynamics simulations were carried out using GROMACS 4.6.7.

The equations of motion were solved using the leap-frog integrator with a time step

of 2 fs. All simulations were carried out at a temperature of 280 K using the Nosé-

Hoover thermostat. Constant NPT simulations were carried out at a pressure of 1

bar using the Parrinello-Rahman barostat. The van der Waals, neighbour list and

Coulomb cutoffs were set to 1.2 nm (MARTINI) and 1.5 nm (HFM and SAFT).

More specific details of the simulations carried out can be found in the relevant

sections.



5.2. Computational methodology 108

Table 5.5: Non-bonded parameters used in the MARTINI 3 models. ’TC4’ was
used for both the CC and CO beads, ’WN’ for water and either ’N0’, ’N1’, ’N0a’ or
’N1a’ for the AO (T prefix) and AI (S prefix) beads.

Interaction σ / nm ε / kJ mol−1

N0 N0a N1 N1a
C–C 0.330 1.45 1.45 1.45 1.45

AO–AO 0.330 1.70 1.45 1.70 1.45
AI–AI 0.400 2.54 2.11 2.54 2.11
AO–AI 0.370 2.07 1.57 2.07 1.57
C–AO 0.330 1.20 1.20 1.20 1.20
C–AI 0.370 1.57 1.57 1.57 1.57
W–W 0.470 4.65 4.65 4.65 4.65
W–C 0.411 1.19 1.19 1.19 1.19
W–AO 0.41 2.40 2.15 2.67 2.40
W–AI 0.440 3.02 2.81 3.23 3.02

Simulations using the MARTINI model generally use time steps of up to 20 fs,

which further improves the computational speed-up of the model. However, in this

case, the highly interconnected bonded structure of the aromatic core resulted in

very unstable molecular dynamics when time steps of larger than 2 fs were used, and

so this smaller value was chosen for the TP6EO2M simulations. While this removes

one advantage of coarse graining, the model still represents a significant speed-up

compared to the atomistic model, as shown in Section 5.5.

5.2.6 Potential of mean force (PMF) calculations

The PMF for the separation of a TP6EO2M dimer in aqueous solution was

calculated for each coarse-grained model by constraining the separation distance

between the centres of mass (COMs) of the cores of two TP6EO2M molecules at

a range of distances and calculating the average constraint force at each distance.

Only the distance between the COMs was constrained, the molecules were allowed to

rotate freely during the calculations. The potential of mean force was then calculated

at each distance according to Equation 2.29.

For the MARTINI 2 model, a dimer was placed in a simulation box and sol-

vated with water, and an energy minimisation was carried out. The system was

equilibrated in the constant NPT ensemble for 1 ns with the Berendsen thermostat

and barostat, followed by 5 ns with the Nosé-Hoover thermostat and the Parrinello-
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Rahman barostat. A further 5 ns constant NVT equilibration was carried out at the

equilibrium density from the constant NPT simulations. An initial pull simulation

was carried out, with the distance between the COMs of the aromatic cores of the

two molecules constrained and increased at a rate of 0.01 nm ps−1. A short push

simulation was also carried out to generate structures with shorter intermolecular

distances. Frames were then selected from these simulations representing a range of

distances, clustered more closely around the expected energy minimum, and these

were used as starting structures for the constrained simulations. The MARTINI

3 PMF calculations used the same set of starting structures which were generated

using the MARTINI 2 model. At each distance, a 25 ns simulation was carried out

with COM–COM distance constrained, the last 20 ns of which was used to generate

data for the PMF calculation.

To generate the HFM starting structures, a similar procedure was used. The

unconstrained equilibration of the dimer was carried out using the atomistic model.

Coarse-grained mapping was then carried out, and the pull simulations were carried

out using the HFM model.

5.2.7 Structural analysis of liquid crystal structures

The structures of liquid crystal phases were analysed in two ways. The nematic

order parameter, Snematic, was calculated to determine the degree of orientational

order of the system. This is given by:

Snematic =
〈

3 cos2 θ − 1
2

〉
, (5.1)

where θ is the angle between a specified vector, d, for one liquid crystal molecule

and the average value of d for that snapshot.178 A value of 1.0 indicates a totally

ordered system, and the value decreases with the amount of order in the system.

For a TP6EO2M molecule, d was defined as perpendicular to the plane of central

aromatic core, and was calculated from the three CC beads i, j and k, using:

d = uij × ujk. (5.2)

This means that Snematic measures the alignment of that molecular axis, although in

principal any vector calculated from the molecular structure could be chosen.
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In practice, Snematic is calculated by diagonalisation of the ordering tensor:

Qαβ = 1
N

N∑
i=1

(3
2 d̂iαd̂iβ −

1
2δαβ

)
, (5.3)

where α and β denote components in the x, y and z directions and N is the number

of molecules. Snematic is the largest eigenvalue of Q.205

The degree of positional order was analysed using the two-dimensional pair dis-

tribution function, g(u, v), of pairs of TP6EO2M molecules. For this quantity, the

system director for a frame was calculated by taking the global average of d. Two

orthogonal vectors, u and v, were then defined normal to the director. u and v were

calculated by projecting the distance between a pair of molecules (calculated from

the centres of mass of the cores) along these two vectors. A vertical cutoff along

the global system director of 0.5 nm was applied so that only pairs within a thin

segment of the box were considered.

5.3 Hybrid force matching (HFM) results

5.3.1 Treatment of electrostatics

The models discussed in this section were calculated from 2000 frames (corre-

sponding to 10 ns) of the stack reference simulation.

The initial HFM forcefield for TP6EO2M/water, referred to as the FM-N model,

is shown in Figure 5.7. This model contains a number of interesting features. The

interactions involving water all look as expected. The shape of the water self-

interaction resembles previously published force matched waters. The water-arm

and water-core interactions also make physical sense; looking at these interactions,

the arms appear more soluble than the cores due to their deeper and wider poten-

tial wells. The interactions between the arm and core beads, however, make less

intuitive sense. The arm-arm and core-core interactions are both largely repulsive,

with a shallow attractive well. The core-arm interaction, on the other hand, is

very attractive, with a double well shape. This is surprising because, intuitively,

the self interactions would be expected to be attractive, particularly the core-core

interactions.

The unexpected shape of the potentials in the initial HFM model comes from
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Figure 5.7: HFM potentials calculated for the TP6EO2M/water system at 280
K, for the FM-N and FM-Q models (Section 5.3.1, as well as the FM-D model (see
Section 5.3.4). Showing the a) C-C, b) A-A, c) C-A, d) C-W, e) A-W and f) W-W
potentials.
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the way in which electrostatics were treated in the parametrisation process. It is

being assumed that, like the MARTINI models, all of the coarse-grained beads in

the HFM model are neutral. However, when the charges from the atomistic model

are carried over to the coarse-grained model, the AI and CC beads are neutral, but

the AO and CO beads have charges of −0.2e and +0.2e respectively. The electro-

static forces between the charged beads are being included in the force matching,

and then effectively averaged over all the beads; this is origin of the repulsive like

interactions and the attractive unlike interactions. This is incorrect for two reasons:

the electrostatic interactions should apply only to the AO and CO beads, not all of

the beads; and long-ranged electrostatic interactions are being implicitly included in

the short-range vdW potentials, and so not treated correctly in the coarse-grained

simulations.

To address this issue, an additional step was added to the preparation of the

reference. For each frame of the mapped trajectory, the electrostatic interactions

coming from the mapping of the atomistic charges to the coarse-grained beads were

calculated, giving the coarse-grained electrostatic forces for the system. The elec-

trostatic forces were then subtracted from the reference forces (after the exclusion

of intramolecular interactions), giving a new reference trajectory which does not

include the coarse-grained electrostatic forces. The new reference was then used for

force matching. Coarse-grained simulations of this model included explicit charges

on the AO (−0.2e, where e is the electronic charge) and CO (+0.2e) beads, and

the electrostatic forces were calculated using the PME method. It should be noted

that this method can only deal with electrostatic interactions between atoms which

map onto charged beads; this neglects, for example, any electrostatic interactions

involving water, which is neutral overall. However, this is still expected to be an

improvement over the FM-N model.

The FM-Q model potentials are shown in Figure 5.7. The interactions involv-

ing water are very similar to those in the FM-N model, since the water beads are

neutral in both models. However, the other interactions have changed significantly.

The core-core interaction is now strongly attractive, the arm-arm is more weakly

attractive and the core-arm interaction is overall slightly repulsive, but with two

small attractive wells. Comparing the two models, the dominant influence of the

implicit electrostatic interactions on the potentials of the FM-N model are apparent.

The two coarse-grained models exhibit rather different behaviour in simulations.
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Figure 5.8: Snapshots taken from simulations of 10 (a and b) and 16 (c and d)
TP6EO2M molecules, from dispersed starting configurations, using the FM-N (a
and c) and FM-Q (b and d) models.

When a stack of 10 molecules (2.5 wt%) is simulated, it remains stable over a 100 ns

simulation in both cases. However, the self-assembly of this stack occurred over very

different timescales for the two models. Figure 5.8 shows snapshots from simulations

using the two models, starting from dispersed configurations. In the simulation of

the FM-N model, the assembly of two short chromonic stacks was observed within

35 ns, and the formation of the full 10 molecule stack took 100 ns of simulation time.

The FM-Q model, on the other hand, was able to produce a 10 molecule chromonic

stack within only 4 ns of simulation time. The difference between the two models

was more pronounced when self-assembly at a higher concentration (16 molecules at

4.7 wt%) was attempted. Here, the FM-Q model formed a 16 molecule stack within

20 ns of simulation. The FM-N model was only able to form several smaller stacks,

which often formed then unformed later in simulation, over 100 ns. Additionally, at

several points, side-on aggregation of two stacks was observed, and was stable over

10s of ns.
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Therefore, not only do the interaction potentials of the FM-Q model make more

physical sense, but self-assembly is more reliable, and occurs over shorter timescales

than the FM-N model. The charge-subtraction methodology appears to be useful

for dealing with even weakly charged coarse-grained beads, and it is anticipated that

it would be of even more use for more polar or ionic systems.

5.3.2 Structure

The partial RDFs calculated using the FM-Q model are plotted in Figure 5.9.

There are significant quantitative differences between them and the atomistic RDFs.

However, in most of the RDFs, the overall shape and peak positions are still qual-

itatively captured. The exception to this is the C-W RDF, where the atomistic

and FM-N models give noticeably different peak patterns; this interaction is less

well-sampled than the others in the stacked configuration, so the HFM interaction

potentials may be less representative.

Two distinct measures of the distance between two molecules in a stack have been

used in previous studies of TP6EO2M. The first, dcom, is simply the distance between

the centres of mass of two molecules, while the stacking distance, dS, is the distance

between the molecules projected along the average of the vectors normal to the cores

of the two molecules. Using both measures together provides insights into the nature

of the intermolecular stacking; distributions of the two quantities will show different

features depending on, for example, whether there are offsets between adjacent

molecules, or bends in the stack. These quantities were calculated for the TP6EO2M

stack simulated using the atomistic and FM-Q models, and these are plotted in

Figure 5.10. The centres-of-mass of the aromatic cores were used for calculating

distances, for consistency with previous atomistic studies of the system.86,198 The

positions of the first peaks in both distributions are well represented by the FM-N

model; the model gives a dS of 0.370 nm and dcom of 0.380 nm, which compare well

to the atomistic values of 0.365 nm and 0.375 nm. The FM-N distributions do not

have the pronounced tails present in the atomistic distributions, indicating that the

molecules within the stacks are shifted by less relative to their neighbours. The

small second peaks in the atomistic distributions represent bends within the stack

structure, as illustrated in Figure 5.11; these peaks are not present in the FM-Q

distribution. The shifts and bends present in the coarse-grained starting structure
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Figure 5.9: Site-site intermolecular RDFs calculated from a stack of 10 TP6EO2M
molecules, using the FM-Q and atomistic models: a) C-C, b) C-A, c) A-A, d) C-W,
e) A-W and f) W-W distributions.
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Figure 5.10: Distributions of dS (dashed lines) and dcom (solid lines) for a stack of
10 TP6EO2M molecules, calculated using the atomistic and FM-Q models.

Figure 5.11: Starting structure for the atomistic reference simulation, showing
only the cores mapped to a coarse-grained representation. This mapped structure
was used as the starting structure for coarse-grained simulations.
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Figure 5.12: PMFs for the formation of a TP6EO2M dimer, calculated using the
FM-N, FM-Q and FM-QP models.

disappeared within 10 ps of simulation, so this aspect of the structure is not well

represented by the FM-Q model.

Overall, the structural representability of the FM-Q model is not as good as the

the HFM models for the octane/benzene mixtures discussed in Chapter 3. However,

this system is much more structurally complex than an isotropic liquid, so the level

of structural accuracy achieved is still encouraging. In particular, the molecules are

able to form stable stacks with accurate stacking distances, which is an improve-

ment over previous attempts to apply bottom-up coarse graining to chromonic liquid

crystals.203

5.3.3 Thermodynamics

The PMFs calculated using the FM-Q and FM-N models are shown in Figure

5.12. The free energy of association, ∆G, calculated from the FM-Q PMF is −219

kJ mol−1, which is more than 5× the atomistic value. For the FM-N model, ∆G

is −180 kJ mol−1; this is lower than the FM-Q value, but still significantly higher

than the atomistic value. The difference between the two models is consistent with
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the improved face-to-face aggregation in the FM-Q model, but clearly neither model

represents the thermodynamics of the system particularly well.

Since pressure correction was found to help with the representability of free

energy changes in Chapter 3, the linear pressure correction was applied to this

system, using the methodology in Section 3.2.2; the resulting model is called FM-

QP. It should be noted that, while pressure correction was carried out for the 10

molecule stack system, the FM-QP model also represents the pressure of the dimer

system well. However, the PMF calculated using the pressure-corrected was no more

accurate than the non-pressure-corrected PMF; the calculated ∆G was in fact more

negative, at −232 kJ mol−1.

5.3.4 Alternative reference systems

One possible reason for the poor representation of the thermodynamics of dimer

formation in the force-matched models of TP6EO2M system is that there are many

intermolecular orientations which are not sampled by the reference system. This

is important because, in the dimer simulations constrained to higher distances, a

range of different molecular orientations are seen which may not be well described

by the force field. The use of an alternative reference simulation of a mixture

of shorter stacks in solution was tested, where it was hoped that more distances

and orientations would be sampled in the interactions between the stacks. The

starting structure for this reference was 50 monomers dispersed in water, which

were allowed to assemble into short stacks over 20 ns. It should be noted that, at

this concentration, the formation of several longer stack would be expected to occur

eventually,86 so this reference is not sampling the equilibrium of the system.

The HFM model calculated using this reference (referred to as FM-D, see Figure

5.7 for the interaction potentials) was not successful in simulating a long chromonic

stack. Simulations from a dispersed starting structure resulted in a mixture of

monomers and short stacks (similar to the reference simulation), and a pre-assembled

stack broke apart to form an aggregate of two stacks joined by their arms. Com-

paring the FM-Q and FM-D interaction potentials, the FM-D has a less attractive

core-core interaction, but the other interactions have similar strengths. This has the

effect of destabilising face-to-face stacking in favour of other aggregate structures.

It appears that, for the long stack to be stable within a bottom-up coarse-grained
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model, there must be a long stack present in the reference; this highlights the prob-

lem of chemical transferability in bottom-up coarse-graining, particularly where the

system is difficult to simulate atomistically.

For the coarse-grained model to be truly representative of the system, it must

be able to capture even those configurations which are rarely seen. A possible

solution to this could be a multi-state parametrisation, where both a stack and

a dispersed system are used as references. This could be combined with the local-

density potentials discussed in Chapter 4, which in this case could be used as a metric

for whether a molecule is a monomer, at the end of a stack or in the middle of a stack,

and alter the interaction with other molecules accordingly. A related approach has

been used for a hydrophobic polymer, where the LD potential described whether a

particular region of a polymer was part of an aggregate.143

5.3.5 Using clustering algorithms for a coarser water model

One major disadvantage of the HFM model compared with top-down models

is the coarse-grained mapping scheme for the water, which is at a 1-to-1 level.

Water makes up a large proportion of the TP6EO2M system, so this finer mapping

reduces the computational efficiency of the model significantly. The standard centre-

of-mass mapping method used so far in this thesis requires the assignment of atoms

to specific beads, and this assignment does not change over a reference trajectory.

Since molecules which begin in close proximity may move a long distance apart over

the course of a simulation, it is not trivial to map multiple molecules to a coarse-

grained bead. This is not an issue when using top-down methods because, although

the coarse-grained beads still represent specific groups of atoms, there is usually no

need for direct mapping between atomistic and coarse-grained configurations.

If a coarser mapping is required for water (or any other small molecule), the

mapping must instead by carried out on a frame-by-frame basis. The K-Means

algorithm is a clustering algorithm which was applied to frames of an atomistic

trajectory to assign solvent molecules to coarse-grained beads consisting of multiple

molecules.206,207 In this case, it is guaranteed that all molecules belong to a coarse-

grained bead, but not that all beads consist of an equal number of molecules.

K-Means clustering has so far only been applied only to structure-based coarse

graining methods. It was anticipated that the use of force-matching may be more
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problematic for the K-Means algorithm, because the differing compositions of the

beads would result in wildly different forces on each bead when the reference was

mapped to a coarse-grained representation. Nonetheless, the algorithm was tested,

initially on a pure water system, then on the TP6EO2M/water mixture. Two meth-

ods for calculating the forces on the water beads were tried: summing the forces on

the constituent molecules as in standard force-matching (the FM-4S model); and

normalising the summed forces according to the number of water molecules in that

cluster (the FM-4N model). For the FM-4N model, the normalised force on a bead

I was calculated using:

FI =
n∑
i=1

4Fi

n
, (5.4)

where Fi is the total force on water molecule i and n is the number of molecules

mapped to bead I. The force field was then calculated by subtracting the coarse-

grained electrostatics from the total forces, as in the FM-Q model. The resulting

interaction potentials are plotted in Figure 5.13.

In the case of pure water, a good match was achieved between the structure of

the mapped atomistic reference, and the force-matched system, using both force-

calculation methods. In the case of TP6EO2M, however, neither method was able

to achieve good structural representability, as illustrated by the structures in Figure

5.14. These simulations were run from a stacked starting structure, and in both cases

the stack had collapsed within 20 ps of simulation. In the case where the water

forces were calculated simply by summing the reference forces, a vacuum region

formed in the water around the TP6EO2M molecules. Some of the molecules also

contorted into extremely unfavourable configurations (this was confirmed by energy

minimisation of isolated contorted structures, which converged back to a planar

configuration). Clearly the imbalance in the forces across the different beads in this

model has caused significant issues. When the forces were normalised according to

bead composition, the 10 molecule stack collapsed into smaller aggregates with more

complex stacking behaviour.

Although the models discussed here were not successful in simulating chromonic

stacks, the 4-to-1 water mapping does represent a significant computational speed-

up over the 1-to-1 mapping. For the 10 molecule stack, speeds of 104 ns/day on 32

cores were achieved, compared to 26 ns/day on 48 cores for the FM-Q force field.
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Figure 5.13: HFM potentials for the TP6EO2M/water system, for the FM-4S and
FM-4N models. Showing the a) C-C, b) A-A, c) C-A, d) C-W, e) A-W and f) W-W
potentials.

Figure 5.14: Structures after 100 ns simulations using the a) FM-4S and b) FM-4N
models, starting from a 10 molecule TP6EO2M stack.
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Therefore, the problem of how to map multiple water molecules to 1 coarse-grained

bead, with accurate forces, is one which is still worth pursuing. There are two major

issues which must be solved.

Firstly, there is a problem with how to calculate the forces on the coarse-grained

water beads. Simply summing the forces from all of the atoms is problematic because

it results in a large imbalance in the forces on the water beads depending on the

number of molecules which were put into each cluster. However, normalising the

forces for a four-molecule cluster does not necessarily accurately reflect what the

forces on a four-molecule bead at that position would be, and the force calculated

may not be consistent with the forces on other beads which are nearby. Neither is a

significant problem for the pure water system, but for the more complex stack, the

structural representability is affected. The difficulty in mapping the forces on the

water molecules affects the balance between the forces from all of the interactions,

which causes the resulting model to exhibit unphysical behaviour. This problem

may be solved by applying an efficient clustering algorithm which ensures that all

molecules are grouped into equally sized clusters. One method which has been

published is the CUMULUS coarse-graining method, which applies a Monte Carlo

algorithm to assign molecules to beads, although this method does not guarantee

that every molecule in the reference is mapped to a coarse-grained bead.208

The second issue relates to the enthalpy/entropy balance required for chromonic

stacking. The formation of a TP6EO2M stack relies on entropic and enthalpic

contributions of roughly equal magnitude.86 In going from a 1-to-1 to a 4-to-1 water

mapping, the entropy of the water is reduced, which will affect any process with an

entropic driving force. This is true for all coarse-grained models, and the reduced

entropy term is generally balanced by a larger enthalpy term so that the overall

free energy of the system is correct. For a bottom-up model to be successful, it is

important that this is achieved; in this case it is not clear that the entropy lost by

further coarse graining of water is being balanced by an increased enthalpy term.
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5.4 Top-down results

5.4.1 MARTINI 2

Figure 5.15 shows a series of snapshots taken from an initially dispersed system

of TP6EO2M in water, simulated using the MARTINI 2 model. The system spon-

taneously self-assembles over time to form short chromonic stacks, with aggregates

growing through addition of a monomer or merging of two short stacks. If a stack

is pre-assembled and solvated, it is stable for long simulation times (> 100 ns). The

structure of the self-assembled stacks is similar to that observed in the HFM models

discussed above.

Figure 5.15: Snapshots taken from the simulation of the MARTINI model of
TP6EO2M in water at 280 K, showing the central aromatic core of molecules, taken
at a) the start of the simulation and b) 90 ns. The simulation trajectory shows the
spontaneous self-assembly of short chromonic stacks.

Probability distributions for dS and dcom are shown in Figure 5.16. The maximum

of the peak dS for adjacent molecules is 0.440 nm. The distribution for dcom is

slightly shifted, so that the maximum is at 0.445 nm. This reflects the fact that

there is a slight offset between molecules in the stack. This stacking demonstrates

H-aggregation, rather than J-aggregation. The latter would have a larger systematic

offset. As expected, the stacking distances between molecules are close to the contact

distance of the MARTINI non-bonded potentials for the CG-sites. These separations

are the minimum possible for this model due to the size of beads used, but are (of

course) slightly larger than the experimental and atomistic value of ∼ 0.35 nm,

which correspond to the distance of separation for single aromatic carbon atoms.
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Figure 5.16: Probability distributions for the pair distances dcom (solid line), and
dS (dashed line) for a single chromonic stack simulated at 280 K using the MARTINI
2 model for TP6EO2M.
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Figure 5.17: Potential of mean force curve calculated for the separation of a dimer
of two molecules using the MARTINI 2 model.
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The potential of mean force for the separation of a TP6EO2M dimer is given in

Figure 5.17. The PMF has a similar shape to that reported for the atomistic system

by Akinshina et al.,86 with a short range repulsive and a long range attractive part.

The free energy of association, ∆G, for the formation of a dimer can be obtained

from the maximum well depth of the PMF. For this model, ∆G = −73.9 ± 1.5 kJ

mol−1 at a concentration of 1.7× 10−3 mol dm−3, which is higher than the value of

−40.7± 1.4 kJ mol−1 for a PMF obtained for the atomistic system. Therefore, the

MARTINI model provides only semi-quantitative thermodynamic data. The original

MARTINI paper recommends caution when using the force field for systems relying

on the stacking of aromatic groups,32 so the relatively poor accuracy achieved here

is perhaps not surprising.

5.4.2 MARTINI 3

Simulation of the four different MARTINI 3 models for TP6EO2M, from a start-

ing configuration of 10 TP6EO2Mmolecules dispersed in water, reveals very different

behaviour depending on the parameters used for the AI and AO beads. Figure 5.18

shows snapshots taken after 100 ns of simulation for each of the models. The N0

and N0a models both give a 10 molecule chromonic stack in that time frame. The

N1 model gives two shorter chromonic stacks, while the N1a model gives two short

stacks and one monomer.

Simulations of a stack of 10 TP6EO2M molecules were run using each of the

four molecules. Despite the differences in self-assembly, the pre-assembled stack was

found to be stable over 100 ns for all of the models. Figure 5.19 shows distributions of

dcom and dS calculated for the nearest neighbours in the stack. The stacking distances

are all significantly closer to the all-atom value (0.37 nm) than the MARTINI 2 value.

As with the MARTINI 2 model, the dcom values are shifted to higher values compared

to dS, indicating slight offsets between adjacent molecules in the stack. The dcom

distribution has a long tail similar to that found in the atomistic distribution (Figure

5.10), indicating that the MARTINI 3 stacks have a similar degree of flexibility as

the atomistic model. Compared to the MARTINI 2 and HFM models, adjacent

molecules in the MARTINI 3 model are less tightly bound due to the smaller C–C

ε value, and so are more free to move relative to each other. The models do exhibit

some variation in their stacking distance, despite using the same bead type for the
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Figure 5.18: Final configurations from 100 ns simulations of 10 TP6EO2M
molecules in water, using the a) N0, b) N0a, c) N1 and d) N1a models. For clarity,
only the aromatic core beads are shown, and are coloured by molecule.

core. This may be rationalised in terms of solubility; the models with more soluble

A beads have a larger dS, allowing for greater solvation of the hydrophilic arms.

Neither MARTINI model is able to quantitatively match the site–site intermolec-

ular RDFs from the atomistic model, as shown in Figure 5.21. However, MARTINI

3 appears to do better than MARTINI 2 in predicting the positions of the major

peaks in all the RDFs shown. It appears that the introduction of more distinct

particle sizes has helped the representation of local structure within the force field.

The PMFs calculated using the MARTINI 3 models are as shown in Figure

5.20. The ∆G values from these PMFs, for the N0, N1, N0a and N1a models

respectively, are: −46.3 ± 1.5, −36.7 ± 1.5, −42.6 ± 1.5 and −32.4 ± 1.4 kJ mol−1.

These all represent a significant improvement over the MARTINI 2 model, in terms
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Figure 5.19: Distributions of dcom (solid lines) and dS (dotted lines) for each of
the four MARTINI 3 models.

of reproducing the free energy of assocation of a dimer. The differences between

the PMFs are consistent with the behaviour of the models in simulations. The N0

and N0a models have deeper potential wells, and therefore more negative ∆Gs. All

of the PMFs have small bumps, which are larger for the N1 and N1a models; these

can be viewed as small energy barriers to association. These two features can both

be explained in the context of the interaction potentials of the models. As two

TP6EO2M molecules approach each other, they will initially be fully solvated by

water. At a certain distance, there will no longer be sufficient room between the

molecules for all of the beads to be fully solvated, and this will carry a larger energy

penalty for the more water soluble N1 and N1a models. Once the energy barrier

has been overcome, the less soluble N0 and N0a will form a more stable dimer, since

there is less of an energy penalty associated with their arms not being fully solvated.

The MARTINI 3 force field represents a total re-parametrisation of all of the non-

bonded interactions in the MARTINI 2 model, and this has translated to noticeably

different behaviour when the force fields are used in simulations of TP6EO2M. The

MARTINI 3 open-beta documentation highlights improved stacking behaviour of

aromatic molecules as one target for the parametrisation of the new forcefield. The
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Figure 5.20: PMFs for the separation of a TP6EO2M dimer, calculated using the
four MARTINI 3 models.
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Figure 5.21: Site-site intermolecular RDFs calculated from a stack of 10 TP6EO2M
molecules, using the MARTINI 2 and 3 models and compared to the atomistic
results: a) C-C, b) C-A, c) A-A, d) A-W. No atomistic arm-water RDF is shown
due to the difficulty in directly mapping 4 molecules to a single bead.
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Figure 5.22: Simulation snapshot of a dimer using original SAFT-γ Mie model
with unadjusted bond lengths, with the core–core distance constrained at 0.55 nm
during a PMF calculation. Only the aromatic cores are shown.

more accurate stacking distances and free energies calculated by the MARTINI 3

forcefield, when compared to MARTINI 2, suggest that significant improvement has

indeed been achieved. Although the exact strategy used for the re-parametrisation

has not yet been published and is not available, it seems that the main strength

of the new force field is in the accurate parameters for a range of bead-sizes. For

a molecule like TP6EO2M, where smaller mappings are required, the improvement

this brings is clear.

5.4.3 Insights from the SAFT-γ Mie approach

The MARTINI 2 model of TP6EO2M was initally compared to a coarse-grained

forcefield developed using the SAFT-γ Mie approach. The parametrisation and

much of the analysis was carried out by Jos Tasche. Full details can be found in the

original publication, but the main points are summarised below.40

The parametrisation strategy for the TP6EO2M/water model was similar to

that used in Chapter 3 for the octane/benzene mixture, where like-like interactions

from separate models of the different components of the system were combined;

in this case, pre-existing models of benzene98, polyethylene oxide209 and water96

(in this case, a 2-to-1 mapping was used for water). The unlike interactions were

calculated using the standard SAFT mixing rules (see Equations 3.6–3.9), with the

kij parameter fitted to match experimental mixing data. Enthalpies of mixing were

used for the C-A and A-W interactions, and liquid-liquid equilibrium compositions

for the C-W interaction.

The first main finding from this model was that the use of tangential spheres,
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Figure 5.23: The influence of unfavourable cross-interactions on chromonic stack-
ing. Results are shown for the final revised SAFT model with the same bond lengths
as used in the MARTINI model. Up arrows indicate interactions that are less
favourable than mixing rules with kij = 0.2. Equals signs indicate kij = 0. For
the case where pure combining rules are used (kij = 0 for all cross-interactions),
only monomers and transcient self-assembled dimers are seen.

which leads to the same value being used for σ in the Mie potential and r0 in the bond

potential, causes significant issues for structural representability. For TP6EO2M,

this led to a bond length which was too large, allowing unphysical dimer structures

like the one seen in Figure 5.22 to be sampled. Simply altering the bond length to

the one used in the MARTINI model was found to prevent the formation of such

structures; this is not a universal solution to the issue, however, as it would be

expected to cause issues in capturing bulk properties such as density.

Using the SAFT-γ model with fitted unlike interactions, chromonic stacking was

observed. The investigation of a range of different SAFT models using different

kij parameters revealed a wide range of behaviour as shown in Table 5.23, rang-

ing from no aggregation, to chromonic stacks, to aggregation into other structures.

This confirms that association into chromonic stacks is extremely sensitive to the

balance of interactions in the model. In particular, it was shown that the hydropho-

bic/hydrophilic balance of the aromatic and ethylene oxide groups is crucial; this

was also highlighted by the results of the different MARTINI 3 models.
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5.5 Simulating liquid crystal phases with MAR-

TINI 3

5.5.1 Self-assembly

It is always important to rigorously test coarse-grained models on a small system.

However, the point behind coarse-grained modelling is to run larger simulations

which are not easily accessible to atomistic models. Therefore, simulations of larger

systems of aqueous TP6EO2M were carried out. Given that the MARTINI 3 models

outperformed the MARTINI 2 models in terms of structural and thermodynamic

representability, it was decided to use the MARTINI 3 models for these larger scale

simulations.

To test the ability of these models to self-assemble chromonic phases, a large sim-

ulation box was set up containing 1000 TP6EO2M molecules with random positions

and orientations, solvated by 36876 MARTINI water beads; this corresponds to a

concentration of 26.1% by weight, which is in the nematic region of the TP6EO2M

phase diagram at 280 K. An atomistic representation of this system would consist of

580512 atoms, the simulation of which would be not be feasible without very large

computational resources; however, using 72 CPU cores, speeds of around 35 ns per

day were achieved in simulations of the MARTINI 3 model.

These large scale simulations provide further insight into the representability of

the four MARTINI 3 models. All of the models produced chromonic stacks during

the simulations. However, the N0 and N0a models, which performed well in the

small-scale simulations, phase separated, forming distinct liquid TP6EO2M and

water regions. The N1 and N1a models, on the other hand, did not phase separate,

forming long chromonic stacks which were fully solvated in water. Representative

simulation snapshots from the N0 and N1 models are shown in Figure 5.24.

The difference in behaviour between the models can be attributed to the solu-

bility of the beads used for the hydrophilic arms. The N0 and N0a beads are insuf-

ficiently soluble, so that when multiple long stacks are modelled, they preferentially

aggregate together. The higher solubility of the N1 and N1a beads prevents this

from happening. These results highlight the difficulties in parametrising models for

hierarchical systems like chromonic liquid crystals; a model which is representative

at one scale may not perform as well at another scale.
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Figure 5.24: Final configurations after 500 ns of simulation from a starting point
of 1000 TP6EO2M molecules in water, using the a) N0 and b) N1 MARTINI 3
models.
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Figure 5.25: Evolution of Snematic over 500 ns of simulation using the N1 model,
from a randomly dispersed starting configuration of 1000 TP6EO2M molecules in
water.
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Even though the formation of chromonic stacks was observed in the first few

nanoseconds of simulation of the N1 and N1a models, the self-assembly of these

stacks into the nematic phase was not seen over 500 ns of simulation. The evolution

of the nematic order paramer, Snematic, over 500 ns of simulation using the N1 model

is plotted in Figure 5.25. This mirrors the behaviour seen in DPD simulations of

chromonic liquid crystals, where the introduction of a pseudo-magnetic field was

required for the spontaneous formation of the nematic phase.41 In this case, it is

unlikely that simply running the simulation for longer would result in the expected

phase behaviour. Many of the chromonic stacks formed are continuous over periodic

boundary conditions, and are tangled up with other stacks. For the nematic phase to

be formed, these stacks would first need to break and disentangle themselves. Given

the speed with which chromonic stacks are formed, and the high free energy of

association for molecular stacking, it is extremely unlikely that this will be observed

within a reasonable simulation timescale using standard molecular dynamics, even

for a coarse-grained model.

The use of alternative simulation techniques to simulate the formation of the

nematic phase may be required. For example, an aligning field, while not supported

in the Gromacs package, could be used to encourage the formation of the nematic

phase as it was the DPD study.41 Monte Carlo simulations may also help to overcome

the energy barrier associated with breaking up and disentangling stacks which extend

over periodic boundary conditions.

5.5.2 Seeding chromonic columns

Due to the difficulty of achieving spontaneous self-assembly of liquid crystal

phases, the ability of the MARTINI 3 model to represent chromonic liquid crystal

phases was examined by starting from a pre-assembled hexagonal columnar sys-

tem, and then observing the evolution of the system. Starting structures were

constructed by placing 30 columns with 30 TP6EO2M molecules each (for a total

of 900 molecules) in a hexagonal arrangement in a simulation box. These columns

were then solvated with varying amounts of MARTINI 3 water, giving the following

range of TP6EO2M/water concentrations: 27.1, 39.4, 55.8 and 71.4 wt%. All start-

ing structures had the same initial volume, so the volumes of the boxes were allowed

to equilibrate before any data was gathered. A semi-isotropic pressure coupling was
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Figure 5.26: Configurations taken after 200 ns of simulations of the 55.8 wt%
TP6EO2M/water system. a) The N1 model results in clustering of the columns,
while b) the N1a shows the CH phase. Showing only cores (cyan) and arms (red).

Table 5.6: TP6EO2M/water concentrations studied, and their densities, nematic
order parameters and the chromonic phases formed.

Concentration / wt% ρ / kg m−3 Snematic LC phase
27.1 1093 0.914 N
39.4 1129 0.915 N
55.8 1181 0.922 CH

71.4 1238 0.931 CH

used, to allow the cross-section of the nematic phase and the lengths of the columns

to change independently. The system densities equilibrated within 200 ps for all of

the concentrations, and remained stable throughout the simulations; equilibrated

densities are given in Table 5.6. Each system was simulated for a total of 500 ns.

These simulations, of course, have the opposite issue to that faced when attempt-

ing to self-assemble the nematic phase: the phase transition between nematic and

isotropic is unlikely to be computationally accessible. This means that the nematic

or hexagonal phase will be stable over the simulation time-scale, even if the isotropic

phase would be energetically preferred. However, transitions between the hexagonal

and nematic phase are feasible; this means it is possible to study the degree of hexag-

onal ordering present in the system, and how that changes with concentration. The

ability of the model to represent the concentration dependence of the TP6EO2M

phase diagram is an important test of the representability and transferability of the

MARTINI 3 force field in modelling this system.

Running these simulations provided further insights into which bead type best

represents the arm beads. The N1 and N1a models were both tested, and exhibited
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Figure 5.27: Two dimensional g(u, v) from simulations of pre-assembled
TP6EO2M columnar phases at concentrations of a) 27.1, b) 39.4, c) 55.8 and d)
71.4 wt%.

significantly different behaviour. Using the N1 model, there was a tendency for

the stacks to form small clusters attached by the ethylene oxide arms, where the

stacks were not fully solvated. The N1a model did not show this clustering. The

different structures seen for the two models are shown in Figure 5.26 for the 55.8

wt% system. At this concentration, the N1a model shows the CH phase as predicted

by the phase diagram, while the formation of clusters by the N1 model disrupts the

formation of hexagonal structures. The N1 model performed better in simulating

the self-assembly of short stacks and has a free energy of association closer to the

atomistic and experimental values, but when applied to a large system at higher

concentrations it is far less representative.

The N1a model was therefore used for more detailed analysis of the system across

the concentration range. The nematic order parameter, Snematic, was calculated for

each concentration to quantify the orientational order of each system, and the values

are shown in Table 5.6. In each case, Snematic is greater than 0.9, showing long-range

orientational order. The value increases slightly with TP6EO2M concentration;

this is expected, given that increased concentration leads to closer packing of the
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Figure 5.28: Configurations taken after 500 ns of simulations of the N1a model,
starting from pre-assembled columnar structures at a) 27.1, b) 39.4, c) 55.8 and d)
71.4 wt%.

columns.

Two dimensional pair distribution functions were calculated for each system,

and are shown in Figure 5.27, along with the configurations after 500 ns showing

the cross-section of the nematic/hexagonal phase in Figure 5.28. The two lower

concentrations show clear liquid behaviour in two dimensions; combined with the

Snematic values, this indicates the nematic phase. Between 39.4% and 55.8%, there

is a clear transition from liquid-like to hexagonal ordering. This is in line with

the experimental phase diagram in Figure 5.3, although experimentally the 39.4%

system is close to the phase boundary but on the hexagonal columnar side. The

phase boundary is slightly offset between experiment and the simulations, and in

principle, the concentration where phase transition occurs could be narrowed down

by carrying out simulations at some intermediate concentrations.

These simulations are effectively modelling a series of infinitely long stacks. How-

ever, in the real system, self-assembly is quasi-isodesmic (ie. the binding energy is
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the same for the formation of all stack sizes apart from a dimer).86, and the supply

of unstacked monomers is large. This leads to an exponential distribution of stack

sizes, where there is a large number of short stacks and a smaller number of long

stacks.41 Such a system would be difficult to model here due to the issues discussed

in Section 5.5.1 with the rapid formation of infinite stacks. The size of system re-

quired to sample the size distribution well would also likely be higher, increasing

the computational cost of the simulations. A system with a distribution of sizes

might be expected to behave slightly differently. In particular, the presence of short

stacks in the system may disrupt hexagonal packing, resulting in a slightly more

disordered CH phase. Despite this, the results here show that the MARTINI 3 force

field is able to capture the concentration dependence of the TP6EO2M/water phase

diagram reasonably well.

Finally, further refinement of the force field could be beneficial. A model which

is able to model the formation of a chromonic stack, and which is also able to

model liquid crystal phases accurately, would be a definite improvement over the

representability and transferability of the MARTINI 3 models studied here, all of

which are more representative at one scale than the other. This could be done by

testing combinations of existing bead types within the MARTINI 3 framework, or

by reparametrising the interactions so that they represent the system better.

5.6 Conclusions

The parametrisation of coarse-grained models of TP6EO2M brings with it a

number of challanges not present in simpler systems. The behaviour of the system

relies on a very delicate balance between the hydrophobic and hydrophilic parts

of the molecule, which must be captured by a coarse-grained model. Moreover,

within a coarse-grained representation, the coarse-graining procedure changes the

balance between enthalpic and entropic interactions. Coarse-grained water has a

lower gain in entropy, in comparison with real water, when freed from interac-

tion with a chromonic molecule. Consequently, the free energy balance within a

coarse-grained model must be represented by more favourable enthalpic interactions

favouring association.

HFM was used to parametrise a number of coarse-grained models of TP6EO2M,

highlighting a number of issues with the representability of bottom-up coarse grain-
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ing of more complex systems. A model which captures chromonic assembly was

successfully parametrised; however, thermodynamic properties calculated using this

model were not representative of the real system; this perhaps relates to the difficulty

of sampling rarer configurations in an atomistic reference system. The mapping of

multiple solvent molecules to a bead within the HFM framework was also addressed.

However, the models produced did not result in stable chromonic stacks, because

the loss of entropy from the coarser mapping was not balanced by the enthalpic

contribution to the free energy.

The MARTINI force field was also successful in capturing chromonic assembly.

The non-bonded interactions within MARTINI are designed to model the partition-

ing (and hence the transfer free energy) between common solvents. MARTINI is

therefore able to do a reasonably good job of capturing both the overall hydrophilic-

lipophilic balance for a chromonic molecule in water, and the relative hydrophilic-

lipophilic balance between the different parts of the molecule.

The MARTINI 3 simulations have further highlighted the subtle balance of in-

teractions required when modelling liquid crystals. Even a small change in the

solubility of the arm beads in the TP6EO2M model results in qualitatively different

behaviour in simulations. Crucially, these differences may not manifest themselves

in, and cannot be predicted from, the small-scale, low-concentration, simulations

which were carried out validate the models, but are very clear when larger systems

are studied. The key point here is that the results of coarse-grained simulations

must be examined critically at all stages of a study.

Coarse-graining using SAFT-γ also provides insights. Across a small parameter

range for the unlike interactions, one can achieve a range of aggregation behaviour,

with chromonic self-assembly only occurring at the right balance of hydrophilic

and lipophilic interactions for the aromatic and ethylene oxide components. If the

balance of interactions is wrong, the self-assembly process may not be observed

within a reasonable simulation time, either due to a lack of self-assembly, or the

formation of other conglomerates.

Coarse-graining allows for a huge speed-up in observing chromonic assembly,

with savings arising from a faster exploration of phase space in addition to a large

reduction in the number of sites simulated. TP6EO2M reduces from 138 sites to 27

(a factor of ∼ 5× and, in the top-down models, four water molecules (12 sites) reduce

to 1 site. This speed-up has allowed the simulation of larger systems than those
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accessible to atomistic systems to investigate the phase behaviour of TP6OE2M at

a range of concentrations. The MARTINI 3 force field has been used to model the

nematic and hexagonal phases, and the concentrations at which these phases occur

are consistent with the experimental phase diagram. The spontaneous assembly

of these phases was not observed, however, Despite the computational speed-up,

there are still processes which are not easily accessible to systematic coarse-grained

models.

Overall, the top-down and bottom-up models described in this chapter have been

successful in modelling the self-assembly of chromonic stacks. The first simulations

of the chromonic N and CH phases using a systematic coarse-grained model have

also been carried out with the MARTINI 3 force field, showing good agreement

with experimental results. However, there is still room for improvement in both

approaches. The ultimate goal of this work is to be able to predict the phase

behaviour of a liquid crystal molecule using systematic coarse-graining. This would

require addressing the issues described in this chapter, and others, and would be

very valuable to the fields of coarse-grained modelling and liquid crystals.



Chapter 6

Conclusions

6.1 Summary

This thesis has presented an investigation of different methods for parametrising

coarse-grained models for two contrasting chemical systems. Insights have been

obtained about how well these methods are able to produce models which are both

representative and transferable. Each method has its own strengths and weaknesses,

but work is still needed to achieve coarse-grained models which exhibit all of the

desired characteristics.

Chapter 3 presented a comparison between three different coarse graining meth-

ods, hybrid force matching (HFM), iterative Boltzmann inversion (IBI) and SAFT-γ

Mie, applied to liquid octane/benzene mixtures at a range of concentrations. The

models were tested by calculating radial distribution functions (RDFs), densities

at a range of temperatures and concentrations and solvation free energies; these

were all compared to the same quantities calculated for the atomistic system. The

two bottom-up methods, HFM and IBI, were both able to represent the structure

of the underlying atomistic system very well, and after the application of a lin-

ear pressure correction were also shown to be thermodynamically representative.

However, neither technique produced models which were particularly transferable.

The coarse-grained interaction potentials were highly state-point dependent, differ-

ing significantly depending on the concentration at which they were parametrised.

This state-point dependence resulted in poor transferability across both concen-

trations and temperatures, particularly in calculating densities. The poor den-

sity/temperature relationship highlighted the main issue with the linear pressure

140
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correction: it corrects the pressure at one state point, but does not address the

state-point dependence which causes the poor representation of pressure in coarse-

grained models. The top-down SAFT-γ Mie model, by contrast, had good chemical

and temperature transferability, as well as good thermodynamic representability.

However, the structural accuracy was poor, with the model unable to reproduce

atomistic RDFs accurately; this arises from the tangential sphere constraint in the

version of SAFT used in this study.

Chapter 4 built on the results obtained in Chapter 3, and investigated how

the generally poor transferability of bottom-up coarse-grained models may be im-

proved. The MS-IBI methodology was very successful in parametrising a coarse-

grained model of octane/benzene with good transferability across concentrations

without much loss of representability compared to standard IBI. However, even us-

ing MS-IBI with references at multiple temperatures, a temperature transferable

coarse-grained model of octane was not achieved. Coarse-grained pair potentials are

known to be state-point dependent, and this may prevent temperature transferability

in coarse-grained models based on pair potentials without the loss of representability.

Attempts were therefore made to address this by including local-density dependent

interactions in the model. Firstly, a simpler bottom-up model of the octane/benzene

mixture was parametrised based on Morse potentials, using the simplex minimisation

algorithm; this model was structurally representative and chemically transferable, as

well as being very efficient to parametrise. Using these Morse potentials, initial work

to parametrise local density potentials to match pressure was not successful. How-

ever the combination of the simplex approach for pair potentials and local density

dependent potentials to address the state-point dependence of the pair potentials is

one which is worth pursuing in future work.

Chapter 5 went on to investigate a different system: the chromonic liquid crystal

TP6EO2M in water. The feasibility of modelling this system using bottom-up and

top-down coarse-grained models was tested by applying HFM and different versions

of the MARTINI forcefield. Each coarse-grained model was tested by examining its

ability to simulate chromonic self-assembly, the structure of a short chromonic stack

(by calculating RDFs and stacking distances) and the potential of mean force (PMF)

for the formation of a dimer. The first finding for the HFM method was that sepa-

rating electrostatic and VdW interactions in the coarse-grained model significantly

improved the self-assembly behaviour of the model. The HFM model with separate
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electrostatics had fairly good structural representability, capturing the main features

of the atomistic RDFs and showing accurate stacking distances. However, the PMF

showed a free energy of association around five times too large, which highlights the

difficulties in bottom-up models capturing the properties of structures not present

in the reference system. Attempts to use a more computationally efficient mapping

for the HFM model did not result in models which allowed stable chromonic stacks.

The MARTINI models all exhibited chromonic self-assembly. The models using the

MARTINI 3 force field were more structurally and thermodynamically representa-

tive than the MARTINI 2 force field which suggests that significant efforts have

been made in the reparametrisation of the force field. Finally, the MARTINI 3 force

field was applied to a large system to test how well the model captures liquid crystal

phases. The self-assembly of the nematic phase was not observed over the simulation

time scales, partially due to the rapid formation of infinite stacks which extended

over periodic boundary conditions. Simulations from a pre-assembled hexagonal

lattice, however, showed a concentration dependent transition between the nematic

and hexagonal phases, which is in line with the experimental phase diagram.

6.2 Outlook

Overall, the work in this thesis has highlighted a number of open questions in

the field of coarse-grained modelling. It is clear that, while coarse-grained models

are a powerful tool for investigating systems at scales inaccessible to higher reso-

lution models, there are a number of difficulties which can make their application

problematic.

The biggest issue for bottom-up coarse grained models remains their transfer-

ability between state points. This can partially be solved by ensuring that the

references system used represent all of the chemical and configurational space of

interest, perhaps requiring multiple reference trajectories. MS-IBI was shown here,

and in other studies,117,118 to be useful for this purpose. Multiple reference systems

could also be utilised in the force matching method which could, for example, help

improve the HFM model of TP6EO2M by including both stacked and unstacked

reference states. This would in principle allow the orientational dependence of the

interactions between molecules to be captured. Both references would need to be

sufficiently well sampled, but the relative weighting of each state-point would be
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particularly important as it would determine the relative stability of a chromonic

stack.

The larger issue of transferability caused by the state-point dependence of coarse-

grained pair potentials may be solved by the introduction of local density dependent

potentials. Such a potential could act as a pressure correction with more of a basis

in underlying thermodynamics than the linear pressure correction commonly used

in bottom-up coarse graining. Future research efforts should go towards how these

potentials can be efficiently parametrised. This may involve the use of an analytical

form which could be parametrised using the simplex approach used in Chapter 4 for

parametrising Morse pair potentials.

Top-down coarse-grained models generally have good chemical and thermody-

namic transferability compared to bottom-up models because they were parametrised

using data from a range of thermodynamic state points. However, this appears to

come from a trade-off between transferability and structural representability, which

is often poor for top-down models. The SAFT-γ Mie approach currently suffers from

the use of tangential spheres, although the use of shape factors to solve this appears

promising.162 The MARTINI 3 model seems to have improved on the structural

representability of MARTINI 2. When the force field is formally published it should

become clear whether this has come at the cost of transferability of thermodynamic

accuracy compared to the earlier model.

The issue of whether a coarse-grained model can adequately represent the over-

all free energy of a system is fundamental to its representability, since the en-

tropy/enthalpy balance is altered by the coarse graining process. The formation

of complex structures in chemical systems often arises from both enthalpic and en-

tropic contributions, and so addressing this issue is required for a coarse-grained

model to be successful. Top-down models which are parametrised to match experi-

mental free energies, such as the MARTINI force field,32 are therefore usually able

to model complex structures with at least qualitative accuracy. This is not always

the case with bottom-up coarse graining, particularly when coarser mappings are

used.

Finally, it is worth discussing how much of an advantage is gained by coarse-

grained modelling in terms of speed-up. Running a coarse-grained simulation is

undeniably faster than running an atomistic simulation of the same length and

system size, both due to the reduction in the number of particles and the more
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efficient equilibration and sampling of phase space. This advantage is of course

dependent on the level of coarse graining, and the complexity of the interactions

used in the model. However, the time taken to actually parametrise a coarse-grained

model has not been discussed. This issue particularly applies to bottom-up coarse

graining, where the parametrisation is often very lengthy. Of course, if a system

cannot be modelled atomistically then the time spent parametrising a good coarse-

grained model is still worth it. However, bottom-up coarse graining is still at a

massive disadvantage compared to, for example, the MARTINI model, where the

coarse graining process is often much faster. The time spent parametrising a bottom-

up model for one system could alternatively be spent modelling multiple systems

using a MARTINI approach. Therefore, the speed of parametrisation, the speed

of the models and their relative accuracies must all be taken into account when

choosing a model to use.

Coarse-grained modelling has already been used to provide insights into the

behaviour of systems which cannot be easily modelled using other methods. Solving

the issues presented in this thesis will therefore be extremely valuable, allowing

for more trustworthy results from coarse-grained simulations. Ultimately, coarse-

grained models fill an important niche between atomistic and mesoscale models,

and so will become a more valuable tool all across soft matter science.
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