
FLEXIBLE HIGH

PERFORMANCE AGENT

BASED MODELLING ON

GRAPHICS CARD

HARDWARE

by

Paul Andrew Richmond

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy at

the University of Sheffield

Department of Computer Science

February 2010

Abstract

Agent Based Modelling is a technique for computational simulation of complex

interacting systems, through the specification of the behaviour of a number of

autonomous individuals acting simultaneously. This is a bottom up approach, in

contrast with the top down one of modelling the behaviour of the whole system

through dynamic mathematical equations. The focus on individuals is considerably

more computationally demanding, but provides a natural and flexible environment for

studying systems demonstrating emergent behaviour. Despite the obvious parallelism,

traditionally frameworks for Agent Based Modelling fail to exploit this and are often

based on highly serialised mobile discrete agents. Such an approach has serious

implications, placing stringent limitations on both the scale of models and the speed at

which they may be simulated. Serial simulation frameworks are also unable to exploit

multiple processor architectures which have become essential in improving overall

processing speed.

This thesis demonstrates that it is possible to use the parallelism of graphics card

hardware as a mechanism for high performance Agent Based Modelling. Such an

approach is in contrast with alternative high performance architectures, such as

distributed grids and specialist computing clusters, and is considerably more cost

effective. The use of consumer hardware makes the techniques described available to

a wide range of users, and the use of automatically generated simulation code

abstracts the process of mapping algorithms to the specialist hardware. This approach

avoids the steep learning curve associated with the graphics card hardware's data

parallel architecture, which has previously limited the uptake of this emerging

technology. The performance and flexibility of this approach are considered through

the use of benchmarking and case studies. The resulting speedup and locality of agent

data within the graphics processor also allow real time visualisation of

computationally and demanding high population models.

Declaration

The work presented in this thesis is original work undertaken between September

2006 and September 2009 at the University of Sheffield. Some of this work has been

published elsewhere:

• Richmond Paul, Walker Dawn, Coakley Simon, Romano Daniela (2010),

"Parallel Cellular Level Agent Based Modelling with FLAME", Invited

Submission for Publication in the special issue: "Parallel and Ubiquitous

methods and tools in Systems Biology" of the international journal: Briefings

in Bioinformatics (under review).

• Richmond Paul, Coakley Simon, Romano Daniela (2009), "Cellular Level

Agent Based Modelling on the Graphics Processing Unit", To appear in Proc.

of HiBi09 - High Performance Computational Systems Biology, 14-16

October 2009,Trento, Italy

• Romano Daniela, Lomax Lawrence, Richmond Paul (2009), "NARCSim An

Agent-Based Illegal Drug Market Simulation", Proc. of The International

IEEE Consumer Electronics Society's Games Innovations Conference 2009

(lCE-GIC 09), London in UK, 25th-28th August 2009

• Richmond Paul, Coakley Simon, Romano Daniela (2009), "A High

Performance Agent Based Modelling Framework on Graphics Card Hardware

with CUDA", Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent

Systems (AAMAS 2009), May, 10-15,2009, Budapest, Hungary

• Richmond Paul, Romano Daniela (2008), "A High Performance Framework

For Agent Based Pedestrian Dynamics On GPU Hardware", Proceedings of

EUROSIS ESM 2008 (European Simulation and Modelling), October 27-29,

2008, Universite du Havre, Le Havre, France

• Richmond Paul, Romano Daniela (2008), "Agent Based GPU, a Real-time 3D

Simulation and Interactive Visualisation Framework for Massive Agent Based

Modelling on the GPU", Proceedings of International Workshop on

Supervisualisation 2008 (IWSV08), Part of ICS08, Kos Island, Greece. June

2008.

11

As a result of preliminary work into automatic city generation, the PhD process has

also resulted in the following publication which falls outside the scope of the final

thesis.

• Richmond Paul, Romano Daniela (2007), "Automatic Generation of

Residential Areas using GeoDemographics", 2nd International Workshop on

3D Geo-Information: Requirements, Acquisition, Modelling, Analysis,

Visualisation

iii

Acknowledgements
The work within this thesis would not have been possible without the help and

support of other people. I particularly like to thank;

• My supervisor Dr Daniela Romano who offered support and guidance as well

as encouraging me towards a career in academia with help and advise in

completing this thesis work and achieving my Fellowship awards.

• My internal PhD panel comprising of Dr Steve Maddock and Mike Holcombe

whose expertise no doubt guided me towards my chosen topic.

• The computer graphics research group and systems biology group who have

provided feedback on my work through informal discussion and research

seminars. I would particularly like to thank Dr Simon Coakley and Dr Dawn

Walker who have always made themselves available to discuss issues

regarding both FLAME and cellular biology. I would also like to thank Mark

Burkitt for testing FLAME GPU during early releases, where he highlighted a

number of issues and bugs.

• The Royal Academy for my Student Development Research Fellowship which

has been particularly generous in offering financial support, allowing me to

travel internationally and encouraging me take part in schools outreach

activities. Also ESPRC who have offered me a Fellowship position and more

importantly a focus to complete my thesis on time.

• Anyone who has been involved directly and indirectly with providing outreach

activities. In particularly, Ed Morgan, Lewis Gill, Duncan Payne and Twin

Karmakharm. Thanks also to Mick Humble with help fixing the PCs in the

Reflex lab on a regular basis.

• My parents Steve and Anne Richmond who have kindly provided much

needed proof reading.

• Rankin Barr and Chris Garret from the former Lincolnshire Drugs and

Alcohol Action Team (DAA T) for their input into the original PhD brief and

for providing the sponsorship for this EPSRC case funded PhD.

• My dog Sparkey and the guys from Sheffield Steelies football team for

ensuring I remained physically active and offering the opportunity to leave my

desk once in a while.

iv

• Finally my girlfriend Shelley Hughes who has provided proof reading of both

this thesis and research papers throughout the last 3 years. More importantly,

she has offered unquestionable support throughout the more difficult times of

the PhD process, and without her encouragement I would most likely have

given up on my research long ago.

v

Contents

CHAPTER 1

INTRODUCTION .. 1

1.1 CONTRIBUTION TO KNOWLEDGE .. 3

1.2 OUTLINE OF THE THESIS .. 4

CHAPTER 2

BACKG RO UNO ... 6

2.1

2. I. I

2.1.2

2.1.3

2.1.4

2. /.5

2.1.6

2. /. 7

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.3

AGENT BASED MODELLING ... '" ... 6

Equation Based vs. Agent Based Modelling 6

Origins of Agent Base Modelling 7

Swarm Modelling ... 8

Applications of Agent Based Modelling in Systems Biology 9

Object Orientated Agent Representation. 9

Formal Modelling of Agent Based Systems 11

Agent Based Modelling with the X-Machine 12

GRAPHICS PROCESSING UNITS ... 14

The Graphics Pipeline 14

Evolution of the GPu. .. 17

Graphics A PIs and GPU Programming ... 18

The GPU Programming Model .. 19

Traditional General Purpose GPU Programming 20

GPGPU Programming Languages 2 I

CUDA Architecture and Programming Mode!.. 22

The Future of Data Parallel Programming , 24

COMMUNICATING SYSTEMS ON THE GPU .. 25

2.3.1 Particle Systems 25

2.3.2 Lattice Based Communication Methods 26

2.3.3 Smoothed Particle Hydrodynamics 27

2.3.4 Continuum Methodsfor Pedestrian Modelling on the GPu. 28

2.3.5 Spatial Partitioning and GPU Sorting .. 29

2.3.6 N-Forces Interactions 31

2.3. 7 Real Time Agent Based Models on the GPU 33

2.4 SUMMARY .. 35

CHAPTER 3

vi

GPGPU SWARM MODELLING .. 36

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.3

3.4

IMPLEMENTING AGENT BASED GPU .. 37

Agents and Data Mapping. 37

Specifying a Simulation using ABGPU API 38

Scripting Agent Behaviour ... 40

Agent Communication .. 41

Visualising Agents 44

CASE STUDIES .. 48

Implementing the Boids Model in ABGPU 48

Evaluation of the Boids Model ... 49

Agent Based Pedestrian Dynamics in ABGPU .. 51

Evaluation of ABGPU for Pedestrian Dynamics ... 56

DISCUSSION .. 58

SUMMARY .. 59

CHAPTER 4

FLEXIBLE ABM FOR THE GPU ... 60

4.1 THE FLAME FRAMEWORK ... 61

4.1.1 High Peiformance Computing and FLAME .. 62

4.1.2 The Limitations of FLAME 64

4.2 AN EXTENDIBLE X-MACHINE AGENT SPECIFICATION ... 66

4.2.1 Object Orientation within XML Schema ... 66

4.2.2 XML Schema Designfor Extendible SChemas ... 67

4.2.3 Extending the XMML Schema .. 68

4.2.4

4.3

Extensions within GPUXMML ... 71

FLAME GPU CODE GENERATION ... 72

4.3.1 XSLTTemplates 73

4.3.2 Conversion of old FLAME models to the GPUXMML Schema 75

4.3.3 Building Simulation Code .. 77

4.4 SUMMARy .. 78

CHAPTERS

IMPLEMENTING FLAME GPU .. 80

5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

IMPLEMENTING FLAMEGPU WITH CUDA .. 81

Efficient Agent Data Storage and Access 82

Birth and Death Allocation 83

Agent States 86

Conditional Functions 87

Global Variables and Initialisation Functions .. 88

Global Conditions and Non Linear Modelling .. 90

VII

5.1.7 Random Number Generation " , 90

5,1,8 Agent Visualisation 91

5.2 AGENT COMMUNICATION .. 92

5,2.1 Brute Force Message Communication .. 93

5.2.2 Limited Range Communication" , ... , ... " .. , , ... , 95

5.2.3 Non Mobile Discrete Agents " .. 98

5.3 SUMMARY .. 102

CHAPTER 6

EVALUATING FLAME GPU ... 103

6.1 BENCHMARKING ... 104

6.1.1 Evaluation of Brute Force Messaging ... 104

6.1.2 Evaluation of Limited Range Communication 109

6.1.3 Evaluating Non Mobile Discrete Agent Communication ... 112

6.2 CELLULAR LEVEL TISSUE MODELLING .. 115

6.2.1 The Keratinocyte ModeJ. " , " .. , " 116

6.2.2 Parallel Force Resolution , 117

6.2,3 Simulation Performance , , , ... , , , 119

6.2.4 Discussion , , , ... 122

6.3 SIMULATING MOBILE DISCRETE AGENTS ... 123

6.3.1 The Sugarscape Modei.. "., ... " .. ,', ... , ... , " ,., ... " ,' .. , " , ... , 124

6.3.2 Simulating SugarScape with CA ... 124

6.3.3 Simulation Performance , , ... 126

6.3.4 Discussion , , , , , ... 128

6.4 SUMMARY .. 129

CHAPTER 7

CONCLUSiON ..••••...••••••••••••.•..•......•........•••••.......................•••••..........••••..••......••..•••.••.....••...••••••• 130

7.1 LIMITATIONS AND FUTURE WORK ... 131

7.2 LAST WORDS .. 132

APPENDIXA.

FLAME GPU XMML SCHEMAS ... 134

A.I XMML BASE SCHEMA ... 134

A.2 GPUXMML SCHEMA .. 139

APPENDIX B.

KERATINOCYTE CASE STUDY MODEL ... 144

B.l GPUXMML MODEL SPECIFICA nON ... 144

B.2 AGENT FUNCTION SIMULA nON CODE ... 151

viii

APPENDIX C.

MOBILE DISCRETE CASE STUDY MODEL .. 164

C.l GPUXMML MODEL SPECIFICATION ... 164

C.2 AGENT FUNCTION SIMULATION CODE ... 168

REFERENCES ... 173

IX

List of Figures

FIGURE 1 - PEAK PERFORMANCE OF NVIDIA GPU HARDW ARE (RED) VS. INTEL CPU HARDWARE

(BLUE) .. 3

FIGURE 2 - THE DIRECTX 10 (SHADER MODEL 4) GRAPHICS PIPELINE.. ... 15

FIGURE 3 - THE CUDA ARCHITECTURE HARDWARE MODEL .. 23

FIGURE 4 - THE MAPPING OF AN AGENT SPECIFICATION INTO AGENT SPACE AT POSITION 'I, J' 38

FIGURE 5 - A SIMPLE AGENT SCRIPT USING ABGPU SCRIPTING ... 41

FIGURE 6 - AN EXAMPLE OF A 20 PARTITIONED SPACE (GRAY) CONTAINING SORTED AGENTS (BLACK). 42

FIGURE 7 - RENDER PASSES AND DATA BINDINGS FOR A SINGLE UPDATE STEP OF ABGPU 44

FIGURE 8 - 65,536 INTERACTING FISH AT 30 FRAMES PER SECOND45

FIGURE 9 - A POPULATION OF 16,384 FISH AGENTS RENDERED WITH THE LOD SYSTEM 47

FIGURE 10-65,000 FULLY INTERACTING AGENT BASED PEDESTRIANS RENDERED BY LODLEVEL. 47

FIGURE 11 - RECORDED PERFORMANCE OF VARIOUS COMMUN ICATION RADII 50

FIGURE 12 - 16,384 AGENTS WITH A MAXIMUM DETAIL LEVEL OF 1,500 POL YGONS RENDERED AT OVER

30 FPS ... 51

FIGURE 13 - A FORCE MAP ENCODED INTO THE RED AND GREEN CHANNEL OF AN IMAGE,

REPRESENTATIONAL OF SHEFFIELD PEACE GARDENS ... 54

FIGURE 14 - SATELLITE IMAGERY OF SHEFFIELD PEACE GARDENS (LEFT) AND THE ABGPU SIMULATION

(RIGHT) ... 54

FIGURE 15 - A SIMPLE ILLUSTRATIVE ZONED ENVIRONMENT ENCODED INTO AN IMAGE, WITH

CORRESPONDING DATA TABLES ... 55

FIGURE 16 - ZONING AROUND A CONGESTION POINT WHERE BLACK TO WHITE BOUNDARIES REPRESENT

WALLS ... 55

FIGURE 17 - PEDESTRIAN VISION COMPARED TO PEDESTRIAN LOOKUPS AND INTER-AGENT

COMMUNICATIONS ... 57

FIGURE 18 - SIMULATION AND RENDERING PERFORMANCE FOR PRIMITIVE AGENTS WITH 4M AND 32M

VISION ... 57

FIGURE 19 - SIMULATION AND RENDERING PERFORMANCE FOR ADVANCED PEDESTRIAN RENDERING AT

VARIOUS DETAIL LEVELS .. 58

FIGURE 20 - THE FLAME SIMULATION PROCESS .. 62

FIGURE 21 : THE PERFORMANCE OF THE CIRCLES FORCE RESOLUTION MODEL ON A NUMBER OF

COMPUTING CLUSTERS USED FOR BENCHMARKING ... 64

FIGURE 22 - THE FLAME GPU SIMULATION PROCESS ... 78

FIGURE 23 - ARRAY OF STRUCTURE (AoS) VS. STRUCTURE OF ARRAY (SoA) DAT A STORAGE OF AN

AGENT STRUCTURE ... 83

FIGURE 24- A MIXED STATE AGENT LIST EXECUTING AN AGENT FUNCTION ... 87

FIGURE 25 - EVALlJATION OF AN AGENT FUNCTION USING UNIQUE STATE LISTS AND A WORKING LIST .• 88

X

FIGURE 26 - MESSAGE GROUP LOADING WHEN REQUESTING THE FIRST AND NEXT MESSAGE 94

FIGURE 27 - PSEUDOCODE OF THE MESSAGE ITERATION ALGORITHM USED FOR LOADING THE NEXT

AVAILABLE MESSAGE ... 95

FIGURE 28 - PSEUDOCODE ALGORITHM FOR SPATIAL MESSAGE LOADING ... 98

FIGURE 29 - THE LOADING OF MESSAGES INTO SHARED MEMORY FOR NON MOBILE DISCRETE AGENTS .. 99

FIGURE 30 - THE MESSAGE LOAD STEPS AND CORRESPONDING MESSAGE LOADS FOR EACH THREAD

CORRESPONDING TO FIGURE 29 ... 100

FIGURE 31 - THE LOADING OF MESSAGES INTO SHARED MEMORY FOR A SINGLE THREAD BLOCK WITH A

MESSAGE RANGE OF 2 ... 101

FIGURE 32 - PERFORMANCE OF THE CIRCLES MODEL USING BRUTE FORCE MESSAGE ITERATION WITH

VARIOUS OPTIMISATIONS ENABLED ... 105

FIGURE 33 - PERFORMANCE OF THE CIRCLES MODEL AT VARIOUS THREAD BLOCK AND POPULATION

SIZES ... 107

FIGURE 34 - DISTRIBUTION OF PROCESSING TIME FOR THE CIRCLES MODEL USING BRUTE FORCE

MESSAGE ITERATION .. 108

FIGURE 35 - BREAKDOWN OF WHERE GPU TIME IS SPENT DURING SIMULATION OF THE CIRCLES MODEL

USING LIMITED RANGE MESSAGE ITERATION AT VARIOUS POPULATION SIZES 110

FIGURE 36 - PERFORMANCE TIMES DEMONSTRATING THE EFFECT OF THE TEXTURE CACHE FOR THE

INPUTDATA FUNCTION OF THE CIRCLES MODEL USING LIMITED RANGE MESSAGE ITERATION III

FIGURE 37 - A VISUALISATION OF THE GAME OF LIFE MODEL IMPLEMENTED USING NON MOBILE

DISCRETE AGENTS .. 112

FIGURE 38 - READING OR WRITING OF MESSAGES FROM SHARED MEMORY WITH BLOCK SIZES OF 256 AND

64 .. 113

FIGURE 39 - PROPOSED PADDING TO AVOID SHARED MEMORY BANK CONFLICTS FOR A 2D THREAD

BLOCK OF 64 THREADS ... 114

FIGURE 40 - PERFORMANCE OF THE SHARED MEMORY AND TEXTURE BASED MESSAGE ITERATION OF

DISCRETE AGENT MESSAGES AT A BLOCK SIZE OF 64 AND 256 .. 115

FIGURE 41 - NON LINEAR SIMULATION IN THE KERATINOCYTE MODEL SHOWING A SEPARATE FORCE

RESOLUTION PATH .. 119

FIGURE 42 - RELATIVE PERFORMANCE OF THE KERA TINOCYTE MODEL (LOGARITHMIC SCALE) 120

FIGURE 43 - TIMING OF SIMULATION AND FORCE RESOLUTION STEPS DURING SCRATCH WOULD

SIMULATION ... 121

FIGURE 44 -POPULATION SIZE AND POTENTIAL IDLE BLOCKS WITH RESPECT TO THE ITERATION NUMBER

... 122

FIGURE 45 - KERA TINOCYTE SCRATCH WOUND MODEL AT ITERATION 0 AND 1500 RENDERED AS

SPHERES .. 122

FIGURE 46 - FUNCTION ORDER OF THE SUGARSCAPE MODEL DEMONSTRATING A GLOBAL FUNCTION

CONDITION USED TO BYPASS THE FIRST AGENT FUNCTION IF THE POPULATION CONTAINS ANY

UNRESOLVED AGENTS ... 126

XI

FIGURE 47 - SIMULATION STEP PERFORMANCE (BLUE) AND NUMBER OF FULLY RESOL VED SIMULA TION

STEPS (PINK) OVER A 100 ITERATION SIMULATION ... 127

FIGURE 48 - FREQUENCY OF THE NUMBER OF MOVEMENT RESOLUTION STEPS REQUIRED PER FULLY

RESOL VED SIMULATION STEP MEASURED OVER 500 ITERA nONS WITH OVER A MILLION CELLS ... 128

XII

List of Tables

TABLE 1 - COMPARISON ON OBJECT ORIENTATED ABM PLATFORMS .. 10

TABLE 2 - CONTRASTING XML SCHEMA DESIGN METHODOLOGIES ... 68

TABLE 3 - KEYS AND RELATIONSHIPS WITHIN THE GPUXMML SCHEMA .. 72

TABLE 4 - BASE XMML AND GPUXMML ELEMENT ADDlTlONS OVER THE ORIGINAL FLAME XMML

DTD .. 76

TABLE 5 -MEMORY BANKCONFLlCTS WHEN ACCESSING MESSAGE DATA FROM AN ARRAY IN SHARED

MEMORY ... 106

TABLE 6 - OcCUPANCY OF VARIOUS THREAD BLOCK SIZES FOR THE CIRCLES INPUTDATA FUNCTION

USING BRUTE FORCE MESSAGE ITERATION ... 109

TABLE 7 - PERFORMANCE TIMES FOR THE CIRCLES MODEL USING LIMITED RANGE MESSAGE ITERATION

AT VARIOUS THREAD BLOCK SIZES .. 109

TABLE 8 -PERFORMANCE OF THE GAME OF LIFE MODEL AT TWO BLOCK SIZES USING BOTH THE SHARED

MEMORY AND TEXTURE BASED METHODS .. 113

TABLE 9 - AGENT FUNCTIONS USED WITHIN THE KERATINOCYTE COLONY MODEL. 117

TABLE 10 - PERFORMANCE OF THE SUGARSCAPE MODEL AT VARIOUS GRID/POPULATION SIZES 126

xiii

List of Abbreviations

AB - Agent Based

ABGPU - Agent Based GPU

ABM - Agent Based Modelling

API - Application Programming Interface

CA - Cellular Automaton

CAL - Compute Abstraction Layer

CPU - Central Processing Unit

CTM - Close to the Metal

CUDA - Compute Unified Device Architecture

CUDPP - CUDA Parallel Primitives Library

DRAM - Dynamic Random Access Memory

DTD - Document Type Definition

EBM - Equation Based Models

EIB - Element Interconnect Bus

FBO - Frame Buffer Object

FLAME - FLexible Agent Modelling Environment

FLAME GPU - FLAME for the GPU

FPS - Frames Per Second

FSM - Finite State Machine

GFLOPS - Giga Floating Point Operations Per Second

GLSL - OpenGL Shading Language

GPGPU - Purpose computation on the GPU

GPU - Graphics Processing Unit

GPUXMML - A GPU extension ofXMML

HLSL - High Level Shader Language

HPC - High Performance Computing

10 - Input Output

LOD - Level of Detail

MAS - Multi Agent System

MPI - Message Passing Interface

xiv

MRT - Multiple Render Target

ODE - Ordinary Differential Equation

00 - Object Orientated

OOP - Object Orientated Programming

OS - Operating System

PDE - Partial Differential Equation

RAM - Random Access Memory

RGBA - Red Green Blue Alpha

SDK - Software Development Kit

SIMD - Single Instruction Multiple Data

SPH - Smoothed Particle Hydrodynamics

SPMD - Single Program Multiple Data

SPU - Synergistic Processing Unit

SQL - Structured Query Language

SXM - Stream X- Machine

TBO - Texture Buffer Object

UML - Unified Modelling Language

VBO - Vertex Buffer Object

XMDL - X-Machine Description Language

XMML - X-Machine Mark-up Language

XSL T - Extensible Style sheet Transformations

xv

I. INTRODUCTION

Chapter 1

Introduction

Agent Based Modelling (ABM) is a powerful simulation technique used to assess and

predict group behaviour from a number of simple interacting rules between

communicating autonomous agents. Traditional ABM toolkits are primarily aimed at

a single CPU architecture, with an inherent lack of parallelism as a result of the design

methodologies and choice of programming language. This has serious implications

with regards to the scale of models that can be simulated, as well as suitability of such

frameworks to exploit multi-core architectures. ABM methods specifically targeting

parallelism have taken a task-parallel approach, aimed at high performance computing

(HPC) architectures, such as processing clusters or grids. Such specialist hardware is

generally expensive and unavailable to the majority of Agent Based (AB) modellers.

The Graphics Processing Unit (GPU), which is primarily designed to stream

graphics primitives through a rendering pipeline, is a massively parallel device

offering the potential for cost-effective supercomputing. The performance advantages

of utilising the GPU are only realised by considering the hardware's performance in

contrast with that of the CPU (Figure I). Unlike more generic and flexible CPUs, the

GPU's architecture is task specific, making it highly optimised for data parallel

programming applications. Technically, the GPU not only exceeds the transistor count

of modern CPUs, but a significantly higher portion of transistors are available for data

1. INTRODUCTION 2

processing, rather than data caching and flow control. In addition, the GPUs memory

bandwidth exceeds that of system memory bandwidth by roughly a factor of 10. In the

past General Purpose computation on the GPU or (GPGPU) has focused on utilising

graphics libraries to exploit the data parallel architecture. More recently, GPGPU

computing has benefited from the introduction of improved programming interfaces

implemented by hardware vendors, making the architecture more accessible. Despite

this, major performance gains are often achieved only through careful optimisation,

requiring advanced knowledge of the hardware's capabilities and optimal operating

conditions. As a result of the difficulty of programming GPU devices, the uptake of

this parallel hardware architecture has had a relatively low impact on the field of

ABM. The few examples of ABM on the GPU are limited to specific examples of

discrete models or swarm systems.

The work within this thesis addresses the performance and architecture limitations

of previous work by presenting a flexible framework approach to ABM on the GPU.

The aim of this thesis is to provide a technique that allows modellers to harness

parallelism and the power of the GPU, without requiring background knowledge of

parallelism or the hardware.

The advantages of this work include a method for high performance ABM using

consumer hardware. Performance rates equalling, or bettering that of HPC clusters

can easily be achieved, with obvious cost to performance benefits. Massive

population sizes can be simulated, far exceeding those that can be computed (in

reasonable time constraints) within traditional ABM toolkits. The use of data parallel

methods ensures that the techniques used within this thesis are applicable to emerging

multi-core and data parallel architectures that will continue to increase their level of

parallelism to improve performance. Finally the use of the GPU allows AB models to

be visualised in real time, which further widens the application of ABM to real-time

simulations. This is the result of both the speedup achieved and the avoidance of

transfer bandwidth costs by maintaining model data on the GPU device.

1. INTRODUCTION

1 000 --+- NVIDIA GPU
--+- Intel CPU

VI 750 -c..
a
.....J

~ 500
.;:,t.
ra
& 250

NV30

o
2003 2004

G70

3GHz Duo

2005 2006 2007

3.2 GHz
Harpertown

2008

3

Figure 1 - Peak Performance ofNV1DlA CPU Hardware (Red) vs. Intel CPU Hardware (Blue).

Data from INVI071

1.1 Contribution to Know/edge

This thesis explores the potential of consumer GPU processors as a technique for

flexible ABM. More specifically the novel contributions of this thesis are as follows:

• Agent Based GPU (ABGPU), a technique for high performance swarm

modelling (ABGPU) is presented. This automatically maps agents and

behaviour to computer graphics APIs, abstracting the process of GPU

programming. This is demonstrated with the simulation of flocking and

pedestrian dynamics with real time rendering of agents.

• The conceptualization, implementation and testing of FLAME GPU, a

FLexible Agent Modelling Environment (FLAME2) inspired ABM framework

that allows simulation of a wide range of general AB models through high

performance parallel computation on the GPU.

In particular FLAME GPU introduces the following novel techniques:

• A flexible technique for Object Oriented extension of a formal specification

mark up language within FLAME GPU. A robust templating system, which

complements this ensures syntax validation of model spec ifications.

I www.flamegpu.com
2 www.flame.com

1. INTRODUCTION 4

• Non mobile discrete system support to FLAME GPU. It is subsequently

demonstrated that can be used to efficiently simulate mobile discrete systems.

• The concept of a global function condition is introduced into the underlying

X-Machine representation of FLAME GPU. This is used to achieve non linear

simulations steps and is shown to be suitable for parallelising high accuracy

recursive force resolution and resolving conflict within mobile discrete agent

systems.

• The real time visualisation of FLAME GPU models including a complex

cellular level systems biology model which was previously inconceivable and

required otlline computation taking several hours.

1.2 Outline of the Thesis

Chapter 2

Chapter 2 provides background literature on ABM with emphasis on top down

equation based alternatives and the techniques which are used for AB specification.

The GPU is introduced, as are techniques for harnessing the GPU's parallel

processing power for general purpose use. The languages and techniques for GPU

programming, which are used within this thesis are also introduced. The

implementations of work on the GPU which have agent based functionality are

reviewed. These mostly consists of particle systems with a degree of communication

or interaction, however techniques for discrete agent and pedestrian dynamics

modelling are also discussed.

Chapter 3

Chapter 3 considers the use of traditional GPGPU techniques to implement a high

performance swarm based library for the GPU. It describes a process where agents

can be mapped to the GPU and a parallel communication algorithm, which allows

agents to communicate across spatial partitions. The result of this is an architecture

allowing massive and scalable models which, by avoiding any slow transfer

bottlenecks, are able to demonstrate incredibly high performance. The library is

demonstrated through the implementation of a flocking algorithm and a model of

pedestrian behaviour. Both implementations make use of real time feedback routines

1. INTRODUCTION 5

to implement a Level of Detail (LOD) rendering system. This allows high fidelity

visualisation at interactive rates.

Chapter 4

Chapter 4 describes a more flexible architecture for ABM on the GPU. This extends

an existing template based framework based upon formal specification techniques. A

method for flexible and extendible specification is presented, as is an improved

templating system. The process of converting models from the original framework is

also discussed.

Chapter 5

Chapter 5 describes the implementation of the flexible ABM framework described in

the previous chapter. The implementation of various ABM aspects such as data

storage, birth and death allocation, agent heterogeneity, visualisation and

communication are described. Communication is further broken down into three

differing patterns, which are optimised in each case to provide maximum performance

depending on the type of model which is being implemented.

Chapter 6

Chapter 6 evaluates the performance of the flexible agent framework described in the

two proceeding chapters. A performance evaluation between the use of the FLAME

framework for the CPU, HPC and FLAME GPU is presented using a benchmarking

model. It is demonstrated that FLAME GPU can outperform FLAME on any other

architecture. This is validated through the implementation of a more complex cellular

systems biology model which shows a massive performance improvement.

Chapter 7

Chapter 7 concludes the main body of the thesis giving suggestions for future work.

2. BACKGROUND 6

Chapter 2

Background

This chapter is divided into three sections which introduce ABM, the GPU and

examples of agent like systems on the GPU.

2. 1 Agent Based Modelling

This ftrst section reviews background material relating to ABM. The origins and

history of ABM are reviewed, together with the origin of swarm systems and the use

of ABM within biology. The specification of AB systems is discussed, with emphasis

on the use of both objected orientated and more formal techniques for systems

specification. Existing ABM frameworks are also reviewed as is the use of the X­

Machine for AB specification.

2.1.1 Equation Based vs. Agent Based Modelling

Top-down modelling involves representing observed system behaviour with Equation

Based Models (EBM), such as differential equations (either ODE's over time or

PDE's over time and space) [DSR98]. In such systems, observables represent

2. BACKGROUND 7

changeable quantities, such as population sizes or concentrations of a particular entity.

Models are often designed to match real world observations and then used to make

predictions or a hypothesis of the system under differing conditions. Often such

predictions can be validated through observation or experimentation in the real world.

Despite the advantages for macroscopic simulation, EBM offers little insight into the

micro level behaviour of the individual interactions within the system. Where global

observations are made, these represent average values and assume homogeneity and

perfect mixing of system components. As a result, important low level details of the

system may be simply ignored.

By contrast, ABM utilises a bottom up approach to simulation that does not

explicitly attempt to model aggregate characteristics of a system. As with Multi-Agent

Systems (MAS), AB models can be described as a "system of interacting parts". The

notable difference being that agents (or individuals) within ABM are simulated as

autonomous individuals, whereas MAS may use a more generic agent representation.

Typically an AB model consists of a number of agents, an environment and a set of

rules governing agent behaviour. Agents themselves are self contained entities

containing states and a set of behavioural rules. They may represent spatial entities

such as molecules or cells, in which case they may reside within a continuous or

discrete spatial environment. In addition, agents may interact directly, or through an

environment where they may compete for resources. By specifying rules at a local

individual level, complex 'emergent' system behaviour can be observed through the

result of agent interactions. The specification of individual rules also makes ABM

inherently capable of representing heterogeneity, as each agent can possess its own

individual attributes and behaviours. Such system-wide diversity is important as

many systems of real life phenomenon cannot be expressed as simple uniform

entities.

2.1.2 Origins of Agent Base Modelling

Historically, ABM can be traced back to work by Von Newman and Stanislaw Ulam

and their work on self replicating machines which became known as Cellular

Automaton (CA). Further improvements to this in John Conway's model 'The Game

of Life' [Gar70] became an inspiring demonstration of how autonomous agents can

2. BACKGROUND 8

produce complex behaviours from simple rules. CA is a subset of ABM where cells

are located only within discrete space, with a finite number of states and operating in

discrete time. Most commonly, CA environments consist of a regular grid of cells,

however hexagonal environments are not uncommon. In all cases CA are

homogeneous and are processed asynchronously with cells states being determined as

a function of their current state and their neighbour'S states, at the previous discrete

time step. From these simple rules a grid of cells with an initial random state, form

complex evolutions of patterns, demonstrating emergence and indefinite growth. As a

result of this, the Game of Life and other such CA have fascinated mathematicians

and philosophers, who draw parallels with phenomenon such as free will and

consciousness as emergent elements spawned from the physical laws governing our

universe [Den91].

2.1.3 Swarm Modelling

Reynolds early work on Flocking [Rey87] is an example of complex agent modelling.

It demonstrates a technique for spatially explicit continuous valued mobile agents,

before the term agent was widely adopted. The model itself demonstrates the power of

emergence within biological systems by achieving complex flocking and swarming

through the use of only three simple steering behaviours. Although more complex

behaviour can be demonstrated through the additional of obstacle avoidance, the

systems general behaviour can be expressed on an individual level by the following

simple rules;

• Separation - each individual avoids local flock-mates.

• Alignment - each individual matches its other flock-mates velocity.

• Cohesion - each individual moves towards its perceived centre of the flock.

Within each of the above the Boids algorithm takes into account an individual model

of perceived perception. Practically, this limits the interaction between the agents to

within a localised neighbourhood. Although this neighbourhood can be expressed as a

simple radial function, Reynolds demonstrates how it is also possible to limit this to

an individual's line of sight. Whilst the Boids algorithm rules are relatively simple,

they (as with similar avoidance models) have been widely adopted, particularly for

2. BACKGROUND 9

use with animation techniques in games and movies, and more recently for large scale

pedestrian dynamics [SOHTG99, HM97, Rey99, QMHz03].

2.1.4 Applications of Agent Based Modelling in Systems Biology

Aside from simple swarm behaviour, biological systems in general are an ideal and

common candidate for ABM. Entities in biological systems, from a celIular level

[WSH+04, SMC+07, WS09] to large ecosystems [DorOl], can be represented directly

as agents (with some level of abstraction). Of particular interest to this thesis is the

use of ABM to simulate cellular level systems, which offer a middle out alternative to

the 'top down' or 'bottom up' approaches which are more common [WS09]. By

modelling cells, the basic unit of biological function, predictive models based on the

large amounts of data described at the cellular level are able to provide insight into

larger biological systems. Unlike discrete continuum alternatives [GMST99, JEB+06],

ABM of cellular level systems allows individual cells to be tracked throughout a

simulation. Whilst this creates an enormous amount of data this can be easily

visualised to allow comparison between in-vitro/vivo and in-silico experiments for

simple visual model validation. Such a technique is invaluable to biologists as in­

silico simulation offers potential to hypothesise about the effects of external stimuli,

reducing or complimenting in-vivo alternatives.

2.1.5 Object Orientated Agent Representation

Object Orientated Programming (OOP) is widely adopted as the most common

paradigm for ABM frameworks [IGCG99]. This is mainly due to the strong analogy

between agents and objects which, although dissimilar [Ode02], have advantages of

representation in this form. The most significant of these is the popularity of Object

Orientated (00) methodology and the common adoption of design principles such as

the Unified Modelling Language (UML) [OPBOO, BMOOOl, PKK07]. OOP offers a

natural and simple technique for modelling which is easily understood by software

engineers who are familiar with 00 design. Agent Objects are represented as static

objects which control their state and execution and communicate through message

passing. The majority of popular ABM frameworks are based on 00 design

2. BACKGROUND 10

principles, some even use concepts such as UML for agent and system specification.

Of these frameworks most are accessible through an Application Programming

Interface (API), which provides tools for building and describing models and common

routines such as agent communication and scheduling of agent behaviour and

interactions. Table I shows a comparison of common AS frameworks and compares

critical aspects, such as the underlying programming language and dynamics used for

agent representation.

Table 1 - Comparison on Object Orientated ADM Platforms

Name SWARM RepastS NetLogo MASON Cormas
fMBLA96] fNHCV051 fWil991 fLCRP+051 fBBPP981

Language Objective C, Java, Python, Scripting Java SmallTalk,
Managed .NET Scripting
C++, Java

Tutorials Yes Yes Yes Yes Unknown

Parallel No No No but the Yes - each No
original Star agent is
Logo was stepped with
targeted at a the same
parallel function
machine through a

scheduler
Raster Space Yes Yes Yes Yes Yes

Vector Space Yes Yes No Yes No

Visualisation 20 20&30 20, basic 20, limited 20 Grid
30 30

Open Source Yes Yes Yes Yes Yes

Swarm is often considered the first reusable and most mature tool for ASM, with

projects such as Repast originating from branches of development adding their own

focus or platform support. Repast Symphony (RepastS) is the most recent version of

Repast and replaces older platform specific implementations with an improved, yet

strictly Java, specific interface. MASON stems also from Repast and is designed with

performance in mind. Despite its multithreaded implementation, MASON and the

other 00 frameworks listed in Table 1 are not designed with parallelism as a key

requirement. Part of the reason for this is the pedigree of the frameworks, which have

origins in ecology where highly serial models in discrete environments are often used.

This imposes an obvious limitation in both model scale and performance, which is

addressed by this thesis.

2. BACKGROUND 11

Aside from the lack of support for HPC architectures, 00 techniques have

additional criticisms which mostly stem from the differences between agents and

objects. Agent autonomy is also a central issue. Method invocation between objects is

incapable of capturing the dynamic nature of agent interactions which may involve

complex protocols and negotiation. Wooldridge [WJKOO] makes the suggestion that

Objects are too fine grained and static to represent agents and operate at an

inappropriate level of abstraction. Central to this argument is the fact that Objects are

unable to capture the relationship between agents and their interactions. Likewise,

agents' internal states are not necessarily suitable for representation as attributes, a

view which is shared by Iglesias et al. [IGCG99]. Finally, 00 principles, such as

inheritance and abstraction, have little meaning with respect to agent representation

and can only add confusion.

In summary, 00 principles offer a modelling technique that has been well

adopted due to familiarity of the methodology. Whilst intuitive, this introduces

problems which can be avoided through alternative or more formal representations

which are discussed in the following section.

2.1.6 Formal Modelling of Agent Based Systems

Formal techniques are advantageous as they provide a method for both specification

and validation. Whilst formal specification is useful in the generation of system

implementations, validation is invaluable as it allows automatic verification and error

checking of systems. In the case of high integrity or mission critical systems the

guarantee of reliability and correct behaviour is not only advantageous but essential.

Whilst useful for software design, not all formal specification techniques are suitable

for use with ABM. Many lack the ability to represent indefinite simulation or express

the dynamic behaviour or communication.

Many formal techniques appropriate for multi agent systems are based around

automaton and state based representation of agents. For example, CA can be

described as a grid of interacting Finite State Machines (FSMs) where a FSM IS

formally defined as the 5-tuple (Q, L, qo, &, A) where;

Q is a finite set of states

2. BACKGROUND

L is a finite alphabet of input symbols

qo is the initial (or starting) state where qo is a member ofQ

A is the set of accepting (terminal) states where A is also a subset ofQ

o is the state transition function from Q x L to Q

12

This provides a powerful technique for simple models, as states can be specified and

rules defined as transition functions which describe the agents control flow from one

state to another. Input symbols represent output from neighbouring cells and in the

case of the Game of Life [Gar70] can be represented as the binary sets of 00000000

through to 11111111 (where 1 and 0 represent dead or alive for each neighbouring

cell). Whilst feasible for simple CA, the lack of any internal memory leads to a

combinatorial explosion of stages when considering even simple communication. As

a result of this, it is no surprise that in order to represent more complex non-trivial

systems a more powerful representation is required. Aside from state based formal

techniques, process algebras such as Z [ASMSO] and Communicating Sequential

Processes [Hoa78] have also been used for specification of concurrent systems and

sequential processes respectively. These techniques tend to become quite complex

when applied to ABM [dLOO], with the generation of simulation code being far from

straightforward [RTRH05].

2.1.7 Agent Based Modelling with the X-Machine

X-Machines are a concept first introduced by Eilenberg [Eil74] and extended upon by

Holcombe [HoISS] which unlike FSMs contain an internal memory. This memory

therefore extends upon the mapping '0' of FSMs by introducing a function that

manipulates an X-machine's internal memory. This extension overcomes the

exponential growth of systems by allowing the number of states to be greatly reduced.

The uptake of this formal method has previously been limited but since its use of

formally validating swarms [HRRT05, RTRH05] there has been increased interest in

its use to model biological systems [Ghe05, KSG05]. The FLAME framework

[CSH06, Coa07, ACKMOS] remains the most advanced use of the X-Machine for

formal modelling and forms the inspiration for work presented later in this thesis. The

formal definition of a Stream X- Machine (SXM), a particular class of X-machine,

2. BACKGROUND 13

where the input and output are streams of symbols is defined formally as a 9-tuple

0::, r, Q, M, <1>, F, qo, mo, T) [LL93], where;

I and r are the input and output finite alphabet respectively;

Q is the finite set of states;

M is the (possibly) infinite set called memory;

<I> is the type of the machine SXM, a finite set of partial functions </> that map

an input and a memory state to an output and a new memory state, </>: I x

M-rxM;

F is the next state partial function that, given a state and a function (</» from

the type <1>, provides the next state, F: Q x <l> - Q (F is often described as

a transition state diagram);

qo and mo are the initial state and memory respectively; and

T is the set of terminal states.

Whilst significantly more expressive than FSM, SXMs are limited by their inherent

lack of communication. The Communicating X-Machine is a deviation from a

standard X-Machine which addresses this limitation. There are numerous formal

definitions, BiiH'inescu et al. [BCG+99] describe one variant, Communicating SXMs

(CSXMS) which are specified formally as the 3-tuple «Pi)i=l"n, CM, Co), where;

Pi = (Xi, IN, OUTi,in~, out~) is a component of the system, i = 1, ... , n;

Xi are stream X-machines, i=l, ... , n;

INi and OUTi are two sets called the input port and the output port respectively

of component i. The elements belonging to these sets are values from M or

the undefined value A., which is INi, OUTi is a subset ofMi union {A.} and A.

is not a member ofMi;

in~ is a member ofINi and out~ is a member ofOUTi and are the initial input

and output port values respectively;

CM is can be defined as set of matrices of order n x n used for communication

between the X-machines Xi; and

Co is the initial communication matrix.

2. BACKGROUND 14

This definition constitutes a number of X-Machines communicating through messages

arranged in a static matrix. Whilst suitable for certain agent models the inflexibility of

a fixed communication matrix is far from ideal. Firstly, the inability to change the

communication matrix size during simulation makes this definition suitable only for

static population sizes. Additionally, the exponential growth of the communication

matrix is (with respect to the population size) unnecessary, as many agents interact

over a limited range making many of the cells in the matrix redundant. These issues

are addressed within FLAME, which uses message lists rather than a static matrix and

within work by Kefalas et al [KHEG03], which allows communication directly

through additional input/output streams.

2.2 Graphics Processing Units

Before a review of ABM on the GPU can be considered, the success of GPU

hardware as a parallel co-processor, to accelerate computationally expensive

algorithms must first be reviewed. Although programmable GPU hardware

functionality was primarily aimed at techniques to improve shading, the speed and

parallel processing power has and continues to attract a wider range of programmers

than from the pure graphics domain. In particular, the use of GPU hardware for

general high performance computation has spawned an area of research known more

commonly as GPGPU. The popularity of this area of research has no doubt been

highly influential in the release of more recent architectures and APIs which give

direct access to underlying hardware. This has been made possible by the shift from a

fixed function pipeline to the evolution of programmable processors. This section

introduces the GPU, with some history and description of classical GPU architecture

use before discussing emerging hardware architectures and functionality which are

used later in this thesis.

2.2.1 The Graphics Pipeline

Although a brief history and discussion of future architectures and APIs is presented

later in this chapter, Figure 2 presents the graphics pipeline of a current generation

GPU where each section of the pipeline is described below;

2. BACKGROUND

Unified Programmable
Processors

I
Input Assembler

Stream Output

Output Merger - - ..

GPU
DRAM

Memory

----------------1
DirectX 10

Only

,
I

!
I
I
I
I

Figure 2 - The DirectX 10 (Shader Model 4) Graphics Pipeline

Input Assembler

15

The input assembler is responsible for scheduling 3D positional data (vertices) from

graphics programs into the vertex processor. Such data occurs from calls within

graphics libraries such as OpenGL or DirectX.

Vertex Shader

As the vertex data is scheduled into the vertex processor from the input registers each

vertex is processed using a list of instructions from the vertex program instruction

memory, which describe the vertex program. Typically these transform vertex

attributes, such as the 3D position into world space, perform per vertex lighting

(which is interpolated between vertices) as well as operating on the colour and texture

coordinate attributes of each vertex.

Geometry Shader

2. BACKGROUND 16

The geometry shader is a recent addition to the graphics pipeline which introduces the

functionality to process and create graphics primitives (lines, triangle or quads).

During invocation the geometry shader inputs the small sets of vertices making up the

graphics primitives. In addition to this, access to neighbouring edge primitives such as

adjacent triangle or adjoining lines are available. The ability to amplify a single vertex

to zero or more strips of connected primitives adds the functionality to generate

primitives, which can be either fed back directly to the primitive assembly stage or

into Dynamic Random Access Memory (DRAM) via the stream output stage.

Stream Output

The steam output stage works closely with the output from the vertex or geometry (if

active) processor stages enabling vertices making up complete primitives to be stored

in GPU memory via a buffer. From here they can be either used as input for the input

assembler in subsequent render passes or used as input in any of the programmable

stages.

Primitive Assembly

The processed vertices are passed along with the primitive batching mode into the

primitive assembly stage where a number of tests determine their visibility in screen

space. Clipping is performed which ensures primitives outside the view frustum (the

area between the near and far view planes of the viewpoint) are disposed of and

culling performs the process of dropping primitives facing away from the viewpoint.

Rasterisation (and Interpolation)

The rasteriser takes the continuous primitive coordinates in 3D space and converts

them into a set of discrete fragments. Ahhough fragments are often confused with

pixels, they are somewhat different; they are in fact more accurately the discrete set of

pixel-sized elements representing the primitive objects in screen space. This therefore

implies a pixel may consist of more than one fragment. After the rasterisation the

primitives vertex attributes (for a triangle there would be three, a quad four, etc.) are

interpolated into the fragments allowing each to have a colour representation, a

2. BACKGROUND 17

number of texture coordinates and a possible new depth value (which mayor may not

result in it being discarded at this stage).

Fragment (Pixel) Shader

This programmable stage is responsible for operating on each fragment by processing

them using a set of instructions from the program instruction memory that makes up

the fragment program. Although different hardware profiles (discussed later in

Section 2.2.3) allow for varying instruction sets to be used, the primary purpose of the

fragment processor is to apply any non-linearly interpolated values, such as the

texture value lookups, to determine a fragments final colour. In addition to this, the

(write only) depth buffer can optionally be written to in the same way.

Output Merger (Blending and Fragment Operation Tests)

The final stage in the rendering pipeline involves a number of fixed function

operations, which are responsible for using fragment data to write to the frame buffer.

Within this stage a number of operations are performed per fragment such as depth

testing and alpha blending; which discards hidden surfaces and displays semi

transparent objects.

2.2.2 Evolution of the GPU

The above description of the graphics pipeline represents the basic stages of today's

programmable graphics hardware. Earlier hardware for 3D graphics was far more

rudimentary. In particular, the fixed pipeline cards of the early 1990s, such as the A TI

range and 3dfx Voodoo, lacked any kind of programmable support that is so common

in today's hardware. It wasn't until the early 2000s when the first programmable

hardware became available supporting shader modell, and even then the hardware

(NVIDIA GeForce 3 and 4 Ti and ATl's Radeon 8500) supported only a

programmable vertex processor with pixel configuration support, therefore lacking

full pixel programmability. It wasn't until the introduction of shader model 2

hardware that true programmable graphics cards with floating point support became

2. BACKGROUND 18

available, in fact Kruger [Kru06] highlights that, following the release of shader

model 2, the SIGGRAPH3 03 conference dedicated an entire session to GPU

programming techniques.

Shader model 2 essentially paved the way forward for GPU programming

through the introduction of floating point textures/arithmetic, in addition to the full

shader model 3 instruction set (despite the hardware to support it coming substantially

later). Important in the new functionality was dynamic branching, multiple render

targets and texture access within the programmable vertex stage. In addition to this,

the instruction count was in theory limited only by the finite memory, despite early

DirectX 9 APls limiting this substantially more.

The unified shader model was introduced in DirectX 10 as shader model 4 (SM4)

creating a common instruction set used by all programmable stages of the graphics

pipeline. Whilst hardware may continue to provide separate physical processors for

each stage, the majority of cards supporting SM4 adopt the unified shader

architecture, where a single more flexible processor uses dynamic load balancing

between the programmable stages. In addition to this, SM4 added the geometry shader

and stream output pipeline stages along with integer and bit wise operations, allowing

a new class of algorithms such as Marching Cubes [JC06, FQK08] and Progressive

Mesh Refinement [HSH09] to be implemented.

2.2.3 Graphics APls and GPU Programming

The previous section discussed evolutions of graphics hardware architectures with

respect to DirectX versions. Whilst DirectX is one option for programming the GPU,

OpenGL is an alternative, which is often favoured outside of the computer games

industry. The difference between these two graphics APls is primarily with respect to

the target platform. DirectX is supported only in windows environments (and on the

Xbox and Xbox 360) where as OpenGL is cross platform with common and up to date

driver implementations for both Windows and Linux. Additionally, both DirectX and

OpenGL introduce new functionality very differently. DirectX fully specifies a new

feature set in advance of supporting hardware, where as OpenGL allows hardware

3 http://www.siggraph.orW

2. BACKGROUND 19

vendors to specify 'extensions' which gIve programmers early access to new

hardware functionality.

With respect to programming the various stages of the GPU, this can be achieved

using various high level languages such as Cg [FK03], the OpenGL Shading

Language (GLSL) [gls08] and the High Level Shader Language (HLSL) [PM04].

These higher level shading languages offer an abstraction from the physical hardware,

which offers significant advantages with respect to both simplicity and portability.

Avoiding the use of lower level assembly language is highly beneficial, as code is far

more expressive, readable and generic with respect to differing hardware platforms.

Compilers have played an important role in shader languages and ensure that generic

higher level code is mapped optimally to underlying hardware. Profiles playa major

part in achieving this and act as a method of defining the hardware functionality

which the shader should be compiled for. For this reason, dynamic compilation

through runtime APIs is encouraged and offers the potential to optimise shader

programs, depending on the hardware at runtime.

2.2.4 The GPU Programming Model

Traditional GPGPU techniques focus on utilising the graphics libraries and shader

languages (discussed in the previous section) to exploit the hardware architecture

[OJL +07]. When using this technique the GPUs parallelism is harnessed by expressing

algorithms in a data parallel fashion, with application flow following a stream like

programming model [BFH+04, Buc06]. At the heart of the stream programming

model is the notion of a 'kernel' which takes as input and output one or more read or

write only data streams. As a kernel's output is a function only of its input, a single

kernel's computation is independent of any others, allowing a high degree of

parallelism. This therefore allows a kernel application to run in parallel on every

input simultaneously. Whilst this may suggest that the GPU therefore acts using a

Single Instruction Multiple Data (SIMD) model, it in fact utilises a technique

somewhere between SIMD and Single Program Multiple Data (SPMD). In a purely

SIMD architecture every parallel processor executes the same instructions and in the

case of conditional code branching, masking is used to ensure all processors to follow

the same instruction path. On the GPU this SIMD behaviour is only observable within

2. BACKGROUND 20

small groups of processors (or subgroups). Each subgroup is able to follow different

instruction paths through the kernel program, therefore demonstrating SPMO

behaviour across groups.

2.2.5 Traditional General Purpose GPU Programming

For the purposes of stream programming using the graphics based shading techniques

describes in Section 2.2.3, the fragment processor otTers the best conceptual match.

Computational tasks map well to the 20 grid based semantics of this processing stage,

where streamed input and output data are stored within the four colour channels of

one or more stacked 20 textures.4 In order to invoke a kernel four vertices must be

passed into the graphics pipeline to fill an 'n x n', 20 orthogonal viewpoint. This

causes the rasteriser to produce 'n x n' fragments that use the bound fragment

program to perform processing in parallel. In the most basic case, if the input textures

are of the same dimension, each parallel instance of the fragment program can then

lookup a single value from the input textures(s) to operate on (using SIMO subgroups

of 4 fragment blocks) before finally outputting to a 'n x n' frame butTer. Whilst the

output frame buffer is most commonly bound to the display screen, the use of an off­

screen buffer allows output to be used in subsequent calculations. The obvious

limitation of this technique, and of the stream programming model in general, is that

data may only be bound as input or output but never both. This can be overcome by

utilising a ping-pong technique, which enables the roles of the texture to swap after

each render pass (output becomes input and vice versa). A simple example of this is a

linear algebra program which is recursively called using a two textures (input and

output) which alternate their functionality after each frame pass. The implementation

of this requires that N data elements are initialised within a data array of size 'n x n',

with a quad being rendered of equal dimensions. As the vertex program plays no part

in the algebra calculation, vertices are simply passed through (where a particular stage

is non essential the term pass-through is often used to describe it) to the rasteriser,

which in turn invokes the programmable fragment stage. With the destination (write)

texture attached to the frame buffer, the fragment program then performs a single

texture lookup (on the source input texture) and outputs the input value plus some

4 Whilst 3D textures can be used as an alternative to a number of stacked textures, there is generally less hardware
support and in most cases offer poorer performance.

2. BACKGROUND 21

linear value. The ping-pong technique is then used to swap the source and destination

textures so that the output becomes the input for the next frame pass, which is invoked

by the repeated quad drawing. This ping-pong technique can continue indefinitely,

always overwriting the previous input at each output stage.

2.2.6 GPGPU Programming Languages

Despite the performance benefits offered by traditional GPGPU techniques they are at

best unintuitive, and at worst incredibly tedious, even for programmers familiar with

graphics programming. Whilst some of the inherent weaknesses, such as the lack of

debugging support have been partially addressed [gde, Mer07], higher level languages

which avoid traditional Graphics APls are significantly easier to use for general

purpose programming. Broadly GPGPU languages can be broken down into two

subcategories. Those which utilise graphics APIs, by translating general purpose code

into the necessary graphics calls, and on a lower level, those which map code directly

to hardware without use of the graphics driver.

Brook for GPUs [BFH+04] is a compiler and runtime implementation which

exclusively uses the stream programming model. Its focus is on data parallel GPGPU

programming and actively encourages the use of high arithmetic intensity to

maximise GPU performance. The Sh [MQP02] metaprogramming langue (which is

now commercialised as RapidMind with extended Cell processor support) is similar

to Brook in respect that it supports stream programming, however it has additional

support for graphics programming. Like Brook, Sh supports the writing of

shaders/kernels directly in C++ applications. This allows access to common variables

on both the host and device without parameter binding, which are required using

traditional techniques. Both Brook and Sh rely on compiler technology to generate

code for GPU hardware. In both cases GPU assembly is generated, which is optimised

depending on the available hardware and chosen graphics API.

Close to the Metal (CTM), which has been superseded by the A TI Compute

Abstraction Layer (CAL), is a lower level vendor specific programming interface

suitable for GPGPU. It avoids the use of graphics APls by providing a runtime

environment with driver support. This allows direct access to the unified processors

on A TI hardware and gives programmers the opportunity to highly optimise code. In

2. BACKGROUND 22

order to provide high level support, ATI provides the AMD Stream SDK [ATI09]

which most importantly includes a modified Brook compiler (Brook+) with support

for CAL output. In addition to this, performance profiling and optimised core math

libraries are available.

The Compute Unified Device Architecture (CUDA) is the NVIDIA alternative to

Stream SDK which similarly provides vendor specific low level hardware support. As

with the Stream SDK, high level support is offered through the use of the C

programming language with extensions. As well as being far more widely adopted

than the Stream SDK library, the low level access to per processor shared memory

offers potential to achieve far greater performance than with the purely stream

oriented alternative. Likewise the availability of lightweight synchronisation

primitives, and similarity with expected standardised future libraries for data parallel

programming (see section 2.2.8), makes CUDA the GPGPU language of choice for

more flexible GPU programming presented later in this thesis.

2.2.7 CUDA Architecture and Programming Model

The CUDA GPU programming model is described in detail in the CUDA

Programming Guide [NVI07] where the device is presented as a highly parallel,

multithreaded, many-core co-processor. The key to the model is the use of a hierarchy

of thread groups, where each thread represents a fme grained data parallel execution

of a program (or kernel). The concept of a grid of thread blocks is used to allow a

transparently scalable (to mUltiple hardware implementations with varying parallel

capabilities) model with independently parallel blocks containing cooperating threads.

At a hardware level the CUDA architecture consists ofa varying number of streaming

multiprocessors (Figure 3) each with eight scalar processing elements, a

multithreaded instruction unit and on chip shared memory. On chip shared memory

allows thread cooperation through a lightweight synchronisation primitive however

global synchronisation can only be ensured after a complete kernel execution. In

addition to shared memory each muhiprocessor has access to an on chip constant and

texture memory cache as well as the devices global DRAM memory.

For each data parallel kernel, the CUDA API provides a template based semantic

for grid and block size specification. During execution thread blocks are split into

2. BACKGRO UND 23

smaller units of 32 threads, called warps. Blocks are then opt imally distributed

amongst multiprocessors with the amount of blocks limited by either the hardware

specific maximum number of warps per multiprocessor, or resource limited by the

total register or shared memory usage per block. Warps are always processed a single

instruction at a time (SIMD), with the multiprocessor switching between warps which

are ready for execution. This warp switching (or interleaving) allows g lobal memory

access latency to be effectively hidden, providing the multiprocessor can be kept busy

with non latent arithmetic instructions i.e. a high enough ratio of computational

arithmetic to bandwidth (arithmetic intensity). As each instruction across a warp is

executed in parallel, any conditional branches between threads must follow the same

path to attain maximum performance. In the case of divergent branches (or warp

serialisations) between threads in the same warp, instructions must either be serialised

or multiple paths evaluated by every thread.

Shared Memory

Figure 3 - The eUDA architecture hardware model

2. BACKGROUND 24

2.2.8 The Future of Data Parallel Programming

Stream SDK and CUDA represent major advancements in GPGPU programming,

which highlights vendor commitment to providing support for general purpose usage

of GPU hardware. Likewise, the competition between the two major hardware

vendors has forced a significant push forward in GPGPU technology which is

advantageous to users, as both try to establish themselves as the leading provider of

GPGPU hardware. The significant disadvantage of this has been the unavailability of

standardised tools for GPGPU which forces programmers to essentially choose

between the two. OpenCL [ope09] is a recent development in beta stages, created by

the Khronos Group (responsible for the standardisation of OpenGL and OpenAL),

which tackles this problem head on. In addition to gaining support from both major

GPU hardware vendors, OpenCL is supported by a huge number of industry partners,

suggesting that it will become the new standard for data parallel programming not

only on the GPU but on multi-core CPU and Cell-type architectures. Technically

OpenCL is very similar to CUDA and uses an extension to the C language and the

same model of a grid of thread blocks (with shared memory).

Whilst OpenCL seems to offer advancements in standardisation this has not

effected the announcement of alternative GPGPU technologies. Far from abandoning

CUDA, NVIDIA have announced continued support, with the suggestion of optional

OpenCL output from the CUDA compiler. Likewise, Microsoft has announced

support for GPGPU programming within DirectX 11 which introduces a number of

new programmable stages to the graphics pipeline. Most import of these is the

addition of a compute shader at the end of the pipeline, which can be for both post

processing and general purpose usage. Despite being limited to Windows

environments, compute shaders are sure to make a big impact, particularly within the

games industry where physics libraries and advanced lighting effects are likely to gain

performance advantages.

Finally, other emerging technologies such as Larabee [SCS+08], and the far more

established Cell processor, are certainly worth consideration for data parallel

processIng. Whilst they both support their own APls, both the technology

manufactures are onboard with the OpenCL specification, making applications

transferable between architectures.

2. BACKGROUND 25

2.3 Communicating Systems on the GPU

The use of the GPU techniques (described in the previous section) in accelerating

computational algorithms covers a very broad spectrum. Despite this, the work

presented within this thesis is, as far as the author knows, the only fully functioning

ABM framework for the GPU. There are however numerous works which have been

influential, or arisen during the development stages of this thesis. This section reviews

this work which is mainly limited to particle systems, discrete modelling methods and

the implementation of GPU assisted swarms and pedestrian populations.

2.3.1 Particle Systems

The particle system as an animation technique has been around since early 1960s

video games, which used pixels to represent explosions. The formal introduction by

Reeves [Ree83] as a method for modelling fuzzy objects such as fire, clouds and

smoke was however important in demonstrating the effects in 3D computer graphics.

Since then the GPU has been used in various instances to provide increasing complex

particle behaviour. In the most simplistic case, a stateless, or Euler particle system,

involves particles updating their output position through a system of closed form

linear equations. This technique lent itself particularly well to shader model 1 series of

graphics card, with only a programmable vertex stage. As each particle's position is

calculated as a function of time, there is no storage requirement and hence could be

implemented within a vertex shader in a single pass, with the particles being rendered

as primitives such as points. The obvious advancement to this was made possible by

the pixel shader, which allowed state preserving particle systems using off-screen

rendering to write to persistent texture memory. Until recently pixel shaders

supported outputting only a single four channel colour value, particle systems

typically consisting of both a position and velocity had to be calculated using a multi­

pass approach.

In addition to particles having a greater degree of variability (as a result of

updating themselves dependant on their previous time step position and velocity),

state preserving systems offered the ability to change throughout the scene by

introducing collision detection and response. As a result of GPU assisted particle

2. BACKGROUND 26

systems Latta [Lat04] described the possible implementation of a million particle

system with collision detection and response, even before the hardware was available

to support it. Central to this was the use of Ober-buffers (or Super-buffers), which

arose as a method of uniting texture data with vertex arrays (due to architecture

changes, both were physically stored in the same area of memory) without a slow

CPU read back. This technique is demonstrated by work from Kolb et al [KLRS04]

which is able to render one million particles interactively at 10 Frames Per Second

(FPS) entirely on the GPU, using the CPU only for particle birth and death allocation.

Since then there have been a number of advancements in hardware architecture which

have been useful to particle simulations. The fIrst of these, vertex texture lookups,

effectively replaced the Dber-buffer by allowing vertex programs similar functionality

to fragment programs, in that they could use standard texture lookup to displace

vertices. The rendering of particles in modern GPU implementations [KKKW05,

SKKW08] involves simply rendering primitives for each particle in arbitrary

locations, which are then displaced by a vertex program. The addition of multiple

render targets also allows the position and velocity values of a particle system to be

updated during the same rendering pass.

2.3.2 Lattice Based Communication Methods

After considering particle systems, where particles act as non-communicating

individual elements, the next progressive step is to consider communication between

particles. The simplest scenario to fIrst consider is Cellular Automaton, which due to

the relatively limited communication makes an ideal candidate for GPU

implementation. Early work by NVIDIA SDK examples demonstrated the most

famous CA example of Conway's Game of Life and a CA implementation of

Madelbrot fractals. Since then more complex adaptations have emerged [Gre05]. One

example of this is the use of CA for studying excitable media, and in particular, the

study of Atrial Fibrillation [TJL04], a heart disorder, which uses the Gerhardt model,

a CA with a variable neighbourhood interaction radius. Similar, is the coupled map

lattice [HCSL02], which replaces the discrete state variables of CA by continuous

ones, allowing the simulation of many physically based systems reliant on partial

differential equations (PDEs). Harris proposes this technique as a method to animate

2. BACKGROUND 27

realistic real time clouds on the GPU, as well as demonstrating the use of the CML in

boiling simulations. Further to this, the CML has been used for a wider range of

simulations, including chemical reaction-diffusion. A computationally similar

concept, the Lattice Boltzmann Method (LBM), has been used in computational fluid

dynamics (CFD) as a macroscopic solution to the Navier-Stokes (NS) equations

governing fluid flow [L WK03, WLMK04]. Central to both cloud formation and fluid

flow simulations are the extension of2D to 3D environments. Although graphics card

hardware does support the use of 3D textures, it has emerged that stacking a number

of 2D textures slices has proved more efficient. In boiling examples using the CML

technique [HCSL02] (implemented on GeForce 4 hardware) 3D grids of up to

128x 128x 128 can been rendered on GPU hardware at a rate of 8 iterations per second,

with 2D examples running substantially quicker than this.

2.3.3 Smoothed Particle Hydrodynamics

Where as latticed based methods allow the communication of discrete elements within

the grid, Smoothed Particle Hydrodynamics (SPH) advances communication further

by considering interactions between continuous valued particles in a continuous space

environment. SPH were originally introduced by Ginhold and Monaghan [GM77] for

the modelling of dynamic incompressible fluids, using normalised particle forces to

enforce the NS equations by preserving momentum. SPH works by using a smoothing

function (or kernel) over a particles variables, for a fixed smoothing length (typically

referred to as h). This ensures that each of the particle variables can be calculated by

using a weighted sum of its neighbouring particles. This weight can be determined by

either a Gaussian function or a cubic spline function, for which particles weights are

only significant for particles within a distance of 2h.

Since its introduction, SPH has been adapted by the graphics community to

simulate real time fluids [KC05, MCG03, KW06]. Aside from complex

implementations using parallel sorting (Section 2.3.5) SPH methods implemented on

the GPU involve partitioning 3D space into a number of discrete elements to avoid the

explicit determination of the neighbourhood for each particle in the system. Kolb et al

[KC05] describes a method which renders particles as point sprites to an off-screen

3D array (actually comprising of a stack of 20 arrays), where, for each pixel of the

2. BACKGROUND 28

point sprite rendered, the position of the particle in 30 space and slice space are

stored. Sampling the 3D array is then implemented using linear interpolation both

within and across slices, yielding a tri-linear interpolation scheme. Multiple Render

Targets (MRTs) are used to improve performance and the 20 slices are expressed as

sub regions in a larger 20 grid. Although this method is reasonably successful,

rendering 2400 particles at 12 FPS (on a NVIDIA GeForce 6800 GTX), its

performance is dependant on three factors; the smoothing kernel radius, the

distribution of particles and the resolution of the discrete space grid. The discrete

space grid is the most important of these restrictions, and as its granularity decreases

memory consumption increases exponentially. In fact, to render 2400 particles

requires 32768 spatial partitions (a 30 grid of 323), which, although is a resolution

which is required to work correctly for particles in close proximity, wastes significant

space where particles are sparse. A similar but alternative method presented by MUller

et al [MCG03], uses an optimal space partition of h (the SPH radii) to store particles'

locations, ensuring only a fixed number of particles per partition. This in effect

reduces the neighbourhood lookup to a O(nm) (m being the average number of

particles per partition) by limiting the lookup to the 26 directly neighbouring

partitions. Further to this, an additional lOx speedup is achieved by exploiting the

efficiency of the GPU texture cache by storing particles objects directly in the

partition grid, rather than storing references to their locations.

2.3.4 Continuum Methods for Pedestrian Modelling on the GPU

Pedestrian modelling techniques for the GPU have favoured a similar technique to

that used for SPH. Treuille et al [TRE06] presents Continuum Crowds, a typical

example of such a pedestrian modelling simulation, which uses a multi layer platform

to perform collision avoidance, and more advanced agent behaviour. The multilayer

platform comprises of an inter-agent collision detection layer, an environment (i.e.

building) collision detection layer, a behaviour layer for more complex agent

behaviour, such as waiting or turning, and a call back layer, which simulates agent to

environment interactions. Agents then use the discrete multiplatform space to perform

updates, by checking the cell values of their current occupied space and the cell they

intend to move to (for collision detection). More precisely, updates are achieved

2. BACKGROUND 29

through the assertion of a number of hypotheses which state: each person is trying to

reach a geographic goal, people move at the maximum speed possible and a

discomfort field exists, which specifies that an object would like to move from point

'a'to 'b '. The third hypothesis is most important as it implies that agent movement

and collision avoidance are the result of a using discrete valued lookup, in this case a

it restricts the implementation scale by first introducing a high memory requirement

with a large degree of redundancy, a problem shared by similar work [COUOS] which

used dynamic potential fields for modelling emergency situations. Additionally, any

technique which uses discrete space to encode environmental and movement

behaviours only approximates agent based dynamics, hence limiting the individual

cognitive model of pedestrians.

2.3.5 Spatial Partitioning and GPU Sorting

In order to avoid the massive memory overhead of the storing particles, pedestrians or

agents within a large finely grained discrete grid, a dynamic data structure is required

which does not store particle data directly. Work by Kipfer et al [KSW04] implements

such a system by discretely partitioning particles into spatially partitioned areas,

called bins. Each spatial bin is associated a unique id which is then used as a sorting

key to re-order the particle in O(log n) steps. With particles sorted in this way, each

particle can then calculate interactions with neighbouring particles in the same spatial

bin, by sequentially looking them up from surrounding positions in texture space. In

order to improve further upon this, Kipfer uses a number of techniques which,

although improve efficiency, pose a number of restrictions on particle interaction.

Firstly, a suitably small spatial partition is used to reduce the possible number of

particles to a maximum fixed number. Secondly, a separate collision detection and

response module is implemented, which calculates only the single nearest particle and

a response as a result of collision with this particle. Thirdly, as the described method

sorts particles only into a single dimension, a number of staggered grids (one for each

dimension) are used to detect any collisions with particles across neighbouring bins.

Whilst this guarantees that the nearest partner is located, it does require that a separate

sorted list for each staggered grid is maintained.

2. BACKGROUND 30

Whilst Kipfer's technique is successful at rendering up to a quarter of a million

fully interacting particles at 31 FPS, the key to the algorithm lies within keeping the

search stage entirely on the GPU. Not only does this exploit the nature of the GPU for

fast computation, but it avoids the heavy overhead associated with performing a CPU

read back in order to offload the search stage. The parallel sorting algorithm used

within Kipfer's implementation was first introduced by Batcher [Bat68] and

previously implemented on the GPU by Purcell et al [PDC+05] for the purposes of

GPU based photon mapping. It essentially uses a similar technique to a parallel merge

sort with O(log n) rendering passes to merge bitonic sequences into a final sorted list

with an overall O(n log n) complexity. Whilst the implementation described by Kipfer

does improve upon Purcell's method, by minimising the fragment based texture

lookups and instruction count, there have since been a number of further

improvements to bitonic parallel sorting.

GPUSort [GRJr05] and GPUTeraSort [GGKM06] use an improved bitonic

network, i.e. an improved parallel comparison network for each rendering pass. This

improved network offers two significant advantages despite the same O(n log n)

overall complexity. The first of these is that the sorting network enhances the GPU

cache memory hit rate, by increasing the number of lookups in close proximity. The

second improvement is the use of GPU blending functionality to perfonn the sorting

steps. Overall these changes balance the GPU much more than a pure fragment

processor implementation. This is extended further by work from GreB et al [GZ06],

whose GPU-ABiSort implementation improves further on cache efficiency for

addition speed gains. Whilst GPU-AbiSort offers a near optimal solution for stream

architectures, GPUTeraSort offers the significant advantage of a GPU and CPU

balanced alternative. The result, which uses the CPU to perform key generation and a

re-order stage, is described as a hybrid bitonic-radix sort and is able to sort billion

record wide key databases by efficiently paging data in and out of the GPU.

More recently, the CUDA architecture has allowed the performance of GPU

sorting to be improved through the introduction of parallel radix sorting [SHG09,

LG07]. Radix sorting proceeds using muhi passes, which consider each digit of the

sort values in tum. CUDA makes this form of sorting possible through its ability to

perform scattered writes. Likewise, the efficient use of shared memory and coherence

of global scatters, allows for implementations which perfonn roughly 4 times faster

than GPU sort. With respect to interacting particle systems, fast GPU sorting allows

2. BACKGROUND 31

inter particle interactions to computed efficiently, by considering the neighbours in

each neighbouring spatial bin [Gre07]. Since its conception, this efficient CUDA

technique has been adopted in many areas of application, including collision detection

[LG07] and molecular dynamics interactions [AL T08].

2.3.6 N-Forces Interactions

Unlike inter particle collision techniques for systems with limited neighbourhood

influence, N-forces represent an all pairs scenario where each individual continuously

interacts with one another. Such all-pairs behaviour is common in astrophysical

simulation, where gravitational influence of a star is a function of the distance

between two objects (Equation I).

F = G!!!J.!!!2.
r

Where;
• F is the magnitude of the gravitational force between the two point masses,
• G is the gravitational constant,
• m, is the mass of the first point mass,
• m2 is the mass of the second point mass, and
• r is the distance between the two point masses

Equation I - Newton's Universal Law of Gravitation

Although the very nature of all-pairs interactions provides a complexity of O(N2),

GPU parallelism provides an excellent mechanism for computing pair wise

interactions efficiently. Nyland et al [NHP04] provides an insight into N-body

simulation using traditional GPGPU, which suggests that by using a grid of N x N to

compute force interactions in parallel, parallel reduction could then be used to sum a

total influential force which can be used in a final rendering pass to update the

position of the body. The limitation of this technique is that graphics card hardware

supports a maximum texture size of only 2048, meaning that if the red, green, blue

alpha (rgba) components of the texture were each used to store a bodies mass, a

maximum number of 8192 bodies could be simulated. Although this problem was

addressed in work from Chinchilla et al [CHI04], which used a communicating

network of N-body simulations, the constraint of O(N2) memory usage and sub

2. BACKGROUND 32

optimal Giga Floating Point Operations Per Second (GFLOPS) performance has

encouraged a number of improved implementations.

Both Hamada et al [HI07] and Zwart et al [ZBG07, BZ08] present methods for

simulating N-body simulations using CUDA to mimic special purpose gravity pipe

hardware (GRAPE) [MT98]. Both implementations make use of CUDAs fast shared

memory functionality and use a mUltiple time step scheme that evaluates longer range

interactions less frequently, due to weak force interactions. When directly compared

to the GRAPE-6 hardware, which they emulate, the performances are similar, with the

GPU slightly outperforming GRAPE-6 and performing roughly order of magnitude

faster than specialised CPU versions. For small N (less than 512), Zwart reports that

the GPU performance is worse than GRAPE-6, which is attributed to the expense of

uploading across the GPU bus, however up to 9 million particles can be rendered

using the GPU (obviously not in real time) over the maximum of 256k on the

specialist GRAPE hardware.

Unlike both Hamada et al [HI07] and Zwart et al [ZBG07, BZ08] whose

multiple time step scheme simulates the effect of long-range forces in a similar way to

Barnes Hut far field approximation, Nyland [NHP07] presents an efficient method for

brute force for all-pairs interactions using CUDA. Unlike his traditional GPGPU

implementation [NHP04], limited considerably by the maximum texture size,

CUDA's shared memory alleviates the requirement for N x N size communication

space. The technique for implementing this instead uses tiling as a method of passing

2p (where p is the tile size and p:Z is the total interactions per tile) body descriptions

into shared memory registers, where serial operations with heavy data reuse push the

processors to near peak performance. Nyland uses a number of additional

optimisations to improve the performance, which include loop unrolling (the

replacement of inner loop calls with an increased number out of loop calls) to reduce

loop overhead and optimised tile sizing, which increases the size of p to reduce

memory traffic to the maximum possible value that does not cause idling of any of the

16 GPU multiprocessors. The result of the brute force technique, although not directly

comparable to either of the mUltiple time step methods, demonstrates a two times

greater performance with respect to pair wise force interactions per second. The

overall comparison to highly tuned serial implementations suggests a 50 times speed

up, with a staggering 250 times speed up over a standard C implementation.

2. BACKGROUND 33

2.3.7 Real Time Agent Based Models on the GPU

Although the previously described methods do not directly describe the

implementation of ABM on the GPU, the communication between individual

elements (either particles or gravitational bodies) is analogous with that of an AB

system. Erra et al [EDCST04, CES06] describes an implementation of GPU ABM,

which influenced by real time SPH, partitions space and uses a sorting algorithm to

assign individuals to spatial cells. As with most other implementations of an ABM

using the GPU the authors have favoured a mixed CPU and GPU approach, using the

CPU for the calculations of local perception. The reasons for this are mainly due to

the advantage of being able to serially store a variable sized list of agents, making

local interactions a case of simply looking up the agents within its own cell and local

cells. Whilst the lack of serial random access memory prevents this technique from

being directly translatable to the GPU, it does remain the weakness of this method due

mainly to the expensive CPU read back (and further data transfer to the GPU). In

order to combat this Erra proposes an approximation method, in which each

individual writes to a 'scatter matrix' (during the CPU stage) with a value depending

on its likelihood to change spatial cell. This matrix is then used to determine how

uniform the flock is and as a result avoid calculation of local perception for each

frame. Using the approximation method this technique allows 8000 agents to be

modelled at up to 20 FPS.

Work by Reynolds [Rey06] demonstrates how the Play Station 3's (PS3s) Cell

Processor [PHA05] can be used to efficiently render crowds of fish. The PS3

architecture is somewhat different to that of traditional GPU or CPU, and although a

NVIDIA RSX5 card is available for graphics processing, the PS3 contains an

additional IBM Cell Microprocessor capable not only of running an entire OS but is

also able to provide parallel processing functionality. The Cell Processor consists of a

single Power Processing Element/Unit capable of scheduling eight Synergistic

Processing Elements or Units (SPU) with a high bandwidth (25.6 GBytes/sec)

'Element Interconnect Bus' (EIB) connecting the two. Reynolds uses the architecture

to batch a number of spatial buckets of fixed array size to the SPUs, which in tum

calculate the nearest N neighbours for each individual in the bucket, by considering

I The RSX architecture is comparable to the NVlDlA 7900 series

2. BACKGROUND 34

neighbouring buckets through communication across the EIB. Although direct

comparison with GPU methods is difficult, the technique which is similar to that of

Quinn [QMHz03], which uses the Message Passing Interface (MPI) on a multi

processor machine, is able to render up to 10,000 individuals at 60 FPS. It is also

suggested that further work to reduce the fixed bucket size and support for networked

Cell processors would greatly improve this.

In a much simpler scenario than ABM on the GPU, Rudomin et al [RMHOS] use

texture space as a discrete agent map, where each pixel is capable of holding a single

agent. Whilst technically this approach is similar to lattice based methods, Rudomin

extends earlier work using image maps with Extensible Markup Language (XML)

scripting [RMH+04] to introduce fragment shaders as a mechanism for implementing

state machines. More specifically this involves representing FSMs as a table,

representing state verses input with a mapping to the next state (and position).

Although it is suggested that hierarchical or layered FSMs could be implemented, a

simple predator prey example is described demonstrating interactive frame rates (34

FPS) for up to a million agents. Although algorithmically this is inferior to much of

the work described in the report it demonstrates a novel attempt to separate modelling

logic from GPU programming.

D'Souza et al. [DLR07, LD08] presents the most complete example of ABM on

the GPU, describing a system which utilises discrete partitioning, with agents directly

scattered into discrete spatial partitions. The discrete partitioning nature of the

algorithms is memory intensive and limits the agent environments to fine grained 20

or course grained 3D. As the discrete partitions are increased in size, the memory

requirement is reduced. However the likelihood of collisions (multiple agents

scattered within the same partition) increases. Collisions are addressed through the

implementation of a multi pass priority scheme, but this is only guaranteed to succeed

if a separate render pass is used for each possible collision (with a 2D agent range of

9x9 there are in total 81 possible collisions to resolve). Whilst it is suggested that

much fewer collision passes can be used, the reliability of this, as with the convergent

random iterative scheme used for birth allocation, is at worst unpredictable.

Additionally, little consideration is given towards agent specification or more general

agent systems, such as those that exist within spatially distributed, continuous 3D

environments.

2. BACKGROUND 35

2.4 Summary

Whilst there has been some limited research into the use of the GPU for ABM, these

are limited to either, fixed implementations of swarms or systems, or systems

dependant upon a mapping to discrete space to resolve interactions, such as collision

avoidance. For an implementation to allow the modelling of continuous agent based

dynamics, particle based methods [KSW04, Gre07], utilising parallel sorting and all­

pairs N-Body methods [NHP07]. offer a more appropriate solution. In addition to

interaction techniques, there is an obvious absence of frameworks which allow non

graphics specialists to take advantage of the performance ofGPU hardware. Although

some basic attempts have been made to resolve this [RMH05, RMH+04], these are

extremely limited and unsuitable for the specification of complex interacting agents.

3. GPGPU SWARM MODELLING 36

Chapter 3

GPGPU Swarm

Modelling

The previous chapter reviewed the use of the GPU for ABM, where it was concluded

that only limited ABM on the GPU has been demonstrated through specific examples.

This chapter describes the implementation of an AB framework for swarm modelling

on the GPU (ABGPU). It represents the first step towards the development of an

ABM on the GPU and addresses two issues, which were raised by reviewing

literature;

• A flexible approach to ABM on the GPU, which allows non GPU specialists

to take advantage of the GPU's parallelism through a simple agent

specification technique; and

• The use of the GPU to build a grid based data structure through parallel

sorting, which allows limited range agent interactions without the reading

back to the CPU. A similar technique for particle collision detection within

3. GPGPU SWARM MODELLING 37

CUOA [Gre07] was reviewed in the previous chapter and was developed

independently to the GPGPU alternative which is presented.

ABGPU uses a translational technique to map both agents and behaviours to the GPU,

using OpenGL and the Cg shading language. A 20 grid is used to store both agent

data and process agents within the fragment processor. Flexibility is achieved through

an API interface for model specification and simulation control, with an agent

behaviour script to determine an agent's behaviour. Simulations consist of a single

agent type and a homogenous population, each with a defined set of internal memory

variables and a single agent update script. Agents communicate by iterating through a

list of agents within a specified interaction radius during the update stage.

3.1 Implementing Agent Based GPU

This section discusses the implementation of the ABGPU API and demonstrates its

use.

3.1.1 Agents and Data Mapping

The mapping of agent data to the GPU is a process which it is important to abstract as

it hides the complexities of the underlying data storage. This is achieved through a

translation function 'F' which provides a mapping for agent variables in agent

function scripts. It also facilitates the getting, and setting, of initial agent data (through

the API) into a number of 20 stacked 32bit floating point textures (agent space).

Similar to previous work on particle systems [Lat04], a 10 list of variables is easily

translated into 20 texture space with a 20 position (i, j) in each stacked texture, 't'

representing an individual set of data. As texture access is read/write only, '21'

textures are required in total, with data being stored in up to all four of the red, green,

blue and alpha colour channels respectfully (Figure 4). Within OpenGL the Frame

ButTer Object (FBO) extension allows simultaneous writing to MRTs, on the

implementation hardware (a NVIOIA GeForce 8800 card) up to 8 targets are

supported, giving a total of 32 agent variables. For a non communicating system of

agents, simulation is achievable by performing N parallel operations by rendering a

3. GPGPU SWARM MODELLING 38

single quad primitive, as described in Section 2.2.4. Assuming the quad primitive is

the same dimension as agent space (which due to the texture format used, is limited to

power of 2 dimensions) and rendered from an orthogonal perspective, rasterisation

will invoke a parallel operation for each of the (i, j) agent positions.

Agent Specification: Mappins
agent _pol x; ----+----.t Function (F)
agentJlOS_x; of'm' ."enl
agent pol x;

COIIIIIIIIIIicalion
Algorithm

Ag_I Updato Script - f-

Rend« Agms

mesDCl')'

va1ues to 'to
texturea. In

Ibis case
ar3, I~l.

I

AFII(i.j)
-+ RClBAs,-

ffi.[
~ ---

Frame BIlffer Objoct (FBO)

Figure 4 - The mapping of an agent specification into agent space at position 'i, j'.

3.1.2 Specifying a Simulation using ABGPU API

Specifying a swarm simulation requires a number of C++ classes, which handle the

allocation and uploading of data to the GPU as well as iterating the simulation. The

basic functionality of these classes is described below, where examples are provided

for clarity. More advanced use of ABGPU for visualisation, encoding global map data

and real time feedback is addressed separately within this chapter.

AgentSpec::ific::ation - An agent specification object is used to specify the

internal memory of an agent by passing through a list of agent variable names.

3. GPGPU SWARM MODELLING 39

The object determines the number of textures required to store each of the agent

variables and provides the mapping between variable names and texture space.

Agent specifications currently support up to 32 internal agent values on a

DirectX 10 series card with 8 MRTs or alternatively 16 values through 4 MRTs

on older DirectX 9 cards. The example below shows an

AgentSpecification object being used to specify an agent with three

variables.

AgentSpecification* as = new AgentSpecification() ;

char* variables[) = {"x", "y", "z,,};

as->setAgentVariables(3, variables);

Agent - An agent object is used to get and set individual agent variables through a

get and set method respectively. When an agent is first created an agent

specification must be supplied which is used to provide the agent variable to

texture space mapping described in the previous section. The example below

shows the creation ofN agents using the setAgentVariable method to set

the agent's data.

Agent* a [N) ;

for(int i=O; i<N; i++) {

ali) = new Agent (as) i

a [i) - >setAgentVariable ("x", randUniform ()) ;

a[i)->setAgentVariable("y", randUniform()) i

a[i)->setAgentVariable("z", randUniform());

AgentPopulation - The AgentPopulation class is responsible for the

specification of global variables, uploading and translation of the agent update

script into compliable Cg code and the processing of simulation steps. The

names of global variables are set by passing an array of variable names to an

AgentPopulation object. Once the names have been set the global

variables themselves can be specified as in the example below where N

3. GPGPU SWARM MODELLING 40

represents the agent count, ENV_size represents the upper bound and lower

bound (-ENV _size) size of the environment and cOMM_radius indicates

the range which agents communicate over.

AgentPopulation* population =

new AgentPopulation(as, N, ENV_size, COMM_radius);

Iiset global variables

char* global_variables [] {"STEER_SCALE"};

population->setGlobalVariables(l, global_variables);

population->setGlobalVariable("STEER_SCALE", steer scale_value);

Agent data is uploaded by passing an array of agent data to an

AgentPopulation object. The below example shows this, in addition to the

setting ofa plain text agent update script and the stepping of the simulation'S'

times. Alternatively, the simulation can be stepped a single time by using the

step method.

population->uploadAgentData(a) ;

population->setAgentUpdateScript("update.abgpu")i

population->stepN(S) ;

3.1.3 Scripting Agent Behaviour

During the agent update stage, behaviour is specified though the use of an agent

function, which uses a C-like scripting syntax. The agent function, which is always

called agentMain, represents a function which is applied to every agent in parallel

and therefore accepts a single agent instance as its first argument and returns a single

agent instance representing the updated agent. This agent instance is specified using a

C structure, which contains a variable for each agent memory variable, specified in

the API's AgentSpecification object. Within the agent function, agent

variables can be accessed directly from this agent structure as each reference to a

variable is later mapped to a texture space using the AgentSpecification' s

mapping function. In addition to a single agent instance, the main agent function also

accepts a GLOBALS structure containing each of the global variables specified in the

3. GPGPU SWARM MODELLING 41

API's AgentPopulation object. As with agent data these can be accessed directly

and are later translated into GPU memory space. With respect to communication,

agent scripts use two placeholders FOR_EACH _AGENT_A, and END _ FOR_EACH as

place holders for the communication algorithm (discussed in the next section), which

efficiently iterates agent data within the interaction range. Between these two

placeholders the agent function may make reference to an agent structure 'a' that

represents an agent within the population (excluding the current agent instance) which

is being iterated. Figure 5 shows an example of an agent update script which

corresponds with the agent specification in the previous section.

stl'uct agent{
float x;
float y;
float Z;

};
sLrucl globals{

float STEER SCALE;
}; -

agent agentMain(agent IN, globals GLOBALS)
{

}

float average~osit on x ~ O.Of;
float average~osit on_y ~ O.Of;
float average_posit on z O.Of;
float count ~ 0;
//Iterate agents
FOR EACH AGENT A
{- - -

}

average_position_x
average_position_y
average_position_z
count +~ 1;

END_FOR_EACH
I/Calcu:a~e ~veragt'

if (coun t > 0) {

+~ a.x;
+~ a.y;
+~ a.Z ;

average_position_x /~ count;
average~osition_y /~ count;
average position z /~ count;

} - -

//Move ager.t
IN.x +~ average~osition_x • STEER_SCALE;
IN.y +~ average~osition_y • STEER_SCALE;
IN.z +~ average~ositior._z • STEER SCALE;

return IN;

Figure 5 - A simple agent script using ABGPU scripting.

3.1.4 Agent Communication

Agent communication over a limited range requires a spatially partitioned data

structure, which keeps track of all agents located within it. Agent communication can

3. GPGPU SWARM MODELUNG 42

then be achieved by consulting all agents within an agent's own and neighbouring

partitions and using a radial test to see if the agent is within the interaction radius. On

the CPU this task is trivial and each agent in a partition can be stored as a linked list.

On the GPU this is significantly more difficult, as dynamic storage sizes are

unsuitable for parallel computation. The spatial partitioning implementation in

ABGPU is achieved by first generating a unique sort identifier (based on the partition

an agent is located within) for each agent, along with a pointer to the agent's position

in 20 (agent) texture space [KSW04]. This identifier is then used to sort the pointers,

which are mapped to a 20 texture, and reorder the agent data in order to increase the

cache hit rate during later stages. In early implementations of ABGPU a simple

bitonic sorting algorithm based on Purcell 's [PDC+05] sort routine was used. A

modified version of GPUSort [GRtf"05] has since been adopted and improves upon

the performance of the sorting stage significantly. This has been adapted for use

within ABGPU by altering the comparison routines which were previously only

suitable for unique key identifiers.

• 3
4

8
1

7

11

Partition

2
3
4
5
)

/

Il
~

) .
1

First Last
agent agent

1 2

3 4
5 6

7 7

8 8

Figure 6 - An example of a 2D partitioned space ("1.1\) containing sorted agents (black).

The matrix to the right holds the first and last message in the partition which is used to iterate

messages. For example, an agen t in partition space 1 0 iterates 9 partitions (~.6." ') 111.1 I 13.1-4.1 "i)

to ensure all agents (5,6,7,8) within the potential interaction range are examined.

Agents are ab le to perform a linear search between agents in the same partition by

iterating to the left and right of their virtual (all data is physica lly stored in 20

textures) 10 linear position in the sorted agent list, until the sort identifier changes. In

order to communicate with agents within the interaction range, but contained within a

3. GPGPU SWARM MODELLING 43

neighbouring partition, the start and end position of agents within the sorted list must

be calculated and stored in a matrix (which is referred to as a partition boundary

matrix). This then allows the same linear search to take place in all neighbouring

partitions (26 in a 3D environment and 9 in a 20 environment), guaranteeing an agent

communicates with every other agent within its interaction range (a simple 20 case is

presented in Figure 6 above).

The method used for dynamically generating the start and end position of each

spatial partition requires a scatter operation. As scattered write support is unavailable

within Cg shaders, this is achieved by rendering N (where N is the agent population

size) point primitives positioned in a regular grid into a viewpoint with an output size

that matches the partition boundary matrix. Vertex texture fetching then allows each

point primitive to lookup an agent sort value, which is compared to the previous sort

value to find the start of a spatial boundary. The same vertex program is also used to

perform the linear search to find the end of each spatial boundary, which avoids the

process being repeated for every agent who examines the partition. Once found, both

the start and end position of agents within a partition boundary are scattered into the

partition boundary matrix by changing the point primitives location and assigning the

agent's position to a multi-texture semantic. Although the output size must be equal to

the partition matrix size (which ensures a fragment operation is invoked for each), the

storage mechanism for the matrix does not necessarily require a 3D texture for 3D

simulations. As 3D textures have limited hardware support with no significant

performance advantage, a 3D position is instead mapped into 20 space and stored in a

large 20 texture. For an interaction radius' i', in an environment space 'e', between

o and 1 all partition boundary values can be stored within a 20 texture of size

ce i 1 ('.j (1/ i 3). This provides over 4 million total partitions when the maximum

20 texture size of2048 is used, and considerably more on newer GPU devices. Figure

7 demonstrates the complete steps of the algorithm including the agent update.

Texture space inputs and outputs are indicated between each stage.

3. GPGPU SWARM MODELLING 44

As<III Doll Texture [0 ... 11 w ...

Figure 7 - Render passes and data bindings for a single update step of ABGPU.

3.1.5 Visualising Agents

ABGPU provides inbuilt visualisation, which allows agents to be rendered as simple

OpenGL points using the cross platform Glut libr~. This can be used to provide

visualisation by including the Pointvisualiser. h header file and by invoking

the initialisation function (ini tPointVisualiser) and entering the main glut

rendering loop (glutMainLoop). In addition to this, two techniques extend the

basic rendering to provide more advanced representation of agents. The first of these

(Figure 8) uses the same technique as the inbuilt primitive point rendering, where

instead of a point, a low polygon count model for each agent can be rendered into a

single display list. In this case each triangle primitive is rendered at the origin with

multi-texture coordinates reflecting an agent position in (i, j) agent space. A vertex

shader then looks up agent positional and velocity memory variables, which are used

to translate and rotate the object accordingly. As an entire population represented as

simple objects contains relatively few OpenGL draw calls in total, the entire

population can be stored in a single display list. For more advanced agent

representations, where individual model sizes become much larger, this technique

quickly becomes unsuitable. In such cases it is necessary to store only a single model

6 http://www.opengl.org/resourcesllibraries/glutl

3. GPGPU SWARM MODELLING 45

representation in a display list. The single display list is then called for each agent

with the multi texture coordinate value set before the display list is called, allowing

each instance of the model to be translated by a differing set of agent values.

Figure 8 - 65,536 Interacting fish at 30 Frames Per Second.

Agents are rendered using a single large display list and a simple model containing 66 faces.

With the previous technique every individual of the population is rendered with the

same detail level. A more suitable technique is to therefore apply a Level of Detail

(LOD) rendering system which varies the agent s fidelity, depending on distance to

the viewer. This is achieved through the use of a generalised feedback system,

available for retrieving data about the agent population without CPU read-back from

the graphics card. Parallel reduction is used to reduce values in agent space to singular

values for a number of common reduction functions such as minimum, maximum,

sum and count. For the purposes of a LOD system is it required that the total number

of each detail level is known. An agent variable therefore is used to hold a LOD level

and is calculated during the agent update stage. A reduction function for each detail

level then uses a filtered count function, counting only the number of occurrences of

the specified detail level. This IS demonstrated below where three

3. GPGPU SWARM MODELLING 46

FeedbackVariable object instances are used to count the specific number of

occurrences of the value specified by the fee dbackCountN variable.

//Feedback

FeedbackVariable lodl , lod2, lod3 ;

lodl.feedbackType = FEEDBACK_COUNTN;

lodl . feedbackVariab le = "lod" ;

lod l . feedbackCountN = 1 ;

lod2.feedbackType = FEEDBACK_COUNTN ;

lod2 . feedbackVariable = "lod" ;

lod2 . feedbackCountN = 2 ;

lod3 . feedbackType = FEEDBACK_COUNTN ;

lod3 . f e edba ckVariable = "lod" ;

lod 3.feedbackCountN = 3 ;

FeedbackVariable feedback_variables [] = {lodl , lod2, lod3} ;

AgentFee dback* feedback =
new AgentFeedback(3, feedback_variables, population);

float3 lod_counts ;

feedback->getFeedback(lod_counts) ;

p opula tion->s etDistanceSortVariab le("lod") ;

After the parallel reduction is complete, the agent data must then be sorted according

to the LOD levels (shown above). This ensures that when calling a display list for

each detail level, the number oftimes reported by the feedback step matches the detail

levels to the agent data. Whilst this technique is computationally more expensive due

to the secondary sort, it allows a massive reduction in rendering overheads when high

resolution models are required. This technique is demonstrated in Figure 9 and Figure

10 and shows fish and pedestrians respectively, coloured by their corresponding

LOD. Additionally, the same technique can be applied to achieve variance in agent

representation. In this case, varying agent models, each with an associated value, are

used within the population with the value used as feedback and the sorting key. This

3. GPGPU SWARM MODELLING 47

also allows simultaneous LOD rendering, as long as each LOD and unique

representation combination has an associated identifier and display list containing the

draw calls.

Figure 9 - A population of 16,384 fish agents rendered with the LOD system.

Figure 10 - 65,000 fully interacting agent based pedestrians rendered by LOD level.

3. GPGPU SWARM MODELLING 48

3.2 Case Studies

In order to evaluate ABGPU with respect to performance and flexibility of modelling

swarm systems, both a Boids flocking simulation and pedestrian dynamics model

have been implemented. In both cases the results are obtained from a single PC, with

an AMD Athlon 2.51 GHz Dual Core Processor, 3GB of RAM and a GeForce 8800

GT. As the performance of any swarm model is highly dependant on the complexity

of the behaviour, the number of agent variables and the agent communication radius,

comparisons with previous work are limited to that which most closely resembles the

work described. A more general comparison with more diverse approaches for swarm

modelling is considered later in the discussion section of this chapter.

3.2.1 Implementing the Boids Model in ABGPU

The Boids model, used to demonstrate the functionality of ABGPU, is adapted from

Reynolds' original model [Rey87] with the introduction of a goal rule, implemented

using global variables. The agent specification consists of seven variables, an x, y and

z component for both position and velocity and a LOD variable, used to hold the

agents current detail level. The global variables controlling the goal point are

potentially set after each simulation step by considering random variables. If this

variable is below some threshold the goal point is moved to a new position within the

environment bounds. Global values are also used to control agent interaction, though

the setting ofa number of weights which control each of the Boids rules. The uhimate

behaviour of the Boids is determined though a steer vector, which is the summed

weight of each rule, also bound to a maximum threshold to preserve a maximum

speed within the simulation. Animation of the fish agents is achieved through the use

of a vertex shader. This uses texture indices passed from the agent population to allow

the agent data to be used to first offset the agents to the correct position, and then

orientate vertices and normals about two dimensions, with a restriction on positive

and negative vertical inclination. Finally, the same vertex shader is used to provide

some animation of the fish bodies, with the body being displaced along its length

through a sine wave, giving the effect of swimming through the water. Finally, a

3. GPGPU SWARM MODELLING 49

simple menu system is used to control the rule weights, which in turn affects the

behaviour in real time.

3.2.2 Evaluation of the Boids Model

Figure 11 shows the recorded performance of the Boids model in ABGPU using a

number of communication radii, in an environment clamped between the range of 0

and I and no visualisation. The FPS readings were obtained after the simulation had

run for some time, allowing any local groups to form and to avoid the influence of the

Boids initial random positions and velocities. The performance results are capped at

200 FPS maximum and each communication radius is only demonstrated to the

largest population able to sustain over 5 FPS. With an interaction radius of between

0.03125 and 0.0078125, it is possible to simulate 65,536 Boid agents at 60 FPS. Erra

et al. [EDCST04] simulated the same number of agents at less than 5 FPS. The results

shown indicate that ABGPU is able to render up to a million agents at 5 FPS without

visualisation. It does, however, have to be noted that the simulation can only sustain

this rate when the weight of the single goal rule is significantly small enough to allow

multiple local groups to form. Likewise, Erra [EDCST04] included interaction with 5

static scene objects and one dynamic one, which currently are not included in ABGPU

performance tests. Such behaviour could however be incorporated through the use of

global variables.

3. GPGPU SWARM MODELLING

220
210
200
190
180
170
160
150
140
130

(/) 120
a. 110
u. 100

90
80
70
60
50
40
30
20
10

-+- 0.0078125
-- 0.015625
-- 0.03125
-- 0.0625
-- 0.125
-- 0.25

o +-------~--------~--~~--~------~--------~------~

o 200 400 600 800 1000 1200
Sqrt Agent Population size

Figure 11 - Recorded performance of various communication radii.

FPS were recorded over multiple frames.

50

Adding point primitive and low polygon count visualisation to the simulations

described above has very little effect on the performance of most population sizes. In

most cases a maximum of 5-10% drop in frame rate is observed, however, as

population sizes begin to exceed 16,384 a more substantial performance penalty is

reported . In fact , with a communication radius of 0.03125, 65,536 agents can be

rendered as simple fish sustaining 30 FPS (Figure 9) and as point sprites at 50 FPS. In

contrast, this is substantially more than the reported performance of previous

hardware assisted Boid ' s models, the most impressive being Reynolds [Rey06]

reporting 10,000 agents at 60 FPS. When rendering using higher resolution agents

with a LOD system, the performance is obviously reduced due to the additional

feedback and sorting stages performed before rendering (discussed in more detail in

the evaluation of the pedestrian model). Despite this, 16,384 agents with a maximum

detail level of 1,500 polygons can be rendered at over 30 FPS (F igure 12). The

majority of the performance slowdown is attributed to the secondary sort, rather than

the LOD feedback which makes little overall performance difference.

3. GPGPU SWARM MODELL! G

Figure 12 -16,384 agents with a maximum detail level oft,SOO polygons rendered at over 30

FPS.

3.2.3 Agent Based Pedestrian Dynamics in ABGPU

51

In order to eva luate the performance of ABGPU within a 2D environment, a

pedestrian dynamics simulation has been implemented. The decision to do so is

influenced by the requirement of massive scale pedestrian models required in large

scale serious games. The pedestrian behaviour itself is influenced by both Reynolds'

work [Rey99] and Helbing's social forces model [HM97] , with the exact rules being

somewhat of a hybrid. The following equation (Equation 2) is able to describe the

force exerted on each pedestrian during the update stage, for all examples within this

chapter.

Equation 2 - Helhings social forces model.

Fi = R, + Cr, + G, + Mi

The total force (expressed as a two component x and y vector) exerted on each agent

Fj, is the result of a social repulsion force Rj, a close range interaction force Crj, a

short term goal force G j and an environmental force M j • This force is then used as a

3. GPGPU SWARM MODELLING 52

directional steering force to make some change to the pedestrian internal velocity.

This altered velocity is then checked to ensure it does not exceed the pedestrian's

maximum velocity, and if required the velocity is normalised accordingly. The social

repulsion force gives preference to events in the direct line of sight (as in Helbing's

[HM97] model). In Equation 3, the symbol A. demonstrates this preference by

representing a scalar value indicating the size of angle between the pedestrian i's line

of sight and pedestrian j's position. As in Reynolds' work [Rey99] agents are given a

limited vision, which filters agents outside their field of view. Equation 3 describes

the force Rj where the letter j represents only agents from within the limited vision

filter.

Equation 3 - Equation describing tbe force applied to pedestrian agents with limited vision

The static value S indicates a scalar value controlling the global influence of the social

repulsive force. The positions P j and Pj represent the vector positions of agent i and j

respectfully, and the distance between them represents the directional force vector

between the two agents. This repulsive force is scaled by the inverse square of the

distance between the two pedestrian agents. The value D is used to scale the effect of

the inverse distance effect, and within the examples presented in this chapter, has

been adjusted depending on the interaction radius between agents. Unlike the social

repulsive force, the force Crj is independent of the direction between agents. Its

influence is over a far smaller radius and rarely has affect, unless there is a high

concentration of agents, in which it acts mainly as collision avoidance. The force G1

acts as an influence towards a specific goal point in the environment. In the case of a

random walk the goal position is directly in front of the pedestrian encouraging them

to follow their current path. It is however possible to integrate longer range navigation

by using a global variable array to hold information about the environment.

A global variable array (or map) is defmed as a standard global variable (Section

3.1.2), however its value is set to an instance of a Global VaribleMap object as

demonstrated below.

GlobalVariableMap* map new GlobalVariableMap(array_size) ;

3. GPGPU SWARM MODELLING

for (int i=Oi i<array_sizei i++){

float4 map_data = {r, g, b, a};

map->setMapDataValue(i, map_data) i

p->setGlobalVariableMap(lglobal_map_variable", map) i

53

Using this technique it is possible to encode an environmental force field [CM05],

which can be used to direct agents away from static obstacles. This avoids the

expensive computational process of comparing each agent and obstacle combination

as described in Helbing's original model [HM97]. Global array maps are stored on the

GPU in 20 textures and as a result up to 4 float values (r, g, b and a above) can be

stored in each data map value (shown above). As the granularity of this environmental

force field texture is independent from agent interaction, large grained force fields can

be used, providing they have sufficient detail to capture the smallest static obstacle.

For the purposes of encoding a force field, the first two components of the array (red

and green) are enough to hold a directional velocity. The remaining components in the

experiments presented have been used to store either a greyscale image value or an

identifier used to zone the environment into unique areas. Figure 13 demonstrates a

complex force map representing the Peace Gardens area of Sheffield city centre. The

results of a pedestrian simulation compared to satellite imagery are also show in

Figure 14.

3. GPGPU SWARM MODELU NG 54

Figure 13 - A Force Map encoded into the red and green channel of an image, representational of

Sheffield Peace Gardens.

The satellite image is stored as a greyscale value in the blue channel.

Figure 14 - Satellite imagery of Sheffield Peace Gardens (Left) and the ABGPU simulation

(Right).

Zoning the environment into unique areas offers the possibility of simulating long

range path planning. This is achieved through the use of three global variable maps as

show in Figure 15. Within Figure] 5, the top image represents an environment, which

contains a narrow opening between two zones (1 and 3). The global variable map

shows the force field values (red and green channels) as well as the zone value (blue).

The two additional 2D data sets encode, frrstly, a navigation lookup grid, which

indicates the next zone to move into in order to reach a particular long range zone

(horizontal) . Secondly, a set of data is required to store an x and y (goal) point value

3. GPGPU SWARM MODELLING 55

for each of the zo nes. These are used to determine a point of interest which the agent

will move towards. The second zone in this environment ensures that pedestrians

intell igently pass through gateways avoiding a situation where there des ired path is

blocked. This is shown in Figure 16, which contains roughly 2,000 pedestrian agents.

Zone 1

.,.... N ('t') x >-
<l> <l> <l>
c c c
0 0 0
N N N

ro ro
0 0
(!) (!)

Zone 1 - 2 2 Zone 1 0.5 0.0
Zone 2 1 - 3 Zone 2 0.5 0.5
Zone 3 2 2 - Zone 3 0.5 1.0

Figure 15 - A simple illustrative zoned environment encoded into an image, with corresponding

data tables.

Figure 16 - Zoning around a congestion point where Black to White boundaries represent walls.

3. GPGPU SWARM MODELLING 56

As with Boids modelling, animation has been implemented for pedestrians as they

move around the environment. Key-framing provides an ideal animation technique as

it is computationally cheap and is easily capable of representing simple human

locomotion. Through experimentation it is evident that reasonable walking behaviour

can be achieved through interpolation between only two key frames. For improved

fidelity mUltiple key frames can be used, however as all draw calls are stored in a

single display list, it is necessary to store the positional and normal information for

each key frame model in the list. Whilst this has a visually improved effect on

animation of close pedestrians, the overall performance degradation makes

interpolation between two key frames the preferred option.

3.2.4 Evaluation of ABGPU for Pedestrian Dynamics

Simulation performance of the pedestrian model is evaluated by increasing the

population size whilst maintaining a roughly static population density. Figure 17

demonstrates the population density by showing the number of pedestrians considered

for communication (lookups) and the number actually inside the pedestrians'

communication radius (communications). As the population density is constant, the

communications to lookup ratio remains at roughly 35% in all cases. Figure 18 shows

a performance chart which demonstrates the effect of increased population size on

performance. Two pedestrian vision (or interaction) radii are used, the fll'st of 4m is

suggested in Helbing's work [HM97], whilst the second 32m radius acts to

demonstrate the performance in cases of longer range social force planning or higher

congestion population densities. In both cases an environment force map is used to

simply direct pedestrians away from the outer edges of the environment. From the

results it is clear that the simulation performance which includes rendering (with a

low polygon count model) is suitable for large population sizes. More specifically,

interactive population sizes of 262,144 pedestrians can be maintained at 13 FPS, or

65,536 at 42 FPS for a 4m pedestrian vision.

3. GPGPU SWARM MODELLING 57

400 ~--~
_ Lookups
o Communications

4 8 12 16 20 24 28 32

Pedestrian Vision (m)

Figure 17 - Pedestrian vision compared to pedestrian lookups and inter-agent communications.

550

500

450

~ 400
en
c..
!::. 350
u c
8 300
Q)

en
Q; 250
c.
V>

~ 200
~
u.. 150

100

50

0
64 256 1024 4096 16384

Pedestrain Count

65536

4m vision
_ 32m vision

262144 1048576

Figure 18 - Simulation and rendering performance for primitive agents with 4m and 32m vision.

As with the rendering of Boids, the pedestrian model has been simulated using the

LOD rendering technique. Figure 19 demonstrates the performance of the pedestrian

simulation with various geometric representations, ranging from a simple billboard

through to a model containing over 1,000 polygons per pedestrian (detail level 2).

Using only the highest detail model 16,384 pedestrians can be simulated and rendered

3. GPGPU SWARM MODELLING 58

at over 40 FPS, where as the more modest pedestrian representation of 400 polygons

(level I) achieves a performance of 67 FPS. Despite the additional cost of calculating

the LODs and reordering the agent data, the more intelligent dynamic LOD rendering

is able to achieve 50 FPS for the same population size. The results indicate that the

dynamic LOD approach outperforms the use of the highest resolution model for all

population sizes above 1,024. Below this number the cost of the additional LOD

calculations is outweighed by the ability to render the entire population using the

highest resolution model at over 200 FPS. With respect to previous pedestrian

modelling work the performance of the simulations in this chapter are beyond that of

existing social forces implementations [CM04, CM05]. Whilst improvements in GPU

hardware have some part to play in this, the decision to maintain data storage and

simulation entirely on the GPU plays an important role.

500

450

400

en 350
a..
!:!::.
-g 300
8
~ 250
iii
c.
f/) 200
Q)

E
s: 150

100

50

0
64 256 1024 4096 16384 65536

Pedestrian Population

-Billboards

- Detail Level 0

Detail Level 1

- Detail Level 2

- Dynamic

262144 1048576

Figure 19 - Simulation and rendering performance for advanced pedestrian rendering at various

detail levels.

3.3 Discussion

Arguably the most significant difference between ABGPU and other hardware

assisted agent based swarm systems [Rey06, EDCST04], is the neighbourhood

heuristic and consequently the number of agents considered for communication. Both

3. GPGPU SWARM MODELLING 59

Erra's [EDCST04] and Reynolds' [Rey06] implementations favour an N-Nearest

neighbour solution in opposition to the communication radius technique used within

this thesis and that of the original Boids paper [Rey87]. Additionally ABM GPU

work by D'Souza [LD08], continuum based pedestrian dynamics [TCP06], and the

collision detection systems by Green [Gre07] perform significantly fewer

communications than the agents described in this thesis. In the case of D'Souza

[LD08] a real time performance of 2 million agents is reported, however agents are

placed within a 2D discrete environment with only a 9x9 vision filter. Continuum

approaches [TCP06] use significantly less lookups as pedestrians are not agent based

and instead are averaged to produce a dynamic discrete force grid. The performance

of Green's [Gre07] physically based particle demonstration, which uses the same

spatial partitioning technique as ABGPU, is slightly higher than the results presented

within this chapter. This is most likely as a result of utilising the CUDA radix sort and

scattered write support for the generation of partition boundaries. The use of this

CUDA technique is adopted within later chapters which favour CUDA's flexibility

and simple programming interface for more generalised ABM.

3.4 Summary

In summary this chapter has presented a novel framework for ABM of swarms on the

GPU. Both flexibility and performance have been addressed with case studies out

performing previous attempts at swarm modelling on the GPU and similar hardware

architectures. The implementation of ABGPU does not use vendor specific libraries or

functionality and instead favours traditional GPGPU techniques. This makes ABGPU

particularly suitable for computer game environments. Future chapters sacrifice this

portability for flexibility and consider the use of more robust GPU programming

techniques, which allow the simulation of AB systems which extend beyond that of

simple swarms.

4. FLEXIBLE ABM FOR THE GPU 60

Chapter 4

Flexible ABM for the GPU

The previous chapter looked at a swarm implementation of ABM on GPU hardware.

It demonstrated that the GPU is able to simulate swarm systems with very high

performance. This chapter builds upon this to describe a framework for more general

and flexible ABM. More specifically, this chapter addresses the limitations of

ABGPU, which can be summarised as follows;

• All agents are homogeneous and require slow conditional branching to achieve

heterogeneity;

• Only a single agent type is supported;

• Only a single update step is supported; and

• Only static agent popUlations are supported, where the size of the population is

restricted by power of 2 texture limitations.

Rather than address these issues through continuing the development of ABGPU a

more flexible approach has been adopted. The FLAME framework [CSH06, Coa07,

ACKM08] is used as a starting point for this work as its focus on parallel agent based

modelling makes it an ideal candidate for GPU implementation (FLAME GPU).

Technically little remains of the original FLAME implementation, other than the

concept of template generated code and the use of the X-Machine for formal model

4. FLEXIBLE ABM FOR THE GPU 61

specification. The decision to tag this work with the FLAME name, rather than

producing an entirely new X-Machine framework, is due to the decision to maintain,

as closely as possible, the FLAME style XMML syntax and code template format.

The advantage of this is that FLAMEs existing user base are able to transfer models

from standard FLAME to FLAME GPU relatively easily (this chapter provides a

guide in Section 4.3.2). Likewise, the extension of an open framework and

specification technique, promotes the notion of a unified modelling environment.

This chapter first reviews the FLAME framework and highlights a number of

limitations. The revised extendable specification technique and templating system are

then presented as is the process of generating CUDA compatible code. The decision

to use CUDA and the implementation on the GPU is discussed in the following

chapter.

4.1 The FLAME Framework

Technically the FLAME framework is not an ABM application it is instead a template

based simulation environment that maps X-Machine models into simulation code

(Figure 20). In order to speciry X-Machine agent models, a variant of the X-Machine

Description Language (XMDL) [KKOI], called X-Machine Mark-up Language is

used (XMML). This uses XML syntax to fully speciry both agent and message

structure and function order and dependencies. Within this syntax agents are

described as X-Machines (or X-Agents, with messages forming inputs or outputs for

each state transition function. Models are converted to compliable simulation code

through the use of a custom built parser (the XParser), which inputs template files and

model files to produce C code. This can then be compiled using any standard C

compiler and executed by specifying a fixed number of simulation steps. The

simulation code produced also contains 10 functions for reading in the initial states of

agents and outputting simulation steps to XML.

4. FLEXIBLE ARM FOR THE GPU

XMML
Model File ~

~~:o
Code

Templates

• Simulation
Code

~

Figure 20 - The FLAME simulation process

•

XML Input
States

Simulation
Program

XML Output
States

62

FLAME simulations are processed by stepping through agent functions in an order

determined by dependencies on communication or internal memory. Function

dependencies are expressed within the XMML function definitions and processed by

the X-Parser. The X-Parser is then able to determine function order by separating

functions into layers which act as global synchronisation points. For communication

dependencies between functions a separate layer is required, which ensure message

lists are fully populated and avoids race conditions. For internal dependencies no

global synchronisation is required, as the ordered functions are processed linearly

until the next synchronisation point (level) is reached.

4.1.1 High Performance Computing and FLAME

Compute clusters represent the most common of to days HPC architectures (according

to the top 500 supercomputer list, www.top500.org) and are built from a large number

of independent processors communicating over dedicated fast network hardware.

Communication is achieved through message passing libraries, which distribute

messages efficiently between processors. Vendor specific message libraries include

IBM' s Message Passing Library (MPL). However, the more generic Message Passing

Interface (MPI) library is far more common. Cost effective scalability of clusters is

easily achieved, as nodes (processors) may simply be added to the network. Likewise

home-built or Beowolf clusters are also easily achievable, with reasonable sums of

4. FLEXIBLE ABM FOR THE GPU 63

money using standard computer parts and free Unix operating systems [Bro09].

FLAME has been extensively developed for use with task parallel cluster

architectures by the Science and Technology Facilities Council (STFC) as part of the

Eurace project (www.eurace.org), which focuses on the modelling of economic

market models. As part of this work, FLAME has been substantially tested on

numerous high performance architectures and common C compilers. Numerous

improvements have been made to the FLAME library including bug fixes,

optimisations of simulation code and improvements to the clarity of the code

templates [CGW07, WG06]. In order to distribute agents across processing nodes,

agents are split according to spatial partition, which distributes them evenly at the

beginning of the simulation. Each node examines messages to determine if their range

extends into neighbouring partitions. If it does, the message is communicated through

the use of a message board library, which communicates messages in batches rather

than independently. This ensures maximum performance minimising the start up costs

associated with communication. Aside from the distribution of messages that overlap

spatial boundaries the processing of agent functions is much the same on a single

processor as for serially processed model. A single processor executes the simulation

by traversing the agent function layers, serially processing each agent in tum. Figure

21 represents the performance results of testing a benchmark model (referred to as the

Circles model) used for "force resolution" [Coa07]. The model itself consists of a

simple iterative solver, where each agent is represented by a fixed radius sphere which

exerts a repulsive force on its neighbours. The HPC architectures used for

benchmarking consist of the following;

SCARF - A cluster of 360 2.2GhzAMD Opteron cores connected via a gigabit

network and Myrinet low latency interconnect.

HAPU - A HP cluster with 1282.4 GHz Opteron cores with a Voltaire InfiniBand

interconnect.

NW-GRID - A cluster of 32 Sun x41 00 server nodes with two Dual core 2.4 GHz

Opteron processors.

HPCx - An IBM cluster of consisting of 160 clusters of 16 1.5 GHz POWER5

processors connected via an IBM high performance switch.

4. FLEXIBLE ABM FOR THE GPU

3000

2500

~
Q.

c75 2000
Q)

E
f=
§ 1500
~
:;
E

~ 1000
c;,
c
en

500

0 ~--~~~~~~~~~~~-=9===~--~--~
o 10 20 30 40 50 60 70 80 90 100

Number of Processors

-- SCARF ---- HAPU NW-GRID -- HPCx

64

Figure 21: The performance of the Circles force resolution model on a number of computing

clusters used for benchmarking.

4.1.2 The Limitations of FLAME

The FLAME framework is used by numerous researchers from various disciplines

mainly at the University of Sheffield. It has been included in major research projects

such as the Epitheliome Project and EURACE7 and is continually under development

and use. As a result of the multi-user base there have been a number of additions and

deviations from the original FLAME specification which have been tailored towards

specific projects or models. In addition to this, the widespread use and adaptation of

FLAME have highlighted a number of issues, or areas of improvement, which can be

summarised as follows.

1. FLAME' s parallel implementation for cluster architectures is only suitable for

researchers with access to the specialist hardware;

2. The templating system (XParser) is hard coded and unable to cope with

changes to the XMML model syntax; and

3. Visualisation of small models is only available offline by reading each

simulation output.

7 http://eurace.org/

4. FLEXIBLE ABM FOR THE GPU 65

In addition to the availability issue associated to compute clusters, they are largely

cost prohibitive and difficult to maintain. FLAME does not currently have any multi

core support and as a result many FLAME users resort to the serialised single PC

implementation, negating the benefits of using a parallel inspired framework.

Likewise, models designed and tested using the single PC implementation often

integrate external non parallel simulation code which can not be directly ported to

HPC architecture at a later date, should they become available. One example of this is

the use of physical solvers for inter-cellular force resolution. This is discussed and

used as a case study in Chapter 6.

The inflexibility of the XParser makes extending the XMML syntax particularly

difficult. Each time additional XML elements are added to the XMML specification

the XParser itself must be modified to recognise the extensions. During the

development of FLAME for the GPU this proved particularly unproductive, as

relatively simple changes required considerable development time and additional

testing. This process leads to many different versions of the XParser, which may

become highly specialised by users with particular modelling requirements or

extensions. In each case a new XMML schema or Document Type Definition (DTD)

may be defined along with a corresponding set of template files. As versions of the

XParser diverge it is impossible to be sure if old or modified templates will result in

error free code, a problem that is exasperated by the lack of XML validation support

in the XParser. This is addressed within this chapter through the use of an extendable

XMML specification format and templating system.

Finally, the relatively poor performance of FLAME on a single machine and the

distributed nature of HPC implementations limit the suitability of FLAME for real

time visualisation. Essentially the FLAME application runs on either a parallel grid

or single machine (at an obviously slower speed) and for each discrete time step

outputs an XML file representing the state of all agents in the system. Whilst OpenGL

visualisations are possible using the 'X-visualiser', it is severely bandwidth limited,

due to the slow transfer throughput of both reading from the hard drive to main

memory and uploading each frames data to the GPU. With even the CPU memory to

GPU memory bandwidth considered slow for real time applications, the bottleneck of

hard drive access [sat04] highlights a clear bandwidth limitation to this approach of

real time visualisation.

4. FLEXIBLE ABM FOR THE GPU 66

4.2 An Extendible X-Machine Agent Specification

Whilst not explicitly required in previous versions of FLAME, XML syntax checking

(or XML validationS) is vitally important as it acts as a firewall against diversity

[vdV02] ensuring model files contain only expected content. This guarantees that

FLAME simulation templates can be processed without the possibility of unexpected

XML content or absence of important model information. Within FLAME DTDs have

previously been used for this role, however this thesis proposes the use of an

extendable XML Schema approach which is inspired by 00 extension mechanisms.

Extendibility is important, particularly as FLAME is continually under development

with multiple projects each adding their own degree of configurability to the XMML

syntax. In addition to offering the potential to manage extensions to XMML model

format, XML Schemas are themselves XML based and can hence be validated in the

same way that documents using the schema can be.

This section describes the 00 properties of XML Schema and the methods which

are used to allow flexible extensions. It goes on to describe the implementation of a

GPU XMML Schema (GPUXMML), which allows polymorphic extension of a well

defined base XMML Schema. The content of the base XMML Schema is itself based

upon the XMML syntax used in recent versions of the standard FLAME framework.

It has been designed through deliberation with other FLAME users to ensure

maximum compatibility and minimal changes.

4.2.1 Object Orientation within XML Schema

XML Schema represents a powerful means by which to express XML data structure,

which draws strong parallels with 00 Design. This is made possible through the use

of reusable type definitions, which are analogous with classes in the same way that

XML elements assimilate objects. A number of predefined type definitions such as

string, int, double are available in order to specify the content or legal value of

XML elements or attributes. Likewise, user defined simple types can extend these

'primitive' types through derivation. Such derivations include the following;

B Validation with respect to XML refers to legal syntax rather than the modelling and simulation term, which refers
to testing if the correct model has been built.

4. FLEXIBLE ABM FOR THE GPU 67

• Restriction - Types may be restricted by maximum or minimum length or

by use of regular expressions;

• List - Types may be limited to a list of legal values. Such types are

similar to enumerations; and

• Union - A number of primitive or user defined type definitions can be

used as legal values of the type. User defined types can be either

referenced or embedded within the simple type definition.

In contrast complex types provide a mechanism to specify the format of the

mark-up itself. Data structure can be encapsulated within complex types, which allow

simple reuse of common components. Inheritance of complex types is made possible

through derivation of a base class by either extension or restriction. Extension allows

additional content to be added, whilst restriction allows a subset of the original base

type to be created. As with 00 Design abstract types are supported and may not be

used to define concrete elements within further type definitions. Finally,

polymorphism is supported through the use of substitution groups, which allow a

number of elements within the group to be used in place of an element at the head of

the group. The group head may only be global (i.e. outside of the local scope of some

type definition) and as with types may be abstract to prevent its use directly.

4.2.2 XML Schema Design for Extendible Schemas

Various techniques can be used to design XML Schemas which range in their

simplicity and flexibility (Table 2). The simplest of these is often referred to as a

Russian Doll design and comprises of a highly nested set of elements where only the

root element has a global scope. Whilst very compact, this design technique is highly

self contained and changes made to types within the narrow local scope are not

propagated to other Schemas or global definitions. The ridged structure offers similar

functionality as DTD validation with no way to take advantage of the 00 Principles

discussed in the last section. In contrast, the Flat model (or sometime known as the

Salami Slice design) is highly reusable and consists of globally defined elements

which may be referenced by any other inside or outside of the Schema. In addition to

4. FLEXIBLE ABM FOR THE GPU 68

this, the Flat model is the only technique which offers the ability to exploit

polymorphism through substitution groups. Finally, the Complex Type model (or

Venetian Blind design) consists of a number of globally defined complex types,

which may exploit inheritance by defining extensions or restriction elsewhere inside

or outside of the Schema.

Table 2 - Contrasting XML Schema design methodologies

Encapsulation Inheritance Polymorphism

Russian Doll No No No

Flat By Element No Yes

Complex Type By Type Yes No

4.2.3 Extending the XMML Schema

The major design concern for a flexible XMML Schema is extendibility and as a

result, a hybrid of both the Flat and Complex Type schema designs have been used, to

exploit both inheritance and polymorphism. From an implementation perspective this

requires a reusable complex type definition for each aspect of the base XMML model.

Within the Schema, concrete element definitions for each complex type are defined at

the global scope. These are referenced within other complex types and form the head

of potential substitution groups where extensions may be used. The following code

shows an example of how this technique is used. It describes the global definition for

the xagent type in the base XMML Schema (available in Appendix A.I).

<complexType name ="xagent_type " >

<sequence >

<element name ="name " type="string " naxOccurs =" l "

minOccurs =" l " />

<element name="description " type ="string " maxOccurs =" l "

minOccurs ="O" />

<element minOccurs =" l " maxOccurs ="l " Ie ="memory " / >

<element maxOccurs =" l " minOccurs ="l " Ie ="functions "/ >

<element maxOccurs ="l " minOccurs ="l " lef="states " / >

</ sequence >

</complexType>

4. FLEXIBLE ABM FOR THE GPU 69

Essential non-changeable properties of the model (e.g. name and description) are

defined as elements within the complex type definition. Element definitions, which

use references rather than simple types, or nested definitions, must reference a global

concrete element of the same name. For the xagent example this is demonstrated

below;

<element name ="xagent " type ="xagent_type " ></element >

Once a global element has been defined for the abstract type this may then be

referenced with other element sequences. In the case of the xagent definition this is

referenced by the xagents element which contains a list of xagent elements (with

a minimum occurrence of at least a single xagent).

<element name ="xagents " >

<complexType >

<sequence >

<! - reference to the concrete xagent element -->

<element maxOccurs ="unbounded " minOccurs ="l " ref ="xagent " />

</ sequence >

</ complexType >

</ element >

Within instances ofXMML documents, any reference to a global element is free to

use either the concrete base XMML Schema definition (as above) or alternatively any

other element from within a substitution group where the base case forms the head

(from Schema which extend the base). This is demonstrated below through the

redefinition by derivation through extension of the xagent_type and xagent

element. The use of polymorphism allows the new xagent definition (which

contains two new elements type and buffer size which are explained later in this

chapter) to replace the base definition in any XMML document instance.

<complexType name ="xagent_type " >

<complexContent >

<extension base="xmml :xagent_type " >

<sequence >

<element name ="type " type ="xagent_type_options " />

4. F LEXIBLE ABM FOR THE GP U

<element name ="bufferSize " type ="int " />

</ sequence >

</ extension >

</ complexContent >

</ complexType >

<element substitutionGroup="xmml:xagent " name ="xagent "

type ="xagent_type " / >

70

In the above example (taken from the GPUXMML Schema in Appendix A.2)

ambiguity caused by using the same element and type names is avoided through the

use of namespaces, which are evident through the use of the ' xmml ' prefix.

Technically namespaces allowing a simple method for qualifying element and

attribute names through association with a Uniform Resource Identifier (URI)

reference. This technique allows elements and attributes to be grouped together into

an independent collection, often referred to as a vocabulary. In the case of the XMML

Schemas this offers the important advantage of separating the static base XMML

Schema from the GPUXMML Schema which extends it. The GPUXMML example

above can therefore be contained within a separate document which references the

base XMML Schema through the following code;

<xs:schema id="GPUXMML "

targetNamespace= .. http://www.flamegpu.com/GPUXMML ..

xmlns:xs= '' http : //www .w3.org/2001/XMLSchema '' >

xmlns:xmml = .. http://www.flamegpu.com/XMML .. >

<xs:import namespace= .. http://www.flamegpu.com/XMML .. / >

In the above example the target Namespace attribute refers to the Uniform Resource

Identifier (URI) in which the schema definition is bound to. The prefix of ' xs ' used

within the schema and import element is a result of the XML Schema binding. Both

the XMML base schema and GPUXMML Schema are defined fully within Appendix

A. Examples of two GPUXMML document instances, used as case studies in Chapter

6 are also provided in Appendix B.I and Appendix C.l .

4. FLEXIBLE ABM FOR THE GPU 71

4.2.4 Extensions within GPUXMML

The majority of the extensions which the GPUXMML Schema adds over the base

XMML Schema are a result of the parameterisation of agent functions9 within the

FLAME GPU simulation API. Message and agent, inputs and outputs, must now be

explicitly specified and are additionally limited to a single input and output type

(some versions of FLAME already use full input/output specification in the XMML

syntax and so this has been included within the base XMML Schema). As message

reading is performed by three differing communication patterns (described in Section

5.2) any message specifications must define the partitioning method to be used. The

GPUXMML schema includes a number of elements which are used to define

interaction ranges and environment bounds. Within the FLAME GPU

implementation, memory is pre-allocated, and as a result messages and agents require

a buffer size representing an upper bound on their population size. FLAME GPU adds

the ability to simulate discrete spaced agents (Section 5.2.3) and therefore an XML

element is required for specifying an agent type. XML Elements are included for

random number generation (RNG) within agent functions and indicate that some

RN G structure must be passed to the agent function (Section 5.1. 7). A reallocation

element can optionally be specified as false if an agent function has no requirement to

process agent deaths. Initialisation functions can be defined for the model. These are

functions that exist within one of the agent function files which must be run before the

simulation starts. Such functions are demonstrated later in Section 5.1.5 and are

essential for setting up of global constant variables used within the simulation.

Finally, global conditions add additional functionality which is described in Section

5.1.6. Essentially global function conditions are similar to normal function conditions,

with the exception that every agent must meet the condition for the function to be

processed. Within GPUXMML there are two elements used to limit the maximum

number of times a global condition may be evaluated as either true or false. Later

within this chapter Table 4 gives a summary of the extensions made by GPUXMML

(as well as any additional base XMML Schema elements not present in the original

FLAME OTO)

9 The original FLAME framework used global methods rather than function parameters/arguments

4. FLEXIBLE ABM FOR THE GPU 72

Dependencies, which are used within the original FLAME implementation to

determine function and communication order, have been excluded from the XMML

Schemas described within this thesis. As an alternative, the base XMML Schema

includes function layer XML elements to directly define the function layers, and

hence processing order. Whilst it would be possible to process dependencies during

the template processing stage, the lack of complex dependencies in the case studies

used throughout this thesis is insufficient to justify rewriting of the dependency graph

generator. This is however entirely feasible and is left as future work.

The final addition to the GPUXMML Schema is the use of data relationships

through keys and key references. This is highly advantageous, as it allows a

mechanism to ensure that message and agent name references, used within the model

definition, are defined elsewhere in the instance of the XMML model file.

Table 3 - Keys and relationships within the GPUXMML Schema

Key name Description of Key Relationships (referenc .. ,

xagent_func_name_key X-agent function name Transition Function Name within Function Layers

xagenCstate_name_key X-agent state name Transition Function currentState

Transition Function nextState

X-Agent Initial State

Transition Function X-Agent Output State

message_name_key Message name Transition Function Input Message Name

Transition Function Output Message Name

Table 3 highlights the relationships within the GPUXMML Schema. Whilst it would

be desirable if the relationships could be defined within the base XMML Schema and

inferred for polymorphic substitution, this is not supported in XML Schema and as a

result relationships must be redefined each time an element containing a key is

extended.

4.3 FLAME GPU Code Generation

The simulation code generation within the original FLAME framework is heavily

reliant on template processing through its own template processor (the XParser). The

problems with the XParser have previously been discussed and can be summarised as;

4. FLEXIBLE ABM FOR THE GPU 73

1. The requirement to rewrite 10 code to recognise new XML elements

dependant on changes to the XMML specification;

2. Multiple versions of the XParser existing with no consistency between

versions; and

3. A Lack ofXMML syntax validation support within the XParser itself.

In order to combat these problems this thesis proposes the use of Extensible

Stylesheet Transformations (XSL T) in order to generate simulation code. XSL T is a

flexible functional language based on XML and, as with other XML technologies,

allows documents to be validated against a W3C SchemalO. XSLT documents are

translated through the use of any compliant processor which in the case of FLAME

GPU can convert a GPUXMML model file to compliable code using the predefined

templates. Not only does this remove the dependency on a specific template parser

and avoid versioning issues, but this ensures inclusion of the XMML Schemas

guaranteeing that templates and Schema versions remain compatible. Failure to match

the correct XMML Schema with an XSL T template simply produces a validation

error. In contrast with XQueryll, the other prominent XML based template engine,

there is a significant overlap in functionality with both including XPath functionality

for XML tree traversal. The choice to use XSL T over XQuery is justified by the

stronger focus of XSLT towards document translation, rather than XQuerys focus of

SQL type database querying.

4.3.1 XSL T Templates

XSL T is more prominently used in the translation of XML documents into other

HTML or other XML document formats on the web. Despite this there is no

limitation on the type of file that may be generated from an XSL T template and it is

hence suitable for the generation of source code. As XSL T standards are well defined

there exists a number of compliant processors any of which can be used to generate

the same output (SaxonI2, Xalan 13
, Visual Studio, and even common Web Browsers

such as Mozilla Firefox). In all cases an XSL T processor works by recursively

10 http://www.w3.orgITRlxslt
II http://www.w3.orgITRlxquery/
12 http://saxon.sourceforge.neti
13 http://xalan.apache.orgl

4. FLEXIBLE ABM FOR THE GPU 74

matching XML nodes and applying a template to it. In the case of generating code,

each required source code file uses a single template matched to the root <xmodel>

element of the GPUXMML document. Code generation is then heavily dependant on

the branching and control elements of XSLT which are used to iterate agents,

messages, states and variables. The code sample below (from

header.xslt)demonstrates how the iterative for-each control is used to

generate a C structure for each xagent within an GPUXMML model document. The

select attribute uses an XPath expression to match nodes in the document. Likewise.

XPath expressions are used to match nodes within the value - of attributes and any

other XSL T elements which require XML document querying.

<xsl:for-each select="gpuxmml:xmodel/xmml:xagents/gpuxmml:xagent " >

struct __ align __ (16) xmachine_memory_<xsl:value-of

select= "xmml:name " />

} ;

<xsl:for-each select= "xmml:memory/gpu:variable " >

<xsl:value-of select= "xmml:type " /><xsl:text> </xsl:text>

<xsl:value-of select= "xmml:name " /> ; </xsl:for-each>

</xsl:for-each>

Within the XMML specification there are specific elements which are recursive. One

of these is the use of function conditions which determine if an agent should use a

particular function dependant on some condition. The recursive ability to have a

condition within a condition allows complex conditions to be specified, which include

reference to any number of the agents internal memory variables. The example below

demonstrates the use of recursive templates to generate a conditional statement in

compliable C code.

<!-- Recursive template for function condititions -->

<xsl:template match= "xmml:condition " > (

<xsl:choose>

<xsl:when test= "xmml:lhs/xmml:value " >

<xsl:value-of select= "xmml:lhs/xmml:value " />

</xsl:when>

<xsl:when test="xmml:lhs/xmml:agentVariable " >

currentState-><xsl:value-of

4. FLEXIBLE ABM FOR THE GPU 75

</xsl : when>

<xsl : otherwise>

select="xmml : lhs/xmml:agentVariable " /> [index)

<xsl:apply-templates select = "xmml : lhs/xmml : condition" />

</xsl:otherwise>

</xsl:choose>

<xsl :value-of select="xmml : operator " />

<xsl : choose>

<xsl:when test = "xmml : rhs/xmml : value " >

<xsl :value-of select="xmml:rhs/xmml :value " />

</xsl:when>

<xsl:when test ="xmml : rhs/xmml : agentVariable " >

currentState-> <xsl:value-of

select= "xmml:rhs/xmml : agentVariable " /> [index)

</xsl : when>

<xsl:otherwise>

<xsl : apply-templates select= "xmml:rhs/xmml:condition " />

</xsl : otherwise>

</xsl : choose>

) </xsl : template>

The recursive temp late is called within the main template using the following syntax.

<xsl:apply-templates select= " . " />

As each top level function condition is iterated using an XPath expression, the above

selects statement simply selects the current node e lement. The template then uses a

cond itional choose XSLT element to dist inguish between a value, agent variable or

nested condition for each side of the conditional expression. In the case of a nested

condition the template is recalled passing the nested expression as the top level

element.

4.3.2 Conversion of old FLAME models to the GPUXMML Schema

The major component of converting original FLAME models to the FLAME GPU

format is the adoption of the new XSL T templates and GPUXMML schema. In the

case of an existing model an XMML document validating against the original

4. FLEXIBLE ABM FOR THE GPU 76

FLAME DTD can adopt the new schemes by simply importing the relevant

namespaces (for both the base XMML schema and the GPUXMML schema),

applying the appropriate namespace prefixes to the XMML elements and adding the

additional XMML tags (described in Section 4.2.4 and summarised alongside any

other changes to the original XMML DTD in Table 4). Alternatively, using an XML

editor, such as Visual Studio or Eclipse, to rewrite the XMML model will provide

auto-completion to ensure syntax validation during design. Where an XML editor is

not used a GPUXMML model instance can be validated using any XML Schema

compliant validator such as Xerces [XERCES]. It is important that validation is

checked as the processing of each XSL T template file using the GPUXMML model

instance will be unsuccessful if validation errors are present.

Each function file containing scripted C code agent functions must use a

parameterised version of the original FLAME API functions. In order to ensure these

are correct it is possible to generate function prototypes and empty agent functions

using an additional XSL T template. Function code can then be copied from the

original FLAME function files, adding in parameters specified by prototypes. As with

all agent functions (excluding initialisation function which use a

FLAME GPU_INIT_FUNC_ prefix) any function referenced by one of the agent

functions must contain the _FLAME_GPU_FUNC_ prefix. This is used to ensure all

functions are in-lined, which is necessary within CUDA.

Table 4 - Base XMML and GPUXMML element additions over the original FLAME XMML

DTD.

XML Element Parent Element Description
<gpu:initFunctions > <gpu:environment > Holds any number of

<gpu:initFunction> elements.
<gpu:initFunction> <gpu:initFunctions > Defines the <gpu: name > of an

initialisation function prefixed
within the simulation code by the

- FLAME_ GPU_ INIT_ FUNC -
macro.

<outputs > <gpu:function > Holds a single agent function
<gpu : output > element.

<gpu:output > <outputs > Defines an agent function output
by specifying a <messageName >

and <gpu: type > which may
indicate a single message (every
agent outputs a message) or
optional message output (some
agents do not output a message).

<xagentOutputs > <gpu:function > Holds a single agent function
<gpu:xagentOutput > element.

4. FLEX IB LE ABM FOR THE GPU 77

<gpu : xagentOutput > <xagentOutputs > Defines an agent function X-
machine agent output (or agent
birth) by specify ing the
<xagentName > and <state >.

<inputs > <gpu : function > Holds a single agent function
<gpu: input > element.

<gpu:input > <inputs > Defines an agent function input
by specifying a <messageName >.

<gpu : reallocate > <gpu:function > Specifies if an agent function
may result in an llKent death.

<gpu:RNG > <gpu:function > Specifies ifan agent function
requires the use of random
number ~eneration .

<gpu:type > <gpu:xagent > The agent type which may be
either continuous or discre t e

<gpu:bufferSize > <gpu : xagent > and The maximum size of either an
<gpu:message > agent or message li st within the

simulation.
<layers > <gpu:xmodel > The explicit definition of at least

a single <layers > of agent
function s.

<layer> <layers > The definition of a single agent
function layer containing at least
a sil:!gle <gpu : layerFunct i on >.

<gpu : layerFunction > <layer> The definition of a layer function
which specifies a function
through a <name > element.

<gpu:globalCondition > <gpu:function > Specifies a global condition on
an a.Kent function.

<gpu : maxltterations> <gpu:globalCondition > Limits the number of times a
global condition can be
evaluated as false. An
explanation of global conditions
is given in section 5.1.6.

<gpu:mustEvaluateTo> <gpu:globalCondition > Allows the global condition to be
successfull y evaluated as either
true or fal se.

<gpu:partitioningNone > <gpu:message > Specifies the partitioning
<gpu:partitioningSpatial > technique used for inputting the
<gpu:partitioningDiscrete />

message within agent functions.
<gpu : radius > <gpu:partitioningSpatial > Sets the interaction radius of a

<gpu:partitioningDiscrete /> message.
<gpu : xmin > <gpu : partitioningSpatial > Used to set the environment
<gpu:xmax > bounds of a spatially partitioned
<gpu:ymin >
<gpu :ymax> message.
<gpu:zmin >
<gpu:zmax >

4.3.3 Building Simulation Code

In order to simplify the processes of generating and building simulation code a

number of optional tools are provided. The fIrst of these is a Visual Studio project

file , which includes all the necessary default library paths for the CUDA and CUDA

Parallel Primitives (CUDPP) libraries, which are required to build the simulation

4. FLEXIBLE ABM FOR THE GPU 78

code. In addition to this, a number of custom build rules are provided, which

automatically processes each FLAME GPU template during the build stage of the

project. This has options to turn off the regeneration of individual templates if the

source code is modified for some reason after the simulation code has been generated.

In order to process XSL T documents an XSL T processor has been designed using the

.NET library. This is a standalone application which is called by the custom build rule

and will report any validation or template errors within the output window of visual

studio during the build stage. Figure 22 demonstrates the complete simulation process

of generating and building simulation code. The visual studio project file simply

automates each of these stages.

XMML
Model File

XMML Base GPUXMML
Schema ~ Schema ~

t
XSLT

Templates

XSLT
Processor

C Function
Files

Simulation
~ Code

Figure 22 - The FLAME GPU Simulation Process

4.4 Summary

XMllnput
States

~ Simulation
Program

l
XML Output

States

In this chapter the limitations of ABGPU have been addressed through the

introduction of a technique for flexible agent specification inspired by the FLAME

framework. In contrast with FLAME's previous use ofDTD validation and use of the

XParser, the technique described within this chapter is considerably more robust and

extendible. The use of standardised schema and translation languages lends itself to

the notion of an open specification system. This also reduces dependency on external

tools to generate functional simulation code. It should be noted that whilst this

technique no longer relies on the XParser, the XSLT templates do not generate

4. FLEXIBLE ABM FOR THE GPU 79

function dependencies and function order must be explicitly specified in the XMML

description. The automatic generation of function order is however possible using

XSL T and is left as future work.

5. IMPLEMENTING FLAME GPU 80

Chapter 5

Implementing FLAME

GPU

In the previous chapter the FLAME framework was described along with techniques

that allow XMML model files to be extended. This allowed the specification of the

GPUXMML schema which extended a basic XMML Schema model to include the

necessary details required to map FLAME to GPU hardware. An XSL T template

system was also described, and it was demonstrated how a GPUXMML model can be

used to create compliable code from a number of code templates.

This chapter discusses the implementation of FLAME GPU by considering the

techniques and algorithms encoded into the XSL T templates. The templates allow a

mechanism for abstracting the GPU programming process from modellers, in the

same way that ABGPU used an API. In contrast with the original FLAME

framework, the implementation of FLAME GPU described within this section targets

data parallelism, rather than task parallelism. As a result, a completely new set of

templates have been implemented which use the XSL T technique described in the

previous chapter. This has been essential, as much of the original FLAME template

code relied heavily on the use of dynamic linked lists, which do not map well to the

5. IMPLEMENTING FLAME GPU 81

GPU architecture. Instead, alternative techniques are described within this chapter

which allow birth and death allocation and dynamic sized agent lists.

In previous chapters traditional GPGPU techniques were used to program the

GPU. The decision to use these techniques was inspired by the requirement for

flexible algorithms on the GPU, which utilised many of the low level features. Since

the development of this earlier work both the Stream SDK [ATl09] and CUDA

programming languages [NVI07] have emerged offering substantial advantages over

GPU programming using a graphics API. Both technologies offer an increased

flexibility and familiar C syntax, which significantly reduces the development time.

Of the two technologies, the CUDA language has been chosen for the implementation

of FLAME GPU. Whilst this decision restricts the work to NVIDIA (G80 or later)

graphics cards, the early support for CUDA and large user base make it the most

suitable choice for advanced GPU programming.

5.1 Implementing FLAMEGPU with CUDA

Conceptually, the level of parallelism between the original FLAME for HPC and

FLAME GPU is very different. The GPU's parallelism offers a very fine grained data

parallel architecture in comparison with the coarse, task level parallel architecture for

which FLAME was originally designed. As a result, each agent is conceptually

represented by a thread of execution, with each GPU multiprocessor simultaneously

processing agent functions in fixed sized blocks of agents. Individual agent functions

are wrapped in unique CUDA kernels, which are processed one after another. This

ensures global synchronisation of all agents and message communications between

each agent function.

This section looks at the underlying techniques and algorithms used to map

FLAME GPU to CUDA and the GPo. It describes all aspects of the implementation,

excluding the techniques used for message communication, which are discussed later

in this chapter.

5. IMPLEMENTING FLAME GPU 82

5.1.1 Efficient Agent Data Storage and Access

As with the original version of FLAME, it is important that agents and messages are

stored in variable length lists. During simulation these lists remain persistent in GPU

memory, with equivalent lists on the CPU used only as intermediate placeholders

during uploading or downloading of data. As allocation and uploading is an expensive

operation, compared to actually processing data on the GPU, all allocation is done in

advance using the maximum buffer sizes, as specified in the GPUXMML model.

Whilst this may appear restrictive, there is no performance disadvantage to specifying

significantly larger butTer sizes, assuming enough GPU device memory is available.

In order to ensure agent data is transferred from the GPU device optimally, agent

functions are wrapped in a kernel which transfers the agent data from global GPU

memory to the multiprocessors' register space. For simplicity, this kernel loads an

individual agent's data into a C structure which contains a member variable for each

agent memory variable. This C structure can then be passed to the agent function,

where it can be updated directly, before the wrapper kernel efficiently writes it back

to global memory. Although it would be intuitive to therefore store the agent

population data in global memory with an Array of Structures (AoS), this has serious

memory access performance implications. Instead, agent population data is stored as

a single Structure of Arrays (SoA). This allows a more efficient memory access

pattern for both reading and writing data in global GPU memory. The reason for this

is GPU memory coalescing, which allows data accessed by consecutive threads to

issue fewer wide memory requests, making more efficient use of the memory bus

[How07]. The conditions of coalescing are that data variables within consecutive

threads are accessed with the same linear consecutive order. The exact performance

advantage of this technique is evaluated later in Section 6.1.1.

5. IMPLEMENTING FLAME GPU

typedef struct agent{
float mem_val_ l ;
fl oat mem val 2 ;

} xm_memory=agen t_list [N];

• • • •
~L,-J

o 1 2 3 N

typedef struct agent_list{
float mem_val_l [N];
float mem val 2 [N];

} xm_memory=agen t_list ;

c:.._ ...•
Y-rY-rJ Y-r-Y-rY Y o 123 0 1 2 3 N

Figure 23 - Array of Structure (AoS) vs. Structure of Array (SoA) data storage of an agent

structure.

83

Figure 23 demonstrates the difference between data storage in the SoA and AoS form.

In the case of SoA storage each unique variable is stored consecutively, rather than

storing each agent consecutively, which interlaces the variables' positions in memory.

Message data is read using the same technique, with messages being stored in global

memory using the SoA format. The individual message functions, described later in

section 5.2 are responsible for loading messages into the AoS format (within the per

multiprocessor shared memory) which allows more logical memory variable access

within the agent functions.

5.1.2 Birth and Death Allocation

As memory allocation during simulation is avoided in FLAME GPU, the addition of

new agents requ ires pre-allocated memory space. In the case of agent function, xagent

outputs (or agent births), any agent function may, or may not, produce a new agent.

Therefore, the entire agent population must be double buffered (i.e. make use of an

additional agent list of equal s ize, using the same SoA format) to provide sufficient

storage space for any new agents. The process of agent births can then be achieved

using a linear mapping where each agent in the current agent list outputs to the same

global position within the new agent buffer. As not all agent functions which require

agent birth functionality will result in every agent giving birth, the linear mapping will

most likely result in the new agent list containing empty gaps (or being sparse) . To

remove these gaps (or compact the list) requires the use of a technique to reorder

agents into a compacted form. This is possible using an inclusive parallel prefix sum

algorithm [SHlQ07]. In early implementations of FLAME GPU this was achieved

5. IMPLEMENTING FLAME GPU 84

using simple prefix sum kernels, however the CUDPP library [CUDPP] provides

more optimal kernels for this purpose which are work efficient and heavily optimised.

Within the sparse new agent list a simple flag variable is used to indicate the presence

of a new agent. This flag is then used to perform the inclusive prefix sum, which

determines the position of the new agent in the sparse list. The total number of new

agents can easily be determined by considering the position of the last new agent.

This is used to ensure the current agent population size will not exceed the specified

buffer size when the new agents are added. A final (post agent function) scatter kernel

is then run over the new agent memory list, using the agent's new position value to

append flagged data to the end of the current agent list. The agent count can then be

updated, both on the host and device, and the new agent list is ready to be used in

subsequent agent functions or simulation steps.

Similarly to agent births, agent deaths require additional buffered data storage (of

the same length and SoA format as the current agent list) which is referred to as the

temporary swap list. In order for an agent to die an agent function (which specifies a

true reallocation element with the GPUXMML specification) simply returns any

value other than 1. The return value is used as a flag to indicate an active or dead

agent and is compacted using the same technique as described above. The swap list is

used for the final scattering of the compacted agent list, which is finally swapped with

the original agent list. Agent deaths are always handled before birth allocation as this

ensures a compacted agent list before any new agents are appended. The following

example shows the specification of a simple GPUXMML agent function which

requires both agent birth and agent death functionality.

< ... >

<gpu;function>

<name >function</ name >

<description></description>

<currentState>default</currentState>

<nextState >default</nextState >

<xagentOutputs >

<gpu;xagentOutput >

<xagentName >agentName</xagentName >

<state>default</ state >

</gpu;xagentOutput >

</xagentOutputs >

5.IMPLEMENTI G FLAME GPU

<gpu : reallocate >t r u e </gpu:reallocate >

</gpu:function>

< ... >

85

The corresponding function code for the above example is shown below. The use of

the <gpu: xagentOutput > forces the function definition to accept the new agent

list buffer (agentName_agents), which is used for the linear mapping within the

add_agentName_agent API function. The use of the reallocate element allows

agents which are flagged to be killed (by returning 0), to be removed after the agent

function has been processed.

//Simple agent function demonstrating agent output

__ FLAME_GPU_FUNC __ int function(xmachine_memory_a g e n tName * a ge nt,

xmachine_memory_ a g entName_ li s t * a gentNa me_a gents)

//Newagents id variable using the current agent count

int id = a ge nt ->id + d_xmachi n e _memo ry_ agent Name_count;

//Add the agent to the agent list

add_ag entName_agent(ag e ntName_agents , int id) ;

//If some condition is true kill the agent

if (s omecondition == true)

return 0;

else

//Don ' t kill the agent

return 1 ;

Alternative attempts at birth and death allocation for ABM on the GPU [DLR07] have

used randomised iterative schemas to allow agent births. This works by randomly

distributing agents within an agent list and then using multiple kernels to output

agents to a position, based on some random offset of the agent's position. In contrast,

with using a prefix sum, a randomised scheme only converges towards success and is

not guaranteed to either successfully add all new agents, or fail if the agent list is full.

5. IMPLEMENTING FLAME GPU 86

5.1.3 Agent States

With respect to the X-Machine methodology of which the FLAME and FLAME GPU

libraries are based upon, agent functions represent a transition function from one state

to another, which modifies agent memory. Within the task parallel original

implementation of FLAME, all agents may reside within a single agent list, with the

concept of an agent's state represented by a simple variable held in agent memory. In

this scenario, agent functions can be evaluated by iterating the agent list and applying

the function only to agents which are in the correct state. For FLAME GPU, the use of

an agent state variable is far from optimal. In order to apply an agent function to the

agents of a particular state, every agent in the mixed state agent list must be launched

in its own thread, with only the agents in the correct state evaluating the full function

code. As groups of threads are processed in warps (of 32 threads), there is a high

likelihood in this case that not all threads (agents) will follow the same instruction

path (i.e. those agent threads which are in the wrong state will perform no further

computation and remain idle). Agents are not stored in any particular order and

therefore the degree of divergence is difficult to predict. Figure 24 gives an example

of a half warp (for clarity only, as threads are always evaluated in full warps) being

processed, where only half the agents meet the function condition. In the worst

possible case each warp would contain only a single agent in the function's initial

state condition and hence only a single vector processor will be utilised during the

processing of the agent function. Simulations containing large numbers of states, or

well mixed agents, will suffer from this problem to a larger extent and as a result

mixed state agent lists are avoided. This is achieved by maintaining a separate agent

list for each possible agent state, removing the requirement to hold a state variable

and avoiding any state based divergence. This will result in the number of threads

launched per agent function to be drastically reduced which in most cases provides a

positive performance benefrt. It must however be considered that in order to fully

occupy the GPU's multiprocessors a relatively large number of agents in each state

are required. Where there are relatively few agents in anyone state there is a chance

that underutilising the GPU will demonstrate far from optimal performance. The

possibility of this is easily outweighed by the massive performance benefrt gained

over the mixed state alternative.

5. IMPLEMENTING FLAME GPU

Agent list (colour represents state)

~ ..
~ Agent Function Start State Condition Filter -

~--------------------------------~~
~
~ ..
~
~ e ..
n
!:.
0·
~

Agent list after agent/unction

Figure 24 - A mixed state agent list executing an agent function.

87

Agents which meet the functions start state are indicated in red which move into a blue state after

processing the agent function.

5.1.4 Conditional Functions

Function conditions present a similar scenario to agent states, as on the CPU an agent

list can simply be iterated to see if the function should be applied to the agent. As with

agent states, the fact that some agents may, and some may not, meet the function

condition, introduces a high likelihood for divergence. To overcome this every agent

in the agent functions start state agent list is filtered , using a function condition kernel

(Figure 25). This is used to set a flag value to distinguish between agents which meet

the function condition. The fla g is then used with the parallel prefix sum compaction

technique which was described for agent birth and death functionality. Agents which

meet the function condition are then removed from their current agent state list (which

is compacted) and scattered into a non sparse working list for the agent function.

After the agent function has been applied to the agents within the working list, the

agents move into the agent functions end state by being appended to the appropriate

agent state list. As with the original FLAME, agent functions do not provide any

guarantee of deterministic behaviour. If an agent in a given state meets one or more

function conditions it is processed, using the agent function which appears first in the

function layers.

5. IMPLEMENTING FLAME GPU

State Agent Lists before Agent Function

----------i--i -t -1--i : -1- i- -i -----------------------.
I Funct10n CondHion Kernel I

~~~~~~~~ 
FunctIOn Condition Flags 

l~\ 
I I I I I I 
~ ~ ~ ~ ~ 

I Agent FuncUon 

I Working List 
'--=""~-'-:::::~-'--::-' 

Compact Working and 
Red State List 

State Agent Lists after Agent Function 

Figure 25 - Evaluation of an agent function using unique state lists and a working list. 

88 

A function condition is used to separate agents into a working list (white) which is appended to the 

functions end state list (blue) after the function has been evaluated. 

5.1.5 Global Variables and Initialisation Functions 

Global (constant) variables are read only variables which are accessible to all agents. 

Within CUDA, a small area of device memory (64Kb) is allocated as constant 

memory, accessible via a per-multiprocessor cache. This constant memory is used to 

store all FLAME GPU global variables as well as any hidden agent function constants 

such as agent counts. When multiple threads request the same data from constant 

memory, the cache hides a large amount of memory latency and if all threads in the 

same warp read the same value, the memory access is as fast as reading from 

registers. CUDA constant memory must be set using CUDA API methods which are 

abstracted from FLAME GPU users through the use of a dynamic API function for 

each global variable. In order to use the API functions to set a global variable, an 

initialisation function can be defined with the XMML syntax. An example of this is 

shown below which defines both a global variable and a global variable array; 



5. IMPLEME TfNG FLAME GPU 

<gpu:environment > 

<gpu:constants > 

<gpu :variable > 

<type >float </ type > 

<name >global_var</name > 

</ gpu :variable > 

<gpu : variable > 

<type >int</ type > 

<name >global_var_array</name > 

<arrayLength>S</arrayLength> 

</gpu :variable> 

</gpu : constants > 

<gpu : initFunctions > 

<gpu : initFunction> 

<gpu:name >setConstants</gpu : name > 

</gpu : initFunction > 

</gpu:initFunctions > 

</gpu : environment > 

89 

Use of the both initialisation and global constant API functions is demonstrated in the 

example below. The initialisation function IS prefixed with the 

FLAME GPU INIT FUNC macro which defines it as CPU host code, rather 

than a GPU kernel. Before the simulation is processed all initialisation functions 

defined within the GPUXMML model definition are called in the order they appear 

within the GPUXMML specification. 

FLAME GPU INIT FUNC void setConstants() { 

float temp_global_variable = 3 . 14 ; 

int temp_global_variabe_array[S] = {O, 1, 2, 3 , 4} ; 

set_global_var(&temp_g lobal_variable) ; 

set_global_var_array(&temp_global_variable_array) ; 



5. IMPLEMENTING FLAME GPU 90 

5.1.6 Global Conditions and Non Linear Modelling 

Global function conditions add functionality to FLAME which allows some global 

control over an agent population. A global function condition is expressed in much 

the same way as a standard function condition, however for the function to be 

evaluated on any agent, every agent must meet the condition. Technically it allows 

multiple paths through a simulation, depending on the global state of the agent 

popUlation. This is highly effective for force resolution and is demonstrated for 

continuous agents in section 6.2 and for simulating mobile discrete agents in section 

6.3. In order to evaluate the result of a global condition for an agent population, the 

same technique as that for standard agent functions is used to flag agents within a 

global function condition. The number of agents which meet the condition can then be 

determined and be compared to the agent count to establish if the agent function 

should be executed. In either case, a counter can be set to keep track of the number of 

times the global function condition evaluates to either true or false. In conjunction 

with the <gpu :mustEvaluateTo> element this can then be used to place a limit 

on the number oftimes the global condition can be evaluated one way or the other. In 

practise, this is useful for limiting the number of iterations of particular force 

resolution steps, which when evaluating physical movement between agents are not 

guaranteed to ever reduce this enough for a global condition to be evaluated as false. 

5.1.7 Random Number Generation 

RNG on the GPU is achieved through the use ofa GPU implementation of the GNU 

rand48 algorithm [vMAF+07]. This uses independent streams of pseudo-random 

numbers, which are initialised before a simulation by using a serial RNG rule on the 

CPU. Each stream uses the previously stored random number in order to generate the 

next random number and hence each stream is independent of the other. Agent 

functions which require the use ofRNG must set the <gpu: RNG> element within the 

functions GPUXMML specification to true. This indicates the agent function 

arguments contain an RNG _ rand4 8 structure which contains the independent 

streams of random numbers. This structure can then be passed to FLAME GPUs 



5. IMPLEMENTING FLAME GPU 91 

rand48 function, which will return a new random number and update the state of the 

stream for the current thread. 

5.1.8 Agent Visualisation 

In addition to improving the performance of simulation, modelling on the GPU 

provides the obvious benefit of maintaining agent information directly where it is 

required for visualisation. Alternatively, CPU simulations incur a large performance 

cost when transferring large amounts of data to the GPU, which significantly affects 

the population sizes that can be viewed in real time. In the case of FLAME this is 

further hindered by the fact that each simulation step must be read from the hard disk, 

which creates a significant bottleneck even when using compressed binary data 

storage (rather than XML). 

Agent data is stored in CUDA global memory and so the first step to rendering is 

to make this data available in the rendering pipeline. This can be achieved through the 

use of OpenGL Buffer Objects, which are able to share the same memory space as 

CUDA global memory. As with ABGPU, simple agent representations can be 

rendered with a single draw call, rendering the positions as either OpenGL points or 

axis aligned point sprites, giving the appearance of more complex geometry. More 

specifically, FLAME GPU provides an additional visualisation template which maps 

an agent's positional data into a Vertex Buffer Object (VBO) that is used to displace 

the simple agent representations using a GLSL shader. Rendering of agents using 

more complex geometry is also available as a configurable FLAME GPU, XSL T 

template, and is used to displace sets of vertices which specify 3D geometry. This is 

achieved by using a CUDA kernel to pass agent data to a Texture Buffer Object 

(TBO). All vertices of a model are then rendered with a vertex attribute, which 

corresponds to the agent's position in the TBO texture data. The vertex shader uses 

this attribute to offset the vertex using the agent's position, with a further fragment 

shader used to perform per pixel lighting. As it is possible to store model data within a 

VBO, rendering a population of agents is achieved by setting a unique vertex attribute 

and drawing the vertex data once per agent. Alternatively, for simple agent models 

(few vertices) a large VBO, containing a model instance for each agent, can be used 

with an accompanying VBO holding a vertex attribute array. In this case, the entire 



5. IMPLEMENTING FLAME GPU 92 

population can be drawn using a single draw call. This is obviously unsuitable for 

complex agent models, due to the exponential scale of the vertex/attribute data sets. 

The advantage of either of these instancing based methods is that arbitrary models can 

be used (of greater complexity than can be represented by point spites), whilst 

maintaining significantly high performance, by minimising draw calls and GPU data 

transfer. 

5.2 Agent Communication 

Agent communication is achieved through the use of messages lists that, as with agent 

memory data, use efficient structured access to ensure memory coalescing. The 

original FLAME syntax for message iteration has been maintained and requires two 

specialised message retrieval functions shown in red below. 

FLAME_GPU_FUNC __ int function ( 

xmachine_memory_agentName* agent, 

xmachine_message_messageName_list* messageName_messages, 

RNG rand48* rand48 ) 

//Get the first message from the message list 

xmachine_message_messageName_list current_message 

get_first_messageName_message (messageName_messages ) ; 

while (current_message) 

/* Process the message data here */ 

//Get the next message from the message list 

current_message = get_next_messageName_message ( 

current_message, 

messageName_messages) ; 

Within the original FLAME for the CPU only brute force message iteration was 

supported. FLAME GPU improves the performance of message iteration by providing 



5. IMPLEMENTING FLAME GPU 93 

a range of specialised message retrieval functions, which are suitable for various 

agent distributions and communication patterns. The first of these is a brute force 

message communication technique which is described in Section 5.2.1. This is 

directly comparable with the technique used in the original FLAME framework for 

message iteration on single CPU host. A spatially partitioned technique is described in 

Section 5.2.2, using Euclidian spatial partitions to minimise the number of messages 

each agent is required to process. This is conceptually similar to how FLAME is able 

to distribute agents between multiple processors. Finally, a discrete message 

technique is discussed in Section 5.2.3. This is most suitable for cellular automaton 

and assumes that homogeneous agents are placed in a regular grid. 

5.2.1 Brute Force Message Communication 

Brute force message communication is required in systems where there is a high 

degree of communication between agents, or where spatial partitioning is unsuitable. 

In early implementations of ABGPU, brute force messaging was implemented by 

treating the processing of each agent to agent interaction as a unique thread of 

execution. Whilst this is easily parallelised in a shader based implementation, its 

performance can be greatly improved in CUDA by making use of shared memory to 

reduce global memory reads, and hence increase the arithmetic intensity. To achieve 

this FLAME GPU implements a tiling based technique inspired by Nyland et al 

[NHP07]. This serialises message access across agent threads, by loading groups of 

messages into the GPU's shared memory. Technically, this requires messages to be 

split into groups, with the first message group being loaded into shared memory by 

the get_first_message function (Figure 26). Following this, each thread within 

the same thread block uses a broadcast access pattern to sequentially read the same 

message from shared memory using the get_next_message function. After each 

thread has exhausted the messages within the message group (or tile) the 

get_next_message function synchronises threads in the block and loads the next 

group of messages into shared memory (Figure 26). 



5. IMPLEMENTING FLAME GPU 

GnIap J GnIap 4 .' ~ 
10 I I 12 

"......LisI 
(DRAM) 

:~. } Gnd Block 

'" 11+ 4:;-------' :: : ---+ get_ first_message () 1'+-1::;-------' 
1 rl:J~:::l::;_+_---_, ::: --+ get_ next_ message () 

::: 
t==:===:=;:::::::===:=;:::::::==~:: : 
-~~:::::: =::::::::::::=::: :~~ : 

_ ,. __ __________ - - _____ - ____ .1 • I 

"!::::: :::=:: :::::: :::::: :::~ : 

"......List 
(DRAM) 

94 

--.. get next message () 'IHIh 

food -"UI ",;;sage groUfJ 

---+ ge t _next message () 

Figure 26 - Message group loading when requesting the first and next message. 

Message group size and thread block size are the same, so individual threads are 

responsible for reading a single message into shared memory concurrently. To avoid 

all thread blocks reading the same groups, the fIrst group load of any block (issued by 

the get_first_message function) starts by loading data into shared memory at 

offset locations in global memory. Any access to shared memory is preceded and 

immediately followed by a call to the CUDA _sync threads function (shown in 

Figure 27 in green), which ensures all data threads in the same block, reading from 

the group of messages, are at the same stage with no race conditions. The 

get_next_message function is shown in pseudocode in Figure 27. Each message 

holds a message position value indicating its position in the message list. This is then 

use to check if the end of the message list is reached (line 4), or if the message 

position is equal to the first message position (line 7). If the end of the message list is 

reached this does not necessarily indicate that all messages have been iterated, due to 

the initial offsets of message groups used in the ge t _first_message function . In 

this case, the message position is set to zero with message iteration only ending when 

the first message position is reached, indicating the full list has been iterated. The 

message position is also used to calculate the current tile, and then the message 

position within the current tile. Jfthe message position within the current tile reaches 

the b l ocks i ze then this indicates that a new message group must be loaded (line 

12). 



5. IMPLEMENTING FLAME GPU 

INCREMENT mes s age position 
CALL wrap WITH message position 
RETURN i 

, IF (i > message count) THEN 
i = 0 

ENDIF 
IF (i == first message position) THEN 
RETURN FALSE 

ENDIF 
: SET ti l e TO f l oor(i/blockSize) 

SET i TO i MOD blockSize 
1. IF (i == 0) THEN 

CALL __ syncthreads 
11 SET i ndex TO (tile*blockSize ) + threadID 
1 CALL readMessageSoA WITH index 
11 RETURN temp_message 
11 SET sharedmessages [threadID] TO temp_messa g e 
I ~ CALL __ sync threads 
I. ENDIF 

RETURN sharedmessages [i] 

95 

Figure 27 - Pseudocode of the message iteration algorithm used for loading the next available 

message. 

As agent, and hence message list, sizes are liable to change through out the simulation 

process, it is important to consider thread path divergence to avoid any deadlock 

problems. Unused threads are likely and are a result of the total number of agents not 

being a multiple of the thread block size. Rather than leave these threads idle, it is 

essent ial for this messaging iterating technique that they follow the same path as 

occupied threads within the block. Whilst this results in agent data beyond the last 

agent in the list being processed with the agent function, the path these threads follow 

ensures that fu ll message groups are loaded into shared memory. Likewise, it is vitally 

important that there are no conditional dependencies on message iteration, or breaks 

from the message loop. If any agent becomes excluded from the message loop the 

agent ' s thread will fail to load shared message data (causing a thread synchronisation 

deadlock in the get_next_message function) and will result in the simu lation 

ending. 

5.2.2 Limited Range Communication 

Limited range communication is based on the same technique as that which is used 

with in ABGPU, the obvious difference being that messages, rather than agents, are 

iterated using the dynamic data structure. Green 's [Gre07] implementation of the 



5. IMPLEMENTING FLAME GPU 96 

same spatial partitioning algorithm uses fast radix sort. FLAME GPU incorporates 

the same radix sort algorithm described by Satish et al. [SHG09], which is available 

through the most recent (vl.l) CUDPP library. As with Green's implementation, 

partition boundaries are generated through the use of CUDA' s scattered write support. 

The maximum and minimum boundary lists are stored within a partition boundary 

matrix structure. This must be passed as an argument (as well as the agent's position) 

to message retrieval functions as demonstrated in the code sample below. 

FLAME_GPU_FUNC __ int function ( 

xmachine_memory_agentName* agent, 

xmachine_message_messageName_list* messageName_messages, 

RNG_rand48* rand48, 

xmachine_message_messageName_PBM* partition_matrix) 

//Get the first message from the message list 

xmachine_message_messageName_list current_message 

get_first_messageName_message( 

messageName_messages, 

partition_matrix, 

agent->x, agent->y, agent->z ) i 

while (current_message) 

//Process the message data 

current_message = get_next_messageName_message( 

current_message, 

messageName_messages, 

partition_matrix) i 

As the processing of messages is unique to an agent function and is specified within 

the message loop, it is not possible to specify a simple kernel which computes 

interaction between agents directly (as with [Gre07, AL T08]). Instead, message 

iteration is provided through an algorithm that, given an existing message (stored in 

shared memory), returns the next message (shown in Figure 28). More specifically, it 



5. IMPLEMENTTNG FLAME GPU 97 

loops through the neighbouring partitions looking for a partition that is not empty and 

hence contains messages (Figure 28, line 21). When a partition containing messages is 

found , or if there are more messages in the previous messages partition (Figure 28, 

line 10), then a message is returned. The variable re l ative cell holds a vector 

of integers in the range - l ~x~ 1 , which identifies the relative position of the current 

message to the agent_grid_ce l l. The function nextCe l l therefore determines 

if relative position can be incremented (i.e. when all 27 unique values have been 

exhausted the function returns false) and the function cellPosi tion calculates the 

cellular partition position of a continuous valued point, within the partition space. 

Partition bounds are specified for each message within the GPUXMML model file. If 

the point (x) in any dimension lays outside of the bounds dimensions (m) but within 

the cell position range of; 

2m > x > -m 

Then the position is wrapped using the following macro which avoids the use of an 

expensive modulus operation. 

#define WRAP (x , m) (( (x) <m)? (( (x) <O)? (m+ (x» : (x» : (m- (x») 

The function hashCellPosition performs a hash function mapping the partition 

position to a unique integer [KSW04]. The algorithm does not perform an additional 

radial check on messages and roughly 1/3 of the messages returned will be outside the 

message range of the agent. It is therefore important that messages are filtered, using a 

user defined distance check within the agent function, as they would be when using 

the brute force technique. 



5. IMPLEMENTING FLAME GPU 

IF first message THEN 
SET relative cell TO null 
SET cell index TO 0 
SET cell index max TO 0 
CALL cellPosition WITH agent position 

RETURN agent_grid_cell 
ENDIF 
SET move cell TO true 
INCREMENT cell index 
IF (cell_index < cell_index_max) THEN 

SET move cell TO false 
ENDIF 

I' WHILE (move_cell) 
IF (CALL nextCell WITH relative_cell RETURN bool ) THEN 

INCREMENT next cell 
SET next_cell TO agent_grid_cell + relative_cell 
CALL hashCellPosition WITH next cell 

I: RETURN next cell hash 
SET cell index min 

IF (cell index_min != null) THEN 
SET cell index max - -

I' . TO cell_end_boundaries[next_cell_hashl 
i. SET cell index TO cell index min 

SET move cell TO false 
ENDIF 

ELSE 
RETURN NULL 

ENDIF 
ENDWHILE 
RETURN me s sage from message li s t AT cell_index 

Figure 28 - Pseudocode algorithm for spatial message loading 

5.2.3 Non Mobile Discrete Agents 

98 

Both brute force and limited range communication strategies are ideal for use with 

continuous valued mobile agents. In the case of regularly spaced, non-mobile agents 

in 2D discrete space (CA), a different communication pattern can be used to provide 

efficient communication between agents. This pattern makes the assumption that 

agents are ordered within a regular grid which does not contain gaps (or missing 

agents). Within this grid, agents are able to output a single message into a message 

grid structure of equal dimension to the agent grid. This message grid can then be read 

by both discrete and continuous agents, using either a shared memory or textured 

based technique respectively. Messages are wrapped in both techniques both 

horizontally and vertically. 

The shared memory method of discrete message communication is only available 

for discrete agents and is currently only available for 2D populations of agents. As 



5. iMPLEME TI G FLAME GPU 99 

discrete agents are conceptually arranged within a grid, kernels are launched using a 

20 grid of threads blocks rather than the previously used linear block structure. 

Despite this, all discrete agent and message data is stored and accessed on the GPU 

using a linear SoA format , as was used for continuous agents. Whilst this requires a 

computation to convert a threads 20 block position into a linear memory address it 

ensures messages remain in the message list format and can therefore be read by 

continuous agents. As agents are structured regularly and communicate over a limited 

range, the number of messages required by agents is relatively small and therefore can 

all be stored within shared memory, reducing expensive global memory reads. This 

requires that during the load_ first_message function every agent loads at least 

a single message, with agents on the edge of the thread block performing additional 

work to ensure message ' s output from neighbouring blocks are also loaded into 

shared memory (Figure 29, Figure 30). 

20 Message Output 

0 1 2 3 4 5 6 7 

8 9 10 11 12131415 

16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 

56 57 58 59 60 61 62 63 

SM in Block 1 SM in Block 2 

Message Load 1 

Message Load 2 

Message Load 3 

Message Load 4 

Message Load 5 

Message Load 6, 7, 8 and 9 

SM in Block 3 SM in Block 4 

Figure 29 - The loading of messages into shared memory for non mobile discrete agents. 

The grid top left represents the output of message into a 2D grid. The 4 coloured blocks show the 

configuration of shared memory for each of the 4 thread blocks launched. 

This technique is not optimal, as some threads will be idle during the extra message 

loads, but it is a trade off between the alternative technique, that requires an oversized 

thread block. In this case all messages can be loaded into shared memory with only a 



5.IMPLEME TING FLAME GPU 100 

single load per thread, however the additional border threads remain idle over the rest 

of the agent function. This creates a scenario where increasing the message range 

degrades performance, as an increased number of threads are required that remain 

idle. In contrast, the multiple message load technique handles increased message 

ranges well, using the previously idle threads to perform the additional work. In order 

to explain this, consider a case where a message range of only 1 cell is used. In this 

case only single agents on the very bounds block are require to load additional data 

with agents on two bounds (i.e. corners of the thread block) loading a total of 4 

messages. 

LJ O D D D 
Figure 30 - The Message load steps and corresponding message loads for each thread 

corresponding to Figure 29. 

When the range is then increased to 2 (Figure 31) the additional message loads are 

performed by the next nearest agents during the time that they were previously idle. 

This therefore scales well assuming that message ranges do not exceed the block size 

that agents are processed in. In order to iterate messages the load_next_message 

function iterates through the messages within range, returning a po inter to the 

message in shared memory. A value stored within each message is used to indicate 

the current messages position and determine the next message to return. This value 

starts at (-range, -range) and ends at (range, range) ignoring the message (0, 0) which 

is the current agent ' s message output. 



5. IMPLEMENTING FLAME GPU 

SM in Block 1 (range=2) 

Message Load 1 

Message Load 2 

Message Load 3 

Message Load 4 

Message Load 5 

Message Load 6, 7, 8 and 9 

Message Loads 

4 5 
1213 
20 21 32 33 34 35 

o 1 2 3 
8 91011 

18 7 1819 
24252827 L--._.a.::2;.;;;.8..;:29:=.1 40 41 42 43 

6 7 
14 15 
22 23 
30 31 

101 

Figure 31 - The loading of messages into shared memory for a single thread block with a message 

range of2. 

Continuous agent functions are unable to use the shared memory method for loading 

discrete messages as their non regular physical location does not guarantee that agents 

will read from the same regular grid of messages. Even if this were strictly enforced, 

the variable number of agents in continuous systems could not guarantee that all 

messages would be loaded. Instead of using shared memory, a textured based method 

can be used taking advantage of the GPU 's built in texture cache. This method is used 

by binding each ' message variable data array ' to a linear texture. Each thread then 

uses aID texture lookup and stores the message data in shared memory. The message 

is only read by the thread which placed it in shared memory and there is no 

communication between threads, other than through the texture cache. This can also 

be forced for discrete agents by using the CONTINUOUS agent type value for the 

templated message functions as follows. 

enum AGENT_TYPE{ 

CONTINUOUS , 

DISCRETE 2D 

get_first_messagename_message<enum AGENT_TYPE> ( . . . J 

get_next_messagename_message<enum AGENT_TYPE>( ... ) 



5. IMPLEMENTING FLAME GPU 102 

5.3 Summary 

This chapter has demonstrated the techniques contained within the XSL T templates 

which make up FLAME GPU. The use of the CUDA architecture has allowed an 

extremely powerful and flexible technique to be described which address the 

limitations of swarm systems described in previous chapters. In the next chapter, the 

performance of FLAME GPU is considered through careful benchmarking of the 

various communication techniques and through the use of a number of case studies, 

which test both the flexibility and performance. 



6. EVALUATING FLAME GPU 103 

Chapter 6 

Evaluating FLAME GPU 

The previous chapter described the implementation of the FLAME GPU framework. 

This chapter focuses on performance, through the implementation of simple 

benchmarking models. Flexibility of the framework is then considered by describing 

the implementation of both a cellular biology model and a mobile discrete artificial 

society. In both cases the use of FLAME GPU's new global function conditions 

provides a mechanism for non linear simulation steps (simulation steps which do not 

represent integration in the usual discrete time unit), allowing recursive functionality 

within a single time step. This is used to efficiently resolve both intercellular forces 

and transactional movement between discrete mobile agents respectively. 

All results within this section were obtained on a single Windows XP PC with an 

AMD Athlon 2.51 GHz Dual Core Processor with 3GB of RAM and a GeForce 9800 

GX2. Whilst the GX2 card consists of two independent GPU cores, only a single core 

has been used for CUDA processing with the other handling the active display. This 

technique allows the circumvention of the windows watchdog timer'\ which halts 

GPU kernels exceeding five seconds in execution time. Where original FLAME 

'4 A security feature which protects the Windows XP OS from graphics card crashes. The watchdog can be 
disabled within Windows Vistal7 using a registry change (Linux does not limit GPU kernel execution time in 
this way), 



6. EVALUATING FLAME GPU 104 

models have been implemented they have been updated to match the FLAME GPU 

models as closely as possible (including single precision agent and message 

variables). All original FLAME models have been compiled using GCC with 

MingGW and full compiler optimisations. 

6.1 Benchmarking 

This section describes the benchmarking of FLAME GPU. It is divided into three 

sections which evaluate the three message communication techniques described in the 

previous chapter. 

6.1.1 Evaluation of Brute Force Messaging 

In order to evaluate the performance of brute force message communication, a simple 

force resolution model (referred to as the Circles model), has been implemented. The 

same model was previously used for benchmarking of FLAME on HPC architectures 

(reviewed in Section 4.1.1) where the initial states were generated using the same 

state generation code as the results presented here. It consists of only a single agent 

and message type with three agent functions, which output and input a location 

message and move the agent accordingly. Speedup is calculated by considering the 

iteration time of a single time step of each mode~ on both the GPU and CPU 

implementations in single floating point precision. In order to understand where the 

performance increase of a message access is achieved, Figure 32 shows the effect of 

the various implementation techniques described Chapter 5 . 



6. EVALUATING FLAME GPU 105 

-SoA +SM - SoA -SM - AoS -SM 
100 ~--------------------------------------------------------. 

90 

80 
LlJ 

~ 70 
lL. 

~ 60 
0. 
.g 50 
a> 
a> 

g40 
~ 
~ 30 
a> 
a:: 

20 

10 -------------------------------
O +-----~------~------._----~------~------,_----~----~ 

1024 2048 4096 8192 16384 32768 65536 131072 
Population Size 

Figure 32 - Performance of the Circles model using brute force message iteration with various 

optimisations enabled. 

Within Figure 32, +SM represents the use of the message tiling technique utilising 

shared memory, or alternatively in the case of - SM, messages are loaded directly 

from global memory. AoS and SoA represent the uncoalesced and coalesced global 

data storage pattern used to access global memory (described in Section 5.1.1). Figure 

32 clearly shows that whilst coalesced memory access makes a considerable 

difference to the model, tiling messages into shared memory within message loops is 

where the majority of performance can be attributed. The CUDA visual profiler has 

been used to examine the main message processing function. This drew attention to 

the large number of warp serialisations, which are the result of shared memory bank 

conflicts (which occur in half warps during shared memory access requests) when 

tiling the message data into shared memory. To avoid bank conflicts in the message 

functions, message structures in shared memory are padded to occupy an odd number 

of 32 bit sizes. As shared memory addresses are mapped into 16 (the size of a half 

warp) cyclic, 32 bit word banks, using an odd number of 32 bit words results in a 

stride pattern where banks are not accessed by multiple threads. Table 5 shows this by 

considering two cases where a number of consecutive threads read a 32byte message 

from an array in shared memory. Shared memory positions are represented as byte 

offsets into the array and bank positions are calculated by converting the shared 



6. Ev ALVA TING FLAME GPU 106 

memory position into bits, dividing by the size of the banks and cycling the 16 banks 

available. With no padding the access pattern has only 4 unique addresses and a 4 way 

bank conflict which results in accesses being serialised. Using an offset of 32 bits 

(4bytes) ensures that each consecutive message access is mapped to a unique memory 

bank, which guarantees a one way conflict (or single access per bank). To ensure the 

same 32 bit padding avoids conflicts for any message size, all messages in shared 

memory are aligned to an even 16 byte size. 

Table S - Memory bank conflicts when accessing message data from an array in Shared 

Memory. 

Message or SM SM Bank SM SM Bank 
Thread Position no Position 4byte 
Index no padding 4byte padding 

Padding padding 

0 0 0 0 0 

1 32 8 36 9 

2 64 0 72 2 
3 96 8 108 11 

4 128 0 144 4 

5 160 8 180 13 

6 192 0 216 6 
7 224 8 252 15 

8 256 0 288 8 

9 288 8 324 1 

10 320 0 360 10 

11 352 8 396 3 
12 384 0 432 12 

13 416 8 468 5 
14 448 0 504 14 

15 480 8 540 7 
Unique addresses 2 16 

Bank conflicts 8 1 

Avoiding multiple requests to the same bank avoids requests having to be serialised, 

allowing maximum memory access performance from shared memory. The reason 

this is not shown in Figure 32 is that this optimisation makes only a minute difference 

to the performance (typically about O.5x additional speedup). This is most likely a 

result of bank conflicts being hidden by the global memory latency when reading data 

to be placed in shared memory. Additionally when agent functions read message data 

from within message loops, there are no bank conflicts to avoid as message's 



6. Ev ALUATI G FLAME GPU 107 

variables are read by simultaneous threads using a broadcast access pattern. Despite 

this the same padding technique has been applied to all three messaging techniques. 

The initial fluctuation in Figure 32 can be attributed to the fact that, at this 

relatively low agent count, the multiprocessors are under utilised resulting in 

unpredictable amounts of idle time and global memory access latency coverage. In 

fact , for population sizes up to, and including 4096 (and a thread block size of 128), 

the maximum number of thread blocks per multiprocessor is limited by the register 

count (of 8,192 for compute capability 1.1 cards) , to 2 (Table 6). This suggests that 

4,096 agents (or 32 blocks of 128 agent threads) are the minimum number required to 

fill all 16 of the multiprocessors. 

I ........ 1024 -- 2048 4096 -- 8192 -- 16384 ........ 32768 -+- 65536 1 
120 ~--~================================~------' 

100 

~80 
u 
<1> 
<1> 
a. 
en 60 
~ 
~ 
~40 

20 ------------------------------
O +-----,------.-----.------.-----~-----.-----.----~ 

32 64 96 128 160 192 224 256 
Block Size 

Figure 33 - Performance of the Circles model at various thread block and population sizes. 

In order to consider the effect of varying the thread block size for brute force message 

communication, Figure 33 shows the results of the Circles model at a range of 

population size and block size combinations. Block sizes are incremented by 32 

threads, as this is the size of a single warp (which is the smallest unit of computation 

and cannot be broken down any further). The maximum thread block size of 256 is 

used, as a value any larger than this exceeds the maximum register count for the 

available hardware. The results show a relatively chaotic fluctuation over the varying 

blocks sizes for each population size. Having said this, block sizes with particularly 

poor performance are relatively consistent over the varying populations. For example, 



6. EVALUATING FLAME GPU 108 

block sizes of 96 and 160 have a relatively low performance in contrast with the 

nearest block size of 128. The explanation of this can be accounted for by considering 

the occupancy of the multiprocessors. Occupancy is defined as the ratio of the number 

of active warps per multiprocessor to the maximum number of possible active warps 

[NVI07]. A higher occupancy indicates that a multiprocessor is able to be kept busy 

with processing, effectively hiding any global memory read, or register dependency 

latency. Occupancy can be limited by a number of factors, including the maximum 

number of warps per multiprocessor, the available registers per multiprocessor and the 

available shared memory per multiprocessor. 

GPU Tome (To tal ) 
0 .00% 16. 17% 32.34% '18 .51% 6 4.68% 80.85% 97.02% 

~ m f--~ --,---' -------.--i ----r-' -----,.'-....----1 ----r--I 

0 .00% 16. 17% 32. 34% '18 .51% 64.68% 80 .85% 97.02% 

Figure 34 - Distribution of processing time for the Circles model using brute force message 

iteration. 

Figure 34 (obtained using the CUDA visual profiler with a population size of 16,384 

and a block size of 128) clearly indicates that the bottleneck stage of the Circles 

model is the agent function which deals with message iteration. This is hardly 

surprising due to the O(n2) message reading operation which is used. Table 6 provides 

a detailed breakdown of inputdata function for varying block sizes with a 

population of 16,384 agents. It shows that the block sizes of64, 128 and 256 have the 

highest occupancy accounting for the performance reported in Figure 33. It also 

shows that the occupancy of the inputdata function is generally limited by the 

register usage. Whilst it is possible that the use of registers could be reduced through 

careful optimisation, occupancy does not guarantee higher performance. As long as 

the number of active warps per multiprocessor is enough to hide any global memory 

latency, then attempts to increase the occupancy may in fact have negative effects. 

Additionally, the next generation of hardware contains double the number of registers 

per multiprocessor (16,384), and will instead be limited by the availability of shared 

memory (with occupancy of 0.44 and a block size of224). 



6. EVALUATING FLAME GPU 109 

Table 6 - Occupancy of various thread block sizes for the Circles i npu tdata function using 

brute force message iteration. 

Active I Multiprocessor (MP) Max Blocks I MP (Limited By) 
Block Size Occupancy Threads Warps Blocks Warps Registers SM 

32 0.167 128 4 4 8 t~·~~~;~~ 10 
64 0.333 256 8 4 8 .,: 4 , .. · 6 
96 0.250 192 6 2 8 ·~C ; •• 12~;., 4 
128 0.333 256 8 2 6 2 , " 3 
160 0.208 160 5 1 4 :-" "','. 2 
192 0.250 192 6 1 4 • ~ .>j1 ;(;..t,JI 2 
224 0.292 224 7 1 3 1 . ~ .. 2 
256 0.333 256 8 1 3 .. ·· 1 ., 1 I 

6.1.2 Evaluation of Limited Range Communication 

Performance of the limited range communication technique has also been tested using 

the Circles benchmarking model. This has only been changed from the previous 

section by adding the partition boundary matrix structure argument to the message 

retrieval functions. As FLAME GPU uses a brute force messaging technique per 

node, it does not make sense to evaluate the performance by using a relative speedup 

as before (as it will obviously be exponential). Instead, the performance of a single 

simulation stage for various thread block sizes is shown in Table 7. 

Table 7 - Performance times for the Circles model using limited range message iteration at 

various thread block sizes. 

N represents the population size. Times are displayed in milliseconds. 

N 32 64 96 128 160 192 224 256 
1024 0.94 1.05 0.90 0.86 0.93 0.89 0.95 0.88 
4096 1.24 1.25 1.30 1.22 1.39 1.22 1.24 1.25 

16384 2,45 2,48 2.62 2.53 2.76 2.81 2.77 2.60 
65536 9.09 9.34 9,47 9.23 9.22 9.31 9,45 9,42 

262144 33.74 37.99 36.88 37.39 36.61 36.83 37.81 38.12 
1048576 136.28 169.73 147.39 172.98 145.21 165.34 151 .26 177.06 

Figure 35 shows an additional breakdown of the percentage of GPU time spent on 

each kernel function of the Circles model. It also gives an indication of the CPU to 

GPU transfer speed required to upload the data from the host to the GPU device 

(memcopyHtoD). Both Figure 35 and Figure 36 make reference to other FLAME 

GPU kernels. These include kernels for the hashing of location messages, reordering 

of location messages and appending of Circle agents into the default state from the 

working list. 



6. Ev ALUA TING FLAME GPU 

100% 

80% 

~ 
1= 
::::l 60% 
Cl. 
C> 
'0 
Q) 

'" .. 
C 40% 

~ 
Cl. 

20% 

0% 
1024 4096 16384 65536 262144 1048576 

Population Size 

• GPUFLAME_inputdata • GPUFLAME_move 0 GPUFLAME_outputdata 0 radixsort_kemel 
• merge kernel C merrcpyHtoD . other_GPUFLAME_kemels 

110 

Figure 35 - Breakdown of where GPU time is spent during simulation of the Circles model using 

limited range message iteration at various population sizes. 

From the results obtained it is clear that the thread block size of 32 performs 

consistently well, particularly for larger population sizes, where it demonstrates the 

highest performance. Figure 36 evaluates this for a population size of 1,048,576 

agents by highlighting a breakdown of GPU time during a single simulation step (for 

thread block sizes of both 32 and 128). It is clear from this that the major contributing 

factor for the difference between thread block sizes is the inputdata function 

which takes 30% longer for the larger thread block size. Unfortunately, the most 

obvious kernel metric of the occupancy gives no explanation of this performance 

difference. For a thread block size of 32 the occupancy is limited by the register usage 

to 16%, where as for a thread block size of 128 the occupancy is limited by both 

registers and shared memory to 33%, suggesting that, if anything, the larger block size 

should perform better. Likewise, other performance measurements for the kernel 

show no difference in the number of branches, memory reads or instructions executed. 

The performance difference is therefore attributed to the kernels' use of the texture 

cache, which for smaller thread block size has an increased locality between threads. 

This leads to a higher cache hit rate reducing the number of global memory reads. To 

confirm this, Figure 36 also shows the simulation performed without the use of 



6. EVALUATING FLAME GPU 111 

texture caching (using global memory reads). rn this case, the performance is 

bandwidth limited and almost identical. Figure 36 also suggests that the cache hit rate 

is not particularly high, even with a low block size . This can be attributed to the 

random locality of agents in the initial configuration of the Circles model, as well as 

the simple hash function used for sorting. Future improvements will most likely 

include the use of space filling curves, such as that demonstrated by Anderson et al 

[AL T08] . This has been shown to dramatically increase the cache hit rate in molecular 

dynamics modelling. 

160000 

140000 

120000 

Vi 
"0 

8100000 
Q) 

'" 0 
b I 80000 
Q) 

E 

; 60000 
a.. 
C!J 

40000 

20000 

0 
128 32 128 (nocache) 

Block Size 
32 (nocache) 

o GPUFLAME_inputdata 

• merge_kemel 

o other_ GPUFLAME_kemels 

o GPUFLAME_outputdata 

• GPUFLAME_move 

o radixsort kernel 

Figure 36 - Performance times demonstrating the effect of the texture cache for the input da t a 

function of the circles model using limited range message iteration. 

In contrast with the benchmark performance of the Circles model on HPC 

architectures, FLAME GPU performs considerably well. Both the SCARF and HAPU 

architectures were able to perform a single simulation step in double precision in just 

over 6 seconds, using a total of 100 processing cores. The results in Table 7 suggest 

that even the worst performing thread block size took 0.2 seconds to complete a 

simulation step. Whilst it would be interesting to consider the performance of 

FLAME GPU in full double precision, the necessary hardware has only recently been 

made available. A rough indication of the performance can still be made by 

considering the ratio of 8 to I double to single precession units offered by the 



6. Ev ALUA TING FLAME GPU 112 

hardware. Even order of magnitude in performance degradation allows FLAME GPU 

to easily compete with HPC architectures. 

6.1.3 Evaluating Non Mobile Discrete Agent Communication 

Performance of non mobile discrete agents has been evaluated through the 

implementation of Conway' s Game of Life model [Gar70] (shown visualised in 

Figure 37). This consists ofa single agent and message type with two agent functions. 

The first of these functions outputs an agent 's position and state (active or dead). The 

second reads all neighbouring messages within the specified range, updating the 

agent's state, depending on the agent's current state and its neighbour 's states as 

follows. 

• If the agent is active : 

o If there are no active neighbours the agent dies of loneliness; 

o If there are four or more active neighbours the agent dies of 

overpopulation.; or 

o Jfthere are either two or three active neighbours the agents survives. 

• Jfthe agent is dead: 

o Jfthere are exactly three active neighbours the agent becomes active. 

Figure 37 - A visualisation of the Game of Life Model implemented using non mobile discrete 

agents. 



6. EVALUATING FLAME GPU 

Table 8 -Performance of the Game of Life model at two block sizes using both the shared 

memory and texture based methods. 

SMC refers to shared memory with bank conflicts. 

SMC (64) SM (256) TEX (256) TEX (64) 
256 0.305 0.267 0.361 0.352 

4096 0.356 0.321 0.379 0.418 
65536 1.586 0.592 0.982 1.450 

1048576 19.650 4.946 9.203 18.140 

11 3 

Table 8 shows the results of performing the simulation, using both the discrete shared 

memory (SM and SMC) and continuous texture based (TEX) methods for a sample of 

population sizes, at two thread block sizes. The thread block sizes are limited to sizes 

that fit into a 20 grid (i.e. their square root value must be a whole number), and 

therefore only sizes of 64 and 256 are suitable. For a block size of 256 the shared 

memory techn ique is roughly twice as fast as using the texture based alternative. 

However, for the smaller block size the texture based method outperforms the shared 

memory technique . The reason for this is due to shared memory bank conflicts, which 

occur only in block sizes where the width is less than the size of a half warp (16). 

Figure 38 demonstrates that for a block size of256 (and a block width of 16) the first 

half warp of the thread (in red) is able to read or write 16 consecutive messages. 

Using the conflict free technique described in section 6.1.1 , this avoids any conflicts 

(shown on the right). For a block size of 64 (and a width of only 8) the first half warp 

does not read consecutive messages and as a result bank conflicts occur, in this case in 

bank 12 and 13. 

Block Size of 256 

0 1 2 3 4 5 6 7 

18 '1. 120 121 122 123 124 1211 
20 21 22 23 24 2S 26 27 

Block Size of 64 

30 31 32 33 34 35 36 . 

8 9 10 11 12 13 14 15 16 17 

I':lIIZ l OR 114 3S 

28 29 30 31 32 33 34 3S 36 .. . 

[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ j j ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ N W ~ ~ m ~ ~ ~ ~ -. - -. -. - -a -. f'\r,,) W .err. tn Q) 

Figure 38 - Reading or writing of messages from shared memory with block sizes of 256 and 64. 



6. EVALUATING FLAME GPU 114 

The numbers indicates the index position of the message within an array in shared memory. The 

LHS shows SM, where the red represents the threads of the first half of a warp. RHS shows the 

banks in which each thread is accessing. 

To avoid this it would be possible to apply padding to each row of the shared memory 

grid of 16, less twice the message range (in the case of the example, 14). This would 

shift the second half of the half warp to a conflict free position (Figure 39), but would 

waste a large amount of shared memory drastically, reducing the occupancy of the 

multiprocessors. 

Block Size of 64 with. width padding t 

Figure 39 - Proposed padding to avoid shared memory bank conflicts for a 2D thread block of 64 

threads. 

For the same reason that bank conflicts occur in the smaller block size, memory 

coalescing does not occur for message reads (or writes) due to the non consecutive 

location of messages in global memory. The effect of this is visible in both the shared 

memory and texture based results of Table 8, as both sets of results use a 20 thread 

block to store agents. It is expected that the use of more recent hardware (compute 

capability 1.2 or above) would drastically improve the performance of the smaller 

block size. This is due to relaxed coalescing rules which would allow coalesced reads 

and writes, despite memory requests being non-consecutive across threads. 



6. EVALUATING FLAME GPU 115 

I-+- rEX 64 --- rEX 256 SMC 64 -M- SM 256 1 
300 

250 

200 
en 
.§.. 
Ql 

.~150 
f-
::l 
0.. 
(9 

100 

50 

. 
0 

r 
2 

Message Range 
4 8 

Figure 40 - Performance of the shared memory and texture based message iteration of discrete 

agent messages at a block size of 64 and 256. 

Figure 40 shows the effect of varying the message range for both the shared memory 

and textured based techniques for a population size of 1,048,576. The shared memory 

technique has a small number of divergent branches that are the result of threads 

loading the border messages into shared memory as described in Section 6.1.1. 

Increasing the message size confirms that, despite the additional loads, the number of 

divergent branches remains, allowing the technique to perform well for a message 

range of up to 4. Beyond this range (and beyond a range of2 for block sizes of256) 

the shared memory technique is unfortunately limited by the shared memory 

availability per multiprocessor. 

6.2 Cellular Level Tissue Modelling 

Driven by the availability of experimental data and ability to simulate a biological 

scale, which is of immediate interest, the cellular scale is fast emerging as an ideal 

candidate for middle-out modelling. This section describes the implementation of a 

cellular level, Keratinocyte Colony model [SMC+07] which has been implemented in 

FLAME GPu. Whilst the functionality of this model remains the same as that 

described by Sun et aI. , the model has been modified to limit agent functions to only a 



6. Ev ALUA TING FLAME GPU 116 

single message input and output (according to the GPUXMML specification). All 

agent functions have also been rewritten to avoid any conditional dependency on 

message iteration or breaking from the message loops. The model specification has 

also been updated for compatibility with the GPUXMML schema and the function 

code has been parameterised as described in section 4.3.2. The complete GPUXMML 

model specification and function code can be found in Appendix B. 

6.2.1 The Keratinocyte Model 

The Keratinocyte model [SMC+07] is a model of the in-vitro behaviour of skin cells, 

based on well established areas of literature. It has been developed as part of the 

Epitheliome project and extends a computational model of epithelial tissue, which 

was originally developed using Matlab [WSH+04]. Its goal is to be used as a 

predictive model to help understand how cells are organised during skin tissue colony 

formation. This promotes the development of methods to artificially produce 

reconstructed skin for patients who have suffered skin loss. Of particular interest is 

the use of the model to predict the success of scratch wound healing. This is examined 

by simulating a virtual scratch under differing calcium conditions. The model is able 

to predict if the wound is able to heal, depending on the location of colony epicentres. 

Likewise various hypothesis of the importance of specific biological rules have been 

tested with in-virtuo experimentation using the model which has later been validated 

in-vitro [SMC+07, TP~08]. 

Within the Keratinocyte model a reasonable level of abstraction has been used, 

which includes a simple spherical cell representation of cells (with constant size and 

shape) with no complex cell signalling mechanisms. Within the model there are 4 

distinct cell types which are as follows. 

1. Stem Cells - Are found at cell colonies and divide to produce two daughter 

stem cells, providing there is space to do so. They remain fairly static 

throughout the simulation. 

2. Transit Amplifying (TA) Cells - Like stem cells, will divide to produce two 

TA cells, ifthere is sufficient space 

3. Committed Cells (comm) - Both stem and TA cells become committed cells 

after a differentiation processes. This occurs in stem cells by first becoming 



6. EVALUATING FLAME GPU 117 

TA cells when they are located on the edge of a cluster which reaches a certain 

size. TA cel1s differentiate into committed cells when they become a certain 

distance away from a stem cell epicentre. 

4. Corneocyte Cells (corn) - When a cel1 in any of the three above states dies it 

becomes a corneocyte cell. Corneocyte cells do not divide, migrate or 

differentiate and are generally found in the top layer of the epidermis. 

Agent functions are used to simulate the biological processes and encode such 

behaviour as cell-cell and cell substrate adhesion, division, migration and 

differentiation. More specifically, Table 9 indicated the specific agent functions and 

their role within the model. 

Table 9 - Agent functions used within the Keratinocyte colony model. 

Blue indicates standard agent functionality, red indicates functions used for force resolution. 

Function Name Description 

outputJocation Outputs the location of the cell. 

cycle Simulates a cell cycle where stem and TA cells divide 

after a predetermined period of time. 

differentiate Simulates the differentiation process where cells change 

from one state to another. 

death_signal Determines if a cell should become a Comeocyte cell. 

migrate Simulates cell migration (or movement of cells) 

force _reso lution _output Outputs the location of a cell after the normal cell 

simulation process (blue). 

resolve forces Resolves forces between cells to ensure there is no 

overlap. 

6.2.2 Parallel Force Resolution 

In the case of force resolution, standard agent conditions do not provide enough 

flexibility to ensure agents are able to reach a stable state. Unstable states are the 

consequence of repulsive and attractive (bond) forces, resulting in overlapping cells. 

This occurs due to the discrete time nature of agent functions which determine force 

strengths during phenomenon, such as migration and cell division. A single force 

resolution step requires a minimum of two agent functions. The first of these is 



6. EVALUATING FLAME GPU 118 

required to output a positional message, the second to process neighbours' positions 

and update the agent's position. With a cellular model it is highly unlikely that a 

single resolution step (output and update) will result in a stable state. To avoid this 

multiple force resolution, steps have previously been used. Careful review has 

however suggested that to ensure a stable condition has been met, a large amount of 

resolution steps are required (typically over 200). Multiple force resolution functions 

also introduced a large amount of code repetition, as each resolution step requires a 

separate agent function. 

A more suitable technique is to apply force resolution recursively until the 

population has reached some stable condition. In the past non parallel physical solvers 

have been used for this purpose. These operate by reading all agent data output by a 

simulation step, recursively applying a force resolution algorithm and then writing the 

resolved agent states back to a file, which is used for the next simulation step. The use 

of non parallel simulation codes becomes an instant performance bottleneck, making 

models unsuitable for parallel execution. In order to avoid any bottlenecks, it is 

essential that recursive behaviour can be encoded directly within agent functions 

allowing the entire simulation to remain on the GPU. To achieve this, the constraint 

that a single simulation step represents a single fixed length of time is simply 

removed. Technically, this implies that each simulation step may follow either a 

regular path through each agent function (Figure 41 blue) or, if the population is 

unresolved, perform only a force resolution step (Figure 41 red). In order for this to be 

possible a global function condition is required. Rather than filtering agents into 

separate states and paths through the simulation, a global condition ensures that all 

agents follow the same path, providing every agent meets the condition (Figure 41). 

In the case of inter cellular force resolution this global condition is applied to the first 

agent function (output_location) and checks to ensure agents have reached 

equilibrium, by moving less than some small amount. If all agents meet this condition 

it suggests that the physical forces between them have reached a stable physical state, 

with a minimal probability of overlaps. Using this technique has the added benefit of 

avoiding unnecessary resolution steps, which occurs when a large fixed number is 

instead used. As there is a possibility that a physical model may reach an oscillating 

physical state, the global conditions maximum iterations value is set to 300. This 

places an upper bound on the number of times the global equilibrium test can be 



6. EVALUATING FLAME GPU 119 

evaluated as false. If the global condition is not evaluated as true after this many 

iterations then the condition result is overwritten as true. 

I output locat~on () 
... concH t l on(equilib rium) condicion (no equilibrium) 

8 
I 
I cycle, 
I differentl.ate. 
I death signal 

Figure 41 - Non linear simulation in the Keratinocyte model showing a separate force resolution 

path 

6.2.3 Simulation Performance 

Figure 42 demonstrates the relative speedup of the Keratinocyte model achieved using 

the two message communication techniques. Each simulation consists of an initial 

configuration state containing randomly distributed stem cells at a constant density. 

The speedup is calculated by considering the relative speed increase of the FLAME 

GPU iteration time in comparison with the original FLAMEs CPU iteration time. As 

FLAME message processing on the CPU uses only an O(n 2) algorithm, the result of 

the brute force algorithm gives the most direct comparison. The exponential speedup 

of the spatially partitioned message communication is not surprising and would be 

better suited to comparison with a grid based implementation. Unfortunately, as the 

original FLAME framework is unable to perform force resolution, no such data exists. 

Likewise, the measurements in this experiment are performance orientated and use 

only a single resolution step to give an indication of processing time. Even with this 



6. Ev ALUA TING FLAME GPU 120 

simplification, the final simulation run of 131 ,072 agents took almost 8 hours to 

complete on the CPU. With brute force messaging on the GPU the simulation time is 

reduced to just less than two minutes, whilst the spatially partitioned alternative took 

little over a second. 

- Brute Force Algorithm Speedup - Spatial Partitioned Algorithm Speedup 

100000 ,---------------------------, 

10000 

1000 

----100+--~--~-~--~-~--~-~~-~-~ 

1024 2048 4096 8192 16384 32768 65536 131072 

Population Size 

Figure 42 - Relative performance of the Keratinocyte model (logarithmic scale). 

In order to evaluate a more realistic scenario than randomly distributed agents, the 

performance over an entire simulation has been measured using an initial 

configuration representing a scratch wound (300J..lm wide). Force resolution was done 

by evaluating agents' movement to ensure they had moved less than 0.25 J..lm with a 

maximum of 200 resolution steps. Figure 43 shows the performance of this 

simulation, which took roughly 1500 iterations (not including force resolution 

iterations) to reach a stable state (shown in Figure 45). The timing of the force 

resolution step is shown separately from the timing of regular agent behaviour and is 

measured in centiseconds (10-2) for clarity. Whilst it is possible to visualise only the 

linear time steps at 2-3 FPS, inclusion of the force resolution steps ensures simulation 

remains interactive at over 60 FPS throughout. The erratic performance of force 

resolution is explained by the random movement of agents and the varying resolution 

steps required reaching a stable state. The slight trend towards increased performance 

of force resolution throughout the simulation is attributed to the reduced number of 

cell divisions. Fewer new agents require less force resolution steps, as fewer agents 

within the densely packed population need to move in order to accommodate them. 



6. EVALUATING FLAME GPU 121 

- Ilteration Step Timing Brute Force (ms) - Itteration Step Timing Partitioned (ms) 
- Force Resolut ion Step Partitioned (cs) 

45,------------------------------------------------. 

40 

35 

30 

25 

20 

15 

10 

5.,...----

o 100 200 300 400 500 600 700 800 900 1000 11 00 1200 1300 '1400 
Itteration Number 

Figure 43 - Timing of simulation and force resolution steps during scratch would simulation 

In order to explain the significant performance drop of the brute force simulation 

timing visible around iteration 600, it is important to consider the agent count (shown 

on the left axis of Figure 44), which goes beyond 2048. The reason this number is 

significant is that at this agent count the number of blocks (32) is equally split 

amongst the multiprocessors, which restricted by register use, are able to hold 2 

blocks each. For agent counts above 2048 and below the next optimal agent 

population size of 4096 there are an uneven number of blocks to distribute per 

multiprocessors. The result of this uneven number is that once the first 2048 agent 

have been processed the left over thread blocks must be scheduled to multiprocessors, 

leaving many of them idle. In Figure 44 potential idle blocks per iteration (right axis) 

represents the number of potential block spaces available on all 16 multi processors as 

a result of the odd block number. This effect is not visible in the previous results, as 

population sizes are increased by factors which provide equal mapping of blocks to 

multiprocessors. The spatially partitioned communication pattern does not suffer in 

the same way. 



6. EVALUATING FLAME GPU 

- Population Size - Potential Idle Blocks per Itteration 
3~.------------------------------------------------, 48 

2500 

1500 

500 

__ ---------------i 4o 

32 

---,~----~-------+ 24 

16 

8 

+-~--~--~_+--+-~--_r--+_~--~--~_+--~--~_+O 

100 200 300 400 500 600 700 800 900 1~ 1100 1200 1300 1400 
Itteration Number 

Figure 44 -Population size and potential idle blocks with respect to the iteration number 

• \ • 

• 

• 

122 

Figure 45 - Keratinocyte scra~ch wound model at iteration 0 and 1500 rendered as spheres. 

Red spheres represent stem ceUs, green represent T A cells, blue represent committed cells and 

yellow represents corneocyte cells. 

6.2.4 Discussion 

Cellular level modelling has been shown to achieve massive performance benefits 

through simulation with FLAME GPU. Such performance cannot be ignored and 

makes a significant leap forward with respect to the fast development and visual 

validation of such models. Likewise, the use of the GPU has allowed real time 

visualisation to be coupled with simulation steps, which offers the potential for real 

time interaction (or steering) during the simulation process. Aside from performance 

related advantages, FLAME GPU has clearly demonstrated a step forward in the use 

of formal specification techniques for ABM on the GPu. The ability for biologists to 

specify models which can be automatically mapped to GPU hardware allows 



6. Ev ALUA TING FLAME GPU 123 

modellers to concentrate on model specification, without an understanding of the 

complexities of data parallel programming. 

6.3 Simulating Mobile Discrete Agents 

Traditional modelling of mobile discrete systems has been done using highly serial 

modelling platforms. Such systems typically work by processing agents sequentially, 

generally in some random order. In this situation each agent is free to communicate 

with other agents and examine the environment to determine space which is free (or 

unoccupied by agents) and hence move. In a parallel architecture, such as the GPU, 

this behaviour is less straightforward. If each agent makes an informed decision to 

move to some space there is a potential risk that multiple agents will move to the 

same grid space. In certain models this does not present a major problem, as grid cells 

may occupy any number of agents. Other models however, are built upon the 

principle that a discrete spatial cell may contain only a single agent [EA96]. In such 

models the limitation of a single agent per discrete cell acts as a method of 

competition between agents. If some desirable location is sought after, the strongest 

agent (or agent frrst processed from the random ordering) is able to move to the 

position gaining an advantage over other agents in the system. 

In section 2.3.7 it was shown that previous work has already implemented 

discrete mobile systems, by using an explicit collision map to resolve collisions as a 

result of movement [DLR07]. This section however presents a parallel 

implementation of a mobile discrete system which is based on cellular automaton. 

Overall, the technique presented is advantageous for the following reasons; 

1. The technique used to evaluate movement and resolve collisions can be 

applied more generally to any transactional event between agents; 

2. The technique is agent based, with emphasis on individuals rather than global 

collision evaluation. This allows it to be integrated into an agent modelling 

environment rather than as a one off model; and 

3. Collisions are guaranteed to succeed in the minimal number of resolution 

steps. This is not the case with existing work [DLR07] which only converges 

towards success. 



6. Ev ALUA TING FLAME GPU 124 

The complete model specification and code for the example presented within this 

section can be found in Appendix C. 

6.3.1 The Sugarscape Model 

The Sugarscape model is a model of an artificial society proposed by Epstein and 

Axtell [EA96] and forms the basis for many models of social science research. In its 

simplest form it consists of a population of agents distributed across an environment 

with a renewable resource (i.e. sugar). Agents require sugar to survive and move 

sequentially to empty cells to consume it. Each agent has a sugar store which is 

incremented by accumulating sugar from the environment. During each simulation 

step an agent is required to use up part of its sugar store to survive at a rate 

determined by its randomly assigned metabolism. Epstein and Axtell describe a 

number of more advanced rules including pollution, reproduction, seasonal 

environments, cultural connections and combat. These behaviours are not 

implemented as the purpose of this model is to demonstrate the use of transactional 

techniques and global conditions in parallelising sequential systems. 

6.3.2 Simulating SugarScape with CA 

Sugarscape agents are mapped to FLAME GPU by using a discrete agent 

specification and discrete message communication. As this implies the simulation is 

based on CA, both agents and the environment must be embodied within a single 

agent type referred to as a cell. To distinguish between cells which contain active 

agents and those that are empty, a state variable is used. Movement is only achievable 

through the use of messages, which can be used to send agents between cells. When 

the decision to move an agent is made, it is output to a message with its desired target 

location (where it will be recreated) and destroyed from its original cell. Using this 

technique does not however excuse the requirement to resolve collisions, it instead 

stops collisions occurring through the simple manipulation of a positional agent 

variable. In order to avoid collisions during movement, a cell therefore uses the 

following sequence of events which are defined as individual agent functions to 

ensure global synchronisation between each step. 



6. EVALUATING FLAME GPU 125 

1. Cells containing active agents read in environment messages to determine the 

best place to move to. Once a target location is identified, they output a 

request to move there within a message containing the targets location 

identifier and the agents information. 

2. Unoccupied cells read all request messages to determine if any neighbouring 

agents would like to move to the location. If an agent is found which would 

like to move to the cell then it is given a random priority and saved to the 

location (this is equivalent to determining a random order in a sequential 

environment). If multiple agents request to move to the same cell then the cell 

uses the agent's priority to determine which agent should move. After all 

requests have been considered the cell outputs a confIrmation response, which 

includes the agent's originating cellular location identifier. 

3. Cells containing agents which previously requested to move check the 

confirmation response messages. If a confirmation is found the agent knows it 

has been relocated and changes cell to an unoccupied state. If no confirmation 

is found then the agent does not move. 

Whilst the above steps ensure that collisions do not occur, they do not guarantee that 

all agents wanting to relocate will actually do so. To overcome this problem, it is 

essential that stages I to 3 are repeated until every agent has moved. To guarantee that 

all movements are evaluated could potentially require the process to be repeated for 

each possible location that the agent could move into (with a simple vision radius of 1 

this results in 8 in total). To reduce the number of movement iterations the same 

technique is applied as that which was used for intercellular force resolution. A global 

function condition is used to evaluate the state of all agents. If during stage 3 of the 

above technique, an agent is unable to move, its state is changed to indicate that it is 

unresolved. A global function condition on the first agent function ensures that the 

function is only processed if there are no agents within the unresolved state. If the 

global function is evaluated as true then the first function, is evaluated. This function 

then performs environment grow back, removal of sugar from the environment, 

feeding (according to the metabolic rate) and finally the moving of all agent cells into 

unresolved state. If the global condition is not met, then the first function is not 

evaluated. In this case, all cells will immediately perform the second agent function 



6. EVALUATING FLAME GPU 126 

which begins a movement evaluation step. During this simulation step only cells 

containing agents which were previously unresolved will be able to send movement 

requests (Figure 46). 

• I 
Global condltion I 
(unresolved) 

I 
I 

Figure 46 - Function order of the Sugarscape model demonstrating a global function condition 

used to bypass the first agent function if the population contains any unresolved agents. 

6.3.3 Simulation Performance 

Simulation performance of the Sugarscape model has been evaluated by considering 

the simulation time, of a single simulation step, at various population sizes. The 

results are shown in Table 10. For a grid size of 1,0242
, with a total of over a million 

cells, the simulation can be run at over 50 simulation steps per second. 

Table 10 - Performance of the Sugarscape model at various grid/population sizes 

Grid Size Simulation Time Updates/sec 
16x16 0.577 1733 
64x64 0.68 1462 

256x256 1.78 562 
1 024x1 024 18.43 54 



6. EVALUATING FLAME GPU 127 

Figure 47 shows the performance of the model running over a period of 100 iterations 

with over a million cells. During this time the performance fluctuates between 

simulation steps in a fairly repeatable trend. The explanation for this is that a normal 

simulation step (including the first agent function) takes longer to process than a 

simulation step performing only movement resolution. This is observable even 

between movement resolution steps, where the following steps are required to do less 

work as the number of cells in an unresolved state is reduced. 

25 ,-------------------------------------------------------. 19.00 

18.50 

20 
18.00 

"' E 
17.50 -; 

§ 
0.. 

17.001ll 
c: 
.!:! 
iO 

16.50 :; 
E 

ii5 

16.00 
5 

15.50 

15.00 

11 21 31 41 51 61 71 81 91 101 
Simulation Step 

Figure 47 - Simulation step performance (blue) and number of fully resolved simulation steps 

(pink) over a 100 iteration simulation. 

Figure 48 considers the number of movement resolution steps which are required over 

a period of 500 normal simulation steps. On average, 4 resolution steps are required to 

resolve the population size of over a million agents. By the fourth resolution step it is 

highly unusual that more than 2 or 3 agents will be unresolved. In smaller population 

sizes the number of movement resolution steps is reduced. A population size of 4,096 

requires on average only 3 resolution steps to evaluate all agent movements. This is 

due to the reduced probability of collisions in smaller population sizes. 



6. EVALUATING FLAME GPU 

100 .-----------------------------------------------~ 

90 

80 

70 

>- 60 
<.> 
c: 
~ 50 
C' 
~ 
u.. 40 

30 

20 

10 

o +-------r-----r--

2 3 456 
Resolution Steps Required 

7 8 9 

128 

Figure 48 - Frequency of the number of movement resolution steps required per fully resolved 

simulation step measured over 500 iterations with over a million cells. 

6.3.4 Discussion 

The use of CA to simulate discrete mobile agents has been shown to be effective and 

suitable for integration within an agent based framework. The example presented is 

not only suitable for any other mobile discrete agent model requiring movement, but 

is also suitable for evaluating any transactional events between agents. In contrast, 

with existing work the implementation of the Sugarscape model roughly shows the 

same massive performance benefits over CPU based alternative as other GPU 

implementations. D 'Souza [DLR07] reported a performance of 74 iterations per 

second for a grid size of 10242. This is more efficient than the implementation 

described here however, this can be attributed to the fact that his implementation is a 

highly optimised implication of a specific model, which does not consider integration 

within a more formal framework. There is little doubt that the requirement to 

communicate via messages within FLAME GPU causes a significant slowdown over 

more direct memory access methods. Whilst detrimental to performance, in this case 

the use of messages is however essential within a flexible framework and acts as a 

safeguard to ensure modellers are unable to directly access or modify agent variables. 



6. EVALUATING FLAME GPU 129 

6.4 Summary 

This chapter has evaluated the performance of FLAME GPU which has been shown 

to offer a massive performance benefit over using the traditional FLAME library on a 

single PC. The performance is also easily compatible with that of FLAME on HPC 

architectures. This allows for supercomputing performance of ABM through the use 

of commodity GPU hardware with obvious cost incentives. The performance and 

flexibility of FLAME GPU has also been demonstrated through two very different 

case studies. In the case of a Keratinocyte model, performance has been reduced from 

hours to seconds though the use of FLAME GPU's efficient messaging and use of 

global function conditions. This has allowed real time visualisation of a model, which 

was previously inconceivable. In the case of simulating mobile discrete agents with 

CA, discrete message communication and global function conditions have been 

shown to allow parallelisation of transactional events suitable for resolving agent 

movement. The success of these models acts as validation that FLAME GPU is 

suitable for high performance simulation of a wide range of ABM. 



7. CONCLUSION 130 

Chapter 7 

Conclusion 

This thesis presented a novel agent-based framework addressing the performance 

limitations of previous ABM toolkits by providing a flexible approach to modelling 

agents on the GPU. Traditional GPGPU techniques were first used to map the 

behaviour of simple swarm systems to the GPU within the newly created ABGPU 

library. This demonstrated the performance potential, which was evaluated through 

the implementation of both a flocking and pedestrian dynamics model. The FLAME 

framework was then used as inspiration to create FLAME GPU, a new framework 

using the X-Machine notation and scripting syntax of FLAME to perform simulation 

on the GPU. A flexible and extendible agent specification technique was proposed, 

based on XMML Schema, and a new robust templating mechanism for producing 

simulation code was also described. The flexible Schema technique was used to 

define GPUXMML, which added the additional necessary information to an XMML 

model to allow the translation of models to CUDA code. The necessary algorithms for 

ABM, within the data parallel constraints of FLAME GPU, were presented and the 

performance of the system was evaluated through careful benchmarking against the 

original FLAME framework. Functionality to achieve non linear simulation steps 

were integrated and exploited within two case studies. The first of these demonstrated 

the acceleration ofa Keratinocyte cell colony model which incorporated parallel force 



7. CONCLUSION 131 

resolution between cells. The second of these case studies demonstrated the use ofCA 

to simulate the behaviour of mobile discrete systems within a parallel environment. 

Finally, ABGPU and FLAME GPU demonstrated real time visualisation of both 

massive swarm systems and the Keratinocyte colony model respectively, at scales and 

speeds which were previously unachievable. 

7.1 Limitations and Future Work 

The techniques described within this thesis have been demonstrated and tested for 

both performance and flexibility. Despite this, it is important to consider the 

limitations of this work and highlight potential areas of future work. 

The major limitation of ABGPU, FLAME GPU and ABM on the GPU in general, 

is that the GPUs resources are significantly more limited than those of a general PC 

architecture. The amount of physical GPU memory, for example, restricts the scale of 

models to a finite limit, which in tum may constrain either the population sizes or the 

size of agent memory. Likewise, the use of limited shared memory and multiprocessor 

registers places limitations on both the size of messages and the complexity of agent 

behaviour. The limitations of physical memory (which depend greatly on the 

hardware used, with a maximum of 4 GB being supported in Tesla cards) can be 

addressed in future work, by considering the use of a multi GPU approach to 

modelling. This could use the original FLAME communication techniques to 

distribute messages between GPU devices (either distributed between hosts, or within 

the same machine). Limitations on register usage could be alleviated through the 

splitting of agent functions into multiple functions, either manually or automatically. 

An automatic method would likely require the agent behaviour to take a more abstract 

form (such as XML), which could be mapped to code rather than directly scripting the 

behaviour. Addressing the hardware limitations of shared memory size is somewhat 

more difficult. The fixed 16Kb size is unlikely to increase drastically in future 

hardware (mainly due to cost considerations), and limits messages to at most 125, 32 

bit variables ls• 

In order to gain the maximum performance benefits of the GPU, it is important to 

ensure the GPU is fully utilised. The results presented have confrrmed that, although 

15 The value of 125 is determined by dividing the size of shared memory (l6Kb) by a single 4byte variable 32 
times which is the smallest recommended thread block size. 



7. CONCLUSION 132 

small scale models have shown performance increases, the GPU is suited to systems 

where there are a large number of agents. For this reason, agent systems with a large 

number of very different agents (in differing states, which are processed separately), 

or agent types with very low agent counts are unlikely to gain the same performance 

benefits as systems containing large numbers of similar agents. In future work it may 

be possible to isolate these cases and perform simulation simultaneously on the CPU. 

This will allow the GPU to be more available for parts of the model requiring large 

amounts of agent processing. 

The decision to sacrifice portability for flexibility and performance drove the 

implementation of FLAME GPU towards the CUDA architecture. This restricts 

models to recent NVIDIA hardware, alienating a large number ofGPU owners. Since 

the development of the work within this thesis the OpenCL specification has been 

introduced, which allows a more portable solution for data parallel programming. 

OpenCL is heavily influenced by the CUDA architecture, with the majority of 

differences being purely down to syntax rather than the underlying concepts which 

remain the same. This suggests that a future port of FLAME GPUs CUDA templates 

to OpenCL can be achieved with relative simplicity. 

Finally there are a number of minor improvements that could be made to the 

ABM techniques presented in this thesis. The first of these is the implementation of 

FLAME GPUs dependency specification and automatic layering of functions. This 

could be achieved in the future using standard XSLT functionality. The use of space 

filling curves would also increase the performance of limited range messaging, as 

would a method that could exploit shared memory rather than relying on the texture 

cache. The performance achievements gained allow the possibility for a more 

advanced representation of cells within the Keratinocyte model. Likewise, the 

flexibility of the work presented will allow pedestrian models to contain significantly 

advanced intelligence, allowing reactive agents with improved navigational and 

reasoning skills. 

7.2 Last Words 

The work within this thesis has presented a flexible technique for ABM on the GPU 

with massive performance and cost benefits over alterative architectures. The ability 



7. CONCLUSION 133 

to abstract the process of mapping models to the GPU allows non-graphics specialists 

to harness the GPUs performance potential through simple specification syntax. The 

use of the GPU for simulation has also allowed large scale models to be simulated in 

real time. This is beneficial for visual model validation, and has implications towards 

reducing the development time of the modelling process itself. 



Appendix A. 

FLAME GPU XMML 

Schemas 
A.1 XMML Base Schema 

<? xml version="l.O " encoding="utf-8 "?> 
<xs:schema id="XMML " 
targetNamespace= .. http://www.dcs.shef.ac.uk/-paul/XMML" 
elementFormDefault="qualified " 
xmlns = .. http://www.dcs . shef.ac.uk/-paul/XMML" 
xmlns:mstns= .. http://www.dcs.shef.ac.uk/-paul/XMML .. 
xmlns:xs ='' http : //www.w3.org/2001/XMLSchema '' > 

<xs:complexType name="xmodel_type " abstract="true "> 
<xs : sequence> 

<xs:element name="name " type="xs : string " maxOccurs ="l " 
minOccurs ="l " nillable="false " /> 

134 

<xs:element name="version " type="xs:string " maxOccurs ="unbounded" 
minOccurs =I O" /> 

<xs:element name="description " type="xs:string " maxOccurs =l l " 
minOccurs ="0 " /> 

<xs:element minOccurs =" l " maxOccurs ="1 " ref ="environment "> 
</xs:element > 
<xs:element minOccurs ="1 " maxOccurs ="1 " ref="xagents "> 
</xs:element > 
<xs:element minOccurs =l l " maxOccurs =l l " ref="messages "> 
</xs:element > 
<xs:element minOccurs ="1 " maxOccurs =l l " ref ="layers "> 
</xs:element > 

</xs : sequence > 
</xs:complexType> 



<xs:simpleType name ="type_type " > 
<xs : restriction base ="xs:string" > 

<xs:enumeration value ="int " /> 
<xs : enumeration value="float " /> 
<xs:enumeration value="double " /> 

</xs:restriction> 
</xs:simpleType > 
<xs : complexType name ="variable_type " abstract="true " > 

<xs : sequence > 
<xs:element name ="type " type ="xs :string " maxOccurs =" l " 

minOccurs ="l " nillable="false " /> 
<xs : element name ="name " type ="xs:string " maxOccurs =" l " 

minOccurs ="l " nillable="false " /> 
<xs : element name ="description " type ="xs : string " minOccurs ="O" 

maxOccurs ="l " /> 
<xs:element name ="arrayLength " type="xs:int " minOccurs ="O" 

maxOccurs ="l " /> 
<xs:element name ="defaultValue " type ="xs :double " minOccurs ="O" 

maxOccurs =" l " /> 
</xs:sequence > 

</xs:complexType > 
<xs : complexType name="environment_type " abstract="true " > 

<xs:sequence > 
<xs : element ref ="constants " minOccurs ="O" maxOccurs =" l " /> 
<xs : element ref ="functionFiles " minOccurs =" l " maxOccurs =" l " /> 

</xs:sequence > 
</xs:complexType > 
<xs : complexType name="constants_type " abstract="true " > 

<xs:sequence > 

135 

<xs : element ref ="variable " minOccurs =" l " maxOccurs = "unbounded " /> 
</xs : sequence > 

</xs : complexType > 
<xs:complexType name ="functionFiles_type " abstract="true " > 

<xs:sequence > 
<xs:element name ="file " type ="xs : string " /> 

</xs : sequence > 
</xs:complexType > 
<xs:element name ="xagents " abstract="false "> 

<xs:complexType > 
<xs:sequence > 
<xs:element ref ="xagent " minOccurs =" l " maxOccurs ="unbounded " /> 

</xs:sequence > 
</xs:complexType > 

</xs:element > 
<xs : element name ="messages " abstract="false " > 

<xs:complexType > 
<xs : sequence > 
<xs : element ref ="message " minOccurs ="O" maxOccurs ="unbounded " /> 

</xs:sequence > 
</xs:complexType > 

</xs : element > 
<xs : element name ="layers " abstract="false " > 

<xs : complexType > 
<xs : sequence > 
<xs:element ref =" layer " minOccurs ="O" maxOccurs ="unbounded " /> 

</xs:sequence > 
</xs:complexType > 

</xs:element > 
<xs:complexType name ="xagent_type " abstract="true " > 

<xs:sequence > 
<xs :element name ="name " type ="xs:string " maxOccurs ="l " 



minOccurs ="l " /> 
<xs:element name ="description " type ="xs:string " minOccurs ="O" 

maxOccurs ="l " /> 
<xs:element minOccurs ="l " maxOccurs =" l " ref="memory "> 
</xs:element > 
<xs:element maxOccurs ="l " minOccurs =" l " ref ="functions "> 
</xs:element > 
<xs:element minOccurs ="l " maxOccurs =" l " ref="states "> 
</xs:element > 

</xs:sequence > 
</xs:complexType > 
<xs:complexType name ="function_type " abstract="true "> 

<xs:sequence > 
<xs:element name ="name " type="xs:string " maxOccurs =" l " 

minOccurs ="l " /> 
<xs:element name ="description " type="xs:string " minOccurs ="O" 

maxOccurs ="l " /> 
<xs:element name ="currentState " type="xs:string " minOccurs =" l " 

maxOccurs ="l " /> 
<xs:element name ="nextState " type="xs:string " minOccurs ="l " 

maxOccurs ="l " /> 
<xs:element minOccurs ="O" maxOccurs =" l " ref="inputs "> 
</xs:element > 
<xs:element minOccurs ="O" maxOccurs =" l " ref="outputs "> 
</xs:element > 
<xs:element minOccurs ="O" maxOccurs =" l " ref="xagentOutputs "> 
</xs:element > 
<xs:element ref="condition " minOccurs ="O" maxOccurs ="l " /> 

</xs:sequence > 
</xs:complexType> 
<xs:element name ="functions "> 

<xs:complexType> 
<xs:sequence > 

136 

<xs:element ref="function " minOccurs =" l " maxOccurs ="unbounded " /> 
</xs:sequence > 

</xs:complexType > 
</xs:element > 
<xs:element name ="states "> 

<xs:complexType> 
<xs:sequence > 

<xs:element ref="state " minOccurs ="O" maxOccurs ="unbounded " /> 
<xs:element name ="initialState " type="xs:string " maxOccurs ="l " 

minOccurs ="l " /> 
</xs:sequence > 

</xs:complexType > 
</xs:element > 
<xs:element name="outputs "> 

<xs:complexType > 
<xs:sequence> 

<xs:element ref="output " /> 
</xs:sequence > 

</xs:complexType> 
</xs:element > 
<xs:element name ="inputs "> 

<xs:complexType > 
<xs:sequence > 

<xs:element ref ="input " /> 
</xs:sequence> 

</xs:complexType> 
</xs:element > 
<xs:element name ="xagentOutputS "> 



<xs : complexType > 
<xs:sequence > 

<xs:element ref ="xagentOutput " /> 
</xs:sequence> 

</xs : complexType > 
</xs:element > 
<xs:complexType name =" input_type " abstract ="true " > 

<xs:sequence > 
<xs:element name ="messageName " type ="xs:string " /> 

</xs:sequence > 
</xs : complexType > 
<xs:complexType name ="output_type " abstract ="true " > 

<xs:sequence> 
<xs :element name ="messageName " type ="xs:string " /> 

</xs:sequence > 
</xs:complexType > 
<xs : complexType name ="xagentOutput_type " abstract ="true " > 
<xs : sequence> 

<xs :element name ="xagentName " type ="xs :string " /> 
<xs :element name ="state " type ="xs:string " /> 

</xs:sequence > 
</xs : complexType> 
<xs :complexType name ="message_type " abstract=" true " > 
<xs:sequence > 

<xs:element name ="name " type ="xs : string " maxOccurs =" l " 
minOccurs =" l " /> 

<xs:element name ="description " type ="xs:string " minOccurs ="O" 
maxOccurs =" l " /> 

<xs : element minOccurs ="l " maxOccurs =" l " ref="variables " > 
</xs:element > 

</xs:sequence > 
</xs:complexType > 
<xs:element name ="variables " > 
<xs : complexType > 

<xs : sequence > 

137 

<xs:element ref ="variable " minOccurs =" l " maxOccurs ="unbounded " /> 
</xs : sequence > 

</xs:complexType > 
</xs:element > 
<xs : element name ="layer " > 

<xs:complexType > 
<xs : sequence > 

<xs:element ref ="layerFunction " minOccurs =" l " 
maxOccurs ="unbounded " /> 

</xs:sequence > 
</xs:complexType > 

</xs :element > 
<xs:element name ="message " type= "message_type " abstract="true " > 
</xs:element > 
<xs:element name ="xagentOutput " type ="xagentOutput_type " 

abstract="true " > 
</xs :element > 
<xs : element name ="output " type="output type " abstract="true " > 
</xs:element > -
<xs:element name ="input " type=" input type " abstract="true "> 
</xs :element > -
<xs:complexType name="state_type " abstract=" true " > 

<xs : sequence > 
<xs:element name ="name " type="xs :string " minOccurs =" l " 

maxOccurs ="l " /> 
<xs : element name ="description " type ="xs : string" minOccurs ="O" 



maxOccurs ="l " /> 
</xs:sequence > 

</xs:complexType > 
<xs:element name ="state " type ="state_type " abstract ="true " > 
</xs:element > 
<xs:element name ="function " type="function_type " abstract ="true " > 
</xs:element > 
<xs:element name ="xagent " type="xagent_type " abstract="true "> 
</xs:element > 
<xs:element name ="variable " type="variable_type " abstract="true " > 
</xs:element > 
<xs:element name="environment " type="environment_type " 

abstract="true "> 
</xs:element > 

138 

<xs:element name="constants " type="constants_type " abstract="true " > 
</xs:element > 
<xs:element name="functionFiles " type ="functionFiles_type " 

abstract="true " > 
</xs:element > 
<xs:element name="memory " > 
<xs:complexType> 

<xs:sequence > 
<xs:element ref="variable " minOccurs =" l " maxOccurs ="unbounded" /> 

</xs:sequence > 
</xs:complexType> 

</xs:element > 
<xs:element name ="xmodel " type="xmodel_type " abstract ="true "> 
</xs:element > 
<xs:complexType name ="layer_function_type " abstract="true "> 
<xs:sequence > 

<xs:element name ="name " type="xs : string " /> 
</xs:sequence> 

</xs:complexType > 
<xs:element name ="layerFunction" type="layer_function_type " 

abstract="true " /> 
<xs:complexType name ="condition_type "> 

<xs:sequence> 
<xs:element name="lhs "> 
<xs:complexType> 

<xs:sequence> 
<xs:choice > 

<xs:element ref ="condition " /> 
<xs:element name="value " type="xs : string"> 
</xs:element > 
<xs:element name ="agentVariable " type="xs:string " /> 

</xs:choice > 
</xs:sequence > 

</xs:complexType > 
</xs:element > 
<xs:element name="operator " type="xs:string " /> 
<xs:element name="rhs "> 

<xs:complexType> 
<xs:sequence > 

<xs:choice > 
<xs:element ref ="condition " /> 
<xs:element name ="value " type ="xs:string " /> 
<xs:element name ="agentVariable " type= "xs : string " /> 

</xs:choice > 
</xs:sequence> 

</xs:complexType> 
</xs:element > 



</xs:sequence > 
</xs : complexType > 
<xs:element name="condition " type ="condition_type "> 
</xs:element > 

</xs:schema > 

A.2 GPUXMML Schema 

<? xml version="l.O " encoding="utf-8 "?> 
<xs:schema id="GPUXMML " 

139 

targetNamespace= .. http://www . dcs . shef . ac . uk/-paul/GPUXMML .. 
elementFormDefault="qualified" 
xmlns = .. http://www .dcs.shef .ac.uk/-paul/GPUXMML .. 
xmlns :mstns = .. http://www .dcs.shef.ac . uk/-paul/GPUXMML .. 
xmlns :xs = '' http://www.w3 .org/2001/XMLSchema '' 
xmlns:xmml = .. http : //www . dcs . shef.ac . uk/-paul/XMML .. > 

<xs:import namespace = .. http://www . dcs . shef.ac.uk/-paul/XMML .. > 
</xs:import > 
<xs:complexType name ="xmodel_type " abstract="false " > 

<xs : complexContent > 
<xs:extension base ="xmml :xmodel_type " > 

<xs : sequence > 
</xs : sequence > 

</xs:extension> 
</xs:complexContent > 

</xs:complexType > 
<xs:complexType name ="variable_type " > 

<xs:complexContent > 
<xs : extension base="xmml:variable_type " > 

<xs:sequence > 
</xs : sequence > 

</xs:extension> 
</xs:complexContent > 

</xs:complexType > 
<xs:complexType name="environment_type " > 

<xs:complexContent > 
<xs : extension base="xmml : environment_type " > 

<xs : sequence > 
<xs : element ref=" initFunctions " maxOccurs =" l " minOccurs ="O" /> 

</xs:sequence > 
</xs :extension> 

</xs : complexContent> 
</xs:complexType > 
<xs:complexType name ="constants_type " > 

<xs:complexContent > 
<xs : extension base="xmml : constants_type " > 

<xs:sequence > 
</xs:sequence > 

</xs:extension> 
</xs : complexContent > 

</xs:complexType > 
<xs : complexType name ="functionFiles_type " > 

<xs:complexContent > 
<xs:extension base="xmml:functionFiles_type " > 

<xs:sequence > 
</xs : sequence > 

</xs : extension> 
</xs:complexContent > 

</xs :complexType > 



<xs:complexType name ="xagent_type "> 
<xs:complexContent > 

<xs:extension base="xmml:xagent_type "> 
<xs:sequence > 

<xs:element name ="type " type ="xagent type options " /> 
<xs:element name ="bufferSize " type="xs:int" /> 

</xs:sequence > 
</xs:extension> 

</xs:complexContent > 
</xs:complexType > 
<xs:complexType name ="function_type "> 

<xs:complexContent > 
<xs:extension base="xmml:function_type "> 

<xs:sequence > 
<xs:element name ="reallocate " type ="xs:boolean " /> 
<xs:element name="RNG " type="xs:boolean " minOccurs ="O" 

maxOccurs =" l " /> 
</xs:sequence > 

</xs:extension> 
</xs:complexContent > 

</xs:complexType > 
<xs:complexType name="input_type " > 

<xs:complexContent > 
<xs:extension base="xmml:input_type "> 

<xs:sequence> 
</xs:sequence > 

</xs:extension > 
</xs:complexContent > 

</xs:complexType > 
<xs:complexType name ="output_type "> 

<xs:complexContent > 
<xs:extension base="xmml:output_type "> 

<xs:sequence > 
<xs:element name ="type " type="output_type_option" /> 

</xs:sequence > 
</xs:extension> 

</xs:complexContent> 
</xs:complexType > 
<xs:complexType name="xagentOutput_type "> 

<xs:complexContent > 
<xs:extension base="xmml :xagentOutput_type ll > 

<xs:sequence> 
</xs:sequence> 

</xs:extension> 
</xs:complexContent> 

</xs:complexType > 
<xs:complexType name="message_type " > 

<xs:complexContent > 
<xs:extension base="xmml:message_type "> 

<xs:sequence> 
<xs:element ref="partitioningNone " /> 
<xs:element name ="bufferSize " type="xs : int " /> 

</xs:sequence> 
</xs:extension> 

</xs:complexContent> 
</xs:complexType > 
<xs:element substitutionGroup="xmml:message " name ="message " 

type ="message_type "> 
</xs:element > 
<xs:element substitutionGroup="xmml:xagentOutput " 

name ="xagentOutput " type="xagentOutput_type "> 

140 



</xs:element > 
<xs:element substitutionGroup="xmml:output " name ="output " 

type="output type " > 
</xs : element > -
<xs:element substitutionGroup="xmml:input " name=" input " 

type =" input type " > 
</xs : element > -
<xs :complexType name ="state_type " > 
<xs : complexContent > 

<xs : extension base="xmml : state_type " > 
<xs:sequence > 
</xs:sequence > 

</xs:extension> 
</xs : complexContent > 

</xs:complexType > 
<xs :element substitutionGroup="xmml:state " name="state " 

type = " state_type " > 
</xs:element > 
<xs :element substitutionGroup="xmml : function " name="function " 

type =" function_type " > 
</xs:element > 
<xs :element substitutionGroup="xmml :xagent " name ="xagent " 

type ="xagent_type " > 
</xs : element > 
<xs:element substitutionGroup="xmml :variable " name ="variable " 

type ="variable_type " > 
</xs : element > 

141 

<xs : element substitutionGroup="xmml : environment " name = "environment " 
type ="environment_type " > 

</xs:element > 
<xs:element substitutionGroup="xmml : constants " name ="constants " 

type="constants_type " > 
</xs : element > 
<xs : element substitutionGroup="xmml:functionFiles " 

name ="functionFiles " type ="functionFiles type " > 
</xs :element > -
<xs:element name ="xmodel " type="xmodel_type " > 

<xs :key name="xagent func name key " > 
<xs : selector xpath=~ .//x;ml:x;gents/mstns : xagent/xmml : functions/ 

mstns:function" /> 
<xs : field xpath="xmml : name " /> 

</xs :key> 
<xs :keyref name ="layer_functions " refer="xagent_func_name_key" > 

<xs:selector xpath=" . //xmml : layers/xmml:layer/ 
mstns : layerFunction" /> 

<xs : field xpath="xmml : name " /> 
</xs :keyref > 
<xs :key name ="xagent state key" > 

<xs : selector xpath=~ .//xm;l : xagents/mstns : xagent/xmml:states/ 
mstns:state " /> 

<xs : field xpath="xmml :name " /> 
</xs : key> 
<xs :keyref name ="xagent_function_currentState " 

refer="xagent state key" > 
<xs:selector xpath= " . //~mml:x;gents/mstns:xagent/xmml : functions/ 

mstns : function " /> 
<xs : field xpath="xmml:currentState " /> 

</xs:keyref > 
<xs:keyref name ="initial_state " refer="xagent_state_key" > 

<xs:selector xpath=" .//xmml :xagents/mstns :xagent/xmml:states " /> 
<xs : field xpath="xmml : initialState " /> 



142 

</xs:keyref > 
<xs:keyref name = "xagentOutput_state " refer= "xagent_state_key " > 

<xs:selector xpath=" .//xmml:xagents/mstns:xagent/xmml:functions/ 
mstns:function/xmml:xagentOutputs/ 
mstns:xagentOutput " /> 

<xs:field xpath= "xmml:state " /> 
</xs:keyref > 
<xs:keyref name = "xagent_function_nextState " 

refer= "xagent state key " > 
<xs:selector xpath= " .//~mml:xagents/mstns:xagent/xmml:functions/ 

mstns:function " /> 
<xs:field xpath= "xmml:nextState " /> 

</xs:keyref > 
<xs:key name= "message_name_key" > 

<xs:selector xpath=" .//xmml:messages/mstns:message " /> 
<xs:field xpath= "xmml:name " /> 

</xs:key> 
<xs:keyref name = "xagent_func_input " refer= "message_name_key " > 

<xs:selector xpath=" .//xmml:xagents/mstns:xagent/xmml:functions/ 
mstns:function/xmml:inputs/mstns:input " /> 

<xs:field xpath="xmml:messageName " /> 
</xs:keyref > 
<xs:keyref name = "xagent_func_output " refer= "message_name_key" > 

<xs:selector xpath= " .//xmml:xagents/mstns:xagent/xmml:functions/ 
mstns:function/xmml:outputs/ 
mstns:output " /> 

<xs:field xpath= "xmml:messageName " /> 
</xs:keyref > 

</xs:element > 
<xs:simpleType name = "output_type_option " > 

<xs:restriction base= "xs:string " > 
<xs:enumeration value= "single_message " /> 
<xs:enumeration value= "optional_message " /> 

</xs:restriction> 
</xs:simpleType> 
<xs:simpleType name= "xagent_type_options " > 

<xs:restriction base="xs:string " > 
<xs:enumeration value= "continuous " /> 
<xs:enumeration value= "discrete " /> 

</xs:restriction> 
</xs:simpleType > 
<xs:complexType name = "partitioning_type " > 

<xs:sequence> 
</xs:sequence > 

</xs:complexType > 
<xs:element name = "partitioningNone " type = "partitioning_type " /> 
<xs:complexType name = "partitioning_discrete_type" > 

<xs:complexContent > 
<xs:extension base= "partitioning_type " > 

<xs:sequence > 
<xs:element name = "radius " type = "xs:int " /> 

</xs:sequence > 
</xs:extension> 

</xs:complexContent > 
</xs:complexType > 
<xs:element substitutionGroup= "partitioningNone " 

name ="partitioningDiscrete " 
type = "partitioning_discrete_type " > 

</xs:element > 
<xs:complexType name= "partitioning_spatial_type " > 

<xs:complexContent > 



<xs:extension base="partitioning_type " > 
<xs : sequence > 

<xs :element name ="radius " type ="xs:decimal " /> 
<xs :element name ="xmin " type ="xs:decimal " /> 
<xs : element name ="xmax " type ="xs :decimal " /> 
<xs : element name ="ymin " type ="xs:decimal " /> 
<xs:element name ="ymax " type ="xs:decimal " /> 
<xs : element name ="zmin " type ="xs :decimal " /> 
<xs : element name ="zmax " type ="xs:decimal " /> 

</xs:sequence > 
</xs:extension> 

</xs : complexContent > 
</xs:complexType > 
<xs:element substitutionGroup="partitioningNone " 

name ="partitioningSpatial " 
type ="partitioning_spatial_type " /> 

<xs :element name ="initFunction " > 
<xs:complexType > 

<xs:sequence > 
<xs:element name ="name " type="xs : string " /> 

</xs : sequence > 
</xs : complexType > 

</xs:element > 
<xs : complexType name ="initFunctions_type " > 

<xs : sequence > 
<xs : element ref =" initFunction" minOccurs =" l " 

maxOccurs ="unbounded" /> 
</xs : sequence > 

</xs:complexType > 
<xs : element name ="initFunctions " type="initFunctions type "> 
</xs : element > 
<xs : complexType name ="layer_function_type " > 

<xs:complexContent > 
<xs : extension base="xmml:layer_function_type " > 

<xs:sequence /> 
</xs:extension> 

</xs : complexContent > 
</xs :complexType > 
<xs:element substitutionGroup="xmml : layerFunction" 

name =" layerFunction" type=" layer_function_type " /> 
<xs:complexType name="globalCondition_type " > 

<xs:complexContent > 
<xs : extension base="xmml:condition_type " > 

<xs : sequence > 
<xs:element name ="maxltterations " type="xs:int " /> 
<xs : element name ="mustEvaluateTo " type ="xs:boolean" /> 

</xs : sequence> 
</xs:extension> 

</xs:complexContent > 
</xs:complexType > 
<xs:element substitutionGroup="xmml:condition" 

name ="globalCondition " type ="globalCondition_type " > 
</xs:element > 

</xs:schema > 

143 



Appendix B. 

Keratinocyte Case Study 

Model 
B.1 GPUXMML Model Specification 

<?xml version=" l . O" encoding="utf-8 "?> 
<gpu:xmodel xmlns:gpu= .. http : //www .dcs.shef . ac . uk/-paul/GPUXMML .. 

xmlns = .. http : //www . dcs.shef.ac.uk/-paul/XMML .. > 
<name >Keratinocyte</name > 
<gpu:environment > 

<gpu:constants> 
<gpu:variable> 

<type >float </ type> 
<name >calcium_level</name > 

</gpu:variable > 
<gpu:variable> 

<type >int</ type> 
<name >CYCLE_LENGTH</name > 
<arrayLength>S</arrayLength> 

</gpu:variable > 
<gpu:variable > 

<type >float </ type> 
<name >SUBSTRATE_FORCE</name > 
<arrayLength>S</arrayLength> 

</gpu:variable > 
<gpu:variable > 

<type >float </ type > 
<name >DOWNWARD_FORCE</name > 
<arrayLength>S</arrayLength> 

</gpu:variable > 
<gpu:variable > 

<type >float </ type > 
<name >FORCE_MATRIX</name > 
<arrayLength>2S </arrayLength> 

</gpu:variable > 
<gpu:variable> 

<type >float </ type> 
<name >FORCE_REP</name > 

144 



</gpu :variable > 
<gpu :variable > 

<type >float </ type > 
<name >FORCE DAMPENER</name > 

</gpu :variabl e > 
<gpu:variable > 

<type >int</ type > 
<name >BASEMENT MAX Z</ name > 

</gpu:variable > 
</gpu:constants > 
<gpu : functionFiles > 

<file >functions . c </ file > 
</gpu : functionFiles > 
<gpu:initFunctions > 

<gpu:initFunction> 
<gpu:name >setConstants</gpu : name > 

</gpu : initFunction> 
</ gpu : initFunctions > 

</gpu : environment > 

<xagents > 
<gpu :xagent > 

<name >keratinocyte </name > 
<memory> 

<gpu :variable > 
<type >int</ type > 
<name >id</name > 

</gpu :variable > 
<gpu:variable > 

<type >int</ type > 
<name >type</name > 

</gpu :variable > 
<gpu :variable > 

<type >float </ type > 
<name >x </name > 

</gpu :variable> 
<gpu :variable > 

<type >float </ type > 
<name >y </name > 

</gpu :variable > 
<gpu :variable> 

<type >float </ type > 
<name >z </ name > 

</gpu:variable> 
<gpu:variable > 

<type >float </ type > 
<name >force_x</name > 

</gpu :variable > 
<gpu :variable > 

<type >float </ type > 
<name >force_y</name > 

</gpu:variable > 
<gpu :variable > 

<type >float </ type > 
<name >force_z </name > 

</gpu:variable > 
<gpu:variable > 

<type >int </ type > 
<name >num_xy_bonds </name > 

</gpu:variable > 
<gpu :variable > 

145 



<type >int</ type > 
<name >num_z_bonds </name > 

</ gpu:variable > 
<gpu:variable> 

<type >int</ type > 
<name >num_ stem_bonds</ name > 

</gpu:variable > 
<gpu:variable > 

<type >int</ type > 
<name >cycle</ name > 

</gpu:variable > 
<gpu:variable > 

<type >float </ type > 
<name >diff_noise_factor</name > 

</gpu:variable > 
<gpu:variable > 

<type >int</ type > 
<name >dead_ticks </ name > 

</gpu:variable > 
<gpu:variable > 

<type >int</ type > 
<name >contact inhibited ticks </name > 

</gpu:variable > 
<gpu:variable > 

<type >float </ type > 
<name >motility</name > 

</gpu:variable > 
<gpu:variable > 

<type >float </ type > 
<name >dir</name > 

</gpu:variable> 
<gpu:variable > 

<type >float </ type > 
<name >movement</name > 

</gpu:variable > 
</memory> 
<functions > 

<gpu:function> 
<name >output_location</name > 
<currentState>resolve</currentState > 
<nextState >default</nextState > 
<outputs > 

<gpu:output > 
<messageName >location</messageName > 
<gpu:type>single_message</gpu:type > 

</gpu:output > 
</ outputs > 

146 

<1-- If this condition is met by all agents then they will 
perform the default agent functions. If not they will resolve forces 
and return back to this first function --> 

<gpu:globalCondition> 
<lhs > 

<agentVariable>movement</ agentVariable> 
</ lhs > 
<operator>&lt; </operator> 
<rhs > 

<value >O.2S </value > 
</ rhs > 
<gpu:maxItterations >200 </gpu:maxltterations > 



<gpu:mustEvaluateTo >true </ gpu:mustEvaluateTo> 
</gpu:globalCondition> 

<gpu:reallocate >false </gpu:reallocate > 

</gpu:function> 

<gpu:function> 
<name >cycle </ name > 
<currentState>default </currentState > 
<nextState >default </nextState > 
<xagentOutputs > 

<gpu:xagentOutput > 
<xagentName >keratinocyte</xagentName > 
<state >default </state> 

</gpu:xagentOutput > 
</xagentOutputs > 
<gpu : reallocate >false </gpu:reallocate > 
<gpu : RNG >true </gpu:RNG > 

</gpu : function > 

<gpu : function > 
<name >differentiate</name > 
<currentState>default </currentState> 
<nextState >default </nextState > 
<inputs > 

<gpu: input > 
<messageName >location</messageName > 

</gpu:input > 
</ inputs > 
<gpu:reallocate >false </gpu:reallocate > 

</gpu:function > 

<gpu : function > 
<name >death_signal </name > 
<currentState>default</currentState> 
<nextState >default</nextState > 
<inputs > 
<gpu:input > 

<messageName >location</messageName > 
</gpu:input > 

</ inputs > 
<gpu : reallocate >false </gpu : reallocate > 
<gpu : RNG >true</gpu:RNG > 

</gpu : function > 

<gpu:function> 
<name >migrate </name > 
<currentState>default </currentState > 
<nextState >resolve</nextState > 
<inputs > 
<gpu : input > 

<messageName >location</messageName > 
</gpu : input > 

</ inputs > 
<gpu : reallocate >false </gpu: reallocate> 
<gpu:RNG >true </gpu:RNG > 

</gpu : function > 

<gpu : function > 
<name >force_resolution_output </name > 

147 



<currentState>resolve </currentState> 
<nextState >resolve</nextState > 
<outputs > 

<gpu:output > 
<messageName >force </messageName > 
<gpu: type >single_message</gpu: type > 

</gpu:output > 
</ outputs > 
<gpu:reallocate >false </gpu:reallocate> 

</gpu:function> 

<gpu:function> 
<name >resolve forces </ name > 
<currentState >resolve </currentState> 
<nextState >resolve </nextState > 
<inputs > 

<gpu: input > 
<messageName >force </messageName > 

</gpu: input > 
</ inputs > 
<gpu:reallocate >false </gpu:reallocate > 

</gpu:function> 

</ functions > 

<states > 
<gpu :state> 

<name >default</name > 
<description>represents a normal cell which is 

resolved</description> 
</gpu : state> 
<gpu:state> 

<name >resolve</name > 
<description>when in this state the agent needs to be 

resolved</description> 
</gpu:state > 
<initialState>resolve</ initialState> 

</ states > 

<gpu:type >continuous </gpu:type > 
<gpu:bufferSize >8192 </gpu:bufferSize> 

</gpu:xagent > 
</xagents > 

<messages > 
<gpu :message > 

<name >location</name > 
<variables > 

<gpu:variable > 
<type >int</ type > 
<name >id</name > 

</gpu :variable > 
<gpu:variable> 

<type >int</ type > 
<name >type</name > 

</gpu:variable> 
<gpu :variable > 

<type >float </ type > 
<name >x </name > 

</gpu:variable> 

148 



<gpu:variable > 
<type >float </ type > 
<name >y </name > 

</ gpu :variable > 
<gpu:variable > 

<type >float </ type > 
<name >z </name > 

</gpu:variable > 
<gpu:variable > 

<type >float </ type > 
<name >dir</name > 

<!gpu :variable > 
<gpu:variable > 

<type >float </ type > 
<name >motility</ name > 

</gpu :variable > 
<gpu :variable > 

<type >float </ type > 
<name >range </ name > 

</gpu :variable > 
<gpu :variable > 

<type >int</ type > 
<name >iteration</ name > 

</gpu :variable > 
</variables > 
<gpu:partitioningSpatial > 

<gpu:radius >250 </gpu:radius > 
<gpu : xmin >O. O</gpu :xmin > 
<gpu : xmax >500 </gpu : xmax > 
<gpu : ymin >O. O</gpu : ymin > 
<gpu : ymax >SOO </gpu : ymax> 
<gpu : zmin >O. O</gpu : zmin > 
<gpu : zmax >SOO </gpu : zmax> 

</gpu :partitioningSpatial > 
<gpu:bufferSize>8192 </gpu : bufferSize > 

</gpu:message> 

<gpu:message > 
<name >force <! name > 
<variables > 

<gpu :variable > 
<type >int</ type > 
<name >type</name > 

</ gpu : variable > 
<gpu:variable > 

<type >float </ type > 
<name >x <! name > 

</gpu:variable > 
<gpu:variable > 

<type >float </ type > 
<name >y </ name > 

</gpu:variable > 
<gpu :variable > 

<type >float </ type > 
<name >z </name > 

</gpu:variable > 
<gpu :variable > 

<type >int</ type > 
<name >id</name > 

</gpu :variable > 
</variables > 

149 



<gpu:partitioningSpatia l > 
<gpu:radius >20 </gpu:radius > 
<gpu:xmin >O.O </gpu:xmin > 
<gpu:xmax>500 </gpu:xmax> 
<gpu:ymin>O.O </gpu:ymin> 
<gpu:ymax >500 </ gpu:ymax > 
<gpu:zmin>O.O </gpu:zmin> 
<gpu:zmax>500 </gpu:zmax> 

</gpu:partitioningSpatial > 
<gpu:bufferSize>8192 </gpu:bufferSize > 

</gpu:message > 
</messages > 

<layers > 
<layer> 

<gpu:layerFunction> 
<name >output_location</name > 

</gpu:layerFunction> 
</ layer> 

<layer> 
<gpu:layerFunction> 

<name >cycle</name > 
</gpu:layerFunction> 

</ layer> 

<layer> 
<gpu:layerFunction> 

<name >differentiate</name > 
</gpu:layerFunction> 

</ layer> 

<layer> 
<gpu:layerFunction> 

<name >death_signal </ name > 
</gpu:layerFunction> 

</ layer> 

<layer> 
<gpu:layerFunction> 

<name >migrate</name > 
</ gpu:layerFunction> 

</ layer> 

<layer> 
<gpu:layerFunction> 

<name >force_resolution_output</name > 
</ gpu:layerFunction> 

</ layer> 

<layer> 
<gpu:layerFunction> 

<name >resolve_forces</name > 
</ gpu:layerFunction> 

</ layer> 
</ layers > 

</gpu:xmodel > 

150 



B.2 Agent Function Simulation Code 

#ifndef FUNCTIONS H 
#define FUNCTIONS H 

#include "header.h" 

/*********************************************** 

** Definitions 
************************************************/ 
struct distance result 
{ 
double nearest_distance; 
double nearest_xy ; 
double nearest_z; 

}; 

#define FALSE 0 
#define TRUE 1 

/* general constants*/ 
#ifndef PI 
#define PI 
#endif 

3 . 142857143 

#define SURFACE WIDTH 500.0 
#define K WIDTH 20 . 0 

/* keratinocyte cell types*/ 
#define K_TYPE_STEM 0 
#define K TYPE TA I 
#define K TYPE COMM 2 
#define K TYPE CORN 3 
#define K TYPE HACAT 4 

/* forces act within this radius of a cell*/ 
#define FORCE_IRADIUS 10 

/* control GO and cornicyte phases*/ 
#define MAX TO GO CONTACT INHIBITED_TICKS 300 
#define MAX DEAD TICKS 600 

/* bond number constants*/ 
#define MAX NUM LATERAL BONDS 4 

constant float calcium_level ; 
constant int CYCLE_LENGTH [5] ; 
constant float SUBSTRATE_FORCE[S] ; 
constant float DOWNWARD_FORCE[S] ; 
constant float FORCE_MATRIX [5 *5] ; 
constant float FORCE_REP; 
constant float FORCE_DAMPENER ; 
constant int BASEMENT_MAX_Z ; 

FLAME GPU INIT FUNC - - void setConstants() { 

151 



float h calcium level = 1.300000; 
int h_CYCLE_LENGTH[S] = {120, 60, 0, 0, 120}; 
float h_SUBSTRATE_FORCE[S] = {0.3, 0.1, 0.2, 0.1, 0 . 3}; 
float h_DOWNWARD_FORCE[5] = {0 . 1, 0.6, 0.3, 0.6, O.l}; 
float h_FORCE_ MATRIX[S*S] = {0.06, 0 . 01, 0.01, 0.01, 0.0, 

0.01, 0.01, 0 . 01, 0.01, 0.0, 
0.01, 0.01, 0.06, 0.01, 0.0, 
0.01, 0.01, 0.01, 0.08, 0 . 0, 
0.01, 0.01, 0.01, 0.08, O. O}; 

float h FORCE REP = 0 . 5; 
float h_FORCE_DAMPENER = 0.4; 
int h BASEMENT MAX Z 5; 

set calcium_level(&h_calcium level); 
set_CYCLE_LENGTH(h_CYCLE_LENGTH) ; 
set_SUBSTRATE_FORCE(h_SUBSTRATE_FORCE) ; 
set_DOWNWARD_FORCE(h_DOWNWARD_FORCE) ; 
set_FORCE_MATRIX(h_FORCE_MATRIX) ; 
set_FORCE_REP(&h_FORCE_REP) ; 
set_FORCE_DAMPENER(&h_FORCE_DAMPENER) ; 
set_BASEMENT_MAX_Z(&h_BASEMENT_MAX_Z) ; 

/* tests if cell is deemed to be on the substrate surface */ 
/* used by resolve forces, differentiate and mitigate*/ 

FLAME_GPU_FUNC __ int on_substrate_surface( float z) 
--{ 

return (z < (float ) BASEMENT_MAX_Z); 

/* used by differentiate*/ 
FLAME GPU FUNC __ float get_ta_to_comm_diff_minor_axis( 

float calcium_level) 

return K WIDTH * 1.5; 

/* used by differetiate */ 
FLAME_GPU_FUNC __ float get_ta_to_comm_diff_major_axis( 

float calcium_level) 

return K WIDTH * 5 ; 

/* used in cycle */ 

--{ 
FLAME_GPU_FUNC __ int get_max_num_bonds( float calcium_level) 

return 6; 

/* used in cycle*/ 
FLAME GPU FUNC - - --

int can_stratify( int cell_type, 

if (cell_type == K_TYPE_HACAT) 
return FALSE; 
else { 
return TRUE; 

float calcium_level) 

152 



/* used in differentiate */ 
__ FLAME_GPU FUNC float get_max_stem_ colony_size( 

float calcium level) 

return 20 ; 

/* used in cycle */ 
FLAME GPU FUNC float get_new_motility( int cell_type , 

if (cell_type 
return 0 . 5; 

} 
else 
{ 

return 0 ; 

float calcium_level) 

/* checks if a cell can divide */ 
/* used in cycle*/ 

FLAME GPU FUNC 
--{ 

return (type 
type 

int divide( int type , int cycle) 

K_TYPE_STEM II type K_TYPE_TA II 
K_TYPE_HACAT) && cycle> CYCLE_LENGTH [type] ; 

/* returns a new coordinate 
slightly * / 

based on the old one, but deviated 

153 

/* used in cycle*/ 
FLAME GPU FUNC float get_new_coord( float old_coord , int pos_only , 

RNG rand48 * rand48) 

float coord = 0 ; 

while (coord == 0) 
coord = rnd(rand48) * K WIDTH / 10 ; 

if (!pos_only && coord> 0.5) { 
coord = -coord ; 

return old coord + coord ; 

/* generate a new starting position in the cell's cycle */ 
/* used in cycle*/ 

FLAME GPU FUNC int start_new_cycle-postion( int type , 
RNG rand48* rand48) 

float cycle_fraction = CYCLE_LENGTH[type] / 4 ; 
float pos = rnd(rand48) * cycle_fraction; 

return (int ) round (pos) ; 

/* get the radius of an ellipse given its radii and an angle theta * / 
__ FLAME_GPU_FUNC __ float ellipse_radius( float major_radius , 



float minor radius, 
float theta) 

float a_squ = major_radius * major_radius; 
float b_squ = minor_radius * minor radius; 
float sin_theta = sin (theta) ; 
float sin_theta_ squ = sin_theta * sin_theta; 
float cos_theta = cos (theta ) ; 
float cos_theta_squ = cos_theta * cos theta; 
float r_squ = (a_squ * b_squ) / 

154 

(a_squ * sin_theta_squ + b_squ * cos_theta_squ); 
float r = sqrt (r _ squ ) ; 
return r; 

/* is the nearest stem cell in range */ 
/* used in differentiate*/ 

FLAME GPU FUNC __ int check_distance (struct distance result nearest, 
float major_radius, 

if (nearest.nearest_distance 
{ 

return 1; 
}else 
{ 

float minor_radius, 
float thres ) 

-1. 0) 

float theta = tan(nearest.nearest_z/nearest.nearest_xy); 
float er = ellipse_radius (major_radi us, minor_radius, theta); 
return (thres * er < nearest . nearest_distance) ; 

/* test if on the edge of the colony */ 
/* used in differentiate */ 

FLAME GPU FUNC int on colony edge (int 
--{ - - -- - -

return num bonds < = 2; 
} 

/*********************************************** 
** Keratinocyte Agent Functions 
************************************************/ 

//Input : 
//Output: location 
//Agent Output: 

FLAME_GPU_FUNC __ int output_location( 
xmachine_memory_keratinocyte* xmemory, 
xmachine_message_location_list* location_messages) 

add_ Iocation_message (location_messages, 
xmemory->id, 
xmemory->type, 
xmemory->x, 
xmemory- >y, 
xmemory- >z, 
xmemory- >dir, 
xmemory- >motility, 
SURFACE_WIDTH, 



return 0 ; 

//Input 
//Output : 

0) ; 

//Agent Output: keratinocyte 
__ FLAME_GPU_FUNC __ int cycle ( 

155 

xmachine_memory_keratinocyte* xmemory, 
xmachine_memory_keratinocyte_list* keratinocyte_agents , 
RNG rand48* rand48) 

/* find number of contacts/bonds*/ 
int contacts = xmemory->num_xy_bonds + xmemory->num_z_bonds; 

/* touching a wall counts as two contacts*/ 
if (xmemory->x == 0 I I xmemory->x == SURFACE_WIDTH) 

contacts += 2 ; 

if (xmemory->y == 0 I I xmemory->y 
contacts += 2 ; 

if (contacts <= get_max_num_bonds(calcium_level)) 
/* cell comes out of GO*/ 
xmemory->cycle = xmemory- >cycle+l ; 
xmemory->contact_inhibited_ticks 
else { 
/* cell enters GO*/ 
xmemory->contact_inhibited_ticks = 

O· , 

xmemory->contact_inhibited_ticks+l ; 

/* check to see if enough time has elapsed as to whether cell can 
divide*/ 
if (divide (xmemory->type , xmemory->cycle)) 

int new_cycle = start_new_cycle-F0stion(xmemory->type, rand48) ; 
float new x get_new_coord(xmemory->x, FALSE, rand48) ; 
float new_y = get_new_coord(xmemory->y, FALSE, rand48); 
float new_z = xmemory->z; 
float new_diff_noise_factor = 0 . 9 + (rnd(rand48)*0 . 2); 
float new_dir = rnd(rand48) * 2 * PI; 
float new_motility = (0.5 + (rnd(rand48) * 0.5)) * 

get_new_motility(xmemory->type, calcium level) ; 

if (can_stratify (xmemory->type, calcium_level) && 
xmemory->num_xy_bonds >= MAX NOM LATERAL_BONDS) 

{ 

} 
new z = get_new_coord(xmemory->z, TRUE , rand48); 

xmemory->cycle = 
start_new_cycle-F0stion(xmemory->type, rand48); 

add_keratinocyte_agent( 
keratinocyte_agents, 
xmemory->id+l, 
xmemory->type, 
new_x, 



new_y, 
new_z, 
0, /* force_x*/ 
0, /* force_y*/ 
0, /* force z*/ 
0, /* num_xY_bonds*/ 
0, /* num_z_bonds*/ 
0, /* num_stem_bonds*/ 
new_cycle, 
new diff noise factor, 
0, /* dead_ticks*/ 

156 

0, /*contact_inhibited_ticks*/ 
new_motility, 
new_dir, 
SURFACE_WIDTH) ; 

return 0; 

//Input : location 
//Output: 
//Agent Output: 

FLAME GPU FUNC int differentiate( 

float xl 
float y1 
float zl 

xmachine_memory_keratinocyte* xmemory, 
xmachine_message_location_list* location_messages, 
xmachine_message_location_PBM* partition_matrix) 

xmemory->x; 
xmemory->y; 
xmemory->z; 

struct distance result nearest stem; 

nearest stem.nearest distance = -1.0; 
nearest_stem.nearest_xy -1.0; 
nearest stem.nearest z = -1.0; 

xmachine_message_location* location_message 
get_first_location_message(location_messages, 

partition_matrix, 
xl, y1, zl); 

while (location_message) { 

if (xmemory->type == K_TYPE_STEM) { 
if (on_colony_edge(xmemory->num_stem_bonds)) 

float x2 location_message->x; 
float y2 location_message->y; 
float z2 location_message->zi 

if (location_message->type == K_TYPE_STEM) { 
float distance check = sqrt((x1-x2)*(x1-x2) + 

(y1-y2)*(y1-y2) + (zl-z2)*(zl-z2)) i 

float max distance = K WIDTH * 
(get_max_stem_colony_size(calcium_level) / 2) i 

if (distance check < max_distance) 



} 
/* If the TA cell is too far from the stem cell centre, it 
differentiates into in a committed cell . */ 
else if (xmemory->type == K_TYPE_TA) { 

float x2 location_message->x; 
float y2 location_message - >y; 
float z2 location_message->z; 

if (location_message->type == K_TYPE_STEM) { 
float distance check sqrt((xl-x2) * (xl-x2)+ 

(yl-y2)*(yl-y2)+ 
(zl-z2) * (zl-z2)) ; 

if (nearest stem.nearest distance == -1 . 0 I I 
distance check < nearest stem . nearest_distance) 

nearest_stem. nearest_distance = distance_check; 
nearest_stem.nearest_xy = sqrt((xl-x2)*(xl-x2) + 

(yl-y2) * (yl-y2)) ; 
nearest stem.nearest z = fabs(zl-z2); 

//load next message 
location_message = get_next_location_message( 

location_message , 
location_messages , 
partition_matrix) ; 

157 

/* For stem cells, we check if the colony is too big and if they 
are on the edge.*/ 
/* If so, they differentiate into TA cells.*/ 
if (xmemory->type == K_TYPE_STEM) { 

if (on_colony_edge(xmemory->num_stem_bonds)) 
if (num stem neighbours > 

- - get_max_stem_colony_size(calcium_level)) 

xmemory->type 

/* If the cell stratifies, it also differentiates into a TA 
cell*/ 
if (lon_substrate_surface(xmemory->z)) 

xmemory->type = K_TYPE_TA; 

else if (xmemory->type == K_TYPE_TA) 
int do diff = check_distance ( 

nearest_stem, 
get ta to comm diff major axis (calcium level), 
get=ta=to=comm=diff=minor=axis(calcium=level) , 
xmemory->diff_noise_factor) ; 



xmemory->type K_TYPE_COMM; 

} 
/* If it has been in GO for a certain period, it also 
differentiates.*/ 
else if (xmemory->contact_inhibited_ticks >= 

158 

MAX TO GO CONTACT INHIBITED_TICKS) 

} 

{ 

} 
xmemory->type K TYPE_COMM; 

/* after a period as a committed cell, it dies for good -
differentiation into a corneocyte*/ 
else if (xmemory->type == K_TYPE_COMM) 

xmemory->dead ticks = xmemory->dead ticks+l; 
if (xmemory->dead_ticks > MAX_DEAD_TICKS) { 

xmemory->type = K_TYPE_CORN; 
} 
else if (xmemory->type == K_TYPE_HACAT) 
if (xmemory->contact_inhibited_ticks >= 

MAX TO GO CONTACT_INHIBITED_TICKS) 

xmemory->type K TYPE_COMM; 

return 0; 

//Input : location 
//Output : 
//Agent Output: 

FLAME_GPU_FUNC __ int death_signal ( 
xmachine_memory_keratinocyte* xmemory, 
xmachine_message_Iocation_list* location_messages, 
xmachine_message_Iocation_PBM* partition_matrix, 
RNG rand48* rand48) 

float xl 
float yl 
float zl 

xmemory->x; 
xmemory->y; 
xmemory->z; 

xmachine_message_Iocation* location_message 
get_first_location_message(location_messages, 

partition_matrix, 
xl, yl, zl); 

while (location_message) 
{ 

if (xmemory->type != K_TYPE_CORN) 
float x2 location_message->x; 
float y2 location_message->y; 
float z2 location_message->z; 

if (location_message->type == K_TYPE_CORN) { 
float distance_check = sqrt«xl-x2)*(xl-x2) + 

(yl-y2) * (yl-y2) + (zl-z2) * (zl-z2) ) ; 
if (distance_check != 0) { 

if (distance_check - K_WIDTH <= FORCE IRADIUS) 
num_corn_neighbours ++; 



location_message get_next_location_message( 
location_message , 
location_messages, 
partition_matrix) ; 

float prob = num_corn_neighbours * num_corn_neighbours * 0 . 01 ; 

if (rnd(rand48) < prob) { 
1* jump through another hoop*1 
if (rnd (rand48) < 0 . 01) { 

xmemory- >type K_TYPE_CORN; 

return 0; 

IIInput : location 
IIOutput : 
IIAgent Output: 

FLAME GPU FUNC int migrate( 

159 

xmachine_memory_keratinocyte* xmemory , 
xmachine_message_location_list* location_messages , 
xmachine_message_location_PBM* partition_matrix, 
RNG rand48* rand48) 

1* these are the ' current' parameters*1 
float xl xmemory->x; 
float yl = xmemorY->Y i 
float dirl = xmemory->dir i 
float motilityl = xmemory->motility; 

1* if rnd less than 0.1 , then changed direction within +1- 45 
degrees *1 
if (rnd (rand48) < 0 . 1) { 

dirl += PI * rnd(rand48)/4 . 0; 

xl += motilityl * cos (dirl) i 
yl += motilityl * sin(dirl); 

II check if we ' re about to bump into a stationary cell 
xmachine_message_ location* location_message = 

get_first_location_message (location_messages , 
partition_matrix , 
xl, yl, O. 0 ) ; 

while (location message) 
{ -

II only TAs and HACATs can move 
if (xmemory->type K_TYPE_TA I I 

xmemory->type == K_TYPE_HACAT ) 

float x2 
float y2 
float z2 

location_message - >x; 
location_message->y; 
location_message->z; 



160 

float motility2 = location_message->motility; 

II check if we're on the base of the dish and other cell is 
II stationary 
if (on_substrate_surface(z2) && motility2 == 0) 
{ 

II find distance 
float distance check = sqrt((xl-x2)*(xl-x2) + 

(yl-y2)*(yl-y2)) ; 
if (distance_check != 0 && distance_check < K_WIDTH) 

dirl -= PI; 
II reverse direction 
if (dirl > 2 * PI) { 

dirl -= 2 * PI; 

xl xmemory->x + motilityl * cos (dirl) ; 
yl xmemory->y + motilityl * sin(dirl); 

location_message get_next_location_message(location_message, 
location_messages, 
partition matrix) ; 

1* update memory with new parameters *1 
xmemory->x = xl; 
xmemory->y = yl; 
xmemory->dir = dirl; 
xmemory->motility = motilityl; 

1* check we've not gone over the edge of the dish!*1 
1* if so, reverse direction*1 
if (xmemory->x > SURFACE WIDTH) { 

xmemory->x SURFACE_WIDTH - xmemory->motility *rnd(rand48); 
xmemory->dir PI + PI * (rnd(rand48)-0 . 5)/4 . 0; 

if (xmemory->x < 0) 
xmemory->x 
xmemory->dir 

xmemory->motility *rnd(rand48) ; 
PI * (rnd(rand48)-0.5)/4.0; 

if (xmemory->y > SURFACE_WIDTH) { 
xmemory->y SURFACE_WIDTH -xmemory->motility *rnd(rand48) ; 
xmemory->dir (3.0 * PI/2.0) + PI * (rnd(rand48)-0.5)/4 . 0; 

if (xmemory->y < 0) { 
xmemory->y xmemory->motility * rnd(rand48); 
xmemory->dir (PI/2.0) + PI * (rnd(rand48)-0.5)/4 . 0; 

return 0; 

I/Input 
IIOutput: force 
IIAgent Output: 

FLAME_GPU_FUNC __ int force_resolution_output( 
xmachine_memory_keratinocyte* xmemory, 
xmachine_message_force_list* force_messages) 



add_force_message( force_messages, 
xmemory->type, 
xmemory->x, 
xmemory->y , 
xmemory->z, 
xmemory->id) ; 

return 0 ; 

//Input : force 
//Output : 
//Agent Output: 

FLAME GPU FUNC - - int resolve_forces ( 

161 

xmachine_memory_keratinocyte* xmemory , 
xmachine_message_force_list* force_messages , 
xmachine_message_force_PBM* partition_matrix) 

float xl xmemory->x; 
float yl xmemory->y; 
float zl xmemory->z; 
int typel = xmemory->type; 

int num_xy_bonds 0; 
int num z bonds 0; 
int num stem bonds 0; 

xmemory->force_x 0.0 ; 
xmemory->force_y 0 . 0; 
xmemory->force_z 0 . 0; 

xmachine_message_force* force_message = get_first_force_message( 
force_messages, 
partition_matrix , 

while (force message) 
{ -

float x2 force_message->x; 
float y2 force_message->y ; 
float z2 force_message->z; 
int type2 = force_message->type; 

xl, yl, zl) ; 

float distance check sqrt((xl-x2 ) * (xl-x2) + (yl-y2)*(yl-y2) + 
(zl-z2 ) * (zl-z2 )) ; 

if (distance_check ! = 0 . 0) { 
float force ; 
float separation_distance = (distance_check - K_WIDTH) ; 
if (separation_distance <= FORCE_lRADIUS) 
if (z2 >= zl) { 

if (z2 - zl > (K_WIDTH/2) ) 
num z bonds ++i 
else {" 
num_xy_bonds ++; 

if (force_message->type 
num_ stem_bonds ++; 



if (separation_distance> 0.0) { 
force = FORCE_MATRIX[type1+ (type2*5)); 
else { 
force = FORCE_REP; 

if (on_substrate_ surface(zl)) 
force *= DOWNWARD_FORCE [xmemory->type) ; 

force *= FORCE_DAMPENER; 

xmemory->force_x = (xmemory->force_x + 

162 

force * (separation_distance) * ((x2-x1)/distance_check)) ; 
xmemory->force_ y = (xmemory->force_y + 

force * (separation_distance)*((y2-y1)/distance_check)); 
xmemory->force_z = (xmemory->force_z + 

force * (separation_distance)*((z2-z1)/distance_check)); 

force_message get_next_force_message(force_message, 
force_messages, 
partition_matrix) ; 

/* attraction force to subs trate*/ 
if (zl <= (K_WIDTH * 1.5)) { 

xmemory->force_z = (xmemory->force_z - SUBSTRATE_FORCE[type1)); 

xmemory->num_xy_bonds = num_xy_bonds; 
xmemory->num_z_bonds = num_z_bonds; 
xmemory->num_stem_bonds num_stem_bonds; 

xl += xmemory->force_x; 
y1 += xmemory->force_y; 
zl += xmemory->force_z; 

if (xl < 0) 
xl = 0; 

if (y1 < 0) 

y1 = 0; 

if (zl < 0) 

zl = 0; 

if (xl > SURFACE_WIDTH) 
xl = SURFACE_WIDTH; 

if (y1 > SURFACE_WIDTH) 
yl = SURFACE_WIDTH; 

xmemory->movement sqrt((x1-xmemory->x)*(x1-xmemory->x) + 
(y1-xmemory->y) * (y1-xmemory->y) + 
(zl-xmemory->z)*(zl-xmemory->z)) i 



xmemory- >x = xl ; 
xmemory->y yl ; 
xmemory->z zl; 

return 0 ; 

#endif II #ifndef FUNCTIONS H 

163 



Appendix C. 

Mobile Discrete Case 

Study Model 
C.1 GPUXMML Model Specification 

<? xml version="l.O " encoding="utf-8 "?> 
<gpu:xmodel xmlns:gpu= .. http://www . dcs.shef.ac.uk/-paul/GPUXMML .. 

xmlns = .. http : //www.dcs . shef.ac.uk/-paul/XMML .. > 
<name >Mobile Discrete Agents </name > 

<gpu:environment > 
<gpu:functionFiles > 

<file >functions . c </ file > 
</gpu:functionFiles > 

</gpu:environment > 

<xagents > 
<gpu:xagent > 

<name >agent </name > 
<memory> 

<gpu:variable > 
<type >int</ type > 
<name >location_id</name > 

</ gpu:variable> 
<gpu:variable > 

<type >int</ type > 
<name >agent_id</name > 

</gpu:variable > 
<gpu:variable> 

<type >int</ type > 
<name >state</name > 

</gpu:variable > 
<!-- agent specific variables --> 
<gpu:variable> 

<type >int</ type > 
<name >sugar_level </name > 

</gpu :variable > 
<gpu:variable > 

164 



<type >int</ type > 
<name >metabolism</ name > 

</gpu :variable > 
<!-- environment specicic var --> 
<gpu :variable > 

<type >int</ type > 
<name >env sugar level</name > 

</gpu:variable > -
</memory> 
<functions > 

<gpu:function> 
<name >metabol ise_and_growback</name > 
<description>decreases the sugar level and increases and 

agents sugar store</description> 
<currentState>default </currentState> 
<nextState >default </nextState > 
<gpu:globalCondition> 

<lhs ><agentVariable >state</agentVariable ></ lhs > 
<operator>!=</operator> 

165 

<rhs ><value >AGENT STATE MOVEMENT UNRESOLVED </valu e ></ r hs > 
<gpu: maxltterations >9</gpu :maxltt erations > 
<gpu :mustEvaluateTo>true </gpu:mustEvaluateTo> 

</gpu : globalCondition> 
<gpu : reallocate >false </gpu:reallocate > 
<gpu :RNG >false </gpu : RNG > 

</gpu : function > 

<gpu:function> 
<name >output_cell_state</name > 
<description>outputs the state of the cell </description> 
<currentState>default</currentState> 
<nextState >default </nextState > 
<outputs > 

<gpu:output > 
<messageName >cell_state</messageName > 
<gpu: type >single_message</gpu: type > 

</gpu :output > 
</outputs > 
<gpu : reallocate >false </gpu: reallocate> 
<gpu:RNG >false </gpu : RNG > 

</gpu : function > 

<gpu : function > 
<name >movement_request</name > 
<description>an agents requests to move to a new 

location</description> 
<currentState>default </currentState> 
<nextState >default </nextState > 
<inputs > 

<gpu : input > 
<messageName >cell state</messageName > 

</gpu:input > -
</ inputs > 
<outputs > 

<gpu:output > 
<messageName >movement_request </messageName > 
<gpu:type >single message </gpu:type > 

</gpu:output > -
</outputs > 
<gpu : reallocate >false </gpu:reallocate > 



<gpu:RNG >false </gpu:RNG > 
</gpu:function> 

<gpu:function> 
<name >movement_response</ name > 

166 

<description>an agents responds to requests flagging itself 
for a transaction</description> 

<currentState>default </currentState> 
<nextState >default </nextState > 
<inputs > 

<gpu:input > 
<messageName >movement_request</messageName > 

</gpu: input > 
</ inputs > 
<outputs > 

<gpu:output > 
<messageName >movement_response</messageName > 
<gpu:type >single_message</gpu:type > 

</gpu:output > 
</outputs > 
<gpu: reallocate >false</gpu: reallocate > 
<gpu:RNG >true</gpu:RNG > 

</gpu:function> 

<gpu:function> 
<name >movement_transaction</name > 
<description>completes the transaction by removing the 

agent from its old position</description> 
<currentState>default</currentState> 
<nextState >default </nextState> 
<inputs > 

<gpu:input > 
<messageName >movement_response</messageName > 

</ gpu:input > 
</ inputs > 
<gpu:reallocate>false </gpu:reallocate> 
<gpu : RNG >false </gpu:RNG > 

</gpu:function> 
</ functions > 

<states > 
<gpu : state ><name >default </name ></gpu: state> 
<initialState>default</ initialState> 

</states > 

<gpu: type >discrete </ gpu : type > 
<gpu:bufferSize >4096 </gpu :bufferSize > 

</gpu:xagent > 
</xagents > 

<messages > 
<gpu:message > 

<name >cell state</name > 
<variables > 

<gpu:variable> 
<type >int</ type > 
<name >location_id</name > 

</gpu :variable> 
<gpu :variable > 

<type>int</ type > 
<name >state</name > 



</gpu :variable > 
<gpu:variable > 

<type >int</ type > 
<name >env_sugar_level </name > 

</gpu:variable > 
</variables > 
<gpu:partitioningDiscrete> 

<gpu:radius >l </gpu:radius > 
</gpu:partitioningDiscrete> 
<gpu:bufferSize >4096 </gpu:bufferSize > 

</gpu:message > 

<gpu:message > 
<name >movement_request </ name > 
<variables > 

<gpu :variable > 
<type >int</ type > 
<name >agent_id</name > 

</gpu:variable > 
<gpu:variable > 

<type >int</ type > 
<name >location_id</name > 

</gpu :variable > 
<gpu:variable > 

<type >int</ type > 
<name >sugar_level </name > 

</gpu :variable > 
<gpu:variable > 

<type >int</ type > 
<name >metabolism</name > 

</gpu :variable > 
</variables > 
<gpu :partitioningDiscrete> 

<gpu : radius >l </gpu : radius > 
</gpu :partitioningDiscrete > 
<gpu :bufferSize >4096 </gpu:bufferSize > 

</gpu:message > 

<gpu:message > 
<name >movement_response</name > 
<variables > 

<gpu:variable > 
<type >int</ type > 
<name >location_id</name > 

</gpu:variable > 
<gpu :variable > 

<type >int </ type > 
<name >agent_id</name > 

</gpu:variable> 
</variables > 
<gpu:partitioningDiscrete> 

<gpu:radius >l </gpu:radius > 
</gpu :partitioningDiscrete> 
<gpu :bufferSize >4096 </gpu:bufferSize > 

</gpu:message > 
</messages > 

<layers > 
<layer > 

<gpu : layerFunction> 
<name >metabolise_and_growback</name > 

167 



</gpu:layerFunction> 
</ layer> 
<layer> 

<gpu:layerFunction> 
<name >output_cell_state</name > 

</gpu:layerFunction> 
</ layer> 
<layer> 

<gpu:layerFunction> 
<name >movement_request </name > 

</gpu:layerFunction> 
</ layer> 
<layer> 

<gpu:layerFunction> 
<name >movement_response</name > 

</ gpu:layerFunction> 
</ layer> 
<layer > 

<gpu:layerFunction> 
<name >movement_transaction</name > 

</ gpu : layerFunction> 
</ layer> 

</ layers > 
</gpu:xmodel > 

C.2 Agent Function Simulation Code 

#ifndef 
#define 

FUNCTIONS H 
FUNCTIONS H 

#include "header.h" 

//Agent state variables 
#define AGENT STATE UNOCCUPIED 0 
#define AGENT STATE OCCUPIED 1 
#define AGENT_STATE_MOVEMENT_REQUESTED 2 
#define AGENT STATE MOVEMENT UNRESOLVED 3 

//Growback variables 
#define SUGAR_GROWBACK_RATE 1 
#define SUGAR MAX CAPACITY 4 

FLAME_GPU_FUNC __ int metabolise_and_growback( 
xmachine_memory_agent* agent) { 

j/metabolise if occupied 
if (agent->state AGENT_STATE_OCCUPIED) 
{ 

//store sugar 
agent->sugar_level += agent->env_sugar_levelj 
agent->env_sugar_level = OJ 

//metabolise 
agent - >sugar_level agent - >metabolismj 

//check if agent dies 
if (agent->sugar_level 0) 

168 



agent->state = AGENT_STATE_UNOCCUPIED ; 
agent->agent_id = -1 ; 
agent->sugar_level = 0; 
agent->metabolism = 0; 

//growback if unoccupied 
if (agent->state == AGENT STATE_UNOCCUPIED) 
{ 

if (agent->env_sugar_level < SUGAR_MAX_CAPACITY) 
{ 

} 

169 

//set all active 
if (agent->state 

agents to unresolved as they may now want to move 
== AGENT_STATE_OCCUPIED) 

{ 

} 
agent->state = AGENT_STATE_MOVEMENT_UNRESOLVED; 

return 0 ; 

__ FLAME_GPU_FUNC int output_cell_state( 
xmachine_memory_agent* agent, 
xmachine_message_cell_state_list* cell state messag es) { - -

add_cell_state_message<DISCRETE_2D> (cell_state_message s , 
agent->location_id, 
agent->state , 
agent->env_sugar_level) ; 

return 0; 

FLAME GPU FUNC int movement_request ( 
xmachine_memory_agent* agent , 
xmachine_message_cell_state_list* 

cell state messages, 
xmachine_message_movement_request_list * 

movement_request_messages) 

int best_sugar_level - 1 ; 
int best_location_id -1 ; 

//find the best location to move to 
xmachine_message_cell_state* current_message 

get_first_cell_state_message<DISCRETE_2D>( 
cell_state_messages , 
get_agent_x() , 
get_agent_y()) ; 

while (current message) 
{ -

//if occupied then look for empty cells 



if (agent ->state == AGENT STATE MOVEMENT UNRESOLVED ) 
{ - - -

Ilif location is unoccupied then check for empty locations 
if (current message->state == AGENT STATE UNOCCUPIED) 
{- - -

Ilif the sugar level at current location is better than 
Ilcurrently stored then update 
if (current_message->env_sugar_level > best_sugar_Ievel) 
{ 

best_sugar_Ievel 
best location id 

current_message->env_sugar_Ievel; 
current_message->location_id; 

current_message get_next_cell_state_message<DISCRETE_2D>( 
current_message, 
cell_state_messages) ; 

170 

Ilif the agent has found a better location to move to then update 
Ilits state 
if ((agent->state == AGENT_STATE_MOVEMENT_UNRESOLVED)) 
{ 

Ilif there is a better location to move to then state indicates 
Iia movement request 
if (best location id > 0) 
{ -

agent->state AGENT STATE_MOVEMENT_REQUESTED; 
} 
else 
{ 

agent->state 
} 

Iladd a movement request 
add_movement_request_message<DISCRETE_2D> ( 

movement_request_messages, 
agent->agent_id, 
best_Iocation_id, 
agent->sugar_level, 
agent->metabolism) ; 

return 0; 

FLAME GPU FUNC int movement_response( 
xmachine_memory_agent* agent, 
xmachine_message_movement_request_list* 

movement_request_messages, 
xmachine_message_movement_response_list* 

movement_response_messages, 
RNG rand48* rand) { 

int best_request_id = -1; 
int best_request-Friority = -1; 
int best_request_sugar_Ievel = -1; 
int best_request_metabolism = -1; 



171 

xmachine_message_movement_request* current_message = 
get_first_movement_request_message<DISCRETE_2D>( 

movement_request_messages , 
get_agent_x() , 
get_agent_y () ) ; 

while (current message) 
{ -

II if the location is unoccupied then check for agents requesting 
lito move here 

} 

if (agent->state == AGENT_STATE_UNOCCUPIED) 
{ 

Ilcheck if request is to move to this location 
if (current message->location id agent->location_id) 
{- -

Ilcheck the priority 
int message-priority 
if (message-priority 
{ 

and maintain the best ranked agent 
0 ; Ilrand48 (rand) ; 

> best_request-priority) 

best request_id = current_message->agent_id; 
best=request-priority = message-priority; 

current_message = 
get_next_movement_request_message<DISCRETE_2D>( 

current_message , 
movement_request_messages) ; 

Ilif the location is unoccupied and an agent wants to move here 
Iithen do so and send a response 
if ((agent->state == AGENT STATE_UNOCCUPIED)&& 

(best_request_id> 0)) 

agent->state = AGENT STATE OCCUPIED; 
Ilmove the agent to here 
agent - >agent_id = best_request_idi 
agent - >sugar_level = best request_sugar_Ievel; 
agent - >metabolism = best_~equest_metabolismi 

Iladd a movement response 
add_movement_response_message<DISCRETE_2D>( 

movement_response_messages, 
agent->location_id , 
best request_id) ; 

return 0; 

FLAME GPU FUNC int movement_transaction( 
xmachine_memory_agent* agent, 
xmachine_message_movement_response_list* 

movement_response_messages) { 

xmachine message movement response* current message = 
- get=first_mo;ement_response_message<DISCRETE_2D>( 

movement_response_messages , 
get_agent_x () , 
get_agent_y () ) ; 



172 

while (current_message) 
{ 

Ilif location contains an agent wanting to move then look for 
Ilresponses allowing relocation 
if (agent->state == AGENT STATE MOVEMENT REQUESTED) 
{ - - -

II if the movement response request came from this location 
if (current_message->agent_id == agent->agent_ id) 
{ 

Ilremove the agent and reset agent specific variables as 
II it has now moved 
agent->state = AGENT_STATE_UNOCCUPIED; 
agent->agent_id = -1; 
agent->sugar_level = 0; 
agent->metabolism = 0; 

current_message = 
get_next_movement_response_message<DISCRETE_ 2D>( 

current_message, 
movement_response_messages) ; 

Ilif request has not been responded to then agent is unresolved 
if (agent - >state == AGENT_STATE_MOVEMENT_REQUESTED ) 
{ 

agent - >state = AGENT_ STATE_MOVEMENT_UNRESOLVED; 

return 0; 

#endif II #ifndef FUNCTIONS H 



173 

References 

[ACKM08]Salem F. Adra, Simon Coakley, Mariam Kiran, and Phil McMinn. An 

agent-based software platform for modelling systems biology. 

Epitheliome Project Technical report, University of Sheffield, 2008. 

[ALT08] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose 

molecular dynamics simulations fully implemented on graphics 

processing units. J. Comput. Phys., 227( 1 0):5342-5359, 2008. 

[ASM80] Jean-Raymond Abrial, Stephen Schuman, and Bertrand Meyer. A 

Specification Language, in On the Construction of Programs. Cambridge 

University Press, 1980. 

[ATI09] ATI. Ati stream computing overview. Technical report, Advanced Micro 

Devices, 2009. 

[Bat68] K. E. Batcher. Sorting networks and their applications. In AFIPS '68 

(Spring): Proceedings of the April 30-May 2, 1968, springjoint computer 

conference, pages 307-314, New York, NY, USA, 1968. ACM. 

[BBPP98] Francois Bousquet, Innocent Bakam, Hubert Proton, and Christophe Le 

Page. Cormas: Common-pool resources and multi-agent systems. In 

lEA/AlE '98: Proceedings of the 11th International Conference on 

Industrial and Engineering Applications of Artificial In telligence and 

Expert Systems, pages 826-837, London, UK, 1998. Springer-Verlag. 

[BCG+99] T. Balanescu, A. J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, 

and C. Vertan. Communicating stream x-machines systems are no more 

than x-machines. j-jues, 5(9):494-507, 1999. 

Ihttp://www.jucs.org/jucs_5_9/communicating_stream_x_machinesl. 

[BFH+04] Ian Buck, Tim Foley, Daniel Hom, Jeremy Sugerman, Kayvon Fatahalian, 

Mike Houston, and Pat Hanrahan. Brook for gpus: stream computing on 

graphics hardware. ACM Trans. Graph., 23(3):777-786, 2004. 



174 

[BM0001]Bemhard Bauer, Jorg P. MUlier, James Odell, and James Odell. Agent 

uml: A formalism for specifying multiagent interaction. In in: Ciancarini, 

P.; Wooldridge, M [Eds.], Agent-Oriented Software Engineering, pages 

91-103. Springer, 200l. 

[Bro09] Robert G. Brown. Engineering a Beowulf-Style Compute Cluster. Duke 

University Physics Department, Durham, NC 27708-0305 

http://www.phy.duke.eduJ rgblBeowulfibeowulCbook.php, 2009. 

[Buc06] Ian Buck. Stream Computing on Graphics Card Hardware. PhD thesis, 

Stanford University, 2006. 

[BZ08] R.G. Belleman and J. Bedorfand S.F. Portegies Zwart. High performance 

direct gravitational n-body simulations on graphics processing units ii: An 

implementation in cuda. New Astronomy, 13(2): 103-112, 2008. 

[CES06] R. De Chiara, U. Erra, and V. Scarano. An architecture for distributed 

behavioural models with gpus. Proceedings of the 4th Eurographics 

Italian Chapter (EGITA 2006) Eurographics press, pages 197-203, 2006. 

[CGW07] LS Chin, C Greenough, and OJ Worth. Optimising communication 

routines in parallel x-agents. Technical report, Software Engineering 

Group Note SEG-N-004, 2007. 

[CM04] N. Courty and S. Musse. Fastcrowd: Real-time simulation and interaction 

with large crowds based on graphics hardware. EurographicslACM 

Siggraph Symp. on Computer Animation, SCA 04, Grenoble, France, 

2004. 

[CMOS] N. Courty and S. R. Musse. Simulation of large crowds in emergency 

situations including gaseous phenomena. In CGI '05: Proceedings of the 

Computer Graphics International 2005, pages 206-212, Washington, DC, 

USA, 2005. IEEE Computer Society. 

[Coa07] Simon Coakley. A Formal Software Architecture for Agent Based 

Modelling in Biology. PhD thesis, Department of Computer Science, 

University of Sheffield, 2007. 

[CSH06] Simon Coakley, Rod Smallwood, and Mike Holcombe. Using x-machines 

as a formal basis for describing agents in agent-based modelling. In 

Proceedings of 2006 Spring Simulation Multiconference, pages 33-40, 

April 2006. 

[CUDPP] http://gpgpu.org/developer/cudpp. 



175 

[Den91] D.C. Dennett. Consciousness Explained. Boston: Back Bay Books. ISBN 

0316180661, 1991. 

[dLOO] Mark d'Inverno and Michael Luck. Formal agent development: 

Framework to system. In In Formal Approaches to Agent-Based Systems: 

First International Workshop, FAABS 2000, pages 133-147. Springer­

Verlag, 2000. 

[DLR07] R. M. D'Souza, M. Lysenko, and K. Rahmani. Sugarscape on steroids: 

simulating over a million agents at interactive rates. In Proceedings of 

Agent2007,2007. 

[DorOI] Jim Doran. Agent-based modelling of ecosystems for sustainable resource 

managment. pages 383-403, 200 I. 

[DSR98] Van Dyke, Robert Savit, and Rick L. Riolo. Agent-based modeling vs. 

equation-based modeling: A case study and users' guide. pages 10-25, 

1998. 

[EA96] Joshua M. Epstein and Robert L. Axtell. Growing Artificial Societies: 

Social Science from the Bottom Up. The MIT Press, November 1996. 

[EDCST04] Ugo Erra, Rosario De Chiara, Vittorio Scarano, and Maurizio Tatafiore. 

[EiI74] 

[FK03] 

Massive simulation using gpu of a distributed behavioral model of a flock 

with obstacle avoidance. November 2004. 

Samuel Eilenberg. Automata, Languages, and Machines. Academic Press, 

Inc., Orlando, FL, USA, 1974. 

R. Fernando and M. Kilgard, editors. The Cg Tutorial: The Definative 

Guide to Programmable Real-Time Graphics. Addison Wesley, ISBN 0-

031-19496-9,2003. 

[FQK08] Zhe Fan, Feng Qiu, and Arie Kaufman. Zippygpu: Programming toolkit 

for general-purpose computation on gpu clusters. Supercomputing 2006 

Workshop on Gneral Purpose GPU Computing, 2008. 

[Gar70] M Gardner. Mathematical games: The fantastic combinations of john 

conway's new solitaire game life. Scientific American 223, pages 120-

123, 1970. 

[gde] http://www.gremedy.com. 

[GGKM06]Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. 

GpuTerasort: high performance graphics co-processor sorting for large 

database management. pages 325-336, 2006. 



176 

[GheOS] Marian Gheorghe. Molecular x-machines. Technical report, Department 

of Computer Science, Univeristy of Sheffield, 200S. 

[gls08] OpenGL shading language v 1.20. Technical report, Khronos Group, 

2008. 

[GM77] R. A. Gingold and 1. J. Monaghan. Smoothed particle hydrodynamics -

theory and application to non-spherical stars. Mon. Not. Roy. Astron. Soc., 

181:375-389, November 1977. 

[GMST99] E. A. Gaffney, P. K. Maini, J. A. Sherratt, and S. Tuft. The mathematical 

modelling of cell kinetics in corneal epithelial wound healing. Journal of 

Theoretical Biology, 197: IS-40, 1999. 

[GreOS] Simon G. Green. GPU-accelerated iterated function systems. In 

SIGGRAPH '05: ACM SIGGRAPH 2005 Sketches, page 15, New York, 

NY, USA, 200S. ACM. 

[Gre07] Simon Green. Cuda particles. Technical report, NVIDIA SDK White 

Paper, 2007. 

[GRH+OS] Naga K. Govindaraju, Nikunj Raghuvanshi, Michael Henson, David Tuft, 

and Dinesh Manocha. A cache-efficient sorting algorithm for database and 

data mining computations using graphics processors. Technical report, 

200S. 

[GZ06] A. Grep and G. Zachmann. Gpu-abisort: optimal parallel sorting on 

stream architectures. Parallel and Distributed Processing Symposium, 

2006. IPDPS 2006. 20th International, pages 10 pp.-, April 2006. 

[HCSL02] Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo 

Lastra. Physically-based visual simulation on graphics hardware. In 

HWWS '02: Proceedings of the ACM SIGGRAPHIEUROGRAPHICS 

conference on Graphics hardware, pages 109-118, Aire-Ia-Ville, 

Switzerland, Switzerland, 2002. Eurographics Association. 

[HI07] Tsuyoshi Hamada and Toshiaki Iitaka. The chamomile scheme: An 

optimized algorithm for n-body simulations on programmable graphics 

processing units. 2007. 

[HM97] Dirk Helbing and Peter Molnar. Self-Organization Phenomena in 

Pedestrian Crowds, page 569S77. Gordon and Breach, 1997. 

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 

21(8):66~77, 1978. 



177 

[HoI88] M. Holcombe. X-machines as a basis for dynamic system specification. 

Softw. Eng. J, 3(2):69-76, 1988. 

[How07] Lee Howes. Loading structured data efficiently using cuda. Technical 

report, NVIDIA, 2007. 

[HRRT05] M. G. Hinchey, C. A. Rouff, 1. L. Rash, and W. F. Truszkowski. 

Requirements of an integrated formal method for intelligent swarms. In 

FMICS '05: Proceedings of the 10th international workshop on Formal 

methods for industrial critical systems, pages 125-133, New York, NY, 

USA, 2005. ACM. 

[HSH09] Liang Hu, Pedro V. Sander, and Hugues Hoppe. Parallel view-dependent 

refinement of progressive meshes. In /3D '09: Proceedings of the 2009 

symposium on Interactive 3D graphics and games, pages 169-176, New 

York, NY, USA, 2009. ACM. 

[IGCG99] Carlos Argel Iglesias, Mercedes Garijo, and Jose Centeno-Gonzalez. A 

survey of agent-oriented methodologies. In ATAL '98: Proceedings of the 

5th International Workshop on Intelligent Agents V, Agent Theories, 

Architectures, and Languages, pages 317-330, London, UK, 1999. 

Springer-Verlag. 

[JC06] Gunnar Johansson and Hamish Carr. Accelerating marching cubes with 

graphics hardware. In CASCON '06: Proceedings of the 2006 conference 

of the Center for Advanced Studies on Collaborative research, page 39, 

New York, NY, USA, 2006. ACM. 

[JEB+06] MD Johnston, CM Edwards, WF Bodmer, PK Maini, and SJ Chapman. 

[KC05] 

Mathematical modeling of cell population dynamics in the colonic crypt 

and in colorectal cancer. Proc Natl Acad Sci USA., 104(10):4008-4013, 

2006. 

Andreas Kolb and Nicolas Cuntz:. Dynamic particle coupling for gpu-

based fluid simulation. Proceedings of 18th Symp. on Simulation 

Technique, page 722727, 2005. 

[KHEG03] P. Kefalas, M. Holcombe, G. Eleftherakis, and M. Gheorghe. A formal 

method for the development of agent based systems. In Intelligent Agent 

Software Engineering, VPlekhanova (eds), Idea Group Publishing Co, 

pages 68-98,2003. 



178 

[KKOl] E. Kapeti and P. Kefalas. A design language and tool for x-machine 

specification. in: Fotadis, d.i., nikolopoulos, s.d. (eds.), advances in 

informatics, world scientific, athens. pp. 134-145. In: Fotadis, D.l, 

Nikolopoulos, S.D. (Eds.) , Advances in Informatics, World Scientific, 

Athens., pages 134-145, 2001. 

[KKKW05] J. Kruger, P. Kipfer, P. Kondratieva, and R. Westermann. A particle 

system for interactive visualization of 3d flows. IEEE Transactions on 

Visualisation and Computer Graphics, 11, 2005. 

[KLRS04] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and 

collision detection for large particle systems. pages 123-131, 2004. 

[Kru06] Jens Kruger. A gpu framework for interactive simulation and rendering of 

fluid effects. PhD Thesis, Technische Universitat MUnchen, 2006. 

[KSG05] Petros Kefalas, Ioanna Stamatopoulou, and Marian Gheorghe. Multi­

Agent Systems and Applications IV, chapter A Formal Modelling 

Framework for Developing Multi-agent Systems with Dynamic Structure 

and Behaviour, pages 122-131. Springer Berlin / Heidelberg, 2005. 

[KSW04] Peter Kipfer, Mark Segal, and RUdiger Westermann. Uberflow: a gpu­

based particle engine. In HWWS '04: Proceedings of the ACM 

SIGGRAPHIEUROGRAPHICS conference on Graphics hardware, pages 

115-122, New York, NY, USA, 2004. ACM. 

[KW06] Peter Kipfer and RUdiger Westermann. Realistic and interactive 

simulation of rivers. In GI '06: Proceedings of Graphics Interface 2006, 

pages 41-48, Toronto, Ont., Canada, Canada, 2006. Canadian Information 

Processing Society. 

[Lat04] Lutz Latta. Building a million particle system. Game Developers 

Conference (GDC), 2004. 

[LCRP+05] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and 

Gabriel Balan. Mason: A multiagent simulation environment. Simulation, 

81(7):517-527,2005. 

[LD08] M. Lysenko and R.M. D'Souza. A framework for megascale agent-based 

model simulations on the gpu. Journal of Artificial Societies and Social 

Simulation. (JASSS), 11(4):10,2008. 



[LG07] 

[LL93] 

179 

Scott Le Grand. Broad-phase collision detection with cuda. In Hubert 

Nguyen, editor, GPU Gems 3, chapter 32. Addison Wesley Professional, 

August 2007. 

Gilbert Thomas Laycock and Gilbert Thomas Laycock. The theory and 

practice of specification based software testing. Technical report, 

Department of Computer Science, University of Sheffield, 1993. 

[L WK03] Wei Li, Xiaoming Wei, and Arie Kaufman. Implementing lattice 

boltzmann computation on graphics hardware. The Visual Computer, 

19(7-8):444-456,2003. 

[MBLA96] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm 

simulation system: A toolkit for building multi-agent simulations. 

Technical report, Working Paper 96-06-042, Santa Fe Institute, Santa Fe., 

1996. 

[MCG03] Matthias Muller, David Charypar, and Markus Gross. Particle-based fluid 

simulation for interactive applications. In SCA '03: Proceedings of the 

2003 ACM SIGGRAPHIEurographics symposium on Computer 

animation, pages 154-159, Aire-Ia-Ville, Switzerland, Switzerland, 2003. 

Eurographics Association. 

[Mer07] 

[MQP02] 

Bruce Merry. Bugle user manual. Technical report, OpenGL SDK, 2007. 

Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader 

metaprogramming. In HWWS '02: Proceedings of the ACM 

SIGGRAPHIEUROGRAPHICS conference on Graphics hardware, pages 

57-68, Aire-Ia-Ville, Switzerland, Switzerland, 2002. Eurographics 

Association. 

[MT98] l Makimo and Makoto Taiji. Scientific Simulations with Special Purpose 

Computers: The Grade Systems. John Wiley & Sons, Inc., New York, 

NY, USA, 1998. 

[NHCV05] M.l North, T.R. Howe, N.T. Collier, and J.R. Vos. Repast simphony 

runtime system. In in Proceedings of the Agent 2005 Conference on 

Generative Social Processes, Models, and Mechanisms, ANLIDIS-06-1, 

co- sponsored by Argonne National Laboratory and The University of 

Chicago, 2005. 

[NHP04] Lars Nyland, Mark Harris, and Jan Prins. "The rapid evaluation of 

potential fields using programmable graphics hardware.". Poster 



180 

presentation at GP2, the ACM Workshop on General Purpose Computing 

on Graphics Hardware., 2004. 

[NHP07] Lars Nyland, Mark Harris, and Jan Prins. Fast n-body simulation with 

cuda. In Hubert Nguyen, editor, GPU Gems 3, chapter 31. Addison 

Wesley Professional, August 2007. 

[NVI07] NVIDIA. NVIDIA cuda compute unified device architecture 

programming guide. Technical report, NVIDIA, 2007. 

[Ode02] James 1. Odell. Objects and agents compared. Journal of Object 

Technology, 1 :41-53,2002. 

[OJL +07] Owens, D. John, Luebke, David, Govindaraju, Naga, Harris, Mark, 

Kruger, Jens, Lefohn, E. Aaron, Purcell, and 1. Timothy. A survey of 

general-purpose computation on graphics hardware. Computer Graphics 

Forum, 26(1):80-1l3, March 2007. 

[OPBOO] 1. Odell, H. Parunak, and B. Bauer. Extending uml for agents, 2000. 

[ope09] The openc I 1.0 spec ification. Technical report, Khronos Group, 2009. 

[PDC+05] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann 

Jensen, and Pat Hanrahan. Photon mapping on programmable graphics 

hardware. In SIGGRAPH '05: ACM SIGGRAPH 2005 Courses, page 258, 

New York, NY, USA, 2005. ACM. 

[PKK07] Bernd Page, Nicolas Knaaka, and Sven Kruse. A discrete event simulation 

framework for agent-based modelling of logistic systems. In Informatik 

2007 Informatik trifft Logistik, Proc. 37. Jahrestagung der Gesellschaftr 

Informatik. Bremen, pages 397-404, September 2007. 

[PM04] Craig Peeper and Jason L. Mitchell. Introduction to the directxA.® 9 high 

level shading language. Shader X2 - Shader Tips and Tricks, 2004. 

[QMHz03] Michael J. Quinn, Ronald A. Metoyer, and Katharine Hunter-zaworski. 

Parallel implementation of the social forces model. 2003. 

[Ree83] W. T. Reeves. Particle systems-a technique for modeling a class of fuzzy 

objects. ACM Trans. Graph., 2(2):91-108, 1983. 

[Rey87] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral 

model. Computer Graphics, (SIGGRAPH '87 Conference Proceedings), 

21(4):25-34, 1987. 

[Rey99] Craig Reynolds. Steering behaviors for autonomous characters. In Game 

Developers Conference 1999, 1999. 



181 

[Rey06] Craig Reynolds. Big fast crowds on ps3. Sandbox '06: Proceedings of the 

2006 ACM SIGGRAPH symposium on Videogames, pages 113-121,2006. 

[RMH+04] Isaac Rudomin, Erik Millan, Benjamin Hernandez, Marissa Diaz, and 

Daniel Rivera. Art applications for crowds. The Knowledge Engineering 

Review, 23(04):399-412, 2004. 

[RMH05] Isaac Rudomin, Erik Millan, and Benjamin Hernandez. Fragment shaders 

for agent animation using finite state machines. Simulation Modelling 

Practice and Theory, 13(8):741-751,2005. 

[RTRH05] C. Rouff, W. Truszkowski, J. Rash, and M. Hinchey. A survey of formal 

methods for intelligent swarms. Technical Report 2005-0156631, NASA 

Goddard Space Flight Center, Greenbelt, MD 2005., 2005. 

[sat04] Serial ata ii, extension to serial ata 1.0, revision 1.2, http://www.sata­

io.org/docs/s2ext_l_ 2 _gold.pdf, 2004. 

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael 

Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, 

Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat 

Hanrahan. Larrabee: a many-core x86 architecture for visual computing. 

ACM Trans. Graph., 27(3):1-15, August 2008. 

[SHG09] N. Satish, M. Harris, and M. Garland. Designing efficient sorting 

algorithms for manycore GPUs. 2009. 

[SHZ007] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. 

Scan primitives for gpu computing. In GH '07: Proceedings of the 22nd 

ACM SIGGRAPHIEUROGRAPHICS symposium on Graphics hardware, 

pages 97-106, Aire-la-Ville, Switzerland, Switzerland, 2007. 

Eurographics Association. 

[SKKW08]Jens Schneider, Polina Kondratieva, Jens Kruger, and Rudiger 

Westermann. Visualization contest 2005- all you need is ... - particles! 

2008. 

[SMC+07] Tao Sun, Phil McMinn, Simon Coakley, Mike Holcombe, Rod 

Smallwood, and Sheila MacNeil. An integrated systems biology approach 

to understanding the rules of keratinocyte colony formation. Journal of 

the Royal Society, 4:1077-1092,2007. 

[SOHTG99] Thorsten Schelhom, David O'Sullivan, Mordechay Haklay, and Mark 

Thurstain-Goodwin. Streets: an agent-based pedestrian model. casa 



182 

working papers (9). Technical report, Centre for Advanced Spatial 

Analysis UCL, London, UK, 1999. 

[TCP06] Adrien Treuille, Seth Cooper, and Zoran Popovic. Continuum crowds. 

ACM Trans. Graph., 25(3):1160-1168, 2006. 

[TJL04] John Tran, Don Jordan, and David Luebke. New challenges for cellular 

automata simulation on the gpu. ACM Workshop on General Purpose 

Computing on Graphics Processors, 2004. 

[TP~08] Sun T, McMinn P, Holcombe M, Smallwood R, and MacNeil S. Agent 

based modelling helps in understanding the rules by which fibroblasts 

support keratinocyte colony formation. PLoS ONE, 3(5):e2129, 2008. 

[vdV02] Eric van der Vlist. XML Schema. O'Reiley, 2002. 

[vMAF+07]J. A. van Meel, A. Arnold, D. Frenkel, S. F. Portegies Zwart, and R. G. 

Belleman. Harvesting graphics power for md simulations. Molecular 

Simulation, 34:259-266,2007. 

[WG06] OJ Worth and C Greenough. Optimising x-agent models in computational 

biology. Technical report, Software Engineering Group Note SEG-N-001, 

2006. 

[WiJ99] U. Wilensky. NetJogo. http://ccl.northwestern.eduinetlogo/. Center for 

Connected Learning and Computer-Based Modeling, Northwestern 

University. Evanston, IL., 1999. 

[WJKOO] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia 

methodology for agent-oriented analysis and design. Autonomous Agents 

and Multi-Agent Systems, 3(3):285-312, September 2000. 

[WLMK04] Xiaoming Wei, Wei Li, Klaus Mueller, and Arie E. Kaufman. The 

lattice-boltzmann method for simulating gaseous phenomena. IEEE 

Transactions on Visualization and Computer Graphics, 10(2):164-176, 

2004. 

[WS09] Dawn C. Walker and Jennifer Southgate. The virtual cell-a candidate co­

ordinator for 'middle-out' modelling of biological systems. Brief 

Bioinform, pages bbpOl0+, March 2009. 

[WSW04] D. C. Walker, J. Southgate, G. Hill, M. Holcombe, D. R. Hose, S. M. 

Wood, Mac, and R. H. Smallwood. The epitheliome: agent-based 

modelling of the social behaviour of cells. Bio Systems, 76(1-3):89-100, 

October 2004. 



183 

[XERCES] http://xerces.apache.org. 

[ZBG07] Simon Portegies Zwart, Robert Belleman, and Peter Geldof. High 

performance direct gravitational n-body simulations on graphics 

processing unit i: An implementation in cg. 2007. 


