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Development of a Real-time Objective Gas-Liquid
Flow Regime Identifier using Kernel Methods

Edem Nsefik Eyo, Karl Ezra Salgado Pilario, Liyun Lao, and Gioia Falcone

Abstract—Currently, flow regime identification for closed chan-
nels have mainly been direct subjective methods. This presents a
challenge when dealing with opaque test sections of the pipe or
at gas-liquid flow rates where unclear regime transitions occur.
In this paper, we develop a novel real-time objective flow regime
identification tool using conductance data and kernel methods.
Our experiments involve a flush mounted conductance probe that
collects voltage signals across a closed channel. The channel ge-
ometry is a horizontal annulus, which is commonly found in many
industries. Eight distinct flow regimes were observed at selected
gas-liquid flow rate settings. An objective flow regime identifier
was then trained by learning a mapping between the probability
density function (PDF) of the voltage signals and the observed
flow regimes via kernel principal components analysis (KPCA)
and multi-class Support Vector Machine (SVM). The objective
identifier was then applied in real-time by processing a moving
time-window of voltage signals. Our approach has: (a) achieved
more than 90% accuracy against visual observations by an expert
for static test data; (b) successfully visualized conductance data
in 2-dimensional space using virtual flow regime maps, which are
useful for tracking flow regime transitions; and, (c¢) introduced
an efficient real-time automatic flow regime identifier, with only
conductance data as inputs.

Index Terms—conductance, KPCA, non-invasive, regime chart,
SVM, virtual flow regime map.

I. INTRODUCTION

HE accurate determination of flow regimes is a funda-

mental problem in the operation of transport systems
in a plant, e.g. piping, that require gas and liquid to flow
through them simultaneously [1]. In these systems, the task
of predicting flow properties such as pressure drop and liquid
holdup is greatly dependent on the governing flow regime.
Different researchers have indicated that flow regimes influ-
ence mass and momentum transfer during two-phase flow and
as such, modeling strategies have been based on the analysis
of the prevailing flow regimes. Also, modeling based on the
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identification of flow regimes can result in increased safety
and performance in two-phase flow systems [2].

In this paper, an objective flow regime identification method
was developed by using conductance data and kernel methods.
Data sets of voltage signals were collected from conductance
rings flush mounted on a horizontal annular channel, where
8 different flow regimes were observed. Our approach is to
project the probability density function (PDF) features from
the voltage signals onto a reduced space of 2 dimensions, via
kernel principal components analysis (KPCA). This step ef-
fectively visualizes the conductance data in 2D space, without
knowledge of the current gas and liquid flow rates. In the
newly constructed map, boundaries between flow regimes are
then established using a kernel support vector machine (SVM).
This step assigns every point in the map to a flow regime.
For real-time identification, a moving time-window of voltage
signals is processed by the trained KPCA-SVM identifier so
that an exact flow regime is determined at every time step.
We introduce regime charts and virtual flow regime maps to
communicate results to human operators.

As opposed to our approach, current flow regime identifi-
cation methods are mostly subjective [1], [2]. Direct methods
include visual observation of the flow through transparent test
sections, such as the use of photography or high speed camera
imagery [3]-[5]. However, these methods have limitations:
(1) when dealing with channels which are opaque or hidden
from view, or (ii) at too high flow rates of the phases where
transition boundaries are unclear. On the other hand, indirect
methods have been developed to deal with such limitations.
These are based primarily on the statistical analysis of the
fluctuating nature of the flow [6]. The common practice has
been to undertake experiments which measure certain intrinsic
flow parameters or features that can distinguish between flow
regimes, from which an identifier can be trained [7].

Furthermore, gas-liquid flow in annular closed channels
is common in several industrial processes including chemi-
cal, petroleum and nuclear systems. However, there are very
limited studies on characterizing flow regimes in annuli, as
compared to circular pipe flow. Originally, Kelessidis and Duk-
ler [8] and Das et al. [9] employed probability density function
(PDF) of void fraction as indicators of two-phase flow in
vertical annuli. Many other studies have similarly reported
the use of visual observations from high speed, digital and
video cameras [10]-[13]. For instance, Eyo and Lao [13]
recently presented systematic flow regime characterization in
horizontal concentric and fully eccentric annuli using high
speed camera images and PDF of instantaneous liquid holdup
obtained using conductance probes. In all of these studies,
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flow regime identification was still prone to subjectivity of
the investigators. The precise identification of flow regimes,
especially at transition regions, remains a challenging task.

The current need to develop objective flow regime identifi-
cation tools [2] is now being addressed by the use of pattern
recognition or machine learning techniques. Yan et al. [14] has
recently reported a survey of such techniques used in multi-
phase flow metering. Artificial neural networks (ANN) [5],
[15]-[21], support vector machines (SVM) [22]-[24], fuzzy
systems [25]-[27], and their variants are popularly used.
Despite the prevalence of these techniques, it is worth noting
that flow regime identifiability is still influenced by the chosen
instrumentation for collecting data, the size and frequency of
collected data, and the informative quality of features extracted
from the data.

Non-invasive instrumentation is currently preferred for mea-
suring two-phase flow features for subsequent pattern recogni-
tion. Abbagoni and Yeung [28], for instance, used frequency-
domain features from ultrasonic Doppler signals with ANNSs,
giving 80-90% classification accuracy. Similarly, Julia et al. [7]
studied adiabatic upward two-phase flow using bubble chord
length distribution from conductance probes, together with the
self-organized neural network (SONN) for nonlinear mapping.
Typically, neural network training requires an iterative solution
with several loops [29]. In a different approach, Qi et al. [22]
used SVM on Electrical Resistance Tomography (ERT) data
for regime identification in horizontal pipes. Meanwhile,
Wang and Zhang [23] used SVM on electrical capacitance
tomography measurements. Trafalis et al. [24] applied SVM
on regime data from various databases to predict flow regime
transitions. In these studies, the use of kernels in SVM
enables the elucidation of nonlinear boundaries between flow
regimes. Thus, nonlinear SVM belongs to a class of machine
learning techniques called kernel methods. Kernel methods
are advantageous in terms of ease of training, simplicity of
architecture, and interpretability [30].

Conductance is an appropriate intrinsic flow regime indica-
tor [8], [16], [18], [31] since it correlates with the fraction of
the liquid phase of the flow. Moreover, the instrumentation for
collecting conductance data is simple, non-invasive, relatively
cheap, and easy to manufacture. Yet, to our knowledge, there
are currently no conductance-based objective flow regime
identification tools sufficient for a real-time application in
closed channels, let alone horizontal annuli. The aim of this
paper is to develop such a tool.

The rest of the paper is organized as follows. We briefly
describe our experimental setup in Section II. Kernel methods
are detailed in Section III. Results and discussion are given in
Section IV. Lastly, we conclude the work in Section V.

II. EXPERIMENTAL SETUP
A. Two-phase Flow Loop

Fig. la shows the schematic of the experimental test rig,
while Fig. 1b shows a picture of the test section. The annulus
rig was designed and implemented on a rig platform in the
Process Systems Engineering Laboratory at Cranfield Univer-
sity. The test section has an annular geometry and is made of

polyvinyl chloride (PVC) pipes. The total length is 14 m, in
which 2 m of 0.0765 m internal diameter is allocated for flow
development before the annulus section of 10.8 m length, with
0.0768 m outer pipe diameter (D) and 0.060 m (D;) inner
pipe diameter. The inner pipe is held concentrically in the
outer pipe to form the annulus using 4 mm stainless steel pins
fed through an assembly designed to adjust the eccentricity of
the annulus.

Air is supplied using a screw compressor by AtlasCopco®,
model GAS55 with a maximum discharge pressure of 7.5 barg
and free air delivery maximum capacity of 638 m?/hr. Two
automated valves (namely VC301 and VC302) are used to
regulate the air flow rate, which is measured by one of two
Rosemount Mass Probar flow meters (FT302 and FT305) with
+1.4% uncertainty. Air flow rates below 150 Sm?/hr are
measured by FT302, while flow rates above 150 Sm? /hr are
measured by FT305. Tap water is pumped from a water tank
with a capacity of 2 m® using a progressive cavity pump
(PCP) with maximum discharge pressure of 6 barg. The water
flow is measured using an Endress and Hauser Promag 50
electromagnetic flow meter ranging between 0-18 m? /hr, with
+0.5% uncertainty. Two GE Druck static pressure transducers,
PMP 1400 and a WIKA model A-10 static pressure transducer
ranging between 0-6 barg (£0.25%) of full scale are used to
obtain the static pressure in the test section. The LabView®
system, consisting of a National Instruments (NI) connector
board interface connected to the instrumentation BNC coaxial
cables, is used for data acquisition. Finally, an OLYMPUS
model i-SPEED 3 high speed video camera is used to capture
images at 1000 frames per second with adequate lighting
supplied by Arrilite 800-W lights.

B. Conductance Probes

An electrical impedance probe consisting of two pairs of
conductance rings was designed and fabricated for this study
based on the recommendations of Fossa [31]. The probes are
flush mounted on the outer pipe of the annulus section based
on an aspect ratio of D,/D of 0.34, where D, is the spacing
between the electrodes and D is the pipe diameter resulting
in electrode spacing of 26 mm. Two pairs of electrodes
were used, each having a width of 6 mm and a distance of
270 mm between each electrode pair. The probe is calibrated
offline for stratified flow based on the technique employed by
Fan and Yan [18]. During calibration, the uncertainty of the
probe was found to be £2% from direct measurements.

Voltage signals from the probe were recorded at a sampling
rate of 100 Hz. Data samples were obtained over a range
of gas-liquid flow rates where various flow regimes can be
observed (see Section IV.A). A single data sample consists of
a collection of voltage signals for 180 s, while under a certain
constant setting of gas and liquid flow rate on the channel. For
each data sample, a probability density function (PDF) curve,
i.e. p(v) vs. V/Viax, was generated using the method in [8].
The width of each PDF bin was set to w = 0.02, yielding a
total of M = 50 number of bins in a single PDF.
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ITII. OBJECTIVE FLOW REGIME IDENTIFICATION USING
KERNEL METHODS

Kelessidis and Dukler [8] established that features from the
PDF of conductance data in the form of voltage signals can
be used to distinguish among the flow regimes. However, the
use of mere visual inspection of PDFs is subjective.

In this work, the first goal is to train an objective identifier
from a training data set consisting of voltage signal PDF data
at selected gas-liquid flow rate settings, together with their
assigned flow regime labels. During training, a mapping can
be learned between the voltage signal PDFs and their flow
regime labels. When learned, the patterns from the training
data can be generalized to any gas-liquid flow rate setting,
thus providing an objective flow regime identification tool.
After which, the final goal is to assess the objective identifier
for real-time application.

In this section, we detail our approach of using kernel
methods for achieving the first goal. The objective identi-
fier itself consists of a kernel principal components analysis
(KPCA) based mapping of every sample PDF curve in some 2-
dimensional feature space, followed by a kernel support vector
machine (SVM) classifier for computing transition boundaries
between flow regimes in the 2D feature space.

A. Kernel Principal Components Analysis

In this work, each bin of V/V,.x in a PDF curve is treated
as a dimension or “feature”. For a PDF curve with M bins, a
dimensionality reduction method is used to project M features
to 2 features, which are then made to comprise the coordinates
of some 2-dimensional plane. This step is unsupervised, i.e. it
proceeds without the knowledge of the flow regime labels yet.
After this step, every PDF derived from each data sample is
now represented as a data point on a 2D map, which we call
the virtual flow regime map throughout this paper.

The virtual flow regime map must retain the properties of
actual flow regime maps in that: (i) when the data points are
given labels, a clear separation should emerge between the
points from different flow regimes; and, (ii) when gas and
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(a) Schematic of the 3-inch annulus flow loop; (b) Actual experimental setup at the test section.

liquid flow rates are steadily increased or decreased during
real-time use, a continuous path of points must be traceable
in the map by successively projecting incoming PDF curves
from a moving time-window of voltage signals.

Principal components analysis (PCA) is a standard lin-
ear dimensionality reduction tool that aims to project input
data onto a lower dimensional latent space, while preserving
information in the form of variance of data. For instance,
Wang and Zhang [23] have used PCA for mapping electrical
capacitance data prior to flow regime classification. Going
further, kernel PCA is a nonlinear extension of PCA, proposed
by Scholkopf et al. [32], that enhances the separation of
dissimilar data in the latent space. In this work, the following
KPCA methodology from [32] is adopted.

Let x; € RM i = 1,2,..., N denote any training data
set of N samples of M features. Initially, all features are
normalized to zero mean and unit variance. KPCA then
proceeds by forming an N x N kernel matrix,

(K (xi,%5)] (1)

using a suitable kernel function K (-,-), which roughly acts
as a similarity measure between any pair of samples, x; and
x;. In this work, the widely used radial basis function (RBF)

kernel is adopted, given by
x — x'|[|2
Ix — x| ) o

K

where k,, is the kernel width. Note that the value of K tends
to 1.0 when x and x’ are similar, otherwise it tends to zero.
The kernel matrix, K is then centered as,

K = [Ki;] =

K(x,x) = exp <

K. =K-1yK-Kl1ly+ 1yKly 3)

where 1y is an N x N matrix and (1y);; = 1/N.
The eigenvalue decomposition of K, is

K./N = VAVT “)

where each column of V. € RV*¥ is an eigenvector and

A = diag(Ai, A2, .. n) € RVXN is a diagonal matrix of
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decreasing eigenvalues. From (4), the projection matrix is
formed as
P=VA /2 g (5)

where A~'/2 is used to scale the eigenvectors to ensure
orthogonality of the kernel principal components [33].

By extracting the first 2 columns of P, denoted as P5, only
the top 2 projections that capture the maximum variance in the
data are effectively retained. These projections, also known as
latent variables L, are the new features in the latent space:

L =PIK, e R>*V, (6)

Together with their respective labels y;,i = 1,2,..., N
from the set of observed flow regimes, the L becomes input
to SVM for subsequent flow regime classification.

In this work, only 2 features are extracted since: (i) data
visualization is desired; (ii) overfitting may occur when too
many features are chosen but N is small; and, (iii) it is
known that only 2 variables are being changed to generate
all the data, namely, the gas and liquid flow rates. In other
words, the intrinsic dimensionality of the data is known to
be 2. Thus, 2 features is enough to retain flow-distinguishing
information from PDF curves. Overfitting is also prone to
occur if all M features of the PDF are sent to SVM without
the dimensionality reduction step, e.g. PCA or KPCA. If SVM
overfits, the identifier may perform too well on the training
data, but poorly for unseen test data.

B. Binary Kernel Support Vector Machine

After visualizing all PDF data in 2D space, data points
belonging to the same flow regimes are expected to cluster
together. SVM can then be used to establish exact boundaries
between different flow regime clusters. The benefits of SVM
are two-fold: (i) the method itself is based on the Structural
Risk Minimization (SRM) principle, as opposed to Empirical
Risk Minimization (ERM) employed by classical least-squares
techniques, thus, SVM is a flexible learner and has good
generalizability [29], [30]; and (ii) training an SVM only
involves solving a convex quadratic programming problem,
which is known to have a unique solution. In contrast, ANNs
are usually trained iteratively by gradient descent, wherein the
solution might converge to local minima [29].

Originally, Cortes and Vapnik [34] proposed the SVM for
classifying data into 2 classes (binary), which are labelled as

y € {+1,—1}. The SRM principle is employed by searching
for a linear separating hyperplane that maximizes the margin
between the positive and negative classes, as illustrated in
Fig. 2. Nonlinear boundaries are enabled by using kernels in a
dual form of the SVM [30]. In this paper, the so-called 1-norm
C-SVM is adopted, which is posed as the following convex
quadratic programming dual problem [30]:

N N N
1
maximize E 041-755 E yiyjaiajK(Xian) (7
i=1

i=1 j=1
N

subject to Z yia; =0
i=1

0<a; <C i=1,2,...,N

where x; are the N training samples (each column of L
in (6)), «; are dual variables, K (-, ) is some kernel function,
y; € {+1, —1} are the known labels, and C is a regularization
constant called the box constraint. The theory and derivation
of this form of SVM is found in [30].

Solving (7) gives the optimal values «;, from which the
decision function is obtained as

F) =D yiaf K (xi, %) + b (®)

€SV

where b* is a bias term and SV is a subset of training samples
that emerged as support vectors, i.e. the samples that define
decision boundaries just as the ones highlighted in Fig. 2.
The bias, b*, is chosen so that y; f(x;) = 1 for any ¢ with
0 < af < C [30]. By obtaining f(x), the SVM classifier is
now said to be frained. Hence, for any new sample x, the
decision rule is given by y = sign(f(x)) which returns
+1, —1, or 0. The samples, x, for which sign(f(x)) = 0
constitutes the exact boundary between the two classes.

In this work, the RBF kernel (2) is also used as K(-,-)
in (7), but it can have a different k£, than the one used in
KPCA. We refer to k,, and C' in SVM as hyper-parameters
in this paper. Since k,, and C are problem-dependent, their
values must be defined on a case-to-case basis. Typically,
a range of values of k, and C' is initially investigated to
search for the best SVM classification performance [30].
Overfitting may occur when k,, is too low, while decision
boundaries tend to be more linear at high k,,, at the expense
of accuracy. Similarly, the value of C' controls regularization:
When C = oo, a strict separation between classes is enforced
(hard margin SVM). But as a result, decision boundaries
become more complex, sometimes leading to non-contiguous
regime regions. Otherwise for 0 < C' < oo, the boundaries
tend to be simpler, since «; is being restricted within a range.
But as C' is decreased, more and more misclassified samples
are being tolerated (soft margin SVM).

C. Multi-class Kernel Support Vector Machine

Since there are more than 2 flow regimes, multi-class SVMs
must be employed. This involves training many binary SVM
classifiers according to either one-versus-one (1-v-1), one-
versus-rest (1-v-r), or max-wins strategies. In this work, we
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Fig. 3. DDAG of binary SVM classifiers for flow regime classification in the
experimental setup of this study.
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adopt an efficient 1-v-1 algorithm called DAGSVM, proposed
by Platt er al. [35].

In DAGSVM, S(S—1)/2 binary SVM classifiers are trained
between every possible pair of distinct classes, where S is the
number of classes or flow regimes. In each classifier, the two
competing classes are assigned the +1 and —1 labels, and then
a decision boundary is trained between them. In this paper, the
k., and C values for all classifiers are set to be the same, since
they are equally important. The resulting S(S —1)/2 decision
functions are represented in each node of a decision directed
acyclic graph (DDAG), shown in Fig. 3 for § = 8.

To use DAGSVM, any incoming sample is classified first
in the root node, 1 vs. 8. From the current node, the DDAG
is traversed either downwards or to the right. The sample is
further classified successively on every node in the path, until

a final decision is reached on a leaf node. This approach is
efficient since any path from the root to any leaf has a length
of S — 1. Thus, a sample needs to be evaluated only S — 1
times before it is conclusively classified to a flow regime.

In summary, the methodology for objective flow regime
identification using conductance data and kernel methods is
outlined in Fig. 4. In the end, a virtual flow regime map is
sought from the data, where transitions between flow regimes
are depicted by exact boundaries. However, “virtual” means
that the axes of this map have no physical meaning and the
computed exact boundaries by the SVM have no physical
basis as well. Rather, principles from machine learning are
employed in place of a physical basis. Hence, our approach is
mainly data-driven. Nevertheless, the virtual flow regime map
is a means for our objective flow regime identifier to visually
explain its results. This interpretability feature is the advantage
of our approach over existing data-driven approaches [14].

IV. RESULTS AND DISCUSSION

In this section, we first present results for the static perfor-
mance of KPCA-SVM based objective flow regime identifiers.
Results for real-time identification follow thereafter.

A. Assignment of flow regime labels

A total of 110 data samples were obtained from the ex-
perimental setup (see Section II) at various air and water
flow rates within 0.17-22.8 m/s and 0.14-2.8 m/s, respectively.
Flow regime labels were assigned to each sample by a human
expert at the same ambient conditions, using a frame-by-frame
visual analysis of video recordings from the high-speed, high-
fidelity camera. Regime transitions were also determined after
consulting other experts. Eight distinct flow regimes were
observed, namely: Dispersed Bubble Flow, Elongated Bubble
Flow, Bubble to Slug Flow, Slug Flow, Wavy Slug Flow,
Churn Flow, Wavy Annular Flow, and Annular Flow. Due
to limitations in the experimental setup, the Stratified Flow
regime was not encountered. Nonetheless, this regime may
be encountered at lower gas-liquid flow rates adjacent to the
Annular Flow region in a different setup. If encountered, the
DDAG in Fig. 3 must be extended to 9 classes.

B. From voltage signals to PDF curves

Fig. 5 shows typical PDF curves analysed from the voltage
signals training data from each flow regime. It can be seen
that the PDF curves generally skew from high voltage values
to low voltage values as one moves from Dispersed Bubble
Flow to Annular Flow in order. Compared to previous works,
similar trends were observed at the ranges of gas and liquid
flow rates considered in annular channels [8].

The data set of PDF curves and their respective flow regime
labels was then partitioned into N = 77 samples for training,
and 33 samples for testing. In the subsequent KPCA of the
training data, the aforementioned patterns in the PDF curves
is to be extracted so that the arrangement of data points in 2D
KPCA latent space can reveal directions where gas and liquid
flow rates increase or decrease.
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Fig. 6. (a) KPCA and (b) PCA 2D visualization of probability density function (PDF) features from the conductance training data.

C. From PDF curves to latent space

From the PDF curves, a 2-dimensional map in the latent
space was produced by applying KPCA on the training sam-
ples, shown in Fig. 6a. The kernel width k,, was chosen as 0.8
quantile of the ||x; — x;||? statistics [36]. Linear PCA results
are also shown in Fig. 6b for comparison. The advantage of
KPCA over PCA is evident in that samples from different flow
regimes are more clearly separated in KPCA.

Somehow, an intuition can be built for the resulting KPCA
latent space in Fig. 6a. First note that none of the points are
located near the origin, (0,0). A test sample near the origin
would correspond to a PDF curve where the p(v) features lie
close to their respective means. The training samples are found
radially around the map since their PDF features deviate from
the mean values in a specific way. For example, Slug, Bubble,
and Annular Flow regime samples emerged on the lower-left,
upper-left, and upper-right regions of the map, respectively.
Hence, it is possible to reveal the various flow regime clusters
in the 2D KPCA visualization of conductance data.

Ambiguity between some Churn flow, Wavy Slug Flow, and
Slug Flow samples occurs in the lower-right region of the

map. The same ambiguity can be visually observed in the PDF
curves of these samples (see Fig. 5), in that they all possess
a dominant peak at the region 0.2 < V/Vj.x < 0.4. Due
to this, soft margin SVM classifiers were used to allow for
misclassification.

D. From latent space to virtual flow regime map

Multi-class DAGSVM was then used to establish the bound-
aries objectively between flow regimes in the latent space. The
MATLAB code used in this work is available in [37].

A sample flow regime map for k£, =3 and C' = 100 is
shown in Fig. 7a, where training and test samples are de-
noted as circles and triangles, respectively. Basically, SVM
assigned every location in the latent space to a flow regime
by measuring its similarity to all neighboring training data
locations where the flow regimes are known. As explained in
Section III.A, this similarity measure is exactly what the kernel
in (2) computes, when called by the decision function in (8).
As a result, maximally separating nonlinear boundaries are
produced. This is the logic offered by our approach in place
of human subjectivity in flow regime classification. Arguably,
results can improve with more training data samples.
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At the hyper-parameter settings in Fig. 7a, the classification
accuracy against visually observed flow regimes for training
and test data are 94.8% and 90.9%, respectively. In compari-
son, Fig. 7b shows a typical flow regime map from the gas-
liquid flow rates data where the flow regime boundaries are
drawn arbitrarily. These results demonstrate the effectiveness
of our approach for objective flow regime classification.

Misclassified data samples in Fig. 7a are listed in Table I.
The objective identifier encountered difficulties in distinguish-
ing between some Wavy Slug Flow and Churn Flow samples.
This can be explained by the resemblance found between
the PDF curves of some Wavy Slug Flow and Churn Flow
samples. However, a close inspection of the acquired voltage
signals actually reveals distinct patterns between these two
flow regimes. Hence, this misclassification problem can be
attributed to the fact that PDF curves simply account for the
static locations of voltage values. The identifiability of various
intermittent flow conditions can then be improved by adding
features related to the dynamics in the voltage time series.
With this, a clearer separation can be expected among different
intermittent flow conditions in the latent space.

TABLE I
MISCLASSIFIED SAMPLES IN THE FLOW REGIME MAP IN FIG. 7A.

A. Misclassified training samples (4 out of 77)

Vsg (m/s) Vg (m/s) SVM Decision Expert’s Decision
3.69 0.83 Churn Flow Wavy Slug Flow
3.90 0.56 Churn Flow Wavy Slug Flow
4.26 0.15 Churn Flow Wavy Slug Flow
8.65 1.67 Annular Flow  Wavy Annular Flow

B. Misclassified test samples (3 out of 33)

Vsg (m/s) Vg (m/s) SVM Decision Expert’s Decision
1.23 0.16 Churn Flow Slug Flow
4.15 0.28 Churn Flow Wavy Slug Flow
8.05 1.94 Annular Flow ~ Wavy Annular Flow

Misclassification also raises the issue of overfitting vs.
underfitting, which depends on the choice of SVM hyper-
parameters. As mentioned, different settings for k, and C
produce varying classification performance. The accuracy of
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SVM over a grid of hyper-parameter values, namely k,, €
{1,3,...,9} and C € {1,10,...,10%}, is depicted in Fig. 8.
By adjusting k,, and C towards overfitting (lower k,, and
higher C), the classifier becomes biased towards the human
expert decisions, giving a high classification accuracy on the
training data but a low accuracy on test data. One case of
overfitting is illustrated by the flow regime map in Fig. 9a
for k, = 1 and C = 10*. Overfitting is evidenced by tighter
and more complex boundaries, indicating that the classifier
tends to memorize, rather than generalize, the patterns from
the training data samples. On the other hand, in a particular
case of high k,, and low C in Fig. 9b, underfitting occurs. In
the case of underfitting, the created boundaries tend to be too
simple, leading to low classification accuracies in both training
and test data.

After evaluating the accuracy and visually checking the sen-
sibility of the virtual flow regime maps for each combination,
kyw =3 and C' = 100 were finally chosen as the values that
balance overfitting and underfitting. Thus, these settings were
used in the objective classifier for real-time application. The
task of avoiding over- and underfitting via hyper-parameter
tuning, i.e. controlling the model complexity, is common to all
supervised learning machines, including ANNSs. In the future,
larger training data sets must be generated for a more thorough
validation of classification performance.

E. Application to real-time flow regime identification

The final goal of this paper is to implement the trained
KPCA-SVM identifier for real-time automatic flow regime
identification.

In a new experiment, the liquid flow rate going through the
annular pipe was fixed at 0.95 m/s while the gas flow rate
was being increased steadily from 1.48 m/s to 26.17 m/s. The
trajectory of gas-liquid flow rate data is plotted in Fig. 10c,
where a blue circle marks every 5 min. The positions of the
training samples are also superimposed in Fig. 10c. The total
duration of the experiment is 30 min. To contrast with the

virtual flow regime map in Fig. 10b, we will refer to Fig. 10c
as the actual flow regime map. Throughout the real-time
experiment, voltage signals were being collected at 100 Hz
sampling rate, as presented in Fig. 10a.

Real-time identification involves the continuous processing
of a moving window of voltage signals. As noted in Sec. I.B,
the length of this window is set as 180 s. By moving the
window every second, the latest 180-second voltage signal data
set is turned into a single PDF curve to be processed by the
KPCA-SVM identifier. Hence, a flow regime is identified at
the end of every second as well. Note that one needs to wait
for the first 180 seconds to elapse in order to form the first
window. To summarize all identified flow regimes, a regime
chart is introduced in Fig. 10a. The y-axis of the chart lists
all possible flow regime classes, while the x-axis is time. This
chart automatically plots the predominant flow regime in the
flow channel against time.

The effectiveness of our method is demonstrated by observ-
ing the trajectory of the experiment in Fig. 10c and the results
in Fig. 10a. With only the knowledge of the flow regimes
provided by the training data, our method was able to infer
the flow regime at different gas-liquid flow rates both within
and beyond the vicinity of the training data. For example,
the first detected regime was Slug Flow, and this result agrees
with the fact that the experimental run started with a data point
close to where the Slug Flow samples are located in the actual
flow regime map (Fig. 10c). As one moves in the trajectory of
data points, various flow regimes must have been crossed, and
these transitions were reflected in the regime chart smoothly
across time. Thus, an identifier which reads conductance data
and determines the flow regime objectively in real-time has
been developed, as opposed to previous subjective means.

The trajectory of the data points is also plotted in the
virtual flow regime map given in Fig. 10b. This is the same
map presented Fig. 7a, but depicting only the boundaries
between flow regimes. The main benefit of the virtual flow
regime map is that it gives an explanation why the objective
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Fig. 10. Results for real-time flow regime identification: (a) Selected PDF curves, actual voltage signals, and regime chart; (b) trajectory of data points in
the virtual flow regime map; (c) trajectory of data points in the actual flow regime map, along with training samples. Colors are adopted from Fig. 7a.

identifier predicted a certain flow regime. For example, at
5 min, our identifier changed its decision from Slug Flow to
Churn Flow. This is because in the virtual flow regime map,
the trajectory has just crossed the exact boundary between Slug
Flow and Churn Flow calculated by the SVM. Due to these
results, the constructed virtual flow regime map via KPCA is
seen to be a useful visualization of conductance data. Hence,
our approach overcomes the disadvantage of other black-box
pattern recognition models, such as ANNSs, that give no visual
aid as to how they arrived at their decisions.

F. Final remarks and future implications

Some remarks about our objective identifier are given as
follows. Note that a time-window length of 180 s was used for
creating PDF curves from voltage signals (see Section IL.B).
Indeed, this is an arbitrary choice, yet, it has a high impact to
regime identification performance. Too large a window length
may delay the response time of identification, while too low
admits noise. However, the window length can also be viewed
as a tuning parameter, which can be called the resolution.
Two objective identifiers can be trained: one having a higher
resolution (smaller window length) than the other. When used
together in real-time applications, the discrepancies between



the decisions of each identifier can reveal more information
about the multiphase flow. For example, one might be inter-
ested in detecting bubbles using a high-resolution identifier,
while a low-resolution identifier simultaneously reads Annular
Flow. The width of the PDF bins, w, could also be a parameter
for adjusting resolution.

Another potential application of this work is to enable
switching hybrid models for multiphase flow. One can use the
regime chart results to switch between different flow-regime-
specific models for estimating flow properties or for model-
based control. Low-resolution identifiers can be used to avoid
too many switches.

This work can also be improved in several ways. For
example, more attention must be given to the feature extraction
and dimensionality reduction steps of our method. In the
future, it is worthwhile to find feature extraction methods,
other than the use of PDF features, that can better distinguish
among the flow regimes, especially intermittent flow. Also, to
improve performance tuning, it is envisaged that further ex-
perimental work will provide additional data sets for training,
validation and testing in each of the 8 flow regime domains.
Lastly, further tests are needed to assess the repeatability and
scalability of our method to other systems. If system-specific
issues arise, the feature extraction step is most likely to adapt
since KPCA and SVM are the steps in the overall approach
which are portable to any scenario. Hence, many other research
activities can originate from this work.

V. CONCLUSION

In this paper, an objective flow regime identifier for gas-
liquid two-phase flow in horizontal annuli was developed using
kernel methods, namely, kernel principal component analy-
sis (KPCA) and multi-class kernel support vector machine
(SVM). The objective identifier solely uses conductance data
and its PDF features for classifying flow regimes, without the
knowledge of the gas and liquid flow rates through the channel.
At chosen SVM hyper-parameters that avoid overfitting and
underfitting, the accuracy of our objective identifier against
visually observed flow regimes for training and test samples
were 94.8% and 90.9%, respectively.

Furthermore, our method has enabled an efficient real-
time automatic flow regime identification tool using a moving
window of solely conductance data for the first time. We
have introduced the concept of regime charts for reporting the
identified predominant flow regime every second, as well as
virtual flow regime maps for tracking how the identifier arrived
to its decisions in real-time. Our work has many potential
implications in the area of multiphase flow. Nonetheless, there
is much room for improvement in our method, such as the
use of more advanced feature extraction and dimensionality
reduction techniques that can better distinguish samples from
different flow regimes.
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