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Abstract 

Background: Bariatric surgery is an effective treatment for morbid obesity and 

metabolic dysfunction. 

Objectives: The aim of this work was to examine the early temporal effects of 

laparoscopic sleeve gastrectomy (LSG) on adipokines (adiponectin, leptin), 

inflammatory cytokines (IL6, CRP, IL10), and global plasma measures of oxidative 

stress (thiobarbituric acid reactive substances [TBARS] and total antioxidant status 

[TAOS]) in a sample of 55 participants pre-operatively, and 1 month and 6 months 

post-operatively. The focus was on a sample of patients with impaired glucose 

tolerance and type 2 diabetes, which is associated with increased low-grade systemic 

inflammation and oxidative stress. 

Setting: University Hospital, United Kingdom. 

Methods: This was a prospective study comprising of 55 participants with impaired 

glucose homeostasis and type 2 diabetes undergoing LSG (mean body mass index 

[BMI] 50.4kg/m2, mean glycated hemoglobin [A1c] 7.4%). Serial measurements of 

the above markers were made pre-operatively, 1 and 6 months post-operatively (43 

had measureable cytokines and oxidative stress at 1 and 6 months follow-up).  

Results: We observed a significant reduction in IL6, CRP, leptin and TBARS; along 

with an increase in adiponectin 6 months post-operatively.  

Conclusions: To our knowledge the effects of LSG on inflammatory cytokines and 

plasma markers of oxidative stress have not been examined temporally in a sizeable 

sample of participants who have undergone LSG. This current study supports the 
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role of LSG for the treatment of the pro-inflammatory and pro-oxidant status 

associated with obesity-related glucose dysregulation. 

 

Keywords: Type 2 diabetes, Impaired glucose tolerance, Inflammation, Oxidative 

stress, Laparoscopic sleeve gastrectomy.  
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Introduction 

Obesity and its related metabolic complications are associated with chronic low-

grade systemic inflammation, abnormalities in adipokines and increased oxidative 

stress. Bariatric surgery results in improvements in metabolic dysfunction, including 

type 2 diabetes mellitus (T2D), and its associated complications and cardiovascular 

risk factors [1]. This beneficial effect occurs through a reduction in adipose tissue 

mass, improvement in cardiovascular and endothelial function, and is likely to be 

modulated by improvements in the inflammatory milieu [2, 3]. Within the available 

literature relating to chronic low-grade systemic inflammation, the most studied 

obesity-related inflammatory markers include: the adipokines, leptin and 

adiponectin, which are cytokines secreted by adipose tissue that modulate the 

immune response, insulin sensitivity and energy balance; and the obesity-related 

inflammatory cytokines interleukin-6 (IL6), interleukin-10 (IL10) and C-reactive 

protein (CRP) [4-6]. The plasma levels of these obesity-related inflammatory 

biochemicals are associated with adipose tissue mass [7, 8]. Whilst the available 

literature has examined the effects of bariatric surgery on metabolic outcome, there 

remains a deficit in published studies examining the effects on inflammation, 

adipokines and plasma markers of oxidative stress. Previous reports have shown that 

Roux-en-Y gastric bypass (RYGB) [9-11] is associated with improvements in metabolic 

inflammatory markers. With respect to laparoscopic sleeve gastrectomy (LSG) and its 

effects on obesity-related inflammatory cytokines, the available literature contains 

limited information with small study numbers [12-15]; or with a single measure of 

inflammation [16]; or where LSG has been analyzed in combination with other 
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bariatric procedures [17]. With respect to plasma markers of oxidative stress, 

controversy exists within the available literature. Catoi et al, observed no change in 

global measures of oxidative stress (nitrite and nitrate [NOx], total oxidant status 

[TAOS/TOS], total antioxidant response [TAR], and oxidative stress index [OSI]) 6 

months after LSG [18]. Banazadeh et al, observed a significant reduction in pro-

oxidant antioxidant balance (PAB), 6 months after RYGB [19]. Similarly, Schmatz et al 

reported a reduction in the concentrations of lipid peroxidation, as well as increased 

superoxide dismutase (SOD) and catalase (CAT) activity following RYGB [20]. 

Our aim was to examine the early temporal effects of LSG on adipokines 

(adiponectin, leptin), inflammatory cytokines (IL6, CRP, IL10), and global plasma 

measures of oxidative stress (thiobarbituric acid reactive substances [TBARS] and 

total antioxidant status [TAOS]) in a sample of 55 participants temporally at 1 month 

and 6 months post-operatively. The focus was on a sample of patients with impaired 

glucose tolerance and T2D, which are associated with increased low-grade systemic 

inflammation and oxidative stress [21].  

 

Methods 

Study participants 

Approval for the study was obtained from the Local Research Ethics Committee. 

Participants were identified and recruited from patients undergoing a planned 

bariatric surgical procedure at our locality. Entry criteria at the outset of the study 

included:- both sexes, age 20-60 years, body mass index (BMI) >40kg/m2 and 
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physically fit for surgery. Participants with any acute concurrent illness were 

excluded. Participants with pre-existing T2D treated with diet, oral agents, GLP-1 

analogues or insulin were included. Participants with impaired glucose regulation 

were those with either impaired fasting glycaemia (5.6-6.9 mmol/L) or impaired 

glucose tolerance (2-hour glucose 7.8-11.0 mmol/L) [22]. Participants with normal 

fasting glucose values or a normal glucose tolerance test prior to recruitment were 

excluded. This study was an extension of a previous study [13] where 22 participants 

were recruited. The current study included 55 participants.  

 

Study design 

Participants with a planned LSG were recruited prospectively and consecutively from 

the bariatric surgical clinic. LSG was a standard sleeve i.e. sleeve fashioned around a 

32F bougie taken from 5cm proximal to the pylorus and up to the left crus. All 

participants were recruited pre-operatively and followed up post-operatively at 1 

and 6 months. All participants, with the help of the research nurse, completed a 

baseline questionnaire and all clinical measurements were documented during the 

visits. All blood samples were collected after stopping any prescribed insulin or oral 

hypoglycaemic agent for 24 hours prior to an oral glucose tolerance test (OGTT) 

performed with 75g of glucose (122mL Polycal; 61.9g/100mL glucose, Nutricia 

Clinical Care, Trowbridge, UK). 

 

Baseline clinical and biochemical information 
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At the time of first study visit the following clinical information was ascertained: age, 

gender, past medical history, treatment and duration of diabetes. Baseline clinical 

measurements consisted of weight, height, BMI, waist circumference, systolic and 

diastolic blood pressure. Baseline biochemical measurements (glucose, total 

cholesterol, low density lipoprotein-cholesterol [LDL-C], high density lipoprotein-

cholesterol [HDL-C] and triglycerides) were analyzed within the local hospital 

accredited laboratory (Roche Modular P800 Analyzer). Insulin was measured using 

an Invitron Insulin luminescence immunometric assay. The analytical sensitivity of 

the assay was 0.02mU/L with a dynamic range of 0.02-250mU/L. The inter-assay 

coefficient of variation was ≤7.1%. Cross reactivities of related proteins were as 

follows: 1.2% with intact proinsulin and 0% with C-peptide. 

The Homeostasis Model Assessment (HOMA) was used to estimate steady state beta 

cell function (%B) and insulin sensitivity (%S). These were calculated using the Oxford 

University on-line calculator (http://www.dtu.ox.ac.uk/homacalculator, accessed 1st 

June 2015).[23] HOMA-insulin resistance (IR) is the reciprocal of HOMA-%S. The 

HOMA-%B and HOMA-%S represent values of 100% in normal young adults when 

using currently available assays for insulin, specific insulin or C-peptide. The accuracy 

of these measures has been validated and they have been shown to correlate with 

clamp-derived indices of insulin sensitivity and secretion.[24] They estimate steady 

state function. 

 All blood samples were collected on ice, centrifuged and separated within one hour 

of collection and subsequently stored at -80oC until analysis. Fasting EDTA samples 

http://www.dtu.ox.ac.uk/homacalculator/
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were collected for the measurement of cytokines and markers of oxidative stress 

during the OGTT at baseline, 1 and 6 months. 

 

Measurement of total cytokines 

Fasting plasma levels of IL6, IL10 and leptin were measured with high sensitivity 

ELISA kits (R&D Systems). Intra-assay and inter-assay variability coefficients were as 

follows: IL6 ≤4.2% and ≤6.4%; IL10, ≤5.0% and ≤7.5%; leptin, ≤3.3% and ≤5.4%.  

Fasting plasma levels of total adiponectin and CRP were measured with high 

sensitivity ELISA kits (Immundiagnostik AG). Intra-assay and inter-assay variability 

coefficients were as follows: adiponectin, ≤3.4% and ≤6.3%; CRP, ≤6.0% and ≤13.8%. 

All samples were assayed in duplicate. 

 

Measurements of plasma markers of oxidative stress 

Measurement of lipid peroxidation (TBARS) 

Plasma malondialdehyde (MDA) concentration, as a product of lipid peroxidation, 

was measured using a commercially available TBARS Assay (thiobarbituric acid 

reactive substances assay) (Caymen Chemical, MI, USA). Using an MDA standard 

curve, concentrations in plasma samples were calculated. A higher concentration of 

MDA is indicative of higher levels of lipid peroxidation, and therefore higher 

oxidative stress within the sample. Intra-assay and inter-assay variability coefficients 

were 5.2% and 16.2% respectively. All samples were assayed in duplicate [25, 26]. 
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Measurement of plasma total anti-oxidant status (TAOS) 

Plasma total anti-oxidant status (TAOS) [27, 28], which is inversely related to oxidative 

stress, was measured by Sampson’s modification of Laight’s photometric microassay 

[29]. Previously, it has been shown that plasma TAOS has a good correlation with 

plasma F2-isoprostanes [27]. The TAOS of plasma was determined by its capacity to 

inhibit the peroxidase-mediated formation of the 2,2-azino-bis-3-

ethylbensthiazoline-6-sulfonic acid (ABTS+) radical. The difference in absorbance 

(control [saline] minus test [plasma sample]) divided by the control absorbance 

(expressed as a percentage) was used to represent the percentage inhibition of the 

reaction. Intra-assay and inter-assay variability coefficients were 4.3% and 10.1% 

respectively. All samples were assayed in duplicate.  

 

Statistical methods 

Statistical analysis was performed using SPSS (version 25, SPSS Inc., Chicago). Results 

for continuous variables are presented as mean and standard deviation and in 

graphical representation as median and interquartile range. Continuous variables 

that did not have a normal distribution (HDL-C, triglyceride, fasting plasma glucose, 

2-hour plasma glucose, A1c, fasting insulin, 2-hour insulin, HOMA measurements, 

CRP, IL6, IL10, adiponectin, leptin, TBARS, TAOS) are described with the median and 

interquartile range. For continuous variables, the mean temporal changes were 

compared between baseline and 1 or 6 months using a paired t-test. The Wilcoxon 

signed-rank test was used to compare the temporal changes in variables that did not 
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have a normal distribution. Of the 55 participants, 43 had measureable results of 

plasma cytokines and oxidative stress at 1 and 6 months follow-up. The losses were 

due to inadequate sample collection during venesection or failure of analytical 

analysis of samples from 1 or 6 months. Correlations were performed using 

Spearman correlation. In all cases a p<0.05 was considered statistically significant.  

 

Results  

Participant characteristics 

A total of 55 participants (31 females and 24 males) with impaired glucose 

homeostasis (n=13) or T2D (n=42) and underwent LSG, completed the study with a 

mean age of 46±8 years. The baseline characteristics, along with the changes in 

anthropometric and clinical measures, are summarised in Table 1. As can be 

observed, significant reductions were observed at 1 and 6 months following LSG for 

measures of obesity, plasma triglyceride and a significant increase in HDL-

cholesterol. In addition, significant reductions were observed in fasting plasma 

glucose, 2-hour plasma glucose, A1c, fasting, 2-hour insulin levels along with HOMA-

IR and HOMA-%S. 

 

Temporal changes in adipokines, inflammatory cytokines and plasma markers of 

oxidative stress following LSG 
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As shown in Figure 1, we observed a significant reduction in median leptin of 

approximately 26% at 1 month and 53% at 6 months. There was an approximate 44% 

increase in adiponectin levels observed at 6 months. We also observed a significant 

reduction in IL6, 1 month following surgery, with a continued decrease at 6 months. 

CRP also showed a linear decrease post-operatively with a significant reduction at 6 

months. No change was seen in IL10. With respect to plasma markers of oxidative 

stress, there was a temporal linear decrease in TBARS with a significant reduction 

observed at 6 months (Table 2).  

 

Discussion 

Bariatric surgery reduces morbidity and mortality in severely obese individuals with 

favorable effects on T2D, hypertriglyceridemia and hypertension. There is growing 

evidence to support the hypothesis that this is likely to be related to an 

improvement in the inflammatory profile caused by the rapid and significant 

reductions in fat mass following surgery [30]. LSG has gained recent popularity as an 

independent bariatric procedure [30, 31]. We observed significant improvements in 

CRP, IL6, adiponectin and leptin, 6 months following LSG. Circulating levels of IL6 are 

raised in insulin resistant states such as obesity [32], impaired glucose tolerance [33] 

and T2D [34-36]. We observed no difference in IL10, which is in line with our previous 

study [13] and a study demonstrating that changes in IL10 mRNA expression were not 

observed until 12 months following LSG [37]. 
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We also examined the correlations between the change (Δ values) in measures of 

obesity and inflammatory biomarkers. Of interest we observed no significant 

correlations between the changes in weight and BMI with inflammatory cytokines 

(BMI with CRP [r=0.25, P=0.13], IL6 [r=-0.03, P=0.85], adiponectin [r=-0.16, P=0.33], 

leptin [r=0.13, P=0.41]). This observation is consistent with the findings of Catoi et al 

[18]. We did observe correlations between the Δ values for HOMA-%S and leptin (r=-

0.37, P=0.03) and CRP (r=-0.48, P=0.006). As expected Δ CRP and Δ IL6 had a 

significant correlation (r=0.45, P=0.003). 

With respect to plasma markers of oxidative stress, there was a temporal linear 

decrease in TBARS with a significant reduction observed at 6 months. No significant 

change was observed in plasma TAOS. This result has been observed previously by us 

[38] and other authors [18, 39, 40].  Plasma TAOS is a measure of global plasma 

antioxidant status and reactive oxygen species (ROS). There has been considerable 

debate within the literature in relation to the biochemical measurement of plasma 

oxidative stress. By definition, ROS are highly reactive and are thus difficult to 

measure in any biological sample, especially in easily accessible ex-vivo specimens 

such as serum or plasma [21]. Published studies utilize different techniques such as 

measuring a marker of global damage (TAOS, TAS), or a marker of end-damage such 

as TBARS or specific antioxidant molecules (SOD, glutathione). These observations 

suggest that measuring markers of global antioxidant status may not be the best 

measure of plasma oxidative stress in subjects with morbid obesity and where a 

relatively high BMI remains present. A recent study examining the measurement of 

urinary F2-isoprostanes demonstrated a reduction following LSG in 21 participants, 
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however it should be noted that this measurement requires considerable effort and 

skill [41].  

One limitation of the study was that the participant group comprised of those with 

impaired glucose tolerance and type 2 diabetes, however our aim was to examine 

changes in plasma markers of oxidative stress in a sample of subjects with glucose 

dysregulation, which is itself associated with increased oxidative burden [21, 29]. One 

further limitation is that we did not have a control non-surgical group to compare 

the effects of LSG on the variables measured. To our knowledge, the effect of LSG on 

inflammatory cytokines and plasma markers of oxidative stress has not been 

examined temporally in 55 participants previously. This current study contributes to 

the available literature supporting the role of LSG for the treatment of impaired 

glucose regulation and pro-inflammatory conditions associated with morbid obesity. 

 

Conclusion 

To our knowledge the effects of LSG on inflammatory cytokines and plasma markers 

of oxidative stress have not been examined temporally in a group sizeable sample of 

participants who have undergone LSG. This current study supports the role of LSG 

for the treatment of the pro-inflammatory and pro-oxidant status associated with 

obesity-related glucose dysregulation. 
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Figure 1 legend 

Figure 1: Temporal changes in inflammatory biomarkers following laparoscopic 

sleeve gastrectomy 

Median and interquartile shown. *P<0.05: Significant changes relative to baseline. 

Figure 1a: C-reactive protein (CRP)  

Figure 1b: Interleukin-6 (IL6) 

Figure 1c: Interleukin-10 (IL10) 

Figure 1d: Adiponectin 

Figure 1e: Leptin 
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Table 1: Baseline, 1 month and 6 months clinical and biochemical measurements 

 

Measurement Baseline 1 month aP  6 months bP  

Weight (kg)  148.3 (27.7) 128.8 (26.6) <0.001 114.4 (24.1) <0.001 

BMI (kg/m2) 50.4 (7.2) 43.7 (6.7) <0.001 38.7 (6.4) <0.001 

Waist (cm) 140 (16) 126 (16) <0.001 117 (17) <0.001 

Systolic BP (mmHg) 128 (18) 121 (13) 0.02 124 (17) 0.13 

Diastolic BP (mmHg) 76 (12) 73  (9) 0.09 72 [12] 0.06 

Cholesterol (mmol/L) 4.2 (1.0) 4.2 (1.0) 0.85 4.5 (1.0) 0.10 

LDL-C (mmol/L) 2.3 (0.8) 2.5 (0.9) 0.26 2.7 [0.9] 0.02 

HDL-C (mmol/L)c 1.1 [0.9-1.3] 1.0 [0.9-1.2] 0.002 1.2 [1.0-1.4] <0.001 
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Triglyceride (mmol/L)c 1.5 [1.1-2.4] 1.4 [1.1-1.9] 0.10 1.2 [0.9-1.6] 0.002 

A1c (mmol/mol)c 57.0 [46.0-89.3] 46.0 [38.5-56.0] <0.001 40.0 [36.0-49.0] <0.001 

A1c (%)c 7.4 [6.4-10.3] 6.3 [5.6-7.3] <0.001 5.8 [5.4-6.6] <0.001 

Fasting glucose (mmol/L)c 7.1 [5.9-11.7] 5.6 [4.6-6.8] <0.001 5.2 [4.5-5.8] <0.001 

2-hour glucose (mmol/L)c 13.4 [9.2-18.4] 8.8 [5.2-12.7] <0.001 5.8 [4.2-9.4] <0.001 

Fasting insulin (mU/L)c 21.8 [13.7-29.5] 12.0 [8.9-19.3] <0.001 5.4 [9.0-14.1] <0.001 

2-hour Insulin (mu/L)c 52.8 [27.4-102.4] 47.1 [27.7-122.6] 0.21 29.7 [16.2-56.9] 0.01 

HOMA-IRc 3.1 [1.9-4.1] 1.61 [1.22-2.56] <0.001 1.33 [0.83-1.91] <0.001 

HOMA-%Bc 90.1 [36.2-131.6] 110.0 [73.0-147.0] 0.34 99.5 [81.0-150.2] 0.29 

HOMA-%Sc 32.4 [24.5-52.3] 62.3 [39.0-81.7] <0.001 75.5 [52.3-121.0] <0.001 
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Mean and standard deviation shown for continuous variables. aP-value comparing baseline with 1 month. bP-value comparing baseline with 6 

months. cMedian and interquartile values shown as data did not have a normal distribution. BMI= Body mass index; LDL-C= Low density 5 

lipoprotein-Cholesterol; HDL-C= High density lipoprotein-Cholesterol; A1c= Glycated hemoglobin; BP=blood pressure. HOMA-IR=HOMA insulin 

resistance; HOMA-%S: HOMA insulin sensitivity; HOMA-%B: HOMA-beta cell function. 

 

 

 10 

 

 

 

 

 15 

 

 

 



 24 

Table 2: Inflammatory cytokine and oxidative stress measurements 
 20 

Measurement Baseline 1 month aP  6 months bP  

CRP (ng/mL) 6.9 [4.1-17.0] 5.0 [2.3-14.3] 0.183 4.4 [1.9-9.9] <0.001 

IL6 (pg/mL) 4.2 [2.4-8.0] 3.8 [2.3-8.0] 0.032 3.1 [1.7-7.3] 0.002 

IL10 (pg/mL) 4.1 [2.3-8.1] 5.1 [2.9-8.7] 0.158 4.9 [2.7-7.7] 0.484 

Adiponectin (ng/mL) 7.6 [5.2-10.5] 7.1 [5.0-11.6] 0.07 11.0 [7.0-14.3] 0.003 

Leptin (pg/mL) 41.7 [26.7-61.9] 31.0 [15.1-43.4] <0.001 19.5 [10.9-38.3] <0.001 

TAOS (%) 41.7 [36.1-47.8] 41.4 [33.5-50.2] 0.798 41.0 [35.6-47.3] 0.831 

TBARS (ng/mL) 58.6 [33.4-99.2] 46.9 [33.1-72.7] 0.053 46.8 [33.8-66.9] 0.007 

Median and interquartile ranges shown. aP-value comparing baseline with 1 month. 

bP-value comparing baseline with 6 months. CRP=C-reactive protein; IL6=Interleukin-

6; IL10=Interleukin-10; TAOS=Total Antioxidant status; TBARS= Thiobarbituric acid 

reactive substances. 
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Figure 1a: C-reactive protein  
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Figure 1b: Interleukin-6 

		

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

Baseline	 1	month	 6	months	

IL
6
	(
p
g/
m
L)
	

Time	(months)	

*	

*	



 26 

 

 

 

		

Figure 1c: Interleukin-10 
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Figure 1d: Adiponectin 
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 40 

Figure 1e: Leptin 
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