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Abstract 

In the theory of visual attention (TVA), it is suggested that objects in a visual scene compete for 

representation in a visual short-term memory (vSTM) store. The race towards the store is assumed to 

be biased by top-down controlled weighting of the objects according to their task relevance. Only 

objects that reach the store before its capacity limitation is reached are represented consciously in a 

given instant. TVA-based computational modelling of participants’ performance in whole- and 

partial-report tasks permits independent parameters of individual efficiency of top-down control α 

and vSTM storage capacity K to be extracted. The neural interpretation of the TVA proposes 

recurrent loops between the posterior thalamus and posterior visual cortices to be relevant for 

generating attentional weights for competing objects and for maintaining selected objects in vSTM. 

Accordingly, we tested whether structural connectivity between posterior thalamus and occipital 

cortices (PT-OC) is associated with estimates of top-down control and vSTM capacity. We applied 

whole- and partial-report tasks and probabilistic tractography in a sample of 37 healthy adults. We 

found vSTM capacity K to be associated with left PT-OC structural connectivity and a trend-wise 

relation between top-down control α and right PT-OC structural connectivity. These findings support 

the assumption of the relevance of thalamic structures and their connections to visual cortex for top-

down control and vSTM capacity.  

Keywords: Diffusion tensor imaging, probabilistic tractography, neural theory of visual attention, 

visual short-term memory capacity, posterior thalamus 

 

Abbreviations: vSTM, visual short-term memory; TVA, theory of visual attention; NTVA, neural 

theory of visual attention; DTI, diffusion tensor imaging; PT-OC, Posterior thalamus-occipital cortex; 

ROI, region of interest; IQ, intelligence quotient 
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Introduction 

As our visual system is constantly confronted with more objects and features than it can process and 

consciously maintain simultaneously, selection is mandatory. To that end, the visual attention system 

distributes the limited resources in a way that allows preferential processing of relevant and filtering-

out of irrelevant information (Desimone & Duncan, 1995). According to the ‘theory of visual 

attention’ (TVA; Bundesen 1990), visual processing is conceived as a parallel race between objects in 

a visual scene for representation in a visual short-term memory (vSTM) store that has a limited 

storage capacity (Bundesen, 1990). Only those objects that are selected into vSTM are consciously 

accessible, thus, available for voluntary, task-appropriate actions such as, e.g., verbal report. In line 

with the ‘biased competition’ account of attention (Desimone & Duncan, 1995), the competition for 

vSTM representation is assumed to be biased. According to TVA, the probability of a given object x to 

become represented in vSTM before its capacity limit is reached is proportional to the relative 

amount of attentional weight allocated to that object wx compared to the weight of all other objects 

in the visual field. Besides bottom-up factors such as stimulus salience, the distribution of attentional 

weights across objects is influenced by top-down-controlled biases reflecting the objects’ relevance 

to the current task goals. 

Based on two simple psychophysical tasks involving verbal report of briefly presented letter arrays 

and TVA-based modelling, individual estimates of a given participant’s efficiency of top-down 

controlled selection, parameter α, and vSTM capacity, parameter K, can be quantified. The individual 

efficiency of top-down control is derived from TVA-based fitting of performance in a ‘partial-report 

task’, in which participants have to name target letters (e.g., letters possessing a particular color) 

only while ignoring distractor letters (in a different color). Based on differences in report accuracy 

between conditions with and without distractors, separate attentional weights are estimated for 

target and distractor objects. The efficiency of top-down control, parameter α, is then derived as the 

weight allocated to distractors divided by the weight allocated to targets, wD/wT. The capacity of 

vSTM is derived from a ‘whole-report task’, more precisely, TVA-based fitting of the number of 

accurately reported letters from a letter array as a function of the (varying) effective exposure 

duration of the array (all letters are of the same color, so no selection is necessary in this task); 

formally, parameter K is estimated as the asymptotic value of the growth function relating report 

accuracy to exposure time. Typical estimates of vSTM storage capacity K in TVA-based paradigms in 

young healthy participants are around 3-4 items (e.g., Menegaux et al., 2017; Finke et al., 2005; 

Habekost 2015) which fits well with estimates obtained from other vSTM paradigms (Luck & Vogel 

1997; Cowan, 2001; Vogel & Machizawa ,2004). 
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With respect to the underlying systems in the human brain, the neural interpretation of TVA (NTVA) 

suggests that ‘visual’ cortical regions, thalamic areas, and white-matter tracts interconnecting these 

regions are of particular relevance for top-down control and vSTM storage (Bundesen et al., 2005). In 

particular, it is assumed that, following a first, unselective wave of processing, attentional weights 

are computed for the displayed objects by a priority map in the pulvinar nucleus of the thalamus. In 

the subsequent, selective wave of processing, attentional weight signals from the pulvinar mediate 

biased processing of objects in visual brain areas, so that objects with higher attentional weights are 

processed, or represented by more neurons. The winners of the race are thought to be categorized 

in a vSTM map of locations assumed to be localized in the posterior thalamic reticular nucleus (see 

Figure 1). The reticular nucleus then gates activation in positive feedback loops that sustain the 

activity in neurons representing these winner objects. Thus, the NTVA model – in line with several 

authors suggesting a critical role of visual thalamic areas in the coordination of task-based 

attentional selection and vSTM (Bennaroch 2015; Danziger et al., 2001; Danzinger et al., 2004; 

Halassa & Kastner, 2017; Saalmann et al., 2012; Shipp et al., 2003; Shipp et al., 2004; Strumpf et al., 

2013; Wurtz et al., 2011) – would predict that the structural connectivity between posterior 

thalamus and visual cortex is of relevance for both vSTM capacity and top-down control (Bundesen 

et al., 2005).  

Empirical evidence for the relevance of these thalamic structures, i.e. the reticular nucleus and the 

pulvinar, and posterior white-matter connections for top-down controlled selection and vSTM 

storage is relatively sparse. The assumed role of the pulvinar for top-down control was supported by 

findings of impairments in task-based selection of targets among distractors and in patients with 

chronic pulvinar lesions (Snow et al., 2009). These results are similar to the inability to filter out 

irrelevant information in the visual field shown in monkeys following unilateral inactivation of the 

pulvinar (Desimone et al., 1989). Correspondingly, in neuroimaging studies, the pulvinar was found 

to be activated in paradigms requiring task-based selection of target among distractors (LaBerge et 

al., 1990; Nobre et al., 2002; Corbetta et al., 1991, Buchsbaum et al., 2006; Fischer & Whitney, 2012; 

Strumpf et al., 2013). With respect to vSTM capacity, Golestani and colleagues (Golestani et al., 2014) 

reported an association between vSTM span and white-matter microstructure of the optic radiations 

and the posterior thalamus. The first TVA-based study providing specific evidence for the presumed 

importance of thalamo-cortical tract structure for vSTM capacity comes from an analysis by 

Menegaux and colleagues (Menegaux et al., 2017). This study showed that in healthy young adults at 

the age of 26, a higher integrity of posterior thalamic radiations (as reflected by higher fractional 

anisotropy) was related to higher vSTM capacity. Nevertheless, no evidence for the presumed 
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association between the structural connectivity specifically of the posterior thalamus to visual 

cortices and vSTM capacity or top-down control of visual attention has been brought thus far. 

 

Figure 1: Presentation of the NTVA model, regions of interest (ROIs) and tasks used in this study. 
On the top left corner, the regions of interest derived from the NTVA model of Bundesen are 
shown with red representing the occipital cortex, blue the whole thalamus and green the 
posterior thalamus. On the top right corner an example of probabilistic tractography for one 
subject is represented; on the bottom left and right corner, representations of the whole and 
partial report tasks respectively are shown. 

 

Based on the NTVA model assumptions on the importance of the posterior thalamus and of posterior 

thalamo-cortical communication for attentional prioritization of relevant information during visual 

processing and vSTM storage (Bundesen et al., 2005) and based on the prior evidence supporting this 

relevance (e.g., Fischer & Witney, 2012; Menegaux et al., 2017; Snow et al., 2009) we hypothesized 

that individual differences in structural connectivity of the posterior thalamus to occipital cortices 

(PT-OC) would be reflected in the efficiency of top-down control of attention as well as in vSTM 

capacity. In order to obtain an in-vivo measure of structural connectivity, we performed probabilistic 

PT-OC tractography, separately for each hemisphere. The score obtained from probabilistic 
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tractography indicates how frequently we can reconstruct a streamline between two points. In other 

words, it demonstrates how reproducible a pathway is (Jones 2010; Jones et al., 2013; Jeurissen et 

al., 2017). A higher number of streamlines associated with a voxel indicates a higher probability of a 

pathway to run through this voxel (Jones, 2010; Jones et al., 2013; Jbabdi & Johansen Berg 2011). Of 

note, this number of streamlines does not inform about the strength or quality of connections 

between those two regions. In other words, probabilistic tractography can only be used to test 

whether PT-OC connectivity is, in principle, associated with vSTM capacity K or top-down control α. 

However, it is difficult to make predictions concerning the direction of potential relationships (i.e., 

whether higher or lower connectivity would be related to better attentional performance). 

Probabilistic tractography was based on diffusion-weighted imaging data obtained from healthy 

individuals. The same subjects were assessed with TVA-based whole- and partial-report paradigms, in 

order to derive their individual vSTM capacity K and top down control α parameters, respectively. 

The association of these parameters with PT-OC connection probability was analyzed via partial 

correlation analysis, controlling for age, gender, crystallized IQ, and total intracranial volume (TIV). 

Left- and right-hemispheric PT-OC tracts were analyzed separately as their respective relevance for 

top-down control and vSTM capacity might differ. As, for example, in EEG and fMRI data pattern 

analyses the right compared to the left thalamo-cortical information transfer was found to be faster, 

it was suggested that the right-hemispheric system might be more relevant for fast selection of 

relevant stimuli and the left for their in-depth processing (e.g., Okon-Singer et al., 2011; see also 

Verleger et al., 2009, for similar conclusions). In more general terms, the right PT-OC tract might 

support a right-hemispheric dominance for attentional control (e.g. Fassbender et al, 2006; 

Hampshire et al., 2010; Garavan et al., 1999; Cieslik et al, 2015) while the left PT-OC might support a 

left-hemispheric dominance for object vSTM storage (Elliott and Dolan, 1998; Finke et al., 2006; 

Smith et al., 1995; Todd & Marois, 2005). In order to test the cognitively specific NTVA thalamic 

model of top-down control and vSTM storage (Bundesen et al., 2005; Habekost & Rostrup, 2007), 

control analyses were carried out on other TVA parameters that have been documented in prior 

studies to be related to white matter connectivity, although notably not specifically to PT-OC 

connectivity (Chechlacz et al., 2015; Habekost & Rostrup, 2007). Finally, in order to test our cortically 

specific assumption on the relevance of thalamo-occipital connections, control analyses were carried 

out on the structural connectivity between thalamus and motor cortex.  
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Material and methods 

Participants 

Thirty-seven participants, aged 21 to 53 years were included in the present study. All participants 

were fluent in German and had normal or corrected-to-normal vision. 32 participants were right-

handed, 4 were left-handed, and 1 was ambidextrous according to the Edinburgh Handedness 

Inventory (Oldfield 1971). All the participants were highly educated, with years of school education 

ranging from 10 to 13 years (see Table 1) (M = 12.4 SD= 0.9). The German version of the multiple-

choice vocabulary test MWT-B (Lehr, 1977) was used to measure crystallized IQ, and the Beck 

Depression Inventory test (BDI; Beck et al. 1996) was used to rule out depression.  

 

 N = 37 

Variable Mean SD Range 

Gender (F/M) 22 / 15   

Handedness (R/L/B) 32 / 4 / 1   

Education (years) 12.4 0.88 10 - 13 

Age (years) 33.8 10.54 20 - 53 

K (elements) 3.31 0.54 2.37 - 3.88 

C (elements/s) 24.7 8.66 12.02 - 47.01 

T0 (ms) 10.73 11.74 0.0 - 49.0 

α (a.u.) 0.43 0.14 0.17 - 0.67 

Wlat (a.u.) 0.51 0.14 0.39 - 0.61 

Crystallized IQ 95.8 15.0 72.5 - 140 

Table 1:   Sample characteristics 

 

Exclusion criteria included alcohol intake at the day of testing, chronic eye diseases (e.g., colour 

blindness, glaucoma), history of neurological (e.g., brain injury, stroke) or psychiatric (e.g., anxiety 

disorder, schizophrenia) diseases, any occurrence of epileptic seizure, intake of medication affecting 

cognitive performance and claustrophobia. Additionally, participants with current symptoms of 

depression (BDI score > 18) were excluded as depression is known to alter visual top-down control 

(Desseilles et al., 2011) and thalamo-cortical functional connectivity (Brown et al., 2017).  
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50 participants were recruited for this study. In total, 13 participants had to be excluded: 3 because 

of high BDI scores, 4 because they did not follow the task instructions of the behavioral tasks 

adequately (3 in the whole-report and 1 in the partial-report task), 5 due to bad quality of and 1 due 

to incomplete diffusion-weighted imaging data. Our final cohort of participants consisted of 37 

individuals. The study was approved by the ethics committees of the Department of Psychology of 

the Ludwig-Maximilians-Universität (LMU) Munich and the Medical Department of the Technische 

Universität München (TUM), and all participants gave prior informed consent in writing. Cognitive 

testing was performed at the LMU Department of Psychology, brain imaging at the TUM Department 

of Neuroradiology. 

 

TVA-based behavioural assessment of vSTM capacity and top-down control 
General assessment procedure  

Whole- and partial-report tasks were conducted in a dimly-lit sound-attenuated chamber (Industrial 

Acoustics Company) with simultaneous EEG recordings11. Stimuli were presented to participants on a 

24’’ LED screen (800 x 600 pixel resolution, 100-Hz refresh rate) at a viewing distance of 65cm. 

Each participant completed two sessions of 1.5 to 2 hours each on different days: in one session, the 

whole report was conducted and in another session the partial report task. Each session included 

EEG preparation, presentation of written instructions and stimuli used in the experiment, a 

procedure for adjustment of the individual exposure durations, and approximately 45 minutes of 

testing proper. 

At the beginning of each trial, a fixation point (a white circle, 0.9° of visual angle in diameter, with a 

white dot in the centre) was presented in the centre of the display for a duration drawn randomly 

from 10 to 240 ms. Participants were instructed to fixate this marker throughout the blocks of trials 

administered. Following the fixation marker, red and/or blue letters were briefly presented on a 

black background. Letters’ exposure durations were determined individually for each participant in a 

                                                             

1EEG recording was used for the assessment of event-related components (ERPs) during task performance, 
which are not the focus of the current study. Due to the special requirements of ERP investigation, some of the 
experimental trials in the whole- and partial-report tasks were repeated more often than others. Furthermore, 
for the ERP assessment, it was also necessary to ensure balanced visual stimulation in both hemifields in the 
whole-report task. This is why task-irrelevant (non-letter) symbols were presented in the visual hemifield 
opposite to the target stimuli. These specific manipulations, however, would not affect the TVA parameters 
derived from fitting report accuracy in the different conditions. 



 9 

short pre-experimental practice session in order to ensure a comparable level of task difficulty across 

participants. The letters were randomly chosen from the following set {A, B, D, E, F, G, H, J, K, L, M, N, 

O, P, R, S, T, V, X, Z} and appeared only once in a given trial display. After stimulus presentation, a 

white question mark appeared in the centre of the screen, indicating the start of a verbal letter 

report. The participant could perform the report in any, arbitrary order, without speed constraint. In 

order to avoid too much guessing, participants were instructed to report only letters they were fairly 

certain they had seen. Following each block, participants received feedback related to the accuracy 

of the letters they actually reported (note that this feedback was independent from the overall 

performance level reached). A visual feedback bar indicated whether the report accuracy of the 

actually reported letters ranged between 70 and 90%. If accuracy fell below 70%, the participant was 

told by the experimenter to try to refrain from guessing and report only the letters they were 

relatively sure to have seen. If it was above 90%, the participant was encouraged to be less anxious 

and report more letters, even if not absolutely sure that they are correct. During the administration 

of both (the whole- and partial-report) tasks, the experimenter was seated behind the participant 

and entered the letters orally reported by the participant on a keyboard and then manually started 

the next trial by a key press action. 

 

Whole-report task 

On each trial, four letters were briefly presented along an imaginary semi-circle, of a radius of 5.27° 

of visual angle, either to the left or the right of the fixation point. Participants were instructed to 

report orally as many of the letters as possible. Four blue symbols (composed of random letter parts; 

see Figure 1) of the same luminance were displayed on the symmetrical semicircle on the other side 

of fixation. Letter and symbol stimuli subtended 1.3° of visual angle. At the beginning of each trial 

block, a white arrow in the center pointed towards the side on which the target (i.e., letter) stimuli 

would appear throughout the upcoming block. The target side in the first block was counterbalanced 

across participants and then alternated throughout the experiment. Seven timing conditions were 

used. In five conditions, the stimulus array was followed by post-display masks (see Figure 1) that 

consisted of eight red-blue scattered squares (also subtending 1.3° of visual angle) which were 

presented at each (letter and symbol) stimulus location for a duration of 900 ms. These arrays were 

presented for five different, individually adjusted exposure durations. In two additional conditions, 

the stimuli were presented unmasked, i.e., they were followed by a blank screen also presented for 

900 ms. In one of these conditions, the exposure time was the second shortest duration (of the total 

five individually adjusted durations); in the other condition, the exposure time was fixed at 200 ms 
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for all participants. In these unmasked conditions, the exposure durations are effectively prolonged 

compared to the masked conditions, due to the uninterrupted visual persistence of the stimuli 

(Sperling, 1960). Thus, the five masked and the two unmasked conditions resulted in seven different 

effective exposure durations. The various experimental conditions were equally distributed across 

blocks of trials, and were displayed in randomized order within each block. 

The exposure time adjustment phase consisted of 48 trials, divided into 4 blocks of 12 triples of trials. 

Each triple consisted of two trials that were not used for adjustment, but were simply presented for 

allowing the participant to become familiar with the task. These were either unmasked trials with an 

exposure duration of 200 ms or masked trials with an exposure duration of 250 ms. The critical trial 

display in each triple that was used for the exposure duration adjustment was masked and initially 

presented for 80 ms. Each time the participant reported at least one correct letter on this trial, 

exposure duration was decreased by 10 ms. When an exposure duration was reached at which the 

participant was no longer able to name a single letter correctly, this was set as lowest exposure 

duration used in the subsequent whole-report experiment proper. Based on this value, a set of 4 

longer exposure durations was chosen from predefined sets. 

The testing phase consisted of 10 experimental blocks, each of 40 trials. For each exposure duration, 

30 trials were presented; the only exception was the condition with unmasked trials presented for 

200 ms, for which 220 trials were presented (these were the critical trials for ERP analysis). 

 

Partial-report task 

On each trial, either a single (red) target letter, two target letters, or a target accompanied by a 

(blue) distractor were presented on a black background (see Figure 1). Red and blue letters were of 

the same luminance and had a size of 0.9° of visual angle. They appeared at the corners of an 

imaginary square, centred on the midpoint of the screen, with an edge length of 12.3° of visual angle. 

In displays containing two letters, these were presented either both vertically or both horizontally, 

but never diagonally.  

Initially, 16 practice trials were presented with an exposure duration of 80 ms. Next, the procedure 

to adjust the individual exposure duration was applied, which consisted of 24 trials (4 single-target, 

12 dual-target, and 8 target-distractor trials, in pseudorandomized order), with an initial exposure 

duration of 80 ms. Note that only the dual-target trials were used for exposure duration adjustment; 

the single-target and target-distractor trials were included simply to allow participants to become 



 11 

familiar with all the conditions of the task. In the dual-target condition, if the participant reported 

both letters correctly, the exposure duration was decreased by 10 ms; if only one of the two letters 

was reported correctly, the exposure duration remained unchanged; and if none of the letters were 

reported correctly, the exposure duration was increased by 10 ms. Following this adjustment 

procedure, a performance check block with 24 trials (8 single-target, 8 dual-target, and 8 target-

distractor-trials) was presented for the previously determined exposure duration. Accuracy for the 

single-target and the dual-target condition was displayed on the screen. The proper partial-report 

experiment was started by the experimenter when the accuracy achieved was within a range of 70 to 

90% correct in the single-target condition and above 50% in the dual-target condition (i.e., if, on 

average, more than one letter was reported correctly in the dual-target condition). If performance 

was too high or too low, the exposure duration was manually adjusted by the experimenter, who 

also repeated the performance check procedure until an appropriate exposure duration was found. 

In total, 112 single-target, 112 dual-target, and 280 target-distractor trials were presented. Overall, 

there were 504 trials divided into 14 blocks. The experimental conditions were equally distributed 

across blocks, and were displayed in randomized order within the blocks. 

 

Estimation of top down control and visual short term memory capacity 

Modeling of participants’ top-down control and vSTM capacity parameters utilized the TVA 

computational model implemented in the libTVA toolbox for Matlab (Mads Dyrholm, 

www.machlea.com/mads/libtva.html). Detailed descriptions of the fitting procedure can be found in 

Dyrholm et al., 2011. In brief, top-down control was derived by modeling individual performance 

accuracy across the different partial-report conditions. This fitting procedure provided estimates of 

the attentional weights wi assigned to both targets and distractors displayed at each location in the 

partial report experiment. Based on these values, the top-down control parameter (α), which reflects 

the difference in the weights assigned to targets wT and distractors wD, was estimated. As α is 

defined by the ratio wD/ wT, (lower) α values approaching 0 indicate highly efficient top-down control, 

whereas values approaching 1 indicate rather non-selective processing. The spatial bias parameter 

wlat, an indicator of the spatial distribution of attentional weights across the left (wleft) and right 

(wright) visual hemifields, was also obtained from this fitting procedure. It is defined as the ratio wleft / 

(wleft + wright). Thus, a value of wlat = 0.5 indicates balanced weighting, a value of wlat < 0.5 indicates a 

rightward spatial bias, and a value of wlat > 0.5 indicates a leftward bias. The spatial bias parameter 
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wlat was not of primary interest in our study, but was used to assess the cognitive specificity of our 

results2.  

Furthermore, vSTM capacity was derived by a TVA-based whole-report fitting procedure that models 

the probability of correct letter report in the whole-report as an exponential growth function with 

increasing (effective) exposure duration. The exposure time variation (7 durations) generated a 

broad range of performance which specified the whole probability distribution of the number of 

correctly reported elements as a function of the effective exposure duration. Parameter K is the 

asymptote of the fitted function, representing vSTM capacity in terms of the maximum number of 

items that can be simultaneously represented in vSTM3. The slope of the function at its origin 

represents visual processing speed (parameter C) which is defined as the rate of visual information 

uptake (in elements per second). Similarly to the spatial bias parameter wlat in the partial-report task, 

the processing speed parameter C was drawn upon to ensure the cognitive specificity of our results. 

Two additional parameters which are of little or no interest for the questions at issue in the present 

study were also estimated: the perceptual threshold (parameter t0), the longest ineffective exposure 

duration (in ms) below which information uptake is effectively zero; and parameter μ, representing 

the prolongation of the effective exposure duration (in ms) on unmasked trials. For participants 

whose t0 was estimated to be below 0 (4 out of 37), we refitted the data fixing t0 at 0. This new fit 

did not modify the mean value of K and C parameters (Supplementary Table S1) nor any analyses in 

this study (Supplementary Table S2). 

 

Imaging data acquisition 

Whole brain T1- and diffusion-weighted imaging data were acquired on a 3T Philips Ingenia scanner 

with a 32 channel head coil and a SENSE factor of 2. Diffusion images were acquired using a single-

shot spin-echo echo-planar imaging sequence, resulting in one non-diffusion weighted image (b = 0 

s/mm2) and 32 diffusion weighted images (b = 800 s/mm2, 32 non-collinear gradient directions) 

covering whole brain with: echo time (TE) = 61 ms, repetition time (TR) = 14206.980 ms, flip angle = 

                                                             

2 Finally, sensory effectiveness values for each hemi-field were obtained (Aleft and Aright) that basically reflect 
how well stimuli were perceived, under the chosen exposure duration, in the left and the right hemi-field. This 
parameter is relevant for the valid estimation of top-down control and spatial attentional bias, but not relevant 
for the current study and not considered further. 

3 The K value reported is the expected K given a particular distribution of the probability that on a given trial K = 
1,2,3, or 4 . 
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90°, field of view = 224 x 224 mm², matrix = 112 x 112, 60 transverse slices, voxel size = 2 x 2 x 2 mm3. 

A whole head high-resolution T1-weighted anatomical volume was acquired using a 3D 

magnetization prepared rapid acquisition gradient echo sequence with the following parameters: 

repetition time = 9 ms; time to echo = 4 ms; inversion time, TI = 0 ms; flip angle = 8°; 170 sagittal 

slices; field of view = 240 x 240 mm2; matrix size = 240 × 240; reconstructed voxel size = 1 x 1 x 1 

mm. 

	

Quality check  

All acquired MRI images were visually inspected by two independent raters (A.M., C.S.) for excessive 

head motion, and apparent or aberrant artifacts. In addition to visual inspection of the raw data, we 

also used the fitting residuals (the sum-of-squared-error maps generated by DTIFIT) to identify data 

corrupted by artifacts. Artifacts include motion-induced artifacts, insufficient fat suppression 

(ghosting) artifacts, and extreme distortion artifacts. Furthermore, fluid-attenuated inversion 

recovery-T2 images were acquired as part of the standard MRI protocol of the Klinikum Rechts der 

Isar and examined by experienced neuroradiologists to exclude potential lesions and white-matter 

abnormalities. 

	

Preprocessing 

Diffusion data preprocessing was performed using the FMRIB Diffusion Toolbox in the FSL software 

(www.fmrib.ox.ac.uk/fsl; Jenkinson et al., 2012) after converting data from DICOM to nifti format 

using mricron dcm2nii (Rorden et al., 2007) as described in previous work (Meng et al., 2015). All 

diffusion-weighted images were first corrected for eddy current and head motion by registration to 

the b0 image and skull and non-brain tissue were removed using the brain extraction tool (BET). 

T1-weighted images were preprocessed using the anatomical processing script from FSL which 

included reorientation, image cropping, bias field correction, linear (FLIRT, FMRIB's Linear Image 

Registration Tool) and non-linear (FNIRT, FMRIB's Non-Linear Image Registration Tool) registration to 

MNI standard space. Output of this non-linear transformation included a structural-to-MNI standard 

space warp field and its inverse (MNI-to-structural).  Anatomical preprocessing also included brain 

extraction (BET) and both tissue type and subcortical structure segmentations which were used to 

register diffusion weighted images to preprocessed structural T1-weighted images using boundary-

based registration for echo planar imaging data thus yielding a diffusion-to-structural transformation 
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matrix. In order to register diffusion weighted data to the MNI 152 template via structural scan, we 

combined the previously generated structural-to-MNI non-linear transformation matrix with the 

diffusion_to_structural transformation matrix, thus resulting in a diffusion-to-standard space 

transformation. This transformation will be used later on to transform the individual fdt_paths, the 

3D image file containing the output connectivity distribution to the seed mask, to standard space. 

	

Probabilistic tractography and seed and target masks creation 

Overall, we used several FSL atlases to define the occipital cortices, thalamic and exclusion masks for 

each hemisphere in standard space. Those masks were then transformed into native space using the 

previously described non-linear mapping, and probabilistic tractography was performed to identify 

the streamlines from occipital cortex to the thalamus within each hemisphere discarding inter-

hemisphere estimates. The resulting path was then normalized and transformed into standard space, 

where a posterior thalamus mask for each hemisphere was used to extract the mean probability of 

connection value which was then correlated with the previously described attention parameters. 

 

Regions of interest (ROIs) generation 

We used the MNI 152 2-mm label atlas combined with the Harvard Oxford 2-mm cortical atlas to 

create our cortical occipital mask in standard space.  Masks of the right and left thalamus were 

created from the Oxford thalamic 30% 2-mm connectivity atlas which is based on the probability of 

anatomical connections between the thalamus and the cortex in MNI space (Behrens et al., 2003). 

Additionally, whole brain left and right hemisphere masks were created from the Talairach atlas and 

used as exclusion masks in the tractography process. All masks were transformed into the subjects 

native space using the reverse non-linear mapping previously obtained and nearest neighbor 

interpolation. 

 

Estimation of diffusion parameters and probabilistic tractography 

Using the FDT toolbox from FSL, we first ran the function of Bayesian estimation of diffusion 

parameters obtained using sampling techniques (BedpostX) for each participant. It estimates the 

individual diffusion parameters at each voxel while automatically considering the number of crossing 

fibers per voxel (Behrens et al., 2003; Behrens et al.,2007). We used the default parameters 
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implemented in FDT: 2 fibers per voxel, weight of 1, and burning period 1000. Using the ROIs created 

as described above, tractography was run for each hemisphere with the occipital ROI as seed and the 

thalamus as waypoint target mask using the probtrackx2 function from FSL. We also used an 

exclusion mask from the opposite hemisphere in order to ensure the ipsilateral nature of the 

tractography. We performed tractography separately from each occipital ROI to the thalamus. For 

each participant, 5000 streamlines were initiated per seed voxel with a path length of 2000 × 0.5 mm 

steps, a curvature threshold of 80°, and loop checking criteria. The resulting image or fdt_paths 

represents the path connecting the seed region to the target, where the value in each voxel 

represents the number of streamlines generated from the seed region that pass through that voxel. 

Due to the differences in volume of each area across participants, we normalized the resulting tract 

estimates (fdt_paths) by dividing them by the waytotal (total number of streamlines generated from 

the seed region that reaches the target region) (Rilling et al., 2008), thus yielding a probability map of 

connectivity (Zhang et al. 2010, Arnold et al., 2012; Behrens et al.,2007; for review see Jbabdi et al., 

2015). Those probability maps were then transformed back into standard space, so that they could 

be used for statistical analysis (Figure 1). 

In order to assess the inter-individual variability of the thalamic probability maps, each individual 

probability map transformed into standard space was thresholded to exclude the lowest 20% of 

probability values voxels in order to reduce noise. Following this step, each individual’s thresholded 

map was binarized and the mean of these maps was calculated. To visualize it, we thresholded this 

mean map to 0.9 to keep only voxels that were present in 90% of the individuals (supplementary 

material Figure S1 left). In a second step, we overlaid the posterior thalami masks, which revealed 

that most of its voxels overlapped with the mean map, indicative of a relatively stable connectivity 

pattern among participants (supplementary material Figure S1 right). 

 

Estimation of total intracranial volume (TIV) 

In order to obtain volumetric measurements for the whole brain, T1 images were segmented into 

grey matter, white matter and cerebrospinal fluid tissue classes and normalized to the MNI 152 mm 

template using DARTEL (SPM12 software package, http://www.fil.ion.ucl.ac.uk). The segmented and 

normalized images were modulated to account for the structural changes resulting from the 

normalization process, thus indicating grey matter, white matter and cerebrospinal fluid volume. A 

measure of total intracranial volume was estimated by first computing and then adding up the totals 
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(in liters) of the warped, modulated, and unsmoothed grey-matter, white-matter and cerebrospinal-

fluid segments with the in-built SPM Tissue Volumes Utility (Malone et al., 2015). 

Statistical analyses 

For each individual connection probability map, posterior thalamus masks of each hemisphere were 

used to extract the mean probability of connection from these regions. A posterior thalamus mask 

was created for each hemisphere using the Talairach labels 2mm atlas, which, owing to the low 

resolution of MRI, contained the thalamic reticular nucleus as well as the pulvinar nucleus. Since 

normal distribution was not confirmed for all variables (via Kolmogorov-Smirnov test), Spearman 

partial correlation was used to assess the association among left and right PT-OC connection 

probability and top down control/vSTM capacity. In order to investigate these associations further, 

we performed multiple linear regression analyses with vSTM capacity or top-down control as 

dependent variable and left or right PT-OC connection probability as independent variable, 

respectively. For all correlations and regressions, gender, handedness, age, crystallized IQ, and TIV 

were included in the model in order to control for these effects of no interest. All analyses were 

performed using the SPSS statistics package version 21 (IBM). 

 

Control analyses 

In order to test the structural specificity of our connectivity results for the occipital region, we 

performed tractography from the motor cortex as control ROI to the thalamus. We used Brodmann 

areas 4a, 4p, and B6 from the Jülich atlas, separately for each hemisphere, combined with the 

Harvard-Oxford 2-mm cortical atlas to create the cortical motor masks for the left and the right 

hemisphere. Similarly, the Harvard-Oxford 2-mm cortical atlas combined with the MNI 152 2-mm 

label atlas were used to create left and right parietal cortex masks. Furthermore, in order to test the 

cognitive specificity of our results for vSTM capacity K and top-down control α,  the TVA parameters 

processing speed C and spatial bias ѡlat were correlated with left and right PT-OC connection 

probability using Spearman partial correlation. 
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Results 

Behavioural data 

The mean vSTM storage capacity K value of our sample was 3.31 (SD = 0.39) (see Table 1), and the 

mean top down control α value was 0.44 (SD = 0.14), consistent with highly similar previous findings 

in healthy participants (e.g., Finke et al., 2005; Kraft et al., 2015). Moreover, in line with the 

assumption of the TVA model (Bundesen 1990) that the two parameters reflect independent 

attentional functions, vSTM capacity and top down control were not significantly correlated with 

each other (rs(35) = 0.28; p = .10). 

 

PT-OC structural connectivity and vSTM capacity 

In order to test our hypothesis that PT-OC connection probability would be significantly associated 

with vSTM capacity, we performed two separate Spearman correlation analyses between PT-OC 

connection probability obtained from tractography for the left and the right hemisphere and K, 

controlling for gender, age, handedness, IQ, and TIV. We found the left hemisphere PT-OC 

connection probability to be significantly negatively associated with K (rs(30) = -0.38; p = .03). The 

relevance of left PT-OC connection probability for vSTM capacity was further confirmed using a 

multiple linear regression model. We found that left PT-OC connection probability was significantly 

associated with vSTM capacity (β = -26.823; p = .008; Table S3). This association remained significant 

after Bonferroni correction (p <0.0125). 

However, no significant association between K and the right hemisphere PT-OC connection 

probability was found (rs(30) = 0.02; p = .91; Figure 2 and Table 2). This lack of significance was 

further confirmed via multiple linear regression where right PT-OC connection probability did not 

significantly link with vSTM capacity (β = -3.605; p = .78; Table S4). 

 

PT-OC structural connectivity and attentional selection 

In order to test our hypothesis that PT-OC connection probability would be associated with top-down 

control, we performed separate Spearman correlation analyses between PT-OC connection 

probability obtained from tractography for the left and the right hemisphere and top-down control 

α, again controlling for gender, age, handedness, IQ, and TIV. We observed a trend for a significant 
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positive correlation between α and right PT-OC connection probability (rs(30) = 0.31; p = .08), that is: 

higher connectivity between posterior thalamus and occipital cortices tends to be related with less 

efficient top-down control. Using a multiple linear regression model, we found that right PT-OC 

connection probability was associated with top-down control (β = 8.85; p = .046; Table S6). However, 

this association did not survive multiple comparison correction. We did not find any association 

between left PT-OC structural connectivity and α (rs(30) = -0.06; p = .74; Figure 2 and Table 2) which 

was further confirmed using multiple linear regression where left PT-OC connection probability was 

not significantly linked with top-down control (β = -1.232; p = .752; Table S5).  

Figure 2: Structural connectivity between posterior thalamus and occipital cortices is associated with 
vSTM capacity and top down control. The first row illustrates probabilistic tractography between 
occipital cortices and left (A) or right (B) thalamus respectively. Green represents left and right thalamic 
masks and blue left and right posterior thalamic masks. The second and third rows show graphs 
representing vSTM capacity and top down control respectively, as a function of left or right structural 
connectivity. Data points were correlated by Spearman correlation with correlation coefficient rs and 
significance level p. The lines in the graphs represent linear regression lines, for illustration.  
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Control analyses4 
 
Analyses of cortical specificity: vSTM capacity and top down control are not associated 
with posterior thalamus-motor cortex structural connectivity 

In order to test the cortical specificity of the association between PT-OC structural connectivity and 

vSTM capacity, we investigated whether the parameters vSTM storage capacity and/or top-down 

control would also be associated with structural connectivity of the posterior thalamus with regions 

not supposed to be relevant for top-down control or visual short-term maintenance, i.e., with the left 

and the right motor cortex. We did not find any significant associations (highest rs-value: 0.23; lowest 

p-value: .22; Table 2).  

 

Analyses of functional specificity: PT-OC structural connectivity is not associated with 
processing speed or spatial bias 

In order to test whether the results obtained for vSTM storage capacity K and top-down control were 

cognitively specific, we additionally correlated left- and right-hemisphere PT-OC connection 

probability with the TVA parameters visual processing speed C and spatial bias wlat, via Spearman 

partial correlations. We did not find any significant correlations (highest rs-value: 0.24; lowest p-

value: .19; Table 2).  

 

 

 

 

                                                             

4 As one reviewer suggested that, in order to retrieve critical information on a potential functional hemispheric 
specialisation of PT-OC tracts, the analyses should include those of the role of lateralization of fiber tracts , we 
investigated the association between vSTM capacity and top-down control and a tract lateralization index (PT-
OCleft – PT-OCright/(PT-OCleft+PT-OCright)). As the role of tract lateralization was beyond the scope of our study, 
we display these correlation results in table S7 in supplementary material. Both vSTM capacity K and top-down 
control α showed a significant inverse correlation to the tract lateralization index. As the effect size of these 
correlation are of similar magnitude as those obtained from the unilateral analyses (left PT-OC and vSTM 
capacity K; right PT-OC and top-down control α) we assume that the correlation to the lateralization index 
rather reflects the unilateral significant relationship of the respective fiber tracts to the attentional parameters. 
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  Test ROIs Control ROIs 
 Left PT-OC SC Right PT-OC SC Left PT-MC SC Right PT-MC SC 

Te
st

 
va

ria
bl

es
 K  r =  -0.38 p = .03*  r = 0.02  p = .91  r = 0.03  p = .80  r =  -0.10  p = .59 

α  r =  -0.06  p = .74  r = 0.31  p = .08  r = 0.01  p = .99  r =  -0.23  p = .22 

Co
nt

ro
l 

va
ria

bl
es

 C  r =  -0.17  p = .36  r = 0.09  p = .64  r = 0.09  p = .62  r =  -0.01  p = .96 

ѡlat  r =  0.24  p = .19  r = 0.13  p = .50  r = 0.27  p = .14  r =  0.12  p = .50 

Table 2: Correlation between TVA parameters and posterior thalamus structural connectivity.  
Abbreviations: PT-OC: Posterior thalamus to occipital cortex; PT-MC: Posterior thalamus to motor cortex; 
SC structural connectivity. ROI: Region of interest. Correlations below p = .10 are shown in bold, * indicates 
p < .05.  
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Discussion 

According to the NTVA model (Bundesen et al., 2005), the pulvinar nucleus of the thalamus contains 

the priority map of objects where attentional weights are computed and bias the processing of 

objects in visual brain areas. Based on this assumption, we investigated whether PT-OC structural 

connectivity was associated with top-down control in healthy individuals. Furthermore, the NTVA 

model suggests that posterior thalamic nuclei and, in particular, the TRN are relevant for vSTM 

capacity by sustaining the activity of visual cortical neurons representing the objects through a 

feedback loop. Accordingly, we also investigated whether PT-OC structural connectivity was 

associated with vSTM capacity in healthy individuals. 

We found evidence for the relevance of fiber tracts connecting the posterior thalamus and the visual 

cortex areas for both of these functions. In more detail, we observed a non-significant trend for 

estimates of top-down control α to be related to the probability of connection between the right 

posterior thalamus and the right occipital cortex. Furthermore, the individual estimates of vSTM 

capacity were significantly inversely related to the probability of connection between the left 

posterior thalamus and the left occipital cortex. These associations were structurally specific to the 

occipital cortex, as the probabilities of connections between the thalamus and motor cortex did not 

show the respective associations. Furthermore, they were also cognitively specific, as control 

analyses for other visual attention functions (visual processing speed C and spatial bias wlat) did not 

show respective relationships.  

Thus, our results suggest that the PT-OC fiber tracts might indeed serve specific roles in task-related 

top-down control and short-term maintenance, as assumed in the NTVA model, rather than playing a 

more general, broad role in diverse attention functions. 

 

The relevance of PT-OC structural connectivity for top-down control 

We found a trend-to-significance relation between the individual level of top-down control α and the 

right PT-OC connectivity. Although this finding cannot be taken as strong empirical evidence for the 

NTVA due to the lack of statistical significance, it is in line with the assumption that the pulvinar is 

relevant for top-down control. As in NTVA it is assumed that, following the computation of 

attentional weights of the objects in the visual display, the pulvinar transmits weighted information 

to higher-order visual areas (Bundesen et al., 2005); it follows that the connection between posterior 
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thalamic areas and the occipital cortex would be relevant for the efficiency of task-related 

prioritization of relevant objects. The lack of significance in our young healthy sample might be 

related to a reduced variability and lack of statistical power. It is to be expected that more clear 

relationships would be found in analyses of pathological systems. Indeed, consequences of 

experimental lesions to the pulvinar in monkeys (Desimone et al., 1989) and respective acquired 

damage in humans (Snow et al., 2009) on task-based selection have been reported. Snow and 

colleagues found deficits in discriminating target features when in the presence of salient distractors 

– suggesting a role of the pulvinar in task-based competition of objects for selection, as assumed by 

NTVA. It is to note that TVA-based analyses of the consequences of pulvinar lesions did not report 

such deficits. However, as such patients are rare; these are limited to single case reports (Kraft et al., 

2015; Habekost and Rostrup, 2006). Thus, based on our results, a relevant future question would be 

whether pathological changes in (right-sided) PT-OC connectivity are related to deficits in top-down 

control. Our findings also fit to those of neuroimaging studies that repeatedly reported enhanced 

pulvinar activation during task-based selection (LaBerge et al., 1990; Nobre et al., 2002; Corbetta et 

al., 1991; Fischer & Whitney, 2012; Strumpf et al., 2013).  

The finding that the trend-to-significance relationship is only found for the right (and not the left) PT-

OC structural connectivity can be related to findings of Okon-Singer et al. (2011) who, using dynamic 

causal modeling, demonstrated that thalamo-cortical information transfer is faster within the right 

than within the left hemisphere. As event-related EEG potentials indicating target selection in the 

face of distracting information also have earlier and larger amplitudes of peaks at right compared to 

left-sided electrodes (Verleger et al., 2009), Okon-Singer et al. (2011) assumed that especially 

information transfer between right thalamus and posterior cortex structures is relevant for efficient 

target selection processes according to task goals. On a more general level, our finding  adds support 

to the assumption of a hemispheric specialization of a right-hemispheric network for visual 

attentional top-down control (e.g. Fassbender et al., 2006; Hampshire et al., 2010; Garavan et al., 

1999; Cieslik et al, 2015). Furthermore, it indicates that visual attentional top-down control is 

supported by thalamo-cortical information transfer. 

 

PT-OC structural connectivity is associated with vSTM capacity 

Our finding of a significant association between vSTM capacity and left PT-OC connection probability 

is in line with the NTVA assumption of recurrent loops between posterior thalamus, and more 

specifically: the reticular nucleus, and visual cortices subserving reactivation and maintenance of 
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selected visual object information (Bundesen 2005). In TVA, visual processing is conceived as a race 

between objects for representation in capacity-limited vSTM (Bundesen 1990). The objects that win 

the race are thought to be categorized in a vSTM map of locations situated in the posterior thalamus, 

more precisely: the TRN (Bundesen 2005). In consonance with Hebb (1949), for example, the NTVA 

suggests that in visual cortices, the activity of the neurons representing the winning objects is 

sustained and reactivated by a feedback loop gated by the TRN. Our findings go beyond previous 

TVA-based studies that revealed an association between microstructure in posterior white matter 

and vSTM capacity (Habekost and Rostrup 2007, Espeseth et al., 2014), in that they provide 

structurally more precise evidence for the importance of especially the connection between 

posterior thalamus and occipital cortex. In this regard, our findings further confirm the role of the 

tracts connecting the posterior thalamus to visual cortices for vSTM capacity, which was suggested in 

a previous study by Menegaux et al. (2017). Our findings are complementary to those of Golestani 

and colleagues, who found the microstructure of the posterior thalamic radiations as well as other 

posterior thalamic tracts, the optic radiations, to be relevant for individual vSTM capacity (Golestani 

et al., 2014). 

The finding of a negative association between vSTM capacity and left PT-OC structural connectivity 

shows that vSTM capacity is associated with a characteristic of this pathway. Due to the largely 

unknown basis of the probability of connection value, it is not possible to identify the precise 

characteristic that renders the relation between the connectivity value and VSTM capacity. Indeed, 

the probability of connection between the occipital cortex and the posterior thalamus reflects the 

number of streamlines connecting those two ROIs. As the number of streamlines is not a direct 

measure of anatomical connectivity and as their relationship to the underlying anatomy is unclear 

(Jones et al., 2013; Jbabdi & Johansen-Berg, 2011), lower connectivity values do not necessarily 

indicate lower strength of connection or fewer axons between PT and OC. Furthermore, it is 

important to note that here we use the term ‘probability of connection’ to refer to the probabilistic 

tractography score obtained by probtrackx. As explained by Jones and colleagues who prefer the 

term ‘stochastic tractography score’, the tractography score indicates how frequently a streamline 

between two points can be reconstructed, and there are many reasons why a streamline might not 

be successfully reconstructed (Jones et al., 2013).  Differences in ‘true’ connection strength is one of 

them (Jones et al., 2010). Indeed, several factors can influence the number of streamlines such as the 

organization of myelin in regions bordering cortical grey matter (Reveley et al., 2015) as well as 

fanning fibers or crossing fibers. For example, fewer crossing fibers would yield increased 

connectivity values (Jbabdi & Johansen-Berg 2011; Thomas et al 2014; Reveley et al., 2015; Donahue 

et al., 2016). Dense white-matter fiber bundles at the grey matter/white matter boundary would 
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impede tractography detection of weaker crossing fibers entering or exiting grey matter in sulcal 

fundi and thus influence the number of streamlines. This also applies to inter-individual differences 

in axon diameter distribution as well as the distance between the two regions of interest (Donahue 

2016; probably Thomas, 2014; Behrens 2007). Considering the complex meaning of the probability of 

connection value obtained from probtrackx, our results can be taken to suggest that both vSTM 

capacity and, to a lesser extent, top-down control depend on the path between posterior thalamus 

and occipital cortex. However, the nature of the association, i.e., the precise underlying 

characteristics of the tracts that are related to the attention functions can only be revealed in further 

investigation. These could use, for example, diffusion MRI methods that can resolve intravoxel 

structure such as high angular resolution diffusion imaging (Tuch et al., 2002; Tuch et al., 2003).  

The fact that the left, and not the right, PT-OC connection probability was found to be related to 

vSTM might be an indicator of a more relevant role of the left hemisphere for vSTM storage of object 

information. This might indicate that the vSTM feedback loop, in young healthy participants, mainly 

relies on left-sided thalamo-cortical connections, maybe reflecting a prominent role of a left-

hemispheric system for vSTM storage. This is in line with a previous PET study analyzing the 

respective relevance of the two hemispheres in visual-spatial vs. visual- object short-term storage 

with structurally equivalent tasks (Smith et al., 1995). The results implied that, while a right-

hemispheric system seem to be specialized in vSTM for spatial information (see also Awh & Jonides, 

2001), a left-hemispheric system appeared to be specialized in object information. Furthermore, 

using fMRI, Todd & Marois (2005), found that left-sided parietal activation predicted the individual 

level of vSTM capacity. Finally, also analyses of the consequences of unilateral posterior parietal 

damage in humans indicated that a left-sided vSTM system might be specialized for the maintenance 

of visual object information (Finke et al., 2006). Together with such PET, fMRI and patient data, our 

results imply that, at least in young healthy participants, particularly the PT-OC communication 

within the left hemisphere might support the vSTM loop activation proposed in NTVA (Bundesen et 

al., 2005). 

 

 

Limitations  

The present study has several limitations. As the sample consisted of relatively highly educated 

participants, the results might be impacted by a selection bias. This might have led to reduced 

variance in cognitive and structural measures and thus an underestimation of correlations that would 
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be found in a less selective sample. Another limitation lies in the relatively small number of 

participants involved. Additional limitations include inherent tractography difficulties, such as the 

unknown directionality of connections (as pointed out above), the influence of distance on 

tractography, and false positive results of anatomical connections owing to various physical and 

biological factors (Thomas et al., 2014). Moreover, it has been shown that partial volume effect can 

affect tractography (Vos et al., 2011). Thus, the present results should be considered with care. 

Finally, in contrast to K which was found to be the most reliable TVA parameter, it was found that 

top-down control parameter α has a relatively low re-test validity when measured with a shorter 

combi-TVA task with partial and whole report trials (Habekost et al., 2014). Thus, the non-significant 

trend of an association between top-down control and right PT-OC connection probability should be 

regarded with more caution and future studies might not be able to replicate this finding. Note, 

however, that the longer partial report task used in this study is more homogenous with respect to 

display types and includes more trials which should make the top-down control measure more 

reliable as indicated by Finke et al., (2005). Finally, we used a large ROI for the occipital region, which 

does not allow us to say which specific area of the occipital lobe is linked to the attentional 

measures.  

 

Conclusion 

We investigated whether the structural connectivity of posterior thalamus to occipital cortices is 

associated with vSTM capacity and top-down control of attention selection as suggested by the NTVA 

model. We found that vSTM capacity was significantly associated with structural connectivity of left 

posterior thalamus to occipital cortex, and a trend towards an association between the structural 

connectivity of right posterior thalamus to occipital cortex and top-down control. These findings 

constitute the first evidence in support of the assumption that thalamic structures and their 

connections to visual cortex are of relevance for both top-down control and vSTM capacity. 
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Supplementary material 

Figure S1:  Inter-individual variability of thalamic probability maps. 

 

Figure S1: Yellow and orange colors represent voxels that are present in at least 90% of the 

participants; blue illustrates bilateral posterior thalamus mask. 

 

Table S1: Comparison of K and C parameters for t0<0 correction vs original value 

 t0<0  
set to 0 

t0<0 
unchanged 

 M SD M SD 
K 3.306 0.392 3.310 0.397 

C 24.733 8.661 24.361 8.436 

 

Table S2:  Correlation between K and C parameters and posterior thalamus structural 
connectivity for original t0<0 values 

  Left PT-OC SC Right PT-OC SC Left PT-MC SC Right PT-MC SC 

K	 t0<0 
unchanged 

 r =  -0.38 p = .03*  r = 0.02  p = .91  r = 0.02  p = .90  r =  -0.10  p = .60 

C	 t0<0 
unchanged 

 r =  -0.19  p = .29  r = 0.08  p = .67  r = 0.12  p = .51  r =  -0.01  p = .95 

Abbreviations: PT-OC: Posterior thalamus to occipital cortex; PT-MC: Posterior thalamus to motor 

cortex; SC structural connectivity. Correlations below p = .10 are shown in bold, * indicates a p < .05. 
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Table S3:  Coefficients of multiple linear regression for vSTM capacity and left PT-OC 
connection probability  

 Dependent variable = vSTM capacity 

Independent variables ß values P value 95% CI 

Left PT-OC connection probability -26.823 .008 [ -46.206 , -7.440 ] 

Age -.006 .304 [ -.019 , .006 ] 

Gender -.038 .781 [ -.317 , .241 ] 

Handedness -.227 .121 [ -.519 , .064 ] 

TIV -.540 .465 [ -2.030 , .949 ] 

IQ 0.10 .017 [ .002 , .018 ] 

 

 

 

 

 

Table S4:  Coefficients of multiple linear regression for vSTM capacity and right PT-OC 
connection probability   

 Dependent variable = vSTM capacity 

Independent variables ß values P value 95% CI 

Right PT-OC connection probability 3.605 .775 [ -21.965 , 29.176 ] 

Age -.009 .202 [ -.023 , .005 ] 

Gender -.038 .806 [ -.353 , .276 ] 

Handedness -.142 .384 [ -.469 , .188 ] 

TIV .144 .855 [ -1.460 , 1.748 ] 

IQ 0.11 .023 [ .002 , .020 ] 
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Table S5:  Coefficients of multiple linear regression for top-down control and left PT-
OC connection probability   

 Dependent variable = Top-down control 

Independent variables ß values P value 95% CI 

Left PT-OC connection probability -1.232 .752 [ -9.135 , 6.671 ] 

Age .004 .121 [ -.001 , .009 ] 

Gender .102 .077 [ -.012 , .216 ] 

Handedness .064 .280 [ -.055 , .183 ] 

TIV .047 .125 [ -1.077 , .137 ] 

IQ -.001 .674 [ -.004 , .003 ] 

 

 

Table S6:  Coefficients of multiple linear regression for top-down control and left PT-
OC connection probability   

 

 Dependent variable = Top-down control 

Independent variables ß values P value 95% CI 

Right PT-OC connection probability 8.854 .046 [ .166 , 17.541 ] 

Age .003 .144 [ -.001 , .008 ] 

Gender .111 .043 [ .004 , .217 ] 

Handedness .089 .111 [ -.022 , .200 ] 

TIV -.362 .185 [ -.907 , .183 ] 

IQ -.001 .550 [ -.004 , .002 ] 

 

 

Table S7:  Correlation table between tract lateralization index and parameters vSTM 
capacity and top-down control  

	 Tract Lateralization Index 

K r = -0.36 p = .042* 

α r = -0.35 p = .047* 

 


