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Abstract

In Cloud systems, Virtual Machines (VMs) are scheduled to hosts ac-
cording to their instant resource usage (e.g. to hosts with most available
RAM) without considering their overall and long-term utilization. Also, in
many cases, the scheduling and placement processes are computational ex-
pensive and affect performance of deployed VMs. In this work, we present
a Cloud VM scheduling algorithm that takes into account already running
VM resource usage over time by analyzing past VM utilization levels in order
to schedule VMs by optimizing performance. We observe that Cloud man-
agement processes, like VM placement, affect already deployed systems (for
example this could involve throughput drop in a database cluster), so we aim
to minimize such performance degradation. Moreover, overloaded VMs tend
to steal resources (e.g. CPU) from neighbouring VMs, so our work maximizes
VMs real CPU utilization. Based on these, we provide an experimental anal-
ysis to compare our solution with traditional schedulers used in OpenStack
by exploring the behaviour of different NoSQL (MongoDB, Apache Cassan-
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dra and Elasticsearch). The results show that our solution refines traditional
instant-based physical machine selection as it learns the system behaviour
as well as it adapts over time. The analysis is prosperous as for the selected
setting we approximately minimize performance degradation by 19% and we
maximize CPU real time by 2% when using real world workloads.

Keywords: Cloud computing, OpenStack, Virtual machine placement,
Virtual machine scheduling

1. Introduction

In latest years, Cloud computing has been emerged as one of the most
widely used systems for provisioning virtual resources to everyday Internet
users. Many cloud platforms host services (including infrastructure, platform
and software) that are available on a pay as you go and on-demand model.
One of the most important process of such systems is the virtual machine
(VM) scheduling that determines the way in which Physical Machine (PM)
resources are allocated in order to launch a VM instance (a process called VM
placement) Sotiriadis et al. (2016). Simple solutions include VM scheduling
to a PM that has the most available computational resource (for example
RAM) and is within an availability zone (location constraints set by users)
so is ranked as the best available host among others. There are various
criteria for VM placement such as scheduling to hosts with fewer running
instances or according to filtering with regards to current resource utilization
levels. Other include multi sub-scheduling layers that allow more refined
placement according to network traffic, availability zones and other criteria.
In general, a second level of scheduling could provide flexibility over the
regular scheduling decision Fitfield (2013).

In this work we propose the concept of VM scheduling according to re-
source monitoring data extracted from past resource utilizations (including
PMs and VMs). Our solution applies for Cloud and Inter-Cloud systems as
described in Sotiriadis et al. (2015) and in Sotiriadis et al. (2013b) following
the requirements as presented in Bessis et al. (2011). Current systems do
not support dynamic VM placement, for example OpenStack performs a fil-
tering and weighing of PMs in an instant based way, and does not take into
consideration past system behaviour or VMs resource usage. The problem is
getting worst when the scale is increased for example in large scale Cloud and
inter-cloud platforms (Sotiriadis and Bessis (2016)). This means that PMs
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that host idle VMs could be shown as busy during specific time instances,
however overall are under-utilized. Another important factor is that Cloud
systems use an over-commit resource sharing method Intel-opensource.org
(2015), where PMs provide more cores and memory than the capacity of
the physical host can serve. This is based on the fact that users, have un-
derutilized VMs and do not have the same resource usage pattern over the
day. Finally, Cloud management processes, such as VM placement, affect
already deployed systems (for example this could involve throughput drop in
a database cluster) as well as overloaded VMs tend to steal CPU times from
neighbouring VMs. These represent simple cases that demonstrate the need
for a more refined VM scheduling that could improve performance.

In this work we focus on the OpenStack platform1, that is an open source
software to build private and public clouds. OpenStack default configuration
involves placing VMs by selecting the host with the most available memory
until the VMs number exceeds the limit. Such behaviour overloads powerful
PMs in the stack and leaves low RAM PMs under-utilized Folco (2015). Sim-
ilarly in Intel-opensource.org (2015), authors suggest that it might be more
efficient to launch VMs to idle hosts with powerful CPUs and less memory,
thus bypassing the default OpenStack scheduler could improve cluster per-
formance. Having said that, current OpenStack scheduling is considered as
simple since it sorts and weighs PMs on instantaneously collected resource
usage. It should be mentioned that a more detailed discussion of sched-
ulers is presented in Sotiriadis et al. (2011). In this work we suggest real
time resource analytics based on past resource usage by developing a ma-
chine learning model that analyzes PMs and VMs resource usage on-the-fly.
The training data set is populated on a regular interval so the solution pro-
vides indications and predictions as vital factors for VM placement. We
expect that our solution will provide deeper understanding of parameters
affecting performance of the already deployed system. We present an ex-
perimental analysis such issues based on real world systems (e.g. Apache
Cassandra, MongoDB, Elasticsearch) and workload such as Yahoo! Cloud
Serving Benchmark (YCSB) .

The primary ”contribution” of our paper is a new Cloud VM scheduling
algorithm that is dynamic and adaptive based on historical resource usage
of PMs and VMs. We perform pattern extraction according to continuous

1OpenStack: https://www.openstack.org
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monitoring and data analysis using machine learning. Our contribution is
on two cases, (a) we minimize performance degradation of already deployed
systems during the VM scheduling process by demonstrating elimination of
throughput drops in database systems and (b) we increase CPU real time of
deployed VMs by minimizing CPU steal times caused by overloaded PMs. So,
in Section2 we present an extensive literature review analysis on algorithms
and approaches based on cloud VM placement and scheduling, in Section
3 we presents the VM scheduling algorithm, in Section 4 we present the
performance evaluation and in Section 5 we discuss the conclusions and future
research directions.

2. Literature review

This section presents the literature review study for VM placement. We
classify accordingly to different areas related with (a) cloud platform schedul-
ing, (b) energy efficiency and power cost management, (c) resource provision-
ing and (d) optimization of resource usage related parameters.

2.1. Cloud platform scheduling

Cloud platform scheduling refers to solutions that focus on the resource
management layer and resource orchestration of the VM placement process.

The work in Lucas-Simarro et al. (2013) present an architecture for schedul-
ing strategies based on a broker mechanism. They use different optimization
criteria related with performance optimization, user constraints ( i.e. VM
placement) and environmental conditions (i.e. instance prices). However,
this work focuses more on multi cloud, it does not consider past service ex-
periences and it does not utilize machine learning models. In Do et al. (2011),
authors present an application profiling method for VM placement and they
suggest that the scheduling and resource allocation can be improved. They
propose a method based on the canonical correlation analysis to create the
relationships between the application performance and resource usage. Fur-
thermore, they correlate the application performance with a canonical weight
vector that represents the level of involvement of system factors. The exper-
imental analysis show that high predictions can be achieved on high weights.

In Xi et al. (2015), authors focused on the problem of VM scheduling in
OpenStack systems and present a cloud CPU resource management system
for VM hosting. They include a real time hypervisor, VM scheduler (to allow
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VMs to share hosts without interfering performance and VM to host map-
ping strategy. The experimental results show high CPU resource utilization
when co-hosting VMs. In Bin et al. (2011) authors presented a hight avail-
ability property for a VM named as k -resilient. The work suggested a novel
algorithm that guarantees resilience meaning that a VM can be relocated to
a non failed host without the need to relocate other VMs. The experimen-
tal solution is based on a simulation, and the results show optimization in
load balancing compared to a stand alone host solution. In Sotiriadis et al.
(2013a), we presented a Cloud simulation framework where we included basic
Cloud scheduling features.

In Marzolla et al. (2011) authors presented V-Man that is a decentralize
algorithm for VM consolidation in clouds. The aim of the algorithm is to
maximize the number of PMs by iteratively producing more allocations. The
PMs exhange messages in order to maintain an unstructured overlay network
in order to exchange VMs so PMs from heave usage nodes to move to low
usage ones. They present a peer to peer simulation study and they demon-
strate that an optimal allocation can be achieved in a five round of message
exchanges. Yet, the authors assume that all VMs are identical.

2.2. Energy efficiency and power cost management

This section presents approaches focusing on VM placement to achieve
objectives for energy efficiency for cloud clusters and on more effective cost
management.

In Fang et al. (2013) the work aims to optimize VM placement and traffic
flow routing by presenting it as an optimization problem. They suggest that
10-20% of the total power consumption is provoked by the network elements,
thus they propose the ”VMPlanner” that includes three approximation algo-
rithms that are (a) the VM grouping according to minimized traffic volume,
(b) VM-group to server-rack mapping (for placing VMs into rack more effi-
ciently) and (c) power-aware inter-VM traffic flow routing for minimizing the
number of paths in the network. They use Greedy Bin-Packing algorithm, as
presented Pintea et al. (2012), to select the path with the sufficient capacity.

In Le et al. (2011) authors study load placement policies for cooling and
datacenter temperatures. They follow the idea of VM placement and mi-
gration according to different electricity prices and temperatures during the
time. Authors base their system on the assumption that estimated of the run-
ning time of jobs is given by the users. They use round robin algorithm and a
cost aware static policy for comparing their results. In Beloglazov and Buyya
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(2012), authors present an analytical study to explore single VM migration
and consolidation and their respective online deterministic algorithms. They
provide adaptive heuristics (VM placement optimization and power aware
best fit decreasing) that analyze historical data of physical machines with
regards to resource usage for optimizing energy and performance of VMs.
They evaluate the algorithms using a large scale experimental simulation.

In Tseng et al. (2015) authors explore the service-oriented VM placement
as an optimization problem. They try to solve the problem using a graph
of Tree (to minimize communication between VMs) and Forest algorithm
(for balancing traffic load between VMs). To evaluate the algorithms they
present a comparison with the Best Fit algorithm. They claim that the
Forest algorithm decreases outbound communication cost by 22% and Tree
algorithm by 92%. They authors suggest that dynamic VM allocation will
be further investigated. In Cardosa et al. (2009) present VM placement and
consolidation of VMs in cloud datacenters using min-max. The authors sug-
gest that guided by application utilities could provide better resource alloca-
tion, so high utility applications get most resources. They experiment using
synthetic and real datacenter testbed and they conclude that the PowerEx-
pandMinMax algorithm is the best utility ”for power-performance tradeoffs
in modern data centers running heterogeneous applications”.

In Van et al. (2010), authors present a VM placement framework for
minimizing energy consumption and maximize profits. They suggest that
these are constraint satisfaction problems and they suggest a utility function
that expresses the SLA satisfaction. From the perspective of the system they
provide a VM placement formulation in order to maximize the number of the
machines to be turned off. The experimental analysis is based on the Xen
hypervisor and authors demonstrate that different parameters can affect the
operational costs and to balance the QoS.

In Goudarzi et al. (2012) authors present a resource allocation problem
that aims to minimize the total energy cost of cloud system, in a probabilistic
way. Their algorithm places VMs to PMs using dynamic programming and
convex optimization. Decision epochs are used in order to estimate resource
requirements. The algorithm is evaluated using simulations and results shows
a VM placement that minimizes the power cost. In Goudarzi and Pedram
(2012) authors try to solve cloud energy-efficient VM placement by creat-
ing multiple copies of VMs and placed them into PMs using local search.
The experimental analysis shows 20% improvement in energy consumption
compared with selected heuristics.
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In Dupont et al. (2012) authors provide a framework that allows allocation
of VMs in a datacenter to achieve energy awareness. They further decou-
ple constraints from algorithms and they implement 16 frequently used SLA
parameters in the form of constraints. The experimental analysis shows an
18% improvement in savings of both energy and CO2 emissions. In Li et al.
(2009), the work presents the EnaCloud that is an energy aware heuristic
algorithm for VM placement in a dynamic way by considering energy effi-
ciency. Authors present an experimental case for Xen VMM and they claim
that their solution saves energy in cloud platforms by comparing their al-
gorithm with FirstFit and BestFit. Also, they seperate their workloads to
web/database server, compute-intensive and common applications.

2.3. Resource provisioning

This section summarizes the resource provisioning VM placement ap-
proaches.

In Chaisiri et al. (2012), authors suggest that in cloud computing there
are two provisioning plans, the reservation and the on-demand plan for cloud
consumers. However, advance reservation is difficult to be achieved because
of the uncertainty of the resource usage by the users. To reduce this prob-
lem, authors suggest an optimal cloud resource provisioning algorithm based
on a stochastic programming model. The work is based on an numerical
analysis and evaluations is based on simulations that show minimization of
on-demand costs. Also, they suggest that VM outsourcing i.e. private to
public cloud could offer significant advantages. In Corradi et al. (2014),
authors focused on the VM consolidation problem in OpenStack systems re-
lated with features such as power, CPU and network sharing. They propose
a cloud management platform to optimize these features. They conclude that
VM consolidation among PMs may offer significant benefits however it can
also lead to significant performance side effects.

In Van et al. (2009), authors proposed an autonomic resource manage-
ment component that decouples provisioning of resources from the dynamic
placement of virtual machines. They introduce a utility function that opti-
mizes VM provisioning based on constraint satisfaction problems. In Tords-
son et al. (2012) a cloud brokering mechanism for VM placement in multiple
clouds is presented. The criteria include price, performance, hardware and
load balancing. In this work users define their price and their minimum per-
formance and the algorithms place VMs accordingly. They evaluate their
solution using a high throughput cluster deployments across cloud providers.
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They suggest that they achieve 20% better load balancing with low perfor-
mance degradation.

2.4. VM placement for optimizing resource usage

This section summarizes the VM placement approaches that aim to achieve
objective or multi-objective parameters such as optimization of resource us-
age for more efficient utilization of the PMs within a cloud cluster.

In Gao et al. (2013), authors discusses the concept of VM placement from
an analytical perspective of VM cloud placement to achieve power efficiency
and resource utilization. They present the VM placement as an ant colony
optimization problem in order to minimize resource wastage and power con-
sumption based on non dominated solutions. They use PM resource usage
statistics for a period of time. In Kousiouris et al. (2011) authors focus on
the prediction of the effect that could have critical parameters on the per-
formance of VMs. These are allocation percentages, real-time scheduling
and co-placement of VMs in the same PM. They use linear regression and
genetically optimized artificial neural networks for measuring the prediction
degradation. They suggest that an interest aspect of future work is the de-
tection of the workload types for applications that will affect the predicted
value.

In Mills et al. (2011), authors present an objective method that can
be used to compare VM placement algorithm. The response variables are
the user experience, resource utilization, types of VMs and other. Authors
present an extensive comparison of 18 algorithms for VM placement and
conclude that the choice of the cluster influences more than the selection of
nodes. In Elmroth and Larsson (2009), authors present a technology-neutral
interfaces for federated cloud systems aiming to VM placement, migration
and monitoring. They base their design in a grid computing monitoring
architecture and they provide algorithms to demonstrate cross VM site man-
agement. In Meng et al. (2010), authors focused on optimizing networking
scalability by proposing traffic aware VM placement. They suggest that bet-
ter placement will can offer improved communication by limiting the distance
between them. They present an optimization problem and they design a tow
tier approximation algorithm that is based on traffic patterns to achieve bet-
ter traffic aware VM placement. They provide the cluster-and-cut algorithm
(that partitions VMs to clusters) and the VMMinKcut (partitioning VMs
to clusters with minimum inter-cluster traffic). The experimental analysis is
prosperous and the algorithm over-performs by 10% the selected benchmarks.
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In Piao and Yan (2010), suggested that VM placement and migration can
be executed during unexpected network latencies in a more sophisticated way
that minimizes the data transfer times. They propose an analytical model
with algorithms for both cases that places VMs to PMs by considering the
network conditions among PMs and data storage. Also they present a sim-
ulation, where results are prosperous for selected configurations. In Xu and
Fortes (2010), authors presented the VM placement as a multi-objective op-
timization problem that aims to minimize the total resource wastage, power
consumption and thermal dissipation costs. They use genetic algorithms
to search using conflicting objectives, i.e. for VM placement the objectives
are performance, scalability and robustness, and every VM placement has
a corresponding chromosome. The results are prosperous and achieve sig-
nificant optimization in performance when compared with he bin-packaging
algorithm and single-objective approaches.

In Jayasinghe et al. (2011), a structural constraint- aware VM placement
is presented that include demand, communication and availability. They
present an optimization problem and they design a hierarchical placement
approach using algorithms including a constraint-aware VM grouping (with
minimal communication cost) and VM groups to server rack assignment.
They simulate different VM placement settings and they optimize the com-
munication cost during this action. In Jiang et al. (2012) authors present a
VM placement problem to minimize the traffic cost. They provide a Markov
approximation solution based on an online algorithm that is dynamic in
terms of changing traffic loads that minimizes the number of VMs that need
to be relocated. Also, they provide a performance evaluation by comparing
server placement approaches (sequential and random) and routing selection
approaches (shortest path and oblivious) and results are prosperous since
their algorithm provides significant improvements in large and small flows.

In Biran et al. (2012), authors present the Min Cut Ratio-aware VM
Placement algorithm that aims to a placement that satisfies communication
and resilience to demand time variations. The experimental analysis show
improved datacenter scalability and reduces the number of dropped packaged
by supporting time varying traffic demands. In Lloyd et al. (2014) authors
present the least-busy VM placement algorithm for dynamic scalling perfor-
mance optimization of service oriented applications hosted in clouds. They
present an experimental analysis comparing their solution with round robin
and they observe an a 2% to 3% fewer VMs that achieve 12% to 16% average
improvement for VM placement.
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2.5. OpenStack scheduling

OpenStack is a open source platform for private and public clouds (Open-
Stack (2016)). It uses the nova-scheduler to decide how VMs should be placed
among the PMs of the OpenStack cluster. Also, it does a systematic search
for the best resource by having an aggregated resource view of all hosts in
the cluster Khedher (July 2015). It follows the concept of filtering, meaning
that VMs are placed according to the PMs parameters such as computational
resources (CPU, memory etc.), architectural characteristics (hypervisors, im-
age properties etc.) and availability properties (i.e. zones). According to
Khedher (July 2015) these are classified as simple, chance and zone using a
host ranking weight filtering. Moreover, the scheduler stores available hosts
into a list and updates it at intervals configured by the cloud administrator.
At the time of the VM scheduling it makes informed decisions based on the
following:

1. A filtering algorithm for PMs to decide which are capable for hosting
the required virtual resources (accepted or rejected). There are many
available filters like the AggregateCoreFilter based on CPU alloca-
tion ratios, AggregateDiskFilter based on disk allocation ratios, Aggre-
gateImagePropertiesIsolation for determine images that are matched
with aggregation metadata and many others as presented in (Open-
Stack (2016)).

2. A weighting algorithm to decide which host from the filtered list is the
most dominant for the current request (i.e. by default is based on RAM
weighting).

OpenStack uses two approached to achieve better resource utilization
according to Intel-opensource.org (2015) as follows:

1. Over-commit allows CPU and RAM sharing by VMs meaning that
OpenStack commits more resources that could actually provide by the
physical host to an over-commit limit, thus more users could be served
by a PM. The idea is based on the fact that usually users do not
simultaneously use their resources at highest levels (an action called
resource pegging).

2. Scheduling improvement allows the OpenStack administrator to config-
ure scheduling algorithms according to the PMs resource usage. This
includes the filtering and weighing of VMS as presented before.
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An interesting configuration in the OpenStack scheduler is the JSON
filter that allows simple JSON based grammars for selecting hosts. This
could include a further step of the selection process i.e. after filtering and
weighting to allow a more sophisticated querying combing various metrics
to optimize scheduling. In particular schedulers does not only affect the
performance from the perspective on where to place the VM but also influence
the performance of the hosts in terms of over-commiting limit. This means
that VMs are placed without considering their projected resource usage levels
at it is impossible to forecast such behaviour before the actual deployment.

2.6. Review conclusions

Figure 1 presents the approaches for Cloud Platform Scheduling (CPP),
Energy Efficiency (EE), Resource Provisioning (RP) and VM Placement
(VMP). We also correlate the approaches to their methodology including
algorithms, optimization, utility functions and machine learning. We can
observe that

RP

CPP

EE

VMP

Do et al. (2011)
Bin et al. (2011)

Xi et al. (2015)

Marzola et al (2011)

Lucas-Simaro et al. (2012)

Algorithms

Optimization

Dupont et al. (2011)

Le et al. (2011) Beloglazov and Buyya (2012)

Li et al. (2009)

Cardosa et al. (2009)

Fang et al. (2013)
Goudarzi and Pardam (2012)

Goudarzi et al. (2012)
Tseng et al. (2015)

Van et al. (2010) Utility functions

Tordsson et al. (2012)

Chairisi et al. (2012)

Corradi et al. (2014)

Van et al. (2009)

Machine
Learning

Piao and Yan (2010) 
Elmroth and Larsson (2009) 

Biran et al. (2012)
Mills et al. (2011)
Lloyd et al. (2014)

Kousiouris
et al. (2011)

Gao et al. (2013) 
Meng et al. (2010) 
Jiang et al. (2012) 
Jayasinghe et al. (2011) 
Xu and Fortes (2010) 

Figure 1: Classification of literature review approached according to CPP, EE, VMP and
RP and according to their method (algorithms, optimization, utility functions and machine
learning).

We also summarize literature review analysis in Appendix tables 1, 2.
Most of the works like Corradi et al. (2014), Cardosa et al. (2009), , Van et al.
(2010), Bin et al. (2011), Chaisiri et al. (2012), Beloglazov and Buyya (2012),
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, Biran et al. (2012), Intel-opensource.org (2015) and Goudarzi and Pedram
(2012) focus on algorithms and optimization methodologies to achieve better
VM placement in cloud systems using either current resource usage or his-
torical data from cluster PMs. Works like Jayasinghe et al. (2011), Dupont
et al. (2012), Lucas-Simarro et al. (2013) and Van et al. (2009) focus on con-
straints satisfactin objectives following PMs resource usage. Approaches like
Gao et al. (2013), Tseng et al. (2015) and Li et al. (2009) focus on optimiz-
ing NP hard VM placement. Approaches like Fang et al. (2013), Jiang et al.
(2012), Jayasinghe et al. (2011) and Meng et al. (2010) focus on networking
aspects in order to optimize the communication cost function usually related
with optimal VM placement in order VMs to be close to each other.

The work of Kousiouris et al. (2011) is different from aforementioned so-
lutions as approaches the problem from a different perspective as it includes
a machine learning linear regression model for predicting behaviour of un-
known applications. However, the authors define the VM placement as a
heuristic optimization problem using genetic algorithms for quantifying and
predicting the performance of the applications.

Based on this discussion, we conclude that to the best of our knowledge,
current works does not consider dynamic VM placements according to past
VM resource utilization. Yet, almost all the approaches focus on the problem
of allocating VMs considering only the PMs resource usage (either real-time,
opportunistic or as an optimization problem). Moreover, machine learning
models are hardly used in literature.

Cloud platforms use simple weighting schedulers based only on PM re-
source utilization. Authors in Intel-opensource.org (2015) suggest that ”the
key problem is that the current weighting strategy is weak and leads to in-
efficient usage of resource”. We are motivated by this work and from the
statement as authors further suggest that static and dynamic system usage
statistics are vital for calculating the VM placement weight. For example
default OpenStack scheduler has an aggregated view of resources and places
VMs on large memory systems until the VMs number exceeds the limit, thus
leaving low memory systems under-utilized or idles Folco (2015). This over-
loads powerful PMs in the stack and leaves low RAM PMs under-utilized.
Next section presents the VM scheduling algorithm based on already VMs
resource utilization.
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3. VM scheduling algorithm

This section presents the VM scheduling algorithm that includes two op-
timization schemes based on machine learning. The algorithm enhances the
VM selection phase based on real time monitoring data collections and analy-
sis of physical and virtual resources. Our aim is to strengthen VM scheduling
in order to incorporate criteria related to the actual VM utilization levels,
so VMs can be placed by minimizing the penalization of overall performance
levels. The optimization schemes involve analytics ot the already deployed
VMs to include (a) maximization of utilization levels and (b) minimization
of the performance drops. In Section 3.1 we present the proposed VM sched-
uler and in Section 3.2 we present the optimization schemes for classifying
resources according to past historical records.

3.1. Online Scheduler

Our technique is based on the OpenStack VM scheduling process that
includes PMs evaluation prior selecting the best host for VM placement.
The assumption is that requests for VMs are submitted to a Cloud service
(in OpenStack is the nova service) that initiates that process. After PMs
evaluation, the VM is scheduled to the best ranked host. In our case, we
extend the selection steps to include the online VM scheduling that includes
past history records. In detail, we include one more step that allows selected
PMs to be sorted according to the ones that (a) have computational resources
and (b) will have the least affection to the already deployed systems. to
achieve (b) we perform prediction on real time according to the past resource
usage. Figure 2 demonstrates the VM scheduling process.

The process includes 8 steps (starting from receiving the request to plac-
ing the VM to the best ranked PM) and are as follows.

Step 1 The cloud hosting service (that is the Cloud fabric controller) receives
a request for creating a new VM including resources to be allocated
such as number of Cores, memory and hard disk resources. Other
information includes network and VM metadata configurations that
are out of the scope of this study.

Step 2 The cloud hosting service sends a request to the Cloud database ser-
vice that records all operations.

Step 3 The cloud hosting service sends a request to a scheduling queue in
order to select a PM for scheduling the VM.
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Figure 2: Online VM Scheduler in OpenStack system

Step 4 The scheduler performs the following two subprocesses.

(a) First it collects a list with all available PMs in the cluster and
performs a filtering by selecting PMs according to their current
available resources. The filter is binary, meaning that a PM is
capable or not for hosting a VM. For example if the VM requests
8GM of RAM, all PMs that have greater or equal available RAM
will be selected.

(b) Secondly, the online scheduling process comes to enhance the
filtering and weighting scheduling by including more refined op-
timization criteria that are related with the past resource usage
over time. This process triggers machine learning classification
or regression processes according to the selecting criteria. This
process enhances the traditional approach as it includes data
analytics from a real time resource monitoring engine and a ma-
chine learning algorithm to classify resource usage, instead of
based on a simple sorting algorithm. Formula (1) (OpenStack
(2016)) demonstrates the weighting function, where w is the
weigher of a host, wmul the weigher multiplier (that is a coeffi-
cient of the selected parameter i.e. RAM 1 and CPU -1), n is the
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normalization parameter and ν is the total number of weighers.

w = w1mul ∗ n(w1) +w2mul ∗ n(w2) + ...+wνmul ∗ n(wν) (1)

In our case we replace this process by using the optimization
schemes. In other words, weighing is based on real time data and
historical records instead of instantaneous collected PM data.
In detail, the algorithm evaluates past resource utilization lev-
els (e.g. last 7 days) and classifies according to the overall re-
source usage. At the end the list of candidate hosts is populated
and the resources are ranked accordingly. In detail, by using
this algorithm PMs are re-ranked according to the selected op-
timization scheme and based on their VM usage. For example
we use as data set resource information from 24 hours monitor-
ing and as training set a seven day resource usage monitoring.
The analytics are (a) according to utilization levels over time by
characterizing it as low, medium and heavy and (b) according to
continues data (e.g. memory percent that increases over time).
The algorithm performs a weighting process for the selected PMs
according to different features (e.g. CPU, RAM percentage).

Step 5 The scheduler sends a request to the database service to record the
operation.

Step 6 The scheduler sends a request to the queue of the cloud hosting service
with the selected PM for placement.

Step 7 The service sends a request to the cloud hosting service of the selected
PM.

Step 8 The selected PM hypervisor launches the VM and the operation is
recorded to the database service.

To achieve real time analytics, we implemented a monitoring engine that
allows online resource usage monitoring data collection from VMs. The en-
gine is capable of collecting system data based on interval and stores it to
an online cloud service that makes it available for data processing. Data
is collected every a tiny time interval (e.g. 1 second) and is stored in a
temporary local file. The engine includes a number of monitoring features
such as CPU (user, nice, system, idle, percent), memory (total, available,
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percent, used, free, active, inactive, wired), swap (total, used, free, percent,
sin, sout), disk usage (total, used, free percent), IO (read count, write count,
read bytes, write bytes, read time, write time) according to the psutil cross-
platform library2 for collecting information on running processes and system
utilization.

3.2. Optimization schemes

The aim of this optimization schemes is to define the weight of the PM
according to the resource usage of the VMs. This will reveal information
about the already deployed VMs status, like indications that a workload is
running or not. To achieve this we provide two optimization schemes. Firstly
a classification of the VM status about its current resource usage according
to history records (using SVM and SVR) and secondly a convolution method
for comparing signals and find their similarity. To achieve this we run well
known workloads and we tag them accordingly so the monitoring information
contain resource usage and a label about the workload status. Figure 3
demonstrates this process.

VM
VM

VM
…

Monitoring
workload
workload
workload

…Monitoring
Monitoring

report
report

report

…

…

Opt	1
SVM	or	SVR

Opt	2
Convolution

Archive

Figure 3: VM resource monitoring process for online VM scheduling

In detail, the VMs are constantly monitored while workloads are running.
Reports that are generated by the system are stored into an archive for later
usage. Further, we perform statistical evaulation using opt1 that involves
classification and regression using SVM and SVR respectively or opt2 that

2https://pypi.python.org/pypi/psutil
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involves convolution in the signal to identify similarities and/or patterns.
For example, binary classification can allow us to classify a VM according
to its resource usage (e.g. to low, medium and high utilization) while the
convolution method will allow to find patterns according to workloads stored
in an archive. Thus, we first classify VMs and in case a VM has high CPU
usage we try to identify if there is a pattern in the CPU usage. If this is the
case, the VM is tagged as running and we set its weight accordingly. VMs
with high CPU usage matched with workload running are assigned a small
weight, while VMs with medium CPU usage matched with running workload
are assigned with a medium value weight. High value weights are assigned to
VMs that have low CPU utilization and no mathced workloads. The weight
is calculated as w=CPU utilization percent-1.

We use SVM and SVR methods for binary classification and regression
according to resource utilization status. Lets consider the example dataset
of CPU (CPU percent, memory percent and disk usage percent) in x,y plane
and we represent feature geometrically by vectors. We first find the linear
decision hyperplane that separates the features and has the largest margin
and we train SVM by minimizing the error function given by the formula

1
2
wTw + C

n∑
1

ai, where C is the capacity constraint, a the parameters for

handling no seperable data and n are the training data. In addition, to solve
for continues data we use the SVR that works as follows. SVR finds a function
with at most e-deviation from the target y. The problem can be represtented
as a convex optimization problem given by the formula min1

2
‖w‖2.

In our study we consider a scenario of a PM pi, with pi ∈ P where P
is the total number of servers, and it hosts a VM vj with vj ∈ Vpi , where
Vpi defines the VMs per server. Each P , V have a resource R =

[
c m d

]
where c is the cpu, m is the memory, s the swap memory, d disk and io the
IO usage. We can define the total cluster size

(T ) as: pcT =
P∑
i=1

pc(i), pmT
=

P∑
i=1

pm(i) and pdT =
P∑
i=1

ps(i).

Similarly, vcT =
V∑
i=1

vpc(i), vmT
=

V∑
i=1

vpm(i) and vdT =
V∑
i=1

vps(i) are defined

as the total VM size per server (p).
For each VM placement request, vν with Rν =

[
cν mν dν

]
the al-

gorithm follows the next steps. For each pi ∈ P it collects the R data
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and if pcT < vνcT and pmT
< vνmT

and pdT < vνdT it creates an M =
c m d

p1 c1 m1 d1
... ... ... ...
pq cq mq dq

 where q is the maximum number of candidate nodes to

host. We define a coefficient coef as a constraint for sorting the M matrix.
If coef is set to 1 we sort the matrix according to the cpu size thus the PM
pm with the higher cpu will be the first at the list. It should be mentioned
that the default sorting parameter for OpenStack is the memory.

For each pi, with pi ∈ P we follow an optimization scheme to model the
selection of PMs. The algorithm can perform predictions on selected criteria
based on two properties (a) classification where the output variable takes
class labels e.g. for CPU utilization levels (idle, medium and high) and (b)
regression where the output variable takes continuous values e.g. for CPU,
memory percentages etc.

To do this we use a model, where we have a given datasetD = (x1, y1), (x2,
y2), ..., (xw, yw) where xi = (xi1, xi2, ..., xiν) with x is the input vector and

x =⊆ <ν and y is the label need to classify and yi ∈ 1,−1. We build the

linear function as follows f(x) =
ν∑
i=1

(wi × xi) + β where w is the weight

vector w = (w1, w2, ..., wr) and β is bian If f(xi) ≥ 0 then the vector xi ≥ 0
and yi

yi =


1

ν∑
i=1

(wi × xi) + β ≥ 0

−1
ν∑
i=1

(wi × xi) + β < 0

SVR uses the same principles as the SVM for classification, by including
a margin of tolerance (epsilon) that is set in approximation to the SVM. The
algorithm calculates the model accuracies according to the incoming data
per interval clint that is measured in seconds. The output of the algorithm
predicts resource usage (e.g. utilization levels ) for the selected features (i.e.
cpu percent and memory percentages. We set the algorithm to the following
configurations. Having define the SVM and SVR models that are responsible
for classifying signals we correlate incoming signals to already classified ones
for pattern recognition. For signal comparisons we use cross-correlation. This
is defined by scaling a basis function P(Xi ), shifted by an offset X, to fit a
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set of data Di with associated errors σi measured at positions Xi as given by
the following formula (2).

CCF =

ν∑
i=1

P (Xi −X)Di/σ
2
i

ν∑
i=1

P 2(Xi −X)Di/σ
2
i

(2)

To find the similarity between the two signals, we use convolution neural
networks. In convolutional neural networks every network layer acts as a
detection filter for the presence of specific features or patterns present in the
original data. The first layers detect (large) features that can be recognized
and interpreted relatively easy. Later layers detect increasingly features that
are more abstract (and are usually present in many of the larger features
detected by earlier layers). The last layer is able to make an ultra-specific
classification by combining all the specific features detected by the previous
layers in the input data. In our work, we use convolution neural networks
to compare signals and identify their similarity. We extract the similarity by
empirically identity local maxima in the convolution signal. In particular, we
set distance thresholds for identifying maxima and compare between them.

4. Evaluation

This section presents the performance evaluation of the proposed system.
This work focuses on the VM scheduling process in Cloud systems. A key
problem that Cloud-based schedulers has to address is the dynamic physical
host selection that is based not only in static criteria but in a more complete
knowledge on what has been executed in the system over time. As discussed
before, the hosts weighting strategy is based instant based evaluations, such
as current available memory, yet, understanding data to enhance scheduling
could be in particular useful and this refers to learning from ”both static and
dynamic usage statistics”Intel-opensource.org (2015). The motivation of this
work is based on two experimental cases, in which we observed performance
degradation in the deployed VMs while we schedule and place new VMs in
OpenStack as described in 4.1 and in 4.2. The experiments executed in an
OpenStack cluster of three PMs in which the controller node has 32 GB or
RAM and the two compute nodes have 16 GB of RAM (rest setup for all
nodes includes 16 Cores and 100GB disk). The OpenStack scheduler is the
filtering and weighting according to the highest available RAM.
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4.1. OpenStack influence in VMs

Firstly, we deploy an Apache Cassandra node in OpenStack and we ex-
ecute the YCSB workload (100 thousand reads and updates). During the
reading phase, we execute a VM scheduling process that places a VM in the
controller host (since it has the most available memory at that time) and
we observe the resource utilization levels and Cassandra throughput metrics.
Figure 4 demonstrates the variation of the Cassandra throughput and the
workload expected completion time while we create a new VM. We run the
experiment 10 times and we measure the average for each timestamp (the
sampling rate is 10 seconds). In particular, between timestamps 7 and 13 we
create a small size VM of a typical Cirros image and between timestamps 30
and 65 we create a medium size Ubuntu image (2 CPUs, 4 GB RAM and
40 GB HD) with preinstalled Cassandra. It should be mentioned that the
VMs are placed in the controller node that already hosts the Cassandra VM.
We can observe that during these two OpenStack processes, the Cassandra
throughput drops while the expected estimation time increases. Especially
in the second case (of the medium size image) the VM placement penalizes
the deployed system performance.
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Figure 4: OpenStack VM placement influence to the Apache Cassandra throughput

The example shows that in our case a more refined VM placement could
be able to enhance the VM scheduling process by ”understanding” current
VM behaviour (e.g. that placement in this node will drop throughput).
An alternative solution would be to to select an available PM that will not
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influence the performance of the already deployed system.
To demonstrate the effectiveness of our solution (called VMA), we run an

example case in an OpenStack cluster of 3 PMs (1 controller (32 GB RAM)
and 2 compute nodes (16 GB RAM)). We first run the default OpenStack
scheduler in order to place 3 VMs of a pre-installed Cassandra cluster that
are placed in PM1, PM2 and PM3 respectively. Then we execute a YCSB
workload to PM1 while PM2 and PM3 are in idle state and we execute one
more VM placement. We observed that the default VM scheduler forces the
VM to be placed in PM1 (which at that time instance has the most available
RAM), however our scheduler selects PM2 due to the fact that recognizes
the increased resource usage of PM1.
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Figure 5: Prediction of MongoDB CPU percent when running YCSB

Figure 5 demonstrates the throughput in both cases. In particular the
grey line demonstrates the throughput in the default case (where the VM
is placed in the same host) while the black line is based on our scheduler.
We can observe that our solution does not affect the throughput (that in
the default case drops almost to 0 between timestamps 17 and 19). For this
specific scenario (of 100.000 YCSB reads and updates) our solution optimizes
throughput averagely by 19%.

In the second case, we execute a similar experiment for the MongoDB
system. As before, we deploy 3 MongoDB instances in OpenStack and we
run a YCSB workload (of 100.000 YCSB reads and updates) in the PM1

while PM2 and PM3 are in idle state. Figure 6 demonstrates the through-
put comparison between our solution and the default OpenStack scheduler.
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After, we create a new VM and the default OpenStack scheduler places it in
the PM1, thus affecting the performance of the running workload. We can
observe that even if the signal is not so stable (as in the Cassandra case),
in average the OpenStack placement process affects the throughput (repre-
sented by the black line). We calculated that averagely our solution offers
26% performance optimization over the default scheduler.

Figure 6: Prediction of Elasticsearch VM memory percent when running YCSB
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Finally, Figure 7 demonstrates the Elasticsearch performance measure-
ments that include (a) total runtime calculation and (b) total throughput.

Figure 7: Prediction of Elasticsearch CPU percent when running YCSB
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Similarly to the two previous experiments we run 3 instances over Open-
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Stack and we compare default versus VMA solution. In detail, VMA solution
offers 13% optimization over the default scheduler. To conclude, these ex-
periments demonstrate that default OpenStack scheduling affects already
deployed systems performance. Our solution refines scheduling by evaluat-
ing VM resource usage, thus VM placements are happening accordingly (for
example in PMs that contain under-utilized VMs).

4.2. VMs CPU steal time

In this experiment we observe the CPU steal time (that reflects the time
that a hypervisor services another virtual processor) in two Cassandra nodes.
Figure 8 demonstrates the CPU steal time between a single VM and two VMs
that are executed concurrently in an OpenStack cloud system. We used the
real world workload of YCSB and we executed 10 thousand reads and updates
respectively in both Cassandra nodes. We executed the same workload for
both VMs and we ran 10 experiments and we calculated the average of the
overall tests. We conclude to the following observations. When we increase
the VMs from one to two the CPU steal time is increasing. For example for a
single VM the CPU steal time is around 6% while when we launch a second
VM in the same PM, the CPU steal time is increased to 10%. Based on this
simple experiment we can conclude that by increasing the number of VMs
the percentage of the CPU steal time is also increased and this affects VM
utilization.
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To calculate the actual resource usage, we introduce the factor of the
”real” CPU utilization that is related to the amount of CPU that subtracts
the amount that has been ”stolen” (or in our case has not be offered by the
hypervisor to the running VM). Figure 9 demonstrates the average value of
the ”real” CPU utilization rates for the YCSB read and update phases from
10 runs. We observe (for the YCSB updating phase between the timestamps
220 and 365) that while the system CPU utilization is 81%, when we launch
the seconds VM this value drops to 73%, so resource utilization in reality it
is dropped by 8%.
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Figure 9: ”Real” CPU utlization percentage for YCSB Apache Cassandra workload exe-
cution in small size VM for 10.000 ”inserts” and 10.000 ”updates” records in OpenStack

Another experimental case involves execution of the YCSB Apache Cas-
sandra workload in a medium size VM that has been deployed in Amazon
EC2. In particular, we run 50.000 inserts and 50.000 updates and we observe
the CPU steal time. The time series in ”x” axis represent the time, while
in ”y” axis the CPU steal time over the workload execution (its time point
represent the measurement of the steal time in relation to the previous point,
for example from 6.88 to 6.89 represents CPU steal time of 1%). Figure 10
demonstrates that during 10 minutes, the CPU steal time percentage was
overal 10% (increased from 6.88 to 6.98). Based on this discussion we con-
clude that CPU steal time is an important factor to take in mind during
VM scheduling as it can significantly affects VMs CPU utilization levels. A
more refined VM scheduling can be based on predicting the CPU steal time
according to the real time resource usage in order to perform scheduling that
minimizes the CPU steal time.
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Figure 10: ”CPU steal time” for YCSB Apache Cassandra workload execution in medium
size VM for 50.000 ”inserts” and 50.000 ”updates” records in an Amazon EC2 instance

To demonstrate our solution we run a CPU steal case in an OpenStack
cluster of 2 PMs (PM1 and PM2). In our case, PM1 has 32GB or RAM
while PM2 has 16 GB of RAM. After, we place one VM to PM1 and we run
the YCSB workload respectively. Figure 11 shows the statistical CPU steal
time distribution in an x,y plane. We can observe that the CPU steal time
(default) is higher than our solution (that minimizes the overall steal time).
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Figure 11: Comparison of default OpenStack scheduler versus VMA for CPU steal time
when running YCSB in Cassandra node

We run a similar experiment in a MongoDB system using again two PMs.
As previous case, the default OpenStack scheduler selects places the new VM
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to PM1 that has already the MongoDB system. Figure 12 demonstrates the
comparison of the CPU steal time for both cases. We can observe that our
solution outperforms the default one. In detail, the average CPU steal time
for the default scheduling case is 4% while for the VMA scheduler we reduce
this value to 2%.

Figure 12: Comparison of default OpenStack scheduler versus VMA for CPU steal time
in MongoDB
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Finally, we run an experiment by deploying an Elasticsearch system as
shown in Figure 13.

Figure 13: Comparison of default OpenStack scheduler versus VMA for CPU steal time
in Elasticsearch node
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Our experiment demonstrates the comparison of default OpenStack sched-
uler versus VMA for CPU steal time when running YCSB in Elasticsearch
node. Similarly to previous experiments VMA outperforms default scheduler.

4.3. Analysis of the tools

This section presents the analysis of the tools and their performance. We
include (a) the results related with the accuracy of the prediction models
(that use SVR), (b) the results related with the signal similarity comparison
and (c) performance measures of the real time resource monitoring system.

4.3.1. Analysis of the predictions

To demonstrate the accuracy of the prediction model we train our model
with data from 24 hours by running YCSB workloads. Then we select a win-
dow of real time data collected by the system and the actual prediction. To
demonstrate the patterns in a more clear manner we increase the prediction
rates by 5%. Figure 14 demonstrates the Cassandra VM memory usage by
running a typical YCSB workload (that includes 100 thousands reads and
writes). Rest figures in 7 show the prediction analysis for the rest of the
deployed systems (including MongoDB and Elasticsearch).

Figure 14: Prediction of Cassandra VM memory percent when running YCSB
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In particular, Figure 17 (page 37)demonstrates the CPU utilization levels
and the prediction during two different timeframes. Figure 18 (page 38) and
Figure 19 (page 38) demonstrate the accuracy of our algorithm for predicting
the memory and CPU resource usage of the MongoDB system respectively.
Finally, Figure 20 and Figure 21 (page 39) demonstrate the accuracy of our
algorithm for predicting the memory and CPU resource usage of the Elastic-
search system respectively. For all cases, it is apparent that the prediction
is similar to the real usage pattern.

Based on this analysis, we can conclude that for both CPU and memory,
the workload executions demonstrate a repeating pattern. Thus, in our case
we evaluate the workload executions (e.g. the last hour) by feeding this
records to the model, and we identify if a VM is in the middle of a workload
execution or not by comparing sequences of signals. In case of signal matching
we classify the VM as ”running” or not.

4.3.2. Analysis of signal similarity using convolution

In this section we present the analysis of the signal similarity algorithm.

Figure 15: Prediction of MongoDB CPU percent when running YCSB
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We used the convolution method in order to compare the signals and
we set a comparison coefficiency that is related with the similarity of the
convolution comparison. Figure 15 demonstrates the signal similarity and
the pattern extraction between the test signal and the real time signal. It
should be mentioned that test signals are stored into the archive, so the more
the samples, the higher the accuracy of our model. We present the similarity
comparison and the convolution signal in the Appendix section (MongoDB
signal is in page 40 and Elasticsearch in page 40). We can observe that
when there are 4 repetitions between the signals meaning that a workload
is running. In the specific signal, we can observe that the local maximum
points demonstrate the peaks of the pattern matching.

4.3.3. Real time monitoring engine benchmark analysis

In this section we present the analysis of the real time monitoring engine
that is preinstalled and configured to each We set the data collection interval
to 1 second and we aim to explore what is the timeframe in which data
should be recorded and forwarded to the cloud. The machine learning engine
connects to a cloud service and parses the data in an iteratively mode. It
executes a series of machine learning models in order to calculate the best
accuracy score, thus to conclude with the best model for VM placement.
The data is stores in csv format and are the input to the machine learning
model. Figure 16 demonstrates the transfer delay versus the rate (that is
given by the equation rate = rows−count

rows
where rows are the uploaded rows

per iteration and count is the total rows stored in an array).
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We observe that the transfer delay is increased significantly after the
timestamp 50 where each timestamp is a window of 1 second. We can also
notice that the transfer rate keeps a steady trend line at that time window.
Based on these facts we set the transfer point in 50 seconds, and we perform
the iterations after every successful completion of a machine learning round.
It should be mentioned that each learning round includes the measurement
of accuracies for selected models.

Since data are uploaded dynamically, to achieve up to modelling of real
time data we force the engine to load data for each iteration. This means
that the system will spend a significant amount of time to load the data,
thus the actual modelling is happening based on this delay. For example
data upload rate is 3,37 MB per second meaning that in this example case
a file size of 2.84 MB will be uploaded in 9.56 seconds. Thus the machine
learning model refers to data collected before that time.

5. Conclusions

Cloud systems use different virtual machine (VM) placement algorithms
to schedule instances by selecting physical machines (PMs) according to real
time system information (i.e usage of CPU, memory, hard disk, network
and other). In this work we stress the problem of instantaneously collected
system data that in many cases does not reflect the big picture (i.e. average
resource utilization levels). The current VM placement does not consider
real time VM resource utilization levels. In this work we propose a new VM
placement algorithm based on past VM usage experiences. We monitor the
VM usage in real time and we train different machine learning models to
calculate the prediction of the VM resource usage per server, thus to place
VMs accordingly. We present an algorithm that allows self managed VM
placement according to PM and VM utilization levels. Usually, traditional
systems (i.e. OpenStack) use a filtering (which PMs can host the VM thus
having resources) and weighing method (which PM has the higher RAM)
to select PMs based on the specific time instance, without considering the
actual VMs’ resource usage of the selected PMs. We introduce the concept
of analyzing past VM resource usage according to historical records based on
computational learning to optimize the PM selection phase.

Also, we proposed a self managed VM placement algorithm based on
real time virtual resource monitoring that utilizes machine learning models
to train and learn from past virtual resources usage. Thus, we developed
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a monitoring engine that collects resource usage data on real time. The
VMA collects data and applies different models for class labels (classification)
and/or continues values (regression). The proposed algorithm allows data
processing based on a timeframe window to define the actual behaviour of the
PMs or VMs. The experimental analysis is prosperous and results highlight
major improvements in the VM placement process. The future steps of our
research include further experimental analysis and experimentation related
to different machine learning models.
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7. Appendix

Figure 17: Prediction of Cassandra CPU percent when running YCSB
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Figure 18: Prediction of MongoDB VM memory percent when running YCSB

Figure 19: Prediction of MongoDB CPU percent when running YCSB
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Figure 20: Prediction of Elasticsearch VM memory percent when running YCSB

Figure 21: Prediction of Elasticsearch CPU percent when running YCSB
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Figure 22: Prediction of Elasticsearch VM memory percent when running YCSB

Figure 23: Prediction of Elasticsearch CPU percent when running YCSB
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Table 1: Approaches for Cloud Platform Scheduling (CPP) and Energy Efficiency (EE)

Class Authors Method Method concept Parameter 1

CPP Do et al. (2011), Algorithms
Canonical
correlation
analysis

Scheduling

CPP Bin et al. (2011) Algorithms k-resilient
Load
balancing

CPP Xi et al. (2015) Algorithms
Mapping
strategy

Resource
utilization

CPP
Marzolla et al.
(2011)

Algorithms
Message
exchanging

Resource
allocation

CPP
Lucas-Simarro
et al. (2013)

Optimization
Constraints
satisfaction

Resource
utilization

EE
Dupont et al.
(2012)

Algorihtms
Constraints
satisfaction

Energy
consumption, CO2

EE Le et al. (2011) Algorihtms Heuristics
Electricity price,
Temperature

EE
Beloglazov
and Buyya (2012)

Algorihtms Heuristics
Resource
usage

EE Li et al. (2009) Algorithms
Heuristics
(FirstFit/BestFit)

Energy
consumption

EE
Cardosa et al.
(2009)

Algorithms Min-max
Power
performance

EE Fang et al. (2013) Optimization
Greedy
Bin-Packing

Traffic
volume

EE
Goudarzi and
Pedram (2012)

Optimization Local search
Energy
consumption

EE
Goudarzi et al.
(2012)

Optimization
Probabilistic
Analysis

Resource usage

EE Tseng et al. (2015) Optimization Tree & Forest
Commun-
ication
cost

EE Van et al. (2010) Utility function
Constraints
satisfaction

Energy
consumption,
profit
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Table 2: Approaches for Resource Provisioning (RP) and VM Placement (VMP)

Class Authors Method Method concept Parameter 1

RP
Tordsson et al.
(2012)

Algorihtms Cloud brokering
Load
balancing

RP
Chaisiri et al.
(2012)

Algorihtms
Stochastic
programming
model

On-demand
costs

RP
Corradi et al.
(2014)

Optimization
Optimize
resource
usage

Resource
usage

RP Van et al. (2009) Utility function
Constraints
satisfaction

Resource
usage

VMP
Piao and Yan
(2010)

Algorithms
Analytical
model

Network
factors

VMP
Elmroth and
Larsson (2009)

Algorithms
Cross VM
management

Resource
utilization

VMP Biran et al. (2012) Algorithms
Min Cut
Ratio-aware

Communication
cost, Resilience

VMP Mills et al. (2011) Algorithms
Objective
method

Resource
utilization
VM type

VMP Lloyd et al. (2014) Algorithms Services Scalability

VMP
Kousiouris
et al. (2011)

Machine learning
/Algorithms

Linear
regression/
Genetic
algorithms

Prediction
degradation

VMP Gao et al. (2013) Optimization
Ant colony
optimization

Resource
wastage,
performance

VMP Meng et al. (2010) Optimization Approximation
Communication
cost

VMP Jiang et al. (2012) Optimization
Approximation
(Markov)

Traffic cost

VMP
Jayasinghe
et al. (2011)

Optimization
Constraints
satisfaction

Server rack
assignment

VMP
Xu and
Fortes (2010)

Optimization Multi-objective
Scalability,
Robustness
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