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Regularization methods are a key tool in the solution of inverse problems.
They are used to introduce prior knowledge and allow a robust approxima-
tion of ill-posed (pseudo-) inverses. In the last two decades interest has shifted
from linear to nonlinear regularization methods, even for linear inverse prob-
lems. The aim of this paper is to provide a reasonably comprehensive overview
of this shift towards modern nonlinear regularization methods, including their
analysis, applications and issues for future research.

In particular we will discuss variational methods and techniques derived
from them, since they have attracted much recent interest and link to other
fields, such as image processing and compressed sensing. We further point
to developments related to statistical inverse problems, multiscale decompos-
itions and learning theory.
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1. Introduction

Starting from the development of tomography and related techniques, the
last fifty years have seen a constant rise in interest in the development
of inverse problems as a research field, in mathematics as well as applied
fields such as medical imaging, geophysics and the oil industry, or the steel
industry, to mention only a few: see, for example, Bertero and Boccacci
(1998), Cakoni and Colton (2005), Chadan, Colton, Päivärinta and Rundell
(1997), Colton and Kress (2012), Colton et al. (2012), Engl, Louis and
Rundell (2012), Groetsch (1993), Isakov (2006, 2008), Natterer (2001), Nat-
terer and Wübbeling (2001), Tarantola and Valette (1982) and Tarantola
(2005). Connected with the rise of interest in inverse problems is the de-
velopment and analysis of regularization methods, which are a necessity in
most inverse problems due to their ill-posedness: see, for example, Tikhonov,
Goncharsky and Bloch (1987) and Engl, Hanke and Neubauer (1996). In
particular there is usually no continuous dependence between the data and
the solution of the inverse problem, hence in the presence of measurement er-
rors one solves approximate problems with stable dependence instead. The
controlled construction and analysis of such modified problems is called reg-
ularization, usually with a regularization parameter encoding the level of the
approximation.

The canonical example of an ill-posed inverse problem at the abstract
level is the linear operator equation

Ku = f, (1.1)

with a linear operator K between Banach spaces, whose generalized inverse
K† is unbounded. A regularization method is then some parametric ap-
proximation Rα of K†, which has better stability properties. In the case of
linear regularization methods, Rα is a family of bounded linear operators
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Modern regularization methods for inverse problems 3

converging pointwise to K† on the domain of the latter as α → 0. A key
question in this respect is the convergence for noisy data, related to the
choice of the regularization parameter α in dependence on the noise level δ,
the latter being a bound for the noise in the deterministic setting or some
kind of variance in a stochastic setting.

At the end of the twentieth century, when rather complete understanding
of such linear regularization methods was available (based on spectral de-
compositions of the operators), nonlinear regularization methods, i.e. non-
linear maps Rα (possibly even multivalued), were becoming a field of in-
tensive study. This was driven in particular by developments related to
variational methods such as total variation techniques (Rudin, Osher and
Fatemi 1992, Acar and Vogel 1994, Burger and Osher 2013) or sparsity
and compressed sensing (Donoho 2006, Donoho, Elad and Temlyakov 2006,
Candès and Donoho 2002), but also by statistical approaches such as ad-
vanced Bayesian prior models (Lassas, Saksman and Siltanen 2009, Helin
and Lassas 2011, Kolehmainen, Lassas, Niinimäki and Siltanen 2012). Due
to the rise of big data and learning techniques, in recent years there has been
further interest in applying such paradigms to inverse problems. This is a
somewhat delicate task, since in most inverse problems there are no ground
truth data, but only results that have been reconstructed via a certain reg-
ularization method and specific noise. Hence there are many challenges for
future research.

In this paper we will provide a survey of developments in the analysis
and applications of modern (nonlinear) regularization methods during the
last few decades. Moreover, we will try to provide a fairly structured over-
view of this field, including some fundamentals of nonlinear regularization
methods. In particular we will give clear definitions as to what to expect
from a regularization method and its convergence, reminiscent of the rather
complete treatment of linear regularization methods in the seminal book
by Engl, Hanke and Neubauer (1996), now dating back more than twenty
years.

Throughout the paper we assume that K : U → V is a bounded linear
operator on Banach spaces U and V. In many parts there are obvious
extensions to nonlinear operators and even metric spaces, but we mainly
leave them out in order to increase readability; some links to such extensions
are given at the end of the paper.

We will start in Section 2 with a historical exposition on regularization
methods, and then proceed in Section 3 to nonlinear variational models,
which are the class of methods driving most development in nonlinear regu-
larizations. Section 4 will discuss some basic properties of and requirements
on regularization methods, which are then discussed in detail for variational
regularization in Section 5. Subsequently we turn to iterative regularization
methods in Section 6. As a result of certain insights in these sections we
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4 M. Benning and M. Burger

are led to a discussion on bias and scales in regularization methods in Sec-
tion 7, and Section 8 will provide some examples of applications. Section 9
will discuss advanced aspects such as nonlinear regularization methods for
nonlinear inverse problems and links to machine learning. Finally we con-
clude and provide an outlook to relevant future topics in Section 10.

2. A little history of regularization methods

It seems difficult to date the origin of regularization methods, but it is now
common to identify it with the pioneering work of Tikhonov (1943, 1963,
1966) and the subsequent strong developments in the Russian community
in the 1960s (e.g. Ivanov 1962, Bakushinskii 1967). The starting motivation
obviously comes from the concept of ill-posedness, negating the definition
of a well-posed problem. The latter, consisting of existence, uniqueness and
stable dependence upon the input data, is usually attributed to the work of
Hadamard in the context of partial differential equations (Hadamard 1902,
1923). However, the third condition was not clearly formulated in those
problems, and only later found its true place of importance, for example in
the work of John (1960). As a motivation for regularization theory and in
particular for convergence theory, however, the lack of stability seems to be
the most crucial issue.

It was already understood in early work that in order to have any chance
of computing meaningful solutions, the problem needs to be approximated
by well-posed ones, usually a family parametrized by the regularization
parameter. The obvious first answer of a topologist such as Tikhonov was
to restrict the domain to a compact set in some topology (or some kind
of family thereof), leading to the concept of conditional well-posedness. A
natural choice in a Hilbert space is to use norm balls centred at zero, which
are compact in the weak topology. The radius of the ball (or its inverse) can
naturally serve as a regularization parameter. This was also called the selec-
tion method, and the corresponding solutions were termed quasi-solutions.
Given a minimization problem, e.g. least-squares ‖Ku−f‖2 for (1.1) in Hil-
bert spaces, it is a shortcut to the variational formulation (see Section 3 for
a detailed discussion of variational models) of what is now called Tikhonov
or Tikhonov–Phillips regularization. Indeed, with an appropriate Lagrange
parameter α, this is equivalent to the variational problem

û = arg min
u∈U

1

2
‖Ku− f‖2 +

α

2
‖u‖2. (2.1)

Some of the early work in the Soviet community was already formulated
in a much more general variational way, replacing the least-squares term
with some discrepancy measure and the regularization with an appropriate
functional, in some sense a precursor of the modern theory. At this time
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Modern regularization methods for inverse problems 5

the study was restricted to a rather abstract way of focusing on convergence
proofs: strong motivations for other functionals in inverse problems and
further methods for quantitative estimates were not available. The concepts
and methods were further developed in the Soviet literature, including the
question of the regularization parameter choice in dependence on the noise
level. Instead of giving a detailed overview we refer to the influential book
by Tikhonov and Arsenin (1977), which also made the results more broadly
accessible.

As an alternative approach much work also considered what Tikhonov
called the regularization method (and what seems to be the first appearance
of this term in the literature), namely the approximation of K by regular
operators and of its generalized inverse by bounded operators. There was
parallel development in the West: Phillips (1962) developed an approach
similar to Tikhonov’s conditional well-posedness for integral equations of the
first kind, and consequently the term Tikhonov–Phillips regularization is also
used in the literature. In a discrete setting of statistical regression, a similar
idea for dealing with ill-conditioned problems was developed under the term
ridge regression (Hoerl 1959, Hoerl and Kennard 1970). A related approach
for solving ill-posed problems for partial differential equations was the quasi-
reversibility method (Lattès and Lions 1967), although barely analysed in
the setting of a regularization method.

A different route to the construction of regularization methods was taken
by Backus and Gilbert (1968) from a very applied perspective. Using linear
filters, the noisy data were smoothed to be in the range of the forward
operator K, followed by direct inversion (or a generalized inverse). It took
quite a while for such methods to be understood in a unified way with other
regularizations such as Tikhonov regularization (Engl et al. 1996). The key
step was to relate the smoothing action of the filters to the operator K and
its adjoint. This was made clear later in the linear functional strategy by
Anderssen (1986) and also in the development of the approximate inverse
method by Louis (1996), which turned out to be highly useful in tomography
problems, where explicit reconstruction formulas and fast methods for the
computation of the inverse are available.

In the 1970s and 1980s the study of linear regularization methods pro-
gressed further, dealing with many different regularization techniques such
as iterative regularization by early stopping of stable iteration methods,
truncated singular value decompositions, and regularization by discretiza-
tion and projection (e.g. Nashed and Wahba 1974b, Nashed and Wahba
1974c, Wahba 1977, Eldén 1977, Bakushinskii 1977, Bakushinskii 1979,
Bates and Wahba 1983, Engl 1987b, Hansen 1987). Most work was based
on using spectral methods for the construction and detailed analysis of reg-
ularization methods. This includes the basic analysis of linear regulariza-
tion methods in Hilbert spaces, their convergence as the noise level and the
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6 M. Benning and M. Burger

regularization parameter tend to zero, as well as the first error estimates giv-
ing dependence on the noise level (e.g. Nashed and Wahba 1974a, Groetsch
and King 1979, Natterer 1984, Neubauer 1988a). Moreover, various asymp-
totic parameter choice rules were suggested and investigated, either founded
by theory such as the discrepancy principle or other a posteriori rules us-
ing the noise level (Morozov 1966, Bakushinskii 1973, Raus 1984, Engl and
Neubauer 1985, Engl 1987a, Engl and Neubauer 1987, Gfrerer 1987, Engl
and Gfrerer 1988, Raus 1992), or heuristic ones such as quasi-optimality
or the L-curve method (Tikhonov and Arsenin 1977, Bakushinskii 1984,
Thompson, Brown, Kay and Titterington 1991, Hansen 1992). The de-
velopment of linear regularization methods in the early 1990s was rather
complete, culminating in the seminal book by Engl, Hanke and Neubauer
(1996), which provides a unified overview.

From the application point of view, a strong focus was placed on models
with integral equations of the first kind, and image reconstruction in tomo-
graphy drove applications (Natterer 2001, Natterer and Wübbeling 2001 and
references therein). In parallel, various applications of inverse problems in
partial differential equations, such as inverse scattering or parameter identi-
fications, became relevant and were tackled by regularization methods (e.g.
Payne 1975, Kravaris and Seinfeld 1985, Colton and Monk 1988, Banks and
Kunisch 1989, Colton et al. 1990). This drove the interest in regularization
theory from linear towards nonlinear problems.

The end of the 1980s marks the beginning of the systematic analysis of
regularization methods for nonlinear inverse problems (replacing K with a
nonlinear operator). In particular, the papers by Seidman and Vogel (1989)
gave a well-posedness and convergence analysis of Tikhonov regularization
for such problems, and Engl, Kunisch and Neubauer (1989) provided the
first error estimates and convergence rates. Many techniques had to be
developed to avoid spectral theory arguments that are not available for
nonlinear operators; it is not surprising that many of those ideas were also
influential for nonlinear regularization (of linear inverse problems). In the
1990s there was a surge in studies for nonlinear inverse problems. In partic-
ular, a theory of iterative regularization methods was constructed, which
is particularly attractive since the nonlinear problems had to be solved
with iterative methods in any case. Prominent examples are Landweber
and steepest-descent methods (e.g. Hanke, Neubauer and Scherzer 1995),
regularized Newton methods (e.g. Kaltenbacher 1997) and iterated Tik-
honov methods (e.g. Scherzer 1993). We refer to Kaltenbacher, Schöpfer
and Schuster (2009) for a comprehensive overview.

In parallel, another paradigm evolved, particularly in the image pro-
cessing community, from the seminal papers of Rudin et al. (1992) and
Mumford and Shah (1989), who proposed nonlinear variational models to
solve denoising (and in the second case also segmentation) problems. From
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Modern regularization methods for inverse problems 7

a regularization point of view this means that a nonlinear regularization
method is used to solve a linear inverse problem, a rather unusual idea at
this time. From a technical point of view it poses the additional challenge of
analysing schemes in anisotropic Banach spaces, such as the space of func-
tions of bounded variation, while theory was previously formulated mainly
in Hilbert spaces. In the case of variational regularization methods, basic
well-posedness and convergence analysis can be carried out using techniques
from variational calculus (Acar and Vogel 1994, Eggermont 1993), while
quantitative estimates need completely novel approaches. Early progress in
this direction was made for maximum entropy regularization (Eggermont
1993, Engl and Landl 1993); in this case the regularization technique could
be related directly to regularization of nonlinear inverse problems in Hilbert
spaces via a change of variables (Engl and Landl 1993). However, in a more
general set-up the convergence rate theory remained quite open until the
dawn of the twenty-first century, when strong progress was made by employ-
ing techniques from convex analysis to variational regularization methods.
We mention at this point that some of these more geometric ideas were
also hidden in earlier work on regularization in Hilbert spaces with convex
constraints (Neubauer 1988b, Eicke 1992). The improved understanding of
variational regularization methods in Banach spaces subsequently led to a
variety of other techniques and variants, such as derived iterative regulariz-
ation, which we will discuss in further detail in the course of this paper.

Another driving force for investigating regularization methods in Banach
spaces was sparsity, including wavelet shrinkage and the variational counter-
part of regularization `1-type norms, for example in Besov spaces (Donoho
1992, Donoho and Johnstone 1995). This led in parallel to the field of com-
pressed sensing, where the focus was on designing the appropriate measure-
ment set-ups for optimal compression rather than improving reconstruc-
tions on a given inverse problem (Donoho 2006, Candès, Romberg and
Tao 2006, Candès and Donoho 2002, Candès and Tao 2004a, Candès and
Tao 2004b, Candès and Romberg 2007, Donoho et al. 2006). Despite the
fact that the usual setting in compressed sensing is a finite-dimensional one,
many arguments based on convex analysis are closely related.

In recent years these techniques also evolved into many practical applica-
tions, in particular in the image reconstruction community. The whole list
of applications where the methods made an impact in different ways might
warrant its own survey paper. In order to illustrate the change in the first
decade of the twentieth century we provide Table 2.1, which shows the typ-
ical state of the art for inverse problems in medical imaging up to or around
the year 2000 and that typically used ten years later.

Note that (with the exception of the statistically motivated EM algorithm)
all state-of-the-art methods up to 2000 were linear regularization methods.
This has now completely changed, with the exception of fully sampled CT,
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8 M. Benning and M. Burger

Table 2.1. State of the art for inverse problems in medical imaging.

Method Up to 2000 Since 2010

Full CT Filtered backprojection Filtered backprojection
Undersampled CT Filtered backprojection TV-type / wavelet sparsity
PET / SPECT Filtered backprojection / EM EM-TV / dynamic sparsity
Photacoustics – TV-type / wavelet sparsity
EEG / MEG LORETA Spatial sparsity / Bayesian
ECG-BSPM L2 Tikhonov L1 of normal derivative
Microscopy None, linear filter TV-type / shearlet sparsity
PET-CT / MR – TV-type anatomical priors

where there is neither a null space nor significant noise, and hence regular-
ization plays a minor role. The details of most other methods, mainly based
on variational models, will become clear in the next section.

3. Variational modelling

The variational approach to regularization methods has become very popu-
lar in the last few decades, since it provides an intuitive approach to mod-
elling and a framework for its basic analysis, and also allows a variety of
computational methods to be applied, particularly in the case of convex
regularization functionals. The key idea in constructing a variational regu-
larization method for (1.1) consists of finding two functionals: a data fidelity
term F measuring the distance between Ku and f (or its noisy version f δ)
and a regularization functional J favouring appropriate minimizers or penal-
izing potential solutions with undesired structures. Instead of simply fitting
u to data, i.e. minimizing F (Ku, f), a weighted version is minimized to
obtain

û ∈ arg min
u

(F (Ku, f δ) + αJ(u)), (3.1)

where α > 0 is the regularization parameter controlling the influence of
the two terms on the minimizer. Since the problem should approach the
minimization of only the data fidelity term in the noiseless case, it is natural
to think of α as a small parameter.

The choice of the data fidelity term is often straightforward, for example
as some kind of least-squares term (squared norm distance in a Hilbert
space), or motivated from statistical arguments by some likelihood func-
tional for the noise. In the latter case the variational model can be in-
terpreted as a regularized likelihood model, where the data term usually
corresponds to the negative log likelihood of the noise model. A prominent
example is the case of additive Gaussian noise, which leads to a least-squares
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Modern regularization methods for inverse problems 9

data term 1
2‖Ku− f‖2, where the specific Hilbert space norm to be used is

determined by the covariance operator of the noise. Appropriate choices for
the latter can have a significant impact: for example, choosing likelihoods for
Poisson noise appearing in photon count data leads to strong improvement
over least-squares terms, particularly in large noise regimes (e.g. Sawatzky
et al. 2013, Brune, Sawatzky and Burger 2009c). Throughout this paper we
will assume that F is Fréchet-differentiable on V unless otherwise stated.

The choice of a regularization functional seems less natural at first glance.
Based on the original ideas by Tikhonov, the key ingredient for a successful
regularization is its topological properties, so the regularization functional is
frequently chosen as some power of a norm (or seminorm) in a Banach space.
Classical examples are Tikhonov–Phillips in Hilbert spaces such as L2(Ω),
H1(Ω), or in some sequence space `2(N). As a generalization in function
spaces, regularization functionals depending on the gradient (or higher-order
derivatives) of u became popular. These correspond to the rather direct
intuition that smooth solutions are preferable due to prior knowledge. Non-
smooth and oscillatory functions will lead to large or even infinite values of
the derivatives, and thus very high values of the regularization functionals.
Hence, they are not suitable candidates as a minimizer of (3.1).

In many cases in inverse problems such as image reconstruction, one is
instead interested in non-smooth solutions, and in particular their discon-
tinuity sets. One example is that of piecewise constant functions with reas-
onable edge sets, which are not contained in any Sobolev space W k,p(Ω) for
k, p ≥ 1, since their gradient is already a concentrated measure (Ambrosio,
Fusco and Pallara 2000, Evans and Gariepy 1992). This motivates use of the
space of functions of bounded variations BV (Ω), which consists of all func-
tions in L1(Ω) whose distributional gradients are vectorial Radon measures.
The regularization with the total variation, that is,

TV (u) = |u|BV =

∫
Ω

d|Du|, (3.2)

where Du is the gradient measure of u, proposed for denoising by Rudin
et al. (1992), and the subsequent popularity of investigating such methods
can be seen as the advent of modern regularization methods.

The details of reconstructions to be achieved, however, strongly depend on
the specific norm used. It is common folklore that the regularization func-
tional is chosen such that desired solutions matching prior knowledge have
a small value of J and are thus preferred as the appropriate solutions. This
is true only to some extent, but the overall effect of a regularization func-
tional is determined by the effect it has on possible minimizers rather than
purely a comparison of functional values. Consider as a simple example one-
dimensional total variation regularization. It will of course prefer solutions
with small total variation over oscillatory functions with high variation. On
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10 M. Benning and M. Burger

the other hand, it still selects among functions with the same total variation.
Structural results on the solution of total variation regularization problems
show that canonical solutions for noisy data are piecewise constant, even if
the exact solution is not (Ring 2000, Chambolle et al. 2010, Jalalzai 2016).
This means that total variation actively selects piecewise constant solutions
over smooth solutions that have the same total variation, that is, they are
a priori indistinguishable by the regularization functional. The reason for
this behaviour can be seen by inspecting the optimality condition, given by
(assuming F to be Fréchet-differentiable)

K∗∂xF (Ku, f) + αp = 0, p ∈ ∂J(u). (3.3)

Here ∂x denotes the (partial) Fréchet derivative in the first argument, and
∂J(u) is the subdifferential of J at position u: see Rockafellar (1972, Sec-
tion 23) or Ekeland and Temam (1999). Solving for the subgradient p, we
always obtain a relation of the form p = K∗w̃ for some w̃ ∈ V, that is,
the variational method will select smooth subgradients due to the smooth-
ing properties of the operator K and its adjoint. We will detail the relation
between the properties of the subgradients of the solution for total variation
and other examples of regularization in the next sections.

In a stochastic set-up, the variational approach is often formulated from
Bayesian estimation (Kaipio and Somersalo 2006, Stuart 2010), in partic-
ular maximum a posteriori probability (MAP) estimators. For the sake of
simpler presentation, assume that we are in a finite-dimensional setting for
the inverse problem Ku = f and can write down probability densities for
the prior π0(u) and the likelihood π(f |u) of measuring the data f given the
true solution u. Then Bayes’ theorem provides the posterior probability
density via

π(u|f) =
1

π∗(f)
π(f |u)π0(u), (3.4)

where

π∗(f) =

∫
π(f |u)π0(u) du (3.5)

is the effective prior probability on the data. A MAP estimate û is defined
as a maximizer of the posterior probability density, or a minimizer of its
negative logarithm. Since the part π∗(f) independent of u is irrelevant for
the minimizer, we thus have

û ∈ arg min
u

(− log π(f |u)− log π0(u)). (3.6)

This formulation is closely related to the variational modelling point of view
when interpreting − log π(f |u) as a data fidelity term and − log π0(u) as the
regularization term. Indeed, for many standard stochastic (noise) models
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Modern regularization methods for inverse problems 11

one obtains

π(f |u) ∼ exp(−F (Ku, f)). (3.7)

Examples are additive Gaussian noise leading to a least-squares fidelity and
Poisson noise leading to the Kullback–Leibler divergence. Assuming further
that the prior is related to some regularization functional J ,

π0(u) ∼ Φ(−J(u)), (3.8)

for some monotone function Φ, we see that the MAP estimation problem
becomes

û ∈ arg min
u

F (Ku, f)− log(Φ(−J(u))). (3.9)

This problem can be reformulated in a more conventional form, even if the
prior Φ is not exactly specified. By a standard argument we see that there
exists γ > 0 such that

û ∈ arg min
u,J(u)≤γ

F (Ku, f),

and with the existence of a Lagrange parameter α > 0 for the constraint
J(u) ≤ γ (which is easily verified for a scalar constraint) we obtain

û ∈ arg min
u

F (Ku, f) + αJ(u). (3.10)

We mention that similar reasoning in infinite dimensions is not as straight-
forward: even the definition of the MAP estimate is a non-obvious task
(Dashti, Law, Stuart and Voss 2013, Helin and Burger 2015). Recent res-
ults, however, provide good characterization in many relevant cases (Helin
and Burger 2015, Lie and Sullivan 2017, Agapiou, Burger, Dashti and
Helin 2018). A relation between Bayesian estimators and the variational
approach also exists beyond the MAP estimate by the Bayes cost method.
Given a cost ψ measuring a distance on the input space, the Bayes cost
approach looks for a minimizer of the posterior expectation of ψ, that is,

û ∈ arg min
u

∫
ψ(u, v) π(v|f) dv, (3.11)

a functional that depends in a more implicit way on the data and the forward
model.

3.1. Total variation and related regularizations

As mentioned above, total variation regularization has been one of the driv-
ing examples for development of regularization methods in Banach spaces
starting from Rudin et al. (1992) and Acar and Vogel (1994). Since then
it has been a constant source of motivation for further development of
mathematical analysis (e.g. Chambolle and Lions 1997, Strong et al. 1996,
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12 M. Benning and M. Burger

Scherzer 1998, Chavent and Kunisch 1997, Ring 2000, Strong and Chan
2003, Burger and Osher 2004, Caselles, Chambolle and Novaga 2007, Al-
lard 2007), computational optimization techniques for non-smooth problems
(e.g. Chan, Golub and Mulet 1999, Vogel 2002, Chambolle 2004, Kunisch
and Hintermüller 2004, Chambolle and Pock 2011), and development of ad-
vanced models (e.g. Scherzer 1998, Osher et al. 2005, Burger, Osher, Xu
and Gilboa 2005, Burger et al. 2006, Bredies and Holler 2015a, Hu and
Jacob 2012, Lenzen, Becker and Lellmann 2013, Benning, Brune, Burger
and Müller 2013).

The key step for modern analysis and computational methods is the (pre-)
dual formulation of total variation,

TV (u) = |u|BV := sup
g∈C∞0 (Ω)d,g∈C

∫
Ω
u∇ · g dx, (3.12)

with the convex set

C = {g ∈ L∞(Ω) | |g(x)| ≤ 1 a.e. in Ω}.
This characterization allows us to understand the structure of subgradients
as elements of C absolutely continuous with respect to the gradient measure
D such that ∫

Ω
g · dDu = |u|BV .

The optimality condition (3.3) provides

K∗∂xF (Ku, f) + α∇ · g = 0, (3.13)

where g is a vector field such that g|Du| is a polar decomposition of the
vector measure (Ambrosio et al. 2000).

In one spatial dimension the structure of solutions can be understood dir-
ectly from the optimality condition. If there is an open set where u is not
constant, either with positive or negative derivative, then g equals +1 or
−1, hence its derivative vanishes. Thus, in such regions the generalized re-
sidual K∗∂xF (Ku, f) vanishes. In the case of noisy data this is usually not
happening for larger sets, thus u is typically piecewise constant. In higher
spatial dimensions this is not completely true, but still the case |g(x)| < 1 is
the canonical one, so in many cases solutions are piecewise constant. On the
other hand, piecewise constant structures are not optimal in all instances.
In particular, total variation methods are well known to exhibit staircas-
ing phenomena, that is, smoothly varying parts in the solution are often
approximated by piecewise constant structures with many jumps resem-
bling a stair structure. For this reason many modifications and variants of
total variation regularization have been investigated in recent decades. An
immediate option is that of higher-order total variation approaches, which
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Modern regularization methods for inverse problems 13

formally replace the one-norm of the gradient with the one-norm of a higher-
order derivative such as the Laplacian, the Hessian or the symmetric part of
the Hessian (e.g. Scherzer 1998, Chan, Esedoglu and Park 2010, Hinterber-
ger and Scherzer 2006, Papafitsoros and Schönlieb 2014). The disadvantage
of such an approach is that solutions of the regularization model will be
too regular and discontinuity sets (edges) are lost. In view of (3.12) such
approaches can be characterized by C not being a bounded set in L∞(Ω),
but rather being derivatives of bounded measurable functions.

An alternative model trying to take advantage of total variation and
higher-order total variation is a decomposition into two or more parts,
that is, u = u1 + u2 with u1 and u2 being regularized differently. This
was proposed for the first time by Chambolle and Lions (1997) as an in-
fimal convolution of first- and second-order total variations; the effective
regularization functional is given by

J(u) = inf
u1+u2=u

(|u1|BV + |∇u2|BV ).

The TGV-type models, proposed by Bredies, Kunisch and Pock (2010),
became a popular alternative. Instead of decomposing u, these instead
decompose the gradient measure Du into Du1 and some vector field u2.
One version of the regularization functional is then given by

J(u) = inf
Du1+u2=Du

(|u1|BV + |u2|BV ).

The fact that the higher-order part is an arbitrary vector field provides
additional freedom that can be beneficial compared to the infimal con-
volution model (Bredies and Holler 2015a, Benning, Brune, Burger and
Müller 2013, Grah 2017). We also mention that the original TGV model
in Bredies et al. (2010) does not use a bounded variation model for u2, but
only bounded deformations, that is, the symmetric part of the gradient.
Moreover, the approach can be formulated for arbitrary order of regulariza-
tion. In the dual formulation (3.12) approaches such as infimal convolution
or TGV still lead to C being a subset of the unit ball in L∞(Ω), which
implies

J(u) ≤ |u|BV for all u ∈ BV (Ω).

On the other hand, for many of them a lower bound inequality can be shown
at least when excluding a low- (finite-) dimensional null space (Benning
et al. 2013), that is, there exists a positive constant c and some linear
functionals `i such that

J(u) ≥ c|u|BV for all u ∈ BV (Ω), such that `i(u) = 0, i = 1, . . .M.

Hence, J is an equivalent norm on the subspace of BV excluding the
null space. For the combination of first- and second-order derivatives the
null space naturally consists of piecewise affine functions (thus M = d +
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14 M. Benning and M. Burger

1). For further discussion and advanced aspects we refer to Bredies et al.
(2010), Benning et al. (2013), Ranftl, Pock and Bischof (2013), Bredies
and Holler (2014, 2015a, 2015b), Burger, Papafitsoros, Papoutsellis and
Schönlieb (2015b, 2016c), Bergounioux (2016), Setzer, Steidl and Teuber
(2011), Holler and Kunisch (2014), Gao and Bredies (2017) and Bergouni-
oux and Papoutsellis (2018).

In certain cases it is also interesting to use total variation regularization
on some transform of the image. Motivated by research in image analysis
taking into account orientations via local Radon transforms (Krause, Alles,
Burgeth and Weickert 2016), Burger, Müller, Papoutsellis and Schönlieb
(2014) investigated total variation regularization on the Radon transform,
combined with total variation on the image itself, to promote piecewise
constant images with very thin structures resembling lines. Grah (2017)
investigated total variation on the spherical Radon transform (equivalent to
circular Hough transform in computer vision) in order to reconstruct small
circular structures.

Another variant is total variation regularization for vector fields, for ex-
ample arising for colour images (Bresson and Chan 2008, Blomgren and
Chan 1998), flow fields (Hinterberger, Scherzer, Schnörr and Weickert 2002,
Zach, Pock and Bischof 2007) or joint reconstruction problems (Knoll et al.
2017). While many aspects remain the same as in the scalar case, it is par-
ticularly interesting to consider which matrix norm should be used for Du,
and which dual norm for g (observing that this becomes a matrix in (3.12)).

3.2. Sparsity regularization

Total variation regularization, in particular its discrete version, can be in-
terpreted as a functional favouring sparsity, in this case of the gradient.
The paradigm of sparsity has developed in parallel to the total variation
regularization (Donoho 1992). A key insight driving sparsity priors was
the (approximate) sparsity of signals and natural images in wavelet bases
(Mallat and Zhang 1993, Huang and Mumford 1999, Mallat 2008, Starck,
Murtagh and Fadili 2010). Further improvements were made by replacing
the orthonormal bases with frames (Christensen 2003) such as curvelets
(Candès and Donoho 2000a, 2000b) or shearlets (Labate, Lim, Kutyniok
and Weiss 2005, Guo and Labate 2007, Kutyniok and Labate 2012).

Sparsity is naturally measured by the `0-norm,1 the number of non-zero
entries. Since the minimization of the `0-norm is highly non-convex and even
NP-complete, it is usually relaxed to the convex `1-norm. In the analysis
formulation a frame system φi is used to test sparsity of 〈u, φi〉, and the

1 The `0-norm is not a norm in the traditional sense, but is often referred to as such
because it arises as the limit of the `p-norm for p→ 0.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492918000016
Downloaded from https://www.cambridge.org/core. Cambridge University Main, on 24 May 2018 at 16:00:14, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492918000016
https://www.cambridge.org/core


Modern regularization methods for inverse problems 15

corresponding regularization functional is given by

J(u) =
∑
i

|〈u, φi〉|. (3.14)

If (φi) is an orthonormal system, this is equivalent to the synthesis formu-
lation, which is based on writing

J(u) =
∑
i

|ci| where u =
∑
i

ciφi. (3.15)

Note that in general the two formulations may differ for frames (Elad, Mil-
anfar and Rubinstein 2007).

In the synthesis formulation we can effectively define the variational prob-
lem on the coefficient vector c, that is,

K̃ : `2(N)→ V, c 7→
∑
i

ciKφi,

and compute

û =
∑
i

ĉiφi, ci ∈ arg min
c

F (K̃c, f) + α|c|1.

The corresponding optimality condition is given by

(K̃∗∂xF (K̃c, f))i + αsi = 0,

where si is a multivalued sign of ci, that is, an element of [−1, 1] for ci = 0.
If K̃ is a bounded linear operator on `2(N), then its adjoint maps into the
same space, and hence (si) ∈ `2(N). This implies in particular that |si| < 1,
hence ci = 0, for i sufficiently large. Thus, we always obtain some sparsity
with this model.

In the analysis formulation the optimality condition is instead given by

K∗∂xF (Ku, f) + αsiφi = 0,

where si is a multivalued sign for 〈u, φi〉. Here the understanding of the
sparsity property is more complicated: the si are actually related to the
residual via the linear system∑

j

〈φi, φj〉sj = − 1

α
〈Kφi, ∂F (Ku, f)〉.

We refer to Vaiter et al. (2013a, 2013b) for a detailed analysis in this case.
Sparsity models for inverse problems have been studied with different frames
and applications extensively in the past decade (e.g. Cotter, Rao, Engan and
Kreutz-Delgado 2005, Chaux, Combettes, Pesquet and Wajs 2007, Colonna,
Easley, Guo and Labate 2010, Recht, Fazel and Parrilo 2010).
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16 M. Benning and M. Burger

There are several relevant extensions of sparsity priors to multidimen-
sional systems, in particular via a synthesis-type formulation:

u =
∑
i,j

cijφi ⊗ ψj .

The different dimensions are often space (characterized by basis functions
φi) and time or frequency (characterized by basis functions ψj). Instead
of overall sparsity, more detailed prior knowledge can be introduced. The
most popular example is joint or collaborative sparsity, which means that
only a few of the basis functions, for example in the second dimension, can
be used to explain the solution. This means that c·j vanishes for most j, as
does the norm of c·j . A common regularization for this case is the joint or
collaborative sparsity prior

J(u) =
∑
j

‖c·j‖`r ,

usually with r = 2 or r =∞ (Duarte et al. 2005, Teschke and Ramlau 2007,
Fornasier and Rauhut 2008, Gholami and Siahkoohi 2010, Lee, Kim, Bresler
and Ye 2011). An alternative type of prior knowledge is local sparsity, which
means that for each i only a few basis functions ψj are used. The term local
is due to an imaging interpretation of the φi as basis functions local in space
(e.g. for each pixel). This is a common issue in dynamic or spectral imaging,
where one can assume that only a few materials and their characteristic
evolutions or spectral curves can be found in each pixel. A regularization
functional proposed for this issue (Heins, Moeller and Burger 2015) is

J(u) = max
i
‖ci·‖`1 + β

∑
i

‖ci·‖`1 .

An infinite-dimensional extension of the above sparsity models is sparsity
in a space of Radon measures, that is, the regularization functional is given
as the total variation norm of the measure u:

J(u) =

∫
Ω

d|u| = sup
g∈C0(Ω),‖g‖∞≤1

∫
Ω
g du.

This yields a convex regularization functional for reconstructing multiple
peaks at unknown locations, and was proposed for inverse problems in
Bredies and Pikkarainen (2013) and for super-resolution problems in Candès
and Fernandez-Granda (2013, 2014) and Aja-Fernandez, Alberola-Lopez
and Westin (2008). The reconstruction properties in deconvolution prob-
lems were analysed in Duval and Peyré (2017a, 2017b) and Denoyelle, Duval
and Peyré (2017), and asymptotics from finite-dimensional problems with
sparsity priors are found in Heins (2014) and Duval and Peyré (2017a,
2017b).
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3.3. Low-rank regularization

In many applications one seeks a decomposition of the form

U =
∑
i

Φi ⊗Ψi (3.16)

with unknown Φi,Ψi and the additional prior knowledge that there are as
few elements as possible in the sum. In a finite-dimensional setting this
means that the matrix U has low rank, that is, the rank of U would be the
obvious regularization functional. However, since the rank is very far from
being convex, several relaxations have been proposed instead. The most
popular one, originally proposed for matrix completion problems, is the
nuclear norm (Candès and Recht 2009, Recht, Fazel and Parrilo 2010, Cai,
Candès and Shen 2010, Cai and Osher 2013, Yang, Ma and Osher 2013)

‖U‖∗ =
∑

σi, (3.17)

where σi are the singular values of U .
In many applications the low-rank part alone does not suffice to model

the structure of solutions, frequently a low-rank plus sparsity (L+S) model
is employed instead (Candès, Li, Ma and Wright 2011, Otazo, Candès and
Sodickson 2015), which is again based on the decomposition

J(u) = inf
u1+u2=u

(‖u1‖∗ + ‖Tu2‖1), (3.18)

with a sparsifying transform T (often some derivative as in total variation).
Particularly in videos the low-rank part captures background and certain
slow dynamics, while the sparse part captures the key changes.

For inverse problems an infinite-dimensional function space setting would
be more appropriate, which has not yet been investigated. In particular, a
formulation in a space of trace class operators between Hilbert spacesH1 and
H2 (Reed and Simon 1978) would be natural. Let us mention that the choice
of Hilbert spaces Hi opens novel opportunities for improved regularization
that have not been exploited as yet, even in the finite-dimensional case.

3.4. Infimal convolutions

As we have seen above, infimal convolution is a versatile tool to combine
different regularization approaches, and to define a novel functional that
combines their advantages. We want to emphasize this approach in the
following by providing formal definitions.

Definition 3.1. Let Ji : U → R ∪ {+∞}, i = 1, 2 be proper convex
functionals. Then their infimal convolution J1�J2 : U → R ∪ {+∞} is
defined by

(J1�J2)(u) = inf
v∈U

(J1(u− v) + J2(v)). (3.19)
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18 M. Benning and M. Burger

More generally, we can define an infimal convolution for an arbitrary
number of convex functionals.

Definition 3.2. Let Ji : U → R ∪ {+∞}, i = 1, . . . ,M be proper convex
functionals. Then their infimal convolution J : U → R∪{+∞} is defined by

J(u) = inf
ui∈U ,

∑
ui=u

M∑
i=1

Ji(ui) (3.20)

We mention that a priori it is unclear whether the infima above are ac-
tually minima. If a minimizer v exists for the infimal convolution of J1 and
J2, it can be used to deduce optimality conditions, since

p ∈ ∂J(u) if p ∈ ∂J1(u− v) ∩ ∂J2(v).

As the above examples for sparsity and in particular higher-order total vari-
ation show, there is great freedom in designing infimal convolution models
for regularization. Consequently, a lot of options for future research remain
open, and interesting results are still to be expected.

3.5. Regularization by denoising

Romano, Elad and Milanfar (2017) recently proposed an approach named
regularization by denoising, where J is of the form

J(u) = 〈u, u−D(u)〉.
Here D is a potentially nonlinear operator that maps an image u to the
output of a black-box image denoising routine. The idea is to make state-
of-the-art denoising routines available for the regularization of linear inverse
problems.

3.6. Bregman distances

From a single regularization functional several variants can be constructed
by using a non-trivial prior u0 and the so-called Bregman distance (originally
introduced in Bregman (1967) for proximal-point-type methods). Instead of
shifting the functional directly from J(u) to J(u− u0), the approach in the
Bregman distance performs a shift in the convex conjugate. In the original
formulation this amounts to the following.

Definition 3.3. Let J : U → R ∪ {+∞} be a convex functional and let
p0 ∈ ∂J(u0). Then the Bregman distance between u ∈ U and u0 ∈ U with
subgradient p0 is given by

Dp0
J (u, u0) := J(u)− J(u0)− 〈p0, u− u0〉 (3.21)

Note that the Bregman distance is not a strict distance, that is, it can
vanish for u 6= u0 if J is not strictly convex. It is also not symmetric, but
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can be made symmetric by taking a sum of one-sided distances (see Burger
2016 for a more detailed discussion). For absolutely one-homogeneous reg-
ularization functionals as above, the identity J(u0) = 〈p0, u0〉 holds, so the
Bregman distance becomes

Dp0
J (u, u0) := J(u)− 〈p0, u〉, (3.22)

and thus it is effectively independent of u0: only the subgradient p0 matters.
This is particularly relevant if the subdifferential of J is not a singleton, or
vice versa a subgradient p0 ∈ ∂J(u0) can be an element of the subdifferential
also at other values of u.

Note that in the typical case of u0 = 0 being a minimizer of J , that is,
0 ∈ ∂J(0), the regularization with J can be reinterpreted as penalizing the
Bregman distance to u0 = 0. Bleyer and Leitao (2009) carried out a basic
analysis of such a variational regularization. The topic has received recent
interest, particularly in the context of TV-type regularization in imaging,
since it allows us to introduce structural information. The key insight in
total variation is that the subgradient encodes information about the dis-
continuity set, more precisely p = ∇ · g, with g being equal to the unit
normal vector to the discontinuity set where it is regular. This is again
related to (3.22); the total variation does not depend directly on u0 and in
particular the contrast in the image. Instead, it vanishes for all u of the
form

u(x) = f(u0(x))

with a monotonically increasing function f , that is, a simple contrast change
(Resmerita and Scherzer 2006). Assuming that g is a vector field realizing
the supremum in the dual definition of the total variation, the Bregman
distance becomes

Dp0
TV (u, u0) = |u|BV −

∫
Ω

(∇ · g0)udx =

∫
Ω

(∇ · (g − g0))udx,

and if u is piecewise constant with regular discontinuity set Su,

Dp0
TV (u, u0) =

∫
Su

[u](g − g0) · ν dσ =

∫
Su

[u](1− g0 · ν) dσ,

where [u] denotes the jump along Su and ν is the unit normal (oriented
such that [u] is positive). One thus observes that the Bregman distance
measures differences in the discontinuity set and its orientation, which is
perfect for imaging applications with a structural prior (Kaipio, Koleh-
mainen, Vauhkonen and Somersalo 1999) that mainly yields information
about edges, i.e. discontinuity sets. One suitable example is that of ana-
tomical priors in medical imaging, where a high-resolution method such as
CT or MR is used to obtain information about organ boundaries and other
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20 M. Benning and M. Burger

anatomical features, which are the natural candidates for edge sets in func-
tional methods such as PET, SPECT or MR imaging with special contrast.
In some cases a joint reconstruction is also of interest, the most obvious case
being colour or hyperspectral images, where naturally intensity changes at
the same locations, usually even in the same direction (Moeller, Wittman,
Bertozzi and Burger 2012, Moeller, Brinkmann, Burger and Seybold 2014).

In some applications one may find contrast inversion, that is, the jump of
the two images along the discontinuity set has a different sign. In such cases
the normals are parallel, which means they point in opposite directions and
hence lead to large values in the Bregman distance. A potential solution
for avoiding such issues is the infimal convolution of Bregman distances, in
this case with the two normal fields and thus subgradients of opposite sign
(Moeller et al. 2014, Rasch et al. 2017):

J = Dp0
TV (·, u0)�D−p0TV (·,−u0).

We also mention some other related approaches to modifying total variation
functionals, such as parallel level set models (Ehrhardt and Arridge 2014,
Ehrhardt et al. 2014, Ehrhardt et al. 2016), which can be related to the
Bregman distance for total variation (Rasch, Brinkmann and Burger 2018),
or directional / structural total variation (Bungert et al. 2018, Ehrhardt
and Betcke 2016, Hintermüller, Holler and Papafitsoros 2017, Grasmair and
Lenzen 2010), formally

TVg0(u) =

∫
Ω
|(I − g0 ⊗ g0)∇u| dx.

4. Fundamentals of nonlinear regularization

Before discussing the detailed analysis of nonlinear regularization methods,
we first aim to provide a suitable basis for understanding regularization
methods and their convergence. We start with the case of linear regular-
ization methods in Hilbert spaces, recalling the abstract theory from Engl
et al. (1996), and then try to work out a suitable analogue for the nonlinear
case in Banach spaces.

4.1. Abstract linear regularization methods

We start our exposition with a discussion of possible limits of regularization
schemes. In essentially all linear methods such as Tikhonov regularization,
truncated SVD or iterative regularization in Hilbert spaces, it is clear which
solutions are approximated as the regularization parameter tends to zero,
namely those obtained from a generalized inverse. The following definitions
are made to characterize these limiting solutions.
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Definition 4.1. Let K : U → V be a bounded linear operator between
Hilbert spaces and f ∈ V. We call û ∈ U a best approximate solution of
(1.1) if

‖Kû− f‖V ≤ ‖Ku− f‖V for all u ∈ U . (4.1)

Moreover, we call û a minimal norm solution if it is a best approximate
solution and

‖û‖U ≤ ‖u‖U for all u ∈ U , ‖Kû− f‖V = ‖Ku− f‖V . (4.2)

Note that due to the strict convexity of the square of a Hilbert space
norm, the minimum solution – being its minimizer on a linear manifold – is
a unique object. An abstract regularization method is now a collection of
continuous operators approximating the (discontinuous) generalized inverse
of K.

Definition 4.2. The bounded linear operators Rα : V → U defined for α
in (0, α0) are called linear regularization operators. Together with a para-
meter choice strategy α depending on the noise level δ and the data f δ,
that is, a function

α : (0, δ0)× V → (0, α0), (4.3)

it is called the linear regularization method.
A linear regularization method is called convergent if, for all f ∈ R(K),

the condition

lim
δ→0

sup{‖Rα(δ,fδ)(f
δ)− u†‖U | f δ ∈ V, ‖f − f δ‖V ≤ δ} = 0 (4.4)

holds with u† being the minimum norm solution of (1.1).

For ill-posed problems it is well known that convergence can be arbitrarily
slow (Schock 1985). Thus convergence rates can be obtained only on a
restricted subset Mν with the parameter ν > 0 measuring the smoothness
or order of convergence. The standard definition is as follows.

Definition 4.3. A regularization method is convergent at order ν on a set
Mν if, given any f = Ku†, for u† ∈ Mν , there exists a constant Cν such
that

‖Rα(δ,fδ)(f
δ)− u†‖ ≤ Cνδν (4.5)

for any data f δ satisfying ‖f δ − f‖ ≤ δ.
It is well known that the set Mν can be related to the source condition

u† = (K∗K)µw

for some w ∈ U and appropriate µ > 0 related to ν (Engl et al. 1996). The
constant Cν is then related to the norm of w. The simplest cases of source
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conditions are µ = 1/2, which can be reformulated as

u† = K∗w̃,

for some w̃ ∈ V, and µ = 1. Source conditions induce conditional well-
posedness of the problem, e.g. for µ = 1/2, one has for ui = K∗w̃i

‖u1 − u2‖2 = 〈u1 − u2,K
∗(w̃1 − w̃2)〉 = 〈K(u1 − u2), w̃1 − w̃2〉.

The Cauchy–Schwarz and triangle inequality then imply the Hölder stability

‖u1 − u2‖ ≤ C
√
‖Ku1 −Ku2‖,

with C =
√
‖w̃1‖+ ‖w̃2‖.

4.2. Extension to nonlinear methods

The examples of variational regularization models in the previous section
call for a more general theory of nonlinear regularization methods. While
the concept of a best-approximate solution is fairly straightforward to gen-
eralize, other aspects of convergence and limiting solutions are less obvious.
In a general variational regularization, as in the examples discussed above, it
would be natural to replace the minimum norm solution with a solution min-
imizing the regularization functional. The latter is not necessarily unique,
however, hence some possible multivaluedness needs to be introduced in the
characterization. Similar issues apply to the regularized problem and hence
the definition of a regularization operator. In the following we will try to
provide a fundamental setting for nonlinear regularization methods. As in
the case of linear regularizations we first generalize the possible types of solu-
tions we would like to approximate. The generalization of the first notion is
fairly straightforward, so we only allow for more general distance measures,
for example functionals related to negative log-likelihoods for non-Gaussian
distributions.

Definition 4.4. Given an error measure F : V ×V → R+∪{+∞}, we call
û ∈ U a best approximate solution of (1.1) with respect to F if

F (Kû, f) ≤ F (Ku, f) for all u ∈ U . (4.6)

A suitable generalization of the definition of a minimum norm solution is
more involved. In particular, we would like to give a unified concept includ-
ing the selection by minimizing a regularization functional or maximizing
some prior probability. We encode the selection of specific solutions due to
prior knowledge in a (multivalued) selection operator.

Definition 4.5. A multivalued operator S : R(K) ⇒ U is called a se-
lection operator if S(Ku) ⊂ u + N (K) for all u ∈ U . A best approximate
solution û is called a prior selected solution of (1.1) if and only if û ∈ S(Kû).
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The general set-valued definition of a selection operator, which we use in
order to take care of all the possible cases in regularization methods, also
needs to use set-valued ways of convergence. Hence we recall the definition
of Kuratowski convergence in a metric space.

Definition 4.6. Given a metric space X with metric d, we abuse notation
by defining

d(u, S) := inf
v∈S

d(u, v), (4.7)

for x ∈ X and S ⊂ X. Then the Kuratowski limit inferior and the Kur-
atowski limit superior of a sequence of sets Sn ⊂ X are defined as follows:

K − lim inf
n

(Sn) = {x ∈ X | lim sup
n

d(x, Sn) = 0}, (4.8)

K − lim sup
n

(Sn) = {x ∈ X | lim inf
n

d(x, Sn) = 0}. (4.9)

For our purposes the lim sup will be of particular interest, because we
will use a minimal definition of stability often adopted in the literature on
nonlinear methods following Seidman and Vogel (1989) and Engl, Kunisch
and Neubauer (1989). Stability is expressed by subsequences of selected
solutions having a limit, and each limit of a subsequence being a solution
of the limiting problem. The lim inf is less interesting, since there is no
reason to ask that any solution of a problem can be the limit of approximate
problems. We call an inverse problem stable if, for fn → f (usually in terms
of norm convergence in V), we have

K − lim sup
n
S(fn) ⊂ S(f), K − lim sup

n
S(fn) 6= ∅. (4.10)

The metric used for the Kuratowski lim sup will usually be a metrization
of some weak or even weak-star convergence in a Banach space; one might
also use an extension of the definition to other distance measures.

Having defined the solutions we would like to approximate, the obvious
next step is to define a (convergent) regularization method. We start in
a deterministic setting, generalizing to a vectorial regularization parameter
α ∈ RM+ , however, which is useful in many examples, for example the TGV
and infimal convolution models with multiple parameters mentioned above.
Given an error measure F and f = Ku† for some exact solution u† ∈ U , we
call δ > 0 the noise level if it is the best available bound for available data
f δ, that is,

F (f, f δ) ≤ δ. (4.11)

We will be interested in the convergence of regularized solutions to prior
selected solutions as the noise level tends to zero. For ease of presentation
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and since this is available in almost any known example, we restrict ourselves
to convergence with respect to a metric topology τ , which is usually a weak
or weak-star topology (on some bounded set in the Banach space).

Definition 4.7. The multivalued operators R(·,α) : V ⇒ U defined for α
in a subset A of RM are called regularization operators if, for each α ∈ A,
the operator R satisfies the stability property

∅ 6= K − lim inf
n

R(f δn ,α) ⊂ R(f δ,α) (4.12)

for all f δ ∈ V and sequences f δn ∈ V converging to f δ. Together with a
parameter choice strategy α depending on the noise level δ and the data
f δ, that is, a function

α : (0, δ0)× V → A, (4.13)

it is called a regularization method.
A regularization method is called convergent if, for any sequence δn → 0

and data f δn satisfying

F (f, f δn) ≤ δn, (4.14)

we have

∅ 6= K − lim inf
n

R(f δn ,α(δn, f
δn)) ⊂ S(f). (4.15)

We mention that – besides the very general set-up – our definition of a reg-
ularization method deviates from the usual theory, since we do not assume
any kind of convergence of the regularization parameter α. In the classical
theory and most examples, α is a scalar positive value and assumed to con-
verge to zero (or to infinity) as the noise level tends to zero. However, apart
from the convenience there seems to be no reason to put such convergence
into the definition. Note that in order to approximate a really ill-posed
problem, each clustering point of α(δn, f

δn) will automatically lie outside
A. The canonical examples are A = (0, α0) for variational regularization or
A = N for iterative regularization, where the limiting parameter will con-
verge to zero or infinity. However, we may also consider multi-parameter
regularization, where it depends on the formulation whether each compon-
ent of α has a limit outside the admissible set. Take for example an infimal
convolution of two functionals R1 and R2. If α = (α1, α2) are the coeffi-
cients of R1 and R2, then obviously both should tend to zero in the limit.
If, however, α2 is a relative parameter, that is, α1 is the coefficient of R1

and α1α2 the coefficient of R2, then it is natural to have a positive limit
of α2. Further motivation for our general definition comes from recent ap-
proaches to learning regularization methods for inverse problems, where the
α can represent the parameters of the learning scheme. To get a consist-
ent infinite-dimensional theory one could even generalize to non-parametric
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learning, which would amount to choosing α in some Banach space. Note
that in the remainder of this article we will often write α instead of α if α
is only a scalar.

In order to define convergence rates we will also need an error measure
D : U ×U → R+ ∪ {+∞}, since there is no natural norm measure as in
the Hilbert space. Moreover, we need a restriction to appropriate classes of
smoothness, which we denote by Mν with a parameter ν > 0 measuring the
smoothness.

Definition 4.8. A regularization method is called D-convergent if

lim
δ→0

sup{D(uαδ , u
†) | uαδ ∈ R(f δ,α), f δ ∈ V, F (f, f δ) ≤ δ} = 0. (4.16)

A regularization method is called convergent at order ν on a set if, for
all f = Ku†, u† ∈ Mν , there exists a constant Cν such that, for all data g
satisfying (4.11), we obtain the estimate

D(R(f δ,α(δ, f δ)), u†) ≤ Cνδν . (4.17)

Of course the above definition only makes sense for suitable choices of the
distance functional and smoothness classes. Remember that in the classical
linear Hilbert space theory, these were just norms and spaces obtained by
source conditions. We will discuss generalizations of these in the nonlin-
ear setting, in particular related to variational and iterative regularization
methods in Banach spaces related to convex regularization functionals. Note
also that more general rates than just polynomial ones have been considered
in the literature (e.g. Hohage 1997, Kaltenbacher 2008).

From an abstract point of view the key insight for generalizing source
conditions is the range of the regularization operator. For many linear reg-
ularization methods in Hilbert spaces, it is easy to see that the source con-
dition u† = K∗w̃ means that there exist some data f † with u† = R(f †,α).
As examples, take Tikhonov regularization:

R(·,α) = (K∗K + αI)−1K∗ = K∗(KK∗ + αI)−1.

Due to the invertibility of (KK∗+αI)−1, the range of the regularization op-
erator coincides with the range of K∗. Instead of defining source conditions
at an abstract level, we thus make the following definition.

Definition 4.9 (range condition). An element u† ∈ S(f,α) for f ∈
R(K) satisfies the range condition if u† ∈ R(R(·,α)), that is, there exists

f †α such that

u† ∈ R(f †α,α).

We mention that in the case of nonlinear variational methods (with quad-
ratic fidelity), the equivalence of a nonlinear source condition and the range
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condition was shown in Burger and Osher (2004), again confirming the ap-
propriateness of this definition.

Roughly speaking, error estimates can now be obtained by some continu-
ity property of the regularization operator, which implies

dU (uδα, u
†) ≤ C(α)dV(f δ, f †α),

with appropriate distances dU and dV . With some kind of triangle inequal-
ity the right-hand side can be estimated by a distance between f and f δ,

which is related to the noise level as well as a distance between f and f †α,
which is related to the bias of the regularization. This will be discussed
in detail for the case of variational regularization methods in Section 5.
A weaker concept is that of approximate source conditions (e.g. Schuster,
Kaltenbacher, Hofmann and Kazimierski 2012, Burger, Helin and Kekkonen
2016b) that effectively measure how well the range condition can be approx-

imated. On the other hand stronger conditions can be obtained if f †α above
is not arbitrary but in the range of the forward operator K.

4.3. Stochastic approaches

In addition to the deterministic viewpoint, a statistical approach has re-
cently become popular in infinite-dimensional problems as well (Bissantz,
Hohage and Munk 2004, Bissantz, Hohage, Munk and Ruymgaart 2007,
Cavalier 2008, Kekkonen, Lassas and Siltanen 2014, Giné and Nickl 2015,
Hohage and Werner 2016). In such a set-up the data f δ are considered to be
random variables drawn from a measure µf centred around the exact data f
(often representing the expected value and δ being some kind of variance).
A regularization operator can then still be applied to each realization and
defined in the same way, but we need a different definition of the noise level
and the convergence of the regularization method. As a generalization of
variance we use the statistical noise level in the mean

E(F (f, f δ)) = δ. (4.18)

Definition 4.10. A regularization operator R with a parameter choice
strategy α depending on the statistical noise level δ and the data f δ, that is,
a function

α : (0, δ0)× V → A, (4.19)

is called a statistical regularization method.
A statistical regularization method is called convergent if, for all sequences

δn → 0, random variables f δn satisfying

E(F (f, f δn)) ≤ δn, (4.20)
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and each choice of random variables un ∈ Rαn(f δn), there exists a con-
vergent subsequence unk in probability in the topology τ , and the limiting
random variable u† satisfies u† ∈ S(f) with probability one.

An extension of this viewpoint is the Bayesian approach to inverse prob-
lems, which deals not only with point estimates but with an analogous ques-
tion for the full posterior distributions. This topic is beyond the scope of this
survey: we refer to Kaipio et al. (1999), Neubauer and Pikkarainen (2008),
Stuart (2010), Kolehmainen et al. (2012), Castillo et al. (2014), Kekkonen,
Lassas and Siltanen (2016), Burger, Helin and Kekkonen (2016b) and Nickl
et al. (2017) for further details.

5. Variational regularization methods

We now return to (3.1) with the viewpoint as in the previous section, we
show how variational methods define a regularization operator and then
proceed to its further analysis. In this canonical variational regularization
method it is apparent how to choose the best approximate and prior selected
solution according to Definition 4.4. First of all, the distance measure in
the definition of the best approximate solution clearly coincides with the
data fidelity. It is just the solution of the variational problem for α in the
boundary of A, in the simplest case of a scalar regularization parameter,
usually α = 0. Of course, the existence of such an element is not obvious,
so we define an effective range of the forward operator as

RF (K) =

{
f ∈ V

∣∣∣∣ arg min
u∈U ,J(u)<∞

F (Ku, f) 6= ∅
}
. (5.1)

The selection operator is constructed by minimizing the regularization
functional on the set of best approximate solutions. Let f ∈ RF (K); then
we define

S(f,α) = arg min
u∈U

{
J(u,α)

∣∣∣∣ u ∈ arg min
ũ∈U

F (Kũ, f)

}
. (5.2)

Remark 5.1. We want to point out that if α = α is just a scalar, the
selection operator does not depend on α for regularization functionals of
the form J(u, α) = αJ1(u). In this particular case we simply have

S(f) = arg min
u∈U

{
J1(u)

∣∣∣∣ u ∈ arg min
ũ∈U

F (Kũ, f)

}
,

as the minimizer is not affected by multiplication with a positive scalar.
As mentioned above, there are also cases where the selection operator only
requires a subset of the parameters as its argument, for example in the case
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of infimal convolution regularizations of the form

J(u,α) := inf
v
α1(J1(u− v) + α2J2(v)),

for α = (α1, α2) and A = (0,∞) × (0,∞). Here S(f,α) = S(f, α2) only
depends on α2.

We will show below that this selection operator is well-defined under
standard conditions, which are also used to analyse the variational regular-
ization method.

Following up on variational modelling as described in Section 3, we define
a generic variational regularization operator as follows.

Definition 5.2 (variational regularization). Let F : V ×V → R+ ∪
{∞} be continuous with F (f, f) = 0 for all f ∈ RF (K) and J : U ×A →
R ∪ {∞} be proper, lower semicontinuous and convex functionals, and let
K ∈ L(U ,V). Then the potentially set-valued operator R : V ×A ⇒ U
defined as

R(f δ,α) := arg min
u∈U

{F (Ku, f δ) + J(u,α)} (5.3)

is said to be a variational regularization, for fixed regularization para-
meter(s) α ∈ A.

Remark 5.3. We want to emphasize that for convex J , and F that is
convex in its first argument, any uα ∈ R(f δ,α) can equivalently be charac-
terized via the optimality condition of (5.3), that is,

−K∗∂xF (Kuα, f δ) ∈ ∂J(uα,α) (5.4)

for all uα ∈ R(f δ,α).

5.1. Analysis of variational regularization

In the following we will discuss the basic analysis of variational regulariza-
tion methods; again we try to give a fairly general perspective that covers
most of the results in the literature (but due to its generality does not
simply reproduce them). Since we focus on the nonlinear regularization we
will make the assumption that V is a separable Hilbert space. A first key
issue is the existence of minimizers, which of course depends strongly on
the choice of the regularization functional J and possibly also the operator
K and the fidelity F . As usual the key issues are lower semicontinuity and
compactness in some topology. The latter is always obtained by coercivity
in a Banach space norm, which is concluded from the boundedness of the
fidelity and in particular the regularization functional. Consequently, the
type of compactness is always weak or weak-star, since it is derived from
the Banach–Alaoglu theorem (Rudin 2006).

A natural assumption to make for an existence proof is the following.
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Assumption 5.4. Let U = Z∗ for some normed space Z and let the weak-
star topology on U be metrizable on bounded sets. Assume moreover

• K = L∗ for a bounded linear operator L : V → Z,

• J(·,α) = H∗ for some proper functional H : Z → R∪{+∞} and J(·,α)
is non-negative,

• F is a proper, non-negative, convex functional in its first argument, and
continuous in its second argument, and for every g ∈ V there exists u
with

F (Ku, g) + J(u,α) <∞.

• for each g ∈ V and α ∈ A, there exists a constant c = c(a, b, ‖g‖V)
depending monotonically non-decreasing on all arguments such that

‖u‖U ≤ c if F (Ku, g) ≤ a, J(u,α) ≤ b.

Note that the above assumptions on K and F are reminiscent of the
set-up used by Bredies and Pikkarainen (2013) and later by Brinkmann,
Burger, Rasch and Sutour (2017). An alternative set-up is to use a com-
pactness assumption on K or some condition on the range of K. Moreover,
the assumption on J to be the polar of a proper functional implies con-
vexity, which is predominant in most approaches in regularization theory.
With these assumptions we can first verify well-posedness of the selection
operator.

Lemma 5.5. Let Assumption 5.4 be satisfied. Then for every f ∈ RF (K)
the selection operator S is well-defined by (5.2) for every α ∈ A.

Proof. If f ∈ RF (K) then there exists a minimizer u∗ of F (Ku, f) with
J(u∗,α) <∞. Since the minimization in the definition of S can be restricted
to the set of u such that F (Ku, f) = F (Ku∗, f) =: a, we obtain an upper
bound on the fidelity. On this non-empty set we look for u with J(u) ≤
J(u∗) =: b. Thus, for the set of such u, the norm in U is bounded due to
Assumption 5.4 and for each minimizing sequence there exists a weak-star
convergent subsequence un (we can use the metric version of the Banach–
Alaoglu theorem due to the assumption of metrizability on bounded sets).
Moreover, from our assumptions above it is straightforward to see that
J(·,α) is sequentially weak-star lower semicontinuous and F (·, f) is weakly
lower semicontinuous. From our assumption on K being the adjoint of L,
we see that it is continuous from the weak-star topology of U to the weak
topology of V, since for g ∈ V we have

〈Kun, g〉 = 〈un, Lg〉
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and Lg ∈ Z. As a consequence, the full functional F (·, f) + J(·,α) is weak-
star lower semicontinuous. Hence, the weak-star limit of un is a minimizer,
that is, S is not empty.

The next step is to verify well-definedness of the regularization operator.

Theorem 5.6. Let Assumption 5.4 be satisfied. Then for every f ∈ V
the variational regularization model has a minimizer in U for every α ∈ A,
that is, the regularization operator R is well-defined by (5.3). Moreover,
R(f,α) is a convex set.

Proof. In order to obtain an a priori bound, we use the assumption that
there exists ũ with

a := F (Kũ, f) + J(ũ,α) <∞.
Hence, we can restrict the minimization to those u with functional value
less than or equal to a. Setting b = a and using the non-negativity of
both terms, we obtain the boundedness of the norm on this subset due to
Assumption 5.4. The remaining weak-star compactness and lower semicon-
tinuous arguments to verify the existence of a minimizer are analogous to
the proof of Lemma 5.5. The convexity of R(f, α) follows from the convexity
of the set of minimizers of a convex functional.

In order to verify the generalized stability as well as the convergence of
the variational regularization, a further condition on F with respect to the
second variable is needed. There are several options, the easiest one being
satisfied by standard examples such as squared norms is continuity.

Theorem 5.7. Let Assumption 5.4 be satisfied and let F be continuous
with respect to the second variable. Then for α ∈ A and every sequence
fn → f ∈ V there exists a subsequence unk ∈ R(fnk ,α) converging to an
element u∗ ∈ R(f,α) in the weak-star topology.

Proof. By definition of the regularization operator we find for un ∈ R(fn,α)
that, for any u ∈ U ,

F (Kun, fn) + J(un,α) ≤ F (Ku, fn) + J(u,α).

Due to the convergence of fn and the continuity of F in the second ar-
gument, the right-hand side in the last estimate is uniformly bounded by
some constant a, which again provides uniform bounds for both terms on
the left-hand side. Consequently

‖un‖U ≤ c(a, a, ‖fn‖V).

The boundedness of ‖fn‖V and monotone dependence of c yields a uniform
bound on ‖un‖U , thus a weakly converging subsequence. Using lower semi-
continuity arguments as in the results above and the continuity of F with
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respect to the second variable, we see that for the limit u∗ the inequality

F (Ku∗, f) + J(u,α) ≤ lim inf F (Kunk , fnk) + J(unk ,α)

≤ limF (Ku, fnk) + J(u,α)

= F (Ku, f) + J(u,α).

Hence u∗ ∈ R(f,α).

As mentioned earlier, the type of convergence in Theorem 5.7 corresponds
exactly to the type of stability in the Kuratowski limit superior. We finally
provide a comment on the convergence of the regularization method. The
proof is very similar to the stability result, and an a priori bound is obtained
by the estimate

F (Kuα, f δ) + J(uα,α) ≤ F (Ku†, f δ) + J(u†,α) ≤ δ + J(u†,α)

for uα ∈ R(f δ,α) and any element u† ∈ S(f,α). Depending on the specific
dependence on α, some condition on the interplay of the noise level and the
limit of α is needed in order to pass to the limit in

J(uα,α) ≤ δ + J(u†,α).

An abstract condition as α converges to α∗ outside A is

lim
α→α∗

δ

J(u†,α)
= 0,

in which case

lim sup
α→α∗

J(uα,α)

J(u†,α)
≤ 1.

In the standard case J(u,α) = αJ(u) the condition is simply δ/α → 0.
Hence, for such parameter choices, variational regularization methods in-
deed define convergent regularization operators.

5.2. Error estimates

When it comes to the solution of ill-posed, inverse problems, an important
question to address is the question of how errors in the measurement data are
being propagated in the regularization process; in particular, convergence
with respect to the noise level δ and the rate of convergence are of major
interest. Following up on Definition 4.8, we look into D-convergence in the
case of D being a Bregman distance.

In order to derive error estimates, we restrict ourselves to the following
smoothness class Mν . Given some unknown ground truth solution u† ∈
S(f,α), we ensure u† ∈ R(R(·,α)), that is, we have to ensure that there

exists data f †α such that u† ∈ R(f †α,α) is a solution of the corresponding
variational regularization problem.
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32 M. Benning and M. Burger

Definition 5.8 ((variational) range condition). We say an element
u† ∈ S(f,α) for f ∈ RF (K) satisfies the range condition if u† ∈ R(R(·,α)).
If K ∈ L(U ,V), F is convex and Fréchet-differentiable with respect to its
first argument, and J(·,α) is proper, convex and lower semicontinuous, then

this is equivalent to the existence of p† ∈ ∂J(u†,α) and f †α ∈ V such that

p† = −K∗∂xF (Ku†, f †α). (RC)

From now on we assume K ∈ L(U ,V), convexity and Fréchet-differen-
tiability of F in its first argument, and properness, convexity and lower
semicontinuity of R(·,α) for the remainder of this section, which will allow
us to use an appropriate optimality condition.

Let us sketch the basic idea in the case of a quadratic fidelity F (f, g) =
1
2‖f − g‖2 with some norm in a Hilbert space and J(u,α) = αJ(u). The
optimality condition (3.1) is given by

K∗(Kuα − f δ) + αpα = 0, pα ∈ ∂J(uα).

In order to satisfy the range condition for u† we need to assume the existence

f †α such that p† ∈ ∂J(u†) and

K∗(Ku† − f †α) + αp† = 0.

We see that this equation implies the condition p† = K∗v for some v (noting
K∗(Ku† − f †) = 0). On the other hand, if this condition is satisfied we

can construct f †α = f − αv, that is, p† = K∗v is equivalent to the range
condition (RC). An error estimate can then be obtained by subtracting
both optimality conditions

K∗K(uα − u†) + α(pα − p†) = K∗(f δ − f †α).

Taking a duality product with uα − u† yields

‖K(uα − u†)‖2 + αDpα

J (u†, uα) + αDp†

J (uα, u†) = 〈K(uα − u†), f δ − f †α〉.
Applying Young’s inequality on the right-hand side and inserting the special

form of f †α then immediately yields an error estimate (Burger 2016). Note
that we obtain an upper bound on the residual as well as the symmetric
Bregman distance

Dsymm
J(·,α)(u

†, uα) = Dpα

J(·,α)(u
†, uα) +Dp†

J(·,α)(u
α, u†). (5.5)

For further interpretations of the error estimates see Burger and Osher
(2004), Burger, Resmerita and He (2007b), Resmerita and Scherzer (2006)
and Burger (2016).

We now want to show that (RC) coincides with the well-known source
condition (Chavent and Kunisch 1997, Burger and Osher 2004) for a certain
class of fidelity functionals. Before we proceed, we have to define this source
condition first.
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Definition 5.9 (source condition). An element u† ∈ S(f,α) for f ∈
RK(F ) satisfies the source condition if

R(K∗) ∩ ∂J(u†,α) 6= ∅.
This is equivalent to the existence of p† ∈ ∂J(u†,α) and v ∈ V∗ \{0} such
that

p† = K∗v. (SC)

Remark 5.10. For scalar regularization parameters α = α and regular-
ization functionals of the form J(u, α) = αJ1(u), the source condition for
α = 1 can be written as K∗v ∈ ∂J1(u†) = ∂J(u†, 1). Every other potential
source condition K∗vα ∈ ∂J(u†, α) can be expressed in terms of v via the
relation vα = αv.

It is obvious that (RC) implies (SC). However, we want to go one step
further and show that (RC) and (SC) are actually equivalent conditions
for fidelity functionals F (Ku, f δ) := G(Ku − f δ), where G is a Legendre
functional. Legendre functionals are defined as follows.

Definition 5.11 (Bauschke, Borwein and Combettes 2001, Defini-
tion 5.2). Let G : V → R ∪ {∞} be a proper, convex and lower semicon-
tinuous functional. We say that G is

• essentially smooth if ∂G is both locally bounded and single-valued on its
domain,

• essentially strictly convex if (∂G)−1 is locally bounded on its domain and
G is strictly convex on every convex subset of dom(∂G),

• Legendre if G is both essentially smooth and essentially strictly convex.

Now we show that (RC) and (SC) are equivalent when G is a Legendre
functional.

Theorem 5.12. Let V be reflexive, and suppose F (f, f δ) := G(f − f δ)
for any f, f δ ∈ V, where G : V → R ∪ {∞} is a Legendre functional. Then
(RC) and (SC) are equivalent conditions.

Proof. ‘⇒’ Condition (RC) trivially implies (SC) if we define

v := −∂xF (Ku†, f †α) = −G′(Ku† − f †α).

‘⇐’ The source condition (SC) can be written as

0 = p† −K∗v,
⇔ 0 = p† +K∗G′((G∗)′(−v)),

where G∗ : V∗ → R ∪ {∞} denotes the convex conjugate of G. Note that
G∗ is also a Legendre functional since V is reflexive (Bauschke, Borwein and
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34 M. Benning and M. Burger

Combettes 2001, Corollary 5.5), and that the last equality is valid for all
v ∈ dom(G) due to Bauschke et al. (2001, Theorem 5.9). Hence, if we define

f †α := Ku† − (G∗)′(−v),

we ensure that the range condition (RC) is satisfied.

The range condition (RC) allows us to derive error estimates in a Breg-
man distance setting for these very generic variational regularization meth-
ods. The following lemma builds the basis by estimating Bregman distances
between uα and u† in terms of differences in data fidelity.

Lemma 5.13. Let (RC) be satisfied. Then we observe

DF (K·,fδ)(u
†, uα) +D

F (K·,f†α)
(uα, u†) +Dsymm

J(·,α)(u
†, uα)

= F (Ku†, f δ)− F (Ku†, f †α) + F (Kuα, f †α)− F (Kuα, f δ) (5.6)

for every uα ∈ R(f δ,α).

Proof. Computing the optimality condition (5.4) of (5.3) and subtracting
p† ∈ ∂J(u†,α) from both sides of the equality yields

pα − p† = −K∗∂xF (Kuα, f δ)− p†,

for any pα ∈ ∂J(uα,α). Taking a duality product with uα− u† then yields

Dsymm
J(·,α)(u

α, u†) = 〈K∗∂xF (Kuα, f δ), u† − uα〉︸ ︷︷ ︸
=F (Ku†,fδ)−F (Kuα,fδ)−D

F (K·,fδ)
(u†,uα)

−〈p†, uα − u†〉.

Hence, we conclude

DF (K·,fδ)(u
†, uα) +Dsymm

J(·,α)(u
α, u†)

= F (Ku†, f δ)− F (Kuα, f δ)− 〈p†, uα − u†〉. (5.7)

If we now choose p† = −K∗∂xF (Ku†, f †α) – which is possible since (RC)
holds true – we obtain the equality

−〈p†, uα − u†〉 = 〈K∗∂xF (Ku†, f †α), uα − u†〉
= F (Kuα, f †α)− F (Ku†, f †α)−D

F (K·,f†α)
(uα, u†). (5.8)

Inserting (5.8) into (5.7) then yields (5.6).

Before we proceed, we make the following observation for data fidelities
F that are also Bregman distances.

Corollary 5.14. Let F : V ×V → R be a Bregman distance, that is,

F (f, f †α) = G(f)−G(f †α)− 〈G′(f †α), f − f †α〉 ≥ 0,
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for all f, f †α ∈ V, and some functional G : V → R. Then we already observe

D
F (·,f†α)

(f, f δ) = F (f, f δ),

for all f, f †α, f
δ ∈ V.

Proof. We simply compute

D
F (·,f†α)

(f, f δ) = F (f, f †α)− F (f δ, f †α)− 〈∂xF (f δ, f †α), f − f δ〉

= G(f)−G(f †α)− 〈G′(f †α), f − f †α〉
−G(f δ) +G(f †α) + 〈G′(f †α), f δ − f †α〉
− 〈G′(f δ)−G′(f †α), f − f δ〉,

= G(f)−G(f δ)− 〈G′(f †α), f − f δ〉
− 〈G′(f δ)−G′(f †α), f − f δ〉,

= DG(f, f δ) = F (f, f δ),

and hence prove the result.

As a consequence, Lemma 5.13 reads as follows for data fidelities that are
also Bregman distances.

Lemma 5.15. Let the assumptions of Lemma 5.13 and Corollary 5.14
hold true. Then we have

Dsymm
J(·,α)(u

†, uα) = 〈G′(f †α)−G′(Ku†)− (G′(f δ)−G′(Kuα)),Ku† −Kuα〉.
Proof. From Corollary 5.14 we know that

DF (K·,fδ)(u
†, uα) = F (Ku†,Kuα), D

F (K·,f†α)
(uα, u†) = F (Kuα,Ku†).

Hence, we observe

DF (K·,fδ)(u
†, uα) +D

F (K·,f†α)
(uα, u†)

= F (Ku†,Kuα) + F (Kuα,Ku†)

= Dsymm
G (Ku†,Kuα)

= 〈G′(Ku†)−G′(Kuα),Ku† −Kuα〉.
We also discover

F (Ku†, f δ)− F (Ku†, f †α) + F (Kuα, f †α)− F (Kuα, f δ)

= G(Ku†)−G(f δ)− 〈G′(f δ),Ku† − f δ〉
−
(
G(Ku†)−G(f †α)− 〈G′(f †α),Ku† − f †α〉

)
+G(Kuα)−G(f †α)− 〈G′(f †α),Kuα − f †α〉
−
(
G(Kuα)−G(f δ)− 〈G′(f δ),Kuα − f δ〉

)
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36 M. Benning and M. Burger

= 〈G′(f δ),Kuα −Ku†〉+ 〈G′(f †α),Ku† −Kuα〉
= 〈G′(f δ)−G′(f †α),Kuα −Ku†〉.

Combining these two equalities with (5.6) yields the desired result.

Example 5.16. We can use (5.6) to derive the same error estimates presen-
ted in Burger et al. (2007b) for the choice F (Ku, f δ) = 1

2‖Ku−f δ‖2H, where
H is a Hilbert space. In this case we observe

DF (K·,fδ)(u
†, uα) = D

F (K·,f†α)
(uα, u†) =

1

2
‖K(u† − uα)‖2H.

Hence, equation (5.6) reads as

‖K(u† − uα)‖2H +Dsymm
J(·,α)(u

†, uα) +
1

2
‖Kuα − f δ‖2H

=
1

2
‖Ku† − f δ‖2H +

1

2
‖Kuα − f †α‖2H −

1

2
‖Ku† − f †α‖2H. (5.9)

If we make use of the estimate

1

2
‖Ku† − f δ‖2H ≤

1

2
‖f − f δ‖2H ≤ δ,

then equality (5.9) becomes the inequality

‖K(u† − uα)‖2H +Dsymm
J(·,α)(u

†, uα) +
1

2
‖Kuα − f δ‖2H

≤ δ +
1

2
‖K(uα − u†) + (Ku† − f †α)‖2H −

1

2
‖Ku† − f †α‖2H

≤ δ + ‖K(u† − uα)‖2H + ‖Ku† − f †α‖2H −
1

2
‖Ku† − f †α‖2H.

Subtracting ‖K(u† − uα)‖2H on both sides of the inequality then yields the
error estimate

Dsymm
J(·,α)(u

†, uα) +
1

2
‖Kuα − f δ‖2H ≤ δ +

1

2
‖Ku† − f †α‖2H. (5.10)

We want to emphasize that the constant 1
2‖Ku†− f

†
α‖2H on the right-hand-

side of the inequality depends on the choice of α. From Remark 5.10 and
the proof of Theorem 5.12 it follows that if we consider regularizations of the
form J(u,α) = αJ(u), the source condition (SC) and the range condition

(RC) are linked via the relation f †α = Ku† + αv, where v is the source
condition element for α = 1, i.e. K∗v ∈ ∂J(u†, 1) = ∂J(u†). In this setting,
the error estimate (5.10) then reads as

Dsymm
J (u†, uα) +

1

2α
‖Kuα − f δ‖2H ≤

δ

α
+
α

2
‖v‖2H.

Hence, choosing α(δ) =
√

2δ/‖v‖H then yields Dsymm
J (u†, uα) = O(

√
δ).
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There are various routes and generalizations that can be taken from
these types of estimates, for example to weaker source conditions with the
concepts of approximate or variational source conditions (Schuster, Kal-
tenbacher, Hofmann and Kazimierski 2012, Flemming and Hofmann 2010,
Flemming 2013, Flemming 2017b, Hohage and Weidling 2017), improved
estimates for stronger conditions (Resmerita 2005, Grasmair 2013), or large
noise that is not necessarily in V (Burger et al. 2016b). In special cases
such as `1-regularization, improved results can be obtained, because the
effective finite-dimensionality implies that this case is almost well-posed
(Grasmair, Scherzer and Haltmeier 2011, Grasmair 2011, Burger, Flemming
and Hofmann 2013a, Flemming, Hofmann and Veselić 2015, Flemming, Hof-
mann and Veselić 2016, Flemming and Gerth 2017). Converse results have
also been recently obtained (Flemming 2017a, Hohage and Weidling 2017).

5.3. Variational eigenvalue problems

The standard tool for the analysis of linear regularization methods is singu-
lar value decomposition. In the case of nonlinear regularization no analogue
of singular values and singular vectors was known for a long time. A gener-
alization for nonlinear variational methods was made in Benning and Burger
(2013), which we discuss in the following. We generalize singular vectors
as eigenvectors of the variational regularization operator R as defined in
Definition 5.2, that is, we look for functions uλ that satisfy

λuλ ∈ R(σKuλ,α), (5.11)

for constants λ, σ ∈ [0,∞), typically σ = 1. For simplicity we focus on
the case where α = α is a scalar, and F (Ku, f δ) = G(Ku − f δ), where G
is a Legendre functional for the remainder of this section. If we consider
the optimality condition (5.4) of (5.3), we immediately observe that any uλ
satisfying (5.11) also has to satisfy

−K∗G′((λ− σ)Kuλ) ∈ ∂J(λuλ, α). (5.12)

We now assume that both G′ and ∂J are homogeneous in the sense that they
satisfy G′(cu) = s1(c)G′(u) and ∂J(cu,α) = s2(c, α)∂J(u) for constants
c ∈ R and functions s1, s2 : R→ R. Then (5.12) simplifies to

− s1(λ− σ)

s2(λ/σ, α)
K∗G′(Kuλ) ∈ ∂J(σuλ). (5.13)

Equation (5.13) paves the way for the following definition of generalized
singular vectors.

Definition 5.17 (generalized singular system). Let {uσ, vσ, σ} satisfy

Kuσ = σvσ and K∗G′(vσ) ∈ ∂J(σuσ) (5.14)
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Figure 5.1. The Haar wavelet uσ1,1/2 and its scaled version vσ1,1/2. Benning and

Burger (2013) have shown that together with σ1 = 2−5/2 they form a generalized
singular system in the sense of (5.14) with K being the identity in L2.

for σ > 0. Then {uσ, vσ, σ} is called a generalized singular system.

Remark 5.18. For

G(v) =
1

2
‖v‖2L2(Σ) and J(u, α) =

α

2
‖u‖2L2(Ω),

this definition is consistent with the classical singular vector theory for com-
pact operators.

Example 5.19. Suppose

G(v) =
1

2
‖v‖L2([0,1])2 , K : BV([0, 1])→ L2([0, 1])

is the embedding operator and J(u, α) = αTV∗(u), where TV∗ denotes
the (one-dimensional) total variation with Dirichlet-zero boundary condi-
tions. Benning and Burger (2013) have shown that Haar wavelets are gen-
eralized singular vectors of TV∗. Precisely, we have vσn,k = σnuσn,k ∈
∂ TV∗(σnuσn,k) = ∂ TV∗(uσn,k) for σn := 2−(n+4)/2 and uσn,k defined by

uσn,k(x) := 2n/2Ψ(2nx− j) with Ψ(x) :=


1 x ∈ [0, 1/2),

−1 x ∈ [1/2, 1),

0 else.

The singular value σn is determined via (5.14). The dual singular vector
vσn,k has to satisfy vσn,k ∈ ∂ TV∗(σnuσn,k) = TV∗(uσn,k). If we make use
of vσn,k = uσn,k/σn and take a dual product with uσn,k, we immediately
observe σn = ‖uσn,k‖2L2([0,1])/TV∗(uσn,k). In Figure 5.1 we see the Haar

wavelet uσ1,1/2 and its scaled version vσ1,1/2 = σ1uσ1,1/2 = 2−5/2uσ1,1/2.
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The generalized singular system is defined so that (5.13) and (5.14) coin-
cide for

s1(λ− σ) = −s2(λ/σ, α). (5.15)

Hence, if we choose α and λ such that (5.15) holds true, we already know
that (5.11) is satisfied for these particular choices of λ and α.

Example 5.20. For

G(v) =
1

2
‖v‖2L2(Σ) and J(u, α) =

α

2
‖u‖2L2(Ω),

with Σ and Ω being domains in Rd1 and Rd2 , respectively, we observe s1(x) =
x and s2(x, α) = αx. Hence, (5.15) simplifies to σ − λ = (αλ)/σ. Solving
for λ then yields

λ =
σ

σ2 + α
,

which perfectly coincides with the singular value decomposition represent-
ation of Tikhonov regularization.

Example 5.21. For G(v) = 1
2‖v‖2L2(Σ) and J(u,α) = αTV(u) we have

s1(x) = x and s2(x, α) = α. Consequently, (5.15) solved for λ reads as

λ =
1− α
σ

.

This eigenvalue of this particular regularization operator is consistent with
classical singular value theory in the sense that it satisfies limα↓0 λ = 1/σ.

An interesting observation from Examples 5.20 and 5.21 is that α > 0
automatically implies λ < 1/σ (unless uσ ∈ ker(J)). This implies that
there is always a systematic error when it comes to recovering singular
vectors with variational regularization methods that have quadratic fidelity.
This is also true for input data that are not given in terms of a singular
vector: see Benning and Burger (2013, Theorem 7). In the next section
we see that iterative regularization methods can overcome this systematic
reconstruction bias.

6. Iterative regularization methods

Iterative regularizations are founded on a different paradigm to variational
methods, based on the simple observation that most iterative procedures
can be applied in a robust fashion to ill-posed problems. The standard
example in a Hilbert space is the Landweber iteration (Landweber 1951)

uk = uk−1 − τK∗(Kuk−1 − f δ),
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40 M. Benning and M. Burger

which merely uses the continuous operators K and K∗. Let us mention
again at this point that with standard initial values such as u0 = 0 the
iterates satisfy a range condition uk ∈ R(K∗). At an abstract level we
construct an iteration procedure

uk = RI(f
δ, vk−1,α), (6.1)

with some iteration operator RI and a collection of variables vk−1 summar-
izing the information used in the first k−1 steps. In this case the parameter
set α will contain the iteration index as well as auxiliary parameters such as
the step size τ . In the simplest case of a one-step method like the Landweber
iteration, we simply have vk−1 = uk−1; for multistep methods the variable
vk−1 could be a collection of several previous iterations. As we shall see in
the methods below, vk−1 could also collect some auxiliary variables.

For such methods one observes a so-called semi-convergence phenomenon.
In the case of exact data f ∈ R(K) the method is converging, while in the
case of noisy data it seems to approximate the exact solution for an initial
phase of the iteration and then starts to diverge. This behaviour naturally
leads to the idea of achieving a regularizing effect by stopping the iterations
early. A standard approach is the so-called discrepancy principle, which
monitors the residual during the iteration and compares it with the noise
level. Since the exact solution could lead to a residual at this level there is
no particular reason to iterate further once the residual is at the size of the
noise level.

Definition 6.1 (Morozov’s discrepancy principle). Let f and f δ sat-
isfy F (f, f δ) ≤ δ, and let RI : V ×U ×A→ U be a multivalued mapping. If
we choose η ≥ 1 and k∗ := k∗(δ, f δ) such that

F (Kuk
∗
, f δ) ≤ ηδ < F (Kuk, f δ)

is satisfied for uk
∗ ∈ RI(f δ, vk

∗−1,α) and uk ∈ RI(f δ, vk−1,α) for all k < k∗,
then uk is said to satisfy Morozov’s discrepancy principle.

Given a stopping rule to determine k∗(δ, f δ) such as the discrepancy prin-
ciple, we can define the full regularizaton operator:

R(f δ,α) = uk∗(δ,f
δ), (6.2)

where for k = 1, . . . , k∗(δ, f
δ) the iterates uk are determined by (6.1) with

some fixed initial value v0 including u0.
The semiconvergence behaviour of such a method is then the standard

convergence of a nonlinear regularization method. In particular, for consist-
ency we need uk−→τU u

† as k →∞ in the case of clean data f ∈ RF (K) and
u† ∈ S(f,α). A standard tool used to prove the convergence of an iterative
regularization method is to find some error measure for the true solution
that is decreasing until the stopping index is reached. For the methods
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below constructed from a regularization functional J , we will see that this
is the case for the Bregman distance, that is,

Dpk+1

J(·,α)(u
†, uk+1) ≤ Dpk

J(·,α)(u
†, uk)

for uk ∈ RI(f δ, uk−1,α) and all k ≤ k∗ − 1, and

lim
δ→0

Dpk

J(·,α)(u
k
δ , u

k) = 0

for ukδ ∈ RI(f δ, uk−1
δ ,α) and uk ∈ RI(f, uk−1,α). With some further effort

one can then conclude the convergence of the regularization method in this
sense:

lim
δ→0

sup
{
Dpk

∗(δ,fδ)

J(·,α) (u†, uk
∗(δ,fδ)) | f δ ∈ V, F (f, f δ) ≤ δ

}
= 0,

for R(f δ,α) = uk
∗(δ,fδ) (Osher et al. 2005, Schuster et al. 2012).

As in the case of Banach spaces such as BV there is no immediate analogue
of simple iterative procedures in Hilbert spaces, one often resorts to defining
an iteration operator RI by solving a variational problem. This approach
will be detailed in the following sections.

6.1. Bregman iteration

The concept of Bregman iteration – also known as proximal minimization
algorithm – introduces an iteration into the variational regularization frame-
work by replacing the regularization functional J(u,α) with the correspond-
ing generalized Bregman distance Dp

J(·,α)(u, v), for v ∈ U and p ∈ ∂J(v).

For the choice

J(u,α) =
α

2
‖u‖2L2(Ω),

it is also known as iterated Tikhonov regularization, which dates back to
the works of Kryanev (1974), further analysed in Groetsch (1977) and
Thomas King and Chillingworth (1979), for example. The extension to
more general choices of Bregman distances was first proposed by Censor
and Zenios (1992), shortly followed by Teboulle (1992), and has since been
the subject of extensive research (Eckstein 1993, Kiwiel 1997). Notably,
Osher et al. (2005) have extended it to generalized Bregman distances that
allow for subdifferentiable rather than differentiable functionals. Note that
in such cases there is no one-to-one relation between uk−1 and its sub-
gradient pk−1, so we set vk−1 = (uk−1, pk−1). With a set-valued iteration
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operator, the Bregman iteration can be written as

uk ∈ RI(f δ, vk−1,α) = arg min
u∈U

{
F (Ku, f δ) +Dpk−1

J(·,α)(u, u
k−1)

}
,

pk = pk−1 −K∗∂xF (Kuk, f δ),

for p0 ∈ ∂J(u0,α). The entire method is summarized in Algorithm 1.

Algorithm 1 Bregman iteration

Initialize α ∈ A, f δ ∈ V, u0 ∈ U and p0 with p0 ∈ ∂J(u0,α)
for k = 1, . . . , k∗ do

Compute RI(f
δ, vk−1,α) = arg minu∈U

{
F (Ku, f δ)+Dpk−1

J(·,α)(u, u
k−1)

}
Pick RI(f

δ, vk−1,α)

Update pk = pk−1 −K∗∂xF (Kuk, f δ)

Set vk = (uk, pk)

end for
return uk

∗
, pk

∗

Remark 6.2. The update for the subgradient can also be written as

pk = p0 −
k∑

n=1

K∗∂xF (Kun, f δ). (6.3)

Hence, we can rewrite the primal update to

RI(f
δ, {un}k−1

n=1, p
0,α) (6.4)

= arg min
u∈U

{
F (Ku, f δ) + J(u,α)−

〈
p0 −

k−1∑
n=1

K∗∂xF (Kun, f δ), u

〉}
.

In the following we want to recall (or derive) a few important properties of
Algorithm 1. We start with a trivial result establishing monotonic decrease
of the data fidelity.

Corollary 6.3 (monotonic decrease of data fidelity). Suppose that
u0 satisfies F (Ku0, f δ) <∞. Then the iterates of Algorithm 1 satisfy

F (Kuk+1, f δ) +Dpk

J(·,α)(u
k+1, uk) ≤ F (Kuk, f δ),

and

lim
k→∞

Dpk

J(·,α)(u
k+1, uk) = 0,

for uk ∈ RI(f δ, vk−1,α) and all k ∈ N.
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Proof. The first statement follows trivially from the convexity of F (in its
first argument) and J , and the fact that uk+1 is a minimizer of E(u) :=

F (Ku, f δ) +Dpk

J(·,α)(u, u
k). The first statement then implies

N−1∑
k=0

Dpk

J(·,α)(u
k+1, uk) ≤ F (Ku0, f δ)− F (KuN , f δ)

≤ F (Ku0, f δ) <∞.
Taking the limit N →∞ then yields the second statement.

If we want to show that the Bregman iteration is a convergent regulariz-
ation method in the sense of Definition 4.8, a first step towards this result
would be the following monotonicity lemma.

Lemma 6.4 (Fejér monotonicity of Algorithm 1). Let f ∈ RF (K),
u† ∈ S(f,α) and let f δ ∈ V with F (f, f δ) ≤ δ. We further assume that the
iterates of Algorithm 1 satisfy Definition 6.1 for η = 1. Then the iterates
also satisfy the strict Fejér monotonicity

Dpk

J(·,α)(u
†, uk) < Dpk−1

J(·,α)(u
†, uk−1),

for uk ∈ RI(f δ, vk−1,α) and all k < k∗.

Proof. Through straightforward computations we obtain

Dpk

J(·,α)(u
†, uk)−Dpk−1

J(·,α)(u
†, uk−1) = −Dpk−1

J(·,α)(u
k, uk−1)︸ ︷︷ ︸

<0

− 〈pk − pk−1, u† − uk〉
≤ 〈K∗∂xF (Kuk, f δ), u† − uk〉
≤ (δ − F (Kuk, f δ))

< 0

for k < k∗, where we have made use of the convexity of F in its first
argument, and F (Ku†, f δ) ≤ F (f, f δ) ≤ δ.

Corollary 6.5. Let f ∈ RF (K) and u† ∈ S(f,α). Then the iterates of
Algorithm 1 satisfy

∞∑
k=0

F (Kuk, f) <∞ (6.5)

for δ = 0 (and, thus, f δ = f) and u0 (with p0 ∈ ∂J(u0,α)) chosen such that

Dp0

J(·,α)(u
†, u0) <∞.
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Proof. For δ = 0 we conclude

F (Kuk, f) ≤ Dpk−1

J(·,α)(u
†, uk−1)−Dpk

J(·,α)(u
†, uk)

from Lemma 6.4. Summing up from k = 0 to some k = k∗ therefore yields

k∗∑
k=0

F (Kuk, f) ≤ Dp0

J(·,α)(u
†, u0)−Dpk

∗

J(·,α)(u
†, uk

∗
) ≤ Dp0

J(·,α)(u
†, u0) <∞.

Taking the limit k∗ →∞ yields the assertion.

Remark 6.6. Given the continuity of F and K ∈ L(U ,V), equation (6.5)
already implies

Kuk−→
τV

f, (6.6)

if τV is an appropriate topology on V related to F .

Lemma 6.7. Suppose that after a finite number of iterations the k∗th
iterate of Algorithm 1 satisfies Kuk

∗
= f , for uk

∗ ∈ R(f, vk
∗−1,α), f ∈

RK(F ) and p0 ∈ R(K∗). Then uk
∗ ∈ S(f,α).

Proof. We knowDpk
∗

J(·,α)(u, u
k∗) ≥ 0 for all u ∈ U and uk

∗ ∈ RI(f, vk
∗−1,α),

since J is convex; this in particular holds true for any û ∈ {u | Ku = f}.
Hence, we observe

J(uk
∗
) ≤ J(û)− 〈pk∗ , û− uk∗〉

= J(û)− 〈p0, û− uk∗〉+
k∗∑
n=1

〈K∗∂xF (Kun, f), û− uk∗〉,

≤ J(û)−
〈
q0,Kû−Kuk∗︸ ︷︷ ︸

=0

〉
+

k∗∑
n=1

〈
∂xF (Kun, f), Kû−Kuk∗︸ ︷︷ ︸

=0

〉
,

= J(û),

for the substitution p0 := K∗q0, which is possible since p0 ∈ R(K∗). Here we
have made use of equation (6.3). Consequently, we conclude uk

∗ ∈ S(f,α).

In the limiting case k∗ →∞ the selection is less clear: one cannot prove in
general that the limit minimizes J . To make this more apparent consider the
case of a least-squares fidelity functional F (Ku, f) = 1

2‖Ku− f‖2, with the
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initial value being a minimizer of the regularization, i.e. p0 = 0. Then the
estimate, as in the last proof (at arbitrary index m) with û = u†, becomes

J(um) ≤ J(u†)−
m∑
n=1

〈K∗(f δ −Kun), û− um〉

= J(û)−
m∑
n=1

〈f δ −Kun, f −Kum〉.

Using Young’s inequality and monotonicity of the residual (‖Kum − f δ‖ ≤
‖Kun − f δ‖), we conclude that

J(um) ≤ J(u†) +
3

2

m∑
n=1

‖Kun − f δ‖2 +mδ.

Summing the estimate in the proof of the Fejér monotonicity, we further
find

m∑
n=1

‖Kun − f δ‖2 ≤ Dp0

J (u†, u0) = J(u†).

Thus, we find

J(uk
∗
) ≤ 5

2
J(u†) + k∗δ.

Since for the discrepancy principle one can show that k∗δ2 → 0 in the
limit δ → 0 (Osher et al. 2005), the limit of the regularization has a func-
tional value J bounded by 5

2J(u†). Using a more careful argument based

on Young’s inequality, this upper bound can be decreased to 2J(u†) but not
to J(u†). On the other hand this might be advantageous, since an estimate
of J(uk

∗
) smaller than J(u†) might mean a bias depending on J , since the

value of the regularization functional is actually underestimated. In the case
of total variation, for example, this means that the contrast is underestim-
ated by variational methods, which is improved by iterative regularization
(Osher et al. 2005). To conclude this section, we show numerical results
of Bregman-iterative regularization in the context of deconvolution, which
demonstrates the effect of total variation regularization.

Example 6.8. We consider the inverse problem of the convolution oper-
ation, that is, Ku = f with

(Ku)(y) :=

∫
R2

u(x)h(x− y) dx, (6.7)

which is therefore also known as deconvolution. Here, h denotes the convo-
lution kernel, that we assume to be known a priori. Since we cannot expect
to know f but just f δ with F (f, f δ) ≤ δ, we need to approximate the inverse
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(a) original u† (b) blurred, noisy fδ (c) iterate 1 (d) iterate 3

(e) iterate 6 (f) iterate 20 (g) iterate 55 (h) iterate 96

Figure 6.1. (a) Image u† ∈ R400×300 of Pixel, a Gambian pouched rat. (b) De-
graded and noisy version fδ ∈ R400×300 of the original image u†. The degrada-
tion stems from a discretized version of the convolution (see (6.7)) with periodic
boundary conditions and the convolution kernel depicted in the bottom left corner
of (b). (c–h) Different iterates of Algorithm 1 for F (Ku, fδ) = 1

2‖Ku− fδ‖2L2(R2),

J(u, α) = αTV(u) and α = 1/4. The 96th iterate visualized in (h) is the first that
violates Definition 6.1, for η = 1 and δ = 5.95.

problem solution through regularization. In Figure 6.1 we can see selected
iterates of Algorithm 1 for a single parameter α = 1/4, the data fidelity
term

F (Ku, f δ) =
1

2
‖Ku− f δ‖2L2(R2),

and the regularization functional J(u, α) = αTV(u). The data f δ = f + n
are the sum of f , created via a discretized version of the exact forward model
(6.7), and noise n ∈ N (0, 0.05). For the particular example used here, the
fidelity-noise-bound is F (f, f δ) = 5.95. The inner variational regularization
method is solved via the primal–dual hybrid gradient method (PDHGM):
see Zhu and Chan (2008), Pock, Cremers, Bischof and Chambolle (2009),
Esser, Zhang and Chan (2010) and Chambolle and Pock (2011, 2016). We
clearly observe the inverse scale-space nature of the Bregman iteration. The
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first iterate only contains features at a very coarse scale, and then ever more
features at finer and finer scales are introduced throughout the course of the
iteration.

Debiasing generalized eigenfunctions

We want to continue the analysis of the generalized eigenvalue problem
introduced in Section 5.3. We have figured out that there is always a sys-
tematic bias of variational regularization methods for

F (Ku, f δ) =
1

2
‖Ku− f δ‖2L2(Σ),

i.e. λ < 1 in (5.11) for f δ = vσ. Benning (2011) showed that this systematic
bias can be corrected with the help of Bregman iterations in the case of scalar
α = α and J with ∂J(cu, α) = α∂J(u). Assume that α is chosen such that
uk = 0 for all k < k∗−1, and uk

∗−1 = (1− α)σ−1uσ for some k∗ ∈ N. Then
we can easily conclude from (5.4) and (6.4) that uk

∗
has to satisfy

1

α

(
λ− 1− α

σ

)
K∗Kuk

∗ ∈ ∂J(λuk
∗
).

We easily calculate that the above equation simplifies to the singular vector
condition (5.14) for the choice λ = 1/σ. Consequently, uk

∗
= R(f δ, α) =

uσ/σ, and we have corrected for the bias of the previous iterate.
These computations demonstrate that Bregman iterations correct for the

systematic bias of variational regularization reconstructions of generalized
singular vectors for one-homogeneous regularization functionals J . However,
the phenomenon is not limited to singular vectors. The following numerical
toy example shows that the average reconstruction bias can be significantly
reduced with the help of Bregman iterations. Assume the following set-up.
Our forward model K ∈ Rm×n, for m = 128 and n = 512, is a matrix
with its entries drawn randomly from N (0, 1). We define a sparse vector
u† ∈ Rn with nine non-zero entries, drawn randomly from N (0, 1), and set
f = Ku†. Subsequently, we create one hundred instances of noisy data via
f δj := f + nj , for n ∈ N (0, 0.5) and j ∈ {1, . . . , 100}. We now compute
reconstructions for each of the one hundred instances with the following
two regularization methods:

RMorozov(f δj , δj) = arg min
u∈Rn

{
‖u‖1 subject to ‖Ku− f δj ‖2 ≤ δj

}
, (6.8)

and

RBregman(f δj , {unj }k−1
n=1, α) (6.9)

= arg min
u∈Rn

{
1

2

∥∥∥∥Ku− (kf δ − k−1∑
n=1

Kunj

)∥∥∥∥2

2

+ α‖u‖1
}
,
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Figure 6.2. Equation (6.10) for the compressed sensing toy example in Section 6.1.
The blue circles represent the standard deviation and average absolute bias values
for all coefficients recovered with (6.8). The red circles show the same but for
quantities for all coefficients recovered with (6.9). It becomes evident that for this
example the average bias is significantly reduced, while the standard deviation of
the reconstructed coefficients is comparable.

for

uMorozov
j ∈ RMorozov(f δj , δj),

δj :=
1

2
‖Ku† − f δj ‖22,

uBregman
j ∈ RBregman(f δj , {unj }k

∗−1
n=1 , α),

and k∗ chosen according to Definition 6.1 for η = 1 and δ = δj . We then
compute the average absolute bias and the standard deviation of the recon-
structions, that is, we compute∣∣∣∣u† − 1

100

100∑
j=1

ûj

∣∣∣∣ and

√√√√ 1

99

100∑
j=1

(
ûj −

1

100

100∑
j=1

ûj

)2

(6.10)

for ûj ∈ {uMorozov
j , uBregman

j }. Both average absolute bias and standard
deviation are visualized for each of the n = 512 coefficients in Figure 6.2. We
clearly observe that with similar standard deviation, the average absolute
bias is significantly reduced by the Bregman iteration in comparison to the
Morozov regularization model.

6.2. Linearized Bregman iteration

As the name suggests, the linearized Bregman iteration can be derived from
Algorithm 1 by replacing the term F (Kuk, f δ) with its linearization

F (Kuk, f δ) ≈ F (Kuk−1, f δ) + 〈∂xF (Kuk−1, f δ),Kuk −Kuk−1〉.
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Hence, if we replace F (Kuk, f δ) in Algorithm 1 with this linearization mul-
tiplied by some constant τ > 0, we obtain

RI(f
δ, vk−1,α)

= arg min
u∈U

{
τ
(
F (Kuk−1, f δ) + 〈∂xF (Kuk−1, f δ),Kuk −Kuk−1〉

)
+Dpk−1

J(·,α)(u, u
k−1)

}
,

= arg min
u∈U

{
τ〈∂xF (Kuk−1, f δ),Kuk −Kuk−1〉+Dpk−1

J(·,α)(u, u
k−1)

}
,

uk ∈ RI(f δ, vk−1,α)

pk = pk−1 − τK∗∂xF (Kuk−1, f δ),

for α = (τ, α) and vk−1 := (uk, pk) for all k ∈ N. These equations are
summarized in Algorithm 2.

The linearized Bregman iteration is a generalization of the Landweber
regularization (Landweber 1951) for the choices

F (Ku, f δ) =
1

2
‖Ku− f δ‖2L2(Σ) and J(u, α) =

α

2
‖u‖2L2(Ω),

for some signal domains Ω and Σ. It is also a generalization of the mirror
descent algorithm proposed in Nemirovskii and Yudin (1983), where J(·, α)
is a Legendre functional in the sense of Definition 5.11. This connection
for convex, differentiable F and strongly convex and differentiable J(·, α)
was made in Beck and Teboulle (2003). The extension to subdifferenti-
able convex J(·, α) was first proposed in Darbon and Osher (2007) and has
since been studied extensively (Yin, Osher, Goldfarb and Darbon 2008, Cai,
Osher and Shen 2009b, Cai, Osher and Shen 2009a, Yin 2010).

Algorithm 2 Linearized Bregman iteration

Initialize u0 ∈ U , p0 with p0 ∈ ∂J(u0, α), r0 = K∗∂xF (Ku0, f δ), α =
(α, τ) ∈ A
while stopping criterion is not satisfied do

Compute RI(f
δ, vk−1,α) = arg minu∈U

{
τ〈rk−1, u〉+Dpk−1

J(·,α)(u, u
k−1)

}
Pick uk ∈ RI(f δ, vk−1,α)

Update pk = pk−1 − τ rk−1

Compute rk = K∗∂xF (Kuk, f δ)

Set vk = (uk, pk)

end while
return uk

∗
, pk

∗
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As in Remark 6.2, we can rewrite the dual update of the linearized Breg-
man iteration as

pk = p0 −
k−1∑
n=0

K∗∂xF (Kun, f δ), (6.11)

and the primal update as

RI(f
δ, {un}k−1

n=0, p
0, α) (6.12)

= arg min
u∈U

{
J(u, α)−

〈
p0 −

k−1∑
n=0

K∗∂xF (Kun, f δ), u

〉}
.

In order to carry out a convergence analysis similar to the analysis for
the standard Bregman iteration, we define the surrogate functional

Jτ (u, α) := J(u, α)− τF (Ku, f δ). (6.13)

We further assume for the remainder of this section that J and τ are chosen
such that Jτ is convex. In practice, this requires strong convexity proper-
ties of J , which can simply be established by adding a sufficiently strongly
convex functional to the original choice of J .

Example 6.9. Let

K ∈ L(L2(Ω), L2(Σ)), F (Ku, f δ) =
1

2
‖Ku− f δ‖2L2(Σ),

for domains Ω ⊂ Rn and Σ ⊂ Rm, and let J1 be a proper, lower semicon-
tinuous and convex functional. Then the functional

Jτ (u, α) := J(u, α)− τ

2
‖Ku− f δ‖2L2(Σ)

is convex for the choices

J(u, α) :=
1

2
‖u‖2L2(Ω) + J1(u) and τ <

1

‖K‖2L(L2(Ω),L2(Σ))

.

As for the Bregman iteration analysis, we start with a statement about
the monotonic decrease of data fidelity.

Corollary 6.10 (monotonic decrease of data fidelity). Suppose that
u0 satisfies F (Ku0, f δ) <∞. Then the iterates of Algorithm 2 satisfy

F (Kuk+1, f δ) +
1

τ
Dqk

Jτ (·,α)(u
k+1, uk) ≤ F (Kuk+1, f δ) (6.14)

and

lim
k→∞

Dqk

Jτ (·,α)(u
k+1, uk) = 0,

for uk ∈ R(f δ, vk−1,α) and qk ∈ ∂Jτ (uk, α).
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Proof. First of all we emphasize that

〈rk−1, uk − uk−1〉 = 〈K∗∂xF (Kuk−1, f δ), uk − uk−1〉
can be written as

〈K∗∂xF (Kuk−1, f δ), uk − uk−1〉
= F (Kuk, f δ)− F (Kuk−1, f δ)−DF (K·,fδ)(u

k, uk−1),

for all k ∈ N. Hence, the (primal) update of the linearized Bregman iteration
can be rewritten as

RI(f
δ, vk−1,α)

= arg min
u∈U

{
τ
(
F (Kuk, f δ)− F (Kuk−1, f δ)

)
+Dqk−1

Jτ (·,α)(u
k, uk−1)

}
,

for

qk−1 = pk−1 − τK∗∂xF (Kuk−1, f δ) ∈ ∂Jτ (uk−1, α), pk−1 ∈ ∂J(uk−1, α).

Hence, we conclude

τ
(
F (Kuk, f δ)− F (Kuk−1, f δ)

)
+Dqk−1

Jτ (·,α)(u
k, uk−1)

≤ τ
(
F (Kuk−1, f δ)− F (Kuk−1, f δ)

)︸ ︷︷ ︸
=0

+Dqk−1

Jτ (·,α)(u
k−1, uk−1)︸ ︷︷ ︸

=0

,

and thus equation (6.14). In the same fashion as in the proof of Corol-

lary 6.3, we further conclude limk→∞D
qk

Jτ (·,α)(u
k+1, uk) = 0.

As in the case of the standard Bregman iteration, the linearized Bregman
iteration also satisfies Fejér monotonicity when the discrepancy principle is
not violated.

Lemma 6.11 (Fejér monotonicity of Algorithm 2). Let f ∈ RF (K),
u† ∈ S(f, α) and let f δ ∈ V with F (f, f δ) ≤ δ. We further assume that the
iterates of Algorithm 2 satisfy Definition 6.1 for η = 1. Then the iterates
also satisfy the strict Fejér monotonicity

Dqk

Jτ (·,α)(u
†, uk) < Dqk−1

Jτ (·,α)(u
†, uk−1),

for all uk ∈ R(f δ, vk−1,α) and qk ∈ ∂Jτ (uk, α), for all k ≤ k∗.
Proof. Through straightforward computations we obtain

Dqk

Jτ (·,α)(u
†, uk)−Dqk−1

Jτ (·,α)(u
†, uk−1)

= −Dqk−1

Jτ (·,α)(u
k, uk−1)︸ ︷︷ ︸

<0

−〈qk − qk−1, u† − uk〉
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≤
〈
pk−1 − pk + τK∗(∂xF (Kuk, f δ)− ∂xF (Kuk−1, f δ)), u† − uk

〉
= τ〈K∗∂xF (Kuk, f δ), u† − uk〉
≤ τ(δ − F (Kuk, f δ))

< 0

for k ≤ k∗, where we have made use of the convexity of F in its first
argument, and F (Ku†, f δ) ≤ δ.

In analogy to Corollary 6.5, we can show the same result for the linearized
Bregman iteration.

Corollary 6.12. Let f ∈ RF (K) and u† ∈ S(f, α). Then the iterates
of Algorithm 2 satisfy (6.5), for δ = 0 (and thus f δ = f) and u0 (with

q0 ∈ ∂Jτ (u0, α)) chosen such that Dq0

Jτ (·,α)(u
†, u0) <∞.

Proof. The proof follows exactly the same steps as the proof of Corol-
lary 6.5.

As in the case of Bregman iteration, Remark 6.6 follows from this result.
The following result guarantees convergence to a solution in S(f, α) when

Kuk
∗

= f is satisfied after a finite number k∗ of iterations of Algorithm 2.

Lemma 6.13. Suppose that after a finite number of iterations the k∗th
iterate of Algorithm 2 satisfies Kuk

∗
= f , for uk

∗
= R(f,α), f ∈ RK(F )

and p0 ∈ R(K∗). Then uk
∗ ∈ S(f, α).

Proof. The proof is almost identical to the proof of Lemma 6.7; the only
difference is that we use (6.11) instead of (6.3).

Remark 6.14. Note that the statements of Lemmas 6.7 and 6.13 look
identical, but one needs to remember that the underlying functionals J will
most likely not be. This is due to the fact that for the linearized Bregman
iteration additional terms have to be added in order to also make Jτ convex.

We conclude this section with numerical results for the same deconvolu-
tion example introduced in Example 6.8. We observe that with the same
choice of regularization parameter and the same initialization, Algorithm 2
requires more iterations in order to converge to a solution that violates the
discrepancy principle with the same error bound. See Figure 6.3. On the
other hand, the variational subproblems are computationally cheaper to
solve compared to the standard Bregman iteration case, at least with the
(accelerated) PDHGM used for this example.

6.3. Coupled and modified Bregman iterations

The Bregman iteration (as well as its linearized variant) leave some freedom
for modifications. One obvious modification is the choice of the subgradient
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(a) original u† (b) blurred, noisy fδ (c) iterate 1 (d) iterate 3

(e) iterate 6 (f) iterate 20 (g) iterate 70 (h) iterate 128

Figure 6.3. (a) Image u† ∈ R400×300 of Pixel the Gambian pouched rat, introduced
in Figure 6.1(a). (b) The same degraded and noisy version fδ ∈ R400×300 together
with the convolution kernel h as shown in Figure 6.1(b). (c–h) Different iterates of
Algorithm 2 for F (Ku, fδ) = 1

2‖Ku − fδ‖2L2(R2), J(u, α) = 1
2‖u‖2L2(R2) + αTV(u)

and α = 1/4. The 128th iterate visualized in (h) is the first that violates Defini-
tion 6.1, for δ = 5.95.

pk−1. The update from the optimality condition is of course the obvious
one and particularly suitable for a convergence proof. However, one may
use different ways to determine a subgradient pk from uk. As an example
one may solve some variational problem

pk ∈ arg min
p
{H(p, pk−1) | p ∈ ∂J(uk, α)},

with a convex functional H. In the case of `1-minimization one might choose
H(p, pk−1) = ‖p‖2, which yields the minimal subgradient, that is, again
choosing sign0(p) (the single-valued version with sign0(0) = 0) in the case
of a multivalued sign.

Another option for choosing subgradients has been investigated by Moeller
et al. (2014), when one solves joint reconstruction problems for multiple un-
knowns u1, . . . , uM . Moeller et al. (2014) proposed and analysed a coupled
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Bregman iteration, which is based on choosing a new subgradient for the
Bregman iteration in the ith image ui from a linear combination of the sub-
gradients in the other channels. In this way a joint subgradient for all the
channels is approximated, which means a structural joint sparsity in the
case of the `1-norm or joint edge information in the total variation case.
Rasch et al. (2018) have investigated an infimal convolution version of the
coupled Bregman iteration for an application to PET-MR imaging.

7. Bias and scales

Our earlier arguments relating to eigenfunctions demonstrate that bias and
scale are closely related (at least when interpreting scale in terms of eigen-
functions and eigenvalues). The bias of variational regularization methods
is larger on small-scale features. Thus, debiasing and multiscale aspects in
regularization methods appear to be closely related, as has been worked out
very recently. We discuss these ideas below.

7.1. Inverse scale space

For regularization functionals of the form J(u,α) = αJ1(u) we can write
the dual Bregman iteration update as

pk − pk−1

∆t
= −K∗∂xF (Kuk, f δ)

for ∆t := 1/α and pk ∈ ∂J1(uk), for all k ∈ N. Thus, taking the limit
α → ∞, so that ∆t → 0, yields the following time-continuous formulation
of the Bregman iteration, also known as the inverse scale space flow (Burger,
Osher, Xu and Gilboa 2005, Burger et al. 2006, Burger, Frick, Osher and
Scherzer 2007a),

∂tp(t) = −K∗∂xF (Ku(t), f δ), (7.1)

for p(t) ∈ ∂J1(u(t)).
For many typical choices of regularization functionals J1, it is difficult to

numerically compute solutions of (7.1), with the `1-norm and in general any
polyhedral regularization functional being the exception (Burger, Moeller,
Benning and Osher 2013c, Moeller 2012, Moeller and Burger 2013). Nev-
ertheless, (7.1) is very useful for studying theoretical properties of iterative
regularizations in the limiting case.

Unsurprisingly, it is straightforward to carry out an eigenanalysis similar
to the one discussed in Sections 5.3 and 6.1 for the regularization operator
R(f δ, t) = u(t) with u(t) satisfying (7.1) for F (Ku, f δ) = G(Ku − f δ).
The following result is a generalization of Benning and Burger (2013, The-
orem 9).
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Theorem 7.1. Let (uσ, vσ) be a pair of generalized singular vectors with
singular value σ, f = vσ and suppose J1 is (absolutely) one-homogeneous,
that is, J1(cu) = |c|J1(u) for all c ∈ R. Then 0 ∈ R(vσ, t) for 0 ≤ t < t∗ and

1

σ
uσ ∈ R(vσ, t)

for t ≥ t∗ = 1.

Proof. First we verify 0 ∈ R(vσ, t) for 0 ∈ [0, t∗). From (5.14) and
the absolute one-homogeneity of J1, we observe J1(uσ) = 〈G′(vσ),Kuσ〉.
We further see from the definition of the subdifferential that t ≤ 1 =
〈G′(vσ),Kuσ〉/J1(uσ) implies p(t) := tK∗G′(vσ) ∈ ∂J1(0). Since ∂tp(t) =
K∗G′(vσ) and p(0) = 0, we have shown that u(t) = 0 is a solution of (7.1).

For t ≥ t∗ a continuous extension of p(t) is

p(t) = p(t∗) + (t∗ − t)K∗G′(Ku(t)− vσ).

We immediately see that u(t) = uσ/σ is a solution for t ≥ t∗, since p(t∗) =
t∗K

∗G′(vσ) ∈ ∂J1(uσ/σ) and ∂tp(t) = 0.

Hence, the inverse scale space reconstruction also has no bias (for in-
put data vσ satisfying (5.14)), compared to the variational regularization
method.

A similar result can be derived even in the case of noisy data f δ = vσ+n,
where n is an error term that satisfies the specific source condition

µK∗G′(vσ) + ηK∗n ∈ ∂J(σuσ),

for constants µ and η. For more details we refer to Benning and Burger
(2013, Theorem 10).

In the following we briefly want to discuss reconstruction guarantees for
linear combinations of multiple singular vectors. More precisely, we ask
when we can guarantee

γj
σj
uσj ∈ R

( n∑
j=1

γjvσj , t

)
,

for coefficients {γj}j∈N. Due to the nonlinearity of J1, in general there is no
such decomposition. If we restrict ourselves to the following two conditions,
however, such a result can be guaranteed (Schmidt, Benning and Schönlieb
2018, Theorem 3.14). The first condition is K-orthogonality of the singular
vectors, that is,

〈Kuσi ,Kuσj 〉 =

{
1 i = j,

0 i 6= j,
(OC)

for i, j ∈ {1, . . . , n}. The second condition is the so-called (SUB0)-condition,
which reads as follows.
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Definition 7.2 (Schmidt et al. 2018, Definition 3.1). Suppose that
(uσ1 , uσ2 , . . . , uσn) are an ordered set of primal singular vectors of J1 with
corresponding dual singular vectors (vσ1 , vσ2 , . . . , vσn) and singular values
(σ1, σ2, . . . , σn). Then the singular vectors satisfy the (SUB0 ) condition if

k∑
j=1

K∗G′(vσj ) ∈ ∂J1(0), (SUB0)

for all k ∈ {1, . . . , n}.
Given (OC) and (SUB0), we can guarantee the following decomposi-

tion result, which is a direct generalization of Schmidt et al. (2018, The-
orem 3.14).

Theorem 7.3. Let (uσ1 , uσ2 , . . . , uσn), (vσ1 , vσ2 , . . . , vσn) be a system of
ordered singular vectors, for singular values (σ1, σ2, . . . , σn), for which the
vj are normalized and (OC) and (SUB0) are satisfied. Then, for data f =∑n

j=1 γjvσj with positive coefficients (γ1, . . . , γn) we have u(t) ∈ R(f, t),
with

u(t) =


0 0 ≤ t ≤ t1,∑k

j=1 γjσj
−1 uσj tk ≤ t < tk+1, for all k = 1, . . . , n− 1,∑n

j=1 γjσj
−1 uσj tn ≤ t,

where tk = γk and tk < tk+1 for all k ∈ {1, . . . , n}.
We refer to Benning and Burger (2013) for more information on individual

generalized singular vectors and the inverse scale space flow. For more
theoretical results and analytical as well as numerical examples of ordered
sets of singular vectors that satisfy (OC) and (SUB0), we refer to Schmidt
et al. (2018).

7.2. Two-step debiasing

While Bregman iterations and inverse scale space methods perform debias-
ing in an iterative fashion (and effectively change the variational model), one
may also consider two-step procedures that first solve the original variational
model and then perform a second step to reduce the bias (Deledalle, Papada-
kis and Salmon 2015, Deledalle, Papadakis, Salmon and Vaiter 2017). The
first and simplest case where this idea was brought up is regularization with
the `1-norm, where a so-called refitting strategy (Lederer 2013) is quite nat-
ural. After the variational problem

uαδ ∈ arg minF (Ku, f δ) + α‖u‖`1 (7.2)

is solved, the second step simply consists in minimizing F (Ku, f δ) over the
set of all u sharing the support of uδα. Since this procedure throws away
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information about the sign of the entries of u, one can further improve to
define the regularization operator via

R(f δ, α) = arg min{F (Ku, f δ) | sign0(ui) = sign0((uαδ )i), for all i}. (7.3)

where sign0(ui) is the single-valued sign (i.e. zero for ui = 0). Since the
sign corresponds to a subgradient of the `1-norm, we can reinterpret the
debiased regularization operator in a variational way: we minimize the fi-
delity subject to the constraint of u sharing a subgradient with uαδ . This is
a key observation towards a generalization for arbitrary convex regulariza-
tions, as noted by Brinkmann et al. (2017). The general debiasing problem
can be rephrased as a two-step procedure,

uαδ ∈ arg min
u

F (Ku, f δ) + αJ(u), (7.4)

followed by

R(f δ, α) = arg min
u
{F (Ku, f δ) | p ∈ ∂J(u) ∩ ∂J(uαδ )}. (7.5)

For computational purposes the arbitrary choice of the subgradient p ∈
∂J(uαδ ) is not suitable, but we can indeed use the subgradient from the first
step. Noting that for differentiable fidelities the optimality condition reads

pαδ = − 1

α
K∗∂F (Ku, f δ) ∈ ∂J(uαδ ), (7.6)

we can use the debiasing procedure

R(f δ, α) = arg min
u
{F (Ku, f δ) | pαδ ∈ ∂J(u)}. (7.7)

The condition pαδ ∈ ∂J(u) can be reformulated as a vanishing Bregman
distance between u and uδα; thus we observe some relations to the Bregman
iteration. The second step can be interpreted as a Bregman iteration step in
the limit of the regularization parameter to infinity. We refer to Brinkmann
et al. (2017) for a detailed analysis of this debiasing approach.

The effect of the debiasing is illustrated for the simple case of total vari-
ation denoising, that is, the solution of

R(f δ, α) = arg min
u∈BV (Ω)

(
1

2
‖u− f δ‖2L2(Ω) + α|u|BV

)
. (7.8)

Figure 7.1 compares the solution of the variational problem in (c) with
the one obtained in the two-step debiasing procedure (d) and the Bregman
iteration (e). Both methods reduce the contrast loss of the TV regulariz-
ation (which is difficult to see in the image, but becomes more apparent
in the small background buildings). Overall, however, the Bregman itera-
tion seems to restore more of the small details such as the grass structure.
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Figure 7.1. Cameraman (256×256): comparison of TV denoising for α = 0.1,
with the two-step debiasing, and Bregman iterations (α = 0.5 and 7 Bregman
iterations).
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Figure 7.2. Cameraman: TV denoising and debiasing for different values of the
regularization parameter.

Figure 7.2 demonstrates the debiasing effect for increasing regularization
parameters, where the variational model destroys ever more detail. In par-
ticular, for larger α one observes the effect of restoring smaller structures
apparently contained in the subgradient but not the primal variable of the
variational model.

7.3. Nonlinear spectral transform

The iterative regularization methods presented in Section 6 can easily be
extended to nonlinear spectral decomposition methods via the following
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trivial observation. Every iterate uk ∈ RI(f δ, vk−1,α) can be represented
as the sum of the differences of two subsequent iterates, that is,

uk = u0 +

k∑
n=1

un − un−1.

If we define ϕ0 := u0 and ϕn := un − un−1 for n > 1, and equip the sum
with coefficients {cn}kn=0, we can write uk as

uk =
k∑

n=0

cnϕn.

In the following we are going to motivate why such a decomposition is useful
for localizing individual scales if the underlying regularization functional is
(absolutely) one-homogeneous and where we have a scalar parameter α.
Following up on the bias correction example for generalized singular vectors
in Section 6.1, we know that for the Bregman iteration RI(f, v

k−1, α) with
f = vσ we observe

uk =


0 k < k∗,

(k∗ − α)σ−1 uσ k = k∗,

σ−1 uσ k ≥ k∗ + 1.

Replacing f = vσ with f = σvσ = Kuσ therefore yields

uk =


0 k < k∗,

(k∗ − ασ−1)uσ k = k∗,

uσ k ≥ k∗ + 1,

and consequently we observe

ϕn =


0 n 6∈ {k∗, k∗ + 1},
(k∗ − ασ−1)uσ n = k∗,

(1 + ασ−1 − k∗)uσ n = k∗ + 1.

The last equation implies that if the input datum is given in terms of the
forward model applied to a (primal) singular vector, this primal singular
vector is localized in only two components ϕk

∗
and ϕk

∗+1. The index k∗

depends on the choice of α and on the singular value σ. Hence, singular

vectors with different scales, or different values of σ, will be localized in ϕk̂

and ϕk̂+1 for k̂ 6= k∗. This is visualized in Figures 7.3 and 7.4. It is therefore
fair to call {ϕn}kn=1 a spectrum and the individual ϕn, for n ∈ {1, . . . , k},
the spectral components.
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Figure 7.3. Two singular vectors of J = TV∗ with different σ-values, and excerpts
of their corresponding (analytically computed) spectra, for α = 1.24. We clearly
observe that both vectors are located at different positions of the spectrum. Hence,
both singular vectors could be isolated from a sum of the two by applying a band-
pass filter to the spectrum.

Figure 7.4. Spectral decomposition of the image of a bee. From Benning et al.
(2017d).
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Consequently, the operator S : V ×Uk×Rk ×A→ U with

S(f, (un)kn=0, (cn)kn=0, α) :=
k∑

n=0

cnϕ
n with ϕn :=

{
un − un−1 n > 1,

u0 n = 1,

for un ∈ RI(f, v
n−1, α) can be seen as a spectral transform of the input

signal f δ. For K : BV(Ω) → L2(Ω) this type of spectral transform is a
discretization of the inverse-scale-space based spectral transform defined in
Burger, Eckardt, Gilboa and Moeller (2015a) and Burger et al. (2016a). For
K : BV(Ω)→ L2(Ω) and J(u, α) = αTV(u), the idea of generalized spectral
transforms goes back to Gilboa (2014a, 2014b). For a detailed overview
of this form of nonlinear spectral transform we refer to Gilboa, Moeller
and Burger (2016). Another interesting recent extension is the spectral
transform in the context of image segmentation (Zeune et al. 2017).

8. Applications

Obviously modern regularization methods have found applications in all
kind of inverse problems and pushed forward the state of the art. As ex-
amples, let us mention TV/TGV Bregman iterations for super-resolution
(Marquina and Osher 2008), PET reconstruction (Müller et al. 2011, Müller
2013) or STED microscopy (Brune, Sawatzky and Burger 2009, Brune,
Sawatzky and Burger 2011), as well as TGV reconstructions in MR (Knoll,
Bredies, Pock and Stollberger 2011). Providing an overview of the various
approaches for well-known imaging methods would far exceed the scope and
size of this survey. Hence, in the following we provide some novel examples
of applications, which are actually driven by advances in regularization tech-
niques.

8.1. Velocity-encoded magnetic resonance imaging

Magnetic resonance imaging (MRI) is an imaging technique that allows us
to visualize the chemical composition of humans/animals or materials. MRI
scanners utilize strong magnetic fields and radio waves to excite subatomic
particles, such as protons, that subsequently emit radio frequency signals
which can be measured with the radio frequency coils that initially excited
those radio waves: see for example Callaghan (1993). MRI is often used
to measure contrast in tissue. However, due to shear, endless possibilities
of radio-frequency pulse sequence design, and programming of the gradi-
ent coils, MRI is a versatile imaging tool with capabilities beyond imaging
contrast in tissue. A potential, more sophisticated application is phase-
encoded magnetic resonance velocity imaging, which in medical imaging
is used to study the distribution and variation in blood flow (Gatehouse
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et al. 2005). In the physical sciences it is used to study the rheology of
complex fluids (Callaghan 1999), liquids and gases flowing through packed
beds (Sederman, Johns, Alexander and Gladden 1998, Holland et al. 2010),
granular flows (Holland et al. 2008) and multiphase turbulence flows (Tayler,
Holland, Sederman and Gladden 2012). The main advantage of MRI over
other methods when it comes to studying flow is that it is possible to image
flows non-invasively. However, the main drawback of the technique is the
acquisition time of the measurement.

Lustig, Donoho and Pauly (2007) exploited the idea of sub-sampling in the
spatial data domain to overcome this limitation and to speed up the MRI
acquisition process. Due to fewer measurements being taken, compared
to the number of unknowns to be recovered, some form of regularization
needs to be integrated into the reconstruction process. Sparsity-promoting
variational regularization methods are suitable candidates and, most prom-
inently, total variation regularization has been successfully deployed to in-
crease the temporal resolution of MRI acquisitions. Since measurement
noise in MRI data can be modelled as being normally distributed, a stand-
ard variational regularization approach is

R(f δ,α) = arg min
u∈U

{
1

2
‖Fu− f δ‖22 + J(u,α)

}
, (8.1)

where F is the operator

(Fu)(tk) := (2π)−n/2
∫
Rn
u(x) exp

(
−i

∫ tk

tk−1

x(t) · g(t) dt

)
dx,

and n ∈ {2, 3} denotes the dimension of the signal and g : [0, T ] → Rn
represents the function that controls the gradient coils of the MRI machine.
We observe that F is almost identical to the Fourier transform sampled at
discrete locations, if we can approximate∫ tk

tk−1

x(t) · g(t) dt ≈ x ·
∫ tk

tk−1

g(t) dt.

This can be achieved by adequate programming of the gradient coils. How-

ever,
∫ tk
tk−1 x(t) · g(t) dt can be approximated more generally via the Taylor

series ∫ tk

tk−1

x(t) · g(t) dt ≈
∞∑
r=0

x(r)(tk−1)

r!
·
∫ tk

tk−1

g(t)tr dt,

and with clever programming of g, other moments such as velocity or ac-
celeration can be so encoded. In the following, we assume that the radio-
frequency pulse sequence and the gradient coils are programmed such that
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Figure 8.1. A simulated spiral on a Cartesian grid. From Benning et al. (2014).

(a) fully sampled u (b) zero-filled u (c) TGV-based u

Figure 8.2. Magnitude images of the velocity dataset used in Benning et al. (2014),
courtesy of Andrew J. Sederman. (a) Magnitude image derived from applying the
inverse of the Fourier transform to the fully sampled Fourier data of the velocity-
encoded MRI measurement and subsequently taking the modulus. (b) Magnitude
image obtained if we set to zero all Fourier samples that are not part of the spiral
visualized in Figure 8.1, and subsequently proceed as for the fully sampled data.
(c) Magnitude reconstructions from the TGV2

β-based variational regularization re-
construction (8.1).

(a) fully sampled (b) zero-filled (c) TGV-based

Figure 8.3. The different velocity reconstructions corresponding to the magnitude
reconstructions in Figure 8.2.
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we first encode the velocity in the z-direction, that is, for x = (x1, x2, x3)
and g(t) = (g1(t), g2(t), g3(t)) we have∫ t0

0
x(t) · g(t) dt ≈ x′3(0)︸ ︷︷ ︸

=:vz

∫ t0

0
g3(t) t dt,

in the interval [0, t0], and then perform the spatial encoding such that∫ tk

tk−1

x(t) · g(t) dt ≈
(
x1(tk−1)
x2(tk−1)

)
·
∫ tk

tk−1

(
g1(t)
g2(t)

)
dt

holds true for t0 < t1 < · · · < tm = T . Then, with x = (x1(tk−1), x2(tk−1))
and g = (g1, g2) as an abuse of notation, F reads as

(F(u, vz))(t
k) =

1

2π

∫
R2

u(x) exp(−iσvz(x)) exp

(
−ix ·

∫ tk

tk−1

g(t) dt

)
dx,

(8.2)

for some constant σ. In order to avoid non-linearity of the forward model,
we couple u and vz by simply defining w := u exp(−iσvz). Then the forward
model F simply reduces to the (sub-sampled) Fourier transform.

Benning et al. (2014) have investigated three choices for regularization
functionals: assuming α = (α, β), we have

J(w,α, β) = α


TV(w),

TGV2
β(w),∑∞

j=1 |〈w,ϕj〉|.
(8.3)

Here {ϕj}j∈Z denotes a wavelet basis, and TGV2
β is the second-order total

generalized variation in the sense of Bredies and Valkonen (2011, The-
orem 3.1). In Figure 8.2 we see computational solutions of (8.1) for the
choice J(w,α, β) = TGV2

β(w), a spiral sub-sampling strategy on a Cartesian
grid (see Figure 8.1), and the parameter choices α = 0.1 and β = 3. These
results have again been computed with the PDHGM. Subsequently, vz was
extracted as the principal value of the reconstruction w ∈ R(f δ, α, β). The
reconstructed z-velocity vz is subsequently unwrapped by solving the linear
system

∆v̂z = cos(vz)∆ sin(vz)− sin(vz)∆ cos(vz)

for v̂z. Here ∆ denotes the Laplace operator. The unwrapped reconstructed
velocity v̂z is visualized in Figure 8.3.

In order to demonstrate the capabilities of the Bregman iteration, Ben-
ning et al. (2014) have qualitatively analysed Algorithm 1 for different
sub-sampling strategies and different initial choices of α > 0. These com-
parisons for different sub-sampling strategies are visualized in Figure 8.4.
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Figure 8.4. The structural similarity index measure (SSIM) (see Wang, Bovik,
Sheikh and Simoncelli 2004) of the magnitude images (a–f) and the velocity images
(g–l) for Bregmanized TV reconstructions of computer-generated test data with
various sampling patterns and noise σ = 0.2. The parameter α is on the horizontal
axis and the Bregman iteration is on the vertical axis. The colours code the SSIM
value, also shown in the small lower graph. The continuous line corresponds to
violation of the discrepancy principle, and the dashed line to the optimal SSIM.
The dash-dotted line in the small graph indicates the SSIM for the first iteration.
From Benning et al. (2014).

In Figure 8.5 we see the magnitude images of 20 Bregman iterations com-
puted with Algorithm 1 for the same set-up as described earlier, and the
parameter choices α = 1.5 and β = 3.

We refer to Benning et al. (2014) for more information on iterative regu-
larization in the context of velocity-encoded MRI.

8.2. Dynamic MRI with structural prior

Dynamic MRI is a topic of high current relevance in biomedical imaging,
with different techniques such as fMRI or DCE-MRI. The basic issue is
to reconstruct a sequence of images u = (u1, . . . , uT ) from measurements
(K1u1, . . . ,KTuT ), with Kt being a sub-sampled Fourier transform (with
different sub-sampling at each time step). Due to the significant measure-
ment times in MRI the sub-sampling is necessary to obtain a significant time
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(a) iterate 1 (b) iterate 2 (c) iterate 3 (d) iterate 4

(e) iterate 5 (f) iterate 6 (g) iterate 7 (h) iterate 8

(i) iterate 9 (j) iterate 10 (k) iterate 11 (l) iterate 12

(m) iterate 13 (n) iterate 14 (o) iterate 15 (p) iterate 16

(q) iterate 17 (r) iterate 18 (s) iterate 19 (t) iterate 20

Figure 8.5. Magnitude images of 20 Bregman iterations computed via Algorithm 1,
with α = 1.5 and β = 3.
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resolution; the time resolution will improve with stronger undersampling
(e.g. in spokes). The natural data fidelity in this case is thus

F (Ku, f) =
1

2

T∑
t=1

‖Ktut − ft‖2.

With substantial undersampling it is hopeless to reconstruct meaningful
images from the data at a single time step, hence a regularization in time is
needed in order to exploit correlations between close time steps. A natural
assumption is smoothness in the time direction, for then a discrete gradient
‖ut+1 − ut‖2 can be penalized in a regularization functional. Moreover,
in order to take into account the edges it is natural to include some total
variation regularization for each ut. So far, this is an approach that can
be used for many dynamic reconstruction problems. A particular feature of
such MR investigations, however, is the existence of a structural prior u0,
which is a high-resolution MR image at different contrast (e.g. a standard
anatomical T1 scan) taken before the start of the dynamic imaging. The
prior is reconstructed from a very dense sampling and thus at very high
resolution. The important step is to notice that most edges in the images ut
will arise from anatomical structures, and are thus present in u0. Hence, an
additional structural regularization like the infimal convolution of Bregman
distances

ICBV p0(·, u0) = Dp0
TV (·, u0)�D−p0TV (·,−u0)

can be used to achieve super-resolution in the dynamic imaging series.
The regularization functional

J(u) =

T∑
t=1

ωt|ut|BV +

T∑
t=1

(1− ωt)ICBV p0(u, u0) +

T−1∑
t=1

γt
2
‖ut+1 − ut‖2

combining the three parts was proposed and investigated in Rasch et al.
(2017). The results indicate enormous potential for obtaining reconstruc-
tions at high resolution from rather extreme undersamplings in time. These
are illustrated in Figure 8.6 for several different time steps of a simulated
data set. The first line shows the sampling at different time steps; the last
column shows the prior image u0 instead. The second line provides direct
reconstruction without regularization (note that the Fourier transform is
continuously invertible, so without undersampling the direct inversion is a
standard technique). The third line displays the results with the proposed
method, to be compared to the ground truth used for simulating data in the
fourth line. These results were obtained on simulated MR data; we refer to
Rasch et al. (2017) for a further study of real data.
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Figure 8.6. Results of undersampled dynamic MRI reconstruction with different
methods at five different time steps.

8.3. Nonlinear spectral image fusion

The nonlinear spectral transform as introduced in Section 7.3 can be used to
suppress, enhance or extract features of signals at different scales. Benning
et al. (2017d) have used it to fuse features at different scales from two
images into a single image, in order to create realistic-looking image fusions.
The mathematical procedure is as follows. Given two images, both images
are preprocessed such that they are aligned (registered) and that regions
within the images are segmented such that the images are fused only in
selected regions. Denoting the registered images as f1 and f2, they can be
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(a) face detection (b) landmark detection (c) registration

(d) face segmentation (e) spectral decomposition (f) image fusion

Figure 8.7. Illustration of the pipeline for facial image fusion using nonlinear spec-
tral decompositions. From Benning et al. (2017d).

represented via their spectral transforms, that is,

u1 = S(f1, (u)k
∗
n=0, c1, α) + f1 − S(f1, (u)k

∗
n=0,1, α)︸ ︷︷ ︸

=:rα,k
∗

1

,

and

u2 = S(f2, (u)k
∗
n=0, c2, α) + f2 − S(f2, (u)k

∗
n=0,1, α)︸ ︷︷ ︸

=:rα,k
∗

2

,

for k∗ ≥ 1, α ∈ A and coefficients c1 ∈ Rk∗ , c2 ∈ Rk∗ and 1 ∈ {1}k∗ being
the constant one-vector. Obviously we have u1 = f1 and u2 = f2 if c1 = 1
and c2 = 1.

In order to incorporate the face segmentation into the image fusion pro-
cess, we allow the coefficient vectors c1 and c2 to be spatially varying func-
tions c1 : Ω → Rk∗ and c2 : Ω → Rk∗ , respectively. Here Ω denotes the
image domain. The image fusion process can then be mathematically de-
scribed by

ufused := S(f1, k
∗, α, c1) + S(f2, k

∗, α, c2) + rα,k
∗

1 .

The individual steps of the image fusion pipeline are visualized in Figure 8.7.
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Figure 8.8. Image fusion using the nonlinear spectral TV decomposition for the
challenging example of fusing a banknote with a picture of Gauss and a painting
of Newton. From the supplementary material of Benning et al. (2017d).

For challenging examples this automation may very well fail. Nevertheless,
the spectral image fusion still works if registration and segmentation are
carried out manually, as can be seen in Figure 8.8. For more information
on the nonlinear spectral image fusion we refer to Benning et al. (2017d).
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9. Advanced issues

In the following we comment on some advanced issues related to iterative
variational methods extending those presented above, namely extensions to
non-convex problems, in particular with respect to data fidelities in nonlin-
ear inverse problems, and to modern machine learning approaches.

9.1. Non-convex optimization

In the context of inverse problems one usually deals with data fidelities of
the form F (Ku, f δ) that measure the deviation between Ku and f δ in some
sense. So far we have always assumed this particular structure, and also
that F is convex. Both assumptions can be relaxed. In the following we
assume that we simply have some non-convex energy functional E : U → R
that is Fréchet-differentiable with gradient ∇E. As there might not exist
critical points, or finding them might be unstable due to ill-posedness, it
makes sense to generalize (5.3) to

R(α) = arg min
u∈U

{E(u) + J(u,α)}. (9.1)

Here we want to emphasize that R(α) is not necessarily a regularization
operator in the classical sense, as in general we do not make the dependence
on some data f δ explicit. In Section 9.2 we particularly investigate the
case in which E is of the form E(·) = F (K(·), f δ), where K stems from a
nonlinear inverse problem, and where F (·, f δ) is potentially non-convex in
its first argument.

It is important to emphasize that even for non-smooth, non-convex op-
timization, there is a vast number of recent publications: forward–backward
or proximal-type schemes (Attouch and Bolte 2009, Attouch, Bolte, Redont
and Soubeyran 2010, Attouch, Bolte and Svaiter 2013, Bonettini, Loris,
Porta and Prato 2016, Bonettini et al. 2017), linearized proximal schemes
(Xu and Yin 2013, Bolte, Sabach and Teboulle 2014, Xu and Yin 2017, Niko-
lova and Tan 2017), inertial methods (Ochs, Chen, Brox and Pock 2014,
Pock and Sabach 2016), primal–dual algorithms (Valkonen 2014, Li and
Pong 2015, Moeller, Benning, Schönlieb and Cremers 2015, Benning, Knoll,
Schönlieb and Valkonen 2015), scaled gradient projection methods (Prato
et al. 2016), non-smooth Gauss–Newton extensions (Drusvyatskiy, Ioffe and
Lewis 2016, Ochs, Fadili and Brox 2017), and nonlinear eigenproblems (Hein
and Bühler 2010, Bresson, Laurent, Uminsky and Brecht 2012, Benning,
Gilboa and Schönlieb 2016, Boţ and Csetnek 2017, Laurent, von Brecht,
Bresson and Szlam 2016, Benning, Gilboa, Grah and Schönlieb 2017c). Here
we focus mainly on recent generalizations of the proximal gradient method
and the linearized Bregman iteration for non-convex functionals E; a treat-
ment of all the algorithms mentioned above would be a subject for a survey
paper in its own right.
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9.1.1. Proximal gradient method
The most basic approach to finding solutions of (9.1) iteratively is via
proximal gradient descent, that is, forward–backward splitting (Lions and
Mercier 1979). The idea is to linearize the non-convex part E and to add a
damping with respect to the previous iterate. If we allow this damping to be
carried out via a Bregman distance with respect to a Legendre functional H,
we obtain the recently proposed Bregman proximal gradient method (Bolte,
Sabach, Teboulle and Vaisbourd 2017):

R(uk−1,α) = arg min
u∈U

{
αk−1〈∇E(uk−1), u− uk−1〉

+DH(u, uk−1) + αk−1J(u,α)
}
,

uk ∈ R(uk−1,α), (9.2)

for α = (α, α0, . . . , αk−1). Here we want to emphasize that R(uk−1,α) is
no longer a regularization operator in the classical sense as we are no longer
necessarily dealing with an inverse problem. Obviously, if E is a (poten-
tially non-convex) data fidelity functional of some nonlinear inverse problem,
R(uk−1, pk−1,α) depends on some data f δ and we again deal with a regular-
ization problem, which this time approaches the solution of a (potentially)
nonlinear inverse problem. This more specific scenario will be addressed in
Section 9.2. Without additional assumptions on E, H and J there is little
chance that we can carry out a convergence analysis for (9.2) or even prove
existence of the updates. A typical assumption is Lipschitz-continuity of
∇E, that is, we guarantee

‖∇E(u)−∇E(v)‖U∗ ≤ L‖u− v‖U
for all u, v ∈ U and a constant L > 0. A nice aspect of this property is that
it implies convexity of the family of functionals

L

γi
Hi − E (9.3)

(see Bauschke, Bolte and Teboulle 2016, Benning, Betcke, Ehrhardt and
Schönlieb 2017b, Bolte et al. 2017), where {Hi}i=1,... is a family of γi-strongly
convex functionals, that is,

γi
2
‖u− v‖2U ≤ DHi(u, v),

for all u, v ∈ U . Let us now assume that H in (9.2) is a member of (9.3)
with strong convexity constant γ, that is,

Hγ(u) :=
L

γ
H(u)− E(u) (9.4)

is convex for all u ∈ U . Then this convexity assumption is already enough
to ensure a sufficient decrease of the energy E+J in each iteration of (9.2).
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Lemma 9.1. Suppose E is coercive or has bounded level sets, infuE(u) >
−∞ and ∇E is Lipschitz continuous with constant L, and let H be a Le-
gendre functional in the sense of Definition 5.11, which is also γ-strongly
convex. Further assume

0 < αk−1 <
γCk

L+ γCkρ
for Ck :=

Dsymm
H (uk, uk−1)

DH(uk, uk−1)
, (9.5)

for a constant ρ > 0, for all k ∈ N, and that E + J(·, α) has at least one
critical point. Then the iterates of (9.2) satisfy

E(uk) + J(uk, α) + ρDsymm
H (uk, uk−1) ≤ E(uk−1) + J(uk−1, α), (9.6)

for uk ∈ R(uk−1,α) and all k ∈ N.

Proof. From the convexity of (9.4) we immediately observe

0 ≤ DHγ (uk, uk−1) =
L

γ
DH(uk, uk−1)

−
(
E(uk)− E(uk−1)− 〈∇E(uk−1), uk − uk−1〉

)
.

As a direct consequence, we have derived the estimate

E(uk) + 〈∇E(uk−1), uk−1 − uk〉 − L

γ
DH(uk, uk−1) ≤ E(uk−1). (9.7)

From the optimality condition of (9.2) we obtain

∇E(uk−1) =
1

αk−1
(∇H(uk−1)−∇H(uk))− pk, (9.8)

for pk ∈ ∂J(uk, α). Inserting (9.8) into (9.7) yields

E(uk) +
1

αk−1
Dsymm
H (uk, uk−1)− L

γ
DH(uk, uk−1)

≤ E(uk−1) + 〈pk, uk−1 − uk〉. (9.9)

Due to the convexity of J(·, α) we can estimate

〈pk, uk−1 − uk〉 ≤ J(uk−1, α)− J(uk, α).

Applying this estimate to (9.9) results in

E(uk) + J(uk, α) +
1

αk−1
Dsymm
H (uk, uk−1)− L

γ
DH(uk, uk−1)

≤ E(uk−1) + J(uk−1, α).

Together with the stepsize bound (9.5) this concludes the proof.

Remark 9.2. Note that we have not made use of the Lipschitz continuity
of ∇E, but only of the convexity of (9.4) in order to obtain a sufficient
decrease.
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Remark 9.3. Due to the γ-strong convexity of H, the estimate (9.6) auto-
matically implies

E(uk) + J(uk, α) + ργ‖uk − uk−1‖2U ≤ E(uk−1) + J(uk−1, α). (9.10)

If we additionally assume that both∇E and∇H are Lipschitz-continuous,
we further obtain a bound for the gradient of the energy E+J at iterate uk.

Lemma 9.4. Suppose the same assumptions hold as in Lemma 9.1. We
further assume that ∇E is Lipschitz-continuous with constant L and ∇H
is Lipschitz-continuous with constant δ. Then we observe

‖∇E(uk) + pk‖U∗ ≤
(
L+

δ

αk−1

)
‖uk − uk−1‖U

for all pk ∈ ∂J(uk, α).

Proof. This follows trivially from (9.8) and the Lipschitz-continuity of both
∇E and ∇H.

In a finite-dimensional setting U = Rn it is now sufficient to assume that
E + J is a Kurdyka– Lojasiewicz (KL) function (Lojasiewicz 1963, Kurdyka
1998, Bolte, Daniilidis and Lewis 2007) in order to show that the iterates
(9.2) converge globally to a critical point of E + J .

Theorem 9.5. Let the same assumptions hold true as in Lemma 9.4. Fur-
ther assume U = Rn and that E + J is a KL function that has at least one
critical point. Then the iterates (9.2) converge globally to a critical point
of the energy E + J .

Proof. See the proof of Bolte et al. (2017, Theorem 4.1(ii)).

We refer the reader to Bolte, Daniilidis, Ley and Mazet (2010) for a
detailed investigation of the class of KL functions, and to Bolte et al. (2017)
for more information on the Bregman proximal gradient.

9.1.2. Linearized Bregman iteration for non-convex functionals

The linearized Bregman iteration introduced in Section 6.2 can easily be
adapted to tackle general, non-convex optimization problems. Suppose a
Fréchet-differentiable functional E : U → R with Fréchet-gradient ∇E;
then we can simply modify Algorithm 2 to

R(uk−1, pk−1,α) = arg min
u∈U

{
〈∇E(uk−1), u− uk−1〉+ αk−1Dpk−1

J(·,α)(u, u
k−1)

}
uk ∈ R(uk−1, pk−1,α)

pk = pk−1 − 1

αk−1
∇E(uk−1), (9.11)
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for α = (α, α0, . . . , αk−1) and pk−1 ∈ ∂J(uk−1, α). This method for arbit-
rary non-convex energies E was introduced in Benning, Betcke, Ehrhardt
and Schönlieb (2017b) and mathematically analysed in Benning, Betcke,
Ehrhardt and Schönlieb (2017a). As in Section 9.1.1, R(uk−1, pk−1,α) is no
longer a regularization operator in the classical sense, unless E is a (poten-
tially non-convex) data fidelity function for some nonlinear inverse problem.

It becomes evident that (9.11) and (9.2) coincide if J in (9.11) is a Le-
gendre functional and if J in (9.2) is zero. Hence, the convergence analysis
closely follows the convergence analysis of the proximal gradient method.
We assume that J(·, α) is γ-strongly convex and that

Jγ(u, α) :=
L

γ
J(u, α)− E(u) (9.12)

is convex. Then we can show the following sufficient decrease of the energy
(Benning et al. 2017b).

Lemma 9.6. Suppose E is coercive or has bounded level sets, infuE(u) >
−∞, αk−1 satisfies (9.5) with

Ck :=
Dsymm
J(·,α)(u

k, uk−1)

Dpk−1

J(·,α)(u
k, uk−1)

,

and that E has at least one critical point. Then the iterates of (9.11) satisfy

E(uk) + ρDpk−1

J(·,α)(u
k, uk−1) ≤ E(uk−1). (9.13)

Proof. From the convexity of (9.12) we immediately observe

0 ≤ Dqk−1

Jγ(·,α)(u
k, uk−1) =

L

γ
Dpk−1

J(·,α)(u
k, uk−1)

−
(
E(uk)− E(uk−1)− 〈∇E(uk−1), uk − uk−1〉

)
,

for qk−1 ∈ ∂Jγ(u, α). As a direct consequence, we have derived the estimate

E(uk) + 〈∇E(uk−1), uk−1 − uk〉 − L

γ
Dpk−1

J(·,α)(u
k, uk−1) ≤ E(uk−1). (9.14)

Inserting the dual update formula of (9.11) into (9.14) then yields

E(uk) +
1

αk−1
Dsymm
J(·,α)(u

k, uk−1)− L

γ
Dpk−1

J(·,α)(u
k, uk−1) ≤ E(uk−1).

Together with the stepsize bound (9.5) we conclude (9.13).

If we further assume that J∗ is δ-strongly convex with respect to its first
argument, that is,

δ

2
‖p− q‖2U∗ ≤ Dv

J∗(·,α)(p, q),
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for all p, q ∈ U∗ and v ∈ ∂J∗(q, α), and J∗ denoting the convex conjugate of
J with respect to the first variable, then we can easily derive the following
bound for the gradient at each iteration (Benning et al. 2017b).

Lemma 9.7. Let the same assumptions hold true as in Lemma 9.6, and
further assume that J is δ-strongly convex for all arguments and corres-
ponding subgradients. Then the iterates (9.11) satisfy

‖∇E(uk−1)‖U∗ ≤
αk−1

δ
‖uk − uk−1‖U ,

for all k ∈ N.

Proof. From the standard duality estimate 〈p, u〉 ≤ ‖u‖U‖p‖U∗ , we observe

Dsymm
J(·,α)(p

k, pk−1) = 〈pk − pk−1, uk − uk−1〉 ≤ ‖pk − pk−1‖U∗‖uk − uk−1‖U .

Together with the strong convexity of J∗(·, α), we therefore estimate

δ‖pk − pk−1‖U∗ ≤
Dsymm
J(·,α)(p

k, pk−1)

‖pk − pk−1‖U∗
≤ ‖uk − uk−1‖U .

Inserting the dual update formula from (9.11) thus yields

δ

αk−1
‖∇E(uk−1)‖U∗ ≤ ‖uk − uk−1‖U .

This concludes the proof.

Note that we require no Lipschitz-continuity assumptions for ∇E in order
for Lemmas 9.6 and 9.7 to apply, but only that (9.12) is convex. As in the
case of the proximal gradient method, we can prove global convergence of
the iterates (9.11) for finite-dimensional U = Rn.

Theorem 9.8. Let the same assumptions hold true as in Lemma 9.6. Fur-
ther assume U = Rn and that E is a KL function. Then the iterates (9.11)
converge globally to a critical point of the energy E.

Proof. The proof is a special case of the more general proof of Benning
et al. (2017a, Theorem 5.6 & Corollary 5.7).

We do want to emphasize that we require J∗(·, α) to be strongly convex,
which in return implies the restrictive assumption that J(·, α) is a smooth
functional with Lipschitz-continuous gradient. In order to get rid of this
restrictive condition we split the functional J(·, α) into the two parts

J(u, α) = H(u) +
1

αk−1
G(u, α),

and assume that H is γ-strongly convex and has δ-Lipschitz gradient ∇H,
and that G(·, α) is proper, lower semicontinuous and convex. Hence, we
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modify (9.11) as follows:

R(uk−1, qk−1,α) = arg min
u∈U

{
〈∇E(uk−1), u− uk−1〉 (9.15)

+Dqk−1

G(·,α)(u, u
k−1) + αk−1DH(u, uk−1)

}
,

uk ∈ R(uk−1, qk−1,α),

qk = qk−1 −
(
∇E(uk−1) + αk−1(∇H(uk)−∇H(uk−1))

)
,

for q0 ∈ ∂G(u0, α). We then define the surrogate energy

Ek(uk) := E(uk) +Dqk−1

G(·,α)(u
k, uk−1), (9.16)

for qk−1 ∈ ∂G(uk−1, α). For this surrogate energy we can show the following
results.

Lemma 9.9. Suppose E is coercive or has bounded level sets, infuE(u) >
−∞ and E has at least one critical point, and assume H is γ-strongly convex
with δ-Lipschitz gradient ∇H, and αk−1 satisfies (9.5). Then the iterates
of (9.15) satisfy

Ek(uk) + ρDH(uk, uk−1) ≤ Ek−1(uk−1).

Proof. The proof follows the same principle as the proofs of Lemmas 9.1
and 9.6. Convexity of L

γH − E implies the estimate in (9.7). Inserting the

optimality condition (or the dual update formula) of (9.15), applying (9.5)

and adding Dqk−2

G(·,α)(u
k−1, uk−2) to both sides of the inequality then yields

the desired estimate.

A bound of the gradient of Ek(uk) follows from the Lipschitz-continuity
of both ∇E and ∇H.

Lemma 9.10. Let the same assumptions hold true as in Lemma 9.9. Then
the iterates (9.15) satisfy

‖∇E(uk) + qk − qk−1‖U∗ ≤ (L+ δαk−1)‖uk − uk−1‖U .
Proof. Using the dual update formula (9.15) and the Lipschitz-continuity
of ∇E and ∇H leads to

‖∇E(uk) + qk − qk−1‖U∗
= ‖∇E(uk)−∇E(uk−1) + αk−1(∇H(uk−1)−∇H(uk))‖U∗
≤ L‖uk − uk−1‖U + αk−1δ‖uk−1 − uk‖U ,

which proves the conjecture.

As in the previous case, global convergence can be achieved under the
assumption that the domain is finite-dimensional and that Ek(u) is a KL-
function.
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78 M. Benning and M. Burger

Theorem 9.11. Let the same assumptions hold true as in Lemma 9.10.
Further assume U = Rn and that Ek is a KL function for all k ∈ N. Then
the iterates (9.15) converge globally. If, in addition, the sequence {qk}k∈N
is bounded, then the iterates even convergence to a critical point of the
energy E.

Proof. The proof is a special case of the more general proof of Benning
et al. (2017a, Theorem 5.10).

Remark 9.12. Given the structure of the problem, it is also tempting to

look at a Fejér-monotonicity with respect to Dqk

J
αk−1 (·,α)(u

†, uk), for

Jαk−1(u, α) := αk−1J(u, α)− E(u).

If we make the same attempt as in Section 6, we observe

Dqk

J
αk−1 (·,α)(u

†, uk)−Dqk−1

J
αk−1 (·,α)(u

†, uk−1)

= −Dqk−1

J
αk−1 (·,α)(u

k, uk−1)− 〈qk − qk−1, u† − uk〉,

= −Dqk−1

J
αk−1 (·,α)(u

k, uk−1)

− αk−1〈pk − pk−1, u† − uk〉
+ 〈∇E(uk)−∇E(uk−1), u† − uk〉,

= −Dqk−1

J
αk−1 (·,α)(u

k, uk−1)

+ 〈∇E(uk), u† − uk〉 .
Since we also know that

〈∇E(uk), u† − uk〉
= Dqk

J
αk−1 (·,α)(u

†, uk)− αk−1Dpk

J(·,α)(u
†, uk) + E(u†)− E(uk),

we can combine this equality with the previous one to obtain

Dqk

J
αk−1 (·,α)(u

†, uk)−Dqk−1

J
αk−1 (·,α)(u

†, uk−1)

= −Dqk−1

J
αk−1 (·,α)(u

k, uk−1)

+Dqk

J
αk−1 (·,α)(u

†, uk)− αk−1Dpk

J(·,α)(u
†, uk)

+ E(u†)− E(uk).

Hence, for E(u†) ≤ E(uk) we only observe

αk−1Dqk

J(·,α)(u
†, uk) ≤ Dqk−1

J
αk−1 (·,α)(u

†, uk−1),

which is not quite sufficient to achieve Fejér-monotonicity.
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We mention that non-convex data fidelities find applications in prob-
lems with advanced noise models, for example multiplicative noise (Rudin,
Lions and Osher 2003, Aubert and Aujol 2008), image registration prob-
lems (Modersitzki 2004), or most nonlinear inverse problems. In the next
subsection we focus on the special case of E representing a convex data fi-
delity F of a potentially nonlinear inverse problem, which leads to an overall
non-convex problem.

Let us mention that so far no suitable theory of iterative regularization
methods in the case of non-convex regularizations is available, although
there are several applications such as the Mumford–Shah or Ambrosio–
Tortorelli functional (Mumford and Shah 1989, Ambrosio and Tortorelli
1990, Pock et al. 2009, Rondi 2008, Klann, Ramlau and Ring 2011, Klann
and Ramlau 2013) or polyconvex energies in image registration (Droske,
Rumpf and Schaller 2003, Burger, Modersitzki and Ruthotto 2013b, Kirisits
and Scherzer 2017).

9.2. Nonlinear inverse problems

Nonlinear inverse problems are extensions of (1.1) with nonlinear forward
operators K : U → V. Given a convex or non-convex data fidelity term
F : V ×V → R, we can formulate variational regularizations and iterat-
ive regularizations in exactly the same way as in the linear case. As these
problems are special cases of the non-convex methodology discussed in Sec-
tion 9.1, we can further apply the proposed methodologies. In the context of
variational regularization (5.3) for nonlinear forward operators and possibly
non-convex but Fréchet-differentiable fidelity terms, the kth iterate of the
proximal gradient method discussed in Section 9.1.1 reads as

R(f δ, uk−1,α)

= arg min
u∈U

{
αk−1〈∂xF (K(uk−1), f δ), u− uk−1〉

+DH(u, uk−1) + αk−1J(u, α)
}
.

The convergence theory discussed in Section 9.1.1 applies in identical fash-
ion. However, questions of the convergence of the regularization can now
also be addressed.

Gauss–Newton methods

The special structure of the non-convex energy functional E for regular-
izations of nonlinear inverse problems enables different solution strategies
compared to arbitrary non-convex functionals. Given a Fréchet-differen-
tiable operator K, one can approximate K(uk) via a Taylor-approximation
around uk−1, that is,

K(uk) ≈ K(uk−1) +K ′(uk−1)(uk − uk−1).
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As a consequence, another strategy for solving variational regularization
problems for nonlinear inverse problems is via the following iteratively reg-
ularized Gauss–Newton approach:

R(f δ, uk−1,α) (9.17)

= arg min
u∈U

{
F (K(uk−1) +K ′(uk−1)(u− uk−1), f δ) + αk−1J(u, α)

}
.

We refer to Schöpfer, Louis and Schuster (2006), Stück, Burger and Hohage
(2011), Bauer, Hohage and Munk (2009), Kaltenbacher et al. (2009), Stück
et al. (2011) and Hohage and Werner (2013) for further discussion.

In the following sections we discuss extensions of the iterative regulariz-
ation methods presented in Section 6 to nonlinear inverse problems.

9.2.1. Nonlinear Landweber regularization

We easily observe that (9.11) for E(u) := F (K(u), f δ) with nonlinear oper-
ator K reads as

R(f δ, vk−1,α) = arg min
u∈U

{
〈K ′(uk−1)∗∂xF (K(uk−1), f δ), u− uk−1〉

+ αk−1Dpk−1

J(·,α)(u, u
k−1)

}
,

uk ∈ R(f δ, vk−1,α),

pk = pk−1 − 1

αk−1
K ′(uk−1)∗∂xF (K(uk−1), f δ),

with vk−1 := (uk−1, pk−1). For

F (K(u), f δ) =
1

2
‖K(u)− f δ‖2L2(Σ) and J(u, α) =

α

p
‖u‖pLp(Ω)

this method was first introduced and analysed in Kaltenbacher et al. (2009).
General convex regularization functionals J(·, α) with multivalued subdif-
ferential ∂J(·, α) have been considered in Bachmayr and Burger (2009).
Both convergence analyses have been carried under additional assumptions
on the nonlinear forward operator, such as the tangential cone condition.
In a finite-dimensional setting, convergence follows from Theorem 9.11: see
Benning et al. (2017a). However, it is important to point out that although
existence of a critical point of E(u) can usually be guaranteed in finite di-
mensions, ill-conditioning of the problem still requires early stopping of the
iterates.

9.2.2. Levenberg–Marquardt regularization

Replacing the regularization functional in the iterative Gauss–Newton reg-
ularization with a generalized Bregman distance with respect to the cur-
rent and the previous iterate yields the following generalized Levenberg–
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Marquardt regularization:

R(f δ, vk−1,α) = arg min
u∈U

{
F (K(uk−1) +K ′(uk−1)(u− uk−1), f δ)

+ αk−1Dpk−1

J(·,α)(u, u
k−1)

}
,

uk ∈ R(f δ, vk−1,α),

pk = pk−1 − 1

αk−1
K ′(uk−1)∗∂xF (K(uk−1)

+K ′(uk−1)(uk − uk−1), f δ),

for vk−1 := (uk−1, pk−1). This method reduces to the classical Levenberg–
Marquardt method (Levenberg 1944, Marquardt 1963) for the choices

F (K(u), f δ) =
1

2
‖K(u)− f δ‖2L2(Σ), J(u, 1) =

1

2
‖u‖2L2(Ω).

For

F (K(u), f δ) =
1

2
‖K(u)− f δ‖2L2(Σ)

and proper, lower semicontinuous and convex J(u, α) with potentially multi-
valued subdifferential ∂J(u, α), this method was introduced and analysed
in Bachmayr and Burger (2009).

9.2.3. Examples

In the following we discuss two nonlinear inverse problems that are natural
extensions of the linear inverse problems introduced in Example 6.8 and
Section 8.1.

Blind deconvolution

Following up on Example 6.8, an obvious non-convex extension of the prob-
lem of deconvolution is blind deconvolution, where the convolution kernel
that degrades the image is also unknown (Kundur and Hatzinakos 1996,
Chan and Shen 2005, Campisi and Egiazarian 2016). We essentially follow
the set-up of Benning et al. (2017a, Section 6.2), where we assume

F (K(u, h), f δ) =
1

2
‖K(u, h)− f δ‖2L2(R2)

=
1

2
‖u ∗ h− f δ‖2L2(R2) (9.18)

and apply the nonlinear Landweber regularization as described in Sec-
tion 9.2.1 with

J(u, h, α) (9.19)

=
1

2
‖u‖2L2(R2) + αTV(u) +

∫
R2

h(x) log(h(x))− h(x) dx+ χP (R2)(h),
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(a) original u† (b) blurred, noisy fδ (c) iterate 1 (d) iterate 11

(e) iterate 49 (f) iterate 999 (g) iterate 2199 (h) iterate 3474

Figure 9.1. (a) Image u† ∈ R400×300 of Pixel the Gambian pouched rat, introduced
in Figure 6.1(a). (b) The same degraded and noisy version fδ ∈ R400×300 together
with the convolution kernel h as shown in Figures 6.1(b) and 6.3(b). (c–h) Different
iterates of Algorithm 2 for F (K(u, h), fδ) and J(u, h) as in equations (9.18) and
(9.19), respectively, and α = 10. The 3474th iterate visualized in (h) is the first
that violates Definition 6.1, for δ = 5.95. The reconstructed kernels have been
magnified for better visualization.

where

χP (R2)(h) =

{
0 h ∈ P (R2),

∞ h 6∈ P (R2)

denotes the characteristic functional over the (convex) set of probability
distributions

P (R2) :=

{
h ∈ L2(R2) | h(x) ≥ 0 a.e.,

∫
R2

h(x) dx = 1

}
.

The rationale behind this choice of J is that convolution kernels in applic-
ations such as motion deblurring are usually non-negative and preserve the
mean of the underlying signal. We refer to Benning et al. (2017a, Sec-
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(a) (b) (c) (d)

Figure 9.2. Deconvolution results for the image of Pixel the Gambian pouched rat:
(a) the original image; (b) the reconstruction discussed in Example 6.8; (c) the
reconstruction with Algorithm 2; (d) the blind deconvolution result computed with
the nonlinear Landweber regularization.

tions 6.2, 7.2) for more information on the discrete formulation of the prob-
lem and its numerical realization.

We use u† and f δ from Example 6.8, and therefore stop the nonlinear
Landweber regularization via the discrepancy principle for δ = 5.95. The
parameter α, however, is chosen to be α = 10 and is therefore much larger
than in Example 6.8 and in Section 6.2. Hence, we require many more
iterations in order to reach the same discrepancy. The necessity for this
large choice of α stems from the fact that the iterates otherwise converge to
unstable solutions with Dirac-delta-like convolution kernels. Several iterates
of the nonlinear Landweber regularization are visualized in Figure 9.1.

To conclude, we visually compare the first iterates that violate the dis-
crepancy principle of the Bregman iteration, the linearized Bregman iter-
ation and the nonlinear Landweber regularization in Figure 9.2. Between
the reconstructions from the Bregman iteration and the linearized Bregman
iteration there are at best small differences in contrast. The reconstruction
from the the nonlinear Landweber regularization does have slight artifacts
that originate from small imperfections in the reconstructed convolution
kernel. Nevertheless, the result is still remarkable given that both image
and convolution kernel were unknown and had to be estimated.

Velocity-encoded MRI

We briefly revisit the velocity-encoded MRI problem of Section 8.1. As the
original forward problem (8.2) is nonlinear, it is perfectly sensible to recover
vz directly (instead of taking a detour via w = u exp(−iσvz)). This idea is
not new and has for instance already been addressed in Zhao, Noll, Nielsen
and Fessler (2012). We again use the nonlinear Landweber regularization
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(a) fully sampled (b) zero-filled (c) TGV recon. (d) nonlin. recon.

Figure 9.3. Comparison of the different z-velocity reconstructions. (a) Unwrapped
velocity reconstruction from fully sampled data. (b) Unwrapped velocity recon-
struction obtained by filling the missing samples of the sub-sampled data with
zero. (c) Unwrapped TGV-based reconstruction of the velocity from sub-sampled
data. (d) Nonlinear reconstruction of the velocity, computed via the nonlinear
Landweber regularization.

with the functionals

F (K(vz), f
δ) =

1

2

tm∑
t=t0

‖F(u, vz)− f δt ‖22,

where u is a precomputed spin-proton density, and a scaled H1-norm

J(vz, α) =
1

2
‖vz‖2L2(R2) +

α

2
‖∇vz‖2L2(R2)

as the regularization functional of choice.
Figure 9.3 shows the comparison of the velocity reconstruction from the

fully sampled data (a), the zero-filled reconstruction from the sub-sampled
data (b), the TGV-based reconstruction from the sub-sampled data (c) and
a reconstruction from the sub-sampled data via the nonlinear Landweber
regularization (d), all clipped to the same intensity range. The latter was
initialized with v0

z(x) = π (on some compact domain), p0 = u0 and α =
200. The result shown in Figure 9.3(d) is the first iterate that violates the
discrepancy principle for η = 1 and δ = 80. The inner subproblem was
again computed with the PDHGM.

9.3. Learning

A very important question that always pops up when dealing with regular-
ization of inverse problems is the question of how to choose the regulariza-
tion parameters, that is, how to develop a useful parameter choice strategy.
For the iterative regularization strategies discussed in Section 6 we used
Morozov’s discrepancy principle as an a posteriori parameter choice rule to
determine when to stop the iteration (which is the regularization parameter
for iterative regularizations), based on the noisy data f δ and the noise level
δ. In addition to the standard alternatives, which are a priori and heuristic
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parameter choice rules, supervised learning strategies have become popular
in recent years. The idea is to choose optimal parameters based on pairs

{(u†j , f δj )}mj=1 of training data by minimizing an empirical risk functional,

which is just the empirical expectation of the loss between u†j and a uαj that

can be obtained with data f δj . Using our regularization operator notation,
a relatively generic approach is to estimate optimal parameters α̂ ∈ A via

α̂ ∈ arg min
α∈A

1

m

m∑
j=1

`j(u
†
j , u

α
j ) + J(α,β)

subject to uαj ∈ R(f δj ,α), for all j = 1, . . . ,m. (9.20)

Here {`j}mj=1, with `j : U ×U → R for all j ∈ {1, . . . ,m}, denotes a family
of loss functionals that measures the deviation between the reconstructions
uαj and the ground truth signals u†j , and J : A×B → R is a regularization
functional that, together with some parameters β in some parameter domain
B, incorporates prior knowledge to steer the reconstruction of α̂ in a certain
direction. The operator R : V ×A ⇒ U is a regularization operator that
takes f δj and α as an input and produces at least one reconstruction uαj
as its output. If uαj ∈ R(f δj ,α) stems from an optimization problem, then
(9.20) is also known as a bilevel optimization problem (Kunisch and Pock
2013, De los Reyes and Schönlieb 2013). It is also quite evident that (9.20)
is a regularization problem in itself. An even more generic way to formulate
parameter learning would therefore be

α̂ ∈ PR({u†j}mj=1, {f δj }mj=1,β),

where PR : Um×Vm×B ⇒ A is a regularization operator that also de-
pends on some other regularization operator R : V ×A ⇒ U . A likely
application of this scenario is supervised machine learning with early stop-
ping of, for instance, stochastic gradient descent methods (Johnson and
Zhang 2013, Defazio, Bach and Lacoste-Julien 2014, Bertsekas 2011). How-
ever, (9.20) is sufficient to explain the majority of current state-of-the-art
parameter learning approaches in the context of inverse problems. These
cover finite-dimensional Markov random field models (Roth and Black 2005,
Tappen 2007, Domke 2012, Chen, Ranftl and Pock 2014b, Schmidt and Roth
2014), optimal model design approaches (Haber and Tenorio 2003, Haber,
Horesh and Tenorio 2009, Bui-Thanh, Willcox and Ghattas 2008, Biegler
et al. 2011), optimal regularization parameter estimation in variational reg-
ularization (Calatroni, De los Reyes and Schönlieb 2013, Chung, Español
and Nguyen 2014, De los Reyes, Schönlieb and Valkonen 2016, De los Reyes,
Schönlieb and Valkonen 2017, Calatroni, De los Reyes and Schönlieb 2017,
Chung, De los Reyes and Schönlieb 2017), training optimal operators in
regularization functionals (Chung, Chung and O’Leary 2011, Chen, Pock,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492918000016
Downloaded from https://www.cambridge.org/core. Cambridge University Main, on 24 May 2018 at 16:00:14, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492918000016
https://www.cambridge.org/core


86 M. Benning and M. Burger

Ranftl and Bischof 2013, Chen, Pock and Bischof 2014a), reaction–diffusion
processes (Chen, Yu and Pock 2015, Chen and Pock 2017), so-called vari-
ational networks (Hammernik et al. 2017, Kobler, Klatzer, Hammernik and
Pock 2017, Klatzer et al. 2017), and other works related to image processing
(Ochs, Ranftl, Brox and Pock 2015, Hintermüller and Wu 2015).

In the following, we want to focus in particular on the connection between
modern deep neural network approaches and iterative regularization meth-
ods as discussed in Section 6.

9.3.1. Iterative regularization and deep neural networks

In this section we discuss how certain (deep) neural network architectures
are closely related (or even equivalent) to the linearized Bregman iteration
described in Section 6.2, for a data fidelity term with variable metric. This
connection will give insight into how more stable neural network architec-
tures can be learned. For an overview of deep learning and neural network
architectures we refer to LeCun, Bengio and Hinton (2015).

We make the assumption that the data fidelity functional is given in
terms of

F (Ku, f δ) =
1

2
‖Ku− f δ‖2Qk ,

for ‖ · ‖Qk :=
√
〈Qk·, ·〉 and some symmetric, positive definite operator

Qk. We now aim to minimize this data fidelity functional with the help
of Algorithm 2, but deviate from the standard procedure by allowing the
underlying positive definite operator Qk to vary throughout the iterations.

If we reformulate Algorithm 2 for this particular choice of variable met-
ric data fidelity and linearize around the previous iterate, we obtain the
following modification of Algorithm 2:

RI(f
δ, vk−1,αk−1) = arg min

u∈U

{
〈K∗Qk−1(Kuk−1f δ), u〉+Dpk−1

α (u, uk−1)
}
,

uk ∈ RI(f δ, vk−1,αk−1),

pk = pk−1 −K∗Qk−1(Kuk−1 − f δ). (9.21)

Here we define αk−1 = (α,Q0, Q1, . . . , Qk−1) and vk−1 = (uk−1, pk−1). If
we now choose J to be of the form

J(u, α) =
1

2
‖u‖2L2(Ω) +H(u, α),

the algorithm simplifies to

uk = (I + ∂H(·, α))−1
(
(I −K∗Qk−1K)uk−1 +K∗Qk−1f

δ + qk−1
)
,

qk = uk−1 − uk + qk−1 −K∗Qk−1(Kuk − f δ),
for qk ∈ ∂H(uk, α), for all k ∈ N. Here (I + ∂H(·, α))−1 denotes the
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proximal mapping of H: see for instance Parikh and Boyd (2014). If we
define Ak := I −K∗QkK and bk := K∗Qkf

δ + qk for all k ∈ N, and choose
H to be the pointwise characteristic functional over the convex set of non-
negative real numbers, that is,

(H(u, α))(x) = (χ≥0(u))(x) =

{
0 u(x) ≥ 0,

∞ else,

we obtain the standard rectified linear unit (ReLU: see Nair and Hinton
2010) neural network architecture

uk = max(0, Ak−1u
k−1 + bk−1)

for the primal update. However, rather than stopping at this analogy, we
want to discuss how the insights of Section 6.2 can help to impose natural
conditions on the learning of the parameters Ak and bk.

Naturally, Ak and bk have to be of the specific form described above,
but we want to look into more detail of what kind of conditions have to
be imposed on the free parameters Qk. We start by defining a surrogate
functional that depends on the variable metric data fidelity in the same
fashion as we have defined the surrogate functional in Section 6.2, that is,
we define

Jk(u, α) := J(u, α)− 1

2
‖Ku− f δ‖2Qk .

If we guarantee convexity of Jk, we can guarantee the following monotonic
decrease result.

Corollary 9.13 (monotonic decrease). Suppose u0 satisfies ‖Ku0 −
f δ‖2Q0

<∞. Then the iterates of (9.21) satisfy

1

2
‖Kuk+1 − f δ‖2Qk +Dqk

Jk(·,α)(u
k+1, uk) ≤ ‖Kuk − f δ‖2Qk (9.22)

for uk ∈ RI(f δ, vk−1,αk−1) and qk ∈ ∂Jk(uk, α).

Proof. The proof is identical to the proof of Corollary 6.10.

If we go back to the assumption J(u, α) = 1
2‖u‖2L2(Ω) +H(u, α), we need

to ensure that Qk is chosen such that not just Qk, but also I −K∗QkK, is
positive (semi-)definite for all k in order to guarantee convexity of Jk. With
the next lemma we even observe that this is already enough to ensure Fejér
monotonicity of the iterates.

Lemma 9.14. Let f ∈ RF (K), u† ∈ S(f, α) and let f δ ∈ V. Then the
iterates satisfy the Fejér monotonicity

Dqk

Jk(·,α)(u
†, uk) ≤ Dqk−1

Jk−1(·,α)(u
†, uk−1) (9.23)
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as long as ‖Ku† − f δ‖Qk−1
≤ ‖Kuk − f δ‖Qk−1

is satisfied, for all uk ∈
RI(f

δ, vk−1,αk−1) with qk ∈ ∂Jk(uk, α) and k ∈ N.

Proof. As in our earlier Fejér monotonicity proofs we start by computing

Dqk

Jk(·,α)(u
†, uk)−Dqk−1

Jk−1(·,α)(u
†, uk−1)

= Dpk

J(·,α)(u
†, uk)−Dpk−1

J(·,α)(u
†, uk−1)

+D 1
2
‖K·−fδ‖2Qk−1

(u†, uk−1)−D 1
2
‖K·−fδ‖2Qk

(u†, uk),

for all k ∈ N. We further compute

Dpk

J(·,α)(u
†, uk)−Dpk−1

J(·,α)(u
†, uk−1)

= −Dpk−1

J(·,α)(u
k, uk−1)− 〈pk − pk−1, u† − uk〉

= −Dpk−1

J(·,α)(u
k, uk−1) + 〈K∗Qk−1(Kuk−1 − f δ), u† − uk〉,

and estimate

D 1
2
‖K·−fδ‖2Qk−1

(u†, uk−1)−D 1
2
‖K·−fδ‖2Qk

(u†, uk)

≤ D 1
2
‖K·−fδ‖2Qk−1

(u†, uk−1)

=
1

2
‖Ku† − f δ‖2Qk−1

− 1

2
‖Kuk−1 − f δ‖2Qk−1

− 〈K∗Qk−1(Kuk−1 − f δ), u† − uk−1〉.

Thus, we observe

Dqk

Jk(·,α)(u
†, uk)−Dqk−1

Jk−1(·,α)(u
†, uk−1)

≤ −Dpk−1

J(·,α)(u
k, uk−1)

+
1

2
‖Ku† − f δ‖2Qk−1

− 1

2
‖Kuk−1 − f δ‖2Qk−1

− 〈K∗Qk−1(Kuk−1 − f δ), uk − uk−1〉
= −Dpk−1

J(·,α)(u
k, uk−1)

+
1

2
‖Ku† − f δ‖2Qk−1

− 1

2
‖Kuk − f δ‖2Qk−1

+D 1
2
‖K·−fδ‖2Qk−1

(uk, uk−1)
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= −Dpk−1−K∗Qk−1(Kuk−1−fδ)
Jk−1(·,α) (uk, uk−1)

+
1

2
‖Ku† − f δ‖2Qk−1

− 1

2
‖Kuk − f δ‖2Qk−1

≤ 1

2
‖Ku† − f δ‖2Qk−1

− 1

2
‖Kuk − f δ‖2Qk−1

.

Hence, we guarantee Fejér monotonicity as long as

‖Ku† − f δ‖Qk−1
≤ ‖Kuk − f δ‖Qk−1

is satisfied.

Corollary 9.13 and Lemma 9.14 suggest that a sensible model for learning

the parameters αk, based on a set of training data pairs (u†j , f
δ
j ) for j =

1, . . . ,m, is as follows:

α̂k
∗
= arg min

αk∗

k∗∑
k=1

[
m∑
j=1

Dqk

Jk(·,α)(u
†
j , u

k
j ) + χ�0(I −K∗Qk−1K) + χ�0(Qk−1)

]
subject to ukj ∈ RI(f δj , vk−1

j ,αk−1).

The minimization problem can either be solved simultaneously for all para-
meters, or subsequently, keeping all previously computed parameters fixed.
Further, the minimization problem can be equipped with additional con-
straints, such as

‖Ku†j−f δj ‖Qk−1
≤ ‖Kukj−f δj ‖Qk−1

or ‖Kuk+1
j −f δj ‖Qk+1

≤ ‖Kukj−f δj ‖Qk ,
for all k ∈ {0, . . . , k∗ − 1} and j ∈ {1, . . . ,m}.

10. Conclusions and outlook

Modern regularization techniques, particularly those based on (non-smooth)
convex variational models, are a versatile tool for improved reconstruction
in inverse problems when appropriate prior information is available. Further
improvements can be made by constructing iterative regularization methods
using the same underlying variational model. These can reduce systematic
errors and bias, but also yield interesting novel insights into scale proper-
ties, spectral and multiscale decompositions, and even link to deep neural
network architectures.

Several aspects are expected to play a role in the future development and
understanding of regularization methods. A key issue is that of stochastic
models and uncertainty quantification, which we have mentioned only super-
ficially in this survey. This topic appears to be at a similar stage to determ-
inistic regularization theory around the year 2000; the Gaussian case (cor-
responding to linear regularization methods in Hilbert spaces) seems to be
reasonably well understood now for linear and nonlinear inverse problems.
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Much less is known about non-Gaussian priors in Banach spaces, but there
has recently been a surge in papers tackling them. Relevant problems are,
for example, the link between Bayesian models and variational approaches,
the convergence of posterior distributions, and advanced statistical inference
in infinite-dimensional Banach spaces. So far there have been essentially no
results on the analysis of iterative regularization methods in a stochastic
set-up.

One topic of strong recent interest is that of eigenproblems. While it
remains unclear how far they can be pushed for practical purposes, they
have already yielded new understanding of the geometry of inverse problems
and regularization methods, partly closing the gap with the standard tool
of singular value decomposition for linear regularization methods.

A topic that has not yet been investigated from a theoretical point of view,
but is often used in engineering practice, is that of methods that effectively
compute Nash equilibria instead of minimizers. Such methods arise from
problems where two (or more) unknowns are reconstructed in an iterative
fashion. Then often one of the variables is frozen and a variational problem
with respect to the other one is solved, for example in motion-corrected
reconstruction when in alternating iteration images are reconstructed from
indirect data with given motion, and motion is estimated directly from
image data. Convergence of such procedures is often observed in practice
and yields good results, but as yet there is no systematic theory.

From an application point of view, high-dimensional and joint reconstruc-
tion problems are a key subject for current and future development, and
many aspects of modelling and analysis are still open in this context. Ex-
amples of current interest are joint reconstruction of images and motion
in many biomedical applications, or reconstructions in dynamic or spectral
problems with strong undersampling.

Finally, machine learning is expected to play an important role in regu-
larization methods for inverse problems (as in other disciplines related to
processing data). The learning theory will need to be adapted to the special
needs of inverse problems due to the aspects of ill-posedness, which cannot
be captured by current learning architectures, and the particular difficulties
in obtaining meaningful training data for inverse problems.

Acknowledgements

We thank Eva-Maria Brinkmann and Julian Rasch (WWU Münster) for
proofreading, for comments that improved the paper, and for providing
computational results related to debiasing and dynamic MR reconstruc-
tion. MBe acknowledges support from the Leverhulme Trust Early Career
Fellowship ‘Learning from mistakes: a supervised feedback-loop for imaging
applications’, the Isaac Newton Trust and the Cantab Capital Institute for

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492918000016
Downloaded from https://www.cambridge.org/core. Cambridge University Main, on 24 May 2018 at 16:00:14, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492918000016
https://www.cambridge.org/core


Modern regularization methods for inverse problems 91

the Mathematics of Information. MBu acknowledges support by ERC via
Grant EU FP 7 - ERC Consolidator Grant 615216 LifeInverse and by the
German Ministry for Science and Education (BMBF) through the project
MED4D. The authors would like to thank the Isaac Newton Institute for
Mathematical Sciences, Cambridge, for support and hospitality during the
programme ‘Variational Methods for Imaging and Vision’, where work on
this paper was undertaken, supported by EPSRC grant no. EP/K032208/1.

REFERENCES2

R. Acar and C. R. Vogel (1994), ‘Analysis of bounded variation penalty methods
for ill-posed problems’, Inverse Problems 10, 1217.

S. Agapiou, M. Burger, M. Dashti and T. Helin (2018), ‘Sparsity-promoting and
edge-preserving maximum a posteriori estimators in non-parametric Bayesian
inverse problems’, Inverse Problems 34, 045002.

S. Aja-Fernandez, C. Alberola-Lopez and C. F. Westin (2008), ‘Noise and signal
estimation in magnitude MRI and Rician distributed images: A LMMSE
approach’, IEEE Trans. Image Process. 17, 1383–1398.

W. K. Allard (2007), ‘Total variation regularization for image denoising, I: Geo-
metric theory’, SIAM J. Math. Anal. 39, 1150–1190.

L. Ambrosio and V. M. Tortorelli (1990), ‘Approximation of functional depending
on jumps by elliptic functional via t-convergence’, Commun. Pure Appl. Math.
43, 999–1036.

L. Ambrosio, N. Fusco and D. Pallara (2000), Functions of Bounded Variation and
Free Discontinuity Problems, Oxford Mathematical Monographs, Clarendon
Press, Oxford University Press.

R. Anderssen (1986), The linear functional strategy for improperly posed problems.
In Inverse Problems (J. R. Cannon and U. Hornung, eds), Springer, pp. 11–30.

H. Attouch and J. Bolte (2009), ‘On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features’, Math. Program. 116, 5–16.

H. Attouch, J. Bolte and B. F. Svaiter (2013), ‘Convergence of descent methods for
semi-algebraic and tame problems: Proximal algorithms, forward–backward
splitting, and regularized Gauss–Seidel methods’, Math. Program. 137, 91–
129.

H. Attouch, J. Bolte, P. Redont and A. Soubeyran (2010), ‘Proximal alternating
minimization and projection methods for nonconvex problems: An approach
based on the Kurdyka– Lojasiewicz inequality’, Math. Oper. Res. 35, 438–457.

G. Aubert and J.-F. Aujol (2008), ‘A variational approach to removing multiplic-
ative noise’, SIAM J. Appl. Math. 68, 925–946.

M. Bachmayr and M. Burger (2009), ‘Iterative total variation schemes for nonlinear
inverse problems’, Inverse Problems 25, 105004.

2 The URLs cited in this work were correct at the time of going to press, but the publisher
and the authors make no undertaking that the citations remain live or are accurate or
appropriate.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492918000016
Downloaded from https://www.cambridge.org/core. Cambridge University Main, on 24 May 2018 at 16:00:14, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492918000016
https://www.cambridge.org/core


92 M. Benning and M. Burger

G. Backus and F. Gilbert (1968), ‘The resolving power of gross earth data’, Geo-
phys. J. Internat. 16, 169–205.

A. B. Bakushinskii (1967), ‘A general method of constructing regularizing al-
gorithms for a linear incorrect equation in Hilbert space’, Zh. Vychisl. Mat.
Mat. Fiz. 7, 672–677.

A. B. Bakushinskii (1973), ‘On the proof of the “discrepancy principle”’, Dif-
ferential and Integral Equations (Differents. i integr. un-niya), Izd-vo IGU,
Irkutsk.

A. B. Bakushinskii (1977), ‘Methods for solving monotonic variational inequalities,
based on the principle of iterative regularization’, USSR Comput. Math. Math.
Phys. 17, 12–24.

A. B. Bakushinskii (1979), ‘On the principle of iterative regularization’, USSR
Comput. Math. Math. Phys. 19, 256–260.

A. B. Bakushinskii (1984), ‘Remarks on choosing a regularization parameter using
the quasi-optimality and ratio criterion’, USSR Comput. Math. Math. Phys.
24, 181–182.

H. Banks and K. Kunisch (1989), Estimation Techniques for Distributed Parameter
Systems, Birkhäuser.
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V. Duval and G. Peyré (2017a), ‘Sparse regularization on thin grids, I: The Lasso’,
Inverse Problems 33, 055008.
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