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Abstract

Objective—On December 8–9, 2014, the Pennington Biomedical Research Center convened a 

scientific symposium to review the state-of-the-science and future directions for the study of 

developmental programming of obesity and chronic disease. The objectives of the symposium 

were to discuss: (i) past and current scientific advances in animal models, population-based cohort 

studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) 

considerations for future studies.

Results—The overarching goal was to provide a comprehensive assessment of the state of the 

scientific field, to identify research gaps and opportunities for future research in order to identify 

and understand the mechanisms contributing to the developmental programming of health and 

disease.

Conclusions—Identifying the mechanisms which cause or contribute to developmental 

programming of future generations will be invaluable to the scientific and medical community. 

The ability to intervene during critical periods of prenatal and early postnatal life to promote 

lifelong health is the ultimate goal. Considerations for future research including the use of animal 

models, the study design in human cohorts with considerations about the timing of the intrauterine 

exposure and the resulting tissue specific epigenetic signature were extensively discussed and are 

presented in this meeting summary.

Introduction

Human epidemiological studies and dietary interventions in animal models have suggested 

that maternal nutritional imbalance and metabolic disturbances during critical time periods 
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of development may have long term health consequences on offspring (1, 2, 3). Such 

phenomena are widely referred to as ‘developmental programming’. There is growing 

acceptance of the notion that epigenetic changes associated with chromatin structure and 

regulation of gene expression provide a basis to contribute to developmental programming 

and establishment of predispositions to later in life chronic disease (4, 5, 6).

In addition to developmental programming, epigenetic changes can occur throughout an 

individual’s life as a result of acute or chronic exposure to an environment or intervention. 

Indeed, epigenetic modifications whether acquired during ontogenesis or later in life can 

influence the way an individual responds to an environmental exposure or intervention, 

which may in part explain the individual variation in heritability of complex traits not 

explained by DNA sequence (7, 8).

Both developmental programming and the potential for epigenetic changes later in life 

suggest new possibilities for the prevention and treatment of obesity and related chronic 

diseases (9). This symposium summary was constructed to: 1) provide an overview of 

epigenetics as it relates to nutritional and developmental programming; 2) discuss 

considerations for the current technologies, study design, and data interpretation and; 3) 

discuss the limitations of current knowledge and the need for future research.

Developmental Programming: Review and Current State-of-the-Science

The classical definition of ‘developmental programming’ refers to the ability of exposures 

during prenatal or early postnatal development to cause permanent changes to the 

physiology, metabolism and epigenome of an individual which subsequently will affect 

health and increase risk of disease (2, 10). Such exposures include, but are not limited to, 

undernutrition, overnutrition, malnutrition; teratogens including pollutants, drugs, alcohol, 

etc.; altered hormonal milieus resulting from maternal overweight, obesity, excess 

gestational weight gain, diabetes mellitus; maternal stress; oxidative stress from 

hypertension or placenta insufficiencies. Extensive effort over the past twenty five years has 

been expended to identify and understand the relationships between early exposure and 

disease, as well as the contributing mechanisms. Thus far, links have been identified through 

epidemiological, prospective and intervention studies in animal models and humans.

Early epidemiological work identified the relationship between intrauterine exposures and 

adult development of disease including obesity (11, 12) and coronary heart disease (13, 14). 

Since these observations, additional links between low birthweight and adult chronic 

diseases, including impaired glucose tolerance, hypertension, cardiovascular disease and 

obesity have been also identified (15, 16, 17, 18). Epidemiological studies of additional 

cohorts such as the Uppsala, Sweden, Helsinki, Finland and the Nurse’s Health Study, USA 

have also revealed correlations between low birthweight or low size at birth and the 

development of diabetes (19, 20, 21, 22, 23, 24), cardiovascular disease (25, 26, 27, 28, 29, 

30, 31, 32, 33), unfavorable alterations in body composition (34, 35), and hypertension (36, 

37) later in life.
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Even though the observed association between low birth weight and adult chronic disease 

has been reproduced in many cohorts around the world, the supportive evidence for the 

developmental programming hypothesis of adult chronic disease relies heavily on the 

assumption that infant growth/size at birth is an indicator of adverse exposures in utero. 

However in the case of fetal exposure to inadequate nutrition, poor nutrition induced by 

either insufficient maternal intake or adverse fetoplacental development, is not the only 

cause for low birth weight. The developmental programming hypothesis has also been 

supported by epidemiological studies in populations with known exposures. For instance, 

studies of individuals exposed to the Dutch Famine in utero between December 1944 and 

April 1945, when the daily ration for adults was 400–800 calories, have observed 

relationships between famine exposure in utero and the development of diabetes (38), high 

blood pressure (39), and unfavorable body composition (12) in the offspring later in life.

The ability of researchers to obtain longitudinal data from individuals within large cohort 

studies with known in utero exposures has also proven to substantially advance the field. 

Data collected in addition to the important time of conception include prospective 

assessments of body composition, blood pressure, cardiovascular risk factors, food intake, 

medical history, glucose tolerance, and biospecimens allowing for the study of epigenetics 

(6, 40). The Quebec Ice Storm, which occurred in 1998 and led to a loss of electrical power 

for up to 6 weeks in 1,400,000 households, provided a unique opportunity for longitudinal 

data collection from offspring of a known in utero exposure, i.e. objective and/or subjective 

maternal stress (41). The offspring of mothers who were pregnant during this storm have 

participated in studies of their epigenomes, metabolism, cognitive function, motor skills, and 

body size in an effort to understand the consequences of intrauterine exposure to objective 

and subjective stress.

Observational and interventional clinical trials of populations experiencing adverse 

intrauterine exposures are also contributing to the understanding of developmental 

programming. Gambian women have been part of such research because The Gambia 

experiences two agricultural and thus nutritional seasons annually, the rainy (hungry) season 

and the dry (harvest) season, leading to fluctuation in nutritional status. Research groups 

have established relationships with communities in The Gambia, and clinical trials 

particularly in childbearing women have been ongoing since the 1970’s to study the effects 

of nutritional status in this population (42).

Mechanisms of Developmental Programming

Three principal, non-mutually exclusive mechanisms by which adverse intrauterine 

exposures developmentally program offspring were extensively discussed (Figure 1): 1) 

permanent organ or tissue structural changes, 2) accelerated cellular aging, and 3) epigenetic 

programming of gene expression.

a. Permanent organ or tissue structural changes

Adverse intrauterine exposures during organ and system development can cause permanent 

structural changes within the fetus and consequently contribute to the development of 

chronic disease later in life. During organogenesis, scarce available nutrients are shunted to 
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vital organs, such as the brain, causing an exacerbated limitation of nutrients to visceral 

organs, such as the pancreas, liver, and kidneys. If a nutrient supply to an organ is restricted 

within a critical period of organ development, such nutritional challenge could result in 

permanent alterations of cellular function, organ structure, and consequently organ function. 

Reviewed here to demonstrate this susceptibility are the pancreas, liver, skeletal muscle, and 

adipose tissue. Similar observations include reduced nephron number in the kidney (43), 

remodeling of cardiac cells in the heart, remodeling of extracellular matrices of blood 

vessels (44), and altered neuronal projections (45).

i. Pancreas—Models of intrauterine growth restriction (IUGR) and maternal protein 

restriction have both demonstrated a reduction in pancreatic β cell mass in exposed offspring 

(46, 47). Furthermore, exposure to maternal low protein intake during gestation and lactation 

as well as during lactation alone results in fewer pancreatic islets with irregular shape and 

size in exposed rat offspring (48). Since the pancreatic β cell population is maintained in 

adulthood by the self-replication of existing β cells, a reduction in β cell mass resulting from 

adverse intrauterine exposure could alter metabolism and increase the risk for diabetes later 

in life.

ii. Liver—Models of maternal protein restriction have also elucidated the effects of adverse 

intrauterine exposure on liver and hepatic glucose homeostasis. The liver of rats exposed to 

protein restriction in utero have been shown to have a 50% reduction in glucokinase and a 

100% increase in phosphoenolpyruvate. As these enzymes are well known to be located in 

different zones of liver, it is hypothesized that protein restriction exposure in utero alters the 

periportal and perivenous cells and therefore the liver structure. This shift of structure and 

hepatic enzymatic profile biases the liver to a 4-fold shift toward glucose production rather 

than glucose utilization in rats, indicating that in utero exposure could also alter liver 

metabolism and increase the risk for diabetes later in life (49, 50, 51, 52).

iii. Skeletal Muscle and Adipose Tissue—Skeletal muscle and adipose tissue are 

lower priority for nutrient partitioning during development, thus leaving these tissues 

vulnerable to nutrient deficiency (53, 54, 55). Nutrient restriction and/or IUGR create a 

hypoxic and hypoglycemic intrauterine environment resulting in reduced fetal muscle and 

satellite cell development. To adapt to the hypoxic, hypoglycemic, and hypoinsulinemic 

environment, skeletal muscle decreases glucose oxidation to spare glucose and oxygen for 

more critical organs such as the brain and the heart (54, 55). Growth restricted infants are 

born with less skeletal muscle mass and endure slower muscle mass growth rates than 

infants with appropriate weight for gestational age (15, 56). Reduced muscle mass is thought 

to contribute to positive energy balance due to decreased energy expenditure. In addition, 

glucose is redistributed from skeletal muscle to adipose tissue which results in adipocyte 

hypertrophy and adipose tissue expansion (57). The increased fat-to-muscle ratio seen in the 

postnatal period continues into adulthood resulting in obesity and metabolic syndrome (15, 

56). In addition to increased adipocyte hypertrophy in the postnatal period, developmental 

programming contributes to adulthood obesity through structural and functional 

modifications made to the adipocytes during development. Adipocyte development and 

programming is sensitive to both maternal over- and under-nutrition (58). For example, 
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maternal obesity and/or high fat diet during pregnancy leads to increased fetal adipocyte 

differentiation, increased genome-wide DNA methylation of CpG sites (59), and histone 

modifications related to leptin and adiponectin production (58).

b. Accelerated cellular aging

Studies have demonstrated adverse exposure in utero can program longevity and impact 

lifespan. Hales et al. showed in utero exposure to maternal protein restriction reduced the 

lifespan of male offspring in rats, while postnatal protein restriction prolonged lifespan (51). 

Accelerated cellular aging is another mechanism to consider by which developmental 

programming occurs.

Several mechanisms have been postulated as causes of accelerated aging, including 

oxidative stress, inflammation, and an altered hormonal milieu; all of which are also known 

to be influenced by early nutritional exposures. For example, oxidative stress can be induced 

in utero by maternal obesity and over- or undernutrition. Such oxidative stress can lead to 

DNA damage, point mutations, and direct cleavage of DNA resulting in increased DNA 

methylation, altered cellular function, accelerated cellular aging, and increased cell turnover 

(60, 61, 62). Frequently, maternal protein restriction and/or preeclampsia can contribute to 

IUGR which leads to increased production of reactive oxygen species associated with higher 

lipid peroxidation (60). Due to their reduced antioxidant capacity and high metabolic 

activity, pancreatic islets are especially sensitive to oxidative damage. Increased oxidative 

damage leads to shorter telomeres, advanced cellular aging, and more fibrotic islets. 

Subsequently, islet fibrosis leads to β cell dysfunction, resulting in accelerated progression 

of insulin intolerance and hyperglycemia in the offspring of low protein fed mothers (63). 

Surgically induced IUGR due to uteroplacental insufficiency in rodents shows similar results 

as protein restricted IUGR. An increase in reactive oxygen species production results in 

increased damage to the mitochondrial DNA in islets of offspring as well as impaired insulin 

secretion and progressive β cell dysfunction when compared to controls (64). This work 

provides another possible mechanism linking poor maternal diet and inadequate in utero 
growth to the increased risk of diseases such as diabetes later in life.

c. “Epigenetics”

The literal meaning of the word “epigenetics” is “outside conventional genetics” or “above 

or beyond genetics” (65, 66). Russo and colleagues defined epigenetics as, “mitotically 

and/or meiotically heritable changes in gene function that cannot be explained by changes in 

DNA sequence” (67). Bird (68) cites phenomena where “epigenetic” changes occur but do 

not fall under this strict definition of heritability. Practically speaking, locus-specific 

alterations in histone marks are widely considered ‘epigenetic’ but would not be considered 

directly mitotically heritable due to the lack of a known mechanism for mitotic heritability 

(69). On the other hand, DNA methylation, which occurs in mammals predominantly at CpG 

dinucleotides, can be maintained very stably due to the semiconservative replication of CpG 

methylation during mitosis via the action of the maintenance methylase DNMT1 (70). 

Transgenerational heritability of epigenetic modifications is possible through modification 

of the epigenome of germ cells of the developing fetus (58, 71). Therefore, a more 

encompassing definition of epigenetics proposed by Bird is, “the structural adaptation of 
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chromosomal regions so as to register, signal or perpetuate altered activity states” (68). The 

specific mechanisms of epigenetic programming of gene expression include DNA 

methylation, various histone modifications, autoregulatory DNA binding proteins, and 

noncoding RNAs.

i. DNA methylation—DNA methylation was discovered in 1948 and was originally 

understood as a static, permanent change in the genome. However, DNA methylation is now 

known to be reversible and thus methylation and demethylation of DNA is in a dynamic 

state that allows additional control of gene expression and phenotypes. DNA methylation 

occurs most commonly at the cytosine residue of dinucleotide sequence CpG and most often 

the methylated gene is silenced. Metastable epialleles are genomic regions at which DNA 

methylation is established stochastically in the embryo and stably maintained in the 

differentiated tissues. Throughout the mammalian genome, CpG sites are relatively depleted. 

CpG islands are concentrated regions (~1000 base pairs) that are CpG rich, often found in 

promotor regions, and typically resistant to methylation. In general, highly methylated 

promoter regions reduce the ability of transcription factors to bind and thus impede gene 

expression, with notable exceptions in the genome. Differential methylation of CpG islands 

is associated with various disease states including cancer and diabetes (72), but correlation 

versus causation remains under debate. However, evidence that DNA methylation can cause 

phenotypic variability in isogenic animals due to methylation of metastable epialleles is 

clearly demonstrated in the varying coat colors and tail characteristics of mice due to the 

epigenetic state of the agouti viable yellow and axin fused alleles (73, 74).

Data suggest that the nutritional status of a mother at the time of conception can 

permanently influence the epigenome of her offspring, consequently impacting lifelong 

health (40, 73). Metastable CpG methylation resulting in phenotypic variability for example, 

has been shown to be influenced by methyl donor dietary supplementation beginning prior 

to conception and continuing through weaning (75). Furthermore, hypomethylation and 

decreased Dnmt1 expression have been observed in offspring of protein restricted rats; an 

effect rescued by folate (methyl donor) supplementation (76, 77). Prospective work done in 

Gambian women (78) has demonstrated similar effects at human metastable epialleles. Due 

to increased consumption of certain foods and associated changes in concentrations of 

methyl-donor pathway metabolites (e.g. vitamin B2, homocysteine, and cysteine) in 

maternal plasma, infants conceived during the rainy (hungry) season had increased 

methylation at metastable epialleles in peripheral blood leukocytes and hair follicles when 

compared to those infants conceived in the dry (harvest) season. Finding the same 

nutritionally-associated epigenetic effect in tissues derived from different germ layers of the 

embryo indicates that the effect was established in the early embryo (prior to gastrulation) 

and maintained during subsequent differentiation (78).

Changes in methylation patterns (hypo- and hypermethylation) are observed during periods 

of inadequate nutrition. Individuals conceived during the Dutch Famine had decreased 

methylation in CpG islands in whole blood when compared to sibling pairs conceived before 

or after the Famine. Individuals conceived early during the Famine had higher birth weights 

which corresponded to unfavorable metabolic profiles and higher BMI later in life (40). In 

both human and rodent IUGR offspring, alterations in DNA methylation and gene 
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expression related to glucose homeostasis, insulin secretion, and pancreatic islet cell 

turnover are observed. These alterations in DNA methylation may explain the increased 

long-term risk for development of type 2 diabetes and cardiovascular disease seen in 

offspring with IUGR (16, 79, 80).

In addition to nutritional status, maternal behavior and stress can influence DNA 

methylation patterns in offspring. In rodents and humans alike, maternal care can affect the 

DNA methylation of the glucocorticoid receptor in the hippocampus of offspring and is 

associated with anxiety and impaired responsivity to stress later in life (81, 82). Maternal 

stress endured during the Quebec Ice Storm was shown to be correlated to DNA methylation 

changes in the offspring that remain well into adolescence (4).

ii. Histone Modification—Modifications of histones, including acetylation, methylation, 

phosphorylation, and ubiquitination, are direct mechanisms of transcriptional regulation. 

Frequently, histone acetylation results in active chromatin and subsequently increased 

transcription of the target genes while histone methylation may result in an inactive or active 

chromatin structure (83). In addition to influencing DNA methylation, IUGR can result in 

the deacetylation of histones H3 and H4. These traditionally heavily acetylated regions in β 

cell islets are associated with Pdx1, a critical regulator of β cell growth. In relation to this 

dysregulation, islet cell function decreases and insulin resistance increases. Once diabetes 

occurs, methylation of the CpG island in the promoter region of Pdx1 occurs resulting in the 

suppression of Pdx1 transcription and further β cell dysfunction (72).

iii. Noncoding RNA—Other epigenetic regulators are noncoding RNAs such as long 

noncoding RNA (lncRNA) and microRNA (miRNA). With great allelic specificity, lncRNA 

can recruit proteins involved in gene transcription and can interact with chromatin 

remodeling complexes to up- and down-regulate gene expression through other epigenetic 

modifications, i.e. DNA methylation and histone modifications (84, 85, 86, 87). MicroRNA 

on the other hand influence gene expression post-transcriptionally by binding to mRNA and 

inhibiting translation or targeting the transcript for degradation (88). Altered maternal 

nutrition during pregnancy, such as high fat, low protein, and obesogenic diets, has been 

shown in animal models to impact the expression in offspring of specific microRNA and 

subsequently regulation of the translation of their target genes (89). For example, 

upregulation of miR-126 and down regulation of its target, IRS-1, was observed in adipose 

tissue of male offspring of dams fed an obesogenic diet compared to offspring of dams fed 

standard chow (90). Phenotypically, these animals exhibited elevated fasting insulin at 8 

weeks of age (90). Finally, the roles of noncoding RNAs in epigenetic programming are only 

recently becoming realized and require further investigation.

Considerations for Study Design and Data Analyses and Interpretation

a) Human Studies

1. Retrospective studies with Unknown Exposure(s) have extensively demonstrated 

the association between small size at birth and chronic disease later in life. 

However, as previously stated, the primary weakness of such studies is the reliance 
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on the assumption that small birth size is indicative of adverse intrauterine exposure 

(Table 1).

2. Retrospective studies with Known Exposure(s) allow for the study of human 

populations with available birth and death records, with valid documentation of 

known adverse intrauterine exposures during development, e.g. exposed to maternal 

famine or nuclear radiation in utero. Since adverse intrauterine exposure (e.g. 

maternal famine or nuclear radiation) is known, such model permits stronger 

causative arguments for the relationship between adverse intrauterine exposures and 

disease later in life. Both designs provide strong, supporting evidence of 

developmental programming, yet are limited in their conclusions by the data 

available in medical records.

3. Retrospective studies with the ability to add Prospective follow-up consider 

retrospective data (e.g. birth records and known adverse intrauterine exposures) 

collected in research studies designed to genetically and metabolically phenotype 

individuals, e.g. measurement of glucose tolerance during adulthood in individuals 

exposed to famine in utero. Such design provides insight into the in vivo metabolic 

dysregulation and developmental adversities which can result from small birth size 

or adverse intrauterine exposures, yet conclusions can be limited by the lack of data 

on or during the specific intrauterine environment exposures.

4. Prospective Longitudinal Clinical Trials allow for the evaluation of adverse 

intrauterine exposures in real time as well as the respective fetal outcomes and 

infant and adolescent development. Such observational studies are the most ideal, 

although feasibility and ethical considerations must be examined. First, the 

feasibility of these study designs are hindered by the logistics, cost and potential 

poor retention for conducting a research study which lasts the life time of its 

participants, e.g. 80 years. Moreover, the Code of Federal Regulations (Title 45, 

Part 46, Subpart B) strictly outlines regulations for conducting research in pregnant 

women, human fetuses and neonates, allowing only for research to be conducted in 

vulnerable populations under stringently specified risk-to-benefit ratios for mother 

and/or fetus. Therefore, the study of adverse intrauterine exposures must take place 

in an observational environment (e.g. studying mothers in developing countries 

experiencing food insecurity, mothers with diabetes, mothers with excess 

gestational weight gain, etc.) as the implementation of intentional adverse 

intrauterine exposures is unethical.

5. Randomized Clinical Trial: While randomization to a known adverse exposure 

during pregnancy and development is unethical in humans, randomization to a 

generally regarded-as-safe intervention (e.g. micronutrient supplementation (folic 

acid), exercise, etc.) is routinely done. Well controlled, randomized clinical trials 

are the gold standard for intervention research, but often include multiple variables 

that cannot be controlled such as individual response to intervention and genetic 

variability. Recently, the rapidly evolving field of genetics of complex diseases has 

revealed hundreds of common variants associated with human diseases or traits, 

allowing us to use this knowledge to apply the concept of Mendelian 

Sutton et al. Page 8

Obesity (Silver Spring). Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Randomization (MR) to strengthen causality inference (91). MR is based on the 

fact that genetic variants are randomly selected during meiosis and conception, and 

are not influenced by confounding factors typical of observational studies. In brief, 

we apply MR by creating instrumental variables using known genetic variants as 

exposure to test “un-bias” associations with outcomes of interest. MR has shown to 

reproduce some randomized controlled trial findings (92) – both positive and 

negative – and today’s pharmacologic industry is using genetic information and 

MR to make decisions in their molecules selection pipelines. In the field of 

Developmental Origins of Health and Disease, we can use MR to mimic 

randomized clinical trials for exposure that would be unethical to conduct – for 

example smoking versus non-smoking – or for exposures that are difficult to 

untangle – excess weight vs hyperglycemia (91). This should help us to focus our 

interventions on exposures that are more likely causal.

Epigenetic patterns can also inform interventions. If our investigations show that epigenetic 

adaptations are truly mediating and part of the causal link between in utero exposure and 

long term outcomes, we can use identified epigenetic marks to identify children that would 

benefit from early life interventions to ‘re-normalize’ their epigenetic profile. Also, having 

predictive epigenetics markers measureable at birth in cord blood would help to evaluate 

impact of interventions during pregnancy without the need to follow-up the offspring for 

decades to assess the risks/benefits on long term programming.

Another way to control for genetic variability within an intervention study is to use a 

crossover study design. Crossover designs allow for an individual to be exposed to both 

intervention scenarios (e.g. high-fat vs. low fat diet) and act as their own control, and they 

often require fewer participants for equivalent statistical power than parallel randomized 

clinical trials. Considerations for crossover designs include epigenetic and genetic history of 

an individual, the order of exposure, the length of the exposure and the washout period. 

While many changes in DNA methylation in early embryonic development have been 

thought to be mitotically stable, environment and lifestyle (i.e. interventions) can induce 

changes in DNA methylation patterns throughout adulthood. For example, it has been 

reported that acute exercise in a dose dependent manner induces gene-specific (FTO, 
THADA, TCF7L2, and KCNQ1) hypomethylation in human skeletal muscle (93). We have 

much to learn about epigenetic responses to acute versus chronic exposures such as change 

in diet or physical activity to know in which scenario we can use a crossover design 

adequately and determine the necessary wash-out period for each specific study question.

b) Animal Studies

The use of animal models versus humans in epigenetic research has several benefits such as 

decreased cost and length of gestation (20 days in mice versus 270 days in humans), the 

ability to enforce tight environmental conditions (sleep cycles, energy balance, exercise, 

stress, etc.) as well as genetics (breeding pairs, knockdowns, knockouts, transgenics, etc.), 

and the ability to implement adverse intrauterine exposures, analyze tissues, and 

progressively study fetal development by sacrificing animals throughout gestation. The most 

commonly studied species of developmental programming include rats and mice, non-

human primates, sheep and guinea pigs.
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When a study strives to most closely model human beings, non-human primates are the 

model of choice because the genetic background is similar, pregnancies are usually singleton 

or twin, the length of gestation is similar (and therefore the length of intrauterine exposure), 

and offspring are fully developed at birth. Sheep are also an excellent experimental model 

for epigenetic studies for many of the same reasons yet sheep studies are less expensive and 

have the capability for surgical operations to advance modeling of adverse intrauterine 

exposure. Mice, rats and guinea pigs are smaller models commonly used because costs are 

lower and gestation, time to maturation, and life span are shorter. The obvious limitation of 

studying small animals, when compared to humans, are genetic differences, altricial 

offspring (guinea pigs excluded), and polytocous pregnancies.

c) Timing

The timing of the intrauterine exposure can produce different programming effects. For 

example, due to the strict food transport embargo, precise timing of famine exposure was 

determined in the Dutch Famine Cohort based on birth dates. Epigenetic modifications 

induced by food restriction during World War II followed by frozen canals and waterways 

during the winter of 1944–1945 have been observed as a result of this exposure occurring 

during early gestation (6, 40) and permanent structural changes have been observed as a 

result of exposure occurring during mid to late gestation. Timing of exposure should also 

play a role in intervention studies. A better understanding of the critical periods of 

development during which exposures are most detrimental as well as the effects of said 

exposures (e.g. epigenetic, pancreatic function, etc.) will allow for intervention and 

hopefully prevention of adverse developmental consequences later in life.

d) Tissue specific epigenetic signature

While epigenetic modifications that occur in early embryonic development can be passed on 

to various tissues, not all modification patterns are identical across all tissue types. Animal 

models allow for unlimited tissue access, however due to limited access in humans, the most 

common tissue analyzed is blood (peripheral or cord). While specific methylation patterns in 

differing tissues may correlate with one another (e.g. placenta and cord blood) (94, 95), 

researchers should use caution when extrapolating changes seen in one tissue to other tissues 

as each cell and cell type has its own epigenetic signature (9).

e) Epigenetic analysis and interpretation

Like many molecular techniques, methods to assess epigenetic signatures are continually 

being improved. Genome-wide analysis of epigenetic patterns is generating a large amount 

of data that require sophisticated bioinformatics to draw conclusions. Global methylation 

analysis is costly, and may not provide an accurate assessment of the effect of methylation 

patterns on specific metabolic pathways. Other methods include measurement of 

methylation of specific candidate genes and genomic regions of interests or taking averages 

across genomic regions of interest. When choosing an analysis technique it is important to 

consider the reproducibility of the analysis and how processing the sample may alter the 

original epigenetic pattern. In addition, seasonal variation, length of exposure, and other 

population characteristics can impact the reproducibility of a study and should be taken into 

consideration when interpreting or comparing study results.
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Conclusion

Future Directions

Needs for future research include: a) identification of predictors, such as epigenetic 

biomarkers, to predict risk of development of disease or to monitor success of intervention 

(validated predictors could lead to prevention with earlier detection), b) advances in 

epigenetics including the study of cellular mechanisms by which epigenetic changes are 

regulated and implemented, c) exploration of the causative relationship between epigenetic 

changes and phenotype (is epigenetics a cause or consequence?), d) studies in evolutionary 

plasticity by comparing epigenetic modifications within tissues within species, tissues 

between species, as well as transgenerational inheritance including paternal inheritance, e) 

studies focusing on those who are protected from disease (e.g., the small percentage of mice 

who do not become obese during high fat feeding), f) studies that investigate the 

mechanisms underlying sex-specific epigenetic modifications, g) increase in studies and 

identification of cohorts for epigenetic epidemiology, h) study of long term follow up of 

infants enrolled in established trials, particularly those with well phenotyped pregnancies, 

and finally h) furthering the understanding of the effects of timing of exposure during 

gestation, including the timing to intervene and timing of proper postnatal intervention. 

Identifying the mechanisms which cause or contribute to developmental programing of 

future generations will be invaluable to the scientific and medical community. The ability to 

intervene during critical periods of prenatal and early postnatal life to promote lifelong 

health is the ultimate goal.
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What is known

• Intrauterine exposures are associated with fetal epigenetic modifications and 

have been linked to increased risk for diseases later in life.

• The epigenome can be altered throughout the lifecycle due to nutritional and 

environmental exposures.

What the study adds

• Assesses the current state of science in developmental and nutritional 

programming and epigenetics throughout the lifecycle.

• Discusses the current considerations and limitations of study designs and 

applications within the field of developmental programming.

• Discusses areas for future research to expand epigenetic research within the field 

of developmental programming.
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Figure 1. 
Mechanisms of developmental programming
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