
ar
X

iv
:1

51
0.

03
63

5v
1 

 [
ph

ys
ic

s.
ch

em
-p

h]
  1

3 
O

ct
 2

01
5

Stochastic multi-configurational self-consistent field theory

Robert E. Thomas,
1, a)

Qiming Sun,
2
Ali Alavi,

1, 3
and George H. Booth

4, b)

1)
University of Cambridge, The University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW,

U.K.
2)
Department of Chemistry, Princeton University, Princeton, N.J. 08544, U.S.A.

3)
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart,

Germany
4)
King’s College London, Department of Physics, Strand, London WC2R 2LS,

U.K.

The multi-configurational self-consistent field theory is considered the standard starting point for almost
all multireference approaches required for strongly-correlated molecular problems. The limitation of the
approach is generally given by the number of strongly-correlated orbitals in the molecule, as its cost will grow
exponentially with this number. We present a new multi-configurational self-consistent field approach, wherein
linear determinant coefficients of a multi-configurational wavefunction are optimized via the stochastic full
configuration interaction quantum Monte Carlo technique at greatly reduced computational cost, with non-
linear orbital rotation parameters updated variationally based on this sampled wavefunction. This extends
this approach to strongly-correlated systems with far larger active spaces than it is possible to treat by
conventional means. By comparison with this traditional approach, we demonstrate that the introduction of
stochastic noise in both the determinant amplitudes and the gradient and Hessian of the orbital rotations does
not preclude robust and reliable convergence of the orbital optimization. It can even improve the ability to
avoid convergence to local minima in the orbital space, and therefore aid in finding variationally lower-energy
solutions. We consider the effect on the convergence of the orbitals as the number of walkers and the sampling
time within the active space increases, as well as the effect on the final energy and error. The scope of the
new protocol is demonstrated with a study of the increasingly strongly correlated electronic structure in a
series of polycyclic aromatic hydrocarbons, up to the large coronene molecule in a complete active space of
24 π electrons in 24 orbitals, requiring only modest computational resources.

I. INTRODUCTION

Much of the fields of computational electronic-
structure theory and quantum chemistry is concerned
with describing the changes in energies and properties
due to the correlated motion of electrons.1 The treat-
ment of these effects is, in general, required for the fields
to be predictive and increasingly relevant to wider areas
of chemistry, physics, and material science. This corre-
lated physics of the electrons is generally divided into two
qualitative categories: dynamic and static correlation.
As a broad categorization, dynamic correlation de-

scribes the short-ranged, two-electron phenomena of the
Coulomb holes and cusps denoting the depletion in prob-
ability amplitude of finding two electrons close to each
other. Static correlation, on the other hand, derives from
the breakdown in the qualitative utility of the single-
particle picture, which manifests as strong mixing be-
tween a number of determinants, with many-body co-
operative effects giving rise to significant probability am-
plitudes of the wavefunction among its energetically low-
lying configurations. If an electronic system contains sig-
nificant static correlation, then perturbative approaches
such as the “gold standard” of quantum chemistry —
coupled-cluster with singles, doubles and non-iterative
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triples (CCSD(T)) — will necessarily fail, since they rely
on the single-particle picture to generate a single many-
electron state about which to construct a perturbative
expansion. This situation is prevalent in systems with
localized, partially-occupied atomic states (such as the d-
shells of transition metals), as well as low-spin, open-shell
systems (including magnetic interactions) and important
transition or stretched-bond configurations of molecular
systems.

In quantum chemistry, it can be common to define the
amount of static correlation in a problem as the difference
between the uncorrelated Hartree–Fock energy and that
of complete active space self-consistent field (CASSCF)
theory. The CASSCF method is a variational approach
for optimizing a linear combination of low-energy con-
figurations which arise from a set of correlated “active”
degrees of freedom, optimized self-consistently to pro-
vide the majority of the static portion of the correla-
tion effects.2–10 This is then considered as the standard
starting point for almost all multi-reference approaches
required for strongly-correlated molecular problems. A
number of “active” orbitals and electrons are chosen, and
the configurational subspace is constructed from all the
possible distributions of those electrons in those orbitals,
maintaining an inert “core” of the remaining particles.
The energy is then minimized within this configurational
subspace. In addition to this, a unitary rotation of the
non-redundant orbital space is found, again in a varia-
tional fashion, in order to optimize the “best” orbitals,
in a variational sense, to describe these configurations.
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This optimization can be crucial, since the original or-
bitals are generally based on the canonical Hartree–Fock
orbitals, and hence do not necessarily span the qualita-
tively correct degrees of freedom to describe the strongly-
correlated physics.

Since the high-energy part of the configurational spec-
trum is missing, this approach will not, with normal us-
age, be able to capture dynamic correlation from high-
energy virtual scattering effects to obtain a complete
description of the correlated wavefunction. However,
the final CASSCF wavefunction will achieve a qualita-
tive description of a strongly-correlated molecular prob-
lem, which will have been previously missing if building
upon a single-reference. Dynamic correlation can often
be included subsequently in the description on top of a
CASSCF “zeroth-order” wavefunction in a perturbative
or variational manner.11–13

The greatest limitation upon the applicability of the
CASSCF approach is the size of the active space which
can be treated. While this space would, ideally, include
all valence electrons and low-lying molecular orbitals, the
resultant number of variational parameters to optimize
grows factorially with its size. Thus, computational bot-
tlenecks usually demand that no more than around 16
active electrons and degrees of freedom can be consid-
ered to contribute to the strong correlation. For larger
systems with multiple stronger correlation centres, this
is often simply insufficient, and even for relatively small
systems, testing the influence of additional effects such as
‘s-p’ mixing or a double-d shell to include d-d transitions
and wider energy scales in metal complexes is generally
prohibitively expensive.

In order to access these required larger space sizes, ap-
proximations are generally made to reduce the number of
parameters which need to be optimized. The most preva-
lent of these are the restricted active space,14,15 and more
recently the generalized active space constructions.16–19

These approaches choose only a subset of the complete
active space configurations within which to optimize,
thereby dramatically cutting the number of configura-
tions that need be considered. However, this adds addi-
tional uncertainties and approximations in the quality of
the results, as well as additional complexity in setting up
the calculation.

To maintain the full variational flexibility of the
active space and the treatment of strong correlation
effects which that entails, we adopt a different ap-
proach in this work. The optimization of the lin-
ear determinant coefficients is decoupled from the non-
linear orbital rotation parameters. The linear coef-
ficients are then solved for stochastically each itera-
tion using the machinery of the full configuration in-
teraction quantum Monte Carlo (FCIQMC) method.20

Stochastically-derived quantities have been previously
used for quantum-chemical methods,21–23 and FCIQMC
provides a probablistic approach to the solution of the
configuration interaction (CI) problem, whereby spar-
sity in the wavefunction is exploited to allow for large

numbers of determinants to be optimized in systems for
which a deterministic solution (or even enumeration of
the space) would be impossible. Simultaneous to this
sampling, one- and two-body reduced density matrices
are accumulated, which are used in a subsequent step to
form the gradient and Hessian for the orbital rotations
amongst the active and inactive spaces. The rotations
are then solved for deterministically (using the stochas-
tically sampled gradient and Hessian), since there are
generally a manageable number of these variational pa-

rameters, which grow only as O
[

M2
]

where M is the

total number of orbitals in the full space. This process
is repeated until convergence, implicitly coupling the lin-
ear parameters of the active space back to the non-linear
rotations within the full space.

We begin with a more detailed discussion of these
steps, before comparing the new approach to traditional
techniques. Of particular interest is how the systematic
and random errors of the result depend upon the num-
ber of walkers, and the upon amount of time for which
these walkers stochastically sample the active space in the
FCIQMC step, as well as an analysis of the nature of the
convergence over updates of the non-linear parameters.
Moving beyond what can be feasibly optimized within
traditional CASSCF, we turn to a series of increasingly
large polycyclic aromatic hydrocarbons. These are im-
portant systems in the development of new photovoltaic
devices,24,25 while the trend from molecular systems to-
wards the infinite graphene system and its novel prop-
erties is also of interest.26,27 However, as the conjugated
π system grows in size, there is no natural separation of
energy scales from which an active space can be formed,
and so the problem of a balanced choice of active space
with which to compare systems of different sizes tradi-
tionally becomes difficult. With this new approach, how-
ever, we can consider the complete π space in all cases,
allowing for a consistent truncation of the correlation ef-
fects, and can examine trends as these systems grow in
size. Density matrix renormalization group (DMRG) cal-
culations have previously indicated a trend for increasing
strong correlation effects, towards polyradical character,
in one-dimensional polycyclic acenes and narrow nano-
ribbons,28,29 and we compare this to the character of
growth in two-dimensional polycyclic systems, up to the
C24H12 coronene system, including all 24 π electrons and
orbitals in the active space. It is found that, whilst there
is a general increase in correlated behavior with increas-
ing system size, the two-dimensional series also sees the
development of degeneracies in the highest-occupied and
lowest-unoccupied parts of the natural-orbital spectrum
not observed in the linear cases.

II. METHODOLOGY

The wavefunction of MCSCF theory is ultimately ex-
pressed as a linear combination of N -electron Slater de-
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terminants, {|Di〉}. Its crucial difference from a wave-
function expanded as a subset of configurations, however,

is the inclusion of an orbital rotation operator, e−κ̂, to
allow for the iterative optimization of the space spanned
by the correlated orbitals, in addition to the set of con-
figurational coefficients, {Ci}, within it:

|Ψ〉 = e−κ̂
∑

i

Ci |Di〉 . (1)

The anti-Hermitian operator, κ̂, takes the form of a sum
over antisymmetrized excitation operators, which in this
work we take to be spin-free,

κ̂ =
∑

pq

κpqÊ
−
pq (2)

=
∑

pq

κpq

(

Êpq − Êqp

)

, (3)

with

Êpq = â†pαâqα + â†pβ âqβ , (4)

such that the rotations are real and preserve spin. The
task is thus to determine the coefficients, {Ci}, and the
matrix elements,

{

κpq

}

.
It is specifically the complete-active-space (CASSCF)

treatment, which truncates the configurational space by
partitioning the orbital space into inactive, active, and
virtual subspaces, with which we are concerned here.
No restrictions are placed on the allowed occupancies in
the active manifold, but the inactive and virtual orbitals
are constrained to be always doubly occupied and un-
occupied, respectively, in all configurations. The related
restricted-active-space (RASSCF) theory, which further
divides the active space by placing restrictions on the
number of holes and electrons allowed to appear at its
lower and upper energetic limits, is also implemented,
and will be considered in future work. In CASSCF, sim-
plifications arise as all intra-space rotations (active-active
rotations, for instance) are redundant, while all inter-

space transformations are not.1 The only transformations
which need be considered, therefore, are inactive-virtual,
inactive-active, and active-virtual rotations, which in-
duces a sizeable reduction in the effective size of the ma-
trix κ.
In principle, CASSCF may be undertaken as a simulta-

neous second-order optimization of the orbital and con-
figurational parameters. Whilst some of the established
CASSCF implementations take this approach,7,8,30–32 it
restricts the flexibility for using newly-developed solvers
for strongly-correlated quantum problems to obtain the
CI coefficients. Increasingly, therefore, a two-step,
macroiterative approach, in which the configurational
and orbital parameters are optimized separately, has
come to prominence. These approaches are predicated
on the fact that the equations governing configurational
optimization are equivalent to those found in “stand-
alone” CI theory, and may thus be solved with any of

the techniques which seek to approximate it. The ap-
proach using DMRG as the configurational solver has
enjoyed considerable success,33–37 with studies on long-
chain polyenes, β-carotene, and transition-metal clusters
all proving fruitful, and the stochastic approach discussed
here seeks, ultimately, to continue in that vein.
Our formulation uses the full configuration interaction

quantum Monte Carlo (FCIQMC) technique as its con-
figurational optimizer, which we have elucidated in pre-
vious work.20,38–45 This approach achieves the stochastic
integration of the underlying Schrödinger equation via

an imaginary-time evolution of an ensemble of signed
walkers in Slater-determinant space. This evolution is
performed as an iterative application of “spawning”,
“death”, and “annihilation” steps, with the effect that
the walker populations on each determinant, {Ni}, be-
come proportional to the coefficient, {Ci}, when aver-
aged over the long-imaginary-time limit. To control the
sign problem, the initiator approximation is used, which
results in a method which exhibits a systematic error
at too low walker number, but which is systematically
improvable to exactness as the walker number increases.
Throughout this work, the initiator threshold parameter,
na, is chosen to be 3.38 To further reduce the size of ran-
dom error bars, we make use of the semi-stochastic adap-
tation, in which the projection operator for the ground-
state is applied deterministically to a small, “core” space,
and stochastically elsewhere.46,47 For the systems studied
here, we choose our core spaces to be either all the deter-
minants coupled to the reference, or 1000 such objects,
whichever is the smaller.
Crucially for our present purposes, the FCIQMC

approach also facilitates the stochastically unbiased
sampling of the two-body reduced density matrices
(RDMs),48,49 given by

Γpqrs = 〈Ψ|â†pâ
†
q âsâr|Ψ〉 (5)

=
∑

ij

CiCj〈Di|â
†
pâ

†
q âsâr|Dj〉, (6)

from which the one-body reduced density matrix can be
found as

γpq = 〈Ψ|â†pâq|Ψ〉 (7)

=
1

N − 1

∑

a

Γpaqa. (8)

An unbiased sampling of these quantities demands the in-
troduction of a second walker ensemble, to which the pop-
ulation dynamics are applied separately, and the statis-
tics acquired independently, from the first. This “replica”
sampling eliminates biasing by ensuring that all the re-
quired products of determinant amplitudes are calcu-
lated from populations from both simulations, and has
found application in a variety of related Monte Carlo
techniques.50–52

The reduced density matrices allow for the calcula-
tion of a host of molecular properties including electrical
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moments, forces, and coupling to two-particle geminal
functions,48,49,53 but their chief use in this present study
is in their access to the gradient, g, and Hessian, H, of
the energy with respect to the orbital parameters,

gpq =
∂E

∂κpq

=
〈

Ψ
∣

∣

∣

[

Ê−
pq , Ĥ

]
∣

∣

∣
Ψ
〉

, (9)

and

Hpq,rs =
∂2E

∂κpq∂κrs

(10)

=
1

2

(

1 + P̂pq,rs

)〈

Ψ
∣

∣

∣

[

Ê−
pq,

[

Ê−
rs, Ĥ

]] ∣

∣

∣
Ψ
〉

,

(11)

in which the operator P̂pq,rs permutes the orbital

pair indices pq and rs, and Ĥ is the relevant
Hamiltonian.1,10,34,35 These objects may be expressed en-
tirely in terms of the reduced density matrices and the
one- and two-electron integrals,

{

hpq

}

and {〈pq||rs〉}, in
much the same manner as the analogous quantities are
formulated in Hartree–Fock theory. Indeed, convergence
is defined when the gradient vanishes, at which point the
generalized Brillouin theorem is satisfied, indicating that
there is no interaction between the CASSCF wavefunc-
tion and its singly-excited configurations.
The energies presented in this work are quasi-

variational energy estimates, derived from these sampled
density matrices, and given by

E =
∑

pq

hpqγpq +
∑

p>q,r>s

Γpqrs 〈pq||rs〉+ hnuc. (12)

This ensures that consistency with the corresponding
gradient and Hessian expressions is maintained. It would,
however, be instructive in a future study also to consider
two other, non-variational energy expressions commonly
used in FCIQMC, derived from a mixed estimator and
the “shift” – a measure of the offset required to yield a
norm-conserving propagator.20

Although the matrix, κ, may be obtained by solution
of the stationary equation,

Hκ = −g, (13)

convergence is improved by instead construct-
ing the augmented Hessian and its corresponding
eigenequation.54,55. Thus, κ is found as the lowest root
of the equation

(

0 g
T

g H/λ

)(

1/λ
κ

)

= ǫ

(

1/λ
κ

)

(14)

with ǫ = λg†
κ, whose solution is found at modest com-

putational expense via iterative subspace methods, as
implemented in the PySCF package.56

The protocol outlined above represents a single macroi-
terative cycle – a single FCIQMC convergence and up-
date of the CASSCF energy and orbital coefficients. Once

performed, the newly-obtained orbitals and transformed
integrals are used to construct a new Hamiltonian, and
the process continued until the desired convergence is
achieved. The initial studies to which we now turn ad-
dress the suitability of this approach for achieving mean-
ingful and satisfactory convergences of this type, and ex-
actly what level of convergence can be expected of the
macroiterations in the presence of random errors in the
sampled energy, gradient and Hessian expressions.

III. RESULTS AND DISCUSSION

A. Preliminary studies

The natural first test for this new formulation is the
comparison with entirely deterministic calculations. It
ought, in principle, to provide the same results as an ap-
proach using conventional configuration-interaction the-
ory for the configurational optimizer, and a comparison
between the two thus yields some insight into the effects
of the inevitable introduction of stochastic noise up the
convergence. As concrete examples, we turn to the ben-
zene and naphthalene molecules in their experimental
equilibrium geometries and in cc-pVDZ basis sets.57,58

The active spaces in these cases are (6,6) and (10,10),
respectively, for which the diagonalization of the active
Hamiltonian is straightforward.
Of particular concern for the stochastic formulation is

the satisfactory sampling of the density matrices. We
return to a consideration of the behavior with number of
walkers (Nw) for the later systems, but our initial focus
with these smaller molecules is to assess the effect of the
number of iterations of the FCIQMC dynamic for the
accurate accumulation of the density matrices for these
purposes, and the effect of this sampling time on the
overall convergence.
The convergence of the CASSCF macroiterations as

the number of FCIQMC iterations, NRDM, for which the
density matrices are sampled changes is shown in Figure
1. These RDMs are sampled afresh every macroitera-
tion, and no prior initialization information is currently
used between macroiteration steps, although the poten-
tial benefits of so doing are to be investigated in future
studies. It can be seen that the overall qualitative conver-
gence profile of the macroiterations are relatively insensi-
tive to the length of time sampling the density matrices.
At each FCIQMC iteration, each walker has the possi-
bility to sample only a single contribution to the sum
in Equation 6 if a doubly excited walker is successfully

spawned, and will contribute N terms if a singly excited
walker is created. It further contributes N2 (diagonal)
terms during the course of a configuration being occu-
pied (this is accumulated and only included once during
the lifetime of the determinant for computational expe-
diency – see Reference48 for more details). The fact that

as few as 500 sampling iterations with 104 walkers (and
a successful spawning rate of ∼ 1%) can provide quali-
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FIG. 1. Final stages of the macroiterative convergence for a
(10,10) naphthalene calculation in a cc-pVDZ basis, with the
configurational optimizations performed over different num-
bers of density-matrix sampling iterations and using 10

4
walk-

ers. The error bars are obtained as the standard deviation,
σ of three independent simulations (not standard error), ini-
tialized with different random number seeds, and these are
plotted in the lower panel. Too few iterations make for noisy
results, but the calculations performed with 25000 sampling
events are much more consistent, and converge to the deter-
ministic result with satisfactorily small deviations once con-
verged.

tatively correct results, therefore, demonstrates an effi-
cient sampling for these purposes. This is substantially
helped by the fact that the diagonal (generally domi-
nant) part of the two-body RDM is averaged over the
stochastic wavefunction exactly for the sampling itera-
tions, without requiring an additional stochastic step as
is required for the off-diagonal elements in Equation 6.
Furthermore, any deterministic space defined as part of
the ‘semi-stochastic’ adaptation of the algorithm (which
generally contains some of the largest weighted config-
urations) has its contribution to the density matrices

included exactly.46–48 Whether this robust sampling is
maintained or more iterations are required for systems
with larger degrees of static correlation remains an open
question, though this is likely offset by the larger number
of walkers also required to resolve the wavefunction.

Despite the similarity and robustness of the qualitative
results, the number of sampling iterations does have the
expected effect on the standard deviation in the energy
estimator over independent samples at each macroitera-
tion. The variation between independent calculations, as
measured by the standard deviations in Figure 1, can be
traced to two effects due to the stochastic error in the
density matrices. The first is the random error in the
calculation of the variational energy for a given macroit-
eration as given by Equation 12, while the second is in the

random error in the gradient and Hessian information in
previous iterations, which gives different updates for the
κ matrix and therefore orbital spaces in each macroitera-
tion. Both of these effects are systematically controllable
by changing both NRDM and Nw. Too few sampling it-
erations of the density matrices (NRDM) yields noisy be-
havior, and a standard deviation between independent
calculations of up to 0.5mEh. Increasing the sampling
decreases the changes between energies at each macroit-
eration as expected. The ultimate convergence criterion
for the optimization of the overall wavefunction must be
greater than this standard deviation, as even at “conver-
gence”, it is expected that the parameters will vary in a
random fashion of the order of this standard deviation.
For this reason, the choice of 25000 sampling iterations is
chosen for the rest of the results in this work as providing
close agreement with the fully deterministic result, and
allows for a convergence threshold of the order ±0.1mEh.

Having established that the density matrices can be
obtained with sufficient quality for the orbital optimiza-
tion step, we may compare the specific behavior of
the stochastic convergence with that of its deterministic
counterpart, as given in Figure 2. The conclusion borne
out by these results appears to be that, once the density
matrices are resolved with sufficient clarity, the stochas-
tic noise inherent in this new formulation does not par-
ticularly change the convergence of the energy over that
of the conventional approach. The stochastic method
does, as is clear, demand a somewhat more permissive
convergence criterion than its deterministic cousin — of
the order of 10−4 − 10−5Eh, as established above — but
the sub-millihartree agreement with deterministic results
where comparison is possible suggests the feasibility of
this new approach for addressing questions of physical
and chemical significance.

As an initial illustration of such problems, we consider
the torsional barrier of the ethene molecule, C2H4, as an
archetypal example of the type of substantial static cor-
relation problem to which CASSCF is traditionally best
suited.59 In this case, the bonding and anti-bonding π
and π∗ orbitals become degenerate as the dihedral angle,
φ, approaches 90◦, and a proper treatment of the twisted
geometry thus demands contributions from both the π2

and the π∗2 configurations to give rise to a diradical sin-
glet.

Figure 3 details the description of the torsional barrier
by various levels of theory, and illustrates an important
advantage of the CASSCF approach in its ability to elim-
inate the energetic cusp at φ = 90◦. This cusp appears
in the restricted HF curve as a result of that theory’s
complete neglect of the excited configuration, and the
inconsistent treatment of this state by both CCSD and
MP2 fails to remove this feature completely. By con-
trast, the CASSCF allows for the necessarily equal con-
tributions from the π2 and the π∗2 configurations at the
barrier, and hence achieves the smooth curve required for
a qualitatively correct description of the behavior. This
also demonstrates the ability for the FCIQMC-CASSCF
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FIG. 2. The convergence of (6,6) and (10,10) calculations
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terministic and stochastic formulations. The energy of each
stochastic macroiteration is given as the average of those of
three independent calculations, and the error bars by the cor-
responding standard deviations. In both the (6,6) and the

(10,10) examples, the convergence was achieved with O

[

10
5
]

walkers for each FCIQMC calculation. The zeroth iteration
corresponds to the CASCI energy where the active orbital
space is made up of canonical Hartree–Fock orbitals, demon-
strating the additional effect of the orbital optimization for
these systems.

to also work in situations with changing levels of corre-
lation, robustly and consistently optimizing the orbitals
across the potential energy curve.

B. Towards extended systems

The ethene molecule provides a useful, albeit simple, il-
lustration of the general importance of treating the full π-
valence space when considering π-electron systems. The
formulation introduced here, however, is applicable to ac-
tive spaces of much greater size, and it is to these more
extended systems which our attention now turns.
The polycyclic aromatic hydrocarbons, formed of fused

six-membered rings,26,27 have long been a focus of both
experimental and theoretical interest,28,60–69 providing
technological potential,24,25,70 as well as being a source
of medical and environmental concern.71–73 The linear
acenes have been extensively studied with DMRG,28,29

as their quasi-one-dimensional structure is ideally suited
to the method. However, an advantage of FCIQMC is
that its efficiency is not particularly dependent on the
dimensionality of the system. As exemplar problems
of this new technique, therefore, we explore a series of
non-linear polycyclic aromatic hydrocarbons in cc-pVDZ
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FIG. 3. The torsional barrier of the ethene molecule in a
cc-pVDZ basis set at various levels of theory, with all other
geometrical parameters held at their equilibrium experimental
values.

57
. Cusp behavior indicates the inability to deal with

the strong correlation effects which give rise to a diradical
singlet character of the molecule at dihedral angles of 90

◦

.
The FCIQMC-CASSCF approach can consistently optimize
the orbitals along this reaction coordinate in the presence of

strong correlation effects, with O

[

10
6
]

walkers.

basis sets,58 up to the coronene — or superbenzene —
molecule, taking in the full carbon π system in each
case. This allows for a balanced active space for compar-
ison between the systems as they increase in size, with-
out truncation of the conjugated electrons. The geome-
tries used are optimized at the level of density-functional
theory,74–76 using the B3LYP functional.77–80

Following on from the benzene and naphthalene stud-
ies of the previous section, we first consider the phenan-
threne and triphenylene molecules, with (14,14) and
(18,18) active spaces, respectively. This latter system
is beyond the reach of deterministic CASSCF theories
but, as illustrated in Figure 4, the stochastic formulation
provides a smooth, robust convergence.
The energy for each macroiteration is obtained directly

from the reduced density matrices as in Equation 12, and,
as in the previous section, we calculate an average energy
for each point from the results of three independent calcu-
lations, initialized from different random number seeds,
with the corresponding standard deviation serving as the
error bar. As can be seen from Figure 4, the precise
trajectories of the independent convergences differ some-
what in their initial phases, as small random errors in
the gradients and Hessians lead to propagation of dif-
fering orbitals through the macroiterative optimization.
However, the later iterations agree sufficiently well that a
meaningful energy and error bar may be extracted, pro-
viding confidence that the same orbital space is sampled
at convergence. In particular, it is evident that perform-
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FIG. 4. Macroiterative convergences for phenanthrene (upper

panel) and triphenylene (lower panel) in a cc-pVDZ basis.
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The phenanthrene system is studied with a (14,14) active
space, in a total space of 246 orbitals, while for tripheylene we
adopt an (18,18) active space in the 312-orbital total space.
Each configuration iteration was allowed to evolve after equi-
libration for 25000 density-matrix sampling iterations. The
curves shown in red detail the results of independent calcu-
lations, initialized with different random number seeds, while
those shown in blue plot the averages of these simulations.
While the independent convergences follow rather different
trajectories, their latter iterations are in sufficient agreement
with each other to give a small error bar for the obtained
energy.

ing each configurational step for 25000 density-matrix
sampling iterations after an equilibration period — the
rule of thumb inferred in the previous section — is suf-
ficient for the robust, reliable convergence which is our
aim. In addition, walker populations were chosen such
that the population residing on the reference exceeded
5 × 104, which has previously been shown to be a sat-
isfactory criterion for reliable convergence of any initia-
tor error for systems with substantial weight on a single
determinant.41,43,45 This results in small changes to the
total walker number for each iteration, as the wavefunc-
tion sparsity alters as the orbitals change. However, this
was found to give consistently converged results for these
systems, and we now turn to a more detailed considera-
tion of the number of walkers required for larger active
spaces in the coronene molecule.

1. The effect of walker number

It has been stressed that the macroiterative optimiza-
tion of the orbitals in CASSCF is a non-linear problem,
and as such ensuring convergence to a global minimum
is close to impossible, while sensitivity to initial condi-
tions or simulation procedure can lead to differing solu-

tions. One way in which convergence to global minima is
encouraged in non-linear optimization problems is some-
what counterintuitively via the addition of random noise
into the gradient and Hessian in an optimization step.
An example of this is the essential addition of “noise” to
the optimization in DMRG, where a non-linear factor-
ization of the wavefunction coefficients is optimized.33,81

Although the added noise in DMRG is not generally
stochastic (though can be), neglect of this noise can lead
to the convergence to meta-stable solutions and local
minima, rather than the desired converged state.81 With
this in mind, we detail the three anticipated effects of in-
creasing the number of walkers in the FCIQMC-CASSCF
procedure.

First among these will be the decrease in “initiator er-
ror” in the FCIQMC calculation.38 The use of the initia-
tor approximation (applied throughout this work) entails
the introduction of a systematically improvable error into
the sampling of the wavefunction as a way of encouraging
annihilation events and ameliorating the sign problem in
the space. As the number of walkers increases, it can
be rigorously shown that the energy (generally rapidly)
converges to the exact (FCI) result. Secondly, the in-
crease in walkers will lead to a reduction in the error
in the sampled density matrices (and hence the gradi-
ent and Hessian of the orbital rotations), again tending
to an exact limit. This is due both to a reduction in
the initiator error in the wavefunction from which the
density matrices are sampled, and also an improvement
in the sampling of the matrices themselves. However, a
third effect of changing the walker number relates to the
convergence profile in the non-linear optimization of the
orbitals. As the walker number increases, it will decrease
the random noise in the sampled gradient and Hessian
information for the orbital rotation steps, and this will
influence the stability of the global optimization of the
orbitals.

The convergences for coronene, using a (24,24) active
space and different values for Nw, are shown in Figure

5. The number of active space determinants is O
[

1012
]

.

The simulations which are carried out with 100 and 200
million walkers per FCIQMC calculation (the latter value

of which fulfils the criterion of placing 5 × 104 walkers
upon the reference) provide the kind of smooth, robust
convergences in close agreement with one another which
we observe for the smaller systems. Although slightly dif-
ferent optimization pathways may be taken, these walker
numbers both achieve a quantitative agreement at con-
vergence within a small standard deviation of each other.
However, a calculation using only 10 million walkers for
each step, results in a very different convergence to a
lower-energy solution, in marked disagreement with the
other results.

This discrepancy is not merely a simple manifestation
of initiator error, but rather a clear example of the sen-
sitivity of the optimization to its initial and early con-
ditions. As Figure 6 illustrates, increasing the number



8

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Macroiterations

−0.20

−0.15

−0.10

−0.05

0.00

E
/E

h

−9.161×10
2

Nw ∼ 2× 108

Nw ∼ 108

Nw ∼ 107

FIG. 5. Convergences for the coronene molecule in a cc-pVDZ
basis, using different walker populations, Nw, for each config-
urational optimization, in a (24,24) active space chosen from
a 396-orbital total space. Walker populations over 50 mil-
lion result in robust convergence to a meta-stable state, but
an undersampled calculation using Nw ∼ 10

7
yields a lower-

energy orbital solution. This solution can then be refined by
increasing the walker number (see Fig. 7).

of walkers in FCIQMC calculations to eliminate any ef-
fects of initiator error using the converged orbitals of
both the meta-stable (higher energy) and stable (lower
energy) states decreases their energy as the initiator er-
ror is removed, but the two states remain well separated
by ∼ 20mEh, while the initiator error is less than 2mEh.
It appears, therefore, that rather noisy initial macroit-

erations may, in fact, be advantageous in converging upon
a true ground state, much in the manner that added noise
is helpful for DMRG. Indeed, in Figure 7, we adopt a
protocol wherein the first configurational optimizations

are performed with O
[

107
]

walkers, and macroiteration

12 and later steps with 100 million walkers to converge
residual initiator error. This approach yields a trajec-
tory towards the converged energy of the stable state in
Figure 6, and is the recommended procedure for future
studies to encourage convergence to the global minima of
the orbital optimization problem. We speculate further
that a deterministic FCI solver of the (24,24) coronene
problem (if possible) with the same CASSCF algorithm
would also likely converge to the higher energy orbital so-
lution, and that for large active spaces or in the presence
of strong correlation and difficult convergence, the addi-
tion of artificial noise to the CASSCF optimization may
also yield benefits in convergence stability. The protocol
of optimizing first at lower walker numbers also reduces
the computational cost of an FCIQMC-CASSCF calcula-
tion, since only a few final iterations are required at the
higher walker number finally to eliminate initiator error.
While the optimisation is weakly exponentially scaling

20 40 60 80 100

Nw/10
6

−0.030

−0.025

−0.020

−0.015

−0.010

−0.005

E
/E

h

−9.1626×10
2

Meta-stable

Stable

FIG. 6. FCIQMC energies for the meta-stable (red) and
stable (blue) states found for coronene, using the converged
orbitals from separate CASSCF optimizations with different
walker populations, Nw. The meta-stable orbitals correspond
to the optimization at 200 million walkers, while the stable
state corresponds to 10 million walkers, as shown in Fig. 5.
The removal of initiator error as Nw is increased decreases
the energy of both states, but is not sufficient to explain the
discrepancy between the two.

with the number of orbitals and electrons in the active
space,40,41,44,82 in the example of the (24,24) coronene
system in Figure 7, this corresponded to only 12 hours
on 320 cores per macroiteration (including savings due to
symmetry), taking advantage of the highly parallelizable
nature of the FCIQMC algorithm. Memory requirements
were also small, at ∼ 3GB of distributed memory (in
contrast to the unfeasible traditional calculation which
would require a minimum of ∼ 100TB of RAM).

2. The electronic structure of polycyclic hydrocarbons

from FCIQMC-CASSCF

Further insight into the electronic structure of these
systems may be gleaned by considering the natural or-
bital occupation numbers, {ni}, of the converged wave-
functions. Integrated measures of the number of “effec-
tively unpaired” electrons in a system have been pro-
posed by Takatsuka,83–87 as

N
(T)
unpaired =

∑

i

(

2ni − n2
i

)

, (15)

and by Head-Gordon,88–90 as

N
(HG)
unpaired =

∑

i

min (ni, 2− ni) , (16)

in which 0 ≤ ni ≤ 2. In addition, the HONO-LUNO gap,
nHONO − nLUNO, can be used, where HONO and LUNO
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FIG. 7. Convergence for the (24,24) coronene system with

the initial macroiterations performed using 10
7
walkers, and

those after and including macroiteration 12 using 10
8
, yield-

ing a result in agreement with the analysis of Figure 6. The
dashed curve illustrates the trajectory if a walker population

of O
[

10
7
]

is maintained in these latter stages, giving an in-

dication of the initiator error encountered upon so doing.

correspond to the highest/lowest occupied/unoccupied
natural orbital respectively. This quantity should not be
considered as a measure of an energetic excitation, but
rather as a metric for the deviation from the suitability
of a Hartree–Fock picture of the electronic wavefunction.
As has been previously pointed out,28,29 a little care must
also be exercised in interpreting the values of Nunpaired;
certainly, they should not be taken literally as the num-
ber of unpaired electrons found in a given system, but,
taken together with nHONO − nLUNO, provide a useful
indication of the correlated effects present in differently-
sized molecules.
Figure 8 compares these metrics for the two-

dimensional systems discussed thus far to the correspond-
ing linear acenes, which we have also calculated. The
trend for the linear systems reveals, as has been previ-
ously reported,28 the steady increase in correlated be-
havior as the chain length (and CAS size) is increased,
leading to increasingly polyradical character of the wave-
function. The behavior for the two-dimensional systems,
however, is rather less straightforward, indicating the
strength of the correlation effects and radical nature of
the resulting wavefunction is not simply related to the
number of π electrons in the conjugated system, but also
to the precise geometry of the molecule under study.
Whilst the integrated measure of the radical character
is approximately the same for the 1D and 2D structures
when comparing the same number of conjugated elec-
trons, the HONO-LUNO gap does not increase at the
same rate.
This behavior can be rationalized by examining the
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FIG. 8. Integrated metrics N
(HG)
unpaired and N

(T)
unpaired, along with

the HONO-LUNO gaps, for the two-dimensional systems con-
sidered here, compared with the series of linear acenes of sim-
ilar size.
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FIG. 9. Natural orbital occupation numbers for the (18,18)
active spaces of tetracene and triphenylene, illustrating the
degeneracy of the HONO and LUNO in the two-dimensional
case, which is not present in the linear system.

occupation-number spectra, as shown in Figure 9 for lin-
ear tetracene and two-dimensional triphenylene, which
have the same number of electrons in its π-system. These
exemplar spectra highlight that, whilst the HONO-
LUNO gap of the linear system is smaller than that of
the two-dimensional case, the latter system sees the emer-
gence of degeneracy in both the HONO and the LUNO
not present in the former, contributing to the integrated
measures of the radical nature. This is expected due to
the increased symmetry of the 2D system, as compared
to the linear acene. It has previously been shown that
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the radical HONO and LUNO orbitals are related to edge

effects of these conjugated systems, with larger systems
exhibiting HONO and LUNO orbitals in these systems
which increasingly localize onto the perimeter of conju-
gated system.29 This rationalizes the results of Figure 8,
where the smaller perimeter of the two-dimensional sys-
tems compared to the linear acenes for the same number
of π electrons is reflected in the size of the HONO-LUNO
gap. Visualization of the coronene HONO in Figure 10,
also indicates that these orbitals that are most radical
in nature are indeed beginning to localize on the edge of
the molecule. It is anticipated that the increased degen-
eracy of the 2D conjugated systems will mean that for
a given perimeter of these systems, the 2D systems will
exhibit stronger correlation effects than their 1D coun-
terparts. Theoretically observing these correlated trends
provides a stern challenge for future applications of this
new approach. However, the applicability and relative
ease in dealing with these large correlated spaces with
a stochastic solver bodes well for its future utility and
scope to probe these systems.

FIG. 10. Visualization of the highest-occupied natural or-
bital for coronene

91
, illustrating the accumulation of electron

density around the outer carbon sites.

IV. CONCLUSIONS

A novel formulation of multi-configurational self con-
sistent field theory, using a two-step, macroiterative algo-
rithm with full configuration interaction quantum Monte
Carlo for its configurational optimizations, is capable

of performing successful calculations with large active
spaces. In this work, this ability is demonstrated with
a study of a series of two-dimensional polycyclic aro-
matic hydrocarbons, culminating in calculations on the
coronene molecule with a (24,24) active space.
The inevitable introduction of stochastic noise in this

approach does not significantly worsen convergence over
a deterministic method, provided that satisfactory sam-
pling is undertaken. In particular, we observe that the
FCIQMC calculations must be performed for sufficiently
many density-matrix sampling iterations (with 25000 a
useful, if informal, lower bound) and with sufficiently
many walkers if the adverse effects of errors in the den-
sity matrices are to be avoided. Moreover, it is shown
that the noise brought about by using comparatively few
walkers for the initial iterations can be of benefit in con-
verging to a true ground state, with high populations
only required in the last stages of convergence in or-
der to provide a satisfactory treatment of initiator error.
The modest computational resources thus required sug-
gest that larger active spaces still will be within range,
and thus that major new avenues of inquiry — including
studies of transition-metal compounds and clusters — are
now open and navigable. Furthermore, an approach for
obtaining excited states within FCIQMC will allow for
a state-averaged-CASSCF implementation in the future,
allowing for studies of excitations and photochemistry in
correlated molecules.92
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