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Abstract9

The control of highly infectious diseases of agricultural and plantation crops and livestock represents a key10
challenge in epidemiological and ecological modelling, with implemented control strategies often being contro-11
versial. Mathematical models, including the spatio-temporal stochastic models considered here, are playing an12
increasing role in the design of control as agencies seek to strengthen the evidence on which selected strategies13
are based. Here, we investigate a general approach to informing the choice of control strategies using spatio-14
temporal models within the Bayesian framework. We illustrate the approach for the case of strategies based15
on pre-emptive removal of individual hosts. For an exemplar model, using simulated data and historic data on16
an epidemic of Asiatic citrus canker in Florida, we assess a range of measures for prioritising individuals for17
removal that take account of observations of an emerging epidemic. These measures are based respectively on18
the potential infection hazard a host poses to susceptible individuals (hazard), the likelihood of infection of a19
host (risk) and a measure that combines both the hazard and risk (threat). We find that the threat measure20
typically leads to the most effective control strategies particularly for clustered epidemics when resources are21
scarce. The extension of the methods to a range of other settings is discussed. A key feature of the approach is22
the use of functional-model representations of the epidemic model to couple epidemic trajectories under different23
control strategies. This induces strong positive correlations between the epidemic outcomes under the respec-24
tive controls, serving to reduce both the variance of the difference in outcomes and, consequently, the need for25
extensive simulation.26
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1 Introduction29

Highly infectious diseases of plants and arboreal populations such as Asiatic citrus canker, Huanglongbing, ash30

dieback, sudden oak death, or veterinary pathogens such as foot-and-mouth disease and classical swine fever rep-31

resent a major threat at both the global and the regional level and lead to significant economical losses (Ferguson32

et al., 2001; Schubert et al., 2001; Gottwald et al., 2001, 2002b; Filipe et al., 2012; DEFRA, 2013; Thompson et al.,33

2004; Cunniffe et al., 2016; Thompson et al., 2016). Considerable resources are deployed to control the spread of34

these and other diseases (Schubert et al., 2001; USDA/APHIS et al., 2006; Parnell et al., 2009; DEFRA, 2013;35

Cunniffe et al., 2014). An approach commonly adopted to control a disease outbreak is to remove susceptible36

individuals from a population, for example from a neighbourhood of a detected infectious host. Controls of this37

kind have frequently proved controversial on account of their socio-economic and other impacts on farmers or other38

stakeholders that they affect (Schubert et al., 2001; Graham et al., 2004; Ferguson et al., 2001; Gottwald et al.,39

2002b). An important challenge, therefore, is that of optimising control strategies so that they provide the greatest40

benefits in terms of disease reduction for a given level of control (Cunniffe et al., 2015).41
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We address this challenge in the context of an epidemic of an infectious disease that spreads through a population42

of spatially distributed hosts, and is controlled by testing and removing individual hosts (if found to be infected),43

via the objectives of:44

(i) presenting a computational statistical framework within which competing control strategies for an emerging45

epidemic can be represented and their likely efficacy assessed in the light of available data in a computationally46

efficient manner;47

(ii) illustrating the use of the framework in a particular scenario – a spatio-temporal epidemic driven by SI48

dynamics and controlled by removal of hosts – to formulate and to explore the relative merits of competing49

strategies for selecting hosts for removal;50

(iii) describing how the framework can be applied to design controls for alternative choices of epidemic model or51

control mechanisms.52

In order to develop the framework and illustrate its use we consider epidemics for which infection can be spatially-53

dependent so that the infectious challenge presented to a susceptible host by a given infected individual is dependent54

on the distance between them. This leads us to consider epidemics that can be represented using individual-based,55

spatio-temporal stochastic models. The ‘individual’ in such formulations may represent an individual host or a56

larger conglomeration of hosts such as a field, farm, plantation or a village, making the general class of models57

we consider very flexible in terms of the host-pathogen systems to which it is relevant. We assume that partial58

observations on an emerging epidemic are available to inform the actions that are taken at some specified future59

time to control subsequent spread. We consider explicitly only controls that involve the removal of infected or60

susceptible individuals from the population. Throughout we will assume that constraints are placed on the level61

of resource that can be expended on a control strategy. These could take the form of bounds on the numbers of62

individuals that can be removed, the spatial area that can be surveyed, or the number of separate regions to which63

control can be applied. The problem is then to identify the optimal control strategy satisfying these constraints.64

To achieve a coherent approach for the model-based design of an efficient control that allocates available resources65

to maximise the impact on the spread of the epidemic, we work within the Bayesian framework. As explained in66

Section 2 we use posterior predictive expectations of certain quantities associated with a developing epidemic both67

to assess the effectiveness of controls, and to prioritise those individuals or regions that should be targeted using a68

control strategy. In particular, we will investigate several approaches to constructing a geographical map prioritising69

sites or regions according to a range of candidate measures. Similar ideas have been used in Boender et al. (2007),70

te Beest et al. (2011) and Hyatt-Twynam et al. (2017) where the map is constructed on the basis of combining71

the basic reproduction number with estimates of the probability of infection. A key feature of the approach in this72

paper is the use of non-centred parameterisations of epidemic models (specifically based on the Sellke construction73

(Sellke, 1983)) in order to couple the trajectories of epidemics simulated from their respective posterior predictive74

distributions under different control strategies. This idea has already been applied by some of the authors (Cook75

et al., 2008) for retrospective assessment of controls. In this paper we apply it in the context of prospective control76

where the task is to select control strategies to impact on the future trajectory of an epidemic in progress. As77

proposed in Section 2, and demonstrated in Section 3 the approach has the potential to reduce the amount of78

simulation required to estimate the expected differences in effectiveness of different control strategies - essentially79

by reducing the variance of these differences. Using this approach we are able to dispense with the need to nest80

extensive simulation within optimisation algorithms in delivering computationally efficient schemes.81

Although the methods may be developed for a specific scenario they are designed to be generally applicable82

across a range of scenarios. Therefore, in keeping with objective (iii) above, in Section 4 we present in outline how83

the methods can be adapted to epidemic models with more complex interactions that are controlled by different84

strategies, or observed with imperfect diagnostics.85

The paper is organised as follows. In Section 2 we introduce the class of model processes and outline the Bayesian86

computational approaches that we use. We also describe how we can exploit non-centered parameterisations in87

order to couple stochastic epidemics under competing control strategies and to reduce the variance of comparative88

performance estimators. We present the quantitative measures whose posterior predictive expectations will be used89

to prioritise the application of control. Section 3 illustrates the application of the methods to optimise control90

strategies in simulated and real-world scenarios. Conclusions, potential extension of the methods and avenues for91

further research are discussed in Section 4.92
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2 Materials and Methods93

2.1 Epidemiological models94

We consider a spatially-explicit, stochastic, individual-based, compartmental SI model (Neri et al., 2014) for the95

spread of an infectious disease through a discrete population in a bounded region. Hosts are identified by their96

location vectors which may take values in a continuous space or, as in the case of a managed arboreal population,97

may lie on the vertices of a rectangular lattice. At any time t, hosts can be partitioned into two classes S(t) and I(t),98

containing susceptible and infected individuals respectively. We further assume that I(t) can be partitioned into99

two groups Ic(t) and Is(t) denoting cryptic and symptomatic infections respectively. It is assumed that individuals100

in Is(t) are obviously infected but those in Ic(t) can only be determined using some diagnostic test. Suppose that101

i represents a susceptible host at time t. Then the probability that i is infected in the period [t, t+ dt] is given by102

the following equation:103

P (i infected in [t, t+ dt]) = λi(t)dt+ o(dt), (1)104

where105

λi(t) =

β ∑
j∈I(t)

K(dji, α) + ε

 (2)106

is the force of infection on host i at time t, β is the contact parameter and ε the primary infection rate, this being107

the rate at which any individual i contracts the disease from an external or environmental source. In addition,108

K(dji, α) is a non-negative function characterizing the infection challenge posed by the host j to i as a function109

of the inter-host distance dji, and known as the dispersal kernel with parameter α (the dispersal parameter). In110

typical formulations, for any given α, the function K decreases with the distance. Intuitively, the instantaneous111

rate at which i is becoming infected, λi(t), is composed of the sum of the infection rate from environmental sources112

and the individual infection rates from infected individuals at time t.113

Moreover, we assume for simplicity that, following infection, individuals remain asymptomatic (i.e. in Ic(t))114

for a fixed, known period of time ∆, before moving to Is(t). In more general formulations, the sojourn time in115

the cryptic compartment could be modelled by assigning an appropriate distribution, for example a Gamma or116

Weibull distribution (Parry et al., 2014). The fact that asymptomatic hosts are only identifiable through some117

diagnostic test presents challenges for the design of controls as both symptomatic and cryptic infections present a118

threat to susceptible individuals in the population. The model described above has been successfully applied to119

plant diseases, including diseases of citrus such as Asiatic citrus canker, where disease-induced mortality occurs at120

a far longer timescale than epidemic spread and control intervention. With some modification it can be applied121

to natural plant populations or to veterinary epidemics spreading through populations of farms (Tildesley et al.,122

2006; Jewell et al., 2009) where the infectivity of farms may vary with the particular species mix. The definition of123

realistic distance measures for populations of farms is challenging since the connectivity between pairs of farms is124

affected by factors such as animal movements to and from market places as well as Euclidean distance. Additional125

compartments - such as an exposed class E, in which hosts are infected but not yet able to infect, or a removed126

class R, representing host removal by death, acquisition of immunity, or other means can be included. Note that for127

the basic SI model considered here, in the absence of control, the number of infected individuals in the population128

would increase monotonically until the entire population were infected.129

2.2 Sellke construction130

Following the idea developed in Sellke (1983), we consider each susceptible host j to possess a level of resistance131

to the infection pressure quantified by a threshold Qj , known as the Sellke threshold, where Qj ∼ Exp(1), and132

thresholds are independent over hosts. During the epidemic process, the cumulative pressure on an individual j133

by time t is given by the integral Aj(t) =
∫ t
0
λj(u)du. Individual j becomes infected at the time tj for which134

Qj = Aj(t), this being the time at which the accumulated infectious pressure reaches the threshold Qj . This135

description is equivalent to the standard stochastic process given by the equation (1).136

Now, given the parameter θ = (α, β, ε) and given the set of Sellke thresholds Q = (Q1, Q2, . . . , QN ) the trajectory137

is uniquely specified in the absence of control. Moreover, for a control d that involves surveying, testing and removing138

infected hosts at particular times, then (assuming a perfect test for detecting infection) the epidemic trajectory is139

uniquely specified by (θ, Q,d). The particular benefit from using this representation in the context of this paper140

derives from the fact that a combination of parameters and threshold (θ, Q) of thresholds uniquely specifies the141

epidemic outcome that arises for any control strategy based on removal of hosts. This will be particularly useful142
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when we wish to compare the effect of two interventions on the same set of hosts; more precisely we can couple143

epidemics under different control strategies by merely matching latent processes (Cook et al., 2008).144

2.3 Observation process and control problem145

We consider the following situation (see Figure 1). We assume that observations on an emerging epidemic are146

collected over a period of time [t0, tobs] with no control applied during this period. We denote by y the data147

observed up to and including tobs which may consist of a sequence of ‘snapshots’ of the symptomatic set of hosts148

at discrete times, or other forms of partial data. We assume that the epidemic proceeds according to the model149

of Section 2.1 with unknown parameter vector θ. We define the trajectory of the epidemic up to any time t to be150

x(t) where x(t) specifies the time and nature of every transition occurring during [t0, t]. The intervention (control)151

time when the control is applied is denoted by tC > tobs and we denote by tA ≥ tC the assessment time at which152

the effectiveness of the control is quantified (e.g. in terms of the numbers of infections up to tA). We define an153

impact function u(x(t)) in order to quantify the practical significance of an epidemic with the purpose of control154

being to minimise this function. Although alternatives could be selected, throughout this paper we define u(x(t))155

to be the total number of hosts infected by time t. Therefore the effectiveness of any control will be determined156

from consideration of x(tA).157

Let π(θ) denote a prior density for the model parameter vector which represents our belief about θ at time t0.158

We denote by π0 (x(t)|y) and πd (x(t)|y) the posterior distribution, given y, of the trajectory of the epidemic up159

to time t subject to no control and control d respectively. For any control d and assessment time tA, we define the160

expected impact conditional on the observed data, y, to be161

U(d, tA) = Ed (u(x(tA))|y) =

∫
u(x′(tA))πd (x′(tA)|y) dx′(tA). (3)162

We define the optimal control as that which minimises U(d, tA).163

|
t0

|
tobs

|
tA

•
tC

Observation Control Assessment

Observation of emerging

epidemic y

Figure 1: Graphical representation of the observation-control-impact system. Given observations of the system
from some initial time t0 up to tobs a subset of hosts is considered for potential removal at time tC (if infected at
tC). The impact of the control strategy is assessed at assessment time tA by considering the history of the epidemic
up to tA.

2.4 Comparing control strategies164

A straightforward approach to simulation-based optimal design for this scenario is to utilise Monte Carlo simulation165

by drawing samples (x(tA),θ) from πd (x(tA),θ|y) to generate a sample from πd (x(tA)|y) from which U(d, tA) can166

be estimated, and carrying this out independently over different controls d. This in essence is the approach taken by167

Cunniffe et al. (2015) where controls are compared on simulated replicates using the Gillespie algorithm (Gillespie,168

1977), although without estimating model parameters. Here we use the Sellke construction to give a more efficient169

sampling strategy. We exploit the fact that the epidemic trajectory is uniquely specified by (θ,Q,d) so that170

x(t) = h(θ,Q,d, t) (4)171

for any t. Specifically we draw a random sample {(θi, Qi)|i = 1, . . . ,m} from π(θ, Q|y). Then, for any control d, we172

can obtain a random sample from πd (θ, x(tA)|y) as {h(θi, Qi,d, tA)|i = 1, . . . ,m}, using the algorithm described in173

Section 2 of the electronic supplementary material (ESM). The coupling of trajectories under different controls d1174

and d2 but with common (θ,Q) should ideally induce a strong positive correlation between the numbers of infected175

hosts associated with the control scenarios d1 and d2, u(h(θ,Q,d1, tA)) and u(h(θ,Q,d2, tA)), bringing benefits176

in reducing the variance of u(h(θ,Q,d1, tA)) − u(h(θ,Q,d2, tA)) and, hence, the variance of Û(d1, tA) − Û(d2, tA)177

where178
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Û(d, tA) =
1

m

m∑
i=1

u(h(θi, Qi,d, tA))

2.5 Removal-based control strategies179

We mainly consider control measures based on the removal of hosts in which infection is detected. While symp-180

tomatic hosts are visually detectable, we assume that although a host, cryptic at the time of a survey contributing181

to y, will not be recorded as infected in that survey, any infection is observable during the control phase, thanks to182

the availability of a diagnostic test.183

We assume that control in the form of removal of hosts is to be implemented at time tC and assume that the184

availability of resources dictates that only N ′ hosts can be considered for potential removal. Any host that is found185

to be infected (either because it shows visible symptoms or because a diagnostic test reveals that it is cryptically186

infected) is removed. However any host that is not infected remains in the population. We note that, for simplicity,187

the diagnostic tests considered here are assumed to have perfect sensitivity and specificity. This is rarely the case188

in practice and we later discuss how this assumption may be relaxed. While this paper focuses on this particular189

form of control, the general methods could be applied to design controls based on alternative strategies such as190

ring culling. Our aim here is to compare strategies for prioritising the N ′ hosts considered for control (removal of191

infection detected) in terms of their respective expected impact on the epidemic size.192

2.6 Prioritisation scheme193

We now describe the measures used as criteria for host prioritisation. For each host, we construct a range of metrics194

subsequently used to prioritise hosts for consideration under a given control strategy.195

The measures used can all be expressed as E(Gj (x(tM )) |y), the posterior expectation of some function of the196

system state at some time tM ≥ tobs for host j, under the assumption that no control is deployed. This general197

concept has been previously used in the literature to target priority sites (Boender et al., 2007; Tildesley et al.,198

2009; Kao, 2003; te Beest et al., 2011; DEFRA, 2013; Cunniffe et al., 2015; Hyatt-Twynam et al., 2017). Typically,199

the candidate hosts with the highest measure are prioritised.200

Here, for any tM , for each host we let GjR (x(tM )) and GjH (x(tM )) respectively denote the infection status of201

j at tM under trajectory x(tM ) and the infectious challenge posed to the remaining susceptibles if that host were202

infected at time tM . More formally, the risk measure is given by203

Rj(tM ) = E
(
GjR(x(tM ))|y

)
(5)204

where205

GjR (x(tM )) = 1{xj≤tM}, (6)206

xj is the infection time of host j and 1 is the indicator function. Hence the risk measure, evaluated at tM , for a207

given host simply represents the posterior probability that the host is infected at time tM . The hazard is defined as208

Hj(tM ) = E
(
GjH (x(tM )) |y

)
(7)209

where210

GjH (x(tM )) = β
∑
i 6=j

K(dij , α)1{xi>tM} (8)211

The hazard measure is designed to quantify how much infectious challenge a given host could present at time tM212

taking account of where it is located with respect to the remaining susceptible population at that time.213

In DEFRA (2013), it has been argued that considering such measures in isolation for prioritisation may not214

be cost-effective. For example removing a host with high risk might be less cost-effective if it is unlikely to infect215

other hosts in the population. It was concluded that a measure that combines the likelihood of infection with the216

propensity to infect susceptibles will provide the best prioritisation scheme (DEFRA, 2013). Developing this idea,217

we define a further measure to represent the threat posed by each host at time t given the observed data y as218

Tj(tM ) = E
(
GjT (x(tM ))|y

)
(9)219
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where220

GjT (x(tM )) = GjR(x(tM ))GjH (x(tM )) (10)221

The threat measure therefore represents the posterior expectation of the infectious challenge presented by any222

given host j to susceptibles at time tM and, consequently, represents the expected reduction in infectious challenge223

that would result from consideration of this host in the control strategy.224

2.7 Data and Inference225

We suppose that the data y consist of a sequence of snapshots observed at particular times in [t0, tobs]. As226

prioritisation and assessment measures require prediction of the trajectory of the epidemic at times beyond tobs227

they are best treated using Bayesian data-augmentation approaches (Neri et al., 2014; Parry et al., 2014; Lau228

et al., 2015). We use a noninformative prior π(θ) for the model parameter vector by assigning independent, vague229

uniform priors to α, β and ε. We then ‘augment’ θ with the unobserved epidemic trajectory x(T ), where T ≥ tobs230

and use Markov chain Monte Carlo (MCMC) to draw samples from the joint posterior density π(θ, x(T )|y) ∝231

π(θ)π(x(T )|θ) Pr(y|x(T )), this being a standard approach in fitting stochastic spatio-temporal models. Note that,232

for the ‘snapshot’ observational model assumed here, the term Pr(y|x(T )) is 0 or 1 depending on whether x(T )233

would yield the data y.234

All inferences carried out from here on are based on an investigation of the posterior density π0(θ, x(T )|y) where235

T can be chosen in a number of ways. First note that the data y, being a sequence of snapshots of symptomatic236

sets of hosts can be interpreted as specifying a period for the infection of each symptomatic host of the form237

[τj−1 −∆, τj −∆] where τj is the time at which the host was first observed as symptomatic and ∆ is the cryptic238

period defined in Section 2.1. It follows that a suitable algorithm could be designed by setting T = tobs−∆, as the239

data in effect distinguish hosts infected before tobs −∆ from those infected after tobs −∆. However, given the need240

to impute infections beyond tobs −∆ to investigate the posterior distribution of the prioritisation measures at tM ,241

we implement a more general algorithm with T > tobs −∆. This is done using methods which are now standard in242

computational epidemiology. Details of algorithms are given in Section 1 of the ESM.243

2.8 Calculation of prioritisation measures and imputation of Sellke thresholds244

The calculation of the risk, hazard and threat measures is achieved by imputing the functions Gj (x(tM )) using245

the imputed (θ, x(tM )) and is straightforward using equations (5), (7) and (10). For each draw (θ(k), x(tM )k) ∼246

π0(θ, x(tM )|y), the vectors247

G
(k)
R (x(tM )) = (G

1(k)
R (x(tM )), . . . , G

N(k)
R (x(tM )))248

and249

G
(k)
H (x(tM )) = (G

1(k)
H (x(tM )), . . . , G

N(k)
H (x(tM )))250

are computed to provide a sample from the joint posterior distribution π0(GjR(x(tM )), GjH(x(tM ))|y) for 1, . . . , N .251

The risk, hazard and threat measures defined in equation (5), (7) and (10) are then approximated using the252

Monte Carlo approximation respectively by:253

R∗j (tM ) =
1

m

m∑
k=1

G
j(k)
R (x(tM )) (11)

H∗j (tM ) =
1

m

m∑
k=1

G
j(k)
C (x(tM )) (12)

T ∗j (tM ) =
1

m

m∑
k=1

(
G
j(k)
R (x(tM ))G

j(k)
H (x(tM ))

)
(13)

where m is the number of draws generated from π0(θ, x(t)|y).254

As our approach to comparing the effectiveness of controls relies on coupling epidemics assuming common sets255

of Sellke thresholds, we impute the latter explicitly using samples from the MCMC algorithm. For any T > tobs,256

given a draw (θ, x(T )) from π0(θ, x(T )|y) we can impute the Sellke thresholds Q as follows:257

Qj =


∫ tj
0

(
β
∑
i∈I(u)K(dij , α) + ε

)
du if j is infected at tj < T∫ T

0

(
β
∑
i∈I(u)K(dij , α) + ε

)
du+ ζ if j is susceptible at T

(14)258
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where ζ ∼ Exp(1). Given a random draw (θ, x(T )) ∼ π0(θ, x(T )|y), it is straightforward to use the construction259

in the equation (14) to impute the corresponding Sellke thresholds Q and to convert a sample of points from260

π0(θ, x(T )|y) to a sample from the joint posterior distribution of the parameter and the thresholds, π0(θ, Q|y).261

A random sample from the posterior distribution (θ,Q) ∼ π0(θ,Q|y) is used as a population of ‘pre-epidemics’262

on which subsequent analyses to compare controls can be based. Once the population of ‘pre-epidemics’ has been263

generated, subsequent computations for assessing controls become entirely deterministic.264

3 Applications to simulated and real-world host populations265

3.1 Uniformly distributed host population266

We test the methodology on a spatio-temporal epidemic simulated in a population of size N = 1000, with host267

locations sampled independently from a uniform distribution over a 0.75× 0.75km2 square region (Figure 2 of the268

ESM). The observations are made between t0 = 0 (time corresponding to the introduction of the external source269

of infection) and tobs = 460 and consist of a sequence of snapshots of a symptomatic set of hosts taken at 30−day270

intervals. The entire population is assumed susceptible at t0 = 0 and the process is governed by the equation (1).271

We use α = 0.08km, β = 7×10−6days−1km2 and ε = 5×10−5days−1 for the simulation and consider an exponential272

kernel K(d, α) = 1
2πdα exp(−d/α). The parameters along with the kernel reflect the findings in Neri et al. (2014).273

The choice of the primary infection rate ε ensures that if all hosts are susceptible, we expect one primary infection274

around every 20 days, reflecting the typical epidemic in Broward county (region B2 in Neri et al. (2014)) where the275

first infection was detected within the first month of the observation. Moreover, we set the time taken for symptoms276

to appear following an infection to be ∆ = 100 days, representing the assumptions used for Asiatic citrus canker277

by Neri et al. (2014). As discussed earlier, the data y effectively specify an interval for the infection time of each278

symptomatic host. At time tobs there are 128 symptomatic hosts while 153 are undetected (cryptic) infections. The279

epidemic progress is shown in Figure 2 of the ESM.280

We use the MCMC routines described in the ESM to sample from the posterior distribution π0(θ, x(T )|y). Non-281

informative uniform priors U [0, 1000] are used for all parameters. To validate the implementation of the methods282

we repeat the estimation for T = tobs −∆, T = tobs, and T = tA = 500, the assessment time used later, noting that283

the marginal π0(θ|y) should be the same in all cases. Note that the last two cases require the use of reversible-284

jump methods as the number of infection events in x(T ) is not fixed by the data. Details of the MCMC runs285

are found in Section 3 of the ESM. We note that the estimated densities are invariant over the values of T and286

that parameter values used for the simulation are consistent with their respective posterior densities. Note that287

the posterior distributions shown in Figure 3 of the ESM exhibit considerable uncertainty regarding the values288

of α, β and ε showing that these parameters cannot be estimated precisely from the observations available up to289

tobs. Nevertheless, the Bayesian framework naturally allows us to take account of this parameter uncertainty when290

predicting the future trajectory of the epidemic and the impact of controls.291
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Figure 2: Posterior predictive maps of the hazard ((a) and (d)), risk ((b) and (e)) and threat ((c) and (f)) measures
calculated for tM = tobs and tM = tA using equations (11-13) for the simulated epidemic on the uniformly distributed
host population (Section 3.1). Each circle represents an individual host with colour varying from white to blue to
red with increasing values of the respective measure for that host. The 128 symptomatic hosts detected during the
survey are indicated by the black circles. Note that the hazard values ((a) and (d)) are greatest in regions of low
infection while the risk measure is greatest for symptomatic individuals. The dependence of the threat measure
on the positions of likely susceptible individuals in relation to an infected host can be discerned. For example,
the infected hosts (circled) in the top left corner of the population naturally exhibit high values of the risk while
the corresponding threat measure is comparatively lower for these hosts, as a high proportion of their immediate
neighbours are already infected.

We now consider the effect on implementing alternative controls, as described in Section 2.5 at time tC = 460,292

for this simulated epidemic using the three prioritisation schemes of Section 2.6, where measures are computed293

from π0(x(tM )|y) with tM = tC and tM = tA. The resulting maps, which appear largely similar for tM = tC and294

tM = tA, are displayed in Figure 2.295

Controls are compared using the performance measures of Section 2.4. Figure 3 shows the estimated values of296

the expected number of infections and the estimated expected reduction (with respect to the uncontrolled scenario)297

respectively for the three prioritisation schemes based on risk, hazard and threat map respectively and how this298

varies with N ′, the number of hosts considered. Measures are estimated using a sample of size m = 1000 from299

π(θ,Q|y). Note that the minimum value of N ′ is chosen to be 128, reflecting the case where the risk measure selects300

the 128 symptomatic sites for removal. For N ′ < 128 a further sampling scheme would be required to select the301

hosts to be considered under the risk measure R.302

Since, for any of the control strategies (accept that based on R with N ′ = 128), it is likely that fewer than N ′303

hosts are removed, we can effect a further comparison of the prioritisation schemes on the basis of the expected304

number of hosts removed using each, estimated from the m = 1000 realisations of (θ, Q). These are plotted against305

N ′ in Figure 3 for the 3 schemes. These results highlight the efficiency of the scheme based on T which achieves the306

best reduction in expected number of infections at the assessment time, tA. On the other hand, Figure 3 shows that307

the controls designed using the risk and threat measures give similar performance, highlighted by their respective308

maps (see Figure 2). This phenomenon may conceivably arise due to the relatively homogeneous spatial structure of309

the host population and the resulting epidemic that is observed for the particular choice of parameters. As a result,310
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the imputed values of GH (x(t)) may not exhibit great variability over hosts, suggesting that the values of GR (x(t))311

may have the greater influence in determining the threat map. This partly motivates our consideration in Section312

3.2 of heterogeneously structured populations. We further note that there is little difference in the effectiveness of313

controls using prioritisation maps evaluated at tM = tC and tM = tA, as may be predicted from the similarity of314

the maps in Figure 2.315

In Figures 3(a) and 3(d) the confidence intervals for the mean number of infections by tA appear quite wide,316

reflecting the large variance of the predictive distribution of the numbers of infections. By contrast, the confidence317

intervals for the mean reduction in comparison to the no-control case (see Figures 3(b) and 3(e)) are narrow. This318

contrast is due to the strong positive correlation that is induced between the numbers of infections by tA under319

different control regimes when the respective epidemic trajectories are driven by the same set of Sellke thresholds320

and parameter values. This positive correlation then reduces the variance of the difference between the numbers of321

infections, narrowing the confidence interval for the mean difference.322

t C
=

4
60
,
t M

=
t C

(a) (b) (c)

t C
=

4
60
,
t M

=
t A

(d) (e) (f)

Figure 3: Marginal confidence intervals for the expected number of infections by tA ((a) and (d)), the estimated
expected reduction in infection with respect to the no-control case ((b) and (e)), and the expected number of
removed hosts ((c) and (f)), when maps are constructed at tobs ((a)-(c)) and tA ((d)-(f)), for a range of values of
N ′, the number of hosts considered for removal.

3.2 Application to structured populations: citrus locations from Florida323

To illustrate the approach described above on a clustered host population, we use data regarding citrus locations324

from Florida to mimic a realistic spatial distribution of hosts, through which we consider the spread and control of325

an epidemic of Asiatic citrus canker, previously analysed by Neri et al. (2014).326
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3.2.1 Simulated data327

The data used for the analysis consist of the citrus locations from a site located in Broward county, labelled B2328

from the four sites in an urban region close to Miami (Gottwald et al., 2002a,b; Neri et al., 2014). A total of 18, 769329

trees across the four sites were monitored with 1, 111 in B2.330

The locations of the citrus population are then used to simulate epidemics governed by Equation (1). Two
different epidemics are simulated using the normalised exponential kernel considered in Neri et al. (2014), with and
without primary infection. The kernel takes the form

K(d, α) =
1

2πd

1

α
exp(−d/α) (15)

where d is the Euclidean distance between infected and susceptible hosts.331

- Case(I): An exponential kernel with primary infection332

We assume that the entire population is susceptible at time t0 = 0, the time corresponding to the introduction of333

the external source. The value used for the contact rate, the dispersal parameter and the primary infection rate334

are respectively β = 7 × 10−6 days−1km2, α = 0.08 km, ε = 5 × 10−5 days−1 and we observe the process up to335

time tobs = 460 days by which time 169 hosts were symptomatic with 133 cryptic. Figure 4 shows the progress336

of the simulation over time. The parameters are chosen from Neri et al. (2014) where they were estimated via337

MCMC using 12 months of the epidemiological data.338

- Case(II): An exponential kernel with no primary infection.339

We perform a similar experiment with β = 8 × 10−6days−1km2, α = 0.8km and ε = 0 but assuming that t = 0340

corresponds to the time of the initial infection. For convenience, we choose the first infection from the Canker data341

(Neri et al., 2014) to be the host initially infected. Here, we maintain tobs = 460 and we observe 111 symptomatic342

and 124 cryptic individuals at this time (see Figure 5 for the progress of a simulation over time).343

Although symptoms can be seen within 10 − 14 days, the average time to symptom discovery in residential trees344

was 108 days (Gottwald et al., 2002b). Here we again use ∆ = 100 days post-infection as a convenience, in line345

with the assumption by Parnell et al. (2009) and Neri et al. (2014).346

For parameter estimation, we again adopt the MCMC algorithm described in Section 1 of the ESM using vague347

U [0, 1000] priors on the model parameters. The estimation is done as in Section 3.1 with T varying depending on348

the case considered. The posterior distributions of the model parameters α, β and ε for various T shown in Figure349

6 of the ESM match, regardless of how far we impute infection times beyond tobs. This provides some evidence that350

the algorithm gives an accurate picture of the posterior distribution.351

3.2.2 Results352

We show the effectiveness of controls developed using the three measures constructed in Section 2.6. We consider353

two possible times for the implementation of control, tC = 460 and tC = 470 and, for each value of tC , we consider354

the cases respectively for tM = tC and tM = tA. Again, these measures are computed by drawing 105 samples from355

π0(x(t)|y) at t = tC and t = tA. Figures 6 and 7 show the maps for the cases with and without primary infection356

respectively. We note some apparent differences between risk and threat maps with the latter having a tendency357

to prioritise sites around the periphery of the cluster of infected sites. We present in Figures 8 and 9 the effect358

of varying N ′ on the estimated values of expected infections, expected reduction (with respect to the no-control359

case) and the expected number of removals using H, R and T . In Table 2 (ESM), we present the values of these360

estimates with their standard errors. Again, the performance of these measures is estimated on the same m = 1000361

realisations of (θ,Q) ∼ π0(θ,Q|y) (‘pre-epidemics’). The minimum value of N ′ is taken to be 169 and 111 for Case362

(I) and (II) respectively, these values corresponding to the number of symptomatic individuals at tobs.363

Results indicate a greater difference in performance between the risk and threat measure than was observed for364

the uniformly distributed population. It can be seen from Figures 8 and 9 that, in general, prioritisation based365

on the threat map T is the most cost-effective control strategy in reducing the impact of the epidemics. This is366

particularly the case when resources are scarce (lower values of N ′) with the difference between results for the threat367

and risk measure decreasing as N ′ increases. The change in the discrepancy between threat and risk maps with368

increasing N ′ is most pronounced in Case (II), where the epidemic proceeds due to secondary infection only; for369

small values of N ′ the risk map’s performance improves little on that of the hazard map but converges to that of370

the threat map as N ′ approaches its maximal value.371
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Figure 4: Case (I): with primary infection. A subset of a realisation of the disease progress maps made at 30-
day intervals from t = 130 up to t = 460, on the citrus population of size N = 1, 111 from a site located in
Broward county. Only maps for t = 130, 250, 340, 460 are shown. Symptomatic hosts (Is), cryptic infections (Ic)
and susceptible hosts (S) at the time of the snapshot are denoted by red, blue and white dots respectively.

These results may be anticipated when one compares the threat and risk maps from Figures 6 and 7. For both372

Case (I) and Case (II) the hosts displaying the highest risk measures are located within the interior of the epidemic373

‘cluster’ while those with the highest threat measure are located towards the periphery. It is to be expected that374

when N ′ is small the respective subsets selected using the risk and threat measures will be quite different and375

corresponding differences can be anticipated in the effectiveness of control.376

The comparative performance of the threat and the risk measures, even for the clustered population, nevertheless377

depends on the range of the spatial kernel function. In Section 4 of the ESM we repeat the analysis of Case (1)378

presented in Figure 6, with kernel parameter α = 0.015, 0.04, 0.16, 0.2 respectively, noting the smaller values of α379

imply a shorter range kernel. For this set of simulations we again see that the threat measure is markedly superior380

to the risk for smaller values of N ′ for α = 0.015, 0.04 - particularly in the former case. However, when transmission381

is possible over longer ranges (α = 0.16, 0.2), little difference in the performance of risk and threat is seen. This382

may be expected since, when transmission can occur over longer distances, the threat posed by an infection may383

be less sensitive to small-scale clustering in the epidemic and the susceptible population.384
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Figure 5: Case (II): without primary infection. A sample of a realisation of the disease progress maps made at
30-day intervals from t = 130 up to t = 460, on the citrus population of size N = 1111 from a site located in
Broward county. Only maps for t = 130, 250, 340, 460 are shown. Symptomatic hosts (Is), cryptic infections (Ic)
and susceptible hosts (S) at the time of the snapshot are denoted by red, blue and white dots respectively. In
comparison with Case (I), a far more clustered epidemic is observed.
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Hazard Risk Threat

(a) (b) (c)

Figure 6: Posterior predictive maps of the hazard (a), risk (b) and threat (c) measures at tM = 460 for Case (I)
using equations (11- 13). The colour of points exhibits a gradation from white to blue to red with increasing values
of the respective measure. The 169 symptomatic hosts detected during the survey are indicated by the black circles.

Hazard Risk Threat

(a) (b) (c)

Figure 7: Posterior predictive maps of the hazard (a), risk (b) and threat (c) measures at tM = 460 for Case (II)
using equations (11-13). The colour of points exhibits a gradation from from white to red with increasing values of
the respective measure. The 111 symptomatic hosts detected during the survey are indicated by the black circles.
A cluster with intermediate risk (B) leads to high threat due to the high hazard while one with very low risk (A)
ends up with relatively low threat even though the hazard is high.
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Figure 8: Marginal confidence intervals for the expected number of infections ((a), (d), (g), (j)), the estimated
expected reduction in infections with respect to the no-control case ((b), (e), (h), (k)), and the expected number
of removed hosts ((c),(f), (i), (l)) by tA = 500 for Case (I) (primary infection). Results are presented for tC = 460
and tC = 470 using risk measures calculated from maps predicted at tM = tC and tM = tA.
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Figure 9: Marginal confidence intervals for the expected number of infections ((a), (d), (g), (j)), the estimated
expected reduction in infections with respect to the no-control case ((b), (e), (h), (k)), and the expected number
of removed hosts ((c),(f), (i), (l)) by tA = 500 for Case (II) (primary infection). Results are presented for tC = 460
and tC = 470 using risk measures calculated from maps predicted at tM = tC and tM = tA.
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4 Discussion385

The removal of infected hosts during the course of an epidemic is considered as the most efficient strategy for386

controlling epidemics of highly infectious diseases (Cook et al., 2008; Cunniffe et al., 2014). Therefore, when387

resources are scarce and the number of hosts that can be considered for removal is constrained, it is important388

that those hosts that may play the greatest role in the subsequent dynamics of the epidemic are targeted. This389

paper presents an efficient statistical computational framework to guide the targeting of control measures for highly390

infectious diseases with spatial dynamical transmission. In addition to formulating algorithms for model-based391

prediction of the efficacy of control strategies, we introduce a prioritisation scheme based on the idea that hosts392

with the highest threat - defined as the posterior expectation of the infectious challenge presented by a given host393

to susceptibles in the population - should be considered for removal first. For epidemics governed by SI dynamics,394

we use the computational methods to compare the threat-based prioritisation scheme with previously considered395

schemes.396

An important feature of the computational approach is that it is embedded entirely in the Bayesian framework.397

This means that it is well suited to handling the challenges that often arise in epidemic modelling due to the partial398

nature of observations and allows unobserved quantities (here the precise times of infections) to be accommodated399

in analyses using data-augmentation. A second important feature is the use of functional-model representations of400

epidemics whereby the epidemic trajectory is represented as a deterministic function of the parameter vector and401

some latent stochastic process. This construction enables us to couple epidemics generated under various control402

strategies (Cook et al., 2008), by virtue of being driven by the same realisation of the latent process. In this paper403

we derive our latent process using the Sellke construction, which is easily handled within the MCMC and data404

augmentation methods that we use. Our results demonstrate that using the Sellke thresholds in this way induces405

strong positive correlation between the epidemic outcomes under alternative controls - leading to a reduction in the406

variance in the difference between outcomes under the controls.407

The results presented here for the SI epidemic appear to suggest that the threat measure typically performs408

best out of the three measures considered. On the basis of the cases we have considered in our simulation study it409

appears that the superior performance of the threat measure is most pronounced when resources are scarce, in that410

only a small number of hosts can be considered for control, and when the epidemic spreads via short-range local411

transmission in a clustered host population. Under these conditions, the threat measure places high priority on412

hosts that are both likely to be infected and likely to have susceptible neighbours. Such hosts may be more likely to413

be located close to the edge of a clustered epidemic. Hosts that are likely to be infected but be largely surrounded414

by infected hosts are not prioritised so highly. The difference between the performance of the threat and the risk415

measures becomes less pronounced when the host population is uniformly distributed and when the range of the416

transmission kernel increases. Of course, in any practical scenario the likely performance of the measures considered417

(or alternative measures) should be investigated through studies akin to those carried out here, using observations of418

the emerging epidemic to be controlled. Nevertheless, the results support the notion that consideration of the threat419

measure for prioritising hosts is often a valuable strategy. Comparing the threat and risk measure in the context of420

Figure 9(a)-(c), we see that the expected reduction of epidemic size achieved using the threat map when N ′ = 111421

would demand that N ′ > 200, were the same reduction to be achieved using the risk-based prioritisation scheme. At422

the same time the expected number of trees removed under the threat-based control for N ′ = 111 is less than half423

of that removed under the risk-based control achieving the same expected reduction. It should be noted that all the424

measures are posterior predictive expectations of unobserved functions of the epidemic trajectory and are, therefore,425

conditional on the observations available up to tobs. It is not automatic that the same conclusions would emerge in426

the case where data were more or less extensive than is considered here and the quality of the posterior expectation427

as an estimator of the unobserved functions were improved or diminished as a consequence. Nevertheless, it makes428

intuitive sense that the threat measure should perform at least as well as the risk measure given that it targets429

those sites expected to present the greatest infectious challenge to susceptibles in the population.430

For epidemics for which the SI model may not be appropriate we should not conclude that results obtained here,431

for example relating to the superiority of the threat measure, will automatically hold without further investigation.432

Nevertheless, the methods, and measures where appropriate, can be readily adapted to other settings in order to433

explore the relative merits of competing approaches to prioritising hosts for removal. Extensions of the basic SI434

model, such as the SEI, SIR, or SEIR models, can be accommodated within the computational framework. In the435

case of the SEIR model we may extend the latent-process vector (θ, Q) to include vectors TE , T I , of sojourn times436

for each host in classes E and I. Given data y, we may use samples from π(θ, Q, TE , T I |y) (which can be readily437

obtained using MCMC methods) to couple the future trajectory of the epidemic under different control strategies438

involving host removal, as was done for the SI model using samples from π(θ, Q|y).439

The range of prioritisation measures that can be defined will depend on the assumed model. For the SEIR440
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model, three versions of the risk measure considered here could be obtained by considering the posterior probability441

that a given host at time tM is, respectively, in class E, in class I, or in E ∪ I. For example, when the SI model is442

generalised to allow different infectivities βc and βs for cryptic and symptomatic hosts respectively, an appropriate443

threat measure could be defined as444

Tj(tM ) = E

1{xj≤tM−∆}βs
∑
i 6=j

K(dij , α)1{xi>tM} + 1{tM−∆<xj≤tM}βc
∑
i 6=j

K(dij , α)1{xi>tM}|y

 (16)445

and readily estimated using extensions of the MCMC methods. Equation (16) represents a measure that is composed446

of the sum of two separate components deriving from the cases where host j is in class IS and IC , respectively, at447

time tM .448

Ring-culling strategies (Tildesley et al., 2006; Cook et al., 2008; Neri et al., 2014; Cunniffe et al., 2015) can449

be assessed using the framework. In the SI model setting, for a given realisation (θ, Q) it is straightforward to450

calculate the epidemic trajectory after tobs, under the assumption that all hosts within distance r of a host, newly451

symptomatic at t > tobs, are removed at time t + δ, and to explore the impact of varying the culling-radius r and452

the response time δ.453

The approach can be extended to alternative cost functions that incorporate economic factors, such as inter-454

vention costs (Forster and Gilligan, 2007; Neri et al., 2014) or cost of detection (Dybiec et al., 2004; Dybiec and455

Gilligan, 2005; Dybiec et al., 2009). For example it can accommodate the situation where diagnostic tests have456

imperfect sensitivity p and specificity q. This is achieved by augmenting the Sellke threshold for each host with a457

uniformly distributed random variable z ∼ U(0, 1) (or a sequence of these when hosts may be tested multiple times)458

which determines the result of a diagnostic test, with sensitivity p and specificity q, applied to that host at a given459

time. If the host is susceptible at the time of the test then z < q and z ≥ q result in negative and positive outcomes460

for the test. If the host is infected then z < p and z ≥ p yield positive and negative outcomes respectively. This461

opens the way to explore, for example, the impact of using less sensitive, but less expensive, diagnostic tests on the462

efficacy of a control strategy.463

We have considered the simple case whereby control strategies are selected on the basis of observations up to464

tobs. Worthy of investigation is the potential gain in performance from allowing host prioritisations to be dynamic465

and adjustable in the light of new data obtained on the status of hosts already subjected to control.466

It is not possible to pursue all the above challenges within the scope of this paper. Nevertheless, we are467

confident that the approach of using functional models and latent processes to couple epidemics under differing468

control regimes to estimate the efficacy of controls without excessive simulation is very appropriate for addressing469

them. A further, beneficial feature of the approach, which makes it robust to the increasing complexity arising from470

further developments of this nature, is the fact that any cost function is evaluated on a fixed set of parameter/latent471

process combinations meaning that computations are deterministic, once these combinations have been generated,472

and can be readily parallelised.473
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