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Abstract: The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account
during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in
polymer films and has a direct impact on the photocurrent generation by organic solar cell devices.
However, very little is known about the material properties controlling the lifetimes of singlet excitons,
with most of our knowledge originating from studies of small organic molecules. Herein, we provide
a brief summary of the nature of the excited states in conjugated polymer films and then present
an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of
seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and
compared to the lifetimes of seven of the most common photoactive polymers found in the literature.
A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium
correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for
these systems. This therefore suggests that small bandgap polymers can suffer from short exciton
lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact
of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole
co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton
lifetime and optical bandgap again in agreement with the Energy Gap Law.

Keywords: excited states; diffusion; energy gap law; non-radiative; ultrafast transient
absorption spectroscopy

1. Introduction

Organic solar cells (OSC) have power conversion efficiencies that are now surpassing 11% which
is a five-fold increase from the efficiency of the first reported OSC device 30 years ago [1–3]. However,
significant further performance improvements are required for the successful translation of this
technology into a commercial product. Conjugated polymers are the most widely used light harvesting
materials for OSC. In the device active layer, they are normally blended with a soluble derivative
of the fullerene C60 or C70 or with a high electron affinity aromatic molecule to create an electron
donor-acceptor (D-A) pair that has an energy landscape that favors photocurrent generation. Unlike
most inorganic semiconductors, the absorption of light by conjugated polymers does not lead to the
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direct generation of free charges, but instead coulombically-bound pairs of electrons and holes are
created [4]. These so called excitons have relatively short lifetimes and limited diffusivities [5–7].
They have binding energies that are an order of magnitude bigger than the thermal energy (kT) and
their dissociation requires an external force which in the OSC devices is provided by the molecular
orbital energy offset at the D-A interface [8].

Polymer singlet excitons are the precursors for charge photogeneration taking place at the
D-A interface and despite of their importance for OSC performance, relatively little is known
about their properties and how we can control them. In particular, there are not clear strategies
for the optimization of the exciton lifetime in conjugated polymer films. Therefore, the aim of
this work is to provide an analysis of the singlet exciton lifetimes of 16 different conjugated
polymers and to test the validity of the Energy Gap Law in thin polymer films [9,10]. The paper
starts with a brief overview of the nature of the excited states in conjugated polymer films
covering exciton diffusion and lifetimes. Then, the results from transient absorption spectroscopy
measurements of the exciton lifetimes of seven polymers are presented alongside the lifetimes of
seven popular polymers widely used for OSC fabrication. Then, three films of the co-polymer
BTT-DPP (Poly[(5-decylbenzo[1,2-b:3,4-b1:5,6-d”]trithiophene-2,8-diyl)-alt-co-(3,6-bis(2-thienyl)-2,5-
dihydro-2,5-di(2-octyldodecyl)pyrrolo[3,4c]pyrrolo-1,4-dione-5,51-diyl)]) with different molecular
weights were characterized to assess the impact of film crystallinity on the exciton lifetime.

1.1. Excited States in Conjugated Polymers

The excited states of conjugated polymers are coulombically-bound electron-hole pairs that
resemble molecular excited states [4]. They are called singlets when their spin is 0 and triplets when
their spin is 1. The singlets and triplets vary broadly in properties but only singlets are populated upon
polymer light absorption. This is because of the spin forbidden nature of the transition from a singlet
ground state to a triplet excited state. Triplets are generated indirectly through intersystem crossing
from a singlet exciton or through electron-hole recombination involving a spin flip [11–14]. Singlet and
triplet excitons are both formed in OSC during device function but predominantly singlets are involved
in charge photogeneration, while triplets are normally associated with undesirable recombination
processes [11–14].

Singlet excitons can be broadly classified as intrachain and interchain [15–17]. In the former,
the excited state extends over a single polymer chain and its delocalization is mainly limited by
conformational disorder and chemical defects [18]. This is typically the case for homologous polymers
like P3HT (Poly(3-hexylthiophene-2,5-diyl)). In push-pull type co-polymers the excited state is
not evenly distributed along the polymer chain, [19] because the co-polymers consist of at least
two different monomer units that have differing electron affinities. Therefore, the absorption of light by
such co-polymers often results in intrachain partial charge separation that is driven by the difference
in electron affinity between the monomers [20–23]. For example, light absorption by the co-polymer
SiIDT-DTBT induces partial electron density localization on the benzothiadiazole (BT) unit, due to its
stronger electron withdrawing character, while the hole is more uniformly delocalized along the whole
polymer chain (Figure 1) [13]. Such push-pull polymers have been widely developed over the past
ten years and are the main reason behind the significant improvements in organic solar cell device
efficiencies, as they provide smaller optical bandgaps for better light harvesting and improved control
over device photovoltages [2,21,24,25].

In addition to intrachain excited states, many conjugated polymers including co-polymers form
interchain excited states that can be thought of as the excitons generated in molecular crystals, where
the excitation can be shared between neighboring chromophores [26]. These occur frequently in
molecular crystals and crystalline polymer films as a result of strong electronic interactions between
the neighboring chromphores [27]. The exciton is a strongly bound electron-hole particle that has no
net dipole moment and distinctive optical properties, such as well-defined vibronic peaks and strong
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0-0 transitions. These optical signatures allow an easy identification of a high structural order in thin
polymer films [28].
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Figure 1. Charge density isosurface of the electron and hole natural transition orbitals of the lowest
energy electronically excited state in the trimer of SiIDT-DTBT, depicting the charge density distribution
upon excitation by light. Calculations were performed by TD-DFT B3LYP/6-31g* and are taken with
permission from reference [13].

Another type of interchain excited state that has been observed in polymer films is the excimer
that is an excited state complex of two stacked chromophores formed dynamically through molecular
rearrangements after light absorption [29]. The excimer cannot be directly excited through light
absorption and is identified by its distinctively broad and featureless emission spectrum that is
red-shifted from the monomer emission [30]. Excimers are frequently observed in solutions of aromatic
molecules, where solvent and molecular geometrical rearrangements are possible. In thin polymer
films, however, the movement of the chromophores is highly restricted due to steric hindrance
caused by dense polymer packing. Despite of this, excimer formation still takes place in films and
on surprisingly fast timescales (picoseconds), possibly because of the existence of pre-associated
complexes that require only a small geometrical reorganization [4]. It has been demonstrated that
the yield of excimers in polymer films can be significant reaching up to 30% for highly crystalline
P3HT domains [31,32]. Rumbles et al. have also pointed out that in addition to excimers and excitons,
polymer films generate a low yield of long-lived polaron states [4,33]. These are electrons and holes
that are coupled to the molecular vibrations and are able to diffuse through the film [26]. Due to their
low yields, the polarons will not be further discussed in this article. We note that excimers and excitons
are often difficult to distinguish spectroscopically. Therefore, in the studies of excited state diffusion in
polymer films these are generally referred to as singlet excitons.

1.2. Exciton Diffusion in Polymer Films

Singlet exciton diffusion is one of the key material parameters that determine OSC device
performance. It can be described as the migration of energy through a film via series of energy transfer
steps. In its simplest form, each step can be understood as a dipole-dipole induced non-radiative
energy transfer process between the neighboring chromophores in the film that is best described by
the Forster Resonance Energy Transfer mechanism [6,7,34]. In the OSC literature, the most widely
cited figure of merit for exciton diffusion is the exciton diffusion length (LD) that is defined as the root
mean square of the spatial displacement of the exciton from its origin during its lifetime. It, therefore,
depends directly on the lifetime of the excitons as shown in the following expression:

LD “
?

2ZDτ (1)

where Z is equal to 1, 2, or 3 for the number of dimensions the exciton can travel, D is the diffusivity of
the film expressed with units cm2¨ s´1 and τ is the exciton lifetime.

The singlet exciton diffusion lengths of many semiconducting polymers have been reported to be
between 5 and 10 nm; these are approximately an order of magnitude smaller than the light absorption
depth of a typical polymer film [5–7,35,36]. As a result, the majority of OSC devices developed to
date have a photoactive layer that is a fine blend of a polymer and fullerene rather than a bi-layer.
This device structure allows for relatively efficient light harvesting and exciton dissociation to be
achieved [37]. However, the intimate mixing of the polymer and fullerene creates a very high density
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of the polymer-fullerene interface that leads to an increased probability for electron-hole recombination
and hence reduced device photovoltages and fill factors. One way to avoid this issue is to optimize the
microstructure of the blend by creating well defined polymer and fullerene interpenetrating networks
for excellent charge transport properties [38,39], as recently demonstrated by Yan et al. with the best
performing single-junction polymer:fullerene solar cells reported to date [2]. However, a high degree
of film order often coincides with the formation of large polymer domains which may limit the yield of
exciton dissociation and hence photocurrent generation [40]. Therefore, the development of polymers
with longer exciton lifetimes and longer exciton diffusion lengths can provide an additional degree of
freedom for microstructural film optimization for more efficient charge transport and higher power
conversion efficiencies.

1.3. Exciton Lifetime

As shown in Equation (1), the exciton lifetime is one of two parameters that determine the
polymer exciton diffusion lengths. Longer exciton lifetimes should in principle translate into longer
diffusion lengths. Nevertheless, our ability to control the polymer exciton lifetime, either synthetically
or via material processing is currently very limited. The lifetime of singlet excitons is determined by
both radiative and non-radiative photophysical processes and can be expressed with the following
equation [41]:

τAVE “ 1{pkR ` kNRq (2)

where τAVE is the measured lifetime, kR is the rate of radiative decay, and kNR is the average rate of
non-radiative recombination decay. The exciton lifetime is also directly related to the fluorescence
quantum yield (QY) via the equation:

QY “ kR{pkR ` kNRq (3)

In the case of large hydrocarbon molecules τAVE is normally dominated by the rate of non-radiative
recombination decay. As a result, large molecular complexes and polymers usually have very low
QY. For example, the QY of the thin films of the benchmark polymers P3HT, PTB7, and MEH-PPV
are <2% [42–44], although there are some exceptions to this empirical observation, as reported for PFO
(QY of 53%) [45]. The dominance of the non-radiative photophysical processes is further enhanced
in thin films, which is evident in experiments comparing the exciton lifetime and QY of polymers
in solution and films. Therefore, for the rest of this manuscript we will focus on examining the
non-radiative decay of singlet excitons to ground state in conjugated polymer films.

Non-radiative electronic transitions in molecules and polymers include internal conversion,
intersystem crossing, electron transfer, and electron-hole recombination. It is generally known that
the rate constant of these processes depends on the energy gap between the initial and final states
involved [46,47], which is well demonstrated in the Marcus Theory of non-adiabatic electron transfer
and in the Energy Gap Law [9,10]. The latter describes the rate of unimolecular non-radiative decay
between two weakly coupled electronic states, such as the lowest energy singlet excited state (S1) and
the singlet ground state (S0). Therefore, the Energy Gap Law can be directly related to the rate of exciton
decay to S0 (inversely proportional to the exciton lifetime) and it can be most simply presented as:

kNR α e´γ∆E (4)

where γ is a molecular parameter that includes the highest energy vibrational mode involved in the
non-radiative transition and ∆E is the energy difference between the potential minima of S1 and S0.

The Energy Gap Law has been successfully applied to describe the non-radiative transitions in
variety of systems including aromatic molecules and heavy atom complexes, as well as the triplet
exciton decay in conjugated polymer films [47–51]. Nevertheless, the validity of this law has not
been tested for the rate of exciton decay from S1 to S0 in conjugated polymer films. We, therefore,
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collected the singlet exciton lifetimes for fourteen conjugated polymers that have been employed
for OSC fabrication to study the relationship between polymer bandgap and exciton lifetime, if any.
The structures of the polymers are presented in the SI and include some of the most widely studied
polymers to date.

2. Materials and Methods

The materials studied herein have been synthesized via established synthetic procedures and
their optical properties characterized. The full names of the polymers are as follows:

BTT-DPP [52]: Poly[(5-decylbenzo[1,2-b:3,4-b1:5,6-d”]trithiophene-2,8-diyl)-alt-co-(3,6-bis(2-thienyl)-
2,5-dihydro-2,5-di(2-octyldodecyl)pyrrolo[3,4c]pyrrolo-1,4-dione-5,51-diyl)];
DPP-TT-T [21]: Poly[[2,5-bis(2-octyldodecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-
alt-[[2,21-(2,5-thiophene)bis-thieno[3,2-b]thiophen]-5,51-diyl]];
SiIDT-BT [53]: Poly[(2,1,3-benzothiadiazole-4,7-diyl)-alt-(4,9-dihydro-4,4,9,9-tetraoctylbenzo[1”,2”:4,5;
4”,5”:4’,5’]bissilolo[3,2-b:3’,2’-b’]dithiophene-2,7-diyl)];
SiIDT-2FBT [54]: Poly[(5,6-difluoro-2,1,3-benzothiadiazole-4,7-diyl)-alt-(4,9-dihydro-4,4,9,9-
tetraoctylbenzo[1”,2”:4,5;4”,5”:4’,5’]bissilolo[3,2-b:3’,2’-b’]dithiophene-2,7-diyl)];
Bu-GeDT [55]: Poly(3,5-didodecyl)-4,41-di-n-butyldithieno[3,2-b:21,31-d]-germole)-2,6-diyl-alt-(2,21-
bithiophene)-5,51-diyl);
Bu-SiDT [55]: Poly(3,5-didodecyl)-4,41-di-n-butyldithieno[3,2-b:21,31-d]silole)-2,6-diyl-alt-(2,21-
bithiophene)-5,51-diyl);
SiIDT-TPD synthesis is provided in the SI [53]: Poly[(5,6-dihydro-5-octyl-4,6-dioxo-4H-
thieno[3,4-c]pyrrole-1,3-diyl)-alt-(4,9-dihydro-4,4,9,9-tetraoctylbenzo[1”,2”:4,5;4”,5”:4’,5’]bissilolo
[3,2-b:3’,2’-b’]dithiophene-2,7-diyl)];
TTP [56]: poly(4,4’-didecyl-2,2’-bithiophene-co-phenyl);
PCDTBT: poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)];
PCPDTBT: Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b1]dithiophene)-alt-
4,7(2,1,3-benzothiadiazole)];
PFO: Poly(9,9-di-n-octylfluorenyl-2,7-diyl);
PTB7: Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b1]dithiophene-2,6-diyl}{3-fluoro-2- [(2-
ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl});
MEH-PPV: Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene].

The thin polymer films were fabricated via spin-coating from chlorobenzene or di-chlorobenzene
solutions on glass substrates. The absorption spectra of the films were measured with a PerkinElmer
Lambda 25 spectrometer in air. The optical bandgaps of the films were estimated from the onset of the
lowest absorption peak.

Femtosecond transient absorption spectroscopy was carried out using a commercially available
transient absorption spectrometer, HELIOS (Ultrafast systems, Sarasota, FL, USA). Samples were
excited with light pulses with a wavelength matching the lowest energy absorption maxima of the
polymers. The excitation was generated by an optical parametric amplifier, TOPAS (Light conversion,
Vilnius, Lithuania) seeded with the output of an 800 nm, ~100 fs, 1kHz Solstice Ti:sapphire regenerative
amplifier (Spectra-Physics, Newport Ltd. , Santa Clara, CA, USA). The probe pulses were generated in
a sapphire plate and detected with an InGaAs CMOS camera.

3. Results and Discussion

Table 1 presents the abbreviations of the polymer names, their optical bandgaps and exciton
lifetimes as measured in thin films. The exciton lifetimes of the first seven polymer films were
estimated using high sensitivity ultrafast transient absorption spectroscopy. In all measurements,
the light excitation densities were kept sufficiently low to avoid a non-linear response from the
samples. The exciton lifetimes were received by exponential fitting of the singlet exciton absorption
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decays presented in the SI and extracted from the NIR transient absorption spectra of the polymers
(included in the Supplementary Materials). In the case of multi-exponential decays, the average exciton
lifetimes were estimated by calculating the weighted average of all time constants received from the
fits. In order to expand the number of data points and compare our results to previously published
values, the lifetimes of seven additional polymers were taken from the literature [42,44,45,57–69]. These
include some of the most widely studied polymers to date: P3HT, PCDTBT, PCPDTBT, PFO, PTB7,
and MEH-PPV (full polymer names included in the Materials and Methods Section). It is worth noting
that polymer exciton lifetimes published in literature vary widely, probably because of differences in
the source of the polymers and their film processing conditions. Another possible source of error is
the difference in the spectroscopic techniques used and the experimental conditions. This variation in
lifetimes is included as error bars in the current analysis of the exciton lifetimes.

Table 1. Optical bandgaps and exciton lifetimes of the polymers analyzed in this study. The full names
of the polymers are included in the Materials and Methods section.

Polymer Optical bandgap (eV) Exciton lifetime (ps)

BTT-DPP 1.33 18 ˘ 0.9 a

DPP-TT-T 1.38 36.8 ˘ 1.5 a

SiIDT-BT 1.80 112 ˘ 4 a

SiIDT-2FBT 1.80 175 ˘ 7 a

APFO-3 1.93 400 ˘ 83 a

SiIDT-TPD 2.00 70 ˘ 6 a

TTP 2.60 127 ˘ 5 a

PCPDTBT 1.43 78 b

PTB7 1.65 93 ˘ 48 b

PCDTBT 1.86 463 ˘ 193 b

PBTTT 1.90 175 b

P3HT 1.95 422 ˘ 150 b

MEH-PPV 2.11 210 ˘ 79 b

PFO 2.80 430 b

a Lifetimes measured using transient absorption spectroscopy; b Average lifetimes from published work,
measured via ether transient absorption or fluorescence spectroscopy [42,44,45,57–69].

Figure 2 presents a plot of the natural logarithm of the inverse of the exciton lifetime vs. the
optical bandgap of all thin polymer films presented in Table 1, which allows us to test the validity of
the Energy Gap Law for the S1 to S0 transition in the polymers examined here. The exciton lifetime of
PFO is corrected using Equation (2) for the high QY of this polymer (53%); it, therefore, represents the
non-radiative recombination decay of the PFO singlet exciton. A similar correction was carried out
for PCPDTBT (QY of 6%) [63,67], although the received non-radiative decay constant is well within
the standard deviation of the lifetimes measured for this polymer. The scatter data in Figure 2 was
fitted to a line function which yielded a low adjusted root square value of 0.40, which reflects the
high variation in exciton lifetimes. A relatively high Pearson’s correlation of ´0.66 is received from
the fit, which allows us to suggest that there is a correlation between the optical bandgap and the
rate of exciton decay of the polymers that can be assigned to the Energy Gap Law. In addition, we
attempted to fit only the seven polymers measured in this study, separately from the data points
taken from the literature. The fit is presented in Figure 2 as a black broken line and it shows a very
low adjusted root square value of 0.30 and a relatively high Pearson’s correlation of ´0.65. From
both fits we find a negative correlation between the rate of decay and the optical bandgap, which
means that smaller bandgap polymers should be expected to have shorter exciton lifetimes. However,
it is very clear that there are other factors that control the singlet exciton lifetimes of the polymers,
thus suggesting that further work is required to allow us to confirm undoubtedly the validity of the
Energy Gap Law. For example, the NIR spectra of the polymer APFO-3 (shown in the Supplementary
Materials) exhibit two excited state absorption peaks, which indicate that two excited state species
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with different energetics are generated in this polymer. Therefore, a poor correlation between optical
bandgap and exciton lifetime can be expected, which is indeed observed for APFO-3 that is also the
biggest outlier point from our fit to the experimentally-determined data in Figure 2.

According to the Energy Gap Law, the slope of the linear fit (γ) depends on the geometrical
rearrangements experienced by the polymers during their non-radiative decay from the excited to the
ground state. It also includes the maximum energy vibration involved in the decay. Considering the
relatively low confidence in the fit in Figure 2, a low value of γ (´1.7 ˘ 0.5 eV´1) is extracted [48];
thus, suggesting that for the materials studied the singlet exciton decay to ground state is likely to
involve a high distortion of the polymer equilibrium geometries. This result is not surprising based on
the relatively high Stokes shifts observed in conjugated polymers due to their high disorder. It also
provides a possible reasoning for the large variation in exciton lifetimes seen here, possibly originating
from differences in film crystallinity, although no obvious trends between film crystallinity and exciton
lifetime can be observed in Figure 2.Polymers 2016, 8, 14 7 of 12 
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Figure 2. The natural logarithm of the rate of singlet exciton decay plotted as a function of optical
bandgap for 16 conjugated polymer films included in Table 1. The open circles represent the
experimentally determined rates of exciton decay of the polymer films studied, estimated using
ultrafast transient absorption spectroscopy. The error bars represent the square root of the mean
residual variance of the exciton lifetime as received from the exponential fits of the exciton decays.
The open squares represent the rates of exciton decay for popular polymers as extracted from the
literature. The error bars represent the standard deviation of the exciton lifetimes found in the literature
for each polymer. The black line is the best fit straight line to all data points showing a negative slope
and the broken line is the best fit straight line to the seven polymers characterized herein.

To test the importance of film crystallinity on the exciton lifetime, three BTT-DPP polymers with
differing molecular weights were studied using transient absorption spectroscopy [52]. Previously
published WAXS measurements have indicated that the crystallinity of the BTT-DPP films increases
with decreasing molecular weight of the polymer: lower molecular weight polymers produce more
crystalline films [70]. According to Table 2, the lifetime of the singlet excitons in the three BTT-DPP
films also decreases with increasing molecular weight. Furthermore, a careful examination of the
absorption spectra of the BTT-DPP films (see Supplementary Materials) reveals that the changes in
molecular weight impact not only the exciton lifetime but also the optical bandgap of the polymers.
This result is supported by recent reports showing that the morphological changes of organic films
impact their molecular orbital energetics [71]. In Figure 3, we include an Energy Gap Law plot of the
natural logarithm of the inverse of the exciton lifetime of the BTT-DPP films as a function of optical
bandgap. The data was successfully fitted with a linear function producing a high confidence fit with
Pearson’s correlation of ´0.88 and medium adjusted root square value of 0.54. The fit also estimated
a gradient of ´3.5 ˘ 1.9 eV´1 which is in a good agreement with previously published values for
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molecules and polymers [48]. This indicates relatively small displacement of molecular geometry
between the excited and ground states for this polymer. On the basis of these results, it is possible
to conclude that the changes in BTT-DPP film crystallinity cause a change in both polymer exciton
lifetime and optical bandgap that follow the Energy Gap Law.

Table 2. Optical bandgaps and exciton lifetimes of BTT-DPP polymer films with differing number
average molecular weights.

Polymer name Optical bandgap (eV) Exciton lifetime (ps)

BTT-DPP 90 kg¨ mol´1 1.37 17.1 ˘ 1.5
BTT-DPP 73 kg¨ mol´1 1.34 16.4 ˘ 1.0
BTT-DPP 22 kg¨ mol´1 1.32 14.2 ˘ 1.2
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Figure 3. The natural logarithm of the rate of singlet exciton decay plotted as a function of optical
bandgap for three BTT-DPP polymers with different molecular weight and film crystallinity. The open
circles represent the experimentally determined rates of exciton decay of polymer films studied herein,
estimated using ultrafast transient absorption spectroscopy. The error bars represent the square root of
the mean residual variance of the exciton lifetime as received from the exponential fits of the exciton
decays. The black line is the best fit straight line to all data points showing a negative slope with a
value of ´3.5 ˘ 1.9 eV´1.

4. Conclusions

The results presented herein have a particular significance for the development of materials for
OSC, especially in lights of the extensive number of small bandgap materials with absorption up to
and beyond 900 nanometres reported over the past five years. They suggest that smaller bandgap
polymers should generally exhibit shorter exciton lifetimes than higher bandgap polymers because of
an increase in their rate of non-radiative exciton decay that follows the Energy Gap Law. This reveals a
fundamental limitation of small bandgap polymers for their use in OSC devices as light harvesting
materials. Indeed, recent reports of small bandgap materials have shown that incomplete exciton
dissociation is a key limiting factor for their device photocurrent generation properties [70,72].

Our analyses of the exciton lifetimes generate high variance plots with medium confidence fits
which suggest that in addition to the bandgap there are other material parameters that control the
exciton lifetimes. There are multiple possibilities, of which the most obvious ones are the diversity
of chemical structures between the polymers used, the presence of different heteroatoms in their
structures and the differences in film order/crystallinity. These factors may lead to the population
of very different in nature excited states that may result in different exciton lifetimes, as discussed
in Section 1.1. For example, our comparison of the exciton lifetime of the polymer BTT-DPP as a
function of molecular weight shows clearly that film crystallinity impacts the exciton lifetime of the
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polymer and it can therefore be used as a general tool to increase or decrease the exciton lifetime in
polymer films.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/8/1/14/s1, the
synthesis of SiIDT-TPD; Table S1 includes the structures of the polymers and their transient absorption spectra
and decays of; Figure S1 presents the steady state absorbance of the fractionated BTT-DPP polymer; and Table S2
presents the transient absorption spectra and decays of fractionated BTT-DPP.
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