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We study the dynamical behaviour of a computer model for viscous silica, the ar-

chetypal strong glass former, and compare its diffusion mechanism with earlier studies

of a fragile binary Lennard-Jones liquid. Three different methods of analysis are em-

ployed. Firstly, the temperature and time scale dependence of the diffusion constant

is analysed. Negative correlation of particle displacements influences transport prop-

erties in silica as well as in fragile liquids. We suggest that the difference between

Arrhenius and super-Arrhenius diffusive behaviour results from competition between

the correlation time scale and the caging time scale. Secondly, we analyse the dy-

namics using a geometrical definition of cage-breaking transitions that was proposed

previously for fragile glass formers. We find that this definition accurately captures

the bond rearrangement mechanisms which control transport in open network liquids,

and reproduces the diffusion constants accurately at low temperatures. As the same

method is applicable to both strong and fragile glass formers, we can compare correl-

ation time scales in these two types of system. We compare the time spent in chains

of correlated cage breaks with the characteristic caging time and find that correla-

tions in the fragile binary Lennard-Jones system persist for an order of magnitude

longer than those in the strong silica system. We investigate the origin of the correl-

ation behaviour by sampling the potential energy landscape for silica and comparing

it with the binary Lennard-Jones model. We find no qualitative difference between

the landscapes, but several metrics suggest that the landscape of the fragile liquid is

rougher and more frustrated. Metabasins in silica are smaller than those in binary

Lennard-Jones, and contain fewer high-barrier processes. This difference probably

leads to the observed separation of correlation and caging time scales.
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I. INTRODUCTION

Glasses are mechanical solids which lack the long-range order of a crystalline structure.

They can be formed by cooling a viscous liquid fast enough that crystallisation is avoided,

which is known as supercooling. Below the melting temperature of the crystal, if the liquid

does not crystallise, it exists in a metastable state as a supercooled liquid. On further cooling

viscosity increases, relaxation times increase, and self-diffusion slows down. Eventually, when

the structure appears frozen on an experimental time scale, the system can be described as

a glass.

However, supercooled liquids do not all behave in the same way as they are cooled down

to the glass transition. For some supercooled liquids, the temperature dependence of relax-

ation times or transport properties is stronger than the Arrhenius law. These supercooled

liquids display “Super-Arrhenius” behaviour, which can be interpreted as resulting from

an increasing barrier height with falling temperature. The Vogel-Tammann-Fulcher (VTF)

equation1–3 is commonly used to fit such behaviour.

Angell classified supercooled liquids as “strong” or “fragile” by their degree of super-

Arrhenius behaviour.4–6 Fragility can be quantified using thermodynamic or kinetic defini-

tions. In fragile liquids, the glass transition is often associated with a significant peak in the

heat capacity at Tg, while strong liquids exhibit smoother changes in dynamical properties.

Thermodynamic and kinetic fragilities often correlate very well, which may be evidence of

a common cause at the atomic level.

Structural signatures can also be a measure of fragility.7,8 ‘Strong’ materials include

many network glass formers, such as silica and germanium dioxide, which have tetrahedrally

coordinated structures, while ‘fragile’ materials, such as ortho-terphenyl, are often bound by

dispersive and less directional forces. It is likely that the structural differences in strong and

fragile materials lead to different diffusion mechanisms. Understanding these mechanisms

and rates would be a key step towards explaining the differences between strong and fragile

supercooled liquids.

In this paper, we provide a simplified description of the diffusion mechanism for silica, the

archetypal strong glass former, and examine the differences for strong and fragile systems.
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A. Diffusion

For supercooled liquids, the mean square displacement used to calculate diffusion con-

stants is usually shown on a double logarithmic plot, which facilitates examination of dynam-

ics on various time scales. At short times, there is a power-law behaviour with an exponent

of two, which corresponds to the initial ballistic motion of the particles. At long times, the

behaviour can again be described by a power law, but with an exponent of one, indicating

diffusive behaviour. In the high temperature limit, these two regimes are directly connec-

ted, but in the low temperature limit the particles can appear almost frozen, as a plateau

region develops between the two extremes. This plateau region is generally associated with

trapping within a cage of neighbouring particles9, from which escape is relatively slow. The

mechanism for long-time diffusion involves successive escapes from nearest-neighbour cages.

As we approach the glass transition, cage escapes become rare events. Both fragile9 and

strong10 supercooled liquids exhibit this plateau region in the mean-square displacement.

1. Short-time diffusion constants

The effect of the observation time scale on the apparent diffusion constants has been

investigated previously for two model fragile glass formers, binary Lennard-Jones11,12 (BLJ)

and ortho-terphenyl13 (OTP). Long (locally ergodic)14 molecular dynamics trajectories were

divided into a series of short non-ergodic intervals of length τ . The reduced diffusion constant

D(τ) was then calculated using a mean squared displacement evaluated over each interval

of length τ . This method neglects any correlation that may be present between different

time intervals. For fragile liquids, D(τ) shows an Arrhenius temperature dependence for

small values of τ . For large τ as the interval length approaches local ergodicity and D(τ)

tends towards the values for the full trajectory, super-Arrhenius curvature reappears. An

approximate correlation term, based on the average angle between displacements in success-

ive time windows, recovers the full super-Arrhenius behaviour.11,13 These results show that

super-Arrhenius diffusion results from a quantifiable correlation effect. Displacements in a

given time window often directly reverse displacements in previous windows.11 This method

is particularly useful for characterising reversals in very large or complicated systems where

cage breaks are difficult to identify.13
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In § III we will study short-time diffusion constants and reversals for silica in detail.

2. The Cage Effect

We can examine the effect of reversals in more detail by identfying processes where atoms

break out of their nearest neighbour cages. The cage effect has been used in several different

ways to probe the dynamics of supercooled liquids. In simulations15,16 and experiments17,18

three-time correlation functions show that the dynamics at short times are dominated by

the presence of the cage, which results in a systematic back-dragging effect. Caging is also

an important concept in the mode-coupling theory of supercooled dynamics (MCT).19,20

Dynamics in the deeply supercooled regime can be separated into non-diffusive “cage-rattling

motions” and diffusive “cage-breaking” rearrangements.21,22

Rabani et al. developed a “cage correlation function” based on changes in the nearest

neighbours for a particular atom, to estimate the typical residence time within a particular

configuration of cages23,24 and reproduce the non-exponential relaxation behaviour for fragile

glass formers.25,26

It is possible to identify rearrangements that involve transitions of atoms between

cages.22,27–31 It has been observed that cage-changing motions are often rapidly reversed,

and the proportion of reversals increases with decreasing temperature.27–30,32 By examining

local minima on the potential energy landscape, rather than configurations from a traject-

ory, de Souza and Wales proposed a microscopic definition of a local cage-breaking process

involving changes in nearest neighbours.13,30 The diffusion constant can be approximated

using only atomic displacements resulting from productive (non-reversed) cage-breaking

transitions, indicating that these transitions are the most important transport processes

involved in long-time diffusion.

For fragile supercooled liquids, it has been shown that diffusion can be described as a

correlated random walk, the steps are cage breaks and a correlation factor accounts for direct

return events.33 A continuous-time random walk has also been used to study the dynamics

in glass formers.34,35 A random walk is a natural description for diffusion in strong network

glass formers like silica, either in the context of bond-breaking10,36 or cage breaking.35 The

question we wish to answer in this paper concerns the correlation aspect of such a random

walk. In § IV, we apply a cage-breaking analysis to silica and examine cage-breaking reversals
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for this system.

B. Potential Energy Landscapes

A potential energy surface or landscape (PEL) represents the potential energy of a given

system as a function of all the relevant atomic or molecular coordinates. A connection

between the properties of glasses and the potential energy surface was originally proposed

by Goldstein.37 Goldstein proposed the involvement of two distinct time scales: fast motion

involving vibrations about local minima of the PEL and less frequent jumps over significant

energy barriers separating different minima.

Generally, as the temperature is lowered, the influence of the potential energy landscape

is felt more strongly. For the fragile BLJ mixture at number density 1.2, potential energy

barriers appear to have a significant influence on dynamics below a temperature of 0.9

reduced units.38 This temperature is approximately 2 TC , using the fitted value for TC from

diffusion9,39, and the system is said to enter a ‘landscape-influenced’ regime38, across which

the average potential energy of the minima decreases. On further cooling, a low temperature

plateau in the energy of the minima begins, close to the predicted TC , forming a ‘landscape-

dominated regime’, where the average energy of local minima sampled varies with cooling

rate.38,40 For silica, our archetypal strong glass former, local minimum energies behave in a

similar manner.41,42 The average energy of the minima starts to fall at T ≈ 10000 K and a low

temperature plateau appears below T ≈ 3500 K, close to the predicted TC = 3300 K.10 Jund

and Jullien showed43 that below 3300 K the mean square distance between an instantaneous

configuration visited by a molecular dynamics (MD) trajectory and the corresponding local

minimum depends linearly on the temperature, but above this intrinsic temperature the

mean square distance increases much more rapidly. A similar trend was observed in the

energy difference between the instantaneous configurations and corresponding local minima.

For a number of different glass formers, including binary Lennard-Jones, a wide range of

barriers was found, from high barriers, corresponding to several pair well depths, where one

or more atoms change their nearest-neighbour coordination shell, down to processes with

very small activation energies, where all nearest-neighour cages are preserved.44,45 Kushima

et al. studied transition states in silica located by a basin-filling procedure, and found a

similar separation of rearrangement mechanisms into high- and low- barrier transitions.41

6



The high-barrier processes corresponded to an Si-O bond breaking and immediately reform-

ing, while the low-barrier processes involved reaction of an undercoordinated oxygen atom

(a “dangling bond”) with an undercoordinated silicon atom.

We explore the potential energy landscape for silica in § V, visualising the landscape and

identifying bond-breaking transitions as cagebreaks.

1. Metabasins

A metabasin13,30,46,47 may be defined as a set of minima that the system can traverse rap-

idly and reversibly.48–51 Metabasin transitions are much less frequent than intra-metabasin

transitions and are effectively irreversible, thus reducing diffusion to a random walk between

metabasins.

Metabasins can be defined using an algorithm that considers revisits to minima pre-

viously visited in the course of the trajectory.50,52 An identical coarse-grained description

can be provided by a cage-breaking analysis and associating productive cage breaks with

transitions between metabasins.13,30 In this description, both intra-cage motion and reversed

cage-breaking transitions take place within a metabasin.

Saksaengwijit and Heuer53 performed a detailed analysis of the structure of metabasins

for a silica system of 99 particles in periodic boundary conditions, attributing the negat-

ive correlation of motion within a metabasin to entropic effects encouraging reversals of

minimum-minimum transitions. In § V C, we identify metabasins for a larger system of 555

particles. Additionally we visualise these metabasins in the landscape and compare them to

those found for fragile glass formers.

C. Comparing strong and fragile glass formers

Numerous attempts have been made to explain the differences between strong and fragile

glass formers. However, this subject is clouded by a number of factors. For a particular ma-

terial, fragility can be changed by factors such as density5,54 and pressure.55,56 Even for silica,

the archetypal strong material, there is a “fragile-strong crossover”10,57–59 in the diffusion

constant above which the apparent energy barrier increases with increasing temperature.

This deviation from straight-line Arrhenius behaviour occurs at 3221 K in experimental
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measurements of viscosity57,58 and around 3300-3500 K in simulations.53,59,60 Some authors59

associate the crossover with a feature in the heat capacity. Others10 argue that these diffusion

constants are best fitted by a power law in (T − Tc), where Tc is the mode-coupling crit-

ical temperature, and hence the crossover is associated with the transition from flowlike to

hopping particle motion that is predicted by mode coupling theory. If the high-temperature

behaviour can indeed be explained by mode coupling theory then it arises from a different

mechanism to the low-temperature super-Arrhenius behaviour fragile glass former, and the

term “fragile-strong” is misleading. Another possibility61 is that the high-temperature be-

haviour is not super-Arrhenius at all, but in fact the crossover simply connects two different

Arrhenius regimes.

The Arrhenius behaviour of strong materials is often viewed as the simple case of super-

cooled transport behaviour, corresponding to thermal activation over a fixed energy barrier

by local, noncooperative rearrangement events. However, it has recently been suggested that

strong and fragile materials are not different classes of materials but rather that network li-

quids should be considered as an extreme case in the general class of fragile systems.61 Many

signatures of fragile systems are also present in strong systems but have different character or

are present to a weaker degree. These signatures include spatially heterogeneous dynamics

and correlated motion of particles in string-like paths61–64 and also correlated motion in the

form of reversals.42 A continuous-time random walk can be used to describe the dynamics

of both silica and a fragile polymer melt, suggesting that dynamics is universal on the level

of single-particle jumps.35

In terms of the potential energy landscape, the simple view would suggest that the organ-

isation and connectivity of the landscape is qualitatively different for strong materials. It

has been suggested that the division of a glassy landscape into metabasins may be sufficient

to produce super-Arrhenius behaviour.46 However, as metabasins and negative correlations

are still present for strong systems, the difference may well be more subtle. Saksaengwijit et

al.,34,36,42,53 have found many similarities in the ways strong and fragile supercooled liquids

explore the PEL but also some key differences. For small system sizes of silica, the influence

of a low-energy cutoff in the distribution of potential energy minima is seen at temperatures

below 4000 K.42 This cutoff is thought to correspond to the limit of zero defects in the co-

ordination number. It is argued that the existence of this cutoff is sufficient to explain the

fragile-strong crossover in the diffusion constant10,42,53 and combined with a narrow distri-
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bution of metabasin escape barriers leads to Arrhenius behaviour53 as the effective energy

barrier to diffusion does not increase.

Kushima et al.41 coarse-grained the energy landscape by determining a single effective

activation barrier to diffusion as a function of temperature. They suggest that at very high

and very low temperatures this barrier becomes effectively constant, leading to strong be-

haviour, but a fragile regime exists in between these where the barrier changes as a function

of temperature. For a strong liquid, the transition between barriers is fast, so the “fragility

zone” is narrow and most experiments and simulations will only detect the strong regime.

For fragile liquids, the transition zone between the plateaux covers most of the accessible

temperature range. The key prediction of this theory is for two fragile-strong crossovers to

exist for every supercooled liquid.

Previously, we have shown that the super-Arrhenius behaviour of both the BLJ fluid and

OTP arise from a quantifiable negative correlation in particle motion, which increases at

lower temperatures.11–13 These negative correlations were interpreted in terms of a micro-

scopic definition for cage-breaking processes13,30 and the connectivity of the potential energy

landscape including metabasins.33

In this paper we study silica, a strong network glass former. If strong glass formers are

an extreme case of fragile systems, we would expect that negative correlation is still present

but less important than for fragile liquids. This hypothesis is tested in § III. The network

character of silica lends itself naturally to a description of diffusion involving cage breaking.

In § IV we will show that our definition of cage-breaking events is equally applicable to silica

as to BLJ and that this allows direct comparison of diffusion mechanisms between the two

systems. We also know that metabasins exist for silica, but again we expect to identify

differences to those found for fragile systems. In § V we explore the PEL of silica directly,

and show that cage breaks are intrinsically linked to the structure of the PEL but that

geometrical metabasins are smaller and less relevant than for fragile liquids. Finally, § VI

contains some simple efforts to compare the energy landscapes of silica and BLJ, exploring

further the origins of the differences between strong and fragile glass formers.
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II. TECHNICAL DETAILS

A. Model

Liquid silica was modelled using a modified version of the popular BKS potential.65 The

original BKS interatomic potential U(rij) is of the form

UBKS(rij) =
qµqνe2

rij

+ Aµνe−bµνrij −
Cµν

r6
ij

, (1)

where rij is the interatomic distance between an atom i of type µ and an atom j of type ν.

To avoid unphysical divergence of the Si-O and O-O pair potentials at small rij , we add

a short-range repulsive pair potential59 of the form

Urep(rij) = 4ǫµν





(

σµν

rij

)30

−

(

σµν

rij

)6


 . (2)

ǫµν and σµν are chosen such that the pair potential increases monotonically for distances

rij < r∗

ij (see table I).

Accurate calculation of long-ranged interactions, such as electrostatic energies, under

periodic boundary conditions remains a computationally demanding task.66 These energy

terms are usually computed using Ewald summation.67 However, it has been argued that

cancellation of electrostatic forces at long range means that in condensed systems the effect-

ive Coulomb interactions are actually rather short-ranged68,69, allowing pairwise evaluation

of the electrostatic energy with a spherical cutoff. We have employed a shifted trunca-

tion scheme similar to that of Wolf et al70 to calculate these energies. Stable behaviour

of geometry optimisation algorithms requires that the pair potential and associated force

go smoothly to zero at the cutoff radius.19 We use the following expression, proposed by

Gezelter et al.66, to calculate the Coulomb energy, replacing the first term in Eq. 1 with the

following:

UC(rij) = qµqνe2

(

1
rij

−
1
rc

+
1
r2

c

(rij − rc)

)

. (3)

Here, rc is the cutoff radius.

Carré et al71 compared this truncation scheme with the Ewald summation for the BKS

potential, and found excellent agreement for both static and dynamic properties when the

cutoff radius rc ≥ 10 Å was used. We have chosen rc = 10 Å to minimise computational

cost.
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Similarly, a quadratic shift and cutoff at radius rc is introduced for the short-ranged

Buckingham potential part in the BKS model. This scheme is analogous to that used by

Stoddard and Ford for the Lennard-Jones potential.72 The second and third terms in Eq. 1

are replaced by the following:

UBuck = Aµνe−bµνrij −
Cµν

r6
ij

+ Urep(rij) + λ1 + λ2r2
ij, where

λ1 = − Aµνe−bµν rc

(

1 +
bµνrc

2

)

+
4Cµν

r6
c

+ 4ǫµν

[

−16
(

σµν

rc

)30

+ 4
(

σµν

rc

)6
]

and λ2 =
Aµνbµν

2rc

e−bµνrc −
3Cµν

r8
c

+ 4ǫµν

[

15
σ30

µν

r32
c

− 3
σ6

µν

r8
c

]

(4)

The complete potential used in the present work is a combination of the shifted and

truncated BKS potential (Eq. 1 and Eq. 4), the repulsive switching potential (Eq. 2) and

Coulombic interactions calculated by the Wolf method (Eq. 3):

U(rij) =















UBuck(rij) + UC(rij) + Urep(rij) for rij < rc

0 otherwise
(5)

All parameters are given in table I.

B. Simulation details

The dynamical data used in this study were obtained from microcanonical molecular

dynamics (MD) simulations of bulk silica at a range of different energies. Periodic boundary

conditions were employed, using a cubic simulation box containing 555 ions. The side

length of the box was 20 Å, giving a fixed density of 2.3 g/cm3. This density is close to the

experimental density and has been studied in previous work.10,36

The qualitative behaviour of the diffusion constant, including the fragile-strong crossover,

is the same in much larger systems, for example in the study of Horbach and Kob using 8016

atoms.10 It has been previously shown53,73,74 that for BKS a system size of 100 particles is

sufficient to avoid relevant finite-size effects for the configurational entropy and the relaxation

dynamics.
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Table I. Parameters for the modified BKS pair potential used in this study.6559 Si-Si interactions

are electrostatic only (the parameters for the Buckingham, dispersive and repulsive parts are all

0).

Parameter Si-O O-O

Aµν (eV) 18003.7572 1388.7730

bµν (Å−1) 4.87318 2.76000

Cµν (eV Å6) 133.5381 175.0000

ǫµν (eV) 3.097948 ·10−3 1.0510505 ·10−3

σµν (Å) 1.313635 1.779239

qµ Si: 2.4 O: 1.2

rc/Å 10.0

Velocity-Verlet MD was performed with a timestep of 1 fs. After an equilibration period

of 1 ns, trajectories were propagated until local ergodicity was obtained, as defined by the

decay to zero of the Mountain-Thirumalai energy fluctuation metric.14,75 The length of time

required for each trajectory is shown in table II.

Because the BKS model is a simple empirical model, the characteristic temperatures

may differ from their experimental values. In particular, the melting temperature is probably

higher than the experimental value of 2000 K.76 Despite this, many of the trajectories studied

in this work are probably hotter than the melting temperature of BKS silica. Strong glass

formers, which typically have very high melting points, exhibit many of the same dynamical

anomalies as fragile glass formers even at temperatures well above the melting point.10 This

is entirely consistent with dynamical theories of the glass transition that are independent of

a thermodynamic transition. Following previous work,10,53,59,62,63 we consider the diffusive

behaviour of silica in this temperature range in the same way that we have previously studied

supercooled liquids.
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Table II. Length of the MD trajectories at different temperatures. The equilibration time of 106

MD steps (1 ns) is excluded.

T (K) MD steps length (ns)

2685, 2902, 3085, 3207 4 × 106 4

3544, 3854 2 × 106 2

4396, 4821, 5257, 5752 1 × 106 1

III. DIFFUSION ANALYSIS

Fig. 1 shows the temperature dependence of Si and O diffusion constants calculated

using the Einstein formula D = lim
t→∞

1
6t

〈ri(t)2〉. At lower temperatures D(T ) follows an

Arrhenius relation D(T ) = D0 exp (−EA/kBT ). We find EA = 4.88 eV for oxygen and EA =

5.01 eV for silicon (dashed lines). These activation energies are in good agreement with other

simulations of BKS silica, e.g. Horbach et al. (4.45 eV for oxygen and 4.9 eV for silicon)60 and

Saksaengwijit (4.84 eV for oxygen).53 Experimental measurements of diffusion coefficients in

vitreous silica were reported by Mikkelsen77 for oxygen atoms (EA = 4.7 eV) and Brebec

et al.78 for silicon atoms (EA = 6 eV).

At higher temperatures both silicon and oxygen diffusion show a clear non-Arrhenius

curvature, beginning at around 3600 K. This corresponds to the “strong-fragile crossover”

described in § I C. The crossover occurs at a slightly higher temperature in our model than

in earlier work.53,59,60

A. Short-time diffusion constants

In previous work we have argued11–13 that the super-Arrhenius behaviour in fragile glass

formers can be explained by increasingly negative correlation of particle displacements as

the temperature decreases. The increased probability of particle velocity reversals leads to

an increase in the effective free energy barrier to diffusion. The importance of negative cor-

relation was demonstrated for the binary Lennard-Jones liquid11,12 and for ortho-terphenyl13

by investigating the effect of the observation time scale on the apparent diffusion constants.

In this contribution we apply the same analysis to silica to identify whether significant cor-
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Figure 1. Translational diffusion constants D(T ) for silicon and oxygen atoms plotted as a function

of inverse temperature. The dashed lines represent Arrhenius fits to the low temperature region of

the data.

relation effects are also present for this strong glass former. The method is restated here for

convenience.

Locally ergodic MD trajectories for silica were divided into a series of short non-ergodic

intervals of length τ . The reduced diffusion constant D(τ) was calculated according to the

Einstein relation but replacing the average squared displacement of particle i after time t,

〈ri(t)2〉, with an effective mean squared displacement given by the following equation:

〈ri(t, τ)2〉 =

〈

m
∑

j=1

∆ri(j)2

〉

, (6)

where t = mτ and ∆ri(j) = ri(jτ) − ri((j − 1)τ). j indexes the time intervals.

In Eq. 6, mean square displacements are evaluated directly over each short interval j

and added together to approximate the square displacement at longer times. This method

neglects correlation betweeen the displacement vectors of the particles in different time

intervals.

Fig. 2 shows the reduced-time diffusion constants for silica. In contrast to the equivalent

graphs for BLJ and OTP, where small values of τ correspond to straight-line Arrhenius
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Figure 2. Short-time diffusion constants D(τ, T ) for silicon in liquid silica as a function of inverse

temperature. Several values of the interval length τ are shown. The correct long-time diffusion

constants calculated across the whole ergodic trajectory are shown for comparison. The equivalent

plot for oxygen diffusion is qualitatively the same.

behaviour and larger values retrieve the super-Arrhenius curvature, for silica we observe

positive curvature at small values of τ . The straight-line behaviour expected for a strong

glass former is recovered as τ increases. This result indicates that negative correlation of

particle displacement is important for silica diffusion as well as for fragile glass formers,

suggesting that their diffusive mechanisms cannot be qualitatively different.

The departure from Arrhenius behaviour for small τ occurs near the temperature for

which τ ≈ tp, where tp(T ) is the upper limit of the plateau in the mean squared displace-

ment that corresponds to particle caging (see § I A). Therefore we believe that the curvature

of the apparent diffusion constants is partly explained by the transition from caged mo-

tion to diffusive motion, and indicates time heterogeneities in particle displacement vectors.

On short time scales the low-temperature trajectories mostly sample small potential energy

barriers within a particular set of nearest neighbour cages, while the high-temperature tra-

jectories are able to access a significant number of high energy barriers corresponding to

cage-breaking motion.44,45 Because the average barrier to diffusion changes as a function of
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Figure 3. Short-time Si diffusion constants for silica, corrected by re-addition of the leading neg-

lected correlation term (see text). The long-time values and uncorrected short-time diffusion con-

stants are shown for comparison.

temperature, so does the gradient of the Arrhenius plot, leading to upwards curvature. If

this interpretation of fig. 2 is correct then the same behaviour ought to be observed for any

glass former (strong or fragile) at low enough temperatures and short enough time scales.

Work is currently in progress to test this hypothesis.

It has previously been shown11–13 that using Eq. 6 to calculate diffusion constants neglects

correlation between the different intervals over which the mean squared displacement is

evaluated. The leading term excluded by this approximation depends only on the average

angle θj,j+1 between consecutive intervals of length τ . As in previous work, we add this

term back in to correct the approximate mean-squared displacement used in Eq. 6. The

correction factor is given by:

〈r∗

i (t, τ)2〉 =

〈

m
∑

j=1

∆ri(j)2

〉

× (1 + 2〈cos θj,j+1〉),

D∗(T, τ) = D(T, τ)(1 + 2〈cos θj,j+1〉) (7)

Fig. 3 shows both the corrected and uncorrected silicon diffusion constants (D∗(T, τ)

and D(T, τ) respectively) for selected values of τ . D∗(T, τ) agree much more closely than
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D(T, τ) with the correct long-time values, and the true Arrhenius temperature dependence

is recovered at much smaller τ .

For silica, as for BLJ11 and OTP13, the correlation correction term becomes more negative

as temperature decreases. But in silica, this effect serves to remove the unphysical sub-

Arrhenius temperature dependence whereas for the fragile systems it was found to produce

super-Arrhenius curvature.

These results suggest that diffusion in all glass formers is controlled by competition

between the time scales of caging and negative correlations. When the latter time scale is

very large compared to the former, negative correlations of particle displacements persist

into the diffusive regime, increasing the effective energy barrier to diffusion and promoting

negative curvature of the diffusion constants on an Arrhenius plot. Both time scales increase

at low temperatures.

This interpretation, argues that there is no fundamental difference between strong and

fragile glass formers. Negative correlations are important for both, and in fragile liquids

they exist on very long time scales. For strong liquids, the correlation time scale is not much

greater than the caging time.

In § IV and § V, we hope to demonstrate a quantitative difference in time scales between

the two types of glass former to support this proposed description of supercooled dynamics.

IV. CAGE BREAKING

Particles in supercooled liquids spend much of their time trapped within a cage of their

nearest neighbours. Their motion may be separated into rapid rattling within a cage and

slow diffusive transitions between cages. For BLJ30 and OTP13 we have previously proposed

microscopic definitions to classify rearrangements as “cage-breaking” or “non-cage-breaking”.

We have shown that cage breaks (CBs) reproduce the correct diffusion constants for fragile

liquids in the moderately supercooled temperature regime. Cage-breaking rearrangements

consitute a necessary and sufficient description of diffusive motion in these systems.

Here, we investigate whether the same definition of cage breaks is sufficient to capture

the diffusive behaviour of our silica model, as a representative strong glass former. The

definition is reproduced in outline in § IV A to § IV A 2, including details of the parameters

used for silica. The silica trajectories are analysed in § IV B.
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Figure 4. Radial distribution functions for Si-Si, Si-O and O-O pairs, calculated from quenched

configurations of a trajectory that has been simulated at 3207 K. Consistency with higher tem-

perature simulations has been verified. The inset represents the same plot with different axis

scaling.

A. Defining a cage break in silica

Cage-breaking events are associated with changes to the nearest-neighbour shell of a

particle. Nearest neighbours of an atom are defined using a fixed cutoff distance, taken as

the position of the first minimum in the Si-O RDF, 1.95 Å (see fig. 4). For an atom to leave

the nearest neighbour shell during a rearrangement, it must move outside this radius and

also move a distance greater than the “movement cutoff”. This cutoff is set to 1.19 Å, the

distance between the points where the first and second peaks in the Si-O RDF fall to 1% of

their maximum height.

For BLJ systems, we required that an atom either lose or gain at least two of its neighbours

to classify a transition as cage-breaking. However, particles in the BLJ system have 11

nearest neighbours on average30, while in silica a silicon atom has on average four oxygen

nearest neighbours and an oxygen atom has two silicon nearest neighbours. Therefore the

BLJ parameter values would be overly restrictive. Instead, we require that a particle change
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at least half of its neighbours to be classified as cage-breaking (adding losses and gains

together). Two neighbour changes are required for a silicon atom to be categorized as cage-

breaking, only one change is required for an oxygen atom.

1. Reversed and productive cage breaks

It is known from previous computational studies13,27,30 that intercage motion is negatively

correlated on short time intervals, and that most of this negative correlation arises from dir-

ect reversal of cage-breaking transitions. Following the method used for BLJ30, we examine

the total displacement of the cage-breaking atom over two consecutive cage breaks. If the

net displacement is less than a threshold drev, the second cage break is categorized as the

return event of the first cage break. A series of cage breaks and their reversal events is called

a "reversal chain". During a simulation, these chains are recorded for every cage-breaking

atom. Occasionally, the return event is not a cage break and instead takes place via several

non-cage-breaking steps. These indirect reversals can also be identified by the occurrence of

two consecutive identical cage breaks.30

For BLJ, the threshold displacement parameter drev = 10−5 σ2
AA. However, the silica

system we have studied is larger (555 atoms compared to 256) and has a lower number

density (0.069375 Å−3 compared to 1.3 σ−3
AA), so we expect that a larger drev will be required.

Moreover, atoms in silica have far fewer nearest neighbours than in BLJ and so their “cages”

are much more open, making it less likely that a reversed cage break will leave the atom

within a small distance of its original position. After some experimentation, we chose drev =

10−2 Å2. Qualitatively similar results are obtained using any drev > 10−4 Å2, but drev =

10−2 Å2 gives better quantitative agreement of the diffusion constants with the correct full-

trajectory values.

2. Calculating diffusion from cage breaks

Identifying the nearest neighbours of an atom is complicated by vibration of atoms around

locally favourable positions. This vibration can be removed by “quenching” structures onto

the potential energy landscape. Trajectories are analysed by extracting configurations of

the system at regular intervals and performing local energy minimisation using the LBFGS
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algorithm.79,80 Quenching converts the trajectory into a sequence of jumps between local

minima (often referred to as “inherent structures” in the glasses literature81). The frequency

of minimum-to-minimum transitions decreases rapidly with temperature. The quenching

interval was varied with the temperature of the trajectory to minimise the computational

expense while still capturing the majority of minimum-to-minimum transitions.

The importance of cage-breaking motion for long-time diffusion in silica was investigated

by computing effective diffusion constants using cage-breaking rearrangements only. The

Einstein relation was used but the square displacements obtained from real-time configur-

ations during a MD trajectory were replaced by a sum of the squared displacements made

by cage-breaking atoms in the corresponding quenched trajectory:

ri(t)2 =
N
∑

i=1

∑

CBs

r2
CB,i (8)

where the sum over CBs includes all cage breaks for atom i occurring before time t, and

rCB,i refers to the displacement of the atom in a particular cage-breaking event.

Using Eq. 8 converts the continuous MD trajectory into a set of discrete cage-breaking

jumps. All non-cage-breaking atomic motion is discarded. Initially, we assume that there

is no correlation between the directions of particle jumps. We account for correlation by

discounting all displacements from reversed cage breaks. All cage breaks in a reversal chain

are discarded except the last one, and this one is only retained if the chain results in a net

displacement. The remaining events are “productive cage breaks”, and the sum in Eq. 8

is restricted to run over these events alone. We assume that, as we found for BLJ, the

displacements of successive productive cage breaks of a particular atom are uncorrelated

and therefore removal of the direct reversal events is sufficient to account for correlation

behaviour.

B. Cage Breaking results

Fig. 5 shows three sets of diffusion constants: those calculated from all cage-breaking

rearrangements, those calculated from productive cage breaks only, and the correct long-

time diffusion constants obtained from continuous MD trajectories.

The diffusion constants calculated from all CBs have broadly Arrhenius temperature

dependence, and overestimate the true diffusion constants across the entire temperature
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Figure 5. Cage-breaking diffusion constants for silicon atoms in silica, calculated from the mean

square displacements of productive cage breaks and of all cage breaks. Diffusion constants calcu-

lated from the full continuous MD trajectory are shown for comparison. The dashed line repres-

ents an Arrhenius fit to the full-trajectory values. The corresponding graph for O is qualitatively

identical, and so is not shown.

range.

Discounting reversed CBs reduces the calculated diffusion constants, leading to improved

agreement with the full-trajectory values in the strong regime below 3600 K. However, using

only productive cage breaks hardly affects the high-temperature diffusion constants because

there are almost no reversed cage breaks detected at temperatures higher than 4000 K.

Fig. 5 demonstrates that productive cage breaks correctly reproduce translational mo-

tion in the strong temperature regime for liquid silica. This result is unsurprising, since our

definition of cage breaks for this system matches closely with intuitive definitions of bond

breaking/forming and defect migration processes, which are known to dominate diffusive

behaviour in silica.10,41,82,83 However, we have also shown that negatively correlated motion,

here represented by reversed cage breaks, plays an important role in the strong regime but

becomes negligible at temperatures above the fragile-to-strong crossover. At higher temper-

atures the system has more energy and can access more rearrangement paths, so reversals are

much less likely than at low temperatures. This analysis reinforces our observation in § III A

that negative correlations are important to produce Arrhenius behaviour of transport coeffi-
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cients in supercooled liquids. Our findings also emphasise that the non-Arrhenius behaviour

in the high-temperature regime for silica is qualitatively different from the super-Arrhenius

curvature observed for fragile glass formers: in BLJ the fragile behaviour arises due to the

presence of increasing negative correlations,11,12,30 but in the non-Arrhenius regime for silica

these correlations have little effect on the diffusion constants.

For silica, as for BLJ and OTP,13,30 diffusion constants calculated from cage breaks sig-

nificantly overestimate the correct values at higher temperatures. This is because at high

temperatures, the potential wells become increasingly anharmonic and atoms move further

from their energy-minimum positions43,84 and hence the description of the dynamics as a

series of jumps between minima breaks down.

1. Reversed cage breaks

We have so far incorporated correlation effects into the cage-breaking model by restricting

the calculation of diffusion constants to productive cage breaks alone. Alternatively, we may

account for the correlations in an average fashion by taking the mean squared displacement

from all cage breaks and applying a correction factor that depends upon the proportion of

directly reversed cage breaks. This factor is analogous to the average correlation term in

Eq. 7.

The “correction sum” is calculated using the reversal chains of a quenched trajectory:30

cs =
∑

υ

lυ
∑

z=1

(−1)z ∑

i
nυ

i (z)
∑

i
Mi

, (9)

where υ is an index running over all reversal chains in the trajectory and Mi is the number of

cage-breaking events for atom i. lυ is the number of reversals in chain υ and nυ
i (z) = lυ −z+1

is the number of reversals after and including the zth.

To use the correction sum, we make the approximation (justified below) that all cage

breaks have squared displacement equal to the average value, L. The total squared displace-

ment due to cage breaks is then given by:30

〈r(total)2〉 =
∑

i

MiL(1 + 2cs). (10)

We assume that Mi = 〈Mi〉 for all atoms.
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Figure 6. Diffusion constants of silicon atoms in silica, calculated from the mean square displace-

ments of all cage breaks corrected with the correlation sum cs and from productive cage breaks.

The correct diffusion constants obtained from MD are shown for comparison. The dashed line

represents an Arrhenius fit to the MD data.

Fig. 6 shows that application of the correction term in Eq. 10 yields silicon diffusion

constants which match those obtained from productive cage breaks very well. This result

is expected when the assumptions of constant cage-breaking squared displacement L and

uniform Mi = 〈Mi〉 are valid. The results for oxygen are very similar and so they are omitted

for brevity.

2. Cage-breaking statistics

Cage breaks have been shown to control the diffusive behaviour of both strong and fragile

glass formers, so studying the properties of these events will provide new information on the

dynamics of these systems. Cage breaks also provide us with characteristic time scales that

we can compare between systems.

Fig. 7 shows that the number of cage breaks and reversals as a function of temperature ex-

hibits approximate Arrhenius temperature dependence, but the absolute number of reversal

events reaches a plateau at higher temperature. Above this temperature, the number of re-
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Figure 7. Number of cage breaks and reversals as a function of temperature. These results have

been normalised to a trajectory length of 1 ns. The numbers of cage breaks are broken down into

contributions from Si and O atoms, the number of reversed cage breaks combines Si and O.

versals becomes negligible compared to the number of cage breaks. The absolute number of

reversal events decreases at lower temperatures, but the proportion of cage breaks that are

reversed increases dramatically, showing again that it is important to consider correlation

effects in displacements at low temperatures for strong glass formers as well as for fragile.

Fig. 8 shows the average square displacement of a particle undergoing a cage break as

a function of temperature. Firstly, we note that the standard errors in this average are

small relative to the size of the jump, which justifies the assumption made in Eq. 10 that

all cage-breaking jump widths are equal at fixed temperature.

The temperature dependence of the jump widths is the first quantity where we observe

a significant difference in temperature dependence between the oxygen and silicon atoms.

Horbach and Kob10 also found a difference between the oxygen and silicon atoms in their

study of bond-breaking, when analysing the product of the bond lifetime and the diffusion

constant.

Both atom types exhibit a significant increase in jump width on entering the high tem-

perature non-Arrhenius regime. This increase probably arises from the breakdown of the
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Figure 8. Average square displacement in cage-breaking rearrangements for different atom types,

as a function of inverse temperature. The error bars indicate the standard error in the mean square

displacement. These errors are fairly small, particularly for high temperatures, so it is reasonable

to approximate that all cage breaks at a particular temperature have equal squared displacement.

assumption that the system is localised near potential energy minima, as discussed above. In

the strong temperature regime, the silicon atoms show a fairly constant jump width, but the

average squared displacement of oxygen cage breaks decreases with temperature. Horbach

and Kob10 found that in this regime the temperature dependence of oxygen diffusion followed

the bond lifetime but silicon diffusion slowed down more quickly. This may be evidence for

the appearance of cooperative motion in the oxygen dynamics.63,85 Alternatively, there is

evidence that rotational processes contribute to the long-range dynamics for oxygen but not

for the silicon atoms and these processes become more relevant at lower temperatures.36 If an

increasing fraction of oxygen cage breaks at lower temperature are rotational processes, this

could lead to a decreasing jump width but also retain a relationship between bond lifetime

and diffusion.
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C. Comparing strong and fragile glass formers

In § III A we proposed that the difference between strong and fragile glass formers results

from a difference in characteristic timescales. In this view, super-Arrhenius behaviour is

caused by long-lasting negative correlations in particle motion and pure Arrhenius behaviour

corresponds to the limiting case where negative correlations occur only on short time scales.

We expect that the correlation time in fragile liquids at low temperatures will greatly exceed

the time scale on which particles are caged, but for strong liquids this will not necessarily

be the case.

The cage breaking formalism allows us to probe these two time scales directly. The caging

time scale may be estimated from the distribution of waiting times between consecutive cage

breaks for an atom. This distribution shows approximately exponential decay with increased

waiting time, so we have used the time constant of the distribution as the characteristic

caging time.

To estimate the correlation time scale, we use the distribution of reversal chain times,

defined as the length of simulation time elapsed between the start and end of a chain of

reversed cage breaks (see § IV A 1). Fig. 9 shows histograms of this distribution for silica

and for a comparable BLJ liquid, with time expressed in units of the characteristic caging

time for each system.

Both probability distributions decay with increased chain time, with some chains per-

sisting for hundreds or thousands of caging times. The BLJ histogram decays more slowly

than the silica system, and has more long chains. The longest chains for BLJ are at least

an order of magnitude longer than the longest chains for silica.

These results show that the timescale of negative correlation in BLJ is appreciably longer

than that for silica, which is consistent with our description of the differences between strong

and fragile liquids. We note that the present measures of the two time scales suggest that

even in silica, negative correlations persist to times significantly greater than the typical

cage waiting time. This may indicate that better characteristic times are called for, or that

the exact ratio between these two time scales is less important than was suggested by the

short-time diffusion analysis.
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Figure 9. Normalised histograms for the time spent in cage-breaking reversal chains for the silica

trajectory at 3207 K and a 256-atom Kob-Andersen BLJ liquid with density 1.3 σ−3
AA at temperature

0.65 ǫAA/kB. The data bins have unequal widths, for greater clarity on a log-log scale. Times are

quoted in units of the characteristic caging time (see text) for each system.

V. POTENTIAL ENERGY LANDSCAPE ANALYSIS

The concept of a potential energy landscape (PEL) was introduced in § I B. To sample

the landscape, we used an initial set of configurations taken from a quenched MD trajectory

at 3207 K (see § IV A). During the MD simulation the coordinates of the system were saved

at 100 fs intervals and quenched. This procedure yields a sequence of local minima of the

PEL in the order in which they were visited by the system. Since the initial MD trajectory

is locally ergodic, the local minima obtained in this fashion should be representative of the

region of configuration space available to the liquid.30,86,87 To calculate transition states on

the PEL as well as minima, the Optim package88 was used. Using each pair of consecutive

local minima as input, a discrete path was constructed, which is a sequence of transition

states and the intermediate minima they connect.

Optim uses the doubly-nudged89,90 elastic band91,92 (DNEB) algorithm to construct an

approximate minimum-energy pathway between a pair of known minima. The maxima on

this pathway are candidate structures for transition states, which are refined using hybrid
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eigenvector-following19,93 to locate the stationary point accurately. The minima connected

by each transition state (TS) are found by stepping away from it parallel and antiparallel

to the unique direction of negative curvature on the PEL, and performing a local energy

minimisation using the LBFGS algorithm. These three steps (DNEB, TS refinement and

identification of local minima) make up one Optim cycle. If gaps remain in the pathway

between the two endpoint minima after the first cycle, a modified Dijkstra algorithm94 is

employed to choose pairs of minima to connect in order to complete the discrete path in a

small number of cycles. There are usually several physically relevant discrete paths between

any given pair of minima. A single Optim calculation attempts to identify one of these

paths, but it is not guaranteed to find the lowest-energy or the fastest pathway.

Although the PEL for a system with constant volume is temperature-independent, this

sampling method is not. Depending on the mean temperature during the MD simulation

a different region of configuration space will be sampled. In this contribution we used a

trajectory at 3207 K because this temperature is well within the strong regime, but high

enough that a moderate simulation length is sufficient to reach local ergodicity.

A. Disconnectivity graph for liquid silica

Disconnectivity graphs can be used to visualize a database of minima and transition

states.19,95,96 The structure of a disconnectivity graph gives qualitative information about

the topology of the landscape. Good structure-seeking systems, such as proteins that fold

rapidly, have a single well-defined global minimum with other minima connected by low

energy barriers. In contrast, glass formers have a “frustrated” landscape, meaning that

there are many minima with similar energies to the global minimum separated by high

barriers.

To construct a disconnectivity graph, minima are divided into mutually accessible sets

or “superbasins” at regularly-spaced threshold energies. Mutual accessibility of two minima

at an energy Et means that there exists at least one discrete path between them for which

all transition states have E < Et. The disconnectivity graph has energy as its vertical axis,

and at each threshold Et every superbasin is represented by a single point, positioned on the

horizontal axis for clarity. Each point is connected to a parent superbasin on the threshold

energy level immediately above, and to one or more daughter superbasins on the level below.
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At lower energies, the lines branch repeatedly until each terminates at the energy of a single

minimum.

Fig. 10 shows the disconnectivity graph for liquid silica. This is a highly frustrated

landscape, with a wide range of minimum energies and barrier heights. The minima are

grouped into local sets or “funnels”, within which the barrier heights are relatively small

(∆E ≤ kBT ). Minima of different funnels are separated by significantly higher barriers

with energies ∆E >> kBT . As expected for a glass former there is no unique lowest-energy

region of the landscape.44,45,97,98 As temperature decreases the system becomes trapped in a

particular local funnel on the experimental (and simulation) time scale, and cannot explore

other regions of the landscape.

In principle, the low-energy region corresponding to the crystal structure could be in-

cluded in the disconnectivity graph, but it is very unlikely to be sampled on the simulation

time scale.

Kushima et al. have previously reported a disconnectivity graph for silica41 which appears

qualitatively different to fig. 10. The cause of this discrepancy is unclear, but is probably

due to differences in landscape exploration and optimisation methods.

B. Cage-breaking analysis of the landscape

Since it was shown in § IV that cage-breaking rearrangements dominate the diffusive

motion in silica, we can use the same definition of a cage break to determine which transition

states in the energy landscape are significant for long-time diffusion. Each transition state

in the landscape database may be classified as cage-breaking or otherwise, according to

whether any atoms undergo a cage break between the two minima connected by this TS.

To visualise the difference between the two types of rearrangement, we take fig. 10 and

remove from it all transition states corresponding to cage-breaking TSs. This procedure

causes the landscape to fragment into subgraphs, as connections between different nodes

are removed. Fig. 11 shows this, with fragments coloured according to the energy at which

they become separated from the rest of the graph. Nearly every pair of minima in this

graph appears as a separate fragment, meaning that most transitions between minima pass

through a cage-breaking transition state.
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5 eV

Figure 10. Disconnectivity graph for liquid silica. The minima and transition states in this graph have been found by connecting each pair

of adjacent minima in a quenched MD trajectory computed at 3207 K.

Figure 11. Disconnectivity graph for liquid silica, similar to fig. 10 but with only non-cage-breaking transition states included. The nodes

are coloured according to the energy level at which they become disconnected from the rest of the graph. The colour associated with each

energy level is indicated by the scale on the left. All fragments at a particular energy level are coloured the same, which is why bands of

colour appear to run across the graph despite the presence of many fragments at each energy level. The separation of the energy levels is

1 eV.
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The disconnectivity graph produced by excluding all non-cage-breaking TSs in the same

way is almost indistinguishable from the complete disconnectivity graph in fig. 10, and hence

is omitted. Removing non-cage-breaking transition states does not significantly affect the

connectivity of the landscape, indicating that cage-breaking rearrangements are sufficient to

access all regions of the PEL.

These results are qualitatively similar to those for fragile glass formers, but the degree to

which the silica landscape becomes disconnected on removal of the cage-breaking transition

states is greater than for BLJ or OTP. This observation suggests that cage-breaking motion

is even more important for diffusion in silica than for diffusion in BLJ. This is not surprising

because, as argued in § IV B, our definition of cage breaks captures diffusive bond-breaking

processes in silica very effectively.

C. Geometric metabasin analysis

In previous work,13,30 we have proposed a connection between cage breaks and the concept

of metabasins (§ I B 1). Productive cage breaks, which are irreversible by construction and

are essentially uncorrelated,30 provide a geometric definition of metabasins on the PEL.

To identify metabasins we use a “connected path” from the energy landscape database

containing all the minima from the original quenched MD trajectory, together with all the

intermediate minima on the discrete paths which connect them. This path is analogous to

a quenched MD trajectory except now all consecutive pairs of minima are linked by a single

known transition state. Because the minima are time-ordered, reversals may be detected

during the cage breaking analysis, which allows productive cage breaks to be identified. All

transition states are then classified as productive or otherwise, according to whether they

contain any productive cage breaks.

It is possible that if the same minimum is visited twice in the connected path the co-

ordinates may all be displaced slightly, complicating the identification of reversal events. To

avoid this problem, we use the recently-developed Fast Overlap method99 to align structures

of the relevant minima before determining whether a reversal event has taken place.

Productive cage breaks are analogous to metabasin transition events, so a disconnectivity

graph from which all productive transition states have been removed should fragment into

regions that correspond to geometric metabasins. Fig. 12 shows these metabasins for silica.
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Fig. 13 shows a disconnectivity graph for the BLJ fluid produced in exactly the same way,

for comparison. See § VI for details of the BLJ system used.

The metabasin disconnectivity graph is less fragmented the non-cage-breaking graph

fig. 11. This is because transition states within a metabasin comprise both non-cage-breaking

and reversed cage-breaking transition states. However, fig. 12 is still highly fragmented

and contains few clearly-defined metabasins. The metabasins for silica are small compared

to BLJ and contain fewer high-energy transition states. It has been suggested46,100 that

the difference between strong and fragile liquids is related to the size of the metabasins:

fragile liquids have large metabasins and significant hierarchical ordering of the landscape,

whereas the landscapes of strong liquids exhibit structure on a single lengthscale only. Our

analysis, like that of Heuer et al., suggests that metabasins are present in strong glass

formers. However, when we compare to fragile liquids, the metabasins are significantly

smaller and may be less important for the overall dynamics.
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Figure 12. Disconnectivity graph showing geometric metabasins for liquid silica. All transition states associated with a productive cage

break have been excluded. The colour scheme is the same as fig. 11. The separation of the energy levels is 1 eV.

Figure 13. Excerpt from a larger disconnectivity graph showing geometric metabasins for the BLJ liquid. Productive cage-breaking transition

states have been excluded. The colour scheme is the same as fig. 11. The separation of the energy levels is 2ǫAA. Fig. 12 contains 22995

minima so this figure is restricted to showing 22995× 256/555 = 10606 minima (rescaling according to the system size). The disconnectivity

graph for the entire database is qualitatively identical.
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VI. ENERGY LANDSCAPES FOR DIFFERENT CLASSES OF GLASS

FORMERS

In this section, we compare some simple global properties of the landscapes of strong

(silica) and fragile (BLJ30) liquids. Full details of the simulation methods used to sample

the PEL for BLJ may be found in the previous work.30 The parameter set corresponds to

the popular Kob-Andersen model9 and the system was studied at a density of 1.3 σ−3
AA, with

a simulation box containing 256 atoms (204 of type A, 52 of type B).

The silica database in § V was obtained from a trajectory at 3207 K, near the mode coup-

ling critical temperature for this system (Tc ≈ 3330 K10). To give the most accurate compar-

ison possible we sampled the BLJ landscape using a trajectory at T = 0.65 ǫAA/kB, close to

the fitted value of the mode-coupling temperature for this density,101 Tc = 0.66 ǫAA/kB. The

MD time step was 0.005 (mσ2
AA/ǫAA)1/2 and the simulation was run for 5×105 (mσ2

AA/ǫAA)1/2

to reach local ergodicity.

Different trajectory lengths were required to reach local ergodicity for the two systems, so

the two databases contain very different numbers of stationary points. The silica database

contains 22995 minima and 24237 transition states, while the BLJ database contains 152913

minima and 184648 transition states. However, since both databases were constructed from

a locally ergodic MD trajectory they should each provide a faithful representation of the

region of configuration space explored by the liquid.

A. Simple landscape metrics

Fig. 14 shows normalised distributions of the energies of minima for silica and BLJ. For

each database, the energies are expressed relative to the lowest-energy minimum and given

in units of kBT . Both distributions are approximately Gaussian, as expected.42

The BLJ database has a larger mean and standard deviation of minimum energies than

the silica database, indicating that this PEL is rougher with deeper metabasins and hence

a wider range of energies to explore. Moreover, the BLJ distribution deviates more from

Gaussian behaviour than does the silica distribution, exhibiting slight positive skew and a

non-Gaussian tail at the low-energy end.

Saksaengwijit et al. have argued for the existence of a cutoff in the distribution of minima
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energies for strong liquids, below which there exist many fewer states than the Gaussian

distribution would predict.42 We do not see such a cutoff in fig. 14 because our system is too

large and probably contains multiple weakly-interacting subsystems: the effect of the cutoff

in each subsystem is smeared out when they are combined.42 However, the silica distribution

has a smaller low-energy tail than the BLJ distribution, which may be a signature of the

low-energy cutoff in these larger systems.

Fig. 15 shows normalised histograms of the barrier heights in the two databases, with the

same energy scaling as before. Barrier heights are defined as the energy difference between a

minimum and an adjacent transition state. Both histograms show an exponential decrease in

probability density with increasing barrier height, with a super-exponential excess of small

energy barriers. Although the two systems have comparable temperatures, the distribution

of energy barriers sampled by the BLJ fluid is slightly wider than than that encountered by

silica. This again indicates a rougher landscape for BLJ, corresponding to larger metabasins.

In fig. 16, we decompose the barrier height distributions into separate histograms for cage-

breaking and non-cage-breaking transition states using the definition described in § IV A.

As expected, cage-breaking barriers are generally higher than non-cage-breaking. However,

we also see a much greater difference between characteristic cage-breaking and non-cage-

breaking barrier heights for silica than we do for BLJ. This result quantifies our earlier

statement that cage-breaking rearrangements dominate the high-barrier processes more in

silica than in BLJ. It is plausible that this represents a general difference between strong

and fragile glass formers: fragile liquids exhibit a significant amount of intra-cage motion

alongside cage-breaks, whereas for strong liquids cage breaks account for nearly all of the

particle motion.

B. Frustration metric

We use a recently-proposed metric to quantify the degree of frustration in the potential

energy landscapes of the two glass formers.102 Here, “frustration” describes the existence

of competing low-lying potential energy minima separated by high barriers. Highly frus-

trated landscapes have many such minima, which makes relaxation to the equilibrium zero-

temperature structure relatively slow. Good structure-seekers have low frustration, glass

formers have high frustration.102 The frustration metric facilitates comparison of PELs for
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Figure 14. Normalised distributions of the energies of minima in the landscape databases for BLJ

and silica. Energies are expressed relative to the global minimum energy in each case, and are

given in units of kBT per particle to allow comparison between the different systems. Dashed lines

show Gaussian fits to the distributions of the corresponding colour.

very different systems.

The true global minimum of a glass former is the crystal structure, which is intentionally

excluded from our databases. Hence the frustration index expresses the ability of the system

to locate the lowest-energy amorphous minimum in our database.

Fig. 17 presents the frustration index102 f for the two systems as a function of temper-

ature. As temperature decreases, the ability to cross high barriers decreases and frustration

increases. At very low temperatures, the equilibrium occupation probability of the global

minimum dominates and so frustration decreases. However, since glass-formers are inevit-

ably out of equilibrium at these low temperatures, this region of the figure is not relevant

to supercooled liquids.

Both liquids have values of f in the range expected for multi-funnel energy landscapes,102

as expected for glass formers. The silica database falls near the bottom of the range in f

expected for multi-funnel landscapes, and is less frustrated than the BLJ database at all

temperatures. This difference is consistent with the notion that the landscapes of fragile
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Figure 15. Normalised histograms of the elementary barrier heights in the landscape databases for

BLJ and silica. Barriers are expressed in units of kBT per particle to allow comparison between

the different systems.

glass formers are dominated by large metabasins (which would promote high frustration)

while strong glass formers have a more uniform organisation with small metabasins and less

frustration.46

The disconnectivity graphs of § V and all the landscape metrics studied in this section

show that there is no major qualitative difference between the landscapes of silica and BLJ,

but that the latter system has a slightly rougher PEL with larger metabasins. The metabasin

disconnectivity graph and the frustration index provide clearer evidence for a difference

between the PEL of strong and fragile glass formers than the other simple metrics we have

studied, probably because these are the only two measures we have considered that account

for the topology and the connectivity of the landscape. Changes in connectivity of minima

as a function of trajectory temperature were previously found to be an important factor

in the super-Arrhenius behaviour of BLJ.33 The role of landscape topology in producing

negative correlation behaviour and controlling diffusion may be amenable to further analysis

by describing the landscape as a network.
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Figure 16. Normalised histograms of the elementary energy barrier heights corresponding to cage-

breaking and non-cage-breaking transitions in BLJ and silica. Barriers are expressed in units of

kBT per particle to allow comparison between the different systems. The histogram is truncated

at low probabilities to mitigate the difference in resolution of the BLJ and silica histograms arising

from the different database sizes.

VII. CONCLUSIONS

We have studied the diffusive behaviour of the BKS model for viscous silica, using a

number of analytical techniques developed previously for fragile glass formers.

We have shown that the bond-breaking and forming processes which dominate long-time

diffusion in low-temperature silica may be accurately described by the same definition of

cage-breaking rearrangements that describes diffusion in the BLJ liquid, even though cages

in silica are much less compact than BLJ and atomic coordination numbers are much smaller.

The cage-breaking model fails to reproduce the correct diffusion constants at higher
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Figure 17. Frustration index102 for BLJ and silica as a function of T/Tm. Tm is the melting

temperature determined from a peak in the constant volume heat capacity calculated using the

harmonic superposition approximation.19

temperatures, as also seen for BLJ and OTP. At high temperatures the system wanders

further from the bottom of the potential energy wells,43 complicating the identification of

cage breaks. This failure occurs close to the temperature at which non-Arrhenius behaviour

emerges in the diffusion constants. The relationship between these two phenomena will be

explored in future work.

The cage-breaking results and the short-time effective diffusion constants calculated in

§ III A both indicate that the presence of negative correlations is fundamentally important

to transport processes in silica. We have shown that negative correlations in the particle

displacement vector over time scales comparable with the caging time are associated with

strong behaviour. This result is striking because the same correlation effect causes super-

Arrhenius behaviour in fragile liquids.

We hypothesise that the difference between the two types of glass former is that negative

correlations in fragile systems persist over much longer time scales than the caging time scale,

and hence influence the diffusion constants more than for silica. The longer correlation time

of fragile liquids may be caused by cooperative motion,85,87,103 which is much less prevalent
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in silica than in fragile glass formers.62,63 This interpretation would suggest that a continuous

spectrum of fragility is controlled by the competition between the caging and correlation

time scales.

We have attempted to quantify these time scales by investigating chains of correlated

cage-breaking rearrangements. We find that both strong and fragile liquids exhibit many

chains with lengths greater than the characteristic cage waiting time, but that chains in the

BLJ fluid are significantly longer on average than those in silica.

To investigate the origin of the correlation effects we studied the potential energy land-

scape of silica, which was found to be similar in many respects to that of BLJ. Both systems

have a complex multi-funnelled landscape with large energy barriers separating low-lying

amorphous energy minima. However, several key differences between the two models were

identified. The separation of energy scales between cage-breaking and non-cage-breaking

energy barriers is greater for silica than for BLJ, emphasising the greater importance of

cage breaks for the strong liquid. The connectivity of the landscape is almost completely

destroyed when cage-breaking transition states are removed, but is unaffected when non-cage

breaks are removed. Cage breaks are both necessary and sufficient to traverse the energy

landscape, and hence are required for dynamical processes.

Geometrical metabasins for silica are smaller than for BLJ. This observation is in line

with previous predictions regarding the difference between the energy landscapes of strong

and fragile liquids.46,100 By definition, transitions between metabasins correspond to an un-

correlated random-walk process, so correlation only exists within a metabasin and hence

smaller metabasins mean less correlation in minimum-to-minimum transitions. This con-

clusion is consistent with our argument that correlation times in fragile liquids are longer

relative to the caging timescale than in strong liquids.

Finally, we found that the potential energy landscape of silica is less frustrated than for

BLJ. This was shown by several landscape properties, notably by a frustration metric defined

on the landscape topology, which measures the relative height of energy barriers between

minima of similar energies. It is interesting that the two measures which distinguish most

clearly between strong and fragile landscapes (i.e. metabasins and the frustration metric) are

those that take greatest account of the connectivity and topology. Connectivity is likely to

be crucial in understanding the origins of negative correlation behaviour in glass formers.33

Our results indicate that there is no sharp distinction between some liquids that are
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strong and others that are fragile. The negative correlation behaviour which gives rise to

super-Arrhenius diffusion in fragile liquids is still present in silica, but to a lesser extent.

Moreover we have shown that there is no qualitative difference in the underlying potential

energy landscapes of strong and fragile glass formers, but only quantitative variation in

metrics related to landscape topology and connectivity. These findings add to the growing

body of evidence that strong glass formers represent one extreme of a continuous spectrum

of fragilities.61–64
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