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The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole
moments are studied based on a model of the Onsager type (molecule in the centre of a spherical
cavity). The dielectric permittivity ε and the macroscopic quadrupole polarizability αQ of the
fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole,
quadrupolarizability). The effect of αQ is to increase the reaction field, to bring forth reaction
field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects
from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid.
The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric
permittivity of several liquids (Ar, Kr, Xe, CH4, N2, CO2, CS2, C6H6, H2O, CH3OH). The theory
is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure
and temperature. The cavity radii are also determined for these liquids, and it is shown that they
are functions of density only. This extension of Onsager’s theory will be important for non-polar
solutions (fuel, crude oil, liquid CO2), especially at increased pressures. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4943196]

I. INTRODUCTION

The macroscopic Poisson equation of electrostatics
involves only the dipolar contribution to the dielectric
displacement field, whereas quadrupole, octupole, etc., terms
are neglected.1,2 The absence of the quadrupole contribution
in the macroscopic Maxwell equations is equivalent to neglect
of the interaction of the electric field gradient with matter.
When electric field E acts on a body, the body acquires dipole
moment; the resulting macroscopic dipole moment density P
(the polarization vector) is related to the field as P = αPE,
where αP = ε − ε0 is the polarizability of the medium.
Similarly, the electric field gradient∇E induces a macroscopic
quadrupole moment of density Q (the quadrupolarization
tensor), proportional to ∇E, with proportionality coefficient
αQ, known either as the quadrupolarizability3,4 or the
quadrupole polarizability5 of the medium (a tensor, in
general). The quadrupolarizability is a basic characteristic
of every solvent that has been shown to play a role in
diverse phenomena such as solubility of polar molecules in
non-polar solvents,6,7 solvatochromism,8 partition coefficients
of electrolytes,9 activity of dissolved electrolytes,10 and the
surface tension and the dipole moment of the interface between
insulators.11

The value of the static macroscopic quadrupole
polarizability is unknown even for common solvents because
the macroscopic quadrupolarizability is hard to measure
directly.7,12 Two approaches for determination of αQ exist. The
first approach utilizes the effects of αQ on various measurable
properties of a solvent or a solute. The comparison between

a)E-mail: ris26@cam.ac.uk

experimental data for these properties and theoretical results
for the effects of the quadrupolarizability allows the value
of αQ to be determined. For example, the analysis of data
for the partial molar properties and activity of dissolved
ions allowed us to estimate αQ of water, methanol, and
other solvents.9,10 This approach relies on the accuracy of
the theoretical results for the respective effect. However,
the underlying theory contains approximations and neglects
numerous possibly significant effects,9,10 which makes the
obtained values of the quadrupole polarizability unreliable in
the absence of independent validation.

A second approach is to relate αQ to the molecular
characteristics and calculate it theoretically. An ideal gas
of concentration C made of molecules of mean molec-
ular quadrupolarizability13,7 αq and permanent quadrupole
moment q0 has the following macroscopic quadrupole
polarizability:7,9

αQ = C
�
αq + q0:q0/10kBT

�
; (1)

here T is temperature, kB is the Boltzmann constant, and
A:B = Ai jBj i. This equation is analogous to the classical
formula for the polarizability of a dilute gas, αP = C(αp

+ p0 · p0/3kBT), where αp is the mean molecular polarizability
and p0 is the permanent dipole moment. However, Eq. (1) is
inapplicable to dense fluids while αQ is important for dense
matter only. By analogy with the formula for αP (which under-
estimates the value of αP for polar liquids by a factor of 2-3), it
can be expected that a dense fluid will have quadrupolarizabil-
ity which is several times greater than the one predicted from
Eq. (1).

Due to these problems, currently we do not dispose
with trustworthy quadrupolarizabilities for any liquid of

0021-9606/2016/144(11)/114502/18/$30.00 144, 114502-1 © 2016 AIP Publishing LLC
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interest. Both the approaches, outlined above, lead to,
at best, crude estimates of the quadrupole polarizability.
For example, the gas formula (1) yields values of the
order of 1 × 10−30 F m for αQ of water and methanol
at normal conditions. With methanol,10 the magnitude of
the quadrupolarizability found from experimental activity of
dissolved ions is αQ ∼ 10 × 10−30 F m, which is acceptable
in comparison with the “gaseous” value (few times higher,
as expected). For water, however, the first approach leads
to quadrupolarizability on the order of9,10 100 × 10−30 F m,
compared to 1 × 10−30 F m according to Eq. (1)—such a
discrepancy (two orders of magnitude) obviously poses a
question mark on both estimates.

In view of this introduction, we can formulate the
main aim of this work as follows: devise an approach to
accurately predict the quadrupole polarizability αQ of simple
solvents using molecular data for p0, αp, q0, and αq. Towards
this aim, we will generalize the classical Onsager model14

of polar dielectrics and apply the generalized theory to a
fluid made of molecules possessing quadrupole moment and
quadrupolarizability. As we will show, this new theory allows
the prediction of αQ whenever ε, C, and the molecular
properties of the solvent are known. We will use it to calculate
the quadrupole polarizability αQ as a function of temperature
and pressure for several liquids of different complexity.

Apart from the main aim, the generalization of Onsager’s
model to quadrupolarizable media has value on its own. The
chemistry of polar species dissolved in non-polar or weakly
polar medium is governed by Onsager’s reaction field.15–18

Onsager’s reaction field also forms the foundation of the
theory of solvatochromism,19,8 solvent effects on chemical
equilibria,20–22 and on kinetic rate constants.23–25 Onsager’s
theory is based on a macroscopic model for the interaction
between solute dipole and solvent dipoles. Numerous
electrostatic models exist that generalize Onsager’s theory
by accounting also for the solute quadrupole-solvent dipole
interactions,15–17,21,26,27 and they have wide applications. What
these models miss is the solute dipole-solvent quadrupole
interaction, which is of the same order of magnitude.28 The
typical energy per dissolved molecule corresponding to this
interaction can be estimated at several kBT , and it must have a
first order contribution to problems as important as the solvent
ability of crude oil, fuel, and lubricants, especially under
increased pressures. The reason for the “oversight” of the
solute dipole-solvent quadrupole interaction is not physical but
technical—the conventional Maxwell macroscopic equations
neglect the quadrupolar properties of the medium which
complicates the determination of this important solvent
effect within the standard macroscopic theory. Some efforts
were made6,7 to formulate a continuum theory to describe
solvation in quadrupolar solvents, such as benzene and
supercritical CO2. Chitanvis6 attempted to find the reaction
field gradient within a macroscopic theory. The quadrupolar
solvatochromism29 was considered macroscopically by Jeon
and Kim.8 Molecular level description is, in fact, well
ahead of the classical macroscopic description of quadrupolar
fluids—the perturbation theory,28–30 the integral equation,31–33

and the molecular dynamics34–36 microscopic approaches
have been applied successfully to quadrupolar liquids.

Yet, even with the microscopic approach, the molecular
quadrupolarizability has been neglected. This makes the
continuum description a necessary step toward the “conquest”
of the quadrupolar liquids.

A. Quadrupolar electrostatics

Let us first summarize our general approach to the
electrostatics of quadrupolar media9 and some relevant
results obtained previously. Coulomb’s macroscopic law of
electrostatics reads

∇ · D = ρ, (2)

where ρ is the free charge density and D is electric displace-
ment field. In quadrupolarizable media, the displacement
field involves the contributions of both the dipole density
(ε0E + P = εE) and2 the tensor of the quadrupole moment
density Q,

D = εE − 1
2
∇ ·Q. (3)

Note that the numerical coefficient 1/2 in this equa-
tion depends on the choice of definition of quadrupole
moment9,15 (according to the one used here, a molecule
of charge distribution ρmolecule has molecular quadrupole q
=
 (rr − Ur2/3)ρmoleculedr, integrated over the volume of the

molecule, where U is the unit tensor). In the derivation
of Eq. (3), it is assumed that Q has a zero trace.9 This
excludes11 the so-called Bethe contribution from the mean
macroscopic potential, which stems mainly from the
electrostatic potential of the atomic nuclei screened by their
electronic clouds36 and must be considered a component of
the short-range steric interactions. A discussion of the mean
potential stemming from TrQ is provided in Refs. 7 and 11.

A constitutive relation between the quadrupole moment
density and electric field gradient is required for the utilization
of Eqs. (2) and (3). In Ref. 9, the following equation of state
was derived for a gas in electrostatic field:

Q = αQ (∇E − U∇ · E/3) . (4)

Other constitutive relations have been proposed in the litera-
ture,6,7 which, however, involve non-zero trace. By substitut-
ing Eqs. (3) and (4) into Eq. (2) and using Ampère’s law
(E = −∇φ), one obtains the explicit form of the electrostatic
Coulomb-Ampère law in quadrupolarizable medium,

∇2φ − L2
Q∇

4φ = −ρ/ε. (5)

Here, the quadrupolar length LQ is defined with

L2
Q = αQ/3ε. (6)

The quadrupolar length is measuring the relative quadrupolar
(αQ) and polar (ε) strengths in a medium. The quantity LQ is
analogous to the Debye length11 (measuring the ratio between
the polar and ionic strengths in a medium). At LQ = 0, the
quadrupolar Coulomb-Ampère law (5) simplifies to Poisson’s
standard electrostatic equation,

∇2φ = −ρ/ε. (7)
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Qualitatively, the effect from the quadrupolarizability of the
medium is to damp the field gradient in the system9–11 and
to make the potential smoother. High fields are generally
suppressed with the increase of LQ.

Eq. (5) is a fourth-order differential equation. It therefore
requires additional boundary conditions in comparison with
Poisson’s second-order Equation (7). The set of boundary
conditions were derived only recently.11,2,37,38,9 The boundary
conditions that we need here refer to the spherical boundary
between an empty cavity of radius Rcav and a quadrupolar
medium and they are given as follows:

Dr(r = Rcav − 0) = Dr(r = Rcav + 0),
Qrr(r = Rcav − 0) = Qrr(r = Rcav + 0),
φ(r = Rcav − 0) = φ(r = Rcav + 0).

(8)

When the boundary surface is between two quadrupolar media,
a fourth condition for continuity of the field must be fulfilled;
for the boundary between one quadrupolarizable and one non-
quadrupolarizable medium (investigated in this work), the
field is discontinuous and a fourth condition is not required.11

Several basic electrostatic problems were investigated
previously9–11,38 within the frame of the quadrupolar Coulomb-
Ampère law (5). A result relevant to this work is the one for the
potential φe of a point charge e in a quadrupolarizable medium,
which was found to be

φe =
e

4πε
1 − exp(−r/LQ)

r
. (9)

A striking feature of this potential is9,6 that it is finite
at r = 0 (where its value is e/4πεLQ). The point charge
has, therefore, a finite self-energy ue = e2/8πεLQ. Such
regularization of the potential is characteristic of quadrupolar
electrostatics compared to what follows from Poisson’s
equation.11,9 Another relevant problem analyzed in Ref. 9
was the one for a charge e placed inside an empty cavity in
a medium of dielectric permittivity ε and quadrupolar length
LQ = (αQ/3ε)1/2, i.e., we solved the problem for the Born
energy ue of an ion in a quadrupolar medium. The solution of
Eqs. (5) and (8) for the reaction potential acting on the ion is
given as follows:9

φreact = −Xee; Xe =
1

4πRcavε0

ε − feε0

ε
, (10)

where the quadrupolar factor fe stands for

fe =
1 + 3

LQ

Rcav

1 + 3
LQ

Rcav
+ 3

L2
Q

R2
cav

(11)

and ue = eφreact/2. At LQ = 0, the correction factor fe
becomes equal to one and the expression (10) simplifies
to the classical formula of Born.39 The other limit, LQ ≫ Rcav,
coincides with the point charge self-energy above. In purely
quadrupolar solvent made of permanent quadrupoles30 (p0
= αp = αq = 0; ε = ε0), under the condition that LQ ≪ Rcav,
from Eqs. (11), (6), and (1), one can obtain

ue ≈ −
3L2

Qe2

8πε0R3
cav
= −

αQe2

8πε2
0R3

cav
≈ − e2

80πε2
0R3

cav

Cq0:q0

kBT
. (12)

This result was obtained previously as the continuum limit of
the microscopic perturbation theory (Eq. (44) of Milischuk
and Matyushov30 with (σ0 + σ)/2 ≡ Rcav). This coincidence
gives us additional confidence in our equation of state (4) and
boundary conditions (8) (compare to Refs. 6 and 7).

In this work, we will analyze the related problems for the
reaction field Ereact acting on a dipole in a quadrupolar medium
and the reaction field gradient∇Ereact acting on a quadrupole in
a quadrupolar medium (Sec. II A), within Onsager’s spherical
cavity model. In Sec. II B, we solve the problem for the cavity
field Ecav and the cavity field gradient ∇Ecav inside a cavity
in a quadrupolar insulator placed in an external field, which
is the second component of Onsager’s theory of the dielectric
permittivity of fluids. Onsager’s famous equation for ε is
generalized in Secs. II C and II D to quadrupolar fluids, and a
similar formula for the macroscopic quadrupole polarizability
αQ is derived.

In Sec. III, the theoretical results are utilized to predict the
quadrupolarizability as a function of pressure and temperature
for the following fluids: Ar, Kr, Xe, CH4 (of zero p0 and
q0 but non-zero αp and αq), N2, CO2, CS2, C6H6 (zero p0),
H2O, and CH3OH. This choice of liquids is, on the one hand,
for the sake of illustrating our approach on molecules of
qualitatively and quantitatively different electric properties.
On the other hand, there are previous estimations of the
quadrupole polarizability of water and methanol.9,10 Finally,
the results for the liquid CH4, C6H6, and CH3OH are the
first step toward the development and parameterization of a
cavity model for solutions of polar molecules in fuels and
lubricants, which are perhaps the most important examples of
quadrupolar solvents in practice.

II. INTRODUCING QUADRUPOLES
IN ONSAGER’S THEORY

In this section, we generalize Onsager’s model to
quadrupolar media. The macroscopic approach towards the
quadrupolar properties of a medium was investigated previ-
ously by Chitanvis6 and Jeon and Kim,7,8 who obtained, how-
ever, results very different from those we present below due to
their different boundary conditions and different constitutive
relation for Q (cf. the discussion in Refs. 9 and 11).

A. Reaction field of a dipole and a quadrupole

A point dipole p (comprising permanent and induced
components) is located in the centre of a spherical cavity
(permittivity ε0, zero quadrupolar length) of radius Rcav
inside a medium of dielectric permittivity ε and quadrupolar
length LQ (Fig. 1(a)). To find the field of this dipole,
we solve the quadrupolar Coulomb-Ampère equation (5)
with boundary conditions (8) and with ρ being given by
−p · ∇δ(r), where δ(r) ≡ δ(x)δ(y)δ(z) is the 3-dimensional
Dirac delta function. Field is absent at r → ∞. The solution of
this problem for the potential φp0 inside the cavity (r < Rcav) is
given by

φp0 =
p · r

4πε0r3 − Ereact · r (13)
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FIG. 1. (a) Dipole in a cavity in a quadrupolar medium. (b) Cavity in an
external field.

and the potential φp outside the cavity (r > Rcav) is

φp =
pext · r
4πεr3

*
,
1 − 9 f p

L2
Q

R2
cav

r + LQ

Rcav + 4LQ
e
− r−Rcav

LQ +
-
. (14)

Here Ereact is the reaction field14 produced inside the cavity
by the polarized medium, and is given by

Ereact = Xpp, Xp =
1

2πε0R3
cav

ε − f pε0

2ε + f pε0
. (15)

The external dipole moment pext in Eq. (14) is the total dipole
moment of the central molecule and its polarized surrounding
and is given by the expression

pext =
3ε

2ε + f pε0
p. (16)

The quardupolar factor f p in the formulae above stands for
the expression

f p =
1 + 4

LQ

Rcav

1 + 4
LQ

Rcav
+ 9

L2
Q

R2
cav
+ 9

L3
Q

R3
cav

. (17)

Eqs. (15) and (17) are analogous to the results (10) and (11)
for a point charge in a cavity. The factor f p is always smaller
than 1. If the quadrupolarizability of the medium is negligible
so that LQ ≪ Rcav, then the maximal value f p = 1 is reached
and the results (15) and (16) for the external dipole moment
and the reaction field simplify to the known equations of
Onsager.14 The quadrupolar correction is important for small
species (Rcav ∼ LQ) in fluids of low ε (when ε ≫ ε0, the
LQ-containing term f pε0 in Eqs. (15) and (16) is negligible).
According to Eq. (15), the reaction field increases with
LQ—an effect stemming from the additional attractive
interaction between the central dipole and the medium
quadrupoles (in full agreement with the critical remarks of
Matyushov and Voth28 on previous models). The reaction
field in the spherical cavity has zero gradient and therefore it
does not interact with the quadrupole moment of the central
molecule (this allows us to investigate the medium reaction to
the dipole and the quadrupole separately).

From Eqs. (15), (6), and (1), we can calculate the energy
of interaction of a permanent dipole (i.e., p = p0) with the
medium in the limit ε = ε0, Rcav ≫ LQ and αp = αq = 0,

up = −
Xpp2

0

2
≈ −

9L2
Qp2

0

4πε0R5
cav
= −

3p2
0

40πε2
0R5

cav

Cq0:q0

kBT
. (18)

This result is analogous to the energy (12) of a point charge in a
medium made of solid quadrupoles. The expression coincides
with the continuum single particle limit of the perturbation
theory of Milischuk and Matyushov (Eq. (49) in Ref. 30
with (σ0 + σ)/2 ≡ Rcav), which is another confirmation of the
theoretical framework exposed in Sec. I A.

Let us also discuss briefly the solution for the field of
a point dipole in quadrupolar medium in the absence of a
cavity. It can be obtained either from Eq. (14) by setting
pext = p and Rcav → 0 or from the point charge formula (9)
using the general relation φp = −p · ∇φe/e. The result is

φp =
p · r

4πεr3

(
1 −

r + LQ

LQ
e−r/LQ

)
. (19)

This potential is finite, but not continuous. It is illustrated in
Fig. 2.

Let us now consider the problem for the reaction field
gradient of a quadrupole of magnitude q inside a spherical
cavity. We solve the same equations but this time with
ρ = 1/2q :∇∇δ(r). The potential φq0 inside the cavity (at
r < Rcav) is (cf. Section A of the supplementary material93)

φq0 =
3r · q · r
8πε0r5 −

1
2

r · (∇E)react · r, (20)

and the solution φq at r > Rcav is

φq =
3r · qext · r

8πεr5
*
,
1 − 18gq

r2 + 3rLQ + 3L2
Q

R2
cav

e
− r−Rcav

LQ +
-
. (21)

Here, the reaction field gradient (∇E)react is given by the
expression

(∇E)react = Xqq, Xq =
9

4πε0R5
cav

ε − fqε0

3ε + 2 fqε0
, (22)

and the external quadrupole moment qext (the total quadrupole
of the central molecule and the quadrupolarized surrounding

FIG. 2. The radial component of the potential of a point dipole in dipolar
(red) and quadrupolar (blue) medium, according to Eq. (19), made dimen-
sionless by setting p = 4πεL2

Q. In dipolar medium, the radial component is
1/r2 and is singular; in the quadrupolar one, the potential is finite.
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medium) is

qext =
5ε

3ε + 2 fqε0
q. (23)

The two quadrupolar factors fq and gq are given by the
formulae

fq =
1 + 6

LQ

Rcav
+ 6

( LQ

Rcav

)2

1 + 6
LQ

Rcav
+ 24

( LQ

Rcav

)2
+ 54

( LQ

Rcav

)3
+ 54

( LQ

Rcav

)4 ,

gq =

( LQ

Rcav

)2

1 + 6
LQ

Rcav
+ 24

( LQ

Rcav

)2
+ 54

( LQ

Rcav

)3
+ 54

( LQ

Rcav

)4 .

(24)

These results are similar to the respective Equations (15)-(17)
for dipole. In the absence of medium quadrupole polarizability
( fq = 1), the reaction field gradient (22) simplifies to the one
of Buckingham.40

A point quadrupole (no cavity) in a quadrupole medium
creates the potential distribution,

φq =
3r · q · r
8πεr5

*
,
1 −

r2 + 3rLQ + 3L2
Q

3L2
Q

e−r/LQ+
-
. (25)

This result can be obtained from Eq. (21) by setting qext = q
and Rcav → 0, or from the point charge formula (9) using
φq = q:∇∇φe/e. The potential φq has a singularity at r = 0.

We can summarize the three results that we obtained for
point sources (Rcav = 0) in a quadrupolar medium as follows.
The potential of a point charge in a dipolar medium has
1/r singularity at r = 0, while it is finite and continuous in
quadrupolar medium, Eq. (9). The point dipole classically
has a φ ∼ 1/r2 singularity in dipolar medium, while in
quadrupolar, it has a finite (but discontinuous) potential, Eq.
(19). Finally, the potential of a point quadrupole has a 1/r3

singularity in a dipolar and 1/r singularity in a quadrupolar
medium. It is easy to predict that if octupolarizability is
allowed in the medium, not only the potential but also the
field of a point dipole will be finite and continuous, and thus
the self-energy −p · E(0) of a dipole in an octupolar medium
must be finite. A point quadrupole in octupolar medium will
have a finite continuous potential but singular ∇E and infinite
self-energy; higher-order macroscopic multipolarizability will
lead to additional regularization.

B. Cavity field and cavity field gradient

The second sub-model involved in Onsager’s theory is the
problem for a cavity in a continuum polarized by an external
field E0 (Fig. 1(b)). Here, we generalize this problem for
quadrupolar medium by using the quadrupolar electrostatic
equations (5) and (8) instead of the conventional Poisson
equation (in addition, we require −∇φ = E0 at r → ∞ and
at r → 0, the potential must be finite). The solution of this
problem for the potential distribution φE0 at r < Rcav reads

φE0 = −Ecav · r; (26)

the potential φE at r > Rcav is

φE = −E0 · r +
pext,E · r
4πεr3

*
,
1 − 9 f p

L2
Q

R2
cav

r + LQ

Rcav + 4LQ
e
− r−Rcav

LQ +
-
.

(27)

Here, the cavity field Ecav is proportional to the outer field E0,

Ecav = YEE0, YE =
3 fEε

2ε + f pε0
. (28)

The moment pext,E in Eq. (27) is the excess dipole moment of
the cavity induced by the external field and is given by

pext,E = −4πεR3
cav

ε − ε0

2ε + f pε0
E0. (29)

The factor f p is given by Eq. (17) and fE stands for

fE =
1 + 4

LQ

Rcav
+ 6

L2
Q

R2
cav
+ 6

L3
Q

R3
cav

1 + 4
LQ

Rcav
+ 9

L2
Q

R2
cav
+ 9

L3
Q

R3
cav

. (30)

The quadrupolar factor fE is always smaller than 1.
At LQ → 0, when fE = f p = 1, Eqs. (26)-(29) simplify
to the well-known cavity field for non-quadrupolarizable
medium.14,41 Compared to this classical result, the cavity
field in quadrupolarizable medium is always smaller. Unlike
the reaction field, the cavity field is affected by the medium’s
quadrupolarizability even in the case of very polar fluids
(because Ecav is proportional to fE). This finding means, by
the way, that the interaction between a dissolved dipole and
the field of another particle, say, an ion or a second dipole,
is affected by LQ significantly. It is also noteworthy that in
the case of purely quadrupolar medium (one of ε = ε0), the
factor YE becomes equal to 1 and the external dipole pext,E
disappears. This means that the external field E0 cannot be
distorted by the discontinuity of the quadrupole polarizability
alone—only the heterogeneity of ε leads to the distortion.
This can be intuitively expected, since quadrupoles do not
interact with homogeneous field.

Let us finally solve the problem for a cavity in quadrupolar
medium placed in an external electric field gradient (∇E)0.
The solution of Eqs. (5) and (8) for the potential at r < Rcav
reads

φ∇E0 = −
1
2

r · (∇E)cav · r, (31)

and the potential outside the cavity is

φ∇E = −
1
2

r · (∇E)0 · r +
3r · qext,∇E · r

8πεr5

× *
,
1 − 15gq

3ε − 2ε0

ε − g∇Eε0

r2 + 3LQr + 3L2
Q

2R2
cav

e
− r−Rcav

LQ +
-
.

(32)

Here, the cavity field gradient (∇E)cav is proportional to (∇E)0,

(∇E)cav = Y∇E(∇E)0, Y∇E =
5ε f∇E

3ε + 2ε0 fq
. (33)
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The excess quadrupole moment qext,∇E of the sphere induced
by the external gradient (∇E)0 is given by the equation

qext,∇E = −
8
3
πεR5

cav
ε − g∇Eε0

3ε + 2 fqε0
(∇E)0. (34)

The two quadrupolar factors f∇E and g∇E stand for the
expressions

f∇E =
1 + 6

LQ

Rcav
+ 15

( LQ

Rcav

)2
+ 27

( LQ

Rcav

)3
+ 27

( LQ

Rcav

)4

1 + 6
LQ

Rcav
+ 24

( LQ

Rcav

)2
+ 54

( LQ

Rcav

)3
+ 54

( LQ

Rcav

)4 ,

g∇E =
1 + 6

LQ

Rcav
+ 21

( LQ

Rcav

)2
+ 45

( LQ

Rcav

)3
+ 45

( LQ

Rcav

)4

1 + 6
LQ

Rcav
+ 24

( LQ

Rcav

)2
+ 54

( LQ

Rcav

)3
+ 54

( LQ

Rcav

)4 .

(35)

The results (33)-(35) for quadrupolarized cavity are analogous
to Eqs. (28)-(30) for polarized cavity. As with the cavity
field, the cavity field gradient is significantly affected by the
quadrupoles in the medium, as (∇E)cav is proportional to the
quadrupolar factor f∇E.

In what follows, the results for Ereact, Ecav, (∇E)react,
and (∇E)cav will be used to extend Onsager’s theory to
quadrupolar liquids and to analyze the measurements of the
dielectric permittivity of various liquids within this extended
theory in order to extract from them the cavity radii and the
quadrupolar lengths in these liquids. However, the four results
have a much wider field of application—the reaction field and
gradient are in the base of the theory of solvation15–25 and
the cavity field and gradient are important for the description
of the electrostatic interaction between dissolved particles
(and consequently of their activity coefficients, association
constants, etc.). These questions will be considered in the
future.

C. Local field and local field gradient

Following Onsager,14 we assume that each molecule in a
polarized liquid is subject to a local field Eloc that is the sum
of the reaction field (15) and the cavity field (28),

Eloc = Ereact + Ecav = Xpp + YEE0. (36)

The molecule is polarizable (of molecular polarizability αp).
The local field induces a dipole moment αpEloc in the central
molecule; thus, the total dipole p that the molecule acquires is

p = p0 + αpEloc, (37)

where p0 is the permanent molecular dipole moment. Here,
αp must be understood as the mean polarizability of the
molecules, αp = Σαp, ii/3, where αp, ii are the components of
the polarizability tensor. The two vector equations (36) and
(37) are solved for p and Eloc,

p =
p0 + αpYEE0

1 − αpXp
, (38)

Eloc =
Xpp0 + YEE0

1 − αpXp
. (39)

The local field has a component proportional to p0 and a
component proportional to the external field—the same is
valid for non-quadrupolar media.14 However, our coefficients

Xp and YE, Eqs. (15) and (28), are functions of the quadrupolar
length LQ of the medium through the factors f p and fE, Eqs.
(17) and (30).

Analogously, the local electric field gradient (∇E)loc
acting on a molecule in quadrupolar medium is the sum
of the reaction and the cavity field gradients (28) and (33),

(∇E)loc = (∇E)react + (∇E)cav = Xqq + Y∇E(∇E)0. (40)

Each molecule is quadrupolarized by the local field gradient
to acquire a total quadrupole moment of

q = q0 + αq [(∇E)loc − U(∇ · E)loc/3] . (41)

Here, αq is the mean molecular quadrupolarizability (its rela-
tion to the components of the tensor of the molecular quadrupo-
larizability is derived in Section C of the supplementary mate-
rial93). The term U(∇ · E)loc/3 is added so that the induced
quadrupole has zero trace explicitly; as far as (∇ · E)loc = 0,
this is a question of convenience and the term will be skipped
below. The tensor equations (40) and (41) are solved for q and
(∇E)loc,

q =
q0 + αqY∇E(∇E)0

1 − αqXq
, (42)

(∇E)loc =
Xqq0 + Y∇E(∇E)0

1 − αqXq
. (43)

These equations are analogous to Eqs. (38) and (39) for p
and Eloc.

According to Eq. (38), the dipole moment of a molecule
increases when this molecule is dissolved: p = p0/(1 − αpXp)
in the absence of external field. On the other hand, from
Eq. (15), it follows that Xp increases with the quadrupole
polarizability of the medium, and therefore, the factor p/p0 is
larger when quadrupoles are present in the solvent. In addition,
the quadrupole moment of the molecule also increases—from
Eq. (42), q = q0/(1 − αqXq) in the absence of an external
field gradient. Indeed, the quadrupole moment of the water
molecule is ∼13% higher in the condensed phase compared
to gas.42

D. Macroscopic polarizability and quadrupolarizability
of a quadrupolar insulator

Let the outer field E0 be created by a charge e∞
at infinite distance from the cavity, with vector-position
r∞ = (0,0,−r∞) (Cartesian coordinates, z-axis in direction
of E0). The magnitude of this charge is

e∞ = 4πεr2
∞E0. (44)

This charge interacts with the total field created by the dipole
and the polarized cavity, which is found as the sum of φp and
φE, Eqs. (14) and (27), at r → ∞,

φp + φE

�
∞ =

(pext + pext,E) · r∞
4πεr3

∞
. (45)
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The respective interaction energy follows from Eqs. (16), (29),
and (38),

up =
�
φp + φE

�
∞e∞ = − (pext + pext,E) · E0

= − 3ε
2ε + f pε0

p0E0 cos θ
1 − αpXp

+O(E2
0), (46)

where θ is the angle between p0 and E0; the terms of O(E2
0)

are neglected. The Boltzmann distribution of θ corresponding
to energy (46) is also linearized for small external fields,

ρp = Cn exp(−up/kBT) ≈ Cn(1 − up/kBT), (47)

where the value of the normalizing constant Cn = 1/2 follows
from the normalization of ρp. Note that the cavity field term
pext,E· E0 in Eq. (46) is O(E2

0) and does not contribute to
the linear dielectric response of the medium; pext,E · E0 is
important for the macroscopic hyperpolarizabilities only. The
fact that there is no contribution in Eqs. (46) and (47) from the
cavity field means that the cavity factor YE has no effect on the
orientation component of the macroscopic polarizability. The
cavity field affects the induced dipole contribution to ε only.

We now take the average of Eq. (38). The average vector
p is parallel to E0; if the angle between p0 and E0 is θ, we can
write

p̄ =
p0

1 − αpXp
cos θ +

αpYE
1 − αpXp

E0. (48)

The average cosθ is obtained as
 1
−1 ρp cos θd cos θ using the

Boltzmann distribution (46), which yields

p̄ =
YE

1 − αpXp


αp +

1
fE

�
1 − αpXp

�
p2

0

3kBT


E0. (49)

Multiplying this equation by the concentration C of particles
in the liquid, we obtain the linear relation Cp̄ ≡ P = αPE0,
where the macroscopic polarizability stands for the expression,

αP ≡ ε − ε0 =
YE

1 − αpXp


αp +

1
fE

�
1 − αpXp

�
p2

0

3kBT


C.

(50)

This is the sought generalization of Onsager’s formula for ε
to quadrupolar media.

To give a qualitative idea for the effect of the medium’s
quadrupolarizability on its polarizability, let us consider two
limiting cases. The first one is a solvent made of molecules
with negligible polarizability (αp = 0)—in this case, Eqs. (50)
and (28) yield

ε − ε0 =
3ε

2ε + f pε0

p2
0

3kBT
C. (51)

For a dipolar liquid, typically it is valid that ε ≫ ε0 and
therefore, the term f pε0 in this equation (stemming from the
reaction field) is negligible, with or without quadrupoles. As
a result, the dielectric permittivity of a “permanent dipole
liquid” is only weakly affected by LQ. The second limiting
case is a medium made of molecules of zero p0,

ε − ε0 =
1

1 − αpXp

3 fEε
2ε + f pε0

αpC. (52)

In this case, the polarizability αP = ε − ε0 is proportional to
the quadrupolar factor fE (stemming from the cavity field)
and in result, the quadrupoles interfere with the dielectric
properties of such fluid much more strongly. The fact that
the quadrupoles affect the induced dipole (αp) but not the
orientational (p0) component of αP is related to the cavity
field, which contributes to the former term only.

The contribution of the quadrupoles in a medium to the
dielectric constant was discussed previously by Patey et al.,32

who found that Kirkwood’s correlation factor43 depends on the
molecular quadrupole moment, which roughly corresponds to
stating that Rcav is a function of LQ in Onsager’s model. Patey
et al.32 neglected, however, the direct effect of LQ on the
reaction/cavity fields discussed here.

The respective average quadrupole moment is derived in a
similar manner in Section B of the supplementary material.93

The averaging yields our constitutive relation (4), with the
following quadrupole polarizability coefficient:

αQ ≡ 3εL2
Q =

Y∇E
1 − αqXq


αq +

1
f∇E

�
1 − αqXq

� q0:q0

10kBT


C.

(53)

Of course, in the infinite dilution limit (where ε → ε0, LQ → 0
and therefore Xq = 0 and Y∇E = f∇E = 1), the ideal gas
formula (1) is restored. Let us also mention that initially we
postulated the linear constitutive relation (4) between Q and
∇E, which was rigorously derived before9 for ideal gas only.
The derivation in Section B of the supplementary material93

proves the validity of Eq. (4) also for a dense Onsager fluid.
The two Equations (50) and (53), together with the

formulae (15), (17), (22), (24), (28), (30), (33), and (35) for
the electrostatic X , Y , f , and g factors, set the basic theory of
linear isotropic quadrupolar dielectrics.

III. DIELECTRIC CONSTANT

A. The cavity size and the Curie point

The model of Onsager contains one effective
parameter—the cavity radius Rcav—which is not rigorously
defined. Onsager assumed that the following relation holds
between the cavity size and density:

4
3
πR3

cav =
1
C
, (54)

commenting that13,44 “the assumption that the molecules fill
the whole volume of the liquid is a makeshift” and that “the
development of the theory. . . will involve careful consideration
of molecular arrangements, and probably some arbitrary
exercise of judgment.” Assumption (54) is, indeed, arbitrary
in the following two respects:

(i) The cavity size Rcav, in the sense of an effective parameter
of the average distance between the interacting central
molecule and solvent molecules in dense fluids, is at best
of the same order of magnitude as the one following from
the partial molar volume and Eq. (54). At the same time,
if the density is high, Eqs. (50)-(53) are sensitive to this
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parameter, and 0.1 Å difference in Rcav may drastically
change the value of ε.

(ii) Eq. (54) sets not only a value of Rcav but also
fixes its dependence on temperature T and pressure p.
The assumption that the coefficient of mechanical
compressibility of the cavity is equal to that of liquid
water is not confirmed by the experimental data for the
partial molar volume of ions9—the volume of a cavity
was found to depend on pressure much more weakly than
water’s molar volume, i.e., for all ions, it was found that
1/R−3

cav × ∂R−3
cav/∂p ≪ 1/C × ∂C/∂p, in contrast to what

follows from Eq. (54). The negligible compressibility
of the cavities of dissolved ions is a well-established
fact and has been a common approximation for many
years.45,46

It is therefore not surprising that many other routes
and rules for the determination of Rcav has been proposed
(short review is present in Refs. 17 and 47). Linder and
Hoernschemeyer50 related Rcav to the radial distribution
function of the fluid. Luo et al.48,49 imposed a condition
for equivalency of Onsager’s model and the self-consistent
reaction field theory to determine Rcav. Zhan and Chipman
proposed the cavity boundary to be determined by an
electronic isodensity surface of the solute.47 The comparison
of our results with the perturbation theory (cf. Eqs. (12)
and (18) and the comments thereafter) suggests that Rcav
= (σ + σ0)/2 is an appropriate choice in theory, where σ
and σ0 are sizes of the solute and the solvent in the model
of Milischuk and Matyushov.30 Although these methods have
advantages over Eq. (54), they are either somewhat arbitrary or
too approximate to be applicable for real liquids. To avoid the
difficulties arising from this question, we will attack the reverse
problem, which is more appropriate for the aims of our paper:
we will determine the cavity radius Rcav from the measured
value of the dielectric constant, as done by Böttcher51 (thus
correcting his radii for the effect of the quadrupoles). Our
Eqs. (50) and (53) allow LQ to be calculated simultaneously.
We will show that this approach leads to consistent results for
the dependence of Rcav on T and p if the quadrupolarizability
of the medium is accounted for, and consistent results for LQ

itself, as well. The calculated values of Rcav can be used as
a useful benchmark for all theories that require this quantity
(the reader is referred to Refs. 17 and 47 for many examples
and a critical discussion).

Curie point. A feature of the theory of Onsager that he
accentuated is that it does not have a permanent dipole-
related Curie temperature.14 This is in contrast with the
earlier theory of Debye52 whose result suggests that at
low temperature, an infinite ε (i.e., pyroelectricity/permanent
electric polarization) can be expected, in disagreement with
the observations. Onsager, however, have not commented on
the fact that Eq. (50) still has an unphysical singularity at
certain high concentration at which 1 − αpXp = 0 (the factor
Xp is proportional to the concentration through 1/R3

cav, at least
according to Eq. (54)). It can be shown from Eqs. (15) and
(50) that the liquid reaches a “Curie concentration” when

R3
cav = αp/4πε0. (55)

Such a polarizability-related autopolarization is also in
contradiction with the observations. This means that Eq. (50)
is inapplicable for R3

cav < αp/4πε0 (and also in the vicinity
of R3

cav = αp/4πε0). Our result for αQ of a quadrupolar
Onsager fluid has the same defect—Eqs. (22) and (53)
predict autoquadrupolarization (corresponding to αQ = ∞ at
1 − αqXq = 0) at a concentration at which

R5
cav = 3αq/4πε0. (56)

The relations (55) and (56) set some limits for the parameters
of our model and allow for the simplification of the numerical
procedures for solving Eqs. (50) and (53) (these have one
physical and several parasitic solutions that violate the above
conditions).

B. Dielectric constant, quadrupolarizability and cavity
size of various liquids

What follows is the special part of this article, where
we use our theory to predict the quadrupolar length LQ and
the cavity radius Rcav of several liquids as a function of
density and temperature. We have analyzed 10 compounds
for which theoretical values of the molecular characteristics
p0, αp, q0, and αq have been reported in the literature
and for which precisely measured values of the dielectric
permittivity and density are published. The simplest of them
have zero permanent dipole and quadrupole moments (Ar,
Kr, Xe, and CH4); the following four liquids are made of
molecules that have non-zero quadrupole moments (N2, CO2,
CS2, and C6H6), and the final two have both p0 and q0 different
from zero (H2O and CH3OH), cf. Table I. Water and methanol
are interesting because their quadrupolar lengths have been
estimated previously by using the effect of the quadrupolar
strength of these solvents on the Born energy of ions and the
activity coefficient of dissolved electrolytes.9,10 In addition,
the Stokes shift of coumarin 153 was used8 to estimate the
quadrupolar strengths in carbon dioxide and benzene. The
analysis of liquid CH4, C6H6, and CH3OH is the first step
toward modelling the solvent properties of fuel, crude oil, and
lubricants. CO2 and CS2 are important solvents in practice
and are classical examples of quadrupolar liquids. Finally, the
liquid Ar, Kr, Xe, and N2 are interesting for being of rather
simple structure and for being studied in great detail at wide
range of conditions.

1. Ar

We aim at the determination of the cavity radius Rcav and
the quadrupolar length LQ of liquid argon using Eqs. (50) and
(53) and accurate measurements of its dielectric permittivity.
Data for the static ε have been reported for extreme
pressures and low temperatures by several authors.53–55

Maroulis and Bishop56 determined theoretically the molecular
parameters, αp and αq, required in our theory. However,
the quadupolarizability affects the dielectric permittivity very
weakly (yet measurably) compared to the main effect from
αp. For this reason, a small error in the value of αp can
result in masking the small effect from αq, and thereafter,
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TABLE I. Values of the molecular multipole moments and polarizabilities, and the coefficients in dependence (57) of Rcav on ρ.

Dipole moment
p0 (Cm) ×1030

Polarizability
αp/4πε0 (Å3)

Quadrupole moment
(q0:q0)1/2 (Cm2) ×1040

Quadrupolarizability
αq/4πε0 (Å5)

k0 (kg/m3) and kρ

in Eq. (57)

Ara 0 1.590 0 0.454 677.2
1.639b 0.2896

Kra 0 2.488 0 0.913 . . .

Xea 0 4.105 0 1.936 . . .

CH4
a 0 2.433 0 1.681 130.48

2.597b 0.6834

N2
a 0 1.737 4.08 1.12 379.6

1.739b 0.4952

CO2
a 0 2.63 11.43 2.21 259.5

2.98b 0.8945

CS2
a 0 8.215 8.88 11.40 761.7

0.5254

C6H6
a 0 10.25c 24.87 18.42 723.5

0.3022

H2Oa 6.204 1.470 8.074 0.496 Eq. (59)
8.073d

CH3OHa 6.062 3.364 16.436 3.121 1810.0
5.638e 3.32e 0.3633

aTheoretical values for Ar from Ref. 56; for Kr and Xe from Ref. 59; CH4 from Ref. 60; N2 - Ref. 64; CO2 - Ref. 65; CS2 - Ref. 70; C6H6 - Ref. 7; H2O - Ref. 79; CH3OH - Ref. 81.
bExperimental value based on data for ε of gaseous Ar, CH4, N2, and CO2, cf. the text.
cThe average from the experimental values cited in Refs. 74 and 75.
dCorrected for the origin coordinates, cf. the text.
eThese are experimental values cited in Ref. 81.

in unrealistic values of the calculated Rcav and LQ. To avoid
that, we take care to evaluate the value of αp independently,
with as high accuracy as possible, from data for ε of the
gaseous Ar.

a. Ar (gas). To check the reliability of the theoretical56

αp, we compared Onsager’s model with the ε and ρ data
for gaseous argon. We included in this analysis only the
measurements for dilute gas of density ρ < 80 kg/m3—under
such conditions, LQ is unimportant (it leads to difference
of less than 10−10ε0 in the predicted ε); in addition, Xp is
small since for gas ε ≈ ε0, Eq. (15), and therefore the term
αpXp ≪ 1 can be neglected. In this case, both Onsager’s
original model and Eq. (50) simplify to the same equation
(ε–ε0)(2ε + ε0)/3ε = αpC. We use this simplified formula
(which is nearly equivalent to Clausius-Mossotti’s44) for
the exact determination of αp from the measured ε and
C of the gas. We compared the permittivity that follows
from (ε − ε0)(2ε + ε0)/3ε = αpC with the experimental ones
(limited in the range ρ = 0 − 73 kg/m3, T = 278-399 K,
p = 4 × 105–6 × 106 Pa, ε < 1.023 × ε0, 29 experimental
points) to find a minimal standard deviation of devε
= 0.0001 × ε0, close to the experimental accuracy. The
analysis of devε as a function of αp (left as an unknown
parameter) reveals that the data agree with the theory when
αp/4πε0 is 1.639 ± 0.015 Å3, which means that the value
of Maroulis and Bishop56 (1.590 Å3) is underestimated

(compare also with 1.64 Å3 in Hill’s book57). Therefore,
we will use the value of αp that follows from the
experimental data for gas when dealing with liquid Ar
below. Probably, the theoretical αq is also lower than the
real value, but unlike αp, an error of several percents in αq

is inessential for the final results for LQ and Rcav of the
liquid.

b. Ar (liquid). We now proceed to the liquid argon data
from Refs. 53–55. For each measurement of ρ and ε at various
p and T , Eqs. (50) and (53) have two unknowns: Rcav and LQ,
for which we solve them (for the facilitation of the reader, a
sample Maple 18 code for the numerical procedure is provided
in Section D of the supplementary material93). The results are
illustrated in Fig. 3.

Let us first comment on the results for Rcav. As seen
in Fig. 3(a), the cavity radius varies in a narrow interval,
2.4-2.6 Å, much narrower than Onsager’s Eq. (54) would
predict. The value of Rcav is larger than the hard sphere
radius of Ar (1.7 Å) and smaller than the minimal distance
between two atoms (3.4 Å)—thus, the relation Rcav = σ that
we expect to hold in the continuum single particle limit of
the perturbation theory does not agree with the data for Ar.
At low densities, the value of ε is insensitive to Rcav and
in result the calculated cavity radii become very dispersed.
Therefore, we will not discuss the data for ρ < 750 kg/m3

(C < 19M). We analyzed the Rcav data in Fig. 3(a) to find that
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FIG. 3. (a) Cavity radius Rcav of liquid
argon as a function of molar concentra-
tion C , based on data53–55 for its dielec-
tric permittivity and density and Eqs.
(50) and (53). The gray line is Rcav ac-
cording to Onsager’s assumption (54).
The black line is Eq. (57). Data for Kr
and Xe are given for comparison (us-
ing ε and ρ by Amey and Cole55). (b)
Quadrupolar length LQ as a function of
C calculated from the same data and
equations. Ideal gas approximation (1)
is given for comparison (in gray) for Ar.

1/R3
cav is an almost linear function of ρ and does not depend

on the temperature (in the range ρ = 750-1750 kg/m3, T
= 84-399 K, p = 105-9 × 108 Pa, ε = 1.26-1.65 × ε0). There-
fore, instead of Eq. (54), we tested the following empirical
relation:

m
4
3πR3

cav
= kρρ + k0; (57)

here, m is the atomic mass of Ar. The coefficients kρ and k0
were determined by regression over the experimental data for
ε vs. the theoretical permittivity following from Eqs. (50),
(53), and (57) (solved for the unknown Rcav, LQ, and ε).58

The minimization of the respective dispersion of ε yields
kρ = 0.2896 and k0 = 677.2 kg/m3, with standard deviation
between the predicted and the experimental permittivities
devε = 0.0009 × ε0. We can use Eq. (57) to relate the
compressibility coefficient of the cavity to the compressibility
of the liquid argon,

R3
cav

∂

∂p
1

R3
cav
=

ρ

ρ + k0/kρ

1
ρ

∂ρ

∂p
; (58)

a similar relation holds for the coefficients of thermal
expansion. From these relations, it follows that the cavity’s
compressibility and expansion coefficient are lower than
1/ρ × ∂ρ/∂p and 1/ρ × ∂ρ/∂T by a factor of ρ/(ρ + k0/kρ)
= 0.25-0.4.

The quadrupolar length of Ar is rather small—less than
0.2 Å, Fig. 3(b). For this reason, LQ can be, in fact, safely
neglected in Eq. (50), in which case it simplifies to Onsager’s
original equation. If, instead of Eq. (50), Rcav is calculated
from the latter (as Böttcher51 did), the obtained radii remain
almost unchanged. As we will see below, this is not the case
with quadrupolar liquids.

In Fig. 3(b), we compare what follows from our Eq. (53)
for LQ with the ideal gas formula (1) (in L2

Q = αQ/3ε, we use
the experimental values of ε). As seen, the quadrupolar length
of the Onsager fluid does not differ much from the gaseous
approximation; the exact quadrupolar length is larger by at
most 8%, mostly due to the cavity field gradient factor Y∇E
in Eq. (53) (while the reaction field gradient term αqXq is
small).

2. Kr and Xe

The data for ε and ρ of Amey and Cole55 for liquid Kr
and Xe at low temperatures are processed in a similar manner
and the results for Rcav and LQ are shown in Fig. 3. The values
of Maroulis59 are used for αp and αq (Table I). The calculated
cavity radii are quite uncertain for both gases because a tiny
error in the values of ε or αp can lead to significant change
of the calculated value of Rcav. For example, if instead of59

αp/4πε0 = 4.105 Å3 the value 4.0 Å3 of Hill57 is used for Xe,
the calculated Rcav will be 3.2 Å instead of 4.1 Å. On the other
hand, we found that the values of LQ are not so sensitive to
small errors in the value of ε or αp and are therefore more
trustworthy. According to Fig. 3(b), at a given concentration,
the quadrupolar length of the noble gases increases with their
atomic number.

3. CH4

Maroulis60 calculated the molecular polarizability and
quadrupole polarizability of methane (p0 and q0 are zero).
Data for ε and ρ of methane at high pressures have been
reported in Refs. 61 and 62.

a. CH4 (gas). As with the argon, the theoretical value
of the polarizability is not accurate enough for our purposes.
Therefore, we used the approach for Ar above to extract a very
accurate value of αp from the ε data for gaseous methane. The
range of the 36 experimental points used for this is such that
(ε − ε0)(2ε + ε0)/3ε = αpC holds: ρ < 40 kg/m3, T = 125-
600 K, ε < 1.048 × ε0, p = 105-107 Pa. The polarizability
found from these data is αp/4πε0 = 2.597 ± 0.003 Å3, with
devε = 0.000 02 × ε0, approaching the experimental accuracy.
This result compares well with 2.59 Å3 in Ref. 57 but is
significantly higher than the theoretical value60 2.4 Å3.

b. CH4 (liquid). The measured61,62 ε and ρ of dense
CH4 have been dealt with in the same way as those
for liquid Ar to determine methane’s cavity radius and
quadrupolar length (data range: ρ up to 455 kg/m3, T
= 90-300 K, p = 105-3.5 × 107 Pa, ε up to 1.68 × ε0; we
used the experimental αp and the theoretical αq from Table I).
The values of Rcav and LQ calculated from Eqs. (50) and (53)
are illustrated in Fig. 4 as functions of ρ.
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FIG. 4. (a) The cavity radius of dense
methane as a function of ρ at sev-
eral temperatures (based on data from
Refs. 61 and 62 and Eqs. (50) and
(53)). The colour indicates the temper-
ature. The gray line is Onsager’s as-
sumption Eq. (54), the black one—Eq.
(57) (kρ = 0.68 and k0= 130 kg/m3).
(b) Quadrupolar length LQ of dense
methane, calculated from the same data.
Gray dots: Eqs. (1) and (6); black line
is the theoretical prediction using (50),
(53), and (57).

Rcav decreases from 3.5 to 2.5 Å (compare to the van
der Waals radius of CH4, 2 Å). The determined Rcav are
nearly equal to those following from Böttcher’s approach (i.e.,
from Eq. (50) with LQ = 0; not shown) and are significantly
lower than Onsager’s assumption (54). The data points fall
approximately on a single curve, which suggests that Rcav
is a function of the density only (note the wide temperature
interval). The analysis of the curve shows that Eq. (57) holds
within the dispersion of the calculated Rcav. To determine the
coefficients kρ and k0 in Eq. (57), we used only the data with
ρ > 200 kg/m3 where the data points are less dispersed. The
minimization of the dispersion of the theoretical permittivity
following from Eqs. (50), (53), and (57) vs. the experimental
ε yields kρ = 0.6834 and k0 = 130.48 kg/m3, with standard
deviation devε = 0.0004 × ε0.

The quadrupolar length in Fig. 4(b) increases with ρ from
0.15 to 0.3 Å. At a given density, LQ is independent of the
temperature within the dispersion of the calculated values
(according to Eq. (53); this is possible only because Rcav is
independent of T). As with argon, the exact LQ is slightly
higher than the one following from ideal gas formula (1) and
Eq. (6).

4. N2

The liquid nitrogen is our first example of a true
quadrupolar liquid since it has non-zero permanent quadrupole
moment q0 and zero permanent dipole moment p0. Accurate
data for the dielectric permittivity and density are available61,63

for gaseous and liquid nitrogen. Maroulis and Thakkar64 used
fourth order many-body perturbation theory to calculate the
required molecular characteristics (αp, αq, and q0) of N2.

a. N2 (gas). We checked the reliability of the theoret-
ical64 αp by using the equation (ε − ε0)(2ε + ε0)/3ε = αpC to
determine αp from the data for gaseous nitrogen (we analyzed
only the measurements for densities ρ < 100 kg/m3, where
the quadrupole terms and the value of Rcav are unimportant
for the predicted ε). The permittivity that follows from this
equation is compared with the experimental ε in the range ρ
= 0-100 kg/m3, T = 77-1500 K, p = 105-107 Pa, ε < 1.047
× ε0, 38 data points. The analysis of devε as a function of
αp (left as variable) leads to best value αp/4πε0 = 1.739

± 0.005 Å3, which means that the value of Maroulis and
Thakkar (1.737 Å3) is accurate; for comparison, Hill57

gives 1.74 Å3. The minimal standard deviation is devε
= 0.000 05 × ε0, close to the experimental accuracy.

b. N2 (liquid). We analyze the data from Refs. 61 and 63
for liquid nitrogen (in the range ρ up to 870 kg/m3, T
= 63-300 K, p = 105-3.5 × 107 Pa, ε up to 1.5 × ε0). The the-
oretical values are used for αp, αq, and q0 (Table I). For each
measured ρ and ε, Eqs. (50) and (53) are solved for the two
unknowns: Rcav and LQ. The results are illustrated in Fig. 5.

Let us first consider the magnitude of the effect
of LQ on the value of the dielectric permittivity ε for
quadrupolar liquid such as N2. This effect is stronger for
dense fluids, where LQ is high and Rcav is low (so that the
quadrupolar f and g factors differ more from 1, cf. Eqs.
(17), (24), (30), and (35)). Taking the datum61 for the densest
nitrogen (namely, ρ = 871.778 kg/m3, ε = 1.470 67 × ε0 at
T = 65.32 K, p = 107 Pa), we solve Eqs. (50) and (53) to
find that LQ = 1.21 Å and Rcav = 2.39 Å at this pressure and
temperature. If we now use the same cavity radius but neglect
LQ in Eq. (50) (i.e., if we use Onsager’s original equation),
we can determine from it ε = 1.472 44 × ε0. Therefore, the
direct effect of the quadrupoles on the dielectric permittivity
is to decrease it by 1.472 44–1.470 67 ≈ 0.002 × ε0, due to
the decrease of the cavity field in the presence of quadrupoles
(decreased YE in Eq (50)). This effect is 100 smaller than the
main contribution from the polarizability αp of N2, yet, it is
100 larger than the experimental precision, so the accurate
measurements of the dielectric constant are indeed suitable
for the determination of LQ. It is also interesting to compare
the quadrupole moment q of N2 in the liquid phase with
q0 in gaseous phase. From Eq. (42), it follows that q
increases by several percents. For the values above for ρ,
ε, Rcav, and LQ at T = 65.32 K, p = 107 Pa, we calculate
1/(1 − αqXq) = 103.2%.

Let us discuss now the quadrupolar length of N2. For
molecules of non-zero q0, from Eq. (53), it follows that
LQ is a function of temperature as seen in Fig. 5(b). This
results also in a weak dependence of ε on T at fixed ρ,
which is absent in Onsager’s original theory. The outcome
is an artificial dependence of Böttcher’s Rcav on T . This is
illustrated in Fig. 5(a): the radii that follow from Eq. (50) with
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FIG. 5. (a) The cavity radius of N2 cal-
culated from Eqs. (50) and (53) and
experimental data for static ε and ρ
from Refs. 61 and 63. The colour in-
dicates the temperature. The gray sym-
bols are Böttcher’s Rcav following from
the original theory of Onsager (Eq. (50)
with LQ = 0). The black line is Eq. (57)
with kρ = 0.50 and k0= 380 kg/m3. (b)
The quadrupolar length LQ following
from the same model and data. Gray
dots: ideal gas approximation for αQ,
Eqs. (1) and (6), calculated with the
experimental values of ε.

LQ = 0 are highly dispersed and show strong dependence on
T . However, when the quadrupolarizability of the medium is
accounted for, Rcav becomes a neat function of ρ only. Thus,
the temperature dependence of nitrogen’s ε and Böttcher’s Rcav
turns out to be consequence of the quadrupolar strength of the
liquid.

The data in Fig. 5(a) again agree well with linear
dependence of 1/R3

cav on ρ for densities above 450 kg/m3

(below that density, ε does not depend strongly on Rcav
and the calculated radii are uncertain). We tested Eq.
(57) by regression analysis of the experimental data for
nitrogen’s ε vs. the permittivity predicted from our Eqs.
(50), (53), and (57) (solved for the unknown Rcav, LQ and
ε). The minimization of the respective dispersion yields
kρ = 0.4952 and k0 = 379.6 kg/m3, with standard deviation
between the predicted and the experimental permittivities
devε = 0.0005 × ε0. These values and Eq. (58) suggest
that the compressibility of the nitrogen’s cavity is about
twice smaller than the compressibility of the liquid N2 at
ρ > 450 kg/m3.

5. CO2

a. CO2 (gas). Unlike the polarizability of N2, the
reported theoretical αp of CO2 differ significantly from the

experimental ones. Even the highest theoretical value we
found65 is significantly smaller than the one following from
measurements of ε of the dilute gas. Using data for gaseous
CO2 from Refs. 66–68, we find as for Ar, CH4, and N2 above
that for carbon dioxide, αp/4πε0 = 2.98 ± 0.02 Å3 (leading to
devε = 0.0002 × ε0 in the range ρ = 0-75 kg/m3, T = 273-373
K, p = 106-4 × 106 Pa, ε < 1.039 × ε0, 22 data points).

b. CO2 (liquid). We used then the data by Moriyoshi
et al.66 and Eqs. (50) and (53) to calculate the radii and
the quadrupolar lengths in Fig. 6 (ρ up to 1050 kg/m3,
T = 273-353 K, p = 106-3 × 107 Pa, ε up to 1.67 × ε0). For
αq and q0, we use the theoretical values of Maroulis, αp is
the experimental one (Table I).

As with N2, for liquid CO2, there is a significant difference
between Böttcher’s radii and ours. Onsager’s original equation
for ε(Rcav) leads to artificial dependence of Rcav on T while
our radii depend on ρ only (within the dispersion of the
points). The data in Fig. 6(a) agree with Eq. (57) for
Rcav vs. ρ. The coefficients kρ and k0 were determined as
above, from regression over the experimental data with ε
vs. density predicted from Eqs. (50), (53), and (57) (solved
for the unknown Rcav, LQ, and ε). The minimization of
the dispersion for the data66 above ρ > 750 kg/m3 yields
kρ = 0.8945 and k0 = 259.5 kg/m3, with standard deviation

FIG. 6. (a) Cavity radius of CO2 and
CS2 as a function of their concentra-
tion C , calculated with Eqs. (50) and
(53) and experimental data66,69 for ε
and ρ. The colour indicates the temper-
ature. The gray symbols are Böttcher’s
Rcav following from Onsager’s original
equation (Eq. (50) with LQ = 0). Gray
line is Eq. (54); black line is Eq. (57)
with kρ = 0.89 and k0= 260 kg/m3 for
CO2. (b) The quadrupolar length LQ

following from the same model.
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between the predicted and the experimental permittivities
devε = 0.0009 × ε0.

The quadrupolar length reaches significant values. For
the datum66 for the densest CO2 (namely, T = 273.15 K,
ρ = 1054.3 kg/m3, p = 30 MPa, ε = 1.670 92 × ε0), we find
from Eqs. (50) and (53), Rcav = 2.45 and LQ = 1.43 Å. If
Onsager’s equation is used instead of Eq. (50) (i.e., if LQ

is set equal to 0), the value Rcav = 2.45 Å corresponds
to a dielectric permittivity of ε = 1.663 74 × ε0. Thus, the
quadrupoles contribute with about +0.007 ×ε0 to the value
of the dielectric constant—an effect in the opposite direction
in comparison with N2, which is due to the increase of the
reaction field in the presence of quadrupoles (for the highly
polarizable CO2 molecule, the Xp reaction factor in Eq. (50)
is more important than the cavity field factor YE). At these
conditions, according to Eq. (42), the quadrupole moment q
of the CO2 in liquid state increases compared to q0 for gas by
a factor of q/q0 = 1/(1 − αqXq) = 1.065.

Our results can be tentatively compared with the CQ

coefficient that Jeon and Kim8 determined from the Stokes
shift of coumarin 153 in liquid CO2, which yields αQ

= 8πε0CQ/3 = 0.42 × 10−30 F m at ρ = 800 kg/m3 (18.2M)
and room temperature. Our values of ε, LQ and αQ

at these conditions are ε = 1.48 × ε0, LQ = 1.2 Å and
αQ = 3εL2

Q = 0.58 × 10−30 F m (with Rcav from Eq. (57)
and parameters from Table I).

6. CS2 (liquid)

Data for ε and ρ of the liquid are taken from Mopsik.69

The values of αp, αq, and q0 in Table I are due to
Maroulis.70 The calculated Rcav for all data points (in the
range ρ = 1255-1480 kg/m3, T = 223-298 K, p = 105-2 × 108

Pa, ε = 2.6-3.1 × ε0) fall on a single Rcav vs. ρ curve, Fig. 6(a),
which agrees with Eq. (57). The values kρ = 0.5254 and
k0 = 761.7 kg/m3 are determined from the comparison of Eqs.
(50), (53), and (57) with the experimental ε and ρ. They
correspond to devε = 0.0018 ×ε0.

The cavity radii of CS2 are compared to those of CO2 in
Fig. 6(a). The comparison demonstrates clearly that the cavity
radius is specific for each molecule, which is contrary to what
follows from Onsager’s assumption (54) (which predicts the

same value of Rcav for any gas of concentration C). The CS2
cavity is larger and less compressible than that of CO2 of
the same concentration. The quadrupolar length of CS2 is
smaller than that of CO2—although CS2 has higher αq and
q0 than CO2, it also has larger Rcav and ε which lead to the
decreased LQ.

CS2 is notorious with its large molecular quadrupole
polarizability αq—a quantity that has been largely neglected
in the literature. However, it is far from negligible: if αq is
neglected, the calculated quadrupolar lengths of CS2 will be
smaller by about 30% (corresponding to αQ smaller by 50%).

7. C6H6 (liquid)

Data for ε and ρ of the liquid are taken from
Refs. 71–73 (in the range ρ = 834-946 kg/m3, T = 297-337
K, p = 105-1.6 × 108 Pa, ε = 2.2-2.4 × ε0). The values of
αq and q0 are reconstructed from the scarce notes of Jeon
and Kim.7 For αp, we use the average of the experimental
values cited in Refs. 74 and 75. The values kρ = 0.3022 and
k0 = 723.5 kg/m3 are determined from the comparison of Eqs.
(50), (53), and (57) with the experimental ε and ρ. They
correspond to devε = 0.0019 × ε0.

There are several interesting features of the results for
benzene. First, it has quadrupolar length larger than LQ of any
other liquid studied here. At room temperature and normal
pressure, where14 ρ = 874 kg/m3 and ε = 2.276 × ε0, our
Eqs. (50) and (53) yield Rcav = 3.15 Å and LQ = 2.0 Å. The
respective macroscopic quadrupolarizability is αQ = 3εL2

Q

= 2.4 × 10−30 F m. At the same time, gas formula (1) gives
much lower values (LQ = 1.4 Å and αQ = 1.15 × 10−30

F m). Jeon and Kim determined αQ from Stokes shift
data of coumarin in C6H6 and obtained αQ = 8πε0CQ/3
= 2.6 × 10−30 F m. This compares well with our value, but the
coincidence might be accidental since the Stokes shift formula
of Jeon and Kim is based on a set of boundary conditions
different from Eq. (8).

The comparison of our cavity radii in Fig. 7(a) with
those stemming from the original theory of Onsager (Eq. (50)
with LQ = 0) demonstrates a clear advantage of our model.
If the quadrupolar length is neglected, the calculated Rcav has
unphysical dependence on ρ—the cavity size expands in a

FIG. 7. (a) Cavity radius of C6H6 as
a function of ρ, calculated with Eqs.
(50) and (53) and experimental data
for ε and ρ from Refs. 71–73. The
red circles71 correspond to various tem-
peratures and pressure 1 atm, and the
black72—to various pressures and tem-
perature 323 K. The gray symbols are
Böttcher’s Rcav following from On-
sager’s equation (Eq. (50) with LQ

= 0). The black line is Eq. (57) with
kρ = 0.30 and k0= 720 kg/m3. (b) The
quadrupolar length LQ following from
the same model. Gray dots: ideal gas
approximation for αQ, Eqs. (1) and (6),
with the experimental ε.
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denser fluid, which corresponds to negative compressibility
(gray dots above 880 kg/m3). Our values of Rcav calculated with
the quadrupolar generalization of Onsager’s model display
normal behaviour. The apparent negative compressibility of
Böttcher’s radii can be traced to the increase of LQ with ρ,
Fig. 7(b).

8. H2O (liquid)

Water is by far the best studied fluid—data for the
dielectric permittivity76 and the density76–78 are available for
a wide range of conditions. Yet water is a problematic fluid
to study and is interesting as an example for the failure of
Onsager’s model. The problems start in gas phase, where H2O
has a significant tendency for dimerization, which complicates
the direct experimental determination of its permanent dipole
and polarizability—for this reason, there is some disagreement
in the values of p0 and αp reported in the literature by different
authors. For p0, αp, q0, and αq, we use the theoretical values
reported by Batista et al.,79 cf. Table I (these are higher than
the theoretical values of Bishop and Pipin80 and Huiszoon81

but compare well to the experimental αp and p0 reported
in Refs. 74 and 75). Liquid water, on the other hand, is
problematic with its significant conductivity. It leads to a
much lower accuracy of the experimental ε (of the order of
0.01 × ε0). But the largest problem is that a water molecule
in liquid phase, with its high dipole moment and small size,
creates an extremely large field that leads to nearly complete
dielectric saturation in the vicinity of the cavity—this means
that Onsager’s model (and Eqs. (46) and (47) in particular) is in
serious error and leads to spurious results, as we show below.

Note that the value of q0 of a polar molecule depends on
the choice of origin. For the sake of accuracy, we transferred
the value of q0 of Batista et al. from his coordinate system
(origin in the centre of mass of H2O) to one with origin in the
centre of the O atom, which agrees better with the geometry
of Onsager’s model. The relation q0 = q0,Batista+ p0∆r + ∆rp0
was used for this transfer, where ∆r is the vector-position
of the origin of Batista et al. in an O-centred coordinate
system. The final result for q0:q0 is not affected significantly
(cf. Table I).

We limited ourselves with the data76 for liquid water
in the range 268-373 K (supercooled water included), up to

3 × 108 Pa, ρ = 960-1100 kg/m3, ε = 55-90 × ε0. The results
for Rcav and LQ vs. ρ are shown in Fig. 8. Both are almost
constant—in the whole range of conditions, Rcav varies in the
range 1.40-1.43 Å (perhaps fortuitously, this is very close to
water’s van der Waals radius), and LQ varies between 0.28
and 0.29 Å.

Unlike the cases of Ar, CH4, N2, and CO2, there is a small
but statistically significant dependence of Rcav on temperature.
Therefore, instead of Eq. (57), we tested a linear function that
involves this temperature dependence,

m
4
3πR3

cav
= kρρ − kTT + k0. (59)

We compared the theoretical permittivities that follow from
Eqs. (50), (53), and (59) with 183 data points for ε; the
dispersion was minimized with respect to the parameters of Eq.
(59), leading to best values k0 = 2765.9 kg/m3, kρ = 0.1264,
and kT = 1.1137 kg/m3K. The minimal standard deviation is
devε = 0.2 × ε0.

The value that follows from Eq. (58) for R3
cav∂R−3

cav/∂p
at room temperature is nearly 20 times lower than water’s
own compressibility ρ−1∂ρ/∂p. This is in agreement with
the well-established fact that the cavities of ions in water
are incompressible.9 On the other hand, −R3

cav∂R−3
cav/∂T and

−ρ−1∂ρ/∂T are of the same order of magnitude, again
in agreement with what was found for ions9 (though for
ions −R3

cav∂R−3
cav/∂T ≈ −ρ−1∂ρ/∂T while at room temperature

our −R3
cav∂R−3

cav/∂T is about twice larger than −ρ−1∂ρ/∂T
= 0.000 26 K−1).

The value of LQ we found here, 0.3 Å, is twice as
large as the value following from the gaseous Eq. (1) (which
is 0.16 Å at room temperature), yet, it is still by an order
of magnitude smaller than our previous estimations—by
analyzing data for partial molar volumes, partial molar
entropies9 and activity coefficients10 of aqueous electrolytes,
we estimated LQ at about 2 Å. This discrepancy indicates
that there is a problem with the applicability of the cavity
model in linear approximation to aqueous solutions. To
demonstrate this, we analyzed the other consequences of
Onsager’s theory. Let us first calculate the dipole moment
of water in the liquid phase. According to Eq. (38) (with
E0 = 0), the value of p is larger than p0 by a factor of
1/(1 − αpXp) = 2.07, due to the extremely high reaction field

FIG. 8. (a) Cavity radius of H2O cal-
culated from Eqs. (50) and (53) and
experimental data for ε and ρ from
Refs. 76–78. The colour indicates the
temperature. The lines are Eq. (59)
at the indicated temperatures. (b) The
quadrupolar length LQ following from
the same model.
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(Ereact = Xpp = 4 × 1010 V/m). Although the factor is indeed
significant (the increase is 167% in ice79 and probably around
159% in liquid82 at normal conditions), 207% is clearly an
overestimation. Analogously, according to our model and Eq.
(42), the quadrupole moment increases by a factor of q/q0
= 1/(1 − αqXq) = 1.36. A more probable value of this factor
is42 1.13.

There are several approximations in Onsager’s model
that fail in water according to the above numbers. Two
of them are the neglected hyperpolarizability and dipole-
quadrupole polarizability of the water molecule.79 Another
problem is related to the fact that liquid water is too close
to its αp-related Curie point where we expect Onsager’s
model to fail—according to Eq. (55), the singularity is at
Rcav = 1.14 Å which is dangerously close to the value 1.4 Å
in Fig. 8(a). But the most important failure seems to be
the assumed linear equation of state P = (ε − ε0)E of the
continuum near the cavity. The field E in the liquid phase
can be obtained from Eq. (14); in the range r = Rcav − 3Rcav,
using the results for the parameters at room temperature,
we obtain that the maximal value of Er varies in the range
1011-1010 V/m. This field is very high and dielectric saturation
will inevitably occur in the first layer of water molecules
(the first neighbours will be oriented). The neglect of this
effect will lead to a significant overestimation of the reaction
field which is indeed the case. If one uses P = (ε − ε0)E and
the field following from Eq. (14), integration of P in the
range r = Rcav − 3Rcav will result in a dipole moment per each
water molecule in the first coordination shell of the order
of 50 × p0, while even at complete dielectric saturation, it
cannot exceed p0 (putting aside the molecular polarizability).
Therefore the reaction of the medium in the vicinity of
the cavity is overestimated by a factor of 50, and this
region has a significant contribution to the reaction field.
Let us also mention that a saturated layer also goes with
fixed quadrupole moment—a sort of orientational dipole-
quadrupole polarizability stemming from the Boltzmann
factor exp[−(up + uq)/kBT]. This effect is neglected in
our study—our assumption that the two components of
the Boltzmann distribution (Eq. (46) and Eq. (66) in the
supplementary material93) can be dealt with separately is
valid only for (up + uq) ≪ kBT .

We can conclude that a linear Onsager model involving
the constitutive relation P = αPE is inapplicable for water. The
same is valid for the Born energy expression used in Refs. 9
and 10 for extracting water’s LQ from experimental data.
Therefore, both LQ = 0.3 and 2 Å involve a very significant
approximation and are probably correct only within an order
of magnitude.

9. CH3OH (liquid)

Huiszoon81 calculated the theoretical p0, αp, q0, and αq

of methanol given in Table I. Since his results for water are not
too accurate, we expected the same to be valid for methanol.
We therefore use the experimental values provided in Ref. 81
for p0 and αp, which agree well also with those by Hill.57

Data for the dielectric permittivity and density of liquid
CH3OH from Refs. 83–87 are analyzed. The results for
methanol’s Rcav and LQ are similar to those obtained for
water, Fig. 9. Both Rcav and LQ vary little in the considered
range (T = 270-330 K, ρ = 750-860 kg/m3, p up to 1.1 × 108

Pa, ε = 26-38 × ε0). Rcav is close to 1.83 ± 0.1 Å, which is
slightly higher than Böttcher’s cavity radius. The quadrupole
length varies in the range 0.8-0.81 Å and is 2.4 times
larger than the one following from the gaseous equation
(1). It compares satisfactorily with the quadrupolar length of
methanol obtained from the data for the activity coefficient of
NaBr in methanol solution,10 LQ = 1.1 ± 0.2 Å.

The difference between the theoretical value 0.81 Å and
the experimental one, LQ = 1.1 ± 0.2 Å, is probably due to
the problems we found with water. Methanol’s cavity size,
1.82 Å, is relatively close to the quadrupolar Curie point (56)
(1.56 Å), where our model is expected to fail. According to
Eq. (38), the dipole moment p of methanol is higher than
p0 by a factor of 2.16, which is too high, and reaction field
(15) is of magnitude 2 × 1010 V/m which is large enough for
hyperpolarizability to play a role. The field in the vicinity
of the cavity that follows from Eq. (14) varies between 0.3
and 4 × 1010 V/m in the range r = Rcav − 3Rcav. This is much
smaller than the field around a cavity in water, which explains
the reasonable value we obtained for LQ. Yet saturation effect
must be significant also for methanol. Another problem with
methanol is that its molecule is not spherical. The cavity radius

FIG. 9. (a) The cavity radius of
CH3OH calculated from Eqs. (50)
and (53) and experimental data for
static permittivity and density from
Refs. 83–87. The colour indicates the
temperature. The black line is Eq. (57).
The gray symbols are Böttcher’s radii
(obtained from Eq. (50) with LQ = 0).
(b) The quadrupolar length LQ follow-
ing from the same model.
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we obtained (1.83 Å) is smaller than the van der Waals radius
of the –CH3 group alone. Since Rcav that we calculate is an
effective characteristic of the polar properties of the liquid (as
far as we calculate it from ε), it is not surprising that the size
of the small and polar –OH group (1.4 Å) seems to control
the value of Rcav.

The data in Fig. 9(a) agree within the dispersion of the
data points with Eq. (57). We determined the coefficients
kρ = 0.3633 and k0 = 1810.0 kg/m3 as above; the deviation of
our theory against the experimental data for ε corresponding to
these values is devε = 0.7 ×ε0, close to the deviation between
the measurements of different authors (liquid methanol has
significant conductivity which complicates the measurement
of ε).

IV. DISCUSSION

The most important theoretical results of this paper are
the following:

(i) The reaction field and reaction field gradient have been
calculated for quadrupolar medium, Eqs. (15) and (22).
These expressions can be used for the analysis of a large
family of problems, such as those for the electrostatic
contribution from the (non-polar) solvent-(polar) solute
interaction to the chemical potential of dissolved species,
to the solvatochromic effect, to the kinetic rate constants
in solution, etc.

(ii) The cavity field and field gradient have also been
calculated, Eqs. (28) and (33). They stand in the base
of another family of problems for the electrostatic
interactions between charged and polar particles through
non-polar medium, and can be used for the calculation of
the respective virial coefficients and association constants
in solution.

In Sec. II D, the results for Ereact, Ecav, (∇E)react, and
(∇E)cav have been used to generalize the classical spherical
cavity model of Onsager14 to a linear fluid dielectric made of
molecules of non-zero quadrupole moment q0 and quadrupole
polarizability αq. Like the original model, our generalization
allows the calculation of the dielectric permittivity of the fluid
provided that the cavity size is known. What is new is that
our model also gives the macroscopic quadrupolarizability
αQ of the solvent. We applied it to 10 fluids of three distinct
types: the non-polar and non-quadrupolar (but polarizable and
quadrupolarizable) Ar, Kr, Xe, and CH4; the quadrupolar N2,
CO2, CS2, and C6H6, and the polar H2O and CH3OH. The
analysis allows the calculation of the cavity radius and the
quadrupolar length of these fluids. The following conclusions
have been made:

(i) The quadrupoles in the medium affect ε measurably and
accurate data for ε of a given liquid allow the quadrupolar
strength of this liquid to be calculated.

(ii) In the case of quadrupolar liquids, the quadrupoles result
in a weak temperature dependence of ε that is absent in
Onsager’s original theory.

(iii) We found that the cavity radius is a function of ρ
only (except for water, probably due to the failure

of our model). In several aspects, the cavity radii we
calculated make better sense than Böttcher’s (i.e., than
those stemming from the original theory of Onsager).
First, Böttcher’s radii possess an artificial dependence on
T that drops off when LQ is accounted for (Figs. 5(a) and
6(a)). Second, Böttcher’s radii may increase with density
(Fig. 7(a))—such dependence corresponds to negative
compressibility of the cavity which is unrealistic.
This defect also disappears when medium’s quadrupole
polarizability is taken into account.

(iv) The value LQ = 0.81 Å for CH3OH calculated from
our theory corresponds well with LQ = 1.1 ± 0.2 Å
obtained previously from the effect of the ion-quadrupole
interactions on the activity coefficient of NaBr in
methanol solution.10 The results for LQ of CO2 and
C6H6 are in fair agreement with those that Jeon and Kim8

determined from Stokes shift data. To our knowledge,
there is no other model in the literature that leads to such
reasonable values for the quadrupolarizability of liquids.

(v) Our model allows the parameterization of the exper-
imental ε(ρ,T) for a wide range of conditions with
only 2 parameters: the coefficients kρ and k0 in Eq.
(57). The values listed in Table I and Eqs. (50), (53)
and (57) can be used to calculate ε with extreme
accuracy as a function of ρ and T : for non-polar
liquids, devε = 0.0004-0.0010 × ε0, approaching the
experimental accuracy. The same procedure yields also
the value of the macroscopic quadrupole polarizability
and Rcav.

Let us finally discuss the limitations of the model and the
routes to its development:

(i) The macroscopic theory of the quadrupole interactions
has an obvious fault—the characteristic distance of the
short-range quadrupole interaction is of the order of the
molecular sizes so their continual description is a strong
approximation. As with dipoles, this can be corrected
by introducing levels of atomic description. The classical
theory of Onsager for the dielectric permittivity of liquids
has been largely superseded by Kirkwood’s theory43 that
does that. Therefore, an obvious extension of this work is
the generalization of Kirkwood’s model to quadrupolar
solvents. Of course, a more accurate approach is the
microscopic one;28–36 the existing works in that direction
need, however, to be generalized to molecules of non-
zero quadrupolarizability αq, since it has a significant
contribution to the quadrupolar strength of the liquids
(50% of αQ of CS2 is due to the quadrupole polarizability
of the molecule).

(ii) Onsager’s model works well with quadrupolar liquids
but faces severe problems when applied to small polar
molecules such as water. We traced the main problem
to the fact that the model fails to describe correctly
the dielectric saturation in the vicinity of the cavity. To
resolve this problem, one must use non-linear constitutive
relations for P and Q, involving also orientational dipole-
quadrupole polarizability. This was done in part by
Booth,88 but his analysis is far from complete.
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(iii) For most molecules, the cavity shape is different from
sphere. Böttcher,15 among others, generalized the original
model of Onsager to ellipsoidal cavities. The same
generalization is required for quadrupolar solvents.

Some additional discussion on the limitations of
Onsager’s theory is provided by Cichocki and Felderhof.89

A contribution of our work is that it corrects Onsager’s
model to make it applicable to liquids made of non-polar
molecules of large quadrupole moment. In the past, Onsager’s
model has been widely used to extract αp and p0 from the
experimental dependence ε(ρ,T) of liquids.15,41,74 Similarly,
our generalization allows in principle αq and q0 to be
determined from αQ(ρ,T) of a liquid.

The main field of application of our theory is the physical
chemistry of non-polar but quadrupolar solvents—i.e.,
dense liquids made of molecules without permanent dipole
moment. The quadrupole interactions play significant role in
the properties of these liquids, especially at high pressures.
The results in Sec. III B for liquid CH4, C6H6, and CH3OH are
the first step toward the development and parameterization of
a cavity model for solutions of polar molecules in fuels and
lubricants, a problem of significant practical importance. The
change of solubility of various polar and ionic substances
in fuel is resulting in the formation of internal nozzle
deposits,90,91 and in crude oil—in the polar asphaltene
deposits;92 the dipole-quadrupole interactions must play an
essential role in these processes. This will be demonstrated in
a following study.
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