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Recently, a spherical cavity (Onsager) model for
quadrupolar dielectrics has been proposed and used to calcu-
late the macroscopic quadrupolarizabilities of several common
solvents.1 In this Comment, one of the boundary conditions
used in Ref. 1 (for continuity of the displacement field) is
revised to account for the surface displacement field that occurs
at non-homogeneously polarized interfaces. We show that the
revised condition leads to more reasonable results.

The displacement field D in a quadrupolar medium
involves the divergence of the quadrupolarization tensor Q,

D = εE −
1
2
∇ ·Q, (1)

where ε is the dielectric permittivity and E is the electric field
intensity. In order to solve Coulomb’s equation (∇ ·D = 0)
for problems involving an interface between two quadrupolar
media, a boundary condition is required for D. In Ref. 1, we
used the condition for continuity of the normal displacement
field (Dr) at the surface of the spherical cavity, Eq.1 (8) (we
cite the equations from Ref. 1 with superscript 1),

Dr(r = Rcav − 0) = Dr(r = Rcav + 0), (2)

where Rcav is the radius of the cavity. This condition is valid
only in case that D has no δ-term in its singular expansion at
the surface of discontinuity (i.e., if D can be expressed as D+η+

� D�η�, where η+ = η(r �Rcav) and η� = η(Rcav � r), and D+

and D� are continuous functions of the coordinates in the
vicinity of r = Rcav; η and δ are the Heaviside and Dirac
functions). However, the quadrupolarization tensor is discon-
tinuous at the interface between the cavity and the medium, i.e.,
Q = Q+η+ + Q�η�; from Eq. (1), it then follows that D does
have a δ-term,

D = D+
η

+ + D−η− + DS
δ, (3)

where the bulk displacements D± stand for

D± = ε±E± −
1
2
∇ ·Q±, (4)

and the surface displacement field DS is given by

DS = −
1
2

er ·
(
Q+
−Q−

)
. (5)

a)E-mail: ris26@cam.ac.uk

Here, δ≡ δ(r �Rcav), er is the unit vector normal to the surface,
and we used the relations ∇η± = ±erδ. The correct boundary
condition in the case of non-zero DS reads2–4

Dr(r = Rcav − 0) = Dr(r = Rcav + 0) + ∇S · DS���r=Rcav
, (6)

where ∇S is the surface nabla operator (∇S = ∇ � er∂/∂r).
The derivations of this equation in Refs. 3 and 4 were for a
flat surface, and DS in Ref. 4 is produced by intrinsic sur-
face polarization. Nevertheless, Eq. (6) is valid2 also for the
case we investigate—spherical surface and DS induced by the
discontinuity of the bulk quadrupolarization, Eq. (5) (cf. the
supplementary material). The term∇S ·DS is zero for the prob-
lems of quadrupolar electrostatics we solved previously,5–7

since the involved surfaces were homogeneous. However, this
is not the case with the four basic problems required by the
Onsager model of quadrupolar dielectrics solved in Ref. 1. The
revised expressions follow.

Reaction fields of a dipole and a quadrupole. With
regard to the problem for a dipole p in the centre of a cavity,
the solution for the potential φp0 inside the cavity (r < Rcav)
remains formally the same (Eq.1 (13)), but the one outside the
cavity is, instead of Eq.1 (14),

φp =
pext · r

4πεr3
*
,
1 −

9
gp

L2
Q

R2
cav

r + LQ

Rcav
e
−

r−Rcav
LQ +

-
. (7)

Here LQ is the quadrupolar length. The external dipole moment
pext in Eq. (7) is proportional to p,

pext = YE p, (8)

where YE is given by Eq.1 (28), YE = 3f Eε/(2ε + f pε0). The
quadrupolar factors f p, gp, and f E in the formulae above stand
for the expressions

fp =
2 + 8x

2gp + 9x2 + 9x3
, fE =

2gp

2gp + 9x2 + 9x3
,

gp = 1 + 4x + 9x2 + 9x3, (9)

where x = LQ/Rcav; the formula Eq.1 (17) for fp is invalid. The
expression Eq.1 (15) for the reaction field Ereact remains for-
mally unchanged but with the new factor fp. The calculated
limit in Eq.1 (18) holds true with the new formulae presented
here; note that it is actually incorrect with the old ones due
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to an arithmetic mistake. This means that the revised Onsager
model following from the new boundary condition (6) leads
to the correct continuum single particle limit of the perturba-
tion theory of Milischuk and Matyushov,8 while the old one1

stemming from Eq. (2) does not.
Similar corrections are required in the formulae1 (20)–

(24) for the reaction field of a quadrupole q in a cavity. Instead
by Eq.1 (21), the potential φq at r > Rcav is given by

φq =
3 r · qext · r

8πεr5
*
,
1 −

18
gq

L2
Q

R2
cav

r2 + 3LQr + 3L2
Q

R2
cav

e
−

r−Rcav
LQ +

-
.

(10)

The external quadrupole moment qext is still proportional to
q, but instead of Eq.1 (23), the relation is

qext = Y∇Eq, (11)

where Y∇E is given by Eq.1 (33), i.e., Y∇E = 5f ∇Eε/(3ε
+ 2fqε0). The quadrupolar factors fq, f∇E , and gq above stand
for

fq =
1 + 6x + 6x2

gq + 12x2 + 18x3 + 18x4
,

f∇E =
gq

gq + 12x2 + 18x3 + 18x4
,

gq = 1 + 6x + 24x2 + 54x3 + 54x4.

(12)

Eq.1 (23) for the reaction field gradient is valid but with the
new fq-factor above.

Cavity field and cavity field gradient. The solution to
the problem for a cavity in a quadrupolar continuum polarized
by an external field E0, with the new boundary condition (6),
also changes compared to Eqs.1 (26)–(30). The potential φE

at r > Rcav is

φE = −E · r +
pext,E · r

4πεr3
*
,
1 −

9
gp

L2
Q

R2
cav

r + LQ

Rcav
e
−

r−Rcav
LQ +

-
. (13)

The cavity field Ecav is proportional to the external field E0,
formally with the same YE coefficient, Eq.1 (28), but with the
new quadrupolar factors (9). The vector pext,E in Eq. (13) is
the excess dipole moment of the cavity induced by the external
field, and instead by Eq.1 (29), it is given by

pext,E = −
4π
3

R3
cavYE (ε − ε0) E0. (14)

Finally, let us summarize the solution to the problem for
a cavity in a quadrupolar medium placed in an external elec-
tric field gradient (∇E)0. The cavity field gradient (∇E)cav is
proportional to (∇E)0 with the Y∇E coefficient from Eq.1 (33).
The potential outside the cavity is

φ∇E = −
1
2

r · (∇E)0 · r +
3r · qext,∇E · r

8πεr5

× *
,
1 −

18
Gq

L2
Q

R2
cav

r2 + 3LQr + 3L2
Q

R2
cav

e
−

r−Rcav
LQ +

-
. (15)

The excess quadrupole moment qext,∇E
of the sphere induced

by the external gradient (∇E)0 is given by the equation

qext,∇E = −
8π
15

R5
cavY∇EA∇E∇E0. (16)

The quadrupolar factors in these formulae are given by Eq.
(12) and the expressions

g∇E = 1 + 9x + 39x2 + 90x3 + 90x4,

A∇E =

(
1 + 9x2 g

∇E

2gq

)
ε −

(
1 − 3x2 1 + 3x + 3x2

gq

)
ε0,

Gq =
12gqA∇E

15
(
1 + 6x2) ε − 10ε0

.

(17)

Reciprocal relationships. Onsager9 observed that the
following reciprocal relation holds for the cavity field and the
external dipole in a dipolar medium: Ecav/E0 = pext/p = 3ε/
(2ε + ε0) (his Eq. (11)). An important outcome from the
revised boundary condition (6) is that such a relation is valid
also in a quadrupolar medium

pext

p
=

Ecav

E0
= YE . (18)

Analogous reciprocal relationship occurs for the external
quadrupole and the cavity field gradient

qext

q
=

(∇E)cav

(∇E)0
= Y∇E . (19)

The old boundary condition (2) leads1 to results that disagree
with Eqs. (18) and (19).

The macroscopic polarizability and quadrupolariz-
ability. The macroscopic polarizability and quadrupolarizabil-
ity of the medium are obtained in the manner described in
Ref. 1. The result for the polarizability αP reads

αP ≡ ε − ε0 =
YE

1 − αpXp

*
,
αp +

1
1 − αpXp

p2
0

3kBT
+
-

C. (20)

This is the sought generalization of Onsager’s9 formula for
ε to a quadrupolar medium. The respective equation for the
macroscopic quadrupolarizability αQ of an Onsager fluid is

αQ ≡ 3εL2
Q =

Y∇E

1 − αqXq

(
αq +

1
1 − αqXq

q0 : q0

10kBT

)
C. (21)

Here, the factors Xp and Xq are given by Eqs.1 (15) and (22),
and YE and Y∇E are given by Eqs.1 (28) and (33)—but with
the new expressions for fp, fq, fE , and f ∇E , Eqs. (9) and (12).
Eqs. (20) and (21) are setting the correct Onsager model for a
quadrupolar liquid, instead of Eqs.1 (50) and (53). The change
is significant enough to affect most of the results presented in
Ref. 1. Qualitatively, the results are similar, with one excep-
tion: according to Eqs.1 (51) and (52), the quadrupoles have a
stronger effect on ε in the case where p0 = 0, i.e., non-polar
liquids; according to Eq. (20), the relative effect is not so dif-
ferent for polar and non-polar fluids. Quantitatively, in most
cases, the new term ∇S · DS in Eq. (6) leads to a significant
change of the final values of αQ (up to 20%) and cannot be
neglected. Correspondingly, Table1 I and most figures in Ref.
1 are inaccurate—the revised ones follow.

Results. As in the previous work,1 we used the follow-
ing empirical relationship between the cavity radius and the
density of the fluid:

m
4
3πR3

cav

= kρ ρ + k0, (22)
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TABLE I. Values of the molecular multipole moments and polarizabilities, and the coefficients in dependence (22) of Rcav on ρ.

Dipole moment Polarizability Quadrupole moment Quadrupolarizability k0 (kg/m3) kρ devε /ε0 of Eq. (22)
p0 (C·m) × 1030 αp/4πε0 (Å3) (q0:q0)1/2 (C·m2) × 1040 αq/4πε0 (Å5) in Eq. (22) in Eq. (22) vs. the data for ε

Ar 0 1.639 0 0.454 655.5 0.3134 0.0009
Kr 0 2.488 0 0.913 . . . . . . . . .

Xe 0 4.105 0 1.936 . . . . . . . . .

CH4 0 2.597 0 1.681 122.84 0.7019 0.0004
N2 0 1.737 4.08 1.12 342.2 0.5445 0.0005
CO2 0 2.98 11.43 2.21 235.64 0.9102 0.0009
CS2 0 8.215 8.88 11.40 721.2 0.5513 0.0017
C6H6 0 10.25 24.87 18.42 695.2 0.3300 0.0019
H2O 6.204 1.470 8.073 0.496 Eq. (23) 0.19
CH3OH 5.638 3.32 16.436 3.121 1991.3 0.3534 0.7

where m is the molecular mass. The values of the coefficients
kρ and k0 we determined previously in Table1 I are based on
the old defective variant of the Onsager model. The correct
kρ and k0 are given in Table I here; they were determined by
regression over the experimental data for ε vs. the theoretical
permittivity following from our new Eqs. (20)–(22) (solved
for the unknown Rcav, LQ, and ε). In all cases but water, the
analysis of the data for ε suggested that Rcav is a function of
ρ only. For water, as in Ref. 1, statistically significant temper-
ature dependence was evident, and therefore, instead of Eq.
(22) we used

m
4
3πR3

cav

= kρ ρ − kT T + k0. (23)

For H2O, we compared the theoretical permittivities that fol-
low from Eqs. (20)–(23) with the data points for ε; the
dispersion was minimized with respect to the parameters of
Eq. (23), leading to best values k0 = 2853.7 kg/m3, kρ = 0.1195,
and kT = 1.057 kg/m3 K (slightly different from those deter-
mined in Ref. 1). The details for the experimental data and the
values of the molecular parameters used in this Comment are
described in Ref. 1.

Figs.1 5–9 in Ref. 1 are inaccurate, due to the defective
Eqs.1 (50) and (53). Figs. 1–5 here show the correct results.
For non-polar and non-quadrupolar fluids (Ar, Kr, Xe, CH4),
the change is very small, so the respective Figs.1 3 and 4 do not
require a correction. For quadrupolar but non-polar molecules
(N2, CO2, CS2, C6H6), the values of LQ calculated here at

the highest experimental densities are about 10% smaller than
those in Ref. 1 (corresponding to an error in αQ of about 20%).
In Fig. 3, the correct quadrupolar lengths of benzene calculated
via Eqs. (20) and (21) are compared with those from Ref. 1,
to highlight the importance of the term ∇S · DS in Eq. (6). For
polar species (H2O, CH3OH), the new values of LQ are at most
5% smaller than those in Ref. 1 (corresponding to αQ by 10%
smaller). The change in the values of Rcav compared to those in
Ref. 1 is relatively small (e.g., 1%-2%) yet significant in view
of the strong dependence of all properties of the quadrupolar
liquid on Rcav.

The value of the dipole moment p of a water molecule
in liquid environment is larger than the intrinsic dipole p0

of a molecule in the gas phase by a factor of 1/(1� αpXp)
= 2.17 (which differs from the value 2.07 calculated previ-
ously1 due to the different f p factor in the expression for Xp).
The quadrupole moment of water increases by a factor of q/q0

= 1/(1� αqXq) = 1.39 (instead of1 1.36). This suggests that one
of the approximations of the Onsager model—for the negligi-
ble molecular hyperpolarizabilities—fails even worse for the
revised model of Onsager.

An important feature of the quadrupolar Onsager model is
that it leads to a much smaller field intensity E near the cavity
compared to the original model: in the range r = Rcav...3Rcav,
using the results for the parameters of water at room tempera-
ture, one can obtain that the maximal value of Er varies in the
range 3 × 108...3 × 107 V/m (2 orders of magnitude smaller
than the range obtained previously,1 due to another arithmetic

FIG. 1. (a) Cavity radius of N2 calcu-
lated from Eqs. (20) and (21) and experi-
mental data for ε and ρ. The colour indi-
cates the temperature. The gray sym-
bols are Böttcher’s Rcav following from
the original theory of Onsager (Eq. (20)
with LQ = 0). The black line is Eq. (22)
with kρ = 0.545 and k0 = 342 kg/m3.
(b) The quadrupolar length LQ follow-
ing from the same model and data. See
Ref. 1 for details.
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FIG. 2. (a) Cavity radius of CO2 and
CS2 as a function of their concentra-
tion C, calculated with Eqs. (20) and
(21) from experimental data for ε and
ρ. The colour indicates the temperature.
The gray symbols are Böttcher’s Rcav
following from Onsager’s original equa-
tion (Eq. (20) with LQ = 0). Gray line is
Eq. (22) with kρ = 1 and k0 = 0; black
line is Eq. (22) with kρ = 0.910 and k0

= 236 kg/m3 for CO2. (b) The quadrupo-
lar length LQ following from the same
model. See Ref. 1 for details.

FIG. 3. (a) Cavity radius of benzene as
a function ofρ, calculated with Eqs. (20)
and (21) and experimental data for ε and
ρ. The red circles correspond to vari-
ous temperatures (300-340 K) and pres-
sure 1 atm, and the black ones—various
pressures (1-1600 atm) and temperature
323 K. The gray symbols are Böttcher’s
Rcav following from Onsager’s equa-
tion (Eq. (20) with LQ = 0). The black
line is Eq. (22) with kρ = 0.330 and k0

= 695 kg/m3. (b) The quadrupolar length
LQ following from the same model (cir-
cles). Gray dots: αQ of an ideal gas.
Crosses: LQ calculated1 with the wrong
boundary condition 1. See Ref. 1 for
details.

error). This field is still high and dielectric saturation can still
be expected, but not as massive as estimated in Ref. 1. The
dipole moment per each water molecule in the first coordina-
tion shell that follows from the Onsager cavity model can be
estimated to be of the order of 0.5 × p0. For comparison, the
original model9 of Onsager (with LQ = 0) predicts significantly
higher field (up to 8 × 108 V/m at r = Rcav).

The comparison of the values of the macroscopic
quadrupolarizabilities determined by Jeon and Kim11 from
Stokes shift data of coumarin in CO2 and C6H6 (αQ = 0.42
× 10�30 Fm at ρ = 800 kg/m3 for CO2 and 2.6 × 10�30 Fm for
C6H6) with those following from the revised Onsager model

under the same conditions (αQ = 0.46 × 10�30 Fm for CO2

and 1.9 × 10�30 Fm for C6H6) shows good agreement for CO2

and acceptable for C6H6. The coincidence might be acciden-
tal since the Stokes shift formula of Jeon and Kim is based
on a set of boundary conditions different from ours.1 The cal-
culated quadrupole length of methanol varies in the range LQ

= 0.79-0.82 Å, Fig. 5, in satisfactory agreement with the value
obtained from the data for the activity coefficient of NaBr in
methanol solution,6 LQ = 1.1 ± 0.2 Å. The difference is most
probably due to the neglected hyperpolarizabilities: accord-
ing to the revised Onsager model, the dipole moment p of
methanol is higher than p0 by a factor of 2.39 (compared to the

FIG. 4. (a) Cavity radius of H2O calcu-
lated with Eqs. (20) and (21) and exper-
imental data for ε and ρ. The colour
indicates the temperature. The lines are
Eq. (23) at the indicated temperatures.
(b) The quadrupolar length LQ follow-
ing from the same model. See Ref. 1 for
details.
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FIG. 5. (a) Cavity radius of methanol
calculated from Eqs. (20) and (21) and
experimental data for static permittiv-
ity and density. The colour indicates
the temperature. The black line is Eq.
(22) with the coefficients from Table I.
The gray symbols are Böttcher’s radii
(obtained from Eq. (20) with LQ = 0).
(b) The quadrupolar length LQ follow-
ing from the same model. See Ref. 1 for
details.

previous1 value 2.16), which is too high, and the reaction field
is of magnitude 2 × 1010 V/m, large enough for the hyperpo-
larizabilities to play a role. Another problem with methanol is
that its molecule is not spherical, cf. the discussion in Ref. 1.

Clausius-Mossotti-Debye fluid. We would like to use
this document to answer a question that we have been
asked on several occasions regarding the quadrupolarizabil-
ity of a liquid, namely, what would a Clausius-Mossotti-
Debye-like model give for the properties of a quadrupolar
fluid? This model10 assumes that the local field Eloc act-
ing on a molecule in the cavity in the liquid is the sum
of the external field E0 plus the field EP = P/3ε0 of a
homogeneously polarized medium of polarization P outside
the cavity (in contrast, in Onsager’s model, the polarization is a
function of the coordinates). A similar approach can be applied
to a cavity in a homogeneously quadrupolarized medium of
constant Q. However, it is easy to show that the potential
inside such a cavity is constant, and therefore, the respective
electric field gradient (∇E)Q produced by the medium is zero.
Consequently, the local electric field gradient is equal to the
outer one, i.e., (∇E)loc = (∇E)0 (compared to the relation Eq.1

(43) in an Onsager fluid). Therefore, the quadrupolarizability
of a Clausius-Mossotti-Debye liquid is precisely equal to the
quadrupolarizability of an ideal gas, Eq.1 (1).

See supplementary material for (A) some of the deriva-
tions and (B) a sample Maple code for solving Eqs. (20) and
(21).
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