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Abstract 

Many models of disease progression in Alzheimer’s disease (AD) have been proposed to help guide 

experimental design and aid the interpretation of results. Models focussing on the genetic evidence 

include the amyloid cascade (ACH) and presenilin (PSH) hypotheses and the amyloid precursor 

protein (APP) matrix approach (AMA), of which the ACH has held a dominant position for over two 

decades. However, the ACH has never been fully accepted and has not yet delivered on its 

therapeutic promise.  We review the ACH, PSH and AMA in relation to levels of APP proteolytic 

fragments reported from AD-associated mutations in APP. Different APP mutations have diverse 

effects on the levels of APP proteolytic fragments. This evidence is consistent with at least three 

disease pathways that can differ between familial and sporadic AD and two pathways associated 

with cerebral amyloid angiopathy. We cannot fully evaluate the ACH, PSH and AMA in relation to the 

effects of mutations in APP as the APP proteolytic system has not been investigated systematically. 

The confounding effects of sequence homology, complexity of competing cleavages and antibody 

cross reactivities all illustrate limitations in our understanding of the roles these fragments and the 

APP proteolytic system as a whole in normal aging and disease play. Current experimental design 

should be refined to generate clearer evidence, addressing both aging and complex disorders with 

standardised reporting formats. A more flexible theoretical framework capable of accommodating 

the complexity of the APP proteolytic system is required to integrate available evidence. 

 

Word count = 244



   3 
 

Introduction 

 

Alzheimer’s disease (AD) is a clinicopathologically defined condition associated with aging and 

genetic causative or risk factors that leads to increasing cognitive impairment, difficulties in everyday 

living and neurodegeneration. There is no single accepted cause. In early-onset inherited forms of 

AD (FAD), accounting for <1% of dementia cases in populations [1], the presence of fully penetrant 

mutation in the amyloid precursor protein (APP), presenilin (PS) 1 (PSEN1) or more rarely PS 2 

(PSEN2) confirms a diagnosis of AD. In late-onset sporadic AD (SAD), accounting for the majority of 

dementia syndrome, a clinical diagnosis can only be “probable” AD [2, 3] and is confirmed 

neuropathologically after death by deposits of amyloid beta protein (Aβ) and the presence of 

aggregated microtubule associated protein tau in neurofibrillary tangles (NFT) and neuritic plaques 

(NP) [4, 5]. Increasing use is being made of clinical imaging and standardised diagnostic criteria have 

been proposed [6] however, imaging and other biomarkers do not always correlate [7, 8]. AD-

associated pathology may be present in those without cognitive impairment  [9], does not correlate 

well with clinical dementia, and is associated additionally with ageing [10], raising questions around 

what the neuropathology represents. Dementia in the older population is rarely “pure” AD, and 

presents neuropathologically with mixed vascular and degenerative features [11, 12].  Thus, while 

the co-segregation of pathogenic and fully penetrant mutations within the same family permits 

diagnosis of monogenic FAD with a high degree of certainty, there is currently no unified clinical, 

neuropathological or molecular definition of SAD [13, 14]. 

 

Various experimental approaches have contributed to the body of evidence relating to AD. Clinical 

[2, 3, 15] and neuropathological features [4, 5] have been described. Blood and cerebrospinal fluid 

based biomarkers [16, 17], and MRI with markers such as Pittsburgh compound B [18] are being 

developed with the aim of following disease progression in humans. However, no marker reliably 

associates with clinical dementia [16, 18] in diagnosis or disease progression.  
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Various hypotheses have been proposed to guide investigations into disease pathways associated 

with AD, focussing on areas known to be perturbed in AD including the immune system [19-22], 

mitochondria and oxidative stress [23, 24], metabolism and diabetes [25-28], cholesterol regulation 

[29, 30], cell cycle [31, 32], neurotransmitters including acetylcholine in synaptic plasticity [33-37] 

and the role of tau deposition and tau oligomers  [38-42]. However, none of these relate directly to 

interpreting the genetic evidence regarding the role of APP mutations in FAD. Hypotheses relating to 

the genetic evidence include the amyloid cascade hypothesis (ACH) [43-45], the presenilin 

hypothesis (PSH) [46] and the APP matrix approach (AMA) [47, 48] and of these, the ACH has 

maintained a dominant position guiding research for over two decades.  

 

The ACH has not been universally accepted and periodic discussions have raised questions relating 

to the assertion that Aβ is causal in all forms of AD [14, 49-52] and instead highlight the complexity 

of the APP proteolytic system. Supporters of the ACH have referred to genetic evidence, where 

mutations associated with FAD lead to change in the expression of the various Aβ peptides, and 

Occam’s razor, where clinical and neuropathological presentations of those with AD of both familial 

and sporadic forms share common features and so should be approached therapeutically as similar 

entities. Those that don’t accept the ACH cite human studies where evidence is highly heterogenic 

[1, 12, 53, 54] and suggest that multiple pathways are possible [48]. The argument has two main 

perspectives, either Aβ is causal in AD and represents a unifying pathway to disease or complexity 

leads to multiple disease pathways.  

 

Given that recent clinical trials guided by the ACH have not been as successful as hoped [55], it is 

important at this time to examine these hypotheses in greater detail with respect to accumulating 

evidence to see where failures in the translation of pre-clinical research to the human population 

might occur. Using mutations in APP as an illustrative example, we ask whether the research 
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community is well guided by the current hypotheses or whether a change in approach might bring 

new understanding.  

 

The amyloid cascade hypothesis 

 

The ACH interprets the genetic evidence from FAD to suggest that fully penetrant mutations in APP 

and PSENs lead to changes in the levels of neurotoxic Aβ that initiate AD pathways [44, 45]. The 

original hypothesis, (Figure 1a), proposed that AD was caused by increased levels of Aβ however, 

this has been updated to include increased ratio of Aβ(1-42)/Aβ(1-40) [44, 45] or oligomers [56, 57]. 

All other features of AD, such as tau aggregation, inflammation, reduced metabolism, perturbed 

neural networks and cognitive impairments are proposed to follow on from causal events associated 

with increased Aβ [44, 45, 57]. The ACH assumes that all FAD mutations share molecular pathways 

associated with increases in neurotoxic forms of Aβ and in SAD, increased levels of Aβ, perhaps due 

to impaired degradation and clearance, contribute to disease [58, 59], therefore all FAD will respond 

to the therapeutic removal of Aβ. The ACH proposes that since SAD and FAD share common clinical 

and neuropathological features, then by Occam’s razor, the simplest explanation suggests that FAD 

and SAD also share these disease mechanisms and therapeutic strategies developed for FAD should 

be applicable in SAD.  

 

The presenilin hypothesis 

 

~95% of FAD is caused by mutations in PSEN1. The PSH [46, 60], (Figure 1b), interprets the genetic 

data from PSENs mutations as showing loss of PS function, with several mutations showing almost 

complete abolition of γ-secretase activity with loss of physiologically relevant Aβ [60-63]. This 

contrasts with the over-production of Aβ or Aβ42 required by the ACH. However, some suggest that 

PSENs associated pathways may involve gain of function effects that are compatible with the ACH 
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such as increased Aβ42/43 [64-67]. Complex patterns of both gain and loss of PS functions that vary 

with each mutation [68] may better describe the contributions of PSENs mutations to variations 

seen  in clinical features such as age of onset and seizures  [69] and neuropathology [70].  

 

The results from the randomised controlled trial of the γ-secretase inhibitor Semagacestat showing a 

worsening of dementia with increased risk of skin cancer [71] coupled with recent evidence of no 

clear associations between age of onset and Aβ levels or Aβ40/Aβ42 [62] support the PSH and 

suggest that enhancing γ-secretase could be a valuable therapeutic approach. Recent 

neuropathological evidence of increased size and number of cored amyloid plaques coupled with 

more severe cerebral amyloid angiopathy (CAA) and plaque distribution around vessels in those with 

PSEN1 mutations after codon 200 compared to those with mutations before codon 200 suggest that 

PSEN1 mutations may be associated with at least 2 disease pathways [72]. Whether these pathways 

relate to the dual carboxypeptide pathways associated with the production of Aβ [67] remains to be 

investigated.  

 

Differences in levels of Aβ40 and Aβ42 [73] and differences in the APP β carboxy terminal fragment 

[74] between PSENs associated FAD and SAD, raise questions relating to the general applicability of 

the PSH.  While studies have shown a rare coding variability in PSEN1 may influence the 

susceptibility for apparently sporadic late-onset AD [75, 76], increases in Aβ production may not 

explain the majority of SAD cases. The PSH suggests that APP mutations around the α-, β’- and β- 

cleavage sites may act via conformational change to alter γ-cleavages, however, it is equally possible 

that this hypothesis may not be relevant to all FAD deriving from mutations in APP around the α-, β’- 

and β- cleavage sites. As with the ACH, the PSH focuses on Aβ as the outcome of interest however it 

could be usefully updated to include considerations of all products from γ-cleavage since loss or gain 

of function may affect all products equally [77]. The PSH allows for multiple pathways depending on 

the exact nature of the change in γ-cleavage arising from the different PSENs mutations [78]. The 
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complex mix of gain and loss of function for different PSENs mutations suggests that one therapeutic 

approach may not be adequate. A detailed investigation of the relationships between specific PSENs 

mutations and Alzheimer disease pathways is beyond the scope of this review however, a similar 

approach examining the proteolytic fragments for each PSENs mutation could usefully clarify our 

understanding of the contributions of PSENs mutations to AD pathways. 

 

The amyloid precursor protein matrix approach 

 

The AMA considers the effects of genetic mutations against the background of dynamic complexity 

of the APP proteolytic system as a whole. Mutations in APP may alter the balance between the 

different functional areas of this complex system with consequences for a wide variety of cellular 

processes, (Figure 1c). The functional consequences arising from APP proteolysis can be understood 

in terms of a dynamic balance between full length APP and fragments from the α- and β’- and β- 

cleavages as reflected in the ratios of sAPPα/sAPPβ/sAPPβ’/full length APP in functional module A, 

coupled with functions arising from the synergetic interactions of the P3-type/β’-type/Aβ-type 

fragments arising from γ-cleavage in functional module B. There are additional functional effects 

arising from the carboxy terminal membrane fragments (CTFs) following α-, β’- and β- cleavages, the 

various AICDs following γ- ε- and ζ- cleavages, and caspase cleavage [79]. The levels of sAPPβ/sAPPα 

may not mirror the levels of the Aβ- type/P3-type peptides as Aβ1-14/15/16 fragments generated 

either from the C99 membrane fragment [80] or as a product of Aβ catabolism [81, 82] have been 

reported. Additional η-cleavage has recently been reported, increasing the complexity of this 

proteolytic system [83, 84]. The expression level of APP, increased in Down syndrome (DS) and 

people with APP duplications, has been shown to be rate limiting in the production of Aβ [82], 

suggesting that α-, β- and other cleavages compete.  
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According to the AMA, the APP/PS proteolytic system is in dynamic balance around a homeostatic 

point that allows proper neuronal function. Shifts to either α- or β- pathways may be regulated by 

wide ranging factors from cholesterol to inflammation and synaptic activity and the system is able to 

feed forward iteratively via the ever changing ratios of proteolytic fragments that affect the same 

cell systems involved in its regulation [47, 48, 85]. Each mutation has the potential to alter the 

balance between the cleavage products and change the behaviour of the fragments to varying 

degrees depending on changes to hydrophobicity, electrostatic charge and aggregation properties. 

This can involve different gains or losses of function for each of the fragments and full length APP for 

each mutation. In effect the APP proteolytic system allows partial contributions to disease from 

various cellular systems via the complex regulation of all cleavage products in APP proteolysis, 

including Aβ.  While genetic mutations in FAD potentially alter the balance in the APP proteolytic 

system, changes in the way that different feedback relationships from neuronal systems such as 

cholesterol homeostasis, immune signalling and synaptic plasticity also potentially alter this balance, 

leading to the possibility of multiple disease pathways.  

 

In order to evaluate the hypotheses with respect to the relationships between mutations in APP and 

FAD, we examined the consequences of the various APP mutations on the levels of the peptide 

fragments resulting from the APP proteolytic system in studies describing human mutations, 

presented in Table 1 and Supplementary Table 1. APP duplications and triosomy of chromosome 21 

found in DS have been included in Table 1 and Supplementary Table 1 for completeness however, 

given the limited space available, they are discussed only briefly. We considered the evidence from 

the different perspectives of the alternative hypotheses. 

 

Experimental design, missing data and standardisation 
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No study in Supplementary Table 1 systematically measured all the APP proteolytic fragments and 

the roles of different APP proteolytic fragments have not been extensively investigated yet. While 

the Aβ-type fragments are well represented, other fragments are not, illustrating that our 

understanding of this complex proteolytic system is incomplete. Specifically, levels of APP, the large 

N-terminal sAPPα and sAPPβ, the membrane bound C-terminal fragments (CTF), the P3-type 

peptides and the various APP intracellular domains (AICD) are not well reported. Evidence relating to 

the APP proteolytic system as a synergistic whole is absent from the literature. From the perspective 

of the AMA, which focuses on the dynamic balance between all fragments in relation to the cellular 

environment, the distribution of evidence in Supplementary Table 1 shows that a full understanding 

of this system is not possible - too much evidence is missing. Although complexity in APP physiology 

and biochemistry has always been given as an alternative perspective [47-49, 52, 85, 86], this has 

not been considered in experimental design to date. The confounding complexity in the APP 

proteolytic system is highlighted in a recent investigation of anti Aβ antibody cross reactivities [87]. 

Cross reactivities of commonly used antibodies may undermine current interpretations of 

immunoreactivity and this is especially relevant to neuropathological investigations where only one 

antibody per feature may be used [72]. The antibody BC05, recognising Aβ C-terminals ending at 

amino acid 42 or 43, also recognises P3-42/43. BA07, recognising Aβ C-terminal ending at amino acid 

40 also recognises P3-40, however very few experimental designs control for this cross reactivity and 

studies interpret immunoreactivities erroneously as representing Aβ. This confounding affects other 

antibodies raised against C-terminals [77]. Further cross reactivity may also derive from catabolic 

fragments of Aβ or Aβ’ from cleavage by BACE2 [87]. From the perspective of the ACH, this may not 

be so important as P3 is not suggested to play a significant role in disease, from the perspective of 

the AMA, this is a fundamental confound between two or more cleavage pathways and the 

neuropathological evidence especially should be urgently clarified. Given the potential confounding 

of evidence relating to Aβ by P3- type and smaller catabolic peptides, current experimental design 

cannot support interpretations of Aβ as causal nor eliminate considerations of complexity from 
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disease pathways, raising profound implications for AD research strategies. Experimental designs 

should be adjusted to explicitly measure and report all proteolytic fragments where sequence 

homology predicts confounding. Mass spectrometry may be preferable to western blotting in 

conjunction with a panel of capture antibodies to identify each peptide [88]. 

 

Few studies have focussed on P3 type peptides, despite evidence that P3 is known to aggregate [89-

92], has been associated with cotton wool type amyloid plaques [93, 94], is present in CAA [95], 

enhances the aggregation of Aβ1-40 [96],  may have a signalling role in apoptosis via caspase 

activation[97], form Ca2+ channels [98] and may be affected similarly to Aβ by changes to γ-cleavage 

[77]. P3 peptides are not thought to contribute to disease progression in the ACH and their roles in 

disease and healthy ageing have largely been ignored. The AMA predicts modulatory relationships 

between P3-type and Aβ-type fragments in their predicted interactions as small binding proteins, 

(Figure 1c, functional module B), however, current experimental design is inadequate for 

investigations from this perspective as the AMA requires that each APP proteolytic fragment must 

be measured in any investigation. Neither the ACH nor PSH consider all fragments from the APP 

proteolytic system. 

 

The use of cellular systems to investigate expression levels of Aβ is a useful approach to 

characterising these mutations and has been shown to reflect the amount deposited in the human 

brain [72]. In addition to different experimental procedures and the use of different cell models, 

(Supplementary Table 1), the reporting of the various expression levels of the proteolytic fragments 

is not standardised, making comparison between studies difficult beyond a qualitative measure of 

increase/decrease or no change. Some studies report concentrations as ng/ml-1 or Molar values [99-

104], values normalised to full length APP levels [105-110] or total Aβ levels [111-113], relative to 

cell number [114, 115] or relative to WT/control [116-121]. Standardised reporting and experimental 

protocols would be useful in comparisons between studies. Given the different experimental 
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approaches, the qualitative changes in Table 1 appear generalizable and robust. However, given that 

evidence relating to Aβ is potentially confounded due to cross-reactivity of antibodies [87] we 

cannot be certain that these data are not confounded by P3.  

 

Does evidence from FAD due to APP mutation describe one or many disease pathways? 

 

Although the evidence for some mutations is sparse, the mutations can be grouped according to 

change in expression levels of the various Aβ fragments, (Table 1 and Figure 2). Group 1 shows 

increases in total [Aβ], Aβ40, Aβ42 and the Aβ42/Aβ40 ratio and is associated with mutations 

around the α-secretase site, (Table 1, Figure 2). Mutations in group 1, leading to increased Aβ 

expression, are compatible with the ACH. Group 2, including the protective APP p.A673T mutation 

[101] and mutations specific to APP at codon 693, shows reduced total [Aβ], Aβ40, Aβ42 and the 

Aβ42/Aβ40 ratio, (Table 1, Figure 2). Group 3 has reduced total [Aβ] and Aβ40 combined with 

increased Aβ42 and the Aβ42/Aβ40 ratio and these mutations are associated with the γ- secretase 

site, (Table 1, Figure 2). This third group also compares well with PSENs mutations showing similar 

reductions in total [Aβ] and Aβ40 combined with increased Aβ42 and the Aβ42/Aβ40 ratio [46]. 

Those that cannot be grouped due to a lack of data are in group x. Triosomy of chromosome 21 in DS 

and APP duplication and mutations in promoter regions that lead to increased levels of APP may 

show different changes in levels of Aβ species to other mutations and SAD [122, 123]. These genetic 

alterations may form a fourth group that represents an additional pathogenic pathway [122]. 

 

Genetic and molecular data suggest that there are at least three possible pathways to dysfunction 

and that these can be further modulated by features such as propensity of peptides to aggregate as 

oligomers and fibrils due to changes in electrostatic or hydrophobic natures of the substituted amino 

acids. Different molecular pathways associated with FAD have been proposed previously [124, 125] 

in relation to the phenotypic and neuropathological heterogeneity associated with APP mutations 
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[126] and PSENs mutations [53, 127]. In addition, APP duplication and triosomy of chromosome 21 

appear to increase total tau and tau phosphorylation in a manner independent from Aβ while PSENs 

mutations may not [82]. This interpretation of the evidence contrasts with that of the ACH, which 

assumes that all forms of AD, inherited and sporadic, should share the same Aβ-related disease 

pathway. 

 

Increases in Aβ42 seen in FAD with PSENs mutations and the APP mutations p.KM670/671NL and 

p.V717I have been found to precede dementia [103, 128], supporting the ACH where increasing Aβ, 

perhaps specifically Aβ42, is thought to cause AD. However, Scheuner et al also found that the 

average levels of Aβ42 in 71 individuals with SAD (29+/- 2pmol) were not significantly different to 

that measured in 75 controls (27 +/-3pmol) [103]. In this study, only 13% of those with SAD and 3% 

younger controls had elevated Aβ 1-42(3) levels similar to those found in individuals with FAD. This 

suggests that a minority of SAD may have similarities to PSENs associated FAD, supporting the 

multiple pathways perspective of the AMA and PSH. How imbalance between the all various 

peptides, including the shorter Aβ peptides [105, 111, 114, 128] contribute to AD disease processes 

is not clear. According to the ACH, mutations around the γ-cleavage site are associated with 

increased Aβ42 therefore removal of Aβ42 is a rational therapeutic approach. In contrast, both the 

PSH and AMA predict that APP and PSENs mutations associated with reductions in total Aβ may 

represent disease pathways associated with the loss of Aβ physiological functions [46, 48, 129] and 

removal of Aβ per se is unlikely to be beneficial; up-regulation of γ-cleavage or addition of 

physiologically relevant Aβ could be useful in humans.  

 

It is interesting that the group 1 disease associated mutations involve the heparin binding domain, 

(Figure 2), and mutations N-terminal to this, such as APP p.T663M, are neutral. The AMA predicts 

that the group 1 mutations potentially also affect interactions of full length APP, sAPPα and sAPPβ, 
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with consequences for disease progression in addition to any affects due to changes in cleavages or 

behaviour of Aβ. This cannot be assessed with current evidence.   

 

Is Aβ the only defining characteristic of the APP proteolytic system in AD? 

 

The focus on Aβ proposed by the ACH in effect reduces description of the complexity of APP 

proteolytic system to Aβ levels. While APP mutations such as those in group 1 associated with the α-

cleavage site lead to increased Aβ production, often with no change to the Aβ42/Aβ40 ratio, where 

measured, they also lead to a reduction in sAPPα [109, 114, 116]. Those mutations in group 3 

showing reduced expression of total [Aβ] and Aβ40, where measured, lead to an increase in sAPPα 

[116].  Those studies that measure additional fragments [105, 114] independently suggest that it is 

not possible to assign absolute causality to any one fragment with certainty given the changes in 

expression or function of full length APP and other fragments.  

 

Functions associated with sAPPα include promotion of long term potentiation (LTP) [130-132], 

neurite outgrowth [133] and various roles in neuroprotection [134-136]. Significant correlation 

between low levels of sAPPα and poor cognitive function was found in cases with the APP 

p.KM670/671NL double Swedish mutation while no association was found between the levels of Aβ 

and cognition [137] and low levels of sAPPα but not sAPPβ in cerebrospinal fluid (CSF) are associated 

with SAD [138]. The sAPPβ /sAPPα ratio has been found to be higher in those with amyloid 

neuropathological deposits than those without [139]. Both sAPPα and Aβ have important roles in 

regulating synaptic plasticity via LTP [130, 131] and long term depression (LTD) [140-142] 

respectively. Synaptic plasticity may be understood as a dynamic and coherent balance between 

both LTP and LTD and the AMA predicts that this will be associated with the ratios of sAPPα/sAPPβ 

coupled with P3/Aβ, (Figure 1c); neither LTP nor LTD alone can typify neurotoxicity or 

neuroprotection. In a recent study using animal models, immunotherapy targeting Aβ using two 
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different antibodies resulted in increased cortical hyperactivity and this was proposed to underlie 

the lack of cognitive improvement seen in human trials [143]. This hyperactivity is consistent with 

the AMA and PSH, where loss of physiologically relevant Aβ would be expected to reduce LTD and 

lead to increased hyperactivity via the actions of sAPPα and follow on failure of coherent synaptic 

plasticity but unexpected according to the ACH, where removal of Aβ would be expected to alleviate 

neurotoxicity. Taken together, the above evidence suggests that the role of sAPPα in disease 

progression may be more important than the ACH allows and experimental design should be refined 

to include sAPPα, sAPPβ and P3 when Aβ is reported with respect to synaptic plasticity.  

 

How do different hypotheses relate to disease heterogeneity? 

 

The mutations in APP and PSENs genes are only now being comprehensively described and 

summaries are available via the AD and FTD mutation database curated by Cruts et al [144] and the 

Alzforum database [145]. Rare mutations and those recently found e.g. APP p.D678H [146], APP 

p.K687N [109] and APP p.T719P [128], are not adequately described as too few individuals have 

come to autopsy.  

 

Mutations affecting APP at codon 693, Group 2 in Table 1 and Figure 1, have diverse molecular and 

neuropathological effects. In APP Δ693, the charged acidic amino acid glutamic acid is deleted. This 

mutation is uniquely associated intraneuronal oligomerization with no fibrillization and with very 

low levels of amyloid [100, 147]. Both APP p.E693K, where glutamic acid is substituted by the larger 

charged basic side chain of lysine [148] and APP p.E693Q, where glutamic acid is replaced by the 

similarly sized, non- charged negatively polar side chain glutamine [107, 149-154], are associated 

with strokes, CAA and cognitive decline with no tau-related neurofibrillary changes. The APP 

p.E693G mutation, where glutamic acid is replaced by the small non-polar glycine, is associated with 

CAA, abundant plaques and typical tau related neurofibrillary pathology [102, 153-157]. The APP 
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p.E693K, APP p.E693Q and APP p.E693G mutations are also associated with increased deposition of 

Aβ38 not seen in DS, PSEN1 mutations or sporadic disease [158] while APP p.E693G and APP 

p.E693Q are associated with reduced degradation by the insulin degrading enzyme [154]. It is not 

clear whether overall change in sequence (APP ΔE693), size (APP p.E693K and APP p.E693G), charge 

(all APP at codon 693 substitutions) or partial contributions from all these changes are responsible 

for the dramatic differences seen in aggregation, disease association and neuropathology for this 

codon.  

The mutation APP p.A673V, as well as being associated with disease only in the homozygous state, is 

distinguished from all other APP mutations due to large plaque size and vessel associations [126] 

however it shares increased deposition of Aβ38 with APP  mutations at codon 693 [158].  These 

mutations, associated with several different pathological presentations, perhaps represent different 

pathways that could be relevant to deposition of Aβ in various forms and tau-related neurofibrillary 

change. While group 2 may be generally defined by reduced levels of Aβ, individual mutations show 

unique neuropathological features that may derive from additional properties of any amino acid 

substitution. In this respect, each the effects of each mutation should be investigated not only with 

reference to levels of Aβ and other fragments but also the changed molecular properties arising 

from each mutation. It will be interesting to see if the APP p.L705V Italian mutation with CAA, 

increased deposition of Aβ38 [158] and few plaques is associated with reduced Aβ40, Aβ42 and 

Aβ42/Aβ40 in common with group 2 and how the change in charge from basic lysine to non-polar 

valine affects peptide interactions. 

The genetic evidence is consistent with interpretations that these mutations lead to CAA affecting 

vessel walls and deposition of Aβ in brain parenchyma via different but not mutually exclusive 

disease pathways [148, 159, 160] and this may be usefully investigated in relation to 

neuropathologically defined CAA types [161, 162]. CAA may be a distinct pathological process from 

plaque formation, supported by evidence that Aβ(1-42) fragments are associated with diffuse 
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parenchymal deposits whereas Aβ(1-40) is associated with CAA vascular deposition [148]. Mutations 

resulting in changes to size and electrostatic charge may be associated with presence of CAA [163] 

that is independent from any interstitial fluid drainage effects [164, 165].  

 

Mutations associated with FAD collectively offer an opportunity to describe in molecular detail a 

natural history of over and under expression for Aβ and other APP proteolytic fragments and also 

the associations with neuropathology and clinical features for each mutation. Following these 

individuals longitudinally will build a detailed understanding the different relationships between the 

APP proteolytic system, deposition of Aβ as plaques and CAA and how this proteolytic system relates 

to neurofibrillary change. A similar approach in populations to fully describe molecular and 

neuropathological change in ageing and disease will allow the identification of which pathways these 

mutations promote are most relevant to SAD. 

 

All the hypotheses considered here, the AMA, the PSH and the ACH, allow changes in Aβ, whether 

due in concentration or structural features associated with substitution of amino acids, to modulate 

disease pathways. However, the ACH does not adequately explain the group 2 mutations, (Table 1, 

Figure 2), where levels of Aβ fragments are reduced. For APP mutations at codon 693, reduced Aβ is 

associated with disease, whereas for APP p.A673T reduced Aβ is not. A combination of the AMA and 

PSH for interpretation relating to APP mutations may be a better guide for experimental design.  

 

From the perspective of the AMA and PSH, heterogeneity in clinical and neuropathological 

presentations in FAD and SAD suggests multiple pathways at the molecular level, where therapeutic 

strategies would be targeted. In contrast, the ACH suggests that all pathways are unified by Aβ and 

removal of Aβ is the best strategy. However, it is not clear whether what we currently understand as 

AD represents one or many disease subtypes or how SAD relates to FAD. A more detailed 
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characterisation of the range of amyloid and neurofibrillary deposits, both in terms of molecular 

composition and morphological appearance in the human population is urgently required. 

 

Translating pre-clinical AD research to therapeutics 

 

The translation of pre-clinical research to the human population presents significant challenges. 

Failure to replicate pre-clinical science has become a recent focus [166, 167] with various factors 

highlighted such as excess significance in animal research [168], poor use of statistics [169] and 

problems of inter-species generalizability [170, 171]. If we further consider the potential 

confounding due to anti Aβ antibody cross reactivities [87], we are uncertain as to what are relevant 

or irrelevant results that should be taken forward as therapeutic targets in AD.  

 

While FAD can be readily identified and separated into subtypes by genetic characterisation, the lack 

of qualitative clinical markers in SAD is a significant impediment to the design of randomised 

controlled trials as there is no way to assign cases and controls with certainty. All AD clinical 

biomarkers lie on continua where thresholds are defined that best separate those with from those 

without dementia, however, no pre-defined threshold has been applied systematically between 

studies [16, 18, 172]. The relationship between biomarkers such as CSF or plasma levels of protein 

fragments, MRI markers of amyloid build up or atrophy and disease progression is not clear and 

different markers can lead to conflicting results [6, 7]. No biomarkers of AD have been systematically 

studied in population cohorts where most dementia syndrome occurs and where validity is best 

tested. Additionally, the relationship between neuropathology and disease progression is not yet 

fully understood so that it is not clear what the biomarkers or the neuropathology represent in 

relation to cognitive change. The lack of validated biomarkers underlies the difficulties involved in 

following human cohorts over time and is a serious limitation in the search for therapeutic 

treatments. 
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Within population studies, neuropathological (blind to clinical information) and clinical diagnoses of 

AD are not well matched and most report cases with dementia and no AD-related neuropathology 

and cases with significant neuropathological load and no dementia [11]. Case control studies often 

select cases and controls by combining clinical and neuropathological information with the effect of 

eliminating these two categories from the study, leading to selection bias and an over-estimate of 

associations. Population studies avoid this selection bias but because they do not separate out 

different disease types, this approach leads to under-estimates of associations. Both approaches 

reveal valuable information and should be used in combination. A population approach would be 

very useful in describing the clinical, neuropathological and molecular heterogeneity associated with 

different FAD mutations. This would give a better description of each and find specific differences 

and commonalities that would tease apart the possible disease pathways and allow the selection of 

cases and controls in randomised controlled trials with greater confidence.  

 

Conclusions 

 

Simplicity is one advantage of the ACH; it is easy to describe Aβ as neurotoxic and causal in AD. 

However, this simplicity is also its great weakness in that it does not allow the many roles and 

changing behaviours of Aβ to be placed in the wider context of the APP proteolytic system as a 

whole. Experimental design based on the ACH is focussed on Aβ and lacks the systematic approach 

demanded by the AMA that requires all fragments to be assessed in any investigation. The use of 

Occam’s razor focuses attention solely on Aβ and in effect removes considerations of the complexity 

of APP physiology and biochemistry from experimental design, creating unnecessary division 

between the complexity of the APP proteolytic system and Aβ, one of its components. This has led 

to missing information and a poor understanding of the APP proteolytic system as a whole. We do 
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not yet have the evidence to say with certainty which model of disease progression is more 

representative of actual disease pathways in humans.  

 

There are some research questions that the AMA will allow that the ACH does not, especially with 

respect to the loss of Aβ function and the dynamic balance between all the proteolytic fragments. 

Since the AMA includes other cellular systems as drivers in the regulation and control of APP 

proteolytic processing, the AMA throws a spotlight on other hypotheses ranging from those based 

on factors relating to wider cellular systems such as synaptic plasticity, cholesterol homeostasis, cell 

cycle, metabolism and oxidative stress, other cell signalling cascades, and ageing in a non-

hierarchical manner. This may better represent multifactorial disease pathways recognised in SAD. 

An integrative approach should lead to a much better understanding of the relationships between all 

areas involved in AD research.  We do not yet have the detailed evidence required to understand the 

role of the APP proteolytic system either in normal or disease states. We need refined theoretical 

disease models to generate better experimental designs both clinically and pre-clinically, in order to 

generate this evidence.  

 

Supplementary information is available at Molecular Psychiatry’s website
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Figure 1 Hypotheses of disease pathways in AD relevant to the interpretation of APP mutations 

 

1a: Adapted from [44]; 1b: adapted from [46, 60]; 1c: Green α-cleavage; Red β-cleavage; Purple β’-

cleavage; Blue γ-cleavage; Grey caspase cleavage. Thickness of arrows represents average 

percentage flow through the pathways as determined by ratios of P3:Aβ’:Aβ as described in [111]. 

Functional block A arises due to the synergistic interactions of full length APP, sAPPα, sAPPβ and 

sAPPβ’ and may involve examples of agonism and antagonism. Functional block B arises due to the 

synergistic interactions of the various fragment lengths following γ-cleavage with N- and C- terminal 

variations and may involve examples of agonism and antagonism. Other functions are associated 

with the AICDs following γ- and caspase cleavages and general catabolism of all fragments not 

represented here. 
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Figure 2 Disease associated APP Mutations by location  

Adapted from [86] and [144]. Groups are defined by the qualitative changes in Aβ levels as described 

in Table 1. 
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Table 1 Groupings of pathogenic APP mutations according to qualitative changes of Aβ fragments. 

Mutation 

position 

Group Disease association/neuropathology Fragments refs 

KM670/ 

671NL 

Swedish 

1 AD; numerous plaques and NFT, variable CAA; 

increases in expression of longer forms of APP but 

not APP695 

↑[Aβ]  

↑Aβ40  

↑ Aβ42  

 = / ↓ 

Aβ42/Aβ40  

[103, 

173, 

174] 

A673T 2 Protective mutation, reduced Aβ, Aβ40 and Aβ42, 

increased sAPPα 

↓[Aβ] 

↓ Aβ40 

↓ Aβ42 

[101, 

106] 

A673V 1 AD only when homozygous; extensive Aβ deposition, 

CAA, increased Aβ40 (not Aβ42) fibrillization; 

amyloid plaques include both Aβ40 and Aβ42; few 

diffuse  deposits; can be distinguished from other 

FAD or SAD by large plaque size and vessel 

associations  

↑[Aβ]  

↑Aβ40  

↑Aβ42  

 = Aβ42/Aβ40 

↑ Aβ 11-X  

[106, 

114, 

126] 

H677R 

English 

x  =[Aβ]  

= Aβ42 

[175]

D678H 

Taiwan 

1 AD with CAA and micro-haemorrhages; changes in 

Aβ are extracellular; no change in intracellular levels; 

increased C99/C83 ratio; no change in BACE2 C89 

product; mutation alters APP sorting 

↑[Aβ]  

↑Aβ40  

↑ Aβ42  

↑Aβ42/Aβ40 

[117, 

146, 

175] 

D678N  

Tottori 

x AD =[Aβ]  

= Aβ42  

[175, 

176] 



E682K 

Leuven 

1 AD ↑[Aβ]  

↑Aβ40  

↑ Aβ42  

↑Aβ42/Aβ40 

↓ Aβ 11-X  

[105]

K687N 

 

1 AD ↑[Aβ]  

↑Aβ40  

↑ Aβ42  

[109]

A692G 

Flemish 

1 CAA, AD or both; large cored amyloid plaques 

centred on vessels; in contrast to other AD cored 

plaques are mostly Aβ40, diffuse Aβ42 deposits; 

severe neurofibrillary pathology 

↑[Aβ]  

↑Aβ40  

↑ Aβ42  

↑Aβ42/Aβ40 

[102, 

105, 

107, 

111, 

153, 

177-

179] 

ΔE693  

Osaka 

2 AD; very low levels of amyloid on PiB MRI; 

oligomerization with no fibrillization; uniquely 

increased intraneuronal Aβ oligomers 

↓[Aβ] 

↓ Aβ40 

↓ Aβ42 

↓ / 

=Aβ42/Aβ40 

[100, 

147] 

E693K  

Italian 

2 CAA, strokes and cognitive decline; no neurofibrillary 

changes; capillary CAA associated with Aβ42, vessels 

associated mostly with Aβ40; Aβ42 in diffuse 

deposits 

↓ / =Aβ40 

↓ Aβ42 

↓ Aβ42/Aβ40 

[148] 



E693Q  

Dutch 

2 CAA and cognitive decline; no neurofibrillary 

changes; mostly Aβ40 in vessels and Aβ42 in diffuse 

deposits; reduced Aβ proteolysis by IDE 

↓ / =Aβ40 

↓ Aβ42 

↓ Aβ42/Aβ40 

[107, 

149-

154] 

E693G  

Arctic 

2 CAA and AD, typical AD neurofibrillary pathology, 

abundant amyloid plaques reactive with both Aβ40 

and Aβ42; many plaques ring-like and lacking cores; 

accelerated formation of oligomers and protofibrils 

by Aβ40; reduced Aβ proteolysis by IDE 

↓ / =Aβ40 

↓ Aβ42 

↓ Aβ42/Aβ40 

[102, 

153-

157] 

D694N  

Iowa 

x CAA and AD; widespread NFT; increased  Aβ40 in 

amyloid plaques 

[180]

L705V  

Italian 

x CAA and cognitive decline; no amyloid plaques or 

NFT; vessels show both Aβ40 and Aβ42 

 [181] 

G709S 

 

x AD; shifts Aβ profile from Aβ40 to Aβ39 Aβ37 ↓ Aβ40 

↑ Aβ38 & Aβ39 

[182]

A713T 

 

x CAA, stroke and AD; pathogenic in both 

heterozygous and homozygous states; later age of 

onset in heterozygotes 

= Aβ42/Aβ40 [183-

186] 

T714A  

Iranian 

x AD; variable age at on-set; epilepsy ↓ Aβ42 [187, 

188] 

T714I 

Austrian 

3 AD; variable CAA; epilepsy ↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

[94, 

118, 

189] 



V715M 

French 

3 AD ↓ [Aβ] 

↓ Aβ40 

= Aβ42 

↑ Aβ42/Aβ40 

[116, 

118, 

190, 

191] 

V715A 

German 

3 AD ↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

[118, 

192, 

193] 

I716V  

Florida 

3 AD  = or↑ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

↑ Aβ38 

[104, 

113, 

118] 

I716F 

 

3 AD with CAA; extensive neurofibrillary pathology; 

oligomeric N-truncated pyroglutamate Aβ deposition 

associated with clinical symptoms; Lewy bodies also 

present and associated with movement disorder 

↓ [Aβ] 

↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

↑ Aβ38 

[113, 

119, 

194, 

195] 

I716T 

 

x AD ↑ Aβ42/Aβ40 

↑ Aβ38 

[113, 

196] 

V717I  

London 

3 AD; numerous amyloid plaques and NFT, variable 

CAA 

↓ [Aβ] 

↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

↑ Aβ38 

[103, 

104, 

107, 

108, 

118, 

119, 

197] 



V717L  

Indiana 

3 AD ↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

[118]

V717F  

Indiana 

3 AD ↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

[102]

V717G 

 

3 AD; progressive amnesia ↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

[198, 

199] 

T719P 

 

x AD [128]

L723P 

Australia

n 

x AD ↑ Aβ42 

↑ Aβ42/Aβ40 

[121, 

200] 

K724N 

Belgian 

3 AD ↓ Aβ40 

↑ Aβ42 

↑ Aβ42/Aβ40 

↑ Aβ38 & Aβ39 

[201] 

APP 

duplicati

on 

x Duplication size varies  and may include additional 

genes; duplications may not always be fully 

penetrant; those leading to increased APP levels 

share some features with DS  

 [202-

206] 

APP 

promoter 

x Promoter mutations leading to increased APP levels 

share some features with DS; may vary between 

specific mutations 

 [207, 

208] 



DS x Increased Aβ oligomers; complex changes in levels of 

Aβ species in plasma and CSF; levels of Aβ40 while 

initially higher in DS than normal controls are 

reduced with DS dementia; levels of Aβ42 and 

Aβ42/Aβ40 are initially lower but increase with DS 

dementia 

[122, 

123, 

209-

211] 

-detailed descriptions are not available for recently discovered mutations as individuals have not yet 
come to autopsy. Further detail is available in Supplementary Table 1. 
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