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Abstract (109 words) 21 

Induced resistance against plant viruses has been studied for many years.  22 

However, with the exception of RNA silencing, induced resistance to viruses 23 

remains mechanistically less well understood than for other plant pathogens.  In 24 

contrast, the induction processes involved in induced resistance, comprising 25 

basal resistance signaling, effector-triggered immunity, and phytohormone 26 

pathways, have been increasingly well characterized in recent years.  This has 27 

allowed induced resistance to viruses to be placed in a broader conceptual 28 

framework linking it to other defense systems, which we discuss in this review.  29 

We also discuss the range of agents, including chemicals and beneficial 30 

microorganisms and application methods that can be used to induce resistance to 31 

viruses. 32 

 33 

Highlights 34 

 Plants possess multiple inducible defenses against viruses. 35 

 The best understood is RNA silencing but others impact on virus replication 36 

and movement. 37 

 It is now known that PAMP-triggered immunity inhibits infection by certain 38 

viruses. 39 

 Various defense responses are triggered by naturally occurring plant signal 40 

molecules including the well established, such as salicylic acid, and novel 41 

signals including azelaic acid, glyceraldehyde 3-phosphate and pipecolic acid. 42 

 A wide range of synthetic compounds and beneficial microbes that have been 43 

investigated as potential resistance inducers.  44 

  45 
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Introduction 46 

Induced antiviral defense mechanisms attain full potency in response to microbial or 47 

chemical stimuli but are inactive or operational only at some basal level in 48 

unchallenged plants [1,2].  RNA silencing is an inducible adaptive antiviral 49 

mechanism [1,3].  However, since silencing has been recently reviewed by others 50 

[2,3], it will be discussed in detail here only where it functionally overlaps with, or 51 

reinforces, other induced resistance systems.  52 

Induced resistance is exploitable through several approaches, including treatment with 53 

naturally occurring or synthetic chemicals [e.g. salicylic acid (SA) or BTH 54 

(benzothiadiazole/acibenzolar-S-methyl), respectively] (Figure 1), or beneficial 55 

microorganisms [2,4].  Alternatively, engineering genes encoding factors that regulate 56 

or execute induced resistance could enhance antiviral or general anti-pathogen 57 

defenses, although this will not be the focus of this article.  Additional approaches 58 

may emerge from research on treatments that engender trans-generational epigenetic 59 

improvements in pathogen resistance [5,6]. 60 

Induced resistance has advantages for combating viruses because no agrochemicals 61 

analogous to fungicides or insecticides exist that can be used to prevent virus diseases 62 

under field conditions.  Inducers stimulate endogenous resistance mechanisms that are 63 

less likely to harm non-target or beneficial organisms; also true for genetically-64 

engineered plants with enhanced or faster-responding defenses.  There are potential 65 

disadvantages, likely to be surmountable through additional research.  For example, 66 

whilst some current inducers provide prolonged protection [7], others may engender 67 

incomplete or transient resistance (discussed in [2,4]), or decrease fitness and yield 68 

[8].  Additionally, more research is needed on the factors that control and execute 69 
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anti-viral resistance, which are less well delineated than those mediating induced 70 

resistance against fungi, oomycetes and prokaryotes [1,9].  71 

 72 

Basal resistance to viruses: a potential role for PAMP-triggered 73 

immunity  74 

Plants are resistant to most potential cellular pathogens by detecting conserved 75 

pathogen-associated molecular patterns (PAMPs) with pattern recognition receptors 76 

(PRRs) that activate PAMP-triggered immunity (PTI) [10]. The best-studied 77 

Arabidopsis thaliana PRR, FLS2, perceives flagellin utilizing a partner kinase, BAK1 78 

(SERK3), which also facilitates the activity of other PAMP and hormone-responsive 79 

PRRs including the BRI1 brassinosteroid receptor [11].   80 

PTI manipulation may have potential for increasing crop resistance to viruses but it 81 

was once debatable whether or not it affected viruses [1].  Recently, BAK1 was found 82 

to be necessary for the limitation of the accumulation of tobamoviruses and turnip 83 

crinkle virus (TCV) [12,13].  Titer and symptoms for TCV and two tobamoviruses 84 

were enhanced in bak1 and bkk1 (BKK1 encodes another BRI1 partner) mutants 85 

[12,13].  Viral dsRNAs may also be able to trigger resistance via PTI, in addition to 86 

their ability to initiate antiviral silencing  [14].  87 

 88 

A geminivirus nuclear shuttle protein binds the tomato BAK1-related factor NIK1 89 

[15,16] and the plum pox virus coat protein inhibits PTI against that virus in 90 

Arabidopsis and Nicotiana benthamiana [17]. These viral proteins appear to be acting 91 

as effectors; i.e., a pathogen-encoded counter-defense molecules [18].  In Arabidopsis, 92 



Manipulating Induced Virus Resistance 5 

cucumber mosaic virus triggers PTI without any apparent effect on virus 93 

accumulation [19].  However, this up-regulates glucosinolate biosynthesis, which 94 

inhibits prolonged feeding by aphid vectors, and promotes their onward migration. 95 

This suggests that CMV manipulates PTI to enhance insect-mediated transmission 96 

[19]. 97 

 98 

Effector-triggered immunity and systemic acquired resistance  99 

Pathogens that overcome PTI exert powerful selection pressures on plants, driving 100 

evolution of dominant resistance (R) genes [18].  Most R genes encode leucine-rich-101 

nucleotide-binding domain (NB-LRR) proteins enabling direct or indirect detection of 102 

effectors (effector-triggered immunity, ETI) [18].  ETI induces a strong local 103 

hypersensitive response (HR) that restricts pathogens to inoculation sites, which may 104 

trigger plant-wide resistance enhancement (systemic acquired resistance, SAR).  105 

Several of the best-characterized R genes provide virus resistance, although antiviral 106 

NB-LRRs are not different in overall structure to those that condition resistance to 107 

other pathogens [1,18].  However, it is notable that viruses (in contrast to cellular 108 

pathogens) are less able to evolve to generate viable mutants able to overcome genetic 109 

resistance [20]. 110 

ETI and SAR depend upon local and systemic signaling.  SA and jasmonic acid (JA) 111 

are the best-studied defensive signal molecules [1], although recent findings have 112 

pointed to important roles in SAR induction for azelaic acid, glycerol-3-phosphate, 113 

and pipecolic acid as local and systemic defense signals [2,21] (Figure 1).  SA plays 114 

important roles in virus resistance; however, the JA signaling network can influence 115 

susceptibility to infection.  Transgenic tomato plants with increased systemin levels 116 
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were less susceptible to CMV infection and necrosis induction by a satellite RNA [22].  117 

Systemin is a peptide hormone that is part of the JA-mediated signaling network in 118 

tomato, associated most notably with wound-induced resistance to chewing insects 119 

[23], which makes its effect on CMV surprising.   120 

Beneficial bacteria can stimulate or prime increased resistance to pathogens, as seen 121 

with increased resistance of Arabidopsis to CMV engendered by strains of Serratia 122 

marcescens and Bacillus pumilus [24,25].  The identities of microbial signals 123 

responsible for resistance stimulation remain unclear but the bacteria have been 124 

shown to trigger induced systemic resistance (ISR) [24]. ISR is a resistance 125 

phenomenon induced by non-pathogenic microbes that is dependent predominantly on 126 

JA- and ethylene-mediated signaling, which often takes the form of priming of 127 

defense-related gene expression, rather than immediate transcriptional activation [1] 128 

(Figure 2). 129 

Salicylic acid-induced resistance to viruses 130 

SA was first associated with plant defense through its effects on virus infection over 131 

30 years ago, but SA-induced virus resistance in plants remains imperfectly 132 

understood [1,9,26,27].  SA is well known to have protective effects in plants and 133 

animals.  Recent work by Klessig and colleagues suggest that organisms of both 134 

Kingdoms share some of the same target molecules for SA (reviewed in [26,27]), 135 

suggesting that this simple molecule has a long evolutionary history in regulation of 136 

stress and defense responses in diverse living organisms. 137 

Depending upon the virus-plant combination, SA can inhibit replication, intercellular 138 

trafficking or systemic movement [1,2,21,28].  For at least one virus, SA has direct 139 

antiviral effects, rather than acting as a resistance-inducing signal molecule.  Via an 140 
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interaction with the host enzyme glycerol 3-phosphate dehydrogenase, SA inhibits 141 

positive-strand viral RNA synthesis by the replicase protein of tomato bushy stunt 142 

virus [29], but it is not known how common such direct antiviral effects of SA on 143 

replication are for other viruses.  Plastids and mitochondria facilitate SA-induced 144 

resistance through signal transduction leading to altered nuclear gene expression, or 145 

through indirect effects on plasmodesmal function [1,30,31].  SA-induced virus 146 

resistance is not dependent on factors vital for resistance to cellular pathogens, such 147 

as pathogenesis-related proteins or NPR1 (‘non-expressor of PR1’) [1].  Although 148 

RNA silencing may contribute to SA-induced virus resistance, experiments with 149 

silencing mutants showed it to be dispensable [32].  SA stimulates gene expression 150 

and enzyme activity of the phytohormone-inducible silencing factor RNA-dependent 151 

RNA polymerase 1 (RDR1) [28].  RDR1 does not contribute to SA-induced resistance 152 

in inoculated tissues and appears to work in co-ordination with other, unknown, SA-153 

induced mechanisms to inhibit viral invasion of developing tissues to ameliorate 154 

symptoms [28].  A recent study by Alazem and colleagues [33] indicates that another 155 

phytohormone, abscisic acid, has wider ranging effects than SA on silencing 156 

components.  157 

The virus-SA relationship is an ambiguous one.  SA is needed for a successful HR 158 

and either SA pre-treatment or induction of endogenous SA biosynthesis renders 159 

plants less susceptible to viruses.  However, some viruses (potyviruses and CMV, for 160 

example) trigger SA accumulation (discussed in [9]) and the CMV 2b protein 161 

possesses domains facilitating this [34].  It is unknown why these viruses increase 162 

levels of this potent defense signal. 163 

 164 
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Engineering and application of induced resistance  165 

In addition to genetic methods (see [35-37] of this issue), three general approaches 166 

have been used to inhibit virus accumulation and virus disease (usually, but not 167 

always linked), involving ectopic application to plants: (i) various metabolites from 168 

plants; (ii) synthetic chemicals, including phytohormone derivatives; and (iii) plant 169 

growth-promoting rhizobacteria (PGPR) plus bacterial-encoded proteins.  The first of 170 

these approaches has been explored over many years with mixed and largely limited 171 

success, but the search continues.  In addition, many of these plant substances have 172 

been shown to be activators of defense responses (reviewed in [2,4]).  In fact, all three 173 

approaches seem to lead to one or more defense pathways mediated by the 174 

phytohormones: SA, JA, ethylene, abscisic acid and brassinosteroids (BR) [38] 175 

(Figure 1).  Direct application of phytohormones can provide resistance; e.g., BR 176 

[39,40].  While SA or JA can also be used, the direct application of SA and JA to 177 

plants was superior, with JA followed by SA (1-3 days later) giving the best response 178 

[41,42].  Table 1 lists many of the various inducers or primers of defense that have 179 

been used and Figure 1 shows several resistance inducing chemicals and endogenous 180 

signals.  In other cases, short peptides have been used, which are described in [43].   181 

 182 

Better living through chemistry 183 

A number of approaches have been made to put into practice the knowledge gained 184 

from molecular analysis of the pathways involved in SAR and ISR (see Table 1).  185 

These include direct application of SA analogs such as BTH; chemicals that induce 186 

SAR, such as BABA, chitosans, dufulin, eudesmanolides, eugenol, laminarins, 187 

lentinan, p-aminobenzoic acid, probenazole, strobilurin and tiadinil; chemicals that 188 

induce SAR and ISR, such as ningnanmycin; chemicals that induce an ABA-mediated 189 
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response, such as chitosans; proteins inducing SAR, such as harpin, lactoferin and 190 

PeaT1; and rhizobacteria that induce either ISR or a mixture of ISR and SAR.  Many 191 

of these substances have only been tested for SAR responses against TMV in tobacco 192 

plants containing the N gene for resistance to TMV.  Since the treated leaves were 193 

inoculated with TMV, this test is actually for local acquired resistance rather than 194 

SAR.  In most cases, the ability of the compound to either induce SAR or affect the 195 

systemic spread of a virus in the absence of an HR has not been evaluated. 196 

 197 

The modes of action of many of these substances have been studied and generally 198 

affect one or both of the two major resistance pathways: SAR and ISR (Table 1).  199 

However, BR can activate a brassinosteroid disease resistance pathway independent 200 

of SAR [39,40], chitosans can induce SA and/or ABA mediated responses (reviewed 201 

in [44] and [38]), and laminarin, an algal β-1-3-glucan polymer induces an ethylene-202 

mediated response, whereas sulfated laminarin induces an SA-mediated response [45].  203 

While dufulin binds to harpin-binding protein 1 and activates SAR [46], dufulin or a 204 

derivative also interacts directly with viral capsid proteins of TMV [47] and cucumber 205 

mosaic virus [48], as well as a non-structural protein of southern rice black streaked 206 

dwarf virus [49].  Ningnanmycin also binds to the capsid proteins of TMV and 207 

inhibits particle formation [50].  The mechanism of action of soluble orthosilicic acid 208 

against viruses is not known, but for fungi, it appears that resistance involves 209 

pathways activated by SA, JA and ethylene [38]. 210 

 211 

What does not kill you makes you stronger 212 

Although researchers from numerous countries have contributed significantly to this 213 

field, a large effort has been made in China over recent years to discover new 214 
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antivirals that can be used in agriculture.  These include the use of esterified milk 215 

whey (lactoferin), neutral polysaccharides from shiitake mushrooms (Lentinus 216 

edodes) (lentinan and sulfonated lentinan), oil of cloves (eugenol), sesquiterpine 217 

lactones (eudesmanolides) from Wedelia trilobata, degraded triterpene lactones 218 

(quassinoids) from Brucea javanica, a phytohormone (epibrassinolide), a cytidine-219 

derivative antibiotic (ningnanmycin) from the bacteria Streptomyces noursei var 220 

xichangensis, a protein (PeaT1) from the fungus Alternaria tenuissima, a harpin 221 

protein (PopW) from the bacteria Ralstonia solanacearum, and synthetic compounds 222 

such as bis-pyrazoles, cyano-acrylates and α-amino phosphonate (dufulin).  These 223 

induce varying ranges of resistance, from 25% to nearly 100%, yet the search goes on.  224 

Factors such as the cost of the agent, its required frequency of application, and to the 225 

extent to which it has a broad spectrum of activity and affects the plant all come into 226 

play as to its success in the field. 227 

 228 

PGPR and other saprophytes have been used successfully to induce systemic 229 

resistance in several crops, resulting in loss of symptoms and reductions in viral titers.  230 

In most cases, the effects are through ISR, although Trichoderma species can also 231 

induce SAR (Table 1).  In addition, bacterial proteins such as harpins [51] and PeaT1 232 

[52] induce resistance to virus infection through SAR/ISR or just SAR, respectively.  233 

Both have seen application to the field, with PeaT1 being used in 4 million ha in 234 

China during the first two years of production [53], although the nature of the crops 235 

and breadth of virus resistance have not been reported.  Therefore, there are currently 236 

a number of promising and apparently successful inducers available to engender virus 237 

resistance.  And yet, the search goes on.    238 

 239 
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Conclusions and Future Potential 240 

Although we have gained an improved understanding of how induced antiviral 241 

resistance mechanisms work, our knowledge is incomplete and perhaps we know 242 

more about factors (such as RNA silencing) that do not execute resistance, than those 243 

that do.  The problem remains that induced resistance using activators – chemicals or 244 

resistance inducing microbes – does not necessarily provide virus resistance that is 245 

complete or prolonged [4].  However, the field has been far from stagnant.  There 246 

have been some surprises in recent work such as the similarities between some 247 

induced resistance mechanisms shared between plant and animals [26,27] and PTI has 248 

been shown to affect viruses [12-14,17], which may provide new targets for novel 249 

resistance inducing chemicals.  Additionally, recent progress in formulation of 250 

resistance-inducing compounds for improved treatment of plant tissues has allowed 251 

the delivery of molecules to induce RNA silencing of viruses [54] without the need 252 

for plant transformation or expression from engineered viral vectors (Figure 2).  This 253 

offers the potential of improving induced resistance through direct effects on viruses 254 

by RNA silencing, in combination with other resistance inducers or through using the 255 

system to inhibit expression of negative regulators of resistance. 256 

 257 

  258 
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Table 1. Agents used to trigger or prime induced resistance in plants. 552 

Inducer/Primer Virusa Host plant Infection Response Reference 

β-aminobutyric acid (BABA) TMV Tobacco HRb,c SAR [55] 

Benzothiadiazole (BTH) CCYV 

CMV 

CMV 

TMV 

TSWV 

Melon 

Tomato 

Cantaloupe 

Tobacco 

Tobacco 

Systemic 

Systemic 

Systemic 

Systemic 

Systemic 

SAR 

SAR 

SAR 

SAR 

SAR 

[56] 

[57] 

[58] 

[59] 

[60] 

Bis-pyrazoles TMV Tobacco HR ND [61] 

Brassinosteroids CMV 

TMV 

Zucchini 

Tobacco 

Systemic 

HR 

BDR 

BDR 

[40] 

[39] 

Chitosans TBSV, TNV 

7 viruses 

AMV, PSV 

6 viruses 

4 viruses 

Bean 

Bean 

Pea 

Solanaceae 

Quinoa 

HR 

HR/Systemic 

Systemic 

HR/Systemic 

HR 

ABA/SAR 

ND 

ND 

ND 

ND 

[38] 

[44]  

[44]  

[44] 

[44] 

Cyano-acrylates TMV Tobacco HR ND [62] 

Dufulin SRBSDV 

TMV 

Rice 

Tobacco 

Systemic 

HR 

SAR 

SAR 

[63] 

[47] 

Eudesmanolides TMV Tobacco Systemic SAR [64] 

Eugenol TYLCV Tomato Systemic SAR [65] 

Harpin (PopW) TMV Tobacco HR SAR, ISR [51] 

Lactoferrin TMV 

TYLCV 

Tobacco 

Tomato 

HR 

Systemic 

SAR 

ND 

[66] 

[67] 

Laminarin (sulfated) TMV Tobacco HR SAR/ET [45] 

Lentinan TMV Tobacco HR SAR? [68] 

Ningnanmycin TMV Tobacco Systemic SAR, ISR [69] 

p-aminobenzoic acid (PABA) CMV Capsicum Systemic SAR [70] 

PeaT1 TMV Tobacco HR SAR [52] 
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3-pentanol CMV Capsicum Systemic SAR, ISR [71] 

Probenazole (& saccharin) TMV Tobacco HR SAR [72] 

Quassinoids PepMoV 

TMV 

Capsicum 

Tobacco 

Systemic 

Systemic 

ND 

ND 

[73] 

[74] 

Silicon (orthosilicic acid) TMV,TRSV Tobacco Systemic ND [75] 

Spermine (polyamines) CMV Arabidopsis Systemic ND [76] 

Strobilurin (fungicide) TMV Tobacco HR SAR [77] 

Tiadinil TMV Tobacco HR SAR [78] 

PGPR: Bacillus 

amyloliquefaciens 

BBWV,CMV, 

PepMoV 

Capsicum Systemic ISR [79] 

PGPR: Bacillus pumilus CMV Arabidopsis Systemic ISR [24] 

PGPR: Pseudomonas 

fluorescens 

CMV Tobacco Systemic ISR? [80] 

PGPR: Serattia marcescens CMV Arabidopsis Systemic ISR [24] 

Penicillium simplicissimum CMV Tobacco Systemic ISR [81] 

Trichoderma harzianum CMV Tomato Systemic SAR/ISR [82] 

 553 

a Viruses: alfalfa mosaic virus (AMV), broad bean wilt virus (BBMV), cucumber chlorotic yellows 554 

virus (CCYV), cucumber mosaic virus (CMV), peanut stunt virus (PSV), pepper mottle virus 555 

(PepMoV), southern rice black-streaked dwarf virus (SRBSDV), tobacco mosaic virus (TMV), tobacco 556 

necrosis virus (TNV), tobacco ringspot virus (TRSV), tomato bushy stunt virus (TBSV), tomato 557 

spotted wilt virus (TSWV), and tomato yellow leaf curl virus (TYLCV). 558 

b Other abbreviations: ABA = abscisic acid-mediated resistance; BDR = brassinosteroid-mediated 559 

disease resistance; ET = ethylene-mediated resistance; HR = hypersensitive response; ISR = induced 560 

systemic resistance; ND = not determined; SAR = systemic acquired resistance. 561 

c HR indicates that there was an enhancement of HR/ETI-type resistance, which strictly is local 562 

acquired resistance. 563 

  564 
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FIGURE LEGENDS 565 

Figure 1. Chemical resistance inducers and defense signals. (a) A selection of 566 

chemicals used as plant treatments for studies of induced resistance. Acetylsalicylic 567 

acid (Aspirin) (I) and 2,6-dichloroisonicotinic acid (II) were used in earlier studies of 568 

SAR induction [83,84]. Other inducers shown are benzothiadiazole (BTH) (III), 569 

probenazole (IV), p-aminobenzoic acid (V), and the non-protein amino acid β-570 

aminobutyric acid (BABA) (VI).  The inducers I-IV are synthetic chemicals. BABA 571 

(VI) was recently found to occur in plant tissue and to accumulate in response to 572 

pathogen attack [85]. (b) A selection of plant defensive signal molecules mentioned in 573 

this article: salicylic acid (VII), ethylene (VIII), azelaic acid (IX), jasmonic acid (X), 574 

brassinolide, a brassinosteroid (XI), abscisic acid (XII), pipecolic acid (XIII), and 575 

glycerol-3-phosphate (XIV). A number of the chemicals in (b), in particular VII, have 576 

also been used experimentally as exogenous inducers of resistance.   577 

 578 

Figure 2. Overview of approaches used to induce resistance by treatment of 579 

plants with exogenous agents. A simplified representation of exogenous agents used 580 

to elicit induced systemic resistance, systemic acquired resistance (including 581 

enhancement of the hypersensitive response/effector-triggered immunity) and RNA 582 

silencing. Some of the endogenous signals involved in induction of these resistance 583 

mechanisms are indicated (also refer to main text, Table 1, and Figure 1). 584 

Abbreviations: abscisic acid (ABA); azelaic acid (Aza); glycerol 3-phosphate (G3P); 585 

jasmonic acid (JA), pipecolic acid (PA) and salicylic acid (SA). 586 


