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Abstract—Distributed Denial of Service (DDoS) attacks em-
ploying reflected UDP amplification are regularly used to disrupt
networks and systems. The amplification allows one rented server
to generate significant volumes of data, while the reflection hides
the identity of the attacker. Consequently this is an attractive,
low risk, strategy for criminals bent on vandalism and extortion.
To measure the uptake of this strategy we analyse the results of
running a network of honeypot UDP reflectors (median size 65
nodes) from July 2014 onwards. We explore the life cycle of
attacks that use our reflectors, from the scanning phase used to
detect our honeypot machines, through to their use in attacks. We
see a median of 1 450 malicious scanners per day across all UDP
protocols, and have recorded details of 5.18 million subsequent
attacks involving in excess of 3.31 trillion packets. Using a
capture-recapture statistical technique, we estimate that our
reflectors can see between 85.1% and 96.6% of UDP reflection
attacks over our measurement period.

I. INTRODUCTION

Denial of service is a generic term for attacks on computer
systems that make them unavailable to their users. A common
attack is to flood network links with specious traffic so that,
in dealing with the excess, legitimate traffic is discarded. In a
Distributed Denial of Service (DDoS) attack the abusive traffic
arrives from many different computers at the same time, with
each making a relatively small contribution to the attack.

In this paper we study Reflective UDP Amplification At-
tacks, a specific form of DDoS. UDP request packets are sent
to a server, but the source IP address is spoofed to be that of the
victim who receives the reflected replies. When the response is
bigger than the request there is amplification and attackers can
generate attack flows of many tens of Gb/s whilst themselves
sending only 1Gb/s of traffic – something that is cheap and
easy to arrange.

These attacks have, on occasion, been extremely disruptive
and they are the subject of US CERT Alert TA14-017A,
originally issued in January 2014 but revised in the light of
ongoing activity with information about new types of attack
in April 2016 [39].

Our approach to measuring this type of DDoS has been
to deploy a small number of honeypot machines that mimic
servers for commonly exploited UDP protocols. The attackers
scan the Internet looking for reflectors and rope in our
machines when they attack a victim. This allows us to estimate
how many reflective UDP attacks occur each day and gives us
an insight into the identity of the victims.

Our results are dominated by booters / stressers – websites
offering DDoS for (very low-cost) hire used mainly by online
games players to attack other online games players – but we
see other types of victimisation as well.

We start by discussing earlier work on DDoS and explain
our data collection system along with details of the scans and
attacks we can measure. We also discuss the ethical issues
we have addressed as we deployed our data collection system.
We present the results of 1010 days of observations and the
changes we have seen over time since July 2014. We explain
how statistical techniques allow us to estimate not only how
many reflective UDP amplification DDoS attacks occur each
day, but also to estimate the number of potential attackers.

II. RELATED WORK

The first account of the use of DNS for reflective UDP
amplification attacks (with a predicted amplification factor of
20) was in 1999 [34]. However, this method of attack did not
become popular until much later [32]. In this paper we find
that, since 2014, DNS reflective UDP amplification attacks are
commonplace, with a median of 1 930 per day.

Paxson [26] gives an early account (2001) of the use of
reflectors in DDoS attacks – but his focus is on the difficulties
this poses for tracing back the attacker and there is no mention
of amplification. In 2004 Mirkovic and Reiher [19] include
reflection in their DDoS taxonomy but only mention smurf
attacks [23] as an example.

Historically it has been believed that DDoS attacks were
undertaken by botnets. For example, in 2012, Büscher and
Holz, in their study of DirtJumper, stated that botnets were
“the main mechanism” behind DDoS and describe traffic sent
directly from the bots to victims [2]. However, in 2012 and
2013 numerous very high bandwidth DDoS attacks involved
amplification, and since then reflective UDP amplification
attacks have been the dominant form of DDoS, notwithstand-
ing that since the summer of 2016 botnets, such as Mirai,
which exploit insecure devices in the ‘Internet of Things’ have
generated a number of very high bandwidth attacks [24].

When Rossow looked at real world DDoS in June 2013 he
identified attacks involving the DNS, CHARGEN and SNMP
protocols. He also surveyed which protocols, besides DNS,
were capable of providing amplification [31]. This analysis
inspired the measurement work described in this paper.
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While our work has focused on generic measurements of
DDoS attacks, other work has focused on specific booter /
stresser services: websites which provide DDoS for hire. In
2013, Karami and McCoy looked at the leaked database of a
booter service, finding that it was responsible for around 900
attacks per day. Users playing online games purchased a dozen
or so short attacks (10 minutes or less) per day, but some users
bought attacks that went on for several days [11].

Santanna et al. analysed the attack traffic from 14 boot-
ers [32] and database dumps from 15 booters [33]. Karami
et al. revisited the topic in 2016 [12] and, besides doing
further analysis of leaked databases, they investigated how
the requested DDoS attacks were performed. Generally, the
front-end websites (through which payments are made and
attacks requested) invoke back-end servers to generate the
traffic towards the reflectors, spoofing the IP addresses of the
victims so that they receive the amplified data. Recent analysis
by Noroozian et al. determined that the bulk of the victims of
UDP reflection attacks (62%) are users in access networks and
only 26% are users of hosting providers [25].

Although compromised machines can be used as back-end
servers it is more usual for machines to be hired for the
purpose – a number of hosting providers advertise appropriate
systems on underground forums. In the newer work, Karami
et al. [12] also observed that there was considerable overlap
between the amplifying reflectors used by different booters,
but this overlap was higher for CHARGEN and NTP than for
DNS and SSDP. Recent work by Krupp et al. [14] analyzed
the TTL fields of spoofed packets sent during an attack and
thereby determined the network location of the machines
sending such packets. They found that a significant fraction of
reflective UDP attacks are carried out by machines in the same
network location as the scanner, suggesting that the common
modus operandi is to use a single machine or collection of
machines at one location rather than a larger botnet.

In 2015, Hutchings and Clayton contacted about 50 people
operating booters and interviewed a quarter of them [9]. They
found young males who believed that they were getting “easy
money” and who had learnt their skills in online forums where
“definitions favourable towards offending are shared”.

Measuring DDoS attacks also has a long history. In 2001
Moore et al. [21] introduced backscatter analysis to enumerate
DDoS attacks. They monitored packets arriving at unused IPv4
address space and identified responses that victims had gener-
ated when receiving traffic from forged source IP addresses.
Their approach identified 12 805 attacks over 3 weeks. How-
ever, this approach fails to observe reflected attacks because in
such a case the forged source IP address is that of the victim,
rather than a random value. The same authors revised their
paper in 2006 [22] to present 3 years of analysis with a peak
DDoS rate of around 100 victim IPs per hour.

Czyz et al. [4] examined five datasets on NTP attacks
dating from 2013 and 2014. They found that the volume of
NTP attack traffic rose rapidly but fell after February 2014,
possibly due to reconfiguration of NTP servers to prevent
amplified reflection. Unfortunately there is no overlap between

the period they considered and the period covered by the data
described in this paper.

More recently, security companies have included DDoS in
their reports about the state of Internet security. In particular,
Akamai (who manufacture equipment for mitigating the effect
of denial-of-service attacks) produce a quarterly report which
describes numerous types of attack, but their data provides
relative percentages rather than absolute figures [1].

The most similar work to this paper is by Krämer et al. [13]
in which the authors use a /16 darknet to identify machines
scanning for UDP reflectors. They use what they learnt to
design and build a honeypot they called AmpPot. Their paper
presents the results of running 21 AmpPot nodes between
February and May 2015.

In contrast to prior work, our results are from a larger set
of sensors, run over a considerably longer period of time. We
look at both scanning and attacks and we present a robust
method for using our results to estimate the total number of
attacks that have occurred and illustrate how attacker strategies
and techniques have evolved over time.

III. DATA COLLECTION

We deployed our sensors on the public Internet. Sixteen of
the sensors are on our own /28 subnet, with the rest mainly
at low-cost hosting providers and a handful on consumer
ISP connections. Since many scanners scan IP addresses at
random, the sensors in the /28 subnet do not get scanned by
an identical set of scanners and we observe different traffic
volumes on different sensors. However, scanners that scan
address space sequentially would discover all or none of these
16 sensors, so we do not consider them to be completely
independent in later analysis. The diverse set of locations for
the other sensors is intended to increase the likelihood that
we respond to a scan of a limited part of the Internet, and to
ensure that we still see activity even though some providers
might drop traffic associated with DDoS events.

Over 1 010 days of data collection we have operated a mean
of 59.7 sensors (median 65) with a 95% confidence interval of
between 22 and 86 sensors. In the remainder of the paper we
write “95% CI [22, 86]” as notation for this 95% confidence
interval. A CDF of the number of sensors in operation per day
is given in Appendix A-D.

Our sensors have two components that we developed from
scratch: A program that emulates services exploited in reflec-
tive UDP amplification attacks, and a data collection module
that records small numbers of raw packets and descriptive
statistics of all UDP traffic. These components are described
in the next two subsections.

A. Hopscotch: a UDP reflector

Hopscotch is a small (less than 3000 lines of C) program
supporting multiple UDP services. Incoming traffic is checked
for compliance with the relevant protocol, and if so, a valid
response UDP packet is sent to the source IP of the request.

When we started our research in March 2014, we assessed
which protocols were reported to be commonly abused for



Protocol Port Start Reflection description

QOTD [29] 17 2014-03 An uplifting quotation of ∼250 ASCII characters is returned.
CHARGEN [28] 19 2014-03 A rolling pattern of 480 ASCII characters is returned.

DNS [20] 53 2014-03 The incoming packet is relayed to a real DNS server and the result returned. This avoids the complexity
of implementing DNS and simplifies installation.

NTP [18] 123 2014-03 The incoming packet is relayed to a real NTP server and the result returned. If the incoming packet
is a monlist request (mode 7, type 42) then the biggest possible fabricated response is sent, containing
600 IP addresses.

SSDP [38] 1900 2014-10 Only responds to M-SEARCH commands, sending a packet indicating the presence of a Wi-Fi device.
SQLMon [17] 1434 2015-02 Responds to relevant queries with a 580-byte list of fake database servers.
Portmap [35] 111 2016-01 Responds to v2 DUMP with ∼1K of data listing fake RPC services.

mDNS [3] 5353 2016-05 For simplicity, with no regard for the specification, treated just like DNS.

TABLE I: List of protocols supported by Hopscotch, their date of deployment, and key reflection capabilities.

DDoS and implemented: Quote Of The Day (QOTD), CHAR-
GEN, DNS and NTP.

We later added further commonly abused protocols, in-
cluding SSDP, MS SQL Monitor (SQLMon), Portmap and
Multicast DNS (mDNS). Although some of these protocols
were only intended to be used with multicast IPv4 addresses,
many devices respond on standard IPv4 addresses, and hence
so does Hopscotch.

Further details of the protocols supported by Hopscotch and
details of the construction of the reflected packets can be found
in Table I.

B. Sniffer: a packet collector

Sniffer is a small (around 1500 lines of C) program that uses
libpcap [10] to inspect incoming UDP packets. The first fifteen
raw packets received on the same port number for every source
IP are recorded and the remaining packets are merely counted.
Every five minutes a new raw packet file is created, and per
port and per sender counts are written to a statistics file. These
files are then delivered to a central server for analysis.

We decided not to record every packet because this would
not have added very much to our understanding of DDoS
attacks – the packets are invariably much the same and, where
there are (not) variations in various identifier fields, inspecting
15 packets has proved sufficient.

The five minute period for rotating files and restarting counts
is a trade-off between the detail of our measurements and the
size and number of files created. When we started our work
we were expecting to find long duration attacks that ran for
many hours or days, so that although we know exactly when
an attack starts we did not originally consider it a problem if
we only knew to within 5 minutes when it finishes. However,
to understand short attacks better, since August 2016, Sniffer
has been modified to record the time of the last packet, as well
as the first packet, precisely.

We also found that the clocks on the sensors could be
unreliable since some cheap services failed to run NTP on
their host and OpenVZ containers cannot set their own time.
However, since December 2015 we track inaccuracies on
our central server where data is delivered and correct the
timestamps, and so this is not an issue after that point.

C. Ethical considerations

We were concerned that by deliberately providing UDP
packet reflectors we would assist criminals in performing
DDoS attacks. We addressed this by limiting the number of
packets we reflect. We need to reflect the first few packets in
order for the criminals’ scanners to learn that our sensors were
available for them to use. However, once we receive more
than a handful of packets with the same source IP address
we assume an attack is taking place, and we cease reflecting
packets to that destination at all (that is ‘Hopscotch’ stops
reflecting whilst ‘sniffer’ keeps on recording the details of the
attack) until there has been no relevant activity for 30 minutes.

Furthermore, when any particular sensor identifies a victim
this is reported without delay to a central server which
promptly informs all the other sensors of the attack, so that
they all immediately refuse to reflect any packets to the victim.

The result is that if our sensors are used by a criminal
then after a very short period there will be rather less traffic
delivered to the victim than if the sensors did not exist because
some of the attack traffic generated by the criminal is being
absorbed by our sensors rather than going to real reflectors and
being reflected and amplified. Hence, as we run more sensors,
benefit for victims of DDoS attacks is increased as we absorb
more attack traffic.

There are a number of initiatives to try and reduce the
number of UDP reflectors connected to the Internet. ‘White-
hat’ scanners identify the reflectors and report them to the
relevant ISP or hosting company who will then contact the
owner of the machine. We were concerned that, by operating
sensors, we might distract abuse handling teams from dealing
with other customers who were inadvertently operating UDP
reflectors. Accordingly we maintain an exclusion list of the
white-hat scanners and never respond to their packets. We
have also added a number of other scanners to this list, such
as Shodan [16] and those operated by research teams at other
Universities, because their scans distort our results and our
responses will doubtless distort theirs.

Despite our efforts to be unnoticed, we have had six
complaints about sensors in nearly three years of operation.
On each occasion a victim had analysed packet captures from
the start of a DDoS attack, found the sensor’s IP address and



generated an automated complaint. In each case, we were able
to deal with the issue by explaining the nature of our research.

We have also used leaked data from booter attack databases
to check our results (§VI-E). These booters are no longer in
operation and so there is no risk in revealing their names. The
use of this leaked data is necessary as there is no other way
of knowing the true behaviour of booters.

We followed our institution’s ethical review procedure
throughout. We carefully designed our experiments to operate
ethically and we had no human subjects.

IV. TRAFFIC CLASSIFICATION

To perform a UDP reflection attack the criminal needs a
list of reflectors for relevant protocols. They could use lists
published by others or interrogate a search engine such as
Shodan. Since Hopscotch ignores packets from known ‘white-
hat’ scanners, this would be ineffective in locating our sensors.
Therefore, we believe attackers actively scanned some or all of
IPv4 address space to determine the location of our reflectors.
Such a scan can take less than 45 minutes with ZMap [6],
and as long ago as January 2014 ZMap was being utilised
for 21.7% of the scans of more than 50% of IPv4 address
space [5].

Once an attacker has located one or more of our reflectors,
they must then send UDP packets with a (forged) source IP
address set to that of the victim, for example by generating
them on a rented host at a hosting company that is not
BCP38/SAVE [7] compliant.

We wish to know the length of each attack, which we
determine by identifying the first packet with a given port
number and source IP address (the victim) which arrives at any
of our sensors. We then look forward in time until there is a
15 minute gap without any further matching packets reaching
any of our sensors.1 This gives us times for the beginning and
end of the attack. However, recall from §III-B that until August
2016 we did not record the time of the last packet of each type
within the batch file. So prior to this date we overestimate the
end time by up to 300 seconds (with an average excess of 150
seconds).

We expect the attacks to involve large numbers of packets
whereas, to ensure they are quick, the scans will employ a
small number of packets, probably just one per IP. This means
that simply by counting the packets we can distinguish a scan
from an attack. So, having identified the start and end times
of an attack we then check to see if any sensor received more
than 5 packets. If not then we classify the event as a scan.

This is a different definition of an attack from that used in
other work, Amppot considers packets to be part of an attack
if it observes 100 packets with the same source IP address
with no gap of more than 3 600 seconds [13] and Noroozian
et al. modify this to use a gap of 600 seconds [25]. We use a
threshold of 5 packets per sensor with no gap of more than
900 seconds.

1The use of 15 minutes is justified in Appendix A-B.

Protocol Mean Median 5% 95%

CHARGEN 20.8 7 2 39
NTP 1 160 21 4 711
DNS 2 250 65 9 1 410

SIP 124 119 56 204
SNMP 9.73 8 1 21
SSDP 729 224 3 3 530

QOTD 1.47 1 1 2.85
Netis 424 55.5 1 1 180

TABLE II: Numbers of scanners per day for some popular
UDP protocols, showing the mean and median values, along
with the 5th and 95th percentiles.

There are two complications with this counting approach
for distinguishing victims and scanners. The first is that some
attackers send packets to randomly chosen IP addresses within
a /24 (or bigger) prefix – reasoning that the volume will impact
every host within that IP range and the randomness may
make the attack harder to detect or block. We identify these
‘prefix attacks’ by assessing the number of victims within
each address block allocation made by the Regional Internet
Registries (RIRs) and if there are more than about 16 victims
in a /24 (see Appendix A-C for the analysis details) then we
conclude that the attack is not against individual hosts but
record all the events as a single attack against the prefix. We
discuss this type of attack further in §VI-B below.

The second complication in our attempt to distinguish be-
tween scanners and victims is the attacks we see against DNS
servers that involve requests to resolve randomly chosen sub-
domains. The randomness of the request means that the answer
will never be cached and so the recursive resolvers consult
the authoritative DNS server for the domain – which means
that this is actually a DDoS on the authoritative server. Our
experience is that in these attacks the requesting IP addresses
are randomly chosen (often they are not even routable) and so
we have manually identified the domain names used in these
attacks (a relatively simple exercise since most other DNS
attacks use a small set of queries). We analyse these attacks
in §VI-C below, and ignore them entirely elsewhere.

We do not believe that there are any other kinds of attack
that might influence our analysis as while there are scanners
searching for exploitable services, these are scanning on ports
other than those Hopscotch reflects from.

V. SCANNING BEHAVIOUR

Our sensors record scans for every UDP port, including
those for which we have not (yet) implemented any reflection.
By examining how many sensors detect any particular scan
we can describe some rather different approaches to scanning.
Known ‘white-hat’ scanners are excluded from this analysis
as described in §III-C.

Our data shows that across all protocols there are an average
of 5 070 (95% CI [258, 14 300]) IPv4 addresses scanning each
day with a median of 1 450. However, there is a wide variation
in the number of scanners between protocols with a median of
just 1 QOTD scanner, but 65 DNS scanners, per day. Statistics
for the protocols abused in DDoS attacks are given in Table II.
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(a) DNS (66 days truncated)
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(b) SSDP (95 days truncated)
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(c) NTP (94 days truncated)
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(d) CHARGEN (26 days truncated)
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(e) SIP
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(f) port 53413 (Netis routers)

Fig. 1: Count of distinct IP addresses scanning per day for six different UDP protocols (×) under plotted with the daily number
of operational sensors (·). Note that the figures have different y-axes scales for clarity. The correlation between the number of
scanners and the number of sensors is discussed in §V-A and the need for the vertical truncation is considered in §V.



Figure 1 shows the daily count of distinct IP addresses
scanning for six interesting protocols, as well as the number
of sensors in operation. Care is required in interpreting these
graphs because the vertical scales differ in order to present the
data at the best resolution for each protocol.

In addition, we have truncated the vertical scale to exclude
days which have high numbers of scanners, even after removal
of prefix attacks (see §VI-B). The number of days excluded
from the plot by this truncation is indicated in the figure
captions. We do not currently believe that there are sudden
spikes in the number of people undertaking scans, so we
assume that there must be some linkage between the disparate
scanning IP addresses, but we continue to investigate this
phenomenon.

The first four figures (Figures 1a-1d) show how fashions
change in DDoS – interest in scanning for DNS grew over time
but declined in 2016 whereas scanning for NTP continues to
grow, albeit at lower levels. Figure 1d shows ongoing interest
(again at low levels) in scanning for CHARGEN reflectors.

The last two figures (1e, 1f) show potentially different
criminal behaviour, since the attackers are likely seeking to
exploit a vulnerability of the host itself rather than detect a
UDP service suitable for use in reflection attacks.

Figure 1e seems to show somewhat variable interest in
scanning for Session Initiation Protocol (SIP) [30]. SIP is
frequently used for Voice Over IP (VOIP) communications and
insecure devices can be exploited by criminals who monetise
the services they provide. The final graph (Figure 1f) shows
how much scanning there is of port 53413. We believe these
are scans by criminals who seek to locate and compromise
certain models of Netis router to build a botnet [40]. There
are two spikes in 2014 (the first of which begins shortly
after initial press coverage of the Netis vulnerability) and
there is then much increased interest at the end of 2015 and
during 2016, which we cannot currently link to any particular
publicity.

While we have had some success tying scans and attacks
together using techniques similar to those used by Krupp et
al. [14] which rely on information on the TTL and which
subset of sensors was used for an attack, further work is
required to make it sufficiently robust in the absence of ground
truth, so we do not present it here.

A. How sensor numbers affect our data

Although we have just said that the SIP scanning graph
(Figure 1e) apparently shows variable interest by criminals
in scanning for SIP, the shape is in practice an artefact of
the number of sensors that we had operational at any given
time. We believe that those seeking to compromise SIP devices
stop their scanning once they have sufficient devices for their
immediate needs. In contrast, we believe, those planning to
perform a DDoS attack want to identify as many reflectors as
possible.

To show this effect, all the figures in Figure 1 also plot
the daily number of operational sensors and some correlation
is evident to the eye. Calculating Spearman’s ρ correlation

Protocol # mean median 5% 95%

CHARGEN 560 7.19 4 1 19
DNS 11 100 7.28 2 1 28
NTP 2 730 9.74 9 2 19
SIP 7 240 14.4 9 2 42

SNMP 430 15.1 5 1 56.8
SSDP 8 080 18.2 12 2 52.2
Netis 5 360 7.81 6 2 19

TABLE III: Scanners with more than 10 scan events; giving
the number of scanners (#) and statistics (other columns) for
the number of days on which they scanned.

coefficient between the daily counts of operating sensors and
the number of scanners observed reveals significant correlation
(according to Fisher Z and Student T tests at 3 standard
deviations) for SSDP, NTP, and SIP but not for CHARGEN,
DNS, and 53413. For SIP the ρ value of 0.601, indicates that
on the days we see fewer scanners a major reason is that fewer
sensors were operating. That is, SIP scanners are being fairly
selective in how big a range of IP addresses they scan each
day. Similarly SSDP has substantial correlation with ρ value
of 0.503, this may not be causal, recent increase in interest in
SSDP happened to occur during the period of highest daily
sensor counts [1]. NTP is less correlated with a ρ value of
0.128.

B. Lifetime of scanners

If the IP addresses used for malicious scanning change
regularly then it is harder to block or investigate them, so it is
useful to understand the extent to which scanners continue to
use the same IP address for long periods. Hence, we consider
the IP addresses of ‘very active’ scanners for which we have
observed over 10 scan events (as described in §IV). Table III
records how many of these very active scanners we observed
per protocol and the average number of days on which they
operated.

In Figure 2 we present scatter plots for this data, the upper
graph showing the protocols which are abused in DDoS attacks
(and which we reflect) and the lower graph showing protocols
that we do not currently reflect.

For clarity, the small number of scanners that were observed
on more than 150 days are not shown. Also, many scanners
trigger our threshold of 10 scan events but do so on rather
fewer than 10 days – that is they interact with our sensors
several times on the same day, but those interactions are spread
far enough apart for us to consider them separate scans.

VI. ATTACK BEHAVIOUR

Having explained what we have learnt about scanning, we
now turn to analysing the data we have collected on DDoS
attacks. Our approach only collects data about reflective UDP
amplification attacks and only for attackers that do their own
scanning to identify our sensors.

We observe 5 120 (95% CI [594, 10 200]) attacks per day
on average with a median of 5 150 and maximum of 13 800.
We have received 3.31 trillion packets during these attacks
with an average of 3.26 billion (95% CI [23.7 million, 11.2
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Fig. 2: Frequency of observing scanners for different numbers
of days for various protocols. The upper graph is for protocols
we reflect, the lower graph is for protocols we do not reflect.

billion]) per day and median of 2.6 billion. On average we
find that our sensors are each currently (April 2017) receiving
around 200GB of traffic per month.

Table IV summarises the attacks during the entire measure-
ment period, broken down by protocol and again by number
of attacks, packet count and total attack hours. The data is
normalised by the number of days of operation to account for
the progressive deployment of reflection services. It is clear
that the four most abused protocols are NTP, DNS, SSDP and
CHARGEN, in that order. It is perhaps unsurprising that NTP
and DNS services are widely used for UDP reflection attacks
since they have some of the highest amplification factors.

Packets received by Hopscotch nodes on ports with no UDP
service cannot form part of an attack because that node has
never responded to a scanner. However, we incorrectly classify
563 × 106 packets (< 0.1% of the total) to be attacks, even
though this was impossible. The cause is that scanners decided
(for unknown reasons) to send more than 5 packets to our
sensor, so we misclassified the event. Although a small number
of packets, the effect is to cause us to record an additional 229
attacks per day in Table IV than is in fact the case.

Table V shows the top 10 domains by number of attacks

used for reflective DNS attacks. It is comparable with a
similar table given in AmpPot [13, p630], but the substantial
differences are because this dataset was collected over a much
longer period, and measures substantially more attacks. These
were the domains which contained records used for reflective
DNS attacks.

A. Predicting the duration of attacks

In Table VI we present percentiles of attack duration and
packet count. For example, half of all attacks last for less
than 10.97 minutes; similarly our sensors see fewer than 7 790
packets in over half of all attacks. Note that this does not imply
that half of all attacks take less than 10.97 minutes and fewer
than 7 790 packets.

From our data we conclude that UDP reflection attacks are
typically short in duration and low in overall packet volume,
but may still consume significant bandwidth while the attack
is taking place. The distribution of attack duration has a long
tail: there are some attacks which continue for hours, or in a
few cases, days.

Given the distribution of attack durations, a victim may wish
to know the probability of an attack finishing within the next
five minutes, conditional on the fact that the attack has already
run for a certain period of time. Such a calculation will help
a victim determine whether action should be taken, such as
reconfiguring their network and/or servers, or whether simply
waiting for the attack to end is a strategy worth considering.

We can estimate the probability of an attack finishing within
the next five minutes as follows. First, we divide attack
duration into five-minute periods, starting from zero, so the
zero-th period is (0, 5], the first (5, 10], and so on. Then, let
ni represent the number of attacks which finish within the
ith five-minute time period (5i, 5(i+1)]. For example, across
all protocols, n3 = 584 132, which means 584 132 attacks
lasted between 15 and 20 minutes in duration. Finally, we can
estimate the probability of an attack finishing within the next
five minutes, given that attack duration D has already reached
time period t, as follows:

P (finishes in 5 mins|D = t) =
ct∑

i ci −
∑t−1

j=0 cj

Or, in words, we estimate of the probability of attacks finishing
in time period t as the proportion of attacks which finish inside
time period t, (ct), versus those which finish in time period t
or any later period.

Figure 3 plots the distribution of attack durations and the
probability of an attack finishing within the next five minutes
for NTP, DNS, SSDP and CHARGEN. The probability of
an attack ending within five minutes is highest in the first
5 to 10 minutes of the attack. For example, for NTP, when an
attack has already lasted five minutes, there is a 45% chance it
will terminate within the next five minutes. These probabilities
generally decline as the attack continues, which is bad news
for a victim: an attack generally becomes less and less likely
to stop the longer it goes on.



Protocol Attacks per day Packets per day Attack-hrs per day Period BAF PAF
# % # (106) % hours % days

NTP 3 430 51.7 3 030 93.2 1 090 49.1 1 020 556.9 10.61
DNS 1 290 19.4 22.8 0.7 406 18.3 1 020 28.7 1.32

SSDP 1 040 14.5 26.8 0.8 386 16.1 927 30.8 9.92
CHARGEN 601 9.1 110 3.4 189 8.5 1 020 358.8 1

Portmap 237 3.4 137 2.4 104 4.6 470
SQLMon 7.3 < 0.1 0.2 < 0.1 1.5 < 0.1 835

QOTD 0.7 < 0.1 < 0.1 < 0.1 0.2 < 0.1 1 020 140.3 1
mDNS 7.0 < 0.1 0.2 < 0.1 8.5 0.4 349

Total 6 400 96.5 3 250 100.0 2 090 94.3

Misclassified 229 3.3 0.6 < 0.1 127 5.4

TABLE IV: Attacks seen, broken down by protocol. The Attacks/day column records the number of attacks, averaged across
the measurement period for each protocol, together with their proportion relative to all protocols. The packets/day, and attack-
hours/day are derived in the same manner. Attack hours/day can exceed 24 as many attacks can be in progress at any one
time. For reference, the average Bandwidth Amplification Factor (BAF) and Packet Amplification Factor (PAF) from Rossow’s
Amplification Hell paper [31] is recorded where available.

Domain First seen Duration Attacks

cpsc.gov. 2014-08-10 884 285 000
fullenlaces.com. 2014-09-04 400 250 000
mg1.pw. 2015-04-10 145 238 000
067.cz. 2014-08-26 852 200 000
eda.gov. 2014-08-10 703 167 000
dhs.gov. 2015-02-24 68 133 000
doleta.gov. 2014-08-10 561 121 000
ohhr.ru. 2014-11-20 152 89 300
msk.su. 2014-12-28 729 65 600
r3a.es. 2015-03-19 28 64 500

TABLE V: Top 10 domains used in reflective DNS attacks by
number of attacks. Duration in days.

Percentile Duration (min) Packet count (#)

10% 4.73 43
20% 5.05 255
30% 7.00 985
40% 10.00 2 970
50% 10.97 7 790
60% 13.87 20 600
70% 17.43 56 500
80% 23.10 170 000
90% 35.67 625 000
95% 57.52 1 590 000
99% 130.52 7 450 000

TABLE VI: The maximum duration and packet count for a
given percentile of attacks. 90% are less than 35.67 minutes; in
90% we record fewer than 625 000 packets. CDFs are plotted
in Appendix A-D.

There are two notable exceptions to this general trend: at
around 60 and 120 minutes, NTP attacks become relatively
more likely to cease. We note that the booter/stresser services
which we have examined commonly let users specify attack
durations of 5, 10 and 60 minutes and it seems very likely
that we are seeing these durations reflected in our attack data.

Since Karami et al. [11, 12] found that the identity of the
victim strongly influenced the likely length of attacks, it would
be useful to calculate the probability that attacks will shortly
cease based upon the experience of victims of a similar type
(games players, corporations, etc.). We leave the calculation

of such attack duration percentile tables to future work.

B. Attacks on IP address prefixes

As we explained in §IV, some DDoS attacks do not target
individual hosts but attack many hosts within a block of
addresses – sometimes just a /24 prefix, but we have also seen
attacks on a /12 and a /13. The attack is effective when all the
addresses in the prefix range are behind the same router, so
that when the capacity of the router is exhausted, connectivity
to all the addresses is lost.

For example between 14th and 29th of December 2015 (16
days) we observed 56 attacks on 27 different Turkish prefixes.
This coincided with claims by Anonymous to be attacking
Turkey as part of #OpTurkey [36].

When compared with the total number of observed attacks
per day of 5 120, prefix attacks are rare. Overall, we observed
just 6 000 attacks on prefixes over the whole data collection
period with an average daily rate of 5.93 (95% CI [0, 33])
and median of 3. Figure 4 shows the consistent behaviour of
prefix attacks over the entire measurement period.

C. Attacks on authoritative DNS servers

Our Hopscotch sensors act as recursive DNS servers and in
§IV we discussed the attacks that involve asking large numbers
of recursive DNS servers to resolve random sub-domains in
order to mount an attack on the authoritative server for the
domain.

We have detected an average of 6 550 (95% CI [0, 19 900],
median 0) packets per day targeting the authoritative DNS
servers for 1285 different domains. Figure 5 shows that this
type of attack has become significantly less common over the
last year.

Table VII records the authoritative servers for the top 10
domains by traffic volume together with attack duration. We
also observed one attack, presumably from a competing booter,
on the authoritative server for a domain that had been created
solely to providing records for reflective DNS attacks.
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Fig. 3: Frequency and attack duration curves for DNS, NTP, SSDP and CHARGEN. Frequency plots show the number of
attacks which last for the duration shown on the horizontal axis. The duration curves show the probability that an attack will
finish within the next five minutes, conditional on the current attack duration reaching t.
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Fig. 4: Number of prefix attacks (on an IP subnet)
seen each day.

 1

 10

 100

 1000

 10000

 100000

 1x106

2014-04

2014-07

2014-10

2015-01

2015-04

2015-07

2015-10

2016-01

2016-04

2016-07

2016-10

2017-01

2017-04

2017-07

#
 o

f 
A

u
th

D
N

S
 p

a
ck

e
ts

 p
e

r 
d

a
y

 

Fig. 5: Number of packets per day received in attacks on
authoritative DNS servers. Note log scale for y-axis.



Total packets Total duration Targeted domain
observed of attacks (hours)

2 690 000 5 420 x99moyu.net.
909 000 47 zyngamail.com.
401 000 3 750 edgesuite.net.
255 000 3 440 ylzc001.com.
183 000 2 840 9zhidao.com.
154 000 2 490 uw99.com.
152 000 366 com.co.
134 000 1 580 logicielfull.com.
120 000 403 appvod.com.
111 000 1 090 gratuitzone.com.

TABLE VII: Top 10 domains by number of observed author-
itative DNS attack packets.

D. Attack detection coverage

The data gathered by our sensor network is unlikely to
include details of every reflective UDP attack by attackers
who use Internet scans to find reflectors. This is because there
are a large number of potential reflectors on the Internet and
therefore an attacker may not find all reflectors in any one
scan and for attacks of short duration or limited bandwidth
an attacker may use a subset of available reflectors. Despite
this, we can estimate the total number of attacks, including
the attacks that we did not observe, with a capture-recapture
statistical analysis.

Capture-recapture analysis is designed to estimate the total
size of a population by using two or more independent sets
of samples drawn from the population and measuring the
relative size of the overlap between them. The technique was
originally developed for ecology, so the classic explanation
goes as follows. First, you take some fish out of a lake, count
them (n), mark them, and put them back. Later you return
for a further day’s fishing and catch (K) fish of which (k)
are found to be marked as caught earlier. The total number of
fish in the lake (N ) can then be estimated with the Lincoln-
Petersen estimator (N̂ ) [27]:

N̂ =
nK

k
(1)

While other estimators exist, our sample sizes are large enough
that the Lincoln-Peteresen estimator provides a reliable esti-
mate of the total number of attacks.

Originally capture-recapture was developed for just two
samples but in our data we have up to 87 sensors and
hence samples on any one day. General solutions have been
developed involving 2k contingency tables [8]. However while
this is tractable for k = 5 the computation simply does not
scale to k = 87.

A k2 strategy of computing pairwise capture-recapture esti-
mates for each pair of sensors and averaging the result could be
used (Appendix B-A). However, when there are many small
samples, two samples may happen to have a large overlap
between them and this can bias results: two small sets of
attacks could predict a small total population size with high
confidence. Indeed this method sometimes gave an estimate
that was much smaller than the total number of observed
attacks across all our sensors.

Our solution is to split our sensors into two groups, a core
set of sensors that have run continuously since the beginning
of this work (including those in the /28), plus a few additional
sensors; and all other sensors (Appendix B-B). This also
avoids any problems of correlation between sensors in the /28.

We compute the uncertainty in Equation 1 by treating the
number of attacks observed by each sensor as a counting
experiment with square root uncertainty and propagate this
through the computation [37] to give Equation 2:

N̂ =
nK

k
± nK

k

√
1

n
+

1

K
+

1

k
(2)

Figure 6 shows the results of this analysis and plots the esti-
mated total number of attacks each day for CHARGEN, DNS,
NTP and SSDP. There are a few interesting trends visible in
the data. In late 2014 and early 2015, DNS was generally
the most popular protocol of choice for DDoS, punctuated by
short periods when SSDP was used. Since mid-2015, NTP
has emerged as the dominant protocol of choice, and usage of
DNS, CHARGEN and SSDP fell significantly. However, on
some days DNS has been much more popular than NTP and at
the end of 2016 usage of SSDP has substantially increased. For
DNS, since spring 2016, our data has often been insufficient
to be confident of the actual number of attacks, on many days
our capture-recapture algorithm gives no estimate as the sets
it uses are are too small. This is either due to a low number
of attacks or a low coverage of attacks by our sensors. On
days when we do have enough data to produce an estimate
the estimated coverage is often low, so it is likely that poor
coverage is the cause of the problem.

In Amplification Hell [31] Rossow said that he feared that
attackers would discover powerful amplification vectors like
NTP and SSDP. Our data shows that attackers have now
discovered this fact and have moved towards NTP, and from
time to time, SSDP.

There were spikes of SSDP attacks in early 2015 but these
subsided substantially from autumn 2015 to autumn 2016,
possibly because many networks have decided to filter port
1900 entirely. It has picked up at the end of 2016. In 2015
there were a median of 1 280 attacks per day with 95% CI
[109, 7 670] and in 2016 a median of 691 attacks per day
with 95% CI [105, 2 200] for SSDP. In Exit from Hell [15]
Kührer et al. found some evidence that NTP was blocked by
network providers. However, there is complexity in blocking
the NTP ‘monlist’ packets whilst allowing small timekeeping
packets to get through – complexity that is entirely absent from
decisions about blocking SSDP, which was only intended for
use over multicast on local networks, so blocking it entirely
on the open Internet appears simple and obvious to many.

Table VIII gives the estimated total attacks for each proto-
col, showing how different types of attack vary in popularity.
The 5th and 95th percentiles illustrate the wide variation in
the estimated number of attacks per day over the observation
period while Figure 6 shows the relative consistency in the
total number of attacks per day over shorter periods.



Protocol Mean Median 5% 95%

CHARGEN 761 488 64.8 2 200
DNS 4 000 1 930 142 10 200
NTP 3 860 4 130 321 6 740

SSDP 1 360 972 145 3 650

TABLE VIII: Estimated number of attacks per day.
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Fig. 6: Estimated total number of attacks each day for different
protocols. Note that the y axis uses a log scale and so is
visually misleading.

These estimates are not directly comparable with those in
Table IV as the figures in Table VIII only consider days for
which we had sufficient data to make estimates while Table IV
uses the whole collection period.

Our capture-recapture analysis suggests that we observe
almost all of the estimated total number of attacks for NTP
and CHARGEN and most SSDP and DNS attacks. This is
shown in Figure 7 which records the cumulative proportion of
attacks that were observed for different protocols. Table IX
summarises this with the average estimated proportion of
attacks observed. This is also consistent with the correlation
between the number of sensors in operation and number of
scanners observed, for DNS and SSDP, discussed in §V-A.

The table also shows the number of days for which we
had sufficient data to make estimates for each protocol. This
shows that we have better coverage for CHARGEN and NTP
than for DNS and SSDP, which we believe stems from the
population of DNS and SSDP reflectors being much larger
than for NTP and CHARGEN, so our sensors are less likely
to be utilised. The number of days for these protocols differs
not only because the reflection functionality for each protocol
was deployed at different points in time but also because some
protocols were sufficiently unpopular during some periods that
we have insufficient data to make an estimate.

Appendix B-C discusses the variation in estimated coverage

Protocol Mean Median # Days Deployed

CHARGEN 0.958 0.997 923 2014-03
DNS 0.851 0.981 727 2014-03
NTP 0.966 0.992 948 2014-03

SSDP 0.906 0.98 822 2014-10

TABLE IX: Estimated proportion of attacks observed, and
number of days of data, for different protocols.
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over time and with the number of sensors in operation.

E. Comparison with other data sets

We came across one booter service (Vdos) which had a real-
time display of all currently active attacks. We believe this
was implemented to allow users to know how many people
they would be sharing the available attack bandwidth with.
Between 2014-10-15 and 2014-11-04 (when the functionality
was removed2) we recorded information about the attacks that
the booter claimed were in progress. Later the Vdos booter
was hacked and its database leaked (with records of 170 000
attacks) along with the database of the cnbooter (60 attacks),
ustress (2 370 attacks), and vstress (2 attacks) booters that
were hosted on the same server. In addition logs from the
Vdos backend used for all these frontends for 896 000 attacks
between 2015-08-30 and 2016-09-01 were leaked. We also
separately obtained the database for CMDbooter with 25 800
attacks recorded from 2015-07-08 to 2015-08-06. Table X
shows, for the DDoS strategies we would expect to observe,
the number of recorded attacks that we did observe.

For the NTP attacks recorded by scraping Vdos we observed
92% of the attacks. However, for SSDP we only observed
11 and missed 15 500. This is unsurprising as we had only
just started reflecting SSDP and were clearly not yet on this
booter’s list of amplifiers. Later on, the Vdos backend logs
show that we observed 91% of NTP attacks, 27% of SSDP
attacks, 2% of DNS attacks and 0.5% of Portmap attacks. Here
the Portmap result is unsurprising as Hopscotch had only just
started reflecting Portmap. However, DNS has been supported

2It was later re-added and other researchers collected similar data for the
period 12-2014 to 02-2015, but were not able to share it with us [12].



Source Period Protocol Observed Missed Proportion

Vdos scrape 2014-10-15 – 2014-11-04 NTP 2 070 177 0.921
SSDP 11 15 500 0.000 71

Vdos API 2015-08-30 – 2016-09-01 DNS 10 800 469 000 0.022 5
NTP 73 900 6 970 0.914
Portmap 67 12 000 0.005 54
SSDP 15 700 42 300 0.271

CMDBooter 2015-07-08 – 2015-08-06 CHARGEN 512 5 090 0.091 4
DNS 5 510 0.009 71
NTP 1 200 7 460 0.139
SSDP 156 8 030 0.019 1

TABLE X: The number of attacks that we might have observed versus those that we did observe based on records from booters.
Since we did not start deploying Portmap support to our sensors until January 2016 it is expected that we would only observe
a small number of Portmap attacks. However coverage of DNS is low. These are the raw number of attacks on IP addresses,
there is no collation of consecutive attacks against the same target or attempt to resolve domain names.

from the beginning and only 2% of attacks were observed.
The capture-recapture analysis reflects this, as it estimates our
coverage of DNS attacks as low on many days (see Figure 12)
and has insufficient data to provide an estimate for other days,
particularly for many days in late 2016. Hopscotch’s coverage
of CMDBooter is rather worse with only 14% of NTP attacks
observed, 9% of CHARGEN, 2% of SSDP and 1% of DNS.

This illustrates an inherent shortcoming of our capture-
recapture analysis. When our sensors have been around long
enough to be found by scanners we record a high proportion
of attacks and can robustly estimate what we miss. However,
when our sensors are new (or otherwise ignored by attackers,
who perhaps identify them as honeypots, or who have more
reflectors to hand than they need) then they are never used and
we cannot extrapolate meaningful data from a lack of activity.

VII. CONCLUSIONS

In this paper we have analysed the data collected from a
network of Hopscotch honeypot UDP reflectors of median
size 65 over the period July 2014 until January 2017. We
saw a median of 1 450 malicious scanners per day across
all UDP protocols, but we find that the number of scanners
operating at any one time for many protocols used in reflected
UDP amplification DDoS attacks is relatively low and that in
turn suggests that intervention strategies that deal with one
instigating entity at a time might be tractable.

We recorded details of 5.18 million attacks involving in
excess of 3.31 trillion packets. We observed that the proportion
of attacks using DNS reduced and the proportion using NTP
increased over the observation period, in line with the fears
expressed in earlier work [31]. We also observed that SSDP,
about which there were also fears, was briefly more popular
than DNS then fell away – but is lately of more significance.

This is the first paper we are aware of to leverage disparate
data collection locations and use capture-recapture statistics
to estimate the total number of reflected UDP amplification
attacks. Over the observation period, the median estimated
total number of attacks per day for CHARGEN is 488, for
DNS is 1 930, for NTP is 4 130, and for SSDP is 972.

Naturally the soundness of applying capture-recapture anal-
ysis depends upon assumptions about the independence of
our samples. It may be that some attackers never use our
reflectors at any time, and comparison with leaked booter
datasets shows that for some protocols at some periods this is
an issue. However, for some protocols we achieve high level
of detection (between 85.1% and 96.6% of attacks) and so
the size of our sensor network is not so limited as to miss
whole swathes of relevant activity. The sensors have a very
small footprint – the main impact on the hosting system is
the arrival of circa 200GB of incoming (but not of course
reflected) traffic per month. This means that fully duplicating
our setup on low-cost hosting providers is possible for well
under USD 1500 per annum.

Although we originally built the Hopscotch honeypot for
scientific purposes, to determine the prevalence UDP ampli-
fication attacks and characterise the victims, it has proved to
be of practical assistance to numerous organisations who have
been suffering DDoS attacks. It might be thought that a victim
would not care about ineffective attacks or would have a surfeit
of data about a damaging DDoS, but in practice telemetry and
measurement tools are often inadequate and we have been able
to assist numerous people in understanding what just hit them.

DATASET

We are unable to release our dataset as open data because
it contains sensitive information about victims and scanners
as well as identifying the location of our Hopscotch nodes
and the identity of our partners. However, all of the data
used in this analysis is available through the Cambridge Cy-
bercrime Centre (https://cambridgecybercrime.uk) to academic
researchers. We also have other databases for other booters that
do not overlap with the Hopscotch data including those used
by Santanna et al. [33].
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APPENDIX A
PARAMETER SELECTION

We have used a number of apparently arbitrary numbers for
various aspects of our analysis. We now discuss the basis on
which these numbers have been chosen.

A. Scan events
When we have observed 10 scan events from the same

IP address then we classify that IP address as a very active
scanner and use it for the plots in §V. Figure 8 shows the cu-
mulative number of scan events seen for different IP addresses.
There are many events for which we only observe one event,
this is due to events like unclassified prefix attacks where
we only observe one packet per IP address or unclassified
authoritative DNS attacks where the IP addresses are randomly
generated. A threshold of 10 cuts out noise from these sources.

B. 15 minute inter-attack threshold
We deem an attack to be over when there is no further

traffic (for the relevant protocol) to a victim for a period of
15 minutes. This value was chosen to loosely correspond with
the availability of short lived attacks (under an hour) from
booter systems, while not conflating attacks that might take
place many hours apart.

Although in practice for many attacks we see many thou-
sands of packets and it is pretty clear when they start and
end, for others where the criminal has attempted to be less
conspicuous we may see only a smattering of packets at any
particular sensor and the challenge is in distinguishing between
attacks and scans.

C. Prefix attacks

To identify attacks targeting a range of IP addresses, rather
than an individual IP, we identify any /28 ranges where more
than 14 IPs see attacks with a given UDP protocol during a
single day. We then expand the ranges and counts through 16
IPs in a /24, 64 in a /22, 128 in a /19 and so on to 256 in
a /16. This gives us the smallest possible prefixes that were
hit (we prefer to list a /28 rather than a /24, a few /24s rather
than a /16).

However, where the whole of a large prefix was hit the
traffic may be sufficiently distributed that there are gaps in
what we see. So if there are any attacks at all (for the relevant
protocol on the relevant day) to any IP address within a /28
adjacent to a prefix range then we add that /28. Finally, for
all prefix ranges /(n+1) we check the other half of the larger
range /n and expand to the larger range if more than a quarter
of that is being attacked – which once again deals with attacks
on larger ranges where we miss some of the traffic.

In order not to conflate independent attacks on different
entities that happened to be neighbours in the IPv4 space all of
this analysis is only done within the boundaries of IP address
block allocations as documented by the five Regional Internet
Registries (RIRs).

We believe that we have correctly identified the vast major-
ity of prefix attacks (most of which attack a hundred or more
IPs per /24). If we have missed any then we will overestimate
the number of attacks, or (more likely because packet counts
to any individual IP address will be low) we will overestimate
the number of scanners for that day.

D. CDFs

Figure 9 shows a CDF of the number of packets in attacks
which is a smooth curve. Figure 10 shows a CDF of the
duration of attacks, this is not a smooth curve as there are
spikes at 5, 10, 15 and 20 minutes, a feature of the available
attack lengths provided by booters. This feature also shown in
Figure 3. Figure 11 shows a CDF of the number of Hopscotch
sensors in operation each day, there are always at least 20 and
half the time there are more than 65.
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Fig. 8: Cumulative number of scan events seen per scanner.
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Fig. 9: CDF of number of packets in attacks.
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Fig. 10: CDF of duration of attacks.

APPENDIX B
CAPTURE-RECAPTURE CONSIDERATIONS

A. k2 Capture-recapture

For k2 rather than 2k capture-recapture N̂ij is estimated
for each pair of samples using a standard capture recapture
estimator such as Lincoln-Petersen (Equation 1). Then N̂ is
calculated by taking the mean or median of the N̂ijs.

Unfortunately this is vulnerable to bias if two samples
happen to have a large overlap as then they can predict a small
value of N with high confidence. This can result in values of
N̂ that are smaller than the total number of observed events
and hence clearly wrong.

B. Merging samples in capture-recapture

Merging together samples to make a smaller set of samples
such that 2k methods become tractable is difficult, particularly
when there may be some correlation between samples as if
two samples are essentially identical (for example, in our case,
two sensors on adjacent IP addresses that were started at the
same time) but then end up in two different merged groups
of samples, then this may cause the merged groups to also
be highly correlated. We leave finding optimal divisions of
samples into groups to future work.
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Fig. 11: CDF of number of sensors in operation each day.

Our current approach is to merge (union of the set of
all observed attacks) one set of samples which should be
highly correlated (adjacent IP addresses and all running the
same software version for the same period) and have been
participating for the whole period and a few other manually
selected sensors added to provide a more even split. We then
compare that with the result of merging all other samples.

C. Daily coverage

Figure 12 shows the proportion of the estimated total
number of attacks that were actually observed by our sensors
plotted along with the number of sensors in operation each
day, and the number of those in the first set that is compared
with all other sensors for capture-recapture.

The Spearman’s rank correlation between the number of
sensors and the proportion of the estimated total number
of attacks that we observe is 0.633 for CHARGEN, 0.209
for DNS, 0.632 for NTP, and 0.342 for SSDP. This means
that when we have more sensors then we observe a larger
proportion of the estimated total number of attacks, as we
would expect. However, these values are not that high, perhaps
because we already have high estimated coverage with our
existing set of sensors. The improvement in coverage of SSDP
towards the end of 2016 might be caused by an increase in the
response packet size for SSDP produced by Hopscotch since
August 2016.

The variation in the number of sensors has a number of
causes. In April 2015 a temporary problem with our largest
sensor hosting partner meant that we did not receive data from
them, and at the end of 2015 they ceased sharing data with
us. After that we grew our own network of sensors to restore
the number of sensors.

D. Daily coverage with booters

For most protocols comparing the proportion of attacks
observed on a daily basis with the overall value does not
show much difference. However, for NTP and SSDP for the
Vdos booter using the backend logs, non-uniform behaviour is
observed. Figure 13 shows daily coverage for NTP and while
usually it shows very high coverage, for a period in January
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Fig. 12: Proportion of the estimated total number of attacks each day observed by our sensors for different protocols. Total
number of sensors in operation each day and the number in the first set used for capture-recapture shown in red.
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Fig. 13: NTP Vdos seen and missed attacks stackplot.
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Fig. 14: SSDP Vdos seen and missed attacks stackplot.

and February 2016 it shows much lower coverage. This might
have been caused by our sudden loss of sensors at that time as
shown in Figure 12. In contrast, Figure 14 shows the same data
for SSDP and while SSDP stops being used from February
2016, we only observe good coverage for October 2015, with
poor coverage before and after.


