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Abstract 

In extant literature, deterioration dependence among components can be modelled as inherent dependence and induced 

dependence. We find that the two types of dependence may co-exist and interact with each other in one multi-component 

system. We refer to this phenomenon as fault propagation. In practice, a fault induced by the malfunction of a non-critical 

component may further propagate through the dependence amongst critical components. Such fault propagation scenario 

happens in industrial assets or systems (bridge deck, and heat exchanging system). In this paper, a multi-layered vector-valued 

continuous-time Markov chain is developed to capture the characteristics of fault propagation. To obtain the mathematical 

tractability, we derive a partitioning rule to aggregate states with the same characteristics while keeping the overall aging 

behaviour of the multi-component system. Although the detailed information of components is masked by aggregated states, 

lumpability is attainable with the partitioning rule. It means that the aggregated process is stochastically equivalent to the 

original one and retains the Markov property. We apply this model on a heat exchanging system in oil refinery company. The 

results show that fault propagation has a more significant impact on the system’s lifetime comparing with inherent dependence 

and induced dependence.  

Keywords: Markov processes, Reliability, Risk analysis, and Stochastic processes

Notation  

𝜈: The number of critical components.  

𝑋0(𝑡) : The of vector of the system condition in normal 

system deterioration process at time.  

𝑋𝑙,0(𝑡) : The deterioration state 𝑙𝑡ℎ critical component in 

normal system deterioration process at time 𝑡. 

𝑤𝑙,0(𝑡) : Deterioration rate of 𝑙𝑡ℎ  critical component in 

normal system deterioration process at time 𝑡. 

𝑟𝑙,0: The intrinsic deterioration rate of critical component in 

the normal system deterioration process. 

𝜆𝑛𝑖,0: Normal deterioration rate between the 𝑖𝑡ℎ systemic 

state and the (𝑖 + 1)𝑡ℎ systemic state.  

𝑋ℎ(𝑡): The of vector of the system condition component in 

the fault propagation caused by the ℎ𝑡ℎ type of malfunction 

on non-critical components.  

𝑋𝑙,ℎ(𝑡): The deterioration state 𝑙𝑡ℎcritical component in the 

fault propagation caused by the ℎ𝑡ℎ type of malfunction on 

non-critical components. 

𝑤𝑙,ℎ(𝑡): Deterioration rate of 𝑙𝑡ℎ critical component in the 

fault propagation caused by the ℎ𝑡ℎ type of malfunction on 

non-critical components. 

𝑟𝑙,ℎ: The intrinsic deterioration rate of critical component in 

the ℎ𝑡ℎ fault propagation. 

ℒ: Partitioning rule for Markov aggregation. 

𝜆𝑑𝑖,ℎ : The deterioration rate of ℎ𝑡ℎ  fault propagation 

between the 𝑖𝑡ℎ  state and the (𝑖 + 1)𝑡ℎ state, where 

𝜆𝑑𝑖,ℎ > 𝜆𝑛𝑖,0.  

𝜆𝑓𝑖,ℎ : Rate of ℎ𝑡ℎ  type of malfunction on non-critical 

components at systemic state 𝑖. 

𝑌𝑖,0(𝑡): 𝑖
𝑡ℎ aggregated state in normal system deterioration 

process at time 𝑡. 

𝑌𝑖,ℎ(𝑡): 𝑖𝑡ℎ Aggregated state in the fault propagation caused 

by the ℎ𝑡ℎ type of malfunction on non-critical components. 

𝑓𝑓(𝑡): Failure time distribution of a multi-component system 

with fault propagation. 

𝑓ℎ(𝑡): Failure time distribution of a multi-component system 

with inherent dependence. 

∆𝑓: Lifetime reduction caused by fault propagation. 

∆𝑑: Lifetime reduction caused by induced dependence. 

∆ℎ: Lifetime reduction caused by inherent dependence. 

1 Introduction 

Advances made by the reliability engineering community in 

modelling the deterioration of multi-component systems 

have significantly improved the ability to manage and 

maintain the multi-component systems. Such models 

consider the deterioration processes of individual 

components as well as the dependence among them.Three 
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types of dependencies have been identified: economic 

dependence, structural dependence, and stochastic 

dependence [1]. Economic dependence and structural 

dependence express the opportunities and constraints in 

managing and maintaining the multi-component system. 

Stochastic dependence is defined by Dekker [1] as where 

“… the state of a component influences the lifetime 

distribution of other components”. It is a critical factor that 

needs to be considered when modelling the deterioration of 

multi-component systems. In [2], stochastic dependence is 

further classified into failure dependence and degradation 

dependence, the last of which is the focus of this paper. In 

extant literature, two different types of approaches are used 

to describe the degradation dependence, namely induced 

dependence and inherent dependence. 

(1) Induced dependence indicates damage to other 

components caused by the malfunction of one component. It 

highlights the directional causality between malfunctioned 

component and influenced components. The typical model 

to express the induced dependence is shock damage model. 

The literature within this category are [3]-[7]. 

(2) Inherent dependence is an underlying interactive 

deterioration mechanism among aging components because 

their operational and functional interactions, such as load 

sharing. Unlike the induced dependence, inherent 

dependence focuses the deterioration dependence in a way 

of co-degradation. Multivariate distribution and copulas are 

two prevalent approaches to model the inherent dependence. 

References for inherent dependence are [8]-[12].  

For multi-component systems composed of critical 

components and non-critical components, in normal 

situations, the deteriorations of critical components may 

correlate with each other in the manner of inherent 

dependence. When non-critical components are damaged by 

an exogenous event and becomes malfunctioned, it may 

change the operating environment of critical components so 

that they are no longer deteriorating under their rated 

condition. Therefore, a malfunctioned non-critical 

component could result in the accelerated deterioration of 

one or more of the critical components and may 

subsequently damage their interconnected critical 

components, thus causing the system to deteriorate faster 

than normal pace. In this paper, this scenario is referred as 

fault propagation, which represents the interdependence of 

inherent dependence and induced dependence. It is an 

interdependence between inherent dependence and induced 

dependence – a “meta-dependence”. Fault propagation with 

the meta dependence characteristic is not sufficiently 

explored in the literature. However, some industrial systems 

are experiencing the fault propagation. A typical example 

can be found in concrete bridge decks. The concrete bridge 

deck is a primary element that needs to be considered for 

bridge maintenance. It may be subject to the attack of 

chloride ion, which is regarded as one of the most significant 

factors in progressive deck deterioration. The chloride ion 

may penetrate through the crack and accelerate the 

deterioration of the reinforcing bars which matches with the 

characteristic of induced dependence. Because reinforcing 

bars share the load, the damage on one steel reinforcing bar 

will increase the load on others and accelerate their 

deterioration. This scenario fits in the scenario of inherent 

dependence. The induced chloride ion can further propagate 

through inherent dependence and accelerate the deterioration 

of concrete deck. This indicates the practical existence of 

fault propagation scenario. Based on the observation of field 

experts, fault propagation can have a significant influence on 

the lifetime.  

Because of the significant impact of fault propagation in 

multi-component systems, it starts to gain more attention in 

the field of reliability engineering. The dominant threat of 

transient fault propagation in networked control systems is 

also analysed by an ontology-based fault propagation 

analysis [13]. The balance between redundancy and working 

sharing is optimized by genetic algorithm. Huang et al. have 

proposed a hierarchical scheme for analysing the transient 

fault propagation in brake-by-wire systems [14]. The scheme 

can detect and mitigate the transient fault propagation on 

both node level with a signature based detection and system 

level with an anomaly based method. Xing and Levitin have 

developed a combinatorial method for evaluating the exact 

reliability of binary-state systems subject to competing 

propagated failure and failure isolation [15]. They have also 

developed an approach by universal generating function and 

reliability block diagram for assessing the performance of 

the series-parallel multi-state system with propagated 

failures having selective effect [16]. In [17], the approach 

has been improved by considering the randomness of failure 

propagation time. Peng et al. have considered both 

redundancy and working sharing in a series-parallel multi-

state system with multi-fault coverage [18]. In [19], an 

integrated safety prognosis model has been developed based 

on the dynamic Bayesian network to model the complex 

system with fault propagation. The risk of the fault 

propagation is estimated by an ant colony algorithm. Yang 

and Aldemir have proposed a computationally efficient 

approach based on Markov/cell-to-cell mapping technique 

for tracing the fault propagation throughout the system [20]. 

A pruning algorithm is developed to control the complexity 

reduction rate. Verlinden et al. have designed a hybrid 

approach by combining static reliability block diagram with 

continuous-time Markov chain (CTMC) for a dynamic 

system with redundancy and online repair [21]. The 

approach can overcome the state space explosion problem 

caused by CTMC. As a synthesis of the recent literature, 

most of the studies have demonstrated the dynamic state-

space model is a powerful technique for modelling multi-

component systems with fault propagation. However, such 

type of model may encounter the state space explosion 

problem. The existing approaches for the state space and 

complexity reduction normally induces errors to the system. 

This paper differentiates itself by exploring the meta-

dependent features of fault propagation in multi-component 

systems. In addition, we have derived a partitioning rule to 

attain the ideal, albeit theoretical, lumpability for the 



 

deterioration model. It can effectively reduce the size of state 

space without inducing error while keeping the Markov 

property on the aggregated process. The rest of paper is 

structured as follow: we model the deterioration of multi-

component systems as a multi-layered vector-valued CTMC 

in Section 2. Then, a theorem is provided to aggregate the 

state space of the model and achieve a more compact model 

for further study. Section 3 discusses and analyses the impact 

of fault propagation on the lifetime with an illustrative 

example. The exact lifetime distribution is expressed 

analytically. The result is verified by an extreme case 

scenario. Section 4 applies the deterioration model to a heat 

exchanging system. The impact of fault propagation on the 

system’s lifetime is calculated and compared with the 

inherent dependence and induced dependence. The 

sensitivity of the parameters of the fault propagation is 

analysed. Section 5 summarizes the concluding remarks of 

this paper.  

2 Modelling fault propagation  

2.1 System description  

We study the multi-component system consisting of critical 

components and non-critical components. The multi-

component system may subject to fault propagation during 

their lifetime. The critical component is essential to system’s 

operation and directly related to the system’s condition. The 

condition of critical components is deteriorating over time. 

The deteriorating rate of the critical component is related to 

the condition of other critical components and whether the 

non-critical component is functioning properly or not. The 

non-critical components are indirectly related to the 

system’s condition. However, if the non-critical component 

is malfunctioned, it will increase the deterioration rate of 

critical components. We denote the accumulated 

deterioration on all critical components with index 𝑖. The 

operation of system will be interrupted by maintenance or 

replacement due to the risk of system failure, if 𝑖  pass 

beyond a given threshold 𝜁.  

2.2 Modeling approach 

We develop an 𝑚 layered vector-valued CTMC to model 

the deterioration process of the multi-component system. 

The layer with 𝑚 = 0  indicates the system in normal 

deterioration process. The layers with 𝑚 > 0 indicate the 

system is in process of fault propagation caused by the 

different types of malfunctioned non-critical components. 

The condition of the system is modelled as a vector of critical 

components’ conditions. We formulate the inherent 

dependence in a way of deterioration rate interactions. For a 

system with ν  critical components, {𝑋0(𝑡)} =

{𝑋1,0(𝑡), 𝑋2,0(𝑡), … , 𝑋𝑣,0(𝑡)}  expresses the normal 

deterioration process. The deterioration of the 𝑙𝑡ℎ  critical 

component is represented by the state transition 

process  {𝑋𝑙,0(𝑡)} , 𝑋𝑙,0(𝑡) = 0  indicates that the critical 

component 𝑙 is in the “new” state. When the damage and 

deterioration accumulate, 𝑋𝑙,0(𝑡) increases. Note that the 

deterioration of critical components consists of their 

independent natural deterioration as well as any influences 

from the condition of other critical components. The 

deterioration rate 𝜔𝑙,0(𝑡) is shown as Eq. (1).  

𝜔𝑙,0(𝑡) = 𝑟𝑙,0 + ∑ 𝑔(𝑋𝑗,0(𝑡))

𝑗∈{1,2,…,𝑣}/𝑙

 (1) 

𝜔𝑙,0(𝑡)  is constructed by two additive parts, namely the 

intrinsic deterioration rate 𝑟𝑙,0  and affected deterioration 

rate, which is a linear function 𝑔(𝑥)  of other critical 

components’ conditions 𝑋𝑗,0(𝑡). Comparing with [22], we 

have refined the expression of inherent dependence by 

extending the affected deterioration rate to a linear function 

of other critical components’ conditions. 

The deterioration rate of critical component might also be 

influenced by different malfunctioned non-critical 

components. We use ℎ  to index the different types of 

malfunctions on non-critical components. The rate of the 

ℎ𝑡ℎ  type of malfunctions is related to the overall 

accumulated deterioration amongst all critical components 

and is signified as 𝛽𝑖,ℎ . After the ℎ𝑡ℎ malfunction, the 

system will transit to ℎ𝑡ℎ  layer to represent the fault 

propagation. The fault propagation is expressed as 

{𝑋ℎ(𝑡)} = {𝑋1,ℎ(𝑡), 𝑋2,ℎ(𝑡), … , 𝑋𝑣,ℎ(𝑡)} . Under the 

influence the ℎ𝑡ℎ type of malfunctions, the deterioration of 

𝑙𝑡ℎ critical component is denoted 𝜔𝑙,ℎ(𝑡). We assume that 

such influence causes intrinsic deterioration rate 𝑟𝑙,0  to 

change to 𝑟𝑙,ℎ . In general, the deterioration rate of a critical 

component can be affected by two causes. The first is the 

deterioration of other critical components. The second is the 

malfunction of non-critical component. 

2.3 State space aggregation 

Based on the system description, the state space of the 𝑚 

layered vector-valued CTMC increases dramatically with 𝜁 

and 𝑣 and linearly with 𝑚. 

Fig. 1. Nonlinear increase of states with 𝜁 and 𝑣 

Fig. 1 demonstrates the dramatically nonlinear increase of 

state space by increasing 𝜁 and 𝑣. When 𝜁 = 7 and 𝑣 =
7, the number of states in one layer is 1716. The overall 

number of states for the 𝑚 layered vector-valued CTMC is 



 

1716(𝑚+1). This implies that when the number of critical 

components and their states are large, a state space explosion 

problem will be encountered, for which it is normally 

deemed to be time-consuming and mathematically 

intractable to study and analyse on such large state space 

[23].  

To alleviate the state space explosion problem, a Markov 

aggregation technique is implemented. The advantages of 

Markov aggregation are: 

1. It reduces the size of state space by aggregating the 

original state space into a more compact state space. 

2. Under certain partitioning rule, lumpability is 

attainable. Lumpability is an ideal property that 

indicates the aggregated state transition process is 

stochastically equivalent to the original one and the 

aggregated process retains the Markov property. 

In [22], the partitioning rule is derived to aggregate vector-

valued CTMC without considering transitions between 

different layers of vector-valued CTMC. Hence, the induced 

dependence is not considered in the previous partitioning 

rule. To derive a partitioning rule for deterioration model of 

multi-component system with fault propagation, we refine 

the partitioning rule to aggregate the 𝑚  layers vector-

vector CTMC while attaining lumpability and retaining the 

Markov property. 

Theorem 1: 𝒳 = {𝑋0(𝑡), 𝑋1(𝑡), … , 𝑋𝑚(𝑡)} is a 𝑚 layers 

of vector-valued CTMC. Each  {𝑋ℎ(𝑡)}  contains 𝑣 

elements {𝑋ℎ(𝑡)} = {𝑋1,ℎ(𝑡), 𝑋2,ℎ(𝑡), … , 𝑋𝑣,ℎ(𝑡)} . 

{𝑋𝑙,ℎ(𝑡): 1 ≤ 𝑙 ≤ 𝑣} evolves monotonically with a rate 

𝜔𝑙,ℎ(𝑡) = lim
∆𝑡→0

ℙ(𝑋𝑙,ℎ(𝑡 + ∆𝑡) = 𝑎 + 1|𝑋𝑙,ℎ(𝑡) = 𝑎, 𝑎 ∈ ℤ∗)

∆𝑡

= 𝑟𝑙,ℎ + ∑ 𝑔(𝑋𝑗,ℎ(𝑡))

𝑗∈{1,2,…,𝑣}/𝑙

 

where𝑋𝑙,ℎ(0) = 0 and 𝑔(𝑥) is a linear function of 𝑋𝑗,ℎ(𝑡). 

We denote 𝑖 = ∑ 𝑋𝑙,ℎ(𝑡)
𝑣
𝑙=1 , the evolves terminates when 𝑖 

reaches to a predefined threshold 𝜁.Transition rate between 

different layers of vector-valued CTMC is directional and 

only available from {𝑋0(𝑡)} to other layers. The transition 

rate follows the equation  

lim
∆𝑡→0

ℙ(𝑋ℎ(𝑡 + ∆𝑡)|𝑋0(𝑡), ∑ 𝑋𝑙,0(𝑡)
𝑣
𝑙=1 = 𝑖)

∆𝑡

= {
𝛽𝑖,ℎ, 𝑋ℎ(𝑡 + ∆𝑡) = 𝑋0(𝑡) ℎ ≠ 0 𝑖 < 𝜁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Therefore, 𝒳  is lumpable with respect to a set of 

partitioning rules ℒ = {ℓ0, ℓ1, … , ℓ𝑚} while ℓℎ  expresses 

as  

ℓℎ = {𝑌𝑖,ℎ(𝑡) = {𝑋ℎ(𝑡)| ∑ 𝑋𝑙,ℎ(𝑡)𝑣
𝑙=1 = 𝑖}, 0 ≤ 𝑖 ≤ 𝜁} 

{𝑌𝑖,ℎ(𝑡)}  is the lumped serial process of {𝑋ℎ(𝑡)}and the 

transition rate between  𝑌𝑖,ℎ and 𝑌𝑖+1,ℎ is  

𝜆𝑖,ℎ(𝑡) = ∑𝑟𝑙,ℎ

𝜈

𝑙=1

+ 𝑔(𝑖(𝜈 − 1)) 

The transition rate between 𝑌𝑖,0  and 𝑌𝑖,ℎ  is identical to 

𝛽𝑖,ℎ . Consequently, 𝒴 = {𝑌𝑖,ℎ(𝑡), ∀ 0 ≤ 𝑖 ≤  𝜁, 0 ≤ ℎ ≤

𝑚} is CTMC with multiple dependent paths. (The proof is 

shown in appendix).  

The aggregation masks the conditions of critical 

components. It can sufficiently alleviate the state space 

explosion problem. After the aggregation, the number of 

states becomes irrelevant with 𝑣 and linearly increase with 

𝜁 and 𝑚. The number of states when 𝜁 = 7 and 𝑣 = 7 is 

7(𝑚 + 1) . It is a significant reduction on state space 

comparing with the 1716(𝑚 + 1) states in the original 𝑚 

layered vector-valued CTMC. For a better understanding of 

the model, we will demonstrate the overall approach on an 

illustrative example. 

 

Fig.2. State transition diagram of fault propagation model using two layers of vector-valued CTMC



 

3 Analysis and discussion 

3.1 Illustrative example 

For the convenience of illustration, a simple example is 

provided to demonstrate the abovementioned logic of fault 

propagation in multi-component systems. It considers a 

multi-component system with two critical components and 

may subject to one fault propagation scenario caused by the 

malfunction of a non-critical component. If the accumulated 

deterioration amongst the critical components reaches to 

𝜁 = 2, the system is stopped from functioning. The state 

transition diagram of the multi-component system is 

illustrated in Figure 2.  

In Fig. 2, the horizontal transition is governed by the 

principle of inherent dependence and vertical transition 

represents the induced dependence. The model contains 12 

states. By applying the Theorem 1, a more compact model 

for the system is achieved. This aggregated model is referred 

to as a multi-dependent deteriorating paths model. Figure 3 

shows the aggregated state transition diagram of the two 

layers of vector-valued CTMC in Fig. 2. 

 

Fig. 3. Multi-dependent deteriorating paths model 

Comparing with Fig. 2, the size of state space is halved in 

the multi-dependent deteriorating paths model. In this way, 

the component-level model can be successfully aggregated 

to a more compact system-level model. The parameters in 

the multi-dependent deteriorating paths model can be 

calculated by the theorem 1 as shown in Table 1. 

Table 1 Conversion of parameters aggregated model 

System level 

parameters 

Component level 

Expression 

𝜆𝑛0,0 ∑ 𝑟𝑙,0
2
𝑙=1   

𝜆𝑛1,0 ∑ 𝑟𝑙,0
2
𝑙=1 + 𝑔(1)  

𝜆𝑑0,1 ∑ 𝑟𝑙,1
2
𝑙=1   

𝜆𝑑1,1 ∑ 𝑟𝑙,1
2
𝑙=1 + 𝑔(1)  

Through this aggregation process, the 𝑚  layers vector 

valued CTMC model has been transformed into a multi-

dependent deteriorating path model. It helps the model to 

regain the mathematical tractability and opens up a 

successful way to express and analyse the impact of fault 

propagation on the lifetime of multi-component systems. 

3.2 Calculate and analyse the impact of fault propagation   

We study the impact of fault propagation on the lifetime of 

multi-component systems using a phase-type distribution. 

To examine the impact of fault propagation in an articulated 

manner, we implement the aggregated multi-dependent 

deteriorating paths model. Without loss of generality, the 

absorbing state 𝑌2,0  and 𝑌2,1could be combined into one 

state. From Table 1, it is clear that for modelling the meta-

dependence of fault propagation, the deterioration rates of 

multi-component system should be heterogeneous. 

Therefore, it is more generalized and representative than [7] 

by considering the heterogeneity of deterioration rates 

caused by inherent dependence amongst the critical 

components. The probabilistic behavior of the absorbing 

CTMC can be summarized and characterized by the 

infinitesimal generator [24]. The infinitesimal generator is a 

5×5 matrix 𝑸. 

𝑸 =

[
 
 
 
 
 
−(𝜆𝑛0,0 + 𝜆𝑓0,1) 𝜆𝑓0,1 𝜆𝑛0,0 0 0

0 −𝜆𝑑0,1 0 𝜆𝑑0,1 0

0 0 −(𝜆𝑛1,0 + 𝜆𝑓1,1) 𝜆𝑓1,1 𝜆𝑛1,0

0 0 0 −𝜆𝑑1,1 𝜆𝑑1,1

0 0 0 0 0 ]
 
 
 
 
 

 

The model contains four transient states and one absorbing 

state. Transient rate is the rate to transfer from a transient 

state to another transient state. Absorbing rate is the rate 

transfer from a transient state to absorbing state. Therefore, 

the infinitesimal generator matrix can also be represented by 

a combination of submatrices S and 𝐒0. 

𝑸 = [𝑺 𝑺𝟎

𝟎 0
] 

𝑺 contains the transition rate between transient states and 

𝐒0 represents the transition intensities from transient rate to 

absorbing rate.  

𝐒 =

[
 
 
 
 
−(𝜆𝑛0,0 + 𝜆𝑓0,1) 𝜆𝑓0,1 𝜆𝑛0,0 0

0 −𝜆𝑑0,1 0 𝜆𝑑0,1

0 0 −(𝜆𝑛1,0 + 𝜆𝑓1,1) 𝜆𝑓1,1

0 0 0 −𝜆𝑑1,1]
 
 
 
 

 

𝐒0 = [

0
0

𝜆𝑛1,0

𝜆𝑑1,1

] 

The lifetime distribution of the multi-component system can 

be calculated using a phase-type distribution as Buchholz 

[25] has derived: 

𝑓𝑓(𝑡) = 𝛗𝑒𝐒𝑡𝐒0 (2) 

Where f (t) indicates the lifetime function of a multi-

component system with fault propagation, and 𝛗  is the 

probability vector denoting the initial probability of starting 

in any of the four states. The value of 𝛗 can be assigned 

based on the inspected condition of the system. Then, the Eq. 

(2) can be used to estimate the remaining life time of the 

system. As the focus of this section is on analysing the 

impact of fault propagation on the lifetime of multi-

component system, we assume the system starts at the as 

good as new state, therefore, 𝛗 is [1 0 0 0]. As S is 

an upper triangular matrix, it has four roots: 𝜆1 = −(𝜆𝑛0,0 +
𝜆𝑓0,1) , 𝜆2 = −𝜆𝑑0,1 ,  𝜆3 = −(𝜆𝑛1,0 + 𝜆𝑓1,1)  and 𝜆4 =

−𝜆𝑑1,1. The eigenvectors matrix S can be calculated as. 



 

(𝐒 − 𝜆1𝐈)𝐕1 = 0 

𝐕1 = [1 0 0 0]𝑇 

(𝐒 − 𝜆2𝐈)𝐕2 = 0
 

𝐕2 = [1
𝜆𝑛0,0 + 𝜆𝑓0,1 − 𝜆𝑑0,1

𝜆𝑓0,1
0 0]

𝑇

 

(𝐒 − 𝜆3𝐈)𝐕3 = 0 

𝐕3 = [1 0
𝜆𝑛0,0 + 𝜆𝑓0,1 − (𝜆𝑛1,0 + 𝜆𝑓1,1)

𝜆𝑛0,0
0]

𝑇

 

(𝐒 − 𝜆4𝐈)𝐕4 = 0 

𝐕4 =

[
 
 
 
 
 
 
 

1
𝜆𝑑0,1(𝜆𝑛1,0 + 𝜆𝑓1,1 − 𝜆𝑑1,1)(𝜆𝑛0,0 + 𝜆𝑓0,1 − 𝜆𝑑1,1)

𝜆𝑓0,1𝜆𝑑0,1(𝜆𝑛1,0 + 𝜆𝑓1,1 − 𝜆𝑑1,1) + 𝜆𝑛0,0𝜆𝑓1,1(𝜆𝑑0,1 − 𝜆𝑑1,1)

𝜆𝑓1,1(𝜆𝑑0,1 − 𝜆𝑑1,1)(𝜆𝑛0,0 + 𝜆𝑓0,1 − 𝜆𝑑1,1)

𝜆𝑓0,1𝜆𝑑0,1(𝜆𝑛1,0 + 𝜆𝑓1,1 − 𝜆𝑑1,1) + 𝜆𝑛0,0𝜆𝑓1,1(𝜆𝑑0,1 − 𝜆𝑑1,1)

(𝜆𝑑0,1 − 𝜆𝑑1,1)(𝜆𝑛1,0 + 𝜆𝑓1,1 − 𝜆𝑑1,1)(𝜆𝑛0,0 + 𝜆𝑓0,1 − 𝜆𝑑1,1)

𝜆𝑓0,1𝜆𝑑0,1(𝜆𝑛1,0 + 𝜆𝑓1,1 − 𝜆𝑑1,1) + 𝜆𝑛0,0𝜆𝑓1,1(𝜆𝑑0,1 − 𝜆𝑑1,1)]
 
 
 
 
 
 
 

 

Eigendecomposition is implemented to calculate the matrix 

exponential. Eigenvectors to a 4 × 4 matrix 𝐏 =
[𝐕1

𝑇 𝐕2
𝑇 𝐕3

𝑇 𝐕4
𝑇]  are combined. This enables the 

research to further decompose the matrix S as follows: 

𝑺 = 𝑷𝑱𝑷−𝟏 

𝐉 =

[
 
 
 
 
−(𝜆𝑛0,0 + 𝜆𝑓0,1) 0 0 0

0 −𝜆𝑑0,1 0 0

0 0 −(𝜆𝑛1,0 + 𝜆𝑓1,1) 0

0 0 0 −𝜆𝑑1,1]
 
 
 
 

 

Due to the characteristic of matrix exponential, we have 

𝑓𝑓(𝑡) = 𝛗𝐏𝑒𝐉𝑡𝐏−𝟏𝐒0 (3) 

𝑒𝐉𝑡 = [

𝑒−(𝜆𝑛0,0+𝜆𝑓0,1)𝑡 0 0 0
0 𝑒−𝜆𝑑0,1𝑡 0 0
0 0 𝑒−(𝜆𝑛1,0+𝜆𝑓1,1)𝑡 0
0 0 0 𝑒−𝜆𝑑1,1𝑡

] 

The solution of 𝑓𝑓(𝑡) for this model is shown in Eq. (4).  

 (4) 

Eq. (4) indicates the failure time distribution of such type of 

systems is a weighted hyper-exponential distribution 

composed by two different type of exponential terms: one is 

the sum of the normal deterioration rate and the induced 

deterioration rate, the other is the accelerated deterioration 

rate. From the system lifetime perspective, it implies that the 

induced dependence rate is as important as the normal 

distribution rate. 

The benefit of recognising the impact of fault propagation is 

twofold. In the long term, it can reduce the risk of system 

failures caused by the gross overestimation of the system’s 

lifetime. In the short term, it can improve the accuracy of 

predicting the optimal time for maintenance, by better 

understanding the potential risk caused by fault propagation. 

3.3 Verification   

According to mathematical modelling research methodology 

[26], some mathematical models could reduce to previously 

designed model under an extreme case scenario. This can 

verify and validate the model. In this subsection, the lifetime 

equation 𝑓𝑓 is verified by extreme scenarios. Based on the 

schematic diagrams in Fig. 3, when rates of 𝜆𝑓1,0 and 𝜆𝑓1,1 

are approaching to 0, the schematic diagram degenerates to 

a single deteriorating path model with heterogeneous 

deterioration rate between states as illustrated in Fig. 4.  

 

Fig. 4. Deterioration model with inherent dependence 

In this case, the density of the failure time distribution has 

been proved to be a hypo-exponential distribution [25], 

which is expressed in general form as:  

𝑓ℎ(𝑡) =
𝜆𝑛0,0𝜆𝑛1,0

𝜆𝑛0,0 − 𝜆𝑛1,0
(𝑒−𝜆𝑛1,0𝑡 − 𝑒−𝜆𝑛0,0𝑡) (5) 

The analytical result of 𝑓ℎ(𝑡) is identical to the result when 

lim𝜆𝑓1,0→0,𝜆𝑓1,1→0𝑓𝑓(𝑡) . Hence, Eq. (4) can be partially 

verified. This simplified scenario has been implemented in 

the existing articles [27] and [28] to describe the 

deterioration of a single-unit system. 



 

4 Practical case study 

To illustrate the differences between the four failure time 

distributions with fault propagation, with only induced 

dependence, with inherent dependence and with no 

dependence. An example of a heat exchanging system is 

provided.   

In oil refinery process and distillation tower, a heat 

exchanging system is used to preheat the gas to reaction 

temperature with the recycled heat. Refinery plants could 

benefit from this process by saving energy. The system 

contains three components, which are two gas tubes (𝑣 =
2) and one desalter. Gas tubes are critical components of the 

system. High-temperature gas can transfer through the tubes 

before reaching the cold box. During this process, the heat 

could be recycled and reused. As the gas pass through, the 

unwanted materials and particles in the feed gases could 

deposit and accumulate on the inner surface of the tubes and 

cause the fouling problem. The fouling could reduce the 

gases throughput and thermal conductivity which may result 

in low system operation efficiency. We classify the fouling 

process into three states, which are new, deposition 

consolidation and clogged ({𝑋0(𝑡)} = {0,1,2}). When either 

one of tubes is clogged, or both of tubes are in the deposition 

consolidation states, we assume the heat exchanging system 

reaches to the critical point for cleaning. The two tubes are 

subject to inherent dependence in a manner deterioration 

state rate interaction as [12] explored and elaborated. The 

fouling process can be measured by the pressure the gas 

tubes. The pressure is directly related to the cross-area of the 

gas tube and in turn related to the fouling process. Desalter 

is used to remove contaminants from the gas by desalting 

and dehydration. It is a non-critical component, which has a 

function of mitigating the polymerisation fouling of the 

tubes. However, desalter might be malfunctioned because 

loss chemical injection rate or sludge build up. The fault 

propagation scenario is defined as when the desalter is 

malfunctioned, it will accelerate the polymerization fouling 

of the tubes and catalyse the fouling between the two tubes 

through the underlying inherent dependence (𝑚 = 1) . 

Based on the description, the vector conditions of the two 

gas tubes can be formulated by the 𝒳 . The state of 

aggregated process 𝒴  indicates the overall accumulated 

deposit in the two tubes. The parameter setting for the heat 

exchanging system is derived from the results in [12] with 

additional experience values on malfunction rate of desalter.  

Table 2: Parameters setting for the illustrative example  

Parameter Value (/days) 

𝑟0,1 0.0123 

𝑟0,2 00117 

𝑔(1) 0.0069 

𝑟1,1 0.0245 

𝑟1,2 0.0233 

𝜆𝑓0,1 0.005 

𝜆𝑓1,1 0.005 

The failure time distribution of the system with fault 

propagation can be calculated by the Eq. (4). To make a 

comparison, we also calculated the failure time distributions 

under induced dependence, inherent dependence, and 

independence scenarios. We can calculate the failure time 

distribution with induced dependence with the finding in [7]. 

The failure time distribution with inherent dependence can 

be calculated by Eq. (5). The failure time distribution under 

the independent assumption is an Erlang distribution. The 

four failure time distributions are plotted in Fig. 5. 

Fig.5. Difference between four failure time distributions 

It is clear that the failure time distribution when considering 

fault propagation has more risk on deterioration failure on 

early stage than the rest of the three failure time 

distributions. For comparison, the expected lifetime T under 

different assumptions can be calculated by Eq. (6) 

𝔼(𝑇) = ∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

0

 (6) 

The resulting expected lifetimes under different assumptions 

are listed in Table 3. 

Table 3: Expected lifetime under different assumptions 

Parameter Result (days) 

𝔼(𝑇𝑓) 66.367 

𝔼(𝑇𝑑) 73.177 

𝔼(𝑇ℎ) 74.029 

𝔼(𝑇𝐼) 83.333 

We use 𝔼(𝑇𝐼) as the benchmark. Therefore, the lifetime 

reduction caused by fault propagation  ∆𝑓 , induced 

dependence ∆𝑑  and inherent dependence  ∆ℎ  are 

expressed as below: 

∆𝑓= |𝔼(𝑇𝑓) − 𝔼(𝑇𝐼)| = 16.966 days 

∆𝑑= |𝔼(𝑇𝑑) − 𝔼(𝑇𝐼)| = 10.304 days 

∆ℎ= |𝔼(𝑇ℎ) − 𝔼(𝑇𝐼)| = 9.3039 days 



 

Therefore, we can compare the impacts of fault propagation, 

induced dependence and inherent dependence as shown in 

Eq. (7). 

∆𝑓> ∆𝑑 , ∆ℎ (7) 

The impact of fault propagation on expected lifetime is more 

significant than induced dependence and inherent 

dependence. It indicates a higher risk for a multi-component 

system subject to fault propagation. Additionally, it is 

observable that ∆𝑓  is not identical to the sum of ∆𝑑  and 

∆ℎ . This justifies explicitly modelling of the meta-

dependence characteristic of fault propagation.  

The impact of fault propagation is controlled by the joint 

effect of the three types of parameters, which are the affected 

deterioration rate 𝑔(𝑥) the malfunction rate 𝜆𝑓𝑖,ℎand the 

difference between the fault propagation rate 𝜆𝑑𝑖,ℎ  and 

normal deterioration rate  𝜆𝑛𝑖,0 . We now investigate the 

sensitivity of fault propagation parameters on the expected 

lifetime of the system. Sensitivity analysis of the fault 

propagation parameters is numerically demonstrated based 

on the same illustrative case. During the test, each parameter 

is gradually increased. The resulting expected lifetime of the 

system is plotted against the incremental percentage of the 

individual parameters in Fig. 6.  

 

Fig. 6. Sensitivity analysis of fault propagation parameters 

From Fig. 6, it can be seen that the system’s lifetime is more 

sensitive to the affected deterioration rate and early state 

malfunction rate. Therefore, to prolong the lifetime of the 

system, it is worthwhile to aware the fault propagation in the 

early state of system deterioration.  

5 Conclusion 

To formulate the meta-dependent characteristic of fault 

propagation, we developed a deterioration model to capture 

the fault propagation that is a meta-dependence between the 

inherent dependence and induced dependence. It contributed 

theoretically to the modelling of stochastic dependence by 

extending the modelling of dependence to meta-dependence.  

The deterioration of multi-component systems is modelled 

by a m layered vector-valued CTMC. Such type of approach 

may encounter state space explosion problem. We have 

derived a partitioning rule to reduce the state space. The 

number of states in the aggregated process is only linearly 

proportional to 𝜁  and m. Although the information about 

the conditions of critical components is masked by the 

aggregation process, the aggregation by using the 

partitioning rule induces no error in the overall deterioration 

model.  

The failure time distribution and expected lifetimes are 

calculated using phase-type distribution. The impact of fault 

propagation was demonstrated in an industrial case, and its 

impact was shown to be more significant than induced 

dependence and inherent dependence. Compared to models 

under different assumptions, potential benefits of modelling 

fault propagation were demonstrated. 

The current knowledge of fault propagation is mainly in the 

form of the expert opinion. The designed model is an 

interface to adopt this knowledge. However, with the 

increasing attention on the underlying mechanism of the 

system deterioration, a richer statistical data may be 

accumulated. It will be beneficial to design a statistical 

approach. 

Appendix 

Proof of Theorem 1: 

For a particular {𝑋ℎ(𝑡)} = {𝑋1,ℎ(𝑡), 𝑋2,ℎ(𝑡), … , 𝑋𝑣,ℎ(𝑡)}, because all its elements 𝑋𝑙,ℎ(𝑡) evolve in a competing pattern with 

a rate 𝜔𝑙,ℎ(𝑡), then according to Finkelstein [29] the rate for any one of the elements as they evolve to its next state is:  

lim
∆𝑡→0

ℙ(∑ 𝑋𝑙,ℎ(𝑡 + ∆𝑡)𝑣
𝑙=1 = ∑ 𝑋𝑙,ℎ(𝑡)𝑣

𝑙=1 + 1|𝑋ℎ(𝑡))

∆𝑡
= ∑𝜔𝑙,ℎ(𝑡)

𝜈

𝑙=1

 

By using this equation to express 𝜆𝑖,ℎ(𝑡), we have 

𝜆𝑖,ℎ(𝑡) = lim
∆𝑡→0

ℙ (𝑌𝑖+1,ℎ(𝑡 + ∆𝑡)|𝑌𝑖,ℎ(𝑡))

∆𝑡
 

= lim
∆𝑡→0

ℙ(∑ 𝑋𝑙,ℎ(𝑡 + ∆𝑡)𝑣
𝑙=1 = 𝑖 + 1| ∑ 𝑋𝑙,ℎ(𝑡)𝑣

𝑙=1 = 𝑖)

∆𝑡
 

= lim
∆𝑡→0

ℙ(∑ 𝑋𝑙,ℎ(𝑡 + ∆𝑡)𝑣
𝑙=1 = ∑ 𝑋𝑙,ℎ(𝑡)𝑣

𝑙=1 + 1|∑ 𝑋𝑙,ℎ(𝑡)𝑣
𝑙=1 = 𝑖)

∆𝑡
 



 

=
∑ ℙ(𝑋ℎ(𝑡) ∈ 𝑌𝑖,ℎ(𝑡))𝑋ℎ(𝑡)∈𝑌𝑖,ℎ(𝑡) lim

∆𝑡→0
∆𝑡−1ℙ(∑ 𝑋𝑙,ℎ(𝑡 + ∆𝑡)𝑣

𝑙=1 = ∑ 𝑋𝑙,ℎ(𝑡)𝑣
𝑙=1 + 1|𝑋ℎ(𝑡))

∑ ℙ (𝑋ℎ(𝑡) ∈ 𝑌𝑖,ℎ(𝑡))𝑋ℎ(𝑡)∈𝑌𝑖,ℎ(𝑡)

 

=
∑ 𝜔𝑙,ℎ

𝜈
𝑙=1 (𝑡)∑ ℙ(𝑋ℎ(𝑡) ∈ 𝑌𝑖,ℎ(𝑡))𝑋ℎ(𝑡)∈𝑌𝑖,ℎ(𝑡)

∑ ℙ (𝑋ℎ(𝑡) ∈ 𝑌𝑖,ℎ(𝑡))𝑋ℎ(𝑡)∈𝑌𝑖,ℎ(𝑡)

 

= ∑𝑟𝑙,ℎ

𝜈

𝑙=1

+ ∑ 𝑔(𝑋𝑗,ℎ(𝑡))

𝑗∈{1,2,…,𝑣}/𝑙

 

= ∑𝑟𝑙,ℎ

𝜈

𝑙=1

+ 𝑔( ∑ 𝑋𝑗,ℎ(𝑡)

𝑗∈{1,2,…,𝑣}/𝑙

) 

= ∑𝑟𝑙,ℎ

𝜈

𝑙=1

+ 𝑔(𝑖(𝜈 − 1)) 

 

𝜆𝑓𝑖,ℎ(𝑡) = lim
∆𝑡→0

ℙ (𝑌𝑖,ℎ(𝑡 + ∆𝑡)|𝑌𝑖,0(𝑡))

∆𝑡
 

= lim
∆𝑡→0

∑ ℙ(𝑋0(𝑡))ℙ(𝑌𝑖,ℎ(𝑡 + ∆𝑡)|𝑋0(𝑡))𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

∆𝑡 ∑ ℙ(𝑋0(𝑡))𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

 

= lim
∆𝑡→0

∑ ℙ(𝑋0(𝑡))∑ ℙ(𝑋ℎ(𝑡 + ∆𝑡)|𝑋0(𝑡))𝑋ℎ(𝑡+∆𝑡)∈𝑌𝑖,ℎ(𝑡+∆𝑡)𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

∆𝑡 ∑ ℙ(𝑋0(𝑡))𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

 

∑ ℙ(𝑋ℎ(𝑡 + ∆𝑡)|𝑋0(𝑡))

𝑋ℎ(𝑡+∆𝑡)∈𝑌𝑖,ℎ(𝑡+∆𝑡)

= ℙ(𝑋ℎ(𝑡 + ∆𝑡)|𝑋0(𝑡), 𝑋ℎ(𝑡 + ∆𝑡) = 𝑋0(𝑡)) + ∑ ℙ(𝑋ℎ(𝑡 + ∆𝑡)|𝑋0(𝑡))

𝑋ℎ(𝑡+∆𝑡)∈𝑌𝑖,ℎ(𝑡+∆𝑡)

𝑋ℎ(𝑡+∆𝑡)≠𝑋0(𝑡)

= 𝛽𝑖,ℎ 

𝜆𝑓𝑖,ℎ(𝑡) =
∑ ℙ(𝑋0(𝑡)) lim

∆𝑡→0
∆𝑡−1ℙ(𝑋ℎ(𝑡 + ∆𝑡)|𝑋0(𝑡), 𝑋ℎ(𝑡 + ∆𝑡) = 𝑋0(𝑡))𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

∑ ℙ(𝑋0(𝑡))𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

 

=
∑ ℙ(𝑋0(𝑡))𝛽𝑖,ℎ𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

∑ ℙ(𝑋0(𝑡))𝑋0(𝑡)∈𝑌𝑖,0(𝑡)

 

= 𝛽𝑖,ℎ 

As we can see, the 𝜆𝑖,ℎ(𝑡) only relies on 𝑌𝑖,ℎ and is independent of 𝑋𝑙,ℎ(𝑡) ∈ 𝑋ℎ(𝑡) and 𝜆𝑓𝑖,ℎ(𝑡) is identical to 𝛽𝑖,ℎ. Hence, 

{𝑋ℎ(𝑡)} is lumpable with respect to ℓℎ and the lumped process {𝑌𝑖,ℎ(𝑡)} is a time homogeneous Markovian process, see 

[22], [30] and [31].  
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