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Abstract
Motivated by theoretical similarities between the classical Hill estimator of the tail
index of a heavy-tailed distribution and one of its pseudo-estimator versions featur-
ing a non-random threshold, we show a novel asymptotic representation of a class
of empirical average excesses above a high random threshold, expressed in terms
of order statistics, using their counterparts based on a suitable non-random thresh-
old, which are sums of independent and identically distributed random variables.
As a consequence, the analysis of the joint convergence of such empirical average
excesses essentially boils down to a combination of Lyapunov’s central limit theorem
and the Cramér-Wold device. We illustrate how this allows to improve upon, as well
as produce conceptually simpler proofs of, very recent results about the joint con-
vergence of marginal Hill estimators for a random vector with heavy-tailed marginal
distributions. These results are then applied to the proof of a convergence result for
a tail index estimator when the heavy-tailed variable of interest is randomly right-
truncated. New results on the joint convergence of conditional tail moment estimators
of a random vector with heavy-tailed marginal distributions are also obtained.
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1 Introduction andmotivation

Heavy-tailed random variables appear in numerous fields of statistical applications
of extreme value analysis, such as insurance and finance (see e.g. p.9 of Embrechts
et al. (1997)), geoscience (see Section 1.3.5 of Beirlant et al. (2004)) and analy-
sis of teletraffic data (see Section 8 of Resnick (2007)). A typical goal of extreme
value analysis, in such contexts, is the estimation of extreme quantiles of a univari-
ate random variable of interest, such as the daily log-return of a stock market index,
the magnitude of earthquakes in a given region, or the size of data packets trans-
ferred in a computer network. A well-established procedure for extreme quantile
estimation is Weissman’s extrapolation method (Weissman 1978), whose essential
requirement is a consistent estimator of the tail index of the underlying heavy-tailed
distribution. Recent studies geared towards insurance and finance have been advocat-
ing for the use and estimation of extreme versions of alternatives to quantiles, such
as Conditional Tail Moments (El Methni et al. 2014), Wang distortion risk measures
(introduced in Wang (1996), and studied recently in El Methni and Stupfler (2017,
2018)), Lp−quantiles (introduced in Chen (1996), and studied recently in Daouia
et al. (2018b, 2019) and extremiles (introduced and studied in Daouia et al. (2018a)).
All these quantities, however, can be shown to have the heavy-tailed behaviour
displayed by tail quantiles, and as such, their estimators at extreme levels can be
constructed via straightforward adaptations of Weissman’s method by relying on tail
index estimators as well. Tail index estimation is therefore a central question in the
statistical analysis of heavy-tailed distributions.

The most popular and well-known tail index estimator is arguably the Hill esti-
mator (Hill 1975), which is also the maximum likelihood estimator if the underlying
statistical model is purely Pareto. Assuming that X1, . . . , Xn is a random sample of
copies of a variable X having a heavy-tailed distribution with tail index γ , the Hill
estimator of γ is

γ̂ (k) := 1

k

k
∑

i=1

log
Xn−i+1,n

Xn−k,n

.

Here, k = k(n) is such that k → ∞ and k/n → 0, and X1,n ≤ X2,n ≤ · · · ≤ Xn,n

denote the order statistics related to X1, . . . , Xn. It is well-known that, under an
appropriate second-order condition on X controlling the gap between the underlying
distribution and the Pareto distribution, this estimator is

√
k−asymptotically normal;

a variety of proofs of this result are available, including arguments based on Rényi’s
representation of order statistics (see pp.74–75 in de Haan and Ferreira (2006)), the
tail empirical process (see Proposition 9.3 p.302 in Resnick (2007)), or a represen-
tation of log-spacings in terms of independent exponential random variables (see
Section 4.4 in Beirlant et al. (2004)). A common aim of these approaches is to deal
with the structure of the Hill estimator in terms of top order statistics, which are
significantly harder to handle than the original X1, . . . , Xn. Although this theoreti-
cal difficulty is now well-understood, it is further compounded if one wants to show
the joint asymptotic normality of marginal Hill estimators for a random vector with
heavy-tailed marginal distributions, since one then also needs to take into account
the asymptotic dependence structure within the underlying multivariate distribution.



On a relationship between randomly and non-randomly thresholded...

Such joint convergence results have only been proven very recently by Dematteo
and Clémençon (2016), Kinsvater et al. (2016) and Hoga (2018). The methods of
proof therein rely on advanced theoretical methodologies, namely multivariate vague
convergence in Dematteo and Clémençon (2016) and Kinsvater et al. (2016) and
multivariate empirical process theory in Hoga (2018), as well as on various ad hoc
technical conditions. These joint asymptotic results have been found useful for test-
ing tail homogeneity across marginals of a multivariate heavy-tailed distribution in
environmental or financial contexts (see Kinsvater et al. (2016) and Hoga (2018)) and
constructing improved tail index estimators by pooling (see Section 3.2 in Dematteo
and Clémençon (2016)).

The Hill estimator can be written in several different ways. When there are no ties
in the sample X1, . . . , Xn (this is for example the case when the distribution function
of X is continuous), one has k = ∑n

i=1 1{Xi>Xn−k,n}. Noting then that

γ̂ (k) =
∑n

i=1[logXi − logXn−k,n]1{Xi>Xn−k,n}
∑n

i=1 1{Xi>Xn−k,n}
suggests that a major difficulty in the theoretical analysis of the Hill estimator lies
in the fact that the high threshold Xn−k,n, used to guarantee the consistency of the
estimator by retaining only the high values in the sample, is random. Indeed, if we
could, in the asymptotic analysis of γ̂ (k), replace the random quantity Xn−k,n, which
is nothing but the empirical quantile at level 1−k/n, by the unknown but non-random
population quantile q(1 − k/n), we would find the pseudo-estimator

γ̃ (k) =
∑n

i=1[logXi − log q(1 − k/n)]1{Xi>q(1−k/n)}
∑n

i=1 1{Xi>q(1−k/n)}
which is conceptually far easier to analyse than γ̂ (k): for independent X1, . . . , Xn,
this pseudo-estimator is a ratio of sums of independent variables constructed on the
Xi , and thus can easily be handled by a combination of Lyapunov’s central limit the-
orem and the Cramér-Wold device. The striking and perhaps unexpected point here
is that the asymptotic distributions of γ̂ (k) and γ̃ (k) are identical; this can be seen
by comparing Theorem 3.2.5 in de Haan and Ferreira (2006) and Theorem 4.3.1 in
Goldie and Smith (1987). On this basis, one may therefore ask whether a relationship
of the form

γ̂ (k) = γ̃ (k) + oP

(

1√
k

)

(1)

can be shown. Such a relationship has not, to the best of our knowledge, been proven
so far in the literature. Its validity is not obvious either, since γ̃ (k) is obtained from
γ̂ (k) by replacing Xn−k,n with q(1− k/n), and we know that Xn−k,n/q(1− k/n) −
1 only converges to 0 at the rate

√
k (see Theorem 2.4.1 in de Haan and Ferreira

(2006)), which is the common rate of convergence of γ̃ (k) and γ̂ (k). Let us also
point out straightaway that although Eq. 1 would give an additional proof of the
convergence of the Hill estimator γ̂ (k), this is not where its full value lies, since the
asymptotic properties of the Hill estimator are well-known. It really becomes useful
when, for instance, analysing the joint convergence of marginal Hill estimators, since,
in contrast to the joint convergence of the randomly thresholded versions, the joint
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convergence of the non-randomly thresholded versions is easy to obtain (under an
appropriate upper tail dependence condition) by a combination of standard central
limit theory and the Cramér-Wold device.

The proof of Eq. 1 is the motivation for this paper. More precisely, the objective
of the paper is to embed the Hill estimator in a wider class of average excesses and
then provide a simple representation of those empirical average excesses above a
high random threshold in terms of their pseudo-estimator versions with a non-random
threshold. The class of average excesses we consider includes the Hill estimator,
and can be modified in a very simple way to encompass Conditional Tail Moments
(CTMs). We show in particular how the results of Dematteo and Clémençon (2016),
on the joint asymptotic normality of marginal Hill estimators for a random vec-
tor with heavy-tailed marginal distributions, can be recovered and generalised under
weaker assumptions and by elementary techniques. We shall then highlight a couple
of applications of this joint asymptotic normality result, including to the obtention
of the asymptotic properties of the tail index estimator introduced by Gardes and
Stupfler (2015) when the variable of interest is randomly right-truncated. The ques-
tion of the convergence of this estimator was considered first by Gardes and Stupfler
(2015) under restrictive assumptions, and then by Benchaira et al. (2015) using a del-
icate theoretical argument based on the weighted tail copula process and a joint tail
assumption on the observed pair. Our results will make it possible to unify and extend
the results of Gardes and Stupfler (2015) and Benchaira et al. (2015), without neither
resorting to the former’s technical conditions nor to the latter’s advanced method-
ology and joint dependence condition. In doing so, we will also be able to give a
very simple expression of the asymptotic variance of the limiting normal distribution.
Finally, and motivated by the ideas of Hoga (2018), we shall apply our results to find
joint convergence results on empirical CTMs that may be of independent interest,
for instance in testing whether certain tail moments of two asymptotically dependent
variables are equal. We will highlight how such results nicely complement earlier
results proven by El Methni et al. (2014) and El Methni and Stupfler (2017).

The outline of the paper is the following. Our framework and main results are
stated in Section 2. Applications of our results, to the joint convergence of Hill and
CTM estimators, and to the convergence of a tail index estimator under random right-
truncation are presented in Section 3. Section 4 concludes and discusses possible
extensions. Proofs are deferred to a Supplementary Material document.

2 Framework andmain results

We assume in this section that the data is made of independent copiesX1, . . . , Xn of a
random variable X. We denote by F the distribution function of X, by F = 1−F the
related survival function, and by q the left-continuous inverse of F (that is, q(τ) =
inf{t ∈ R | F(t) ≥ τ }). We assume for ease of presentation that the distribution
function F is continuous, so that, with probability 1, there are no ties in the sample
X1, . . . , Xn. This is not restrictive for our purposes, as our applications of the main
results presented here focus on the obtention of joint convergence results for several
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estimators of extreme value indicators pertaining to a multivariate random vector
with heavy-tailed marginal distributions. Such an endeavour indeed typically requires
the standardisation of the marginal distributions to uniform distributions, in order
to obtain a meaningful description of the relevant extremal dependence structure.
Our results can still be shown, at the expense of extra technical details, if F is only
continuous in a neighbourhood of infinity.

Our main assumption throughout is that X has a heavy-tailed distribution. In other
words, denoting by U(t) := q

(

1 − t−1
)

the tail quantile function of X, we assume
that U is a regularly varying function with index γ > 0, namely

∀x > 0, lim
t→∞

U(tx)

U(t)
= xγ .

Since our motivating question is the obtention of the asymptotic representation (1),
we shall work under a refinement of this regular variation condition that allows for the
derivation of asymptotic properties of extreme value estimators. We choose here to
work with the following second-order extreme value condition, which is extensively
used in e.g. de Haan and Ferreira (2006):

C2(γ, ρ, A) The function U is second-order regularly varying in a neighbourhood
of +∞ with index γ > 0, second-order parameter ρ ≤ 0 and an auxiliary function
A having constant sign and converging to 0 at infinity, that is,

∀x > 0, lim
t→∞

1

A(t)

[

U(tx)

U(t)
− xγ

]

= xγ xρ − 1

ρ

where the right-hand side should be read as xγ log x when ρ = 0.
Let us now define the central concepts this paper will focus on. Again, let us recall

our motivation, which is to link the Hill estimator γ̂ (k) to its pseudo-estimator ver-
sion γ̃ (k). One interpretation of the Hill estimator γ̂ (k) is that it is a sample version
of the average log-excess E(logX − logU(n/k) | X > U(n/k)) (see p.104 of Beir-
lant et al. (2004), and p.69 of de Haan and Ferreira (2006)); it should also be clear
that γ̃ (k) is a pseudo-estimator of this average log-excess. This motivates us to carry
forward the notion of average excess with the following definition.

Definition 1 LetX be a heavy-tailed random variable and f be a continuous function
on a neighbourhood of infinity such that for some t0, the quantity E(|f (X)| | X > t0)

is well-defined and finite. For any t ≥ t0, we define the average f -excess of X above
level t to be

AEf (t) := E(f (X) − f (t) | X > t) = E([f (X) − f (t)]1{X>t})
F (t)

and the empirical average f -excess of X above level t to be

̂AEf (t) := n−1∑n
i=1[f (Xi) − f (t)]1{Xi>t}

̂

Fn(t)
, where ̂Fn(t) := 1

n

n
∑

i=1

1{Xi>t}.

We also define the expected f -shortfall above level t as

ESf (t) := E(f (X) | X > t) = AEf (t) + f (t)
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and the empirical expected f -shortfall above level t as

̂ESf (t) := n−1∑n
i=1 f (Xi)1{Xi>t}
̂

Fn(t)
= ̂AEf (t) + f (t).

With this definition, letting f = log, we find

̂AElog(Xn−k,n) = γ̂ (k), ̂AElog(U(n/k)) = γ̃ (k)

and AElog(U(n/k)) = E(logX − logU(n/k) | X > U(n/k)).

The other main example allowed by Definition 1 which we will consider in this paper
is obtained by choosing f = fa : x 	→ xa for some a > 0. We then get, for any
t > 0,

ESfa (t) = E(Xa | X > t) =: CTMa(t),

where CTMa is the Conditional Tail Moment of order a introduced in El Methni
et al. (2014). This definition makes sense for any a < 1/γ , since all conditional tail
moments of X of order smaller than 1/γ are finite (a rigorous statement is Exercise
1.16 in de Haan and Ferreira (2006)). The class of CTMs has recently been used by
El Methni et al. (2014) and El Methni and Stupfler (2017, 2018) for extreme risk
assessment purposes in environmental, financial, and actuarial contexts. It includes
in particular, for a = 1, the expected shortfall, whose relevance to actuarial sci-
ence and interpretation has been extensively discussed recently, see e.g. Brazauskas
et al. (2008), Wüthrich and Merz (2013) and Emmer et al. (2015). An empirical
counterpart of CTMa(U(n/k)) = ESfa (U(n/k)) is then

1

k

k
∑

i=1

Xa
n−i+1,n = ̂ESfa (Xn−k,n) = ̂AEfa (Xn−k,n) + Xa

n−k,n.

Common features of the above two examples are that they crucially hinge on the
notion of average f −excess, and most importantly that the derivative of the func-
tion f involved in their construction is a power function. This observation provides
the motivation for our first main result, which provides an asymptotic relationship
between ̂AEf (Xn−k,n) and ̂AEf (U(n/k)) when f ′ is regularly varying at infinity.

Theorem 1 Suppose that X satisfies condition C2(γ, ρ, A). Let k = k(n) → ∞ be
such that k/n → 0 and

√
kA(n/k) = O(1). Assume finally that f is continuously

differentiable in a neighbourhood of infinity, ultimately increasing, and that f ′ is
regularly varying with index a − 1, where 0 ≤ 2aγ < 1. Then we have:

̂AEf (Xn−k,n)

AEf (U(n/k))
−1 =

(

̂AEf (U(n/k))

AEf (U(n/k))
− 1

)

+aγ

(

̂

Fn(U(n/k))

F (U(n/k))
− 1

)

+oP

(

1√
k

)

.

In particular

√
k

(

̂AEf (Xn−k,n)

AEf (U(n/k))
− 1

)

d−→ N
(

0,
1

1 − 2aγ
+ a2γ 2

)

.
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Theorem 1 provides an asymptotic representation of the empirical average
f −excess ̂AEf (Xn−k,n), whose expression hinges on top order statistics, in terms of
sums of independent and identically distributed random variables constructed on the
Xi in a simple way. Note that, due to the continuity of F , we have F(U(n/k)) = k/n;
writing F(U(n/k)) instead of k/n, as we will do in this section, is to emphasise
that the second term on the right-hand side is centred. Assumptions k = k(n) →
∞, k/n → 0 and

√
kA(n/k) = O(1) are standard for the asymptotic analysis

of extreme value estimators; the assumption 0≤ 2aγ < 1, meanwhile, ensures that
̂AEf (U(n/k)) is

√
k−asymptotically normal (see Lemma 4 in the Supplementary

Material document), and therefore that Theorem 1 provides an expression of
̂AEf (Xn−k,n) in terms of ̂AEf (U(n/k)) and ̂Fn(U(n/k)) that is meaningful for the
asymptotic analysis.

In particular, setting f = log (and therefore a = 0) in Theorem 1 allows us to
show that the motivating representation (1), of the Hill estimator in terms of sums of
independent and identically distributed random variables, holds indeed. This is the
focus of the following corollary.

Corollary 1 Suppose that X satisfies condition C2(γ, ρ, A). Let k = k(n) → ∞ be
such that k/n → 0 and

√
kA(n/k) = O(1). Then we have

γ̂ (k) = γ̃ (k) + oP

(

1√
k

)

where

γ̂ (k) = 1

k

k
∑

i=1

log
Xn−i+1,n

Xn−k,n

and γ̃ (k) =
∑n

i=1[logXi − logU(n/k)]1{Xi>U(n/k)}
∑n

i=1 1{Xi>U(n/k)}
.

Corollary 1 can of course be used to provide yet another proof of the asymp-
totic normality of the Hill estimator, via the Lyapunov central limit theorem and the
Cramér-Wold device applied to get the

√
k−asymptotic normality of γ̃ (k). This is

not, however, where the value of Corollary 1 lies, if only because its proof uses an

approximation of the tail empirical process x 	→ ̂

Fn(xU(n/k)) by a Gaussian pro-
cess, which can itself be used to provide a direct proof of the asymptotic normality
of the Hill estimator (see pp.162–163 of de Haan and Ferreira (2006)). A much more
relevant impact of Corollary 1 lies in its potential for the analysis of the joint con-
vergence of several Hill estimators. For instance, if X1, . . . , Xn and Y1, . . . , Yn are
independent copies of random variables X and Y , which are both heavy-tailed and
satisfy a second-order condition, then we have under suitable assumptions on k that:

(

γ̂X(k)

γ̂Y (k)

)

=
(

γ̃X(k)

γ̃Y (k)

)

+ oP

(

1√
k

)

with obvious notation. The benefit of writing this is that while showing directly the
joint convergence of the random pair on the left-hand side is difficult and appears
to require advanced theoretical arguments (see Dematteo and Clémençon (2016) and
Hoga (2018)), the convergence of the right-hand side is much easier to obtain since
it is nothing but a pair of (ratios of) sums of independent and identically distributed
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random variables. We will return to this in Section 3 to show how this observation
leads to conceptually simple proofs of the joint asymptotic normality of several Hill
estimators.

Theorem 1 is somewhat tedious to apply if the focus is on an average shortfall,
such as in the case of a CTM. The following theorem provides an analogue of Theo-
rem 1 specifically dedicated to the analysis of̂ESf (Xn−k,n), under a slightly stronger
condition on f .

Theorem 2 Work under the conditions of Theorem 1, under the additional assump-
tion that xf ′(x)/f (x) → a > 0 as x → ∞. Then:

̂ESf (Xn−k,n)

ESf (U(n/k))
−1 =

(

̂ESf (U(n/k))

ESf (U(n/k))
− 1

)

+aγ

(

̂

Fn(U(n/k))

F (U(n/k))
− 1

)

+oP

(

1√
k

)

.

In particular

√
k

(

̂ESf (Xn−k,n)

ESf (U(n/k))
− 1

)

d−→ N
(

0,
2a2γ 2(1 − aγ )

1 − 2aγ

)

.

Setting f = fa , we find back the asymptotic variance of the empirical estimator
̂ESfa (Xn−k,n) of CTMa(U(n/k)); see Theorem 1 of El Methni et al. (2014) in the
regression case. The condition 2aγ < 1, part of Theorems 1 and 2, also naturally
appears in the asymptotic normality results of El Methni et al. (2014) and ensures in
particular that the conditional tail variance of Xa is finite. Again, the main value of
the above result does not lie in the fact that it gives the asymptotic distribution of the
empirical average expected shortfall, but rather in that it allows one to establish the
joint convergence of several of those estimators with no conceptual difficulty. With
an eye on the latter, we state the following corollary of Theorem 2, which is easier to
use in practice.

Corollary 2 Work under the conditions of Theorem 2. Then:

̂ESf (Xn−k,n)

ESf (U(n/k))
− 1 = aγ

(

n−1∑n
i=1[f (Xi) − f (U(n/k))]1{Xi>U(n/k)}

E([f (X) − f (U(n/k))]1{X>U(n/k)})
− 1

)

+ oP

(

1√
k

)

.

Let us point out that Corollary 2 gives an asymptotic representation of
̂ESf (Xn−k,n) as a single sum of independent, identically distributed and centred ran-
dom variables. Its use does not even involve any linearisation (unlike Theorems 1 and
2), making it particularly simple to apply.

Our objective in the rest of this paper is to show how the main theoretical results of
this section can be applied to finding a solution to two theoretical questions: the joint
convergence of marginal Hill estimators, and the joint convergence of marginal Con-
ditional Tail Moments. We shall also explore how our result on the joint convergence
of Hill estimators can be fruitfully applied to solve the question of the convergence
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of a specific tail index estimator, introduced by Gardes and Stupfler (2015) to tackle
the case when the variable of interest is randomly right-truncated. Before that, we
conclude this section on a generalisation of Theorem 1 and Corollary 1 to the case
when the order statistic Xn−k,n is replaced by an arbitrary

√
k−consistent estimator

̂U(n/k) of the quantile U(n/k). In this context, ̂AEf (̂U(n/k)) cannot be repre-
sented by sums of independent, identically distributed and centred random variables
anymore, but interestingly Corollary 1 still stands.

Theorem 3 Work under the conditions of Theorem 1. Then we have:

̂AEf (̂U(n/k))

AEf (U(n/k))
−1 =

(

̂AEf (U(n/k))

AEf (U(n/k))
− 1

)

+aγ

(

̂

Fn(U(n/k))

̂

Fn(̂U(n/k))
− 1

)

+oP

(

1√
k

)

for any estimator ̂U(n/k) of U(n/k) such that ̂U(n/k)/U(n/k) − 1 = OP(1/
√

k).

Corollary 3 Suppose that X satisfies condition C2(γ, ρ, A). Let k = k(n) → ∞
be such that k/n → 0 and

√
kA(n/k) = O(1). Assume finally that ̂U(n/k) is an

estimator of U(n/k) such that ̂U(n/k)/U(n/k) − 1 = OP(1/
√

k). Then we have

γ (k) = γ̃ (k) + oP

(

1√
k

)

where

γ (k) =
∑n

i=1[logXi − log ̂U(n/k)]1{Xi>̂U(n/k)}
∑n

i=1 1{Xi>̂U(n/k)}

and γ̃ (k) =
∑n

i=1[logXi − logU(n/k)]1{Xi>U(n/k)}
∑n

i=1 1{Xi>U(n/k)}
.

We observe that Theorem 3 and Corollary 3 are indeed generalisations of Theorem

1 and Corollary 1: when ̂U(n/k) = Xn−k,n, one has
̂

Fn(̂U(n/k)) = ̂

Fn(Xn−k,n) =
k/n = F(U(n/k)) by continuity of F and γ (k) = γ̂ (k).

3 Applications

3.1 Joint convergence of marginal Hill estimators

Let (Xi )1≤i≤n, withXi =
(

X
(1)
i , X

(2)
i , . . . , X

(d)
i

)

, be a sample of independent copies

of a random vector X = (

X(1), X(2), . . . , X(d)
)

such that each component X(j) has a
continuous distribution function Fj and satisfies condition C2(γj , ρj , Aj ). Our first
goal is to establish a joint convergence result for the Hill estimators of the γj built on
this sample, that is:

γ̂j (kj ) = 1

kj

kj
∑

i=1

log
(

X
(j)

n−i+1,n

)

− log
(

X
(j)
n−kj ,n

)



G. Stupfler

where kj = kj (n) → ∞, with kj /n → 0. This theoretical question is addressed
in Dematteo and Clémençon (2016) and further discussed in Kinsvater et al. (2016)
under the assumption γj = γ for all j ∈ {1, . . . , d}.

Since each γ̂j (kj ) is built on top order statistics from the corresponding X(j),
our objective of analysing the joint convergence of the γ̂j (kj ) calls for some sort of
extremal dependence assumption between the X(j). We shall work under the follow-
ing condition on the pairwise upper tail dependence between any two components
X(j) and X(l):

J (R) For any (j, l) with 1 ≤ j < l ≤ d, there is a function Rj,l on [0, ∞]2 \
{(∞,∞)} such that we have the convergence

lim
t→∞ t P

(

Fj (X
(j)) ≤ xj

t
, F l(X

(l)) ≤ xl

t

)

= Rj,l(xj , xl)

for any (xj , xl) ∈ [0, ∞]2 \ {(∞,∞)}.
This condition appears, among others, in Cai et al. (2015) as well as, in a slightly

different form, in Hoga (2018). It is a convenient way to describe the asymptotic
dependence structure of the bivariate random vector (X(j), X(l)), while being weaker
than a pairwise bivariate regular variation assumption (in the sense of e.g. Resnick
(1987)) and a fortiori weaker than a multivariate regular variation assumption on the
random vector X such as the one of Dematteo and Clémençon (2016). The function
Rj,l is sometimes called the tail copula of (X(j), X(l)) (see Schmidt and Stadtmüller
(2006)). Wemention that, as noted by Cai et al. (2015), the functionRj,l characterises
the stable tail dependence function of the pair (X(j), X(l)) as defined by Drees and
Huang (1998).

Second-order regular variation of each marginal distribution and the above pair-
wise upper tail dependence assumption turn out to be sufficient to obtain the joint
convergence of the γ̂j (kj ), as the next result shows.

Theorem 4 Assume that, for each 1 ≤ j ≤ d, X(j) satisfies condition
C2(γj , ρj , Aj ), and suppose that condition J (R) holds. Let, for 1 ≤ j ≤ d,
kj = kj (n) → ∞ be such that:

• kj /n → 0 and
√

kjAj (n/kj ) → λj ∈ R;
• k1/kj → cj ∈ (0, ∞) (with then c1 = 1).

Set c = (c1, c2, . . . , cd). Then we have:

√

k1
(

γ̂j (kj ) − γj

)

1≤j≤d

d−→ Nd (b(c), V(c))

with

bj (c) = √
cj

λj

1 − ρj

and Vj,l(c) =
{

cj γ
2
j if j = l,

γj γlRj,l(cl, cj ) if j < l.

Let us briefly highlight that the structure of the asymptotic bias component b(c) is
quite strongly constrained by the values of the second-order parameters ρj : for all its
components to be non-zero (or equivalently, for all the constants λj to be non-zero),
all the second-order parameters ρj should be equal. This is due to the fact that the kj



On a relationship between randomly and non-randomly thresholded...

are proportional and each function |Aj | is regularly varying with index ρj . For the
same reason, if ρ∗ = max1≤j≤d ρj , then bj (c) = 0 whenever j is such that ρj < ρ∗.

Our Theorem 4 contains Theorem 3.3 and Corollary 3.4 in Dematteo and
Clémençon (2016), which are stated under more restrictive conditions, including
equality of all tail indices γj , a multivariate regular variation assumption on X, von
Mises conditions on each marginal distribution of X, and a uniform analogue of
condition J (R) [note also that Corollary 3.4 in Dematteo and Clémençon (2016)

should, with their notation, read �i,j = cicj νi,j

(

c
1/α
i , c

1/α
j

)

in the case i < j ; as

stated, their covariance matrix may fail to be positive semi-definite, for instance for
d = 2 and small c2. Compare with Proposition 1 in Kinsvater et al. (2016)]. The-
orem 4 also contains Proposition 1 in Jiang et al. (2017), which is limited to the
case d = 2 and X(2) = −X(1). Another result related to Theorem 4 is Proposi-
tion 3 in Hoga (2018), although the present result and that of Hoga (2018) are more
difficult to compare since the latter is stated within the particular context of time
series analysis. Our proof of Theorem 4 is also conceptually less involved than that
of Dematteo and Clémençon (2016), which rests upon a multivariate functional cen-
tral limit theorem (see Theorem 7.1 and Corollary 7.2 therein). Finally, and without
taking the time series framework into account, the result of Hoga (2018) is based on
delicate arguments involving a multivariate, joint Skorokhod construction of Gaus-
sian approximations for marginal tail empirical processes. Our proof, meanwhile,
rests on the standard Lyapunov central limit theorem and Corollary 1, whose proof
is based only on a univariate Gaussian approximation of the tail empirical process.
It should nonetheless be made clear once again that Proposition 3 in Hoga (2018)
holds in a framework of β−mixing time series, and as such is not restricted to inde-
pendent and identically distributed observations, unlike our Theorem 4. Section 4
discusses a possible way of extending Theorem 4 to the time series context as well
as the implications this would have on the other results presented within this paper.

Results such as Theorem 4 may be applied to define a test of tail homogeneity,
that is, equality of tail indices across marginals. If there is no evidence to reject this
assumption, one may then define improved estimators of the common value of the tail
index by pooling together the marginal Hill estimators. These ideas are considered in
Dematteo and Clémençon (2016) and Kinsvater et al. (2016). To illustrate how our
results can be applied to such problems, we state a corollary of Theorem 4 in the case
d = 2 of a bivariate distribution with heavy-tailed marginals.

Corollary 4 Suppose that X and Y have continuous distribution functions FX and
FY , which satisfy conditions C2(γX, ρX, AX) and C2(γY , ρY , AY ), respectively.
Assume that there is a function R on [0, ∞]2 \ {(∞,∞)} such that we have the
convergence

lim
t→∞ t P

(

FX(X) ≤ x

t
, F Y (Y ) ≤ y

t

)

= R(x, y) for any (x, y) ∈ [0, ∞]2\{(∞,∞)}.

Let kX = kX(n), kY = kY (n) be such that kX, kY → ∞ and:

• √
kXAX(n/kX) → 0 and

√
kY AY (n/kY ) → 0;

• kX/kY → c ∈ (0, ∞).
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Let also

RX
i :=

n
∑

j=1

1{Xj ≤Xi } and RY
i :=

n
∑

j=1

1{Yj ≤Yi }

denote the ranks of observations Xi and Yi and ̂Rk(x, y) be the nonparametric
estimator of R(x, y) defined by

̂Rk(x, y) := 1

k

n
∑

i=1

1{RX
i ≥n−kx,RY

i ≥n−ky}

(see e.g. Drees and Huang (1998)). Then the following hold:

(i) Unless c = 1 and (X, Y ) are asymptotically perfectly dependent (in the sense
that R(x, y) = min(x, y)), we have:

kX

[γ̂X(kX) − γ̂Y (kY )]2
γ̂ 2
X(kX) + cγ̂ 2

Y (kY ) − 2γ̂X(kX)γ̂Y (kY )̂RkX
(c, 1)

d−→
{

χ2
1 if γX = γY ,

+∞ if γX �= γY .

(ii) If moreover γX = γY = γ , then the estimator

γ̂ (kX, kY ) := c − ̂RkX
(c, 1)

1 + c − 2̂RkX
(c, 1)

γ̂X(kX) + 1 − ̂RkX
(c, 1)

1 + c − 2̂RkX
(c, 1)

γ̂Y (kY )

satisfies

√

kX (γ̂ (kX, kY ) − γ )
d−→ N

(

0, γ 2 c − R2(c, 1)

1 + c − 2R(c, 1)

)

and has the minimal possible asymptotic variance among the class of convex
combinations of γ̂X(kX) and γ̂Y (kY ).

Corollary 4(i) complements Proposition 2 in Kinsvater et al. (2016) in the case
d = 2: the latter is stated under significantly stronger assumptions, although it
includes the possibility of different sample sizes for the X and Y samples, which may
be relevant in specific applied setups. Corollary 4(ii) provides, under the tail homo-
geneity condition γX = γY = γ , a simple expression of the convex combination of
γ̂X(kX) and γ̂Y (kY ) that is optimal for the estimation of γ in terms of asymptotic
variance. It therefore constitutes, in the case d = 2, an explicit version of the BEAR
estimator of Dematteo and Clémençon (2016, pp.159–160). With our notation, this
estimator can be written, for a general value of d, as

γ̂BEAR(k1, . . . , kd) :=
d
∑

j=1

μ̂j γ̂j (kj ), with (μ̂1, . . . , μ̂d) = argmin
u∈[0,1]d

u1+···+ud=1

u
̂Vu

and̂V is a consistent estimator of the asymptotic covariance matrixV defined in The-
orem 4. Let us highlight that the estimator γ̂ (kX, kY ) is analysed here under weaker
conditions than those of Dematteo and Clémençon (2016) and, due to the particular
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choice d = 2, without having to resort to a numerical optimisation routine for the
calculation of the estimator. It is worth noting that since

c − R2(c, 1)

1 + c − 2R(c, 1)
− min(c, 1) = −[min(c, 1) − R(c, 1)]2

1 + c − 2R(c, 1)
≤ 0,

the estimator analysed in Corollary 4(ii) indeed has an asymptotic variance which
is lower than each of the asymptotic variances of γ̂X(kX) and γ̂Y (kY ), and we can
quantify this improvement. More precisely, since the function

r 	→ [min(c, 1) − r]2
1 + c − 2r

is decreasing on [0,min(c, 1)], the improvement in asymptotic variance brought by
the use of the pooled estimator γ̂ (kX, kY ) gets stronger as the asymptotic dependence
structure of (X, Y ) gets closer to asymptotic independence. In the case of asymptotic
independence, we have

√

kX (γ̂ (kX, kY ) − γ )
d−→ N

(

0, γ 2 c

1 + c

)

.

This is rather intuitive: since γ̂ (kX, kY ) is then essentially the weighted average of
two independent quantities, made respectively of kX independent log-excesses from
X (with weighting c/(1+c)) and kY ≈ kX/c independent log-excesses from Y (with
weighting 1/(1 + c)), each with individual variance γ 2 by Corollary 1, we should
expect the total asymptotic variance to be

γ 2
[

c2

(1 + c)2
+ c

1

(1 + c)2

]

= γ 2 c

1 + c
,

just as we found through our rigorous asymptotic analysis.

3.2 Convergence of a tail index estimator for right-truncated samples

We now illustrate how our results can be used to complete the analysis of the con-
vergence of a tail index estimator when the available data is subject to random
right-truncation. The context we consider is the following: let (Y1, T1), . . . , (Yn, Tn)

be n independent copies of a random pair (Y, T ), where Y and T are indepen-
dent, nonnegative, and have continuous marginal distribution functions FY and FT .
Assume also that Y and T have heavy-tailed distributions with tail indices γY and γT .
In the random right-truncation problem considered here, it is assumed that the pair
(Yi, Ti) is observed if and only if Yi ≤ Ti ; otherwise, no information on this pair is
available at all. The objective is to estimate γY .

This problem has only been considered very recently, starting with Gardes and
Stupfler (2015), who were ultimately interested in the estimation of extreme quantiles
of Y . Several studies have since then proposed alternative techniques for tail index
estimation in this context; we refer to Benchaira et al. (2016a, b), Worms and Worms
(2016) and Haouas et al. (2017). The random right-truncation context should not be
mistaken for random right-censoring, where the available information is made of the
pairs (min(Yi, Ti),1{Yi≤Ti }), 1 ≤ i ≤ n. The latter context has received a substantial
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amount of attention over the last decade: we refer to Beirlant et al. (2007, 2010,
2016), Einmahl et al. (2008), Gomes and Neves (2011), Ndao et al. (2014), Sayah
et al. (2014), Worms and Worms (2014), Brahimi et al. (2015), Ndao et al. (2016),
Stupfler (2016), Dierckx et al. (2018) and Stupfler (2019).

Our focus in this section is to revisit the asymptotic properties of the estimator of
Gardes and Stupfler (2015) using the tools we have developed in Sections 2 and 3.1.
Let us introduce some notation beforehand: let N be the total (random) number of
observed pairs (Yi, Ti) such that Yi ≤ Ti . Such pairs shall be denoted as (Y ∗

i , T ∗
i ),

1 ≤ i ≤ N . It is straightforward to show the following:

• N has a binomial distribution with parameters n and p := P(Y ≤ T ), where we
assume throughout this section that p > 0;

• Given N , the pairs (Y ∗
i , T ∗

i ), 1 ≤ i ≤ N are independent copies of a random pair
(Y ∗, T ∗) having joint distribution function H ∗(y, t) = P(Y ≤ y, T ≤ t | Y ≤
T ), and corresponding marginal survival functions

F
∗
Y (y) := 1

p

∫ ∞

y

F T (z)dFY (z) and F
∗
T (t) := 1

p

∫ ∞

t

FY (z)dFT (z).

It is also reasonably easy to show that in this context, F
∗
Y and F

∗
T are heavy-tailed,

with tail indices γ ∗
Y := γY γT /(γY +γT ) and γT (see Lemma 3 in Gardes and Stupfler

(2015), as well as the Introduction of Benchaira et al. (2015)). Rewriting this equality
as γY = γ ∗

Y γT /(γT − γ ∗
Y ) motivates the following estimator of γY :

γ̂Y (kN , k′
N) := γ̂ ∗

Y (kN)γ̂T (k′
N)

γ̂T (k′
N) − γ̂ ∗

Y (kN)

with γ̂ ∗
Y (kN) := 1

kN

kN
∑

i=1

log
Y ∗

N−i+1,N

Y ∗
N−kN ,N

and γ̂T (k′
N) := 1

k′
N

k′
N
∑

i=1

log
T ∗

N−i+1,N

T ∗
N−k′

N ,N

.

Here (km) and (k′
m) are two nonrandom sequences of integers and (kN , k′

N) :=
(km, k′

m) given N = m. Gardes and Stupfler (2015) examine the asymptotic distri-
bution of this estimator, under the condition that km/k′

m → 0 or k′
m/km → 0 as

m → ∞. This technical restriction was imposed because the analysis of the depen-
dence between the two Hill estimators γ̂ ∗

Y (kN) and γ̂T (k′
N) is difficult; assuming that

either km/k′
m → 0 or k′

m/km → 0 ensures that one of the estimators converges
at a slower rate than the other, and therefore imposes its asymptotic distribution to
γ̂Y (kN , k′

N). Benchaira et al. (2015) subsequently studied the asymptotic distribution
of this estimator when km = k′

m and under a condition on the asymptotic dependence
between Y ∗ and T ∗. The main result of this section, which we state now, examines
the general case km/k′

m → c ∈ [0, ∞].

Theorem 5 Assume that Y ∗ and T ∗ respectively satisfy conditions C2(γ
∗
Y , ρ∗

Y , A∗
Y )

and C2(γT , ρ∗
T , A∗

T ). Let (km) and (k′
m) be two sequences of integers tending to

infinity such that

• max(km, k′
m)/m→0,

√
kmA∗

Y (m/km)→λ1 ∈ R and
√

k′
mA∗

T (m/k′
m)→λ2∈R;

• km/k′
m → c ∈ [0, ∞].
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Then the following hold, as n → ∞:

(i) If c = 0,

√

kN(γ̂Y (kN , k′
N) − γY )

d−→ N
(

γ 2
Y

γ 2
T

λ1

1 − ρ∗
Y

[

1 + γT

γY

]2

,
γ 4
Y

γ 2
T

[

1 + γT

γY

]2
)

.

(ii) If c = ∞,

√

k′
N(γ̂Y (kN , k′

N) − γY )
d−→ N

(

−γ 2
Y

γ 2
T

λ2

1 − ρ∗
T

,
γ 4
Y

γ 2
T

)

.

(iii) If 0 < c < ∞,
√

kN(γ̂Y (kN , k′
N) − γY )

d−→ N
(

γ 2
Y

γ 2
T

{

λ1

1 − ρ∗
Y

[

1 + γT

γY

]2

−√
c

λ2

1 − ρ∗
T

}

,
γ 4
Y

γ 2
T

{

c+
[

1+ γT

γY

]2
})

.

With convergences (i) and (ii), we essentially find back Theorem 3 in Gardes
and Stupfler (2015), which was stated under a slightly different set of second-order
extreme value conditions. The value of our result, however, mainly resides in the
general convergence result (iii), whose proof, unlike that of Theorem 2.1 in Ben-
chaira et al. (2015), does not hinge on a Gaussian construction for the weighted
tail copula process. Most importantly for practical setups, and contrary to Theorem
2.1 in Benchaira et al. (2015), Theorem 5(iii) does not rely on any assumption on
the form of asymptotic dependence between Y ∗ and T ∗. The reason for this is that
the combination of the independence assumption between Y and T with the heavy-
tailed framework is actually sufficient to ensure that Y ∗ and T ∗ are asymptotically
independent, in the sense that

lim
t→∞ t P

(

F
∗
Y (Y ∗) ≤ x1

t
, F

∗
T (T ∗) ≤ x2

t

)

= 0

for any (x1, x2) ∈ [0, ∞)2 (see the proof of Theorem 5). With this in mind, our result
offers a simplified expression of the asymptotic variance of γ̂Y (kN , k′

N), compared to
the one provided in Benchaira et al. (2015). We also point out that, taking this asymp-
totic independence result into account, the asymptotic distribution we find in the case
c = 1 essentially coincides with that of Benchaira et al. (2015), although it should be
pointed out that the bias term μ therein should read like a difference rather than a sum
(this is revealed by inspecting Equation (3.10) therein) and their variance σ 2 should
be divided by 2 (otherwise the Gaussian representation stated early in their Theorem
2.1 would contradict their asymptotic normality result). Finally, our result includes
the possibility of taking proportional sequences kN and k′

N , which is useful since
one may obtain better finite-sample performance by selecting a value k′

N different
from kN if the marginal distributions of Y ∗ and T ∗ have very different second-order
parameters ρ∗

Y and ρ∗
T (a related point about the estimation of a common tail index

based on several samples of data is made in the Introduction of Dematteo and
Clémençon (2016).
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3.3 Joint convergence of marginal conditional tail moments

Another consequence of our theoretical results can be formulated in terms of the joint
convergence of high marginal Conditional Tail Moments (CTMs). As in Section 3.1,

let (Xi )1≤i≤n, with Xi =
(

X
(1)
i , X

(2)
i , . . . , X

(d)
i

)

, be a sample of independent copies

of a random vector X = (

X(1), X(2), . . . , X(d)
)

such that each component X(j) has
a continuous distribution function Fj and satisfies condition C2(γj , ρj , Aj ). We let
also, for 1 ≤ j ≤ d, kj = kj (n) → ∞ be such that kj /n → 0. The CTM of order
aj of the variable X(j) above its high quantile Uj(n/kj ) is then

CTM(j)
aj

(Uj (n/kj )) = E([X(j)]aj | X(j) > Uj (n/kj )).

With the language of Definition 1, this quantity is exactly the expected faj
−shortfall

of X(j) above the quantile Uj(n/kj ), where faj
(x) = xaj for x > 0. Following the

ideas of Section 2, its empirical counterpart is

ĈTM
(j)

aj
(Uj (n/kj )) = 1

kj

kj
∑

i=1

[X(j)

n−i+1,n]aj .

This estimator is studied in El Methni et al. (2014) and El Methni and Stupfler (2017).
The asymptotic results therein provide information on the joint convergence of esti-
mators of several CTMs of a single variable X. Our next result below adopts the point
of view of joint convergence of these estimators across marginals.

Theorem 6 Work under the conditions of Theorem 4, with
√

kjAj (n/kj ) → λj ∈ R

replaced by the weaker assumption
√

kjAj (n/kj ) = O(1). Let also a1, a2, . . . , ad >

0 be such that 2ajγj < 1 for any j . Then

√

k1

⎛

⎝

ĈTM
(j)

aj
(Uj (n/kj ))

CTM(j)
aj

(Uj (n/kj ))
− 1

⎞

⎠

1≤j≤d

d−→ Nd (0, �(a, c))

with

�j,l(a, c) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cj

2a2j γ
2
j (1 − ajγj )

1 − 2ajγj

if j = l,

aj γj alγl(1 − ajγj )(1 − alγl)

∫ 1

0

∫ 1

0

Rj,l(clu,cj v)
u

aj γj +1
valγl+1

du dv if j < l.

A corollary of Theorem 6 is the following result on the joint convergence of several
CTM estimators

ĈTMaj
(U(n/k)) = 1

k

k
∑

i=1

X
aj

n−i+1,n
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of a single heavy-tailed random variable X. This corollary immediately follows from
the fact that the random pair (X, X) is asymptotically perfectly dependent, in the
sense that

lim
t→∞ t P

(

F(X) ≤ x1

t
, F (X) ≤ x2

t

)

= min(x1, x2)

for any (x1, x2) ∈ [0, ∞]2 \ {(∞,∞)}.

Corollary 5 Suppose that X satisfies condition C2(γ, ρ, A). Let k = k(n) → ∞ be
such that k/n → 0 and

√
kA(n/k) = O(1). Let also a1, a2, . . . , ad > 0 be such that

γ < 1/2aj for any j . Then

√
k

(

ĈTMaj
(U(n/k))

CTMaj
(U(n/k))

− 1

)

1≤j≤d

d−→ Nd (0, M(a))

with

Mj,l(a) = ajalγ
2(2 − [aj + al]γ )

1 − (aj + al)γ
.

This result complements Theorem 2 in El Methni and Stupfler (2017), for distor-
tion functions all equal to the identity function. A related result, in the presence of a
finite-dimensional covariate, is Theorem 1 in El Methni et al. (2014).

While Theorem 6 is informative regarding the structure of the dependence between
CTM estimators at high levels, its scope may however be limited from the practical
point of view, as the focus in applied setups is usually on risk measures at out-of-
sample levels. To put it differently, one would generally want to estimate a CTM of
the form

CTM(j)
aj

(Uj (1/pn)) = E([X(j)]aj | X(j) > Uj (1/pn))

where pn → 0 is such that npn = O(1), a typical choice then being pn = 1/n (see
e.g. recently Cai et al. (2015) and Gong et al. (2015)). In this context, following El
Methni et al. (2014) and ElMethni and Stupfler (2017), one may replace the estimator

ĈTM
(j)

aj
by an extrapolated Weissman-type version:

CTM
(j)

aj
(Uj (1/pn)) :=

(

kj

npn

)aj γ̂j (kj )

ĈTM
(j)

aj
(Uj (n/kj )).

Here γ̂j (kj ) is the j th marginal Hill estimator introduced in Section 3.1. A combina-
tion of Theorems 4 and 6 makes it possible to obtain the following joint asymptotic
normality result for these extrapolated estimators across marginals.

Corollary 6 Work under the conditions of Theorem 4. Let a1, a2, . . . , ad > 0 be
such that 2ajγj < 1 for any j . Assume also that ρj < 0 for any j , and that npn →
C < ∞ and

√
k1/ log(k1/[npn]) → ∞. Then

√

k1

⎛

⎝

1

aj log(kj /[npn])

⎡

⎣

CTM
(j)

aj
(Uj (1/pn))

CTM(j)
aj

(Uj (1/pn))
− 1

⎤

⎦

⎞

⎠

1≤j≤d

d−→ Nd (b(c), V(c))

with the notation of Theorem 4.
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In the case a1 = a2 = · · · = ad , such a result may then be used to test the
equality of CTMs across marginals. For instance, if d = 2 and a1 = a2 = 1, one
may test whether the two variables X(1) and X(2) have the same Expected Shortfall
at high levels. The possibility of assessing the equality of financial tail risk within
a multivariate context using such results is explored in Sections 3 and 4 in Hoga
(2018); a related result is Proposition 3 in Hoga (2018), albeit for a different type of
estimator of the Expected Shortfall, and in a time series context.

4 Conclusion and discussion

Writing empirical average f −excesses and empirical expected f −shortfalls in terms
of their pseudo-estimator counterparts with non-random threshold, as in Theorems
1 and 2, makes it possible to obtain joint convergence theorems for certain extreme
value estimators under weak assumptions, and with conceptually simple proofs.
The results of this paper, however, are limited to independent and identically dis-
tributed random variables. As Hoga (2018) argues, assessing tail homogeneity of the
marginals of a random vector is of particular interest in certain financial applica-
tions, where it is important to develop asymptotic theory for dependent but stationary
sequences. Since the cornerstone of the proofs of Theorems 1 and 2 is a weighted
Gaussian approximation of the univariate tail empirical process, it is reasonable
to expect that analogues of these two results can also be shown in this kind of
framework: for instance, Drees (2003) proves such an approximation in the case of
β−mixing sequences under certain regularity conditions and upper bounds on the
size of clusters of exceedances. This would therefore result in analogues of Theo-
rems 1 and 2 and ultimately of Theorems 4 and 6. We note though that the expression
of the asymptotic covariance matrices in such analogues of Theorems 4 and 6 would
certainly be more complicated than in the present paper, which, among others, makes
the derivation of a testing procedure of tail homogeneity a difficult task. Hoga (2018)
avoids this issue by resorting to a self-normalised test statistic in the spirit of Shao
(2010), although the limiting distribution does not have a simple expression. An inter-
esting open question is to, based on an analogue of Theorem 4 in a dependent and
stationary setting, construct an asymptotically chi-squared test statistic of tail homo-
geneity and contrast its finite-sample performance with that of the test statistic of
Hoga (2018).

It would also be potentially very fruitful to extend the present results to the regres-
sion case, in order to allow a general theoretical analysis of conditional, randomly
thresholded tail index estimators based on kernel smoothing. There has been a sig-
nificant body of work in the area of conditional extreme value analysis over the last
decade, among which we can refer to Daouia et al. (2011, 2013), Goegebeur et al.
(2014, 2015). However, the estimators introduced in the first two of these papers
only take a fixed number of order statistics into account, and the theoretical results
of the latter two only apply to a non-randomly thresholded conditional version of the
Hill estimator. By contrast, the estimators of Stupfler (2013) and Gardes and Stupfler
(2014) are built on non-random thresholds and their asymptotic normality is stud-
ied, but they do not include the possibility of kernel smoothing. The explanation for
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this is that kernel smoothing adds dependent and non-stationary weightings to the
log-spacings appearing in the randomly thresholded estimator, making its theoretical
analysis a very difficult mathematical task. Developing an extension of the present
theoretical results to the regression case would allow to bridge the gap between the
aforementioned studies, and thus provide stronger theoretical ground for conditional
extreme value analysis based on kernel smoothing.

Supplementary Material A Supplementary Material document contains all necessary proofs of the
results of this paper.
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