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Abstract

The potential effects of climate change on the environment and society are many. 

In order to effectively quantify the uncertainty associated with these effects, 

highly complex simulation models are run with detailed representations of ecosys­

tem processes. These models are computationally expensive and can involve com­

puter runs of several days for their outputs. Computationally cheaper models can 

be obtained from large ensembles of simulations using a statistical emulation.

The purpose of this thesis is to construct cheaper computational models (emu­

lators) from simulation outputs of Lund-Potsdam-Jena-managed Land (LPJmL) 

which is a dynamic global vegetation and crop model. This research work is part 

of a project called ERMITAGE. The project links together several key component 

models into a common framework to better understand how the management and 

interaction of land, water and the earth’s climate system could be improved.

The thesis focuses specifically on emulation of major outputs from the LPJmL 

model; carbon fluxes (NPP, carbon loss due to heterotrophic respiration and fire 

carbon) and potential crop yields (cereal, rice, maize and oil crops). Future 

decadal changes in carbon fluxes and crop yields are modelled as linear functions 

of climate change and other relevant variables. The emulators are constructed 

using a combination of statistical techniques of stepwise least squares regression, 

principal component analysis, weighted least squares regression, censored regres­

sion and Gaussian process regression.

Further modelling involves sensitivity analyses to identify the relative contri­

bution of each input variable to the total output variance. This used the Sobol 

global sensitivity method. The data cover the period 2001-2100 and comprise cli­

mate scenarios of several GCMs and RCPs. Under cross validation the percentage 

of variance explained ranges from 52-96% for carbon fluxes, 60-88% for the rainfed 

crops and 62-93% for the irrigated crops, averaged over climate scenarios.
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Chapter 1

Introduction

The global climate is changing and this has a great negative impact on ecosystems. 

It adversely affects the environment, life quality, the economy, agriculture. Any 

change in the climate system over time, whether due to natural variability or 

human activity, is referred to as climate change (IPCC, 2007). Of a particular 

priority in this thesis is the assessment of the impacts of future climate change 

on terrestrial ecosystems. Assessment of climatic impacts on global vegetation 

is attracting increasing attention among modellers, since modelling provides a 

thorough way of quantifying the biospheric response under climate uncertainty. 

Adequate knowledge of the impacts of climate change on crop yield is required 

to fully understand global food security.

Future increases in the demand for food and reduced availability of land for 

growing pose major challenges for human society as a result of rising projections 

for world population over the next century. Growth in demand for food will 

also put pressure on water resources. Rising temperature, CO2 emissions and 

associated climate change will affect global food and water supplies. Potential 

climatic impacts on vulnerable populations through lack of adequate food and 

regular water supply have been identified as serious threats.

Modelling tools for studying the interaction between climate change and its 

effects are relatively under-developed. In spite of tremendous progress in the 

statistical analysis of climate change studies, quantifying the climatic impact
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on vegetation, agriculture and water resources still suffer problems. Moreover, 

adequate knowledge of climatic impacts on terrestrial ecosystems is important. 

For instance, comprehensive and detailed understanding of the impact of climate 

change on crop yields is required in order to maintain good management prac­

tices for sustainable agriculture. However, this assessment is challenging and 

computationally intensive models have to be run.

Empirical quantification of the reduction of climate change impacts in different 

sectors by moving from a no mitigation approach to several mitigation scenarios 

was the major focus of Warren et al. (2013) and Arnell et al. (2013). Based on the 

quantitative evidence from their studies, they opined that urgent global measures 

can prevent the larger impacts of climate change that are projected to occur by 

mid-century.

Several modelling approaches have been used for the global assessment of 

climatic impacts on vegetation, and in particular relating agricultural crops to 

weather. Some authors used popular ecosystems process-based models eg Bon- 

deau et al. (2007); Fader et al. (2010) to simulate detailed physical and biological 

processes. Specifically, Leemans & Solomon (1993) implemented a water balance 

model within a GIS that integrates databases, while Fischer et al. (2001) extended 

the approach with the Global Agro-Ecological Zones (GAEZ) model.

Similarly, Rosenzweig et al. (2014, 1994); Parry et al. (2005, 1999) and Iglesias 

et al. (2000) evaluated global consequences of various climate change scenarios on 

crop productivity with a process-based approach. Recently, Muller & Robertson 

(2014) compared the performance of two global crop models, LPJmL of Bondeau 

et al. (2007) and Decision Support System for Agrotechnology Transfer (DSSAT) 

of Jones et al. (2003) for projecting future crop productivity and its integration 

for economic assessment (Nelson et al., 2014).

In contrast to the process-based methods, other authors have relied solely on 

empirical or statistical methods which utilize correlative relationships between 

variables without a detailed description of physical behaviours. Simulated and

2
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historical data have been explored to assess the global climatic impact on crop 

yields in Lobell & Field (2007); Sacks et al. (2010); Schlenker & Roberts (2009); 

Lobell Sz Burke (2010). Empirical models are often linked to process-based mod­

els, while process-based models also incorporate some empirical information. 

Most global climate impact assessments have combined these two approaches. 

Another major concern is the issue of projected uncertainty. There are many 

sources of uncertainty in projected climate changes, for instance, deficiencies in 

modelling key processes that regulate the important biophysical effects like wa­

ter and carbon cycles. Boundary conditions for different global climate models 

and regional climate variability can introduce uncertainty in impact assessment 

(Christensen et al., 2007). Nevertheless, generating ensembles of simulations has 

provided useful means of quantifying the uncertainty in projections of regional 

climate changes (Graham et al., 2007; Beniston et al., 2007).

Uncertainty associated with a complex computer model is often quantified 

by running a computer model (simulator) as many times as possible. However, 

because computer models require large amounts of computer time to run, this 

is not always possible; see Sacks et al. (1989) for a comprehensive discussion 

of computer experiments. In order to overcome this difficulty, a reliable and 

efficient technique has to be developed based on a statistical representation of 

the simulator. One solution to this problem is to construct an emulator from 

limited simulator runs, which will help in lowering the computational burden. 

Emulation has been applied in various areas of climate science (Warren et al., 

2008; Holden et al., 2010a,b; Arnell et al., 2013; Gosling et al., 2007; Heyder et 

al., 2011; Lobell & Burke, 2008).

The goal of this thesis is to assess the global impact of climate change on nat­

ural vegetation and agricultural crops. The Lund-Potsdam-Jena-managed Land 

(LPJmL) model is a process-based dynamic global vegetation and crop model. 

The global responses of carbon and vegetation patterns under climate change for 

both natural and agricultural ecosystems can be simulated by LPJmL. LPJmL is
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also capable of simulating water runoff because of the close connection between 

global carbon and the water cycle. The model is used in this study to simulate 

the response of terrestrial ecosystems to climate change. In other words, it pre­

dicts the behaviours of complex dynamics associated with interactions between 

vegetation, climate and landuse. The run times for LPJmL are high and this 

often makes the full assessment of the impact of climate change on the ecosys­

tems impossible. In addition, uncertainty and sensitivity analyses are difficult to 

perform and can be impractical because of the number of runs that are required 

(further details of LPJmL and its simulations is described in section 4.3).

Statistical emulation can help to overcome this problem. Emulation integrates 

both the process-based model and statistical techniques. Besides, emulators offer 

rapid and relatively quick alternatives for projection of climate change impacts 

on agricultural productivity for diverse climate scenarios. For instance, Warren 

et al. (2013); Arnell et al. (2013) considered both economic and physically based 

modelling approaches to project global and regional impact of climate change, 

but due to computing constraints only a limited set of scenarios were investi­

gated. Another benefit of emulation is the provision of a measure of uncertainties 

associated with the projections.

This thesis describes the development of novel statistical modelling techniques 

for the emulation of major output responses from the computationally expensive 

simulator LPJmL. Our emulation approach is relatively straightforward and easy 

to apply. We demonstrate the techniques in the emulation of carbon fluxes (net 

primary productivity, fire carbon, carbon loss due to heterotrophic respiration). 

We then emulate potential crop yields (cereal, rice, maize and oil crops). We also 

perform sensitivity analysis of these emulation results.

We used the following statistical techniques; ordinary least squares (OLS) 

regression, weighted least squares (WLS), censored regression (CR), and prin­

cipal component analysis (PCA) and Bayesian regressions. Some methods, for 

instance, Bayesian regressions, are not directly applied to the original data from
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LPJmL, but instead they are applied to the residual outcome from OLS results. 

In particular, Gaussian Process (GP) emulation is limited by the ensemble size 

because of the inversion of the covariance matrix (Biegler et al., 2011).

In this thesis, we have considered both one-stage and two-stage strategies. In 

stage 1, we applied both OLS and censored regression to the multi-dimensional 

data. In stage 2, emulator residual analyses are performed where we explore 

spatial interpolation of the unexplained residuals from stage 1. The two-stage 

approach provides substantial efficiency gains and improves the predictive capa­

bility of the emulator over the standard methods.

E m ulation  approaches

In this thesis, the following four methods for emulating the LPJmL outputs will 

be explored

1 A one-stage method using only least squares regression (OLS).

2 A one-stage method using only censored regression (CR).

3 A two-stage method using combinations of OLS, PCA and WLS. Here, OLS

is used for the analysis in the first stage while WLS and PCA are used in

the second stage.

4 A two-stage method using a combination of OLS, PCA and GP regression. 

OLS is again applied to the first stage modelling while GP regression im­

plements the second stage. PCA was used to reduce the dimensionality of 

the residuals from the first stage and the resulting components (PC scores) 

are the inputs for the second stage.

E rm itage project

The work reported in this thesis is part of the project ERMITAGE (Enhancing 

Robustness and Model Integration for The Assessment of Global Environmental
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Change). An aim of the ERMITAGE project was to produce methods of cou­

pling models of the natural and socio-economic systems. Linking key component 

models through a common framework enables a better understanding of how the 

management and interaction of land, water and the Earth’s climate system could 

be improved.

One of the objectives of the project is to couple the climate and impact mod­

els together by feeding in outputs from a climate system model (MAGICC6) to 

a global dynamic vegetation and crop model (LPJmL). However, computational 

speed is highly problematic for coupling complex models together. The good news 

is that with a statistical emulation the computational limitation can be signifi­

cantly reduced. Emulation would also facilitate other calculations (eg sensitivity 

analysis) that would not be practical using the LPJmL model directly. Here, we 

are interested in investigating the interaction between climate, natural systems 

(terrestrial biosphere impact) and agricultural land-use. The work reported in 

this thesis is an important part of the project. The main objective of the work in 

this thesis is to model the global terrestrial biospheric response to climate change 

and anthropogenic emission by constructing statistical emulators.

T hesis ou tline

The structure of this thesis is as follows. Chapter 2 presents background on the 

ERMITAGE project and its objectives. It describes the concept of emulation. It 

provides a brief discussion of the natural carbon fluxes and notable agricultural 

crops selected for emulation in this thesis. Chapter 3 gives comprehensive reviews 

of the relevant literature on climate change and terrestrial biosphere, carbon fluxes 

and crop yields. It also discusses common emulation techniques before focusing 

on censored and Bayesian regression including multivariate GP.

Chapter 4 gives a basic description of the impact models and simulation 

data used for the analyses in this thesis. The models described are MAGICC6, 

ClimGen and LPJmL. Chapter 5 focuses on the methodology and, in particu­
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lar, the statistical methods of OLS, WLS, PCA, GP and CR are fully described. 

Chapter 5 also discusses variable selection criteria for stepwise regression, mea­

surement of model performance and sensitivity analysis.

Chapters 6, 7 and 8 present the detailed procedures for emulating carbon 

fluxes and crop yields with their respective results. Chapter 9 contains discussion, 

concluding remarks and suggestions for future work.
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Chapter 2

General background

This chapter gives some general background needed for this thesis. The pur­

pose of emulation is outlined in section 2.1 and section 2.2 describes the general 

background of the climate system, climate change and its effects on terrestrial 

ecosystems. Quantities related to carbon fluxes are defined. Section 2.3 covers 

the crops whose yields are modelled in this thesis and outlines their importance. 

Section 2.4 outlines the future climate scenarios that are considered in this thesis.

2.1 Statistical em ulation

An emulator or a metamodel is a statistical representation of a complex function 

that is able to stand in for a model in applications where the model or where run­

ning many instances of the model would be too expensive to evaluate. Emulation 

is a tool for simplification of models that leads to reduced-form representations of 

complex models that is computationally much faster, potentially smoother func­

tionally, and hence easier to couple to other models. It is a statistical framework 

for predicting the output from a complex deterministic function, such as a com­

puter model (O’Hagan, 2006). Emulators can be used for prediction, uncertainty 

and sensitivity analyses as well as parameter calibration.

Generally, an emulated function /  of inputs u can be related to a regression
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analysis, where

/(« ) =  E  P jhi(u) +  Z(“ ) (2-1)
3

and /3j comprises uncertain coefficients, hj is specified regressor functions, and 

Z(u) is a residual process.

Computer models (simulators) are used as approximations for complex phys­

ical experiments. Simulation runs are often expensive, and in some instances 

can take days or weeks. The simulator is not a complete representation of re­

ality because of the presence of model discrepancy. A simulator takes inputs 

U =  u i , . . . , u n and produces outputs y =  / ( U). The discrepancy between the 

output y and true real world value, z, gives rise to an error and it could be from 

either the input variables or model structure (structural error).

Uncertainty analysis involves the identification of the important uncertainty in 

model structures or parameters and quantitative estimation of their uncertainty 

or variability in model components. Uncertainty in a computer model comes 

in various forms: parameter uncertainty, model inadequacy, residual variabil­

ity, parametric variability and measurements error. For instance, lack of perfect 

representation of key processes involved in a model may result in a structural de­

ficiency, eg error inherent in the Earth system model processes, while imperfect 

information on the true parameter values in a model could give rise to parametric 

error. For instance, parameter values can be obtained from the existing litera­

ture and expert opinions or estimated from models which could be subjected to 

imprecision as a result of varying from one context to another.

Uncertainty can also be categorized as intrinsic and epistemic uncertainties. 

Intrinsic uncertainties are common in those phenomena that are subjected to vari­

ability or randomness in nature (eg climate variability). It is often difficult to re­

duce this type of uncertainty. Epistemic uncertainty, on the other hand, occurs as 

a result of insufficient knowledge of the system being studied or through scarcity 

of data. Epistemic uncertainty arises through the lack of a full understanding 

of the causes and effects of system processes. This type of uncertainty can be
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reduced by gathering more data and increasing the knowledge base (Kennedy et 

al., 2001; Monod et al., 2006).

The Bayesian technique (details in Chapter 5) incorporates uncertainty mod­

elling in its parameter estimations. Posterior mean estimates are produced by the 

simulator for any unsampled observations (predictions), together with posterior 

variances that measure error (uncertainty) in the predictions. More details of 

emulation as a surrogate for complex computer models can be found in Sacks et 

al. (1989) and O’Hagan (2006).

2.2 Carbon fluxes

The carbon cycle distributes carbon between the land, ocean and atmosphere. 

Atmospheric CO2 concentration was stable at 260-280 ppm before 1750 (prein­

dustrial). After that period, the CO2 level rose significantly to around 380 ppm  

in 2005. This increase in CO2 concentration is attributed to human activities like 

the burning of fossil fuels and deforestation.

Anthropogenic CO2 emissions are a major factor causing climate change. CO2 

emission plays significant roles in the natural carbon cycle through continuous 

flows of large amounts of carbon among the ocean, the terrestrial biosphere and 

the atmosphere. The process of photosynthesis allows atmospheric carbon to be 

converted to plant biomass. Terrestrial plants absorb CO2 from the atmosphere; 

plant, soil and animal respiration release carbon back to the atmosphere in the 

form of CO2 . Vegetation fire is another significant source of CO2 emission to the 

atmosphere (IPCC, 2007; Cockell et al., 2007; Ciais et al., 2013; Le Quere et al., 

2013).

Adequate knowledge of the global carbon cycle is important in understand­

ing feedbacks between the biosphere and atmosphere and is thus essential in the 

analysis of global climate change. Quantifying uncertainty associated with carbon 

fluxes is needed to guide policy and management decisions. Besides, the global 

carbon cycle and its interaction is a dynamic and complex phenomenon. Under­
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standing it will help us predict how atmospheric climate will change in the future. 

Major carbon fluxes result from net primary productivity, heterotrophic respira­

tion and carbon loss due to fire activity. These three fluxes drive the terrestrial 

carbon cycle, so if we want to really understand and make reliable projections of 

atmospheric CO2 concentrations, we need to understand and quantify fluxes into 

and out of our natural vegetation including crops, forests and pasture.

The Figure 2.1 below is a representation of the carbon cycle showing different 

biogeochemical processes by which carbon is exchanged among the biosphere and 

atmosphere of the Earth.

2.2.1 D efin ition  o f N et P rim ary P ro d u ctiv ity  (N P P )

Net Ecosystems Production (NEP) is the difference between the rate of produc­

tion of living organic matter (NPP) and the decomposition rate of dead organic 

matter, so it is the net accumulation of carbon by ecosystems (Watson et al.,

2000). NPP is the rate at which vegetation in an ecosystem fixes carbon from 

the atmosphere minus the rate at which it is returned by the plants themselves 

(McGuire et al., 1993). NPP is a major component of NEP. NPP is the net car­

bon gain by vegetation through photosynthesis and plant respiration (for main­

tenance and growth), and it represents the primary source of food for Earth’s 

heterotrophic organisms. NPP is the dominant process in the biospheric carbon 

budget (Box, 1988). There is a considerable change in pattern and trend of NPP 

in response to climate change and anthropogenic CO2 emission (McGuire et al., 

1993; Melilo et al., 1993; Peng et al., 1995). NPP causes seasonal variations in 

atmospheric CO2 (Keeling et al., 1996) and is a measure of plant productivity 

and crop yield (Milner et al., 1996). Net Biome Production (NBP) is the change 

in carbon stocks after carbon losses due to natural or anthropogenic disturbances 

like fire are accounted for.

The NPP, NEP and NBP are useful tools for quantifying the impact of land 

transformation in global change research and represent the initial input of carbon
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Global Carbon Cycle
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Figure 2.1: Global carbon cycle. Source from www.wrsc.org/attach-image/global- 
carbon-cycle

to the biosphere (Imhoff et al., 2004). NPP, NEP and NBP are dominant pro­

cesses in the biospheric carbon budget (Box, 1988). The equations below relate 

the three carbon concepts together.

N P P  =  GPP  -  R a

N E P  = N P P  -  H R  

12
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N B P  = N E P  -  PC  (2.4)

where R a is the autotrophic respiration (plant respiration), while Gross Primary 

Production (GPP)  is the total amount of carbon fixed by plants during pho­

tosynthesis and HR is the heterotrophic respiration and F C  is the fire carbon 

(Kirschbaum et al., 2001).

2.2 .2  D efin ition  o f H eterotrophic R esp iration  (H R )

HR is the microbial decomposition of organic carbon, so it is the carbon lost by 

organisms in ecosystems other than through plants. It constitutes the respiration 

by animals that live above ground and by all organisms that live in the soil and 

litter layer, including fungi and other decomposer organisms. Heteroptrophic 

respiration also includes the carbon released in the decomposition of standing 

dead trees and coarse woody debris. It can also be defined as the release of CO2 

during the process of decomposition of organic matter in the soil by soil animals 

and other decomposer organisms (Kirschbaum et al., 2001; Raich & Schlesinger, 

1992).

2.2 .3  D efin ition  o f F ire C arbon (FC)

Disturbance from fire triggers ecosystems change and is one of the significant 

factors for composition, structure and dynamics of vegetation. Disturbance is 

the non-uniform and irregular occurrence of destruction of vegetation structure 

either by anthropogenic or natural means. It is a sudden change in environmental 

conditions that causes a pronounced change in an ecosystem with great conse­

quence. It plays an integral part in shaping the global vegetation (Thonicke et 

al., 2001; Whitlock et al., 2003).

Fire tends to perform a similar role to heterotrophic respiration in the global 

carbon cycle. It reverses the photosynthesis process by transforming and de­

composing carbohydrates back to carbon emissions, water, and energy, with the

13
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amount of biomass consumption and carbon release depending on the degree of 

severity. Fire significantly affects the biogeochemical and carbon cycles. About 

3.9 Giga tonne (Gt) of carbon are released annually into the atmosphere through 

biomass burning (Andreae, 1991; Goward et al., 2008). Thonicke (2005) exam­

ined changes in vegetation productivity, global fire regimes and related trace gas 

emissions. Wildland fires have influenced the global carbon cycle and its complex 

interaction with climate determining vegetation distribution. Changes in global 

climate have the potential to increase the incidence and severity of fire (Sommers 

et al., 2014; Bowman et al., 2009; Dillon et al., 2011).

Fire is a major agent in global vegetation disturbance regimes and the ecolog­

ical processes that determine the distribution of biomes (Kelley et al., 2014; Yue 

et al., 2014). Furthermore, it can change landscapes from carbon sinks to carbon 

sources (Loehman et al., 2013) while interaction between fire and climate could 

cause a reduction in ecosystems diversity (Mitchell et al., 2014). It is important 

to study the influence of fire on the dynamic equilibrium and potential changes in 

vegetation at the global scale. Sound knowledge of the relationships, interactions 

and feedback effects between climate and fire regimes is required to account for 

the importance of fire in the carbon cycle under climate change.

2.3 Crop yields

The following agricultural crops: temperate cereal, rice, maize and oil which is a 

combination of soybeans, rapeseed, sunflower and groundnut from LPJmL model 

are emulated in this study. There will be a slight change in definition of oil 

crop under section (7.2) of Chapter 7. We believe it might not be appropriate 

to group both rapeseed and groundnut together because functionally rapeseed 

is quite different from groundnut and therefore might respond quite differently 

to climate change. For instance, rapeseed requires vernalization (period of cold 

winter temperature) for its flowering. They are also grown under quite different 

baseline climate conditions. Therefore, we shall model groundnut as a separate
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crop under section (7.2) of Chapter 7.

2.3.1 T em perate cereal

Temperate cereal is a monocotyledon grass cultivated for the edible components of 

its grain. Temperate cereal grains are a globally significant staple food. They have 

high nutritive value and are a rich source of vitamins, minerals and carbohydrate. 

Major examples are wheat, rye, oats and barley.

W h eat

Wheat is a cool season crop widely spread around the world. It is grown in 

arctic, humid regions and in some tropical highlands. Major world producers of 

wheat crops are China, India, Russia, the USA (Steduto et al., 2012). Wheat 

plants are characterized by diverse growing conditions because of the variability 

of soil types and crop management. For instance, winter wheat requires a cold 

period (vernalization) during early growth and it is photoperiod sensitive (plant 

response to the length of light and dark periods)

Vernalization is the ability of plants to flower as a result of exposure to a pro­

longed period of low temperature. It is an environmental stimulus that ensures 

that flowering occurs in the appropriate season of the year Dennis & Peacock 

(2009); Kim et al. (2009). Vernalization accelerates the progression from the 

vegetative phase (period between germination and flowering) to the reproductive 

stage where the reproductive organs are developed in many plants. Many plants 

grown in temperate climates require vernalization and must experience a period 

of low winter temperature to start the flowering process. Besides winter wheat, 

winter barley and rapeseed are other plants with vernalization requirements be­

fore flowering (Oliver et al., 2009; Ream et al., 2014).

Temperature is one of the factors determining growth and development of 

wheat plants (Porter & Gawith, 1999). The minimum mean daily temperature 

required for the growth is about 5°C while the mean daily temperature for opti-
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mum growth varies between 15 — 23°C. Recent studies from Chen et al. (2014) 

observed that an increase in mean night-time temperature by 1 .1 ° C  will enhance 

wheat development. Similarly, Benlloch-Gonzalez et al. (2014) demonstrated the 

reduction of the positive effect of elevated CO2 on wheat root growth as a result of 

rising temperature. Higher temperatures can also catalyse senescence that could 

cause a significant reduction in yield.

Wheat can encounter moisture stress, the severity of which reduces with the 

developmental stage. On the other hand, excess water can also cause damage to 

the plants, for instance, being waterlogged during vegetative growth can reduce 

the wheat yield substantially. Wheat plants are also irrigated in some areas, 

especially in arid, semi-arid and Mediterranean regions. Irrigation is necessary 

to prevent water stress in these regions. Continuous supplies of water to wheat 

plants during the flowering stage is essential to maintain quality yield with high 

protein content (Passioura & Angus, 2010). Wheat is an important cereal crop, 

being the third largest crop grown in the world. Other cereal crops are discussed 

briefly below.

Barley is another cereal crop. It is adapted to a wide range of environmental 

conditions and it is commonly planted in temperate regions as a summer crop 

and in tropical regions as a winter crop. Barley is closely related to wheat except 

that it can withstand stressful condition much better than wheat. Barley is used 

mainly in beverage production and as animal feeds. Major world producers of 

barley are the Russian Federation, Ukraine, France, Germany, Spain and Aus­

tralia. Rye is another cereal crop similar to barley and wheat. Rye is cultivated 

across Eastern, Central and Northern Europe, as well as USA and Canada. Oats 

are planted in temperate regions and are used as oatmeal and livestock feeds.

2.3.2 R ice

Rice is an important staple food worldwide. It is the main source of energy for 

more than half of the world’s human population (Lampe, 1995). It provides about
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20% of the calorie consumption of the world. It is planted all over the world but is 

more predominant in Asian countries with production capacity of about 523MT 

(Dubey, 2001). It is cultivated mainly between latitudes 50°N and 35° S. Water 

availability determines the distribution and cultivation of rice to some extent. 

Rice is extremely sensitive to water shortage. Different varieties of rice exist with 

varying degrees of water requirements. There are irrigated and rainfed cultivated 

rice crops.

The amount of cultivated cropland area for rice increases yearly. Rice is 

planted throughout the year and anaerobic decomposition of organic material in 

flooded rice fields generates CH4 emission. Matthews et al. (1991) described the 

geographical and seasonal distribution of cultivated areas and emissions of rice. 

Rice responds positively to an increase in CO2 concentration because it is a C3 

plant with an enhanced photosynthetic rate. C3 plants use rubisco, an enzyme 

that can fix CO2 to make a three-carbon compound, as the first stable product 

of carbon fixation. Over 95% of earth’s plant species are C3 plants, including 

temperate cereals. Rice is affected by temperature and temperatures above and 

below its optimal level tend to reduce the growth rate (Narciso & Hossain, 2002).

Demand for rice is predicted to increase because of the projected increase in 

population. At the same time, the cropland area for rice cultivation is predicted 

to reduce as water availability is expected to reduce. Therefore, it is important 

to increase the yield and productivity of rice cultivation in order to adequately 

feed the increasing global population (Gopalakrishnan et al., 2014). Shrestha et 

al. (2014) examined the responses of winter and summer rice yield under future 

climate change and investigated various climatic conditions that would negatively 

affect the rice cultivation, and some adaptation measures to overcome these prob­

lems were highlighted. Major rice producing countries are China, India, Indone­

sia, Bangladesh, Vietnam, Myanmar, Thailand and the Philippines.
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2.3.3 M aize

Maize is the most widely planted cereal after wheat and rice. It was first cultivated 

in Central America but it is now grown throughout the tropics, especially in areas 

with adequate rainfall. There are many varieties of maize crop. Maize has many 

uses such as livestock feed, food, and in industrial biofuels. It is a common staple 

food in many tropical countries. It is cultivated on a wide diversity of soil, climate 

and provides about 36% of the global grain production. Maize is a C4 plant 

and has high water-use efficiency. C4 plants, unlike C3, have biochemical and 

anatomical CO2 concentration mechanisms that increase the intercellular CO2 

level at the site of fixation. As a result, they have a great reduction in carbon 

losses due to photorespiration which is a process that begins when rubisco fixes 

molecular oxygen, as opposed to carbon dioxide, which ultimately leads to the 

evolution of CO2 from plants. C4 plants are very common in tropical regions.

Other examples of C4 plants are sugarcane, sorghum and millets.

2.3 .4  Oil crop

The main oil crops are soybean, rapeseed, groundnut and sunflower. Soybean 

has the largest oil cropland area globally and it is an important source of protein 

(Krantgartner et al., 2011). Sunflower is used as livestock forage and as a domestic 

cooking ingredient. The top producers of sunflower are the EU, Argentina, Russia 

and Ukraine. Heat is a major factor determining the growth rate of sunflower 

plants.

2.4 R epresentative C oncentration Pathw ays (R C Ps)

The RCPs (shown in Figure 2 .2 ) are a set of four current and future concen­

tration pathways for greenhouse gas developed for climate modelling as a basis 

for long-term and near-term modelling experiments. They are provided as in­

put for modelling climate and as a basis for the assessment of possible climate
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Figure 2.2: RCP scenarios: Note ”eq” denotes equivalent

impacts and mitigation options. They are the four scenarios that are consid­

ered in this thesis. They describe alternative possible future emission scenarios 

and are designed to standardize climate model simulations for inter-comparison. 

They replaced earlier scenario-based projections of atmospheric composition, eg 

the Special Report on Emissions Scenarios (SRES) with details in Nakicenovic & 

Swart (2000). The RCPs can also be extended to 2300 called Extended Concen­

tration Pathways (ECPs) (van Vuuren et ah, 2011; Meinshausen, 2011a).

The pathways are characterised by either long-term stabilisation within the 

period 2100 — 2150 (RCPs 4.5 and 6.0), progressively increasing forcing up to 

2100 (RCP 8.5), or decreasing forcing by 2100 and beyond (RCP2.6, also named 

RCP-3PD). The four RCPs scenarios cover a mitigation pathway in which ra­

diative forcing is reduced to 2.6 W m 2 (RCP 2.6) by 2100, a business as usual 

pathway in which radiative forcing increases to 8.5 W m 2 for RCP 8.5 by 2100, 

and two stabilization pathways in which, by 2100, forcing levels out at 4.5 W m 2 

for RCP 4.5 and 6.0 W m 2 for RCP 6.0 respectively. The 5th Assessment Report
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(AR5) of the IPCC reports, RCP 2.6, engenders a world with global mean surface 

temperature stabilized at 1 °C by the 2050s. Similarly, RCP 8.5 would lead to a 

global mean warming exceeding 1  A°C and up to 4.8°C by the 2080s (Moss et al., 

2010; van Vuuren et al., 2011; Stocker, 2013).
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Chapter 3

Literature review

This chapter reviews the literature on methods of modelling climate, the bio­

sphere and crop yields, before reviewing relevant emulation methods. Works on 

climate change and terrestrial biosphere are reviewed in Section 3.1. Section 3.2 

is focused on carbon fluxes while 3.3 focuses on crop yields before discussing vari­

ous emulation strategies in Sections 3.4 and 3.5, 3.6. Both censored and Bayesian 

regressions are included in that discussion.

3.1 C lim ate change and biosphere

Numerous studies have investigated climate change and its adverse effects on 

terrestrial ecosystems (Heyder et al., 2011; King et al., 1997; Bergengren et al., 

2011). Climate change causes an increase in atmospheric and ocean temperatures, 

a rise in sea level, an increase in the length of growing seasons and changes in ice- 

free periods and precipitation patterns. The adverse effects also include changes 

in the frequency and severity of extreme events, like severe storms and floods, 

which could affect the whole ecosystem.

Anthropogenic emissions of CO2 and other greenhouse gases have been at­

tributed as major external forcing on climate change. CO2 absorbs long wave­

length radiation, causing a rise in surface temperature i.e global warming (Kirschbaum, 

2000; Cao et al., 2009; Shakun et al., 2 0 1 2 ). A doubling of atmospheric CO2 is
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expected to increase the global temperature by (1 .5-4.5) °C (Stocker, 2013).

The climate system plays a vital role in determining natural ecosystems. An 

ecosystem involves interactions between organisms and their environment. It is 

an interdependent system of plants, animals, and micro-organisms that interact 

with one another and the environment. Ecosystems are linked through food, 

water and energy transfer (Chapin et al., 2002; Kennedy et al., 2001). Elevated 

CO2 causes increases in the photosynthesis rate of C3 plants (Bazzaz, 1990). Most 

studies indicate an increase in photosynthesis rate as a result of elevated CO2 . 

In plants, the CO2 effect is more pronounced when there is adequate water and 

nutrient availability. Some studies have also shown that a reduction in stomatal 

conductance will cause a decline in transpiration rate as a consequence of elevated 

CO2 concentration, thereby leading to an increase in carbon productivity and 

biomass accumulation (Bazzaz, 1990, 1984; Brown et al., 1986).

Some recent studies have found that climate change has impacts on the nu­

tritional quality and safety of food and that cereal crops planted under elevated 

CO2 show a decrease in protein and micronutrients (Vermeulen, 2014). For the 

major crops (wheat, rice, and maize) in tropical and temperate regions, climate 

change without adaptation is projected to negatively impact production for local 

temperature increases of 2 ° C or more above late-2 0 ^-century levels, although 

individual locations may benefit (medium confidence) (Stocker, 2013).

On a different note, some authors have implemented a process-based technique 

for global assessment. In particular, Melilo et al. (1993) estimated the NPP 

patterns across the world using current climate and CO2 concentration through 

a process-based terrestrial ecosystem model (TEM). TEM is a simulation model 

that can evaluate the amount of carbon, nitrogen and some important fluxes 

using information on climate, soil, vegetation as an input to the model. They 

observed an increase of 16.3% in global NPP if CO2 were to double with no climate 

change. However, with climate change and no change in CO2 concentration, there 

was little impact on the global NPP. Finally, they concluded that more than 50%
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of the global annual NPP is found in the tropical climate.

Closely related is the work of Berthelot et al. (2 0 0 2 ), which also investigated 

the responsiveness of the terrestrial biosphere to changes in climate using the 

Institut Pierre Simon Laplace (IPSL) coupled GCM model with a global carbon 

cycle, which is forced by CO2 emissions. They first described the terrestrial bio­

sphere and carbon-climate simulation models. They observed a positive climate 

feedback on CO2 as a consequence of a much higher negative climate impact on 

the land carbon uptake in the tropics than the positive impact observed in the 

sub-tropics and higher latitudes. A similar effect was observed by (Dufresne et 

al., 2002). Moorcroft (2006) studied two different factors of below-ground accli­

mation and compositional change and the degree to which they can change the 

temperature and moisture dependencies of decomposition rate. This could conse­

quently affect the expected terrestrial ecosystem feedback to the atmosphere. He 

also suggested a more reliable way of predicting terrestrial biosphere responses 

by connecting terrestrial biospheric models with several empirical ecosystem mea­

surements.

Bergengren et al. (2011) developed two new ecosensitivity metrics to examine 

the responsiveness of the plant community changes for the next 30 years. The 

work used an equilibrium vegetation ecology model (EVE) which applies ecolog­

ical principles to establish a relationship between monthly mean climate and an 

equilibrium prediction of vegetation structure. Ten different climate simulations 

from the IPCC Fourth assessment report were used in the analysis. The findings 

indicated that plants are vulnerable to catastrophic damage as a result of climate 

change.

3.2 Carbon fluxes

This section focuses on work directly related to the study of NPP, FC and HR.
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3.2.1 N P P  and clim ate change

Process-based model simulations of terrestrial ecosystem models provide a useful 

tool for studying ecosystem processes, especially at multiple spatial and tempo­

ral scales, so as to investigate carbon fluxes (eg NPP) in response to climatic 

change (Tian et al., 1998, 2010). Empirical modelling that uses correlation be­

tween ecosystem and climate variables offers a means of projecting the climatic 

impact on ecosystems, but the use of process-based modelling to assess the global 

impact can complement the empirical approach (Melilo et al., 1993; Potter, 1993; 

McGuire et al., 2001). Some notable process based simulation studies are de­

scribed in detail below.

Cao et al. (1998) considered a Carbon Exchange between Vegetation, Soil and 

the Atmosphere (CEVSA) model. This is a process-based model that predicts 

the NPP, soil organic carbon and net ecosystem production under current and fu­

ture climate scenarios. The process-based model combined the processes entailed 

in the terrestrial carbon exchange between vegetation, soil and the atmosphere

through photosynthesis and respiration. CEVSA integrates the biophysical, vege- 
/

tation and biogeo chemical models, as do other process-based models in the works 

of Melilo et al. (1993); Berthelot et al. (2002); Moorcroft (2006) and Bergengren 

et al. (2011). In addition, assessment of the correlation between NPP and climate 

variables was performed.

The study of Cao et al. (1998) indicated that precipitation is the most impor­

tant factor determining the spatial distribution of NPP globally, having a corre­

lation p of 0.58 between NPP and precipitation, and a low correlation p = 0.20 

between NPP and temperature. They also observed a very low correlation be­

tween NPP and each of net radiation and relative humidity (Cao et al., 1998). 

Lastly, the CEVSA model projected a global NPP increase of 14.5 GtCy~l for a 

doubling of atmospheric CO2 without corresponding change in climate, while a 

reduction of 2.2 GtCy - 1  of global NPP as a result of climate change with CO2 con­

centration held constant. Interactions between elevated CO2 and climate change
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produced an increase in predicted global NPP of 12.6 GtCy~l .

Churkina et al. (1999) considered the relative importance of water availability 

as a major limiting factor of NPP. They investigated different methods that have 

been used by various authors to introduce water budget limitation on NPP. In 

addition, they also estimated the correlation between NPP and water balance. 

Closely related to the work of Prince (1991), Schloss et al. (1999) compared the 

performance of 15 different terrestrial ecosystem models for simulating NPP. In 

that study, sensitivity of annual monthly NPP estimates to seasonal climate vari­

ables and Normalized Difference Vegetation Index were performed. NDVI is an 

indicator that provides a measure of estimating photosynthetic capacity of veg­

etation canopies. Some of the models are run with NDVI instead of climate 

variables. Rank correlations between NPP and these climate variables (precipi­

tation, temperature, solar radiation) and to NDVI were obtained. They observed 

large sensitivities in regions where NPP is limited by both temperature and pre­

cipitation.

Bondeau et al. (1999) presented several analyses on how differences in veg­

etation canopy and its phenology affect simulated NPP seasonally. They also 

compared the seasonal NPP estimate from the model with seasonal satellite data 

using the fraction of photosynthetically active radiation absorbed by the canopy. 

This is similar to the method used by Prince (1991). They concluded that sea­

sonal changes in canopy largely determine the seasonal estimate of net primary 

productivity.

Peng et al. (1999) examined trends in the NPP of forests, focusing on Central 

Canada. They also used a process-based ecosystem model, CENTURY, similar 

to the method of Melilo et al. (1993). They investigated the sensitivity of NPP to 

climate change, CO2 concentration and the frequency of fire disturbance. They 

observed an increase in NPP for both a change in climate and an increase in 

CO2 , as well as an increase in the incidence of fire disturbance. They attributed 

the increase in NPP to ecosystem feedback through an increase in net nitrogen
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mineralization. An increase in decomposition rate causes an increase in nutrient 

availability to plants.

Cramer et al. (2001) predicted the impact of climate change and increasing 

CO2 levels on the terrestrial carbon cycle. They compared the performance of six 

dynamic global vegetation models forced with a transient increase of CO2 emis­

sion, similar to Melilo et al. (1993) and King et al. (1997). Similarly, Berthelot 

et al. (2 0 0 2 ) investigated the terrestrial biospheric response to change in climate 

using a coupled model with a global carbon cycle. The model was forced by CO2 

emission. They observed a positive climate feedback on CO2 similar to Dufresne 

et al. (2002). Nemani et al. (2003) reported the responses of global vegetation 

to climatic changes using both climatic and vegetation data. A biome-specific 

production efficiency technique was used to predict the annual and monthly net 

primary productivity. They observed that nitrogen, forest regrowth, climate and 

CO2 fertilization are the major factors responsible for the increase in NPP in the 

Northern mid-latitudes, high latitudes and in a tropical climate.

In contrast to the process-based method of Peng et al. (1999); Berthelot et 

al. (2002); Moorcroft (2006); Bergengren et al. (2011), the earlier work of Prince

(1991) estimated NPP from remote sensing data. He used a linear relationship be­

tween absorption of photosynthetically active radiation (APAR) and Normalized 

Difference Vegetation Index (NDVI) to predict net production and respiration. 

Similarly, Imhoff et al. (2004) also used the combination of satellite data and 

a terrestrial carbon model to assess the effect of urbanization on NPP in the 

United States. They observed a significant negative impact of urbanization on 

NPP. Several studies emphasised the role of precipitation and water availability 

as a major driver of NPP distribution (Cao et al., 1998; Churkina et al., 1999; 

Lieth, 1975; Neilson et al., 1994; Rosenzweig, 1968; Weltzin et al., 2003).

On the other hand, Heyder et al. (2011) analysed the global impact risk of 

terrestrial ecosystem change due to climate change. They used a newly derived 

impact metric which estimates the distance of a possible future ecosystem change
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from current conditions using vegetation structural change and biogeo chemical 

shifts. The metric was based on the change in the biogeochemical flux of carbon, 

water, and carbon storage.

We can easily infer from these studies that NPP is affected by climate change 

and there is a need for further study in this area to broaden the scope of the 

impact assessment. Two of the aims in this thesis are: Firstly, to assess the 

response of global NPP flux under the interactions of elevated CO2 and future 

climate change, and secondly to find out if statistical emulation can provide a 

better alternative for studying the interactions of global NPP and climate instead 

of a process-based technique. The next section looks at the past studies on the 

interactions between heterotrophic respiration and climate change.

3.2 .2  H eterotrophic resp iration  (H R ) and clim ate change

Lloyd & Taylor (1994) examined the effect of temperature on heterotrophic res­

piration. Osborne & Wheeler (2013) studied the impact of soil moisture on the 

heterotrophic respiration. Temperature and moisture strongly influence the het­

erotrophic respiration (Ise & Moorcroft, 2006). Similarly, Smith et al. (2013) 

examined the sensitivity of heterotrophic respiration to temperature. In another 

related study, van Wart et al. (2013) investigated how global warming and changes 

in precipitation patterns could affect the rate and temperature sensitivity of het­

erotrophic respiration. The early work of Cook & Orchard (2008) observed a 

linear relationship between soil respiration and water content. Moyano et al. 

(2 0 1 2 ) fitted a linear model to also establish a relationship between respiration 

and moisture using various soil properties. They first applied a generalised ad­

ditive model to obtain a smooth curve to the proportional response (PR) of soil 

respiration to moisture. A linear regression was then used to determine the rela­

tionship between PR and soil properties (soil pore space, bulk density, soil organic 

carbon and sand).

Maxwell et al. (2013) predicted the soil respiration using variables like temper­
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ature, moisture and water table depth. They considered six different methods of 

predicting soil respiration from peatlands. Four of these methods are documented 

in the literatures (Ricker, 2011; Tuomi et al., 2008; Horion et al., 2013; Lloyd & 

Taylor, 1994). They proposed variations of the technique used by (Horion et al., 

2013). This approach incorporated water table depth as an additional variable 

that affects soil respiration.

Suseela et al. (2012) investigated the joint impact of global warming and 

change in precipitation pattern on heterotrophic respiration at ecosystem level. A 

mixed model was first used to assess the main and interactive effects of warming 

and precipitation change on respiration. They later analysed the temperature 

sensitivity of heterotrophic respiration (HR). In this study, HR was fitted as an 

exponential function of temperature, similar to Tuomi et al. (2008). They further 

fitted HR as a quadratic of both soil temperature and water content in order to 

assess the interaction between moisture and temperature on respiration. Their 

conclusion was that global warming accelerates HR only during spring and that 

HR is independent of warming during the summer and fall.

Tuomi et al. (2008) applied six different models to investigate the sensitiv­

ity of soil heterotrophic respiration to temperature. The models include simple 

exponential functions, a Gaussian model and a very complex Del Grosso model. 

They also considered an extension of an exponential model that combined an 

exponential function and some additive parameters. The performance of each 

model was compared using their residual sum of squares and Bayesian Informa­

tion Criterion (BIC). The results indicated that both the Gaussian model and 

the exponential function with some additive parameters clearly reproduce the 

pattern of decreasing Qi0 with an increase in temperature. Qio is the relative 

increase of the respiration rate when temperature increases by 10°C. However, a 

mixture of an exponential function with some additive parameters only provided 

good estimates at high temperatures.

Similarly, Smith et al. (2013) examined, at the ecosystem level, the sensitivity
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of heterotrophic respiration to temperature. They analysed the intrinsic temper­

ature sensitivities of ecosystem respiration for different climates. Ecosystem level 

sensitivity of Qw < 2  was observed. Apart from this work, some notable studies 

have also documented that climate warming increases the rate of heterotrophic 

respiration, thereby causing a positive feedback effect to increasing CO2 levels in 

the atmosphere (Wang et al., 2014; Schindlbacher et al., 2009).

In a related study, autotrophic respiration is another significant carbon flux 

that affects ecosystem carbon balance, and the net ecosystem carbon flux often 

changes as the balance between photosynthesis and plant respiration changes 

(Ryan, 1991). Autotrophic respiration offsets more than 50% of the carbon fixed 

in photosynthesis and may regulate productivity and carbon storage in forest 

ecosystems (Ryan et al., 1997). The respiration rate for any particular plant 

increases exponentially with ambient temperature (Ryan, 1991; Turnbull et al.,

2001). Autotrophic respiration is one of the primary outputs of LPJmL.

Katterer et al. (1998) examined the functional relationship between decom­

position rates and temperature based on a review of published data. The data 

were analysed using two different dynamic models to fit a least squares regres­

sion to the incubation temperature and carbon evolution. Reich & Schlesinger

(1992) analysed the dependence of temperature on the rate of decomposition from 

CO2 measurements from different soils. They used various data from different 

ecosystems and expressed observed carbon fluxes as a function of mean annual 

temperature.

Carter et al. (1998) observed a decline in soil organic carbon and nitrogen with 

an increase in temperature. Holland et al. (2000) investigated the sensitivity of 

heterotrophic respiration to temperature changes with different laboratory exper­

iments, by examining the variability of temperature regulation on heterotrophic 

respiration among different vegetation and soil types. They assessed the conse­

quences of temperature variability on ecosystem modelling using the CENTURY 

terrestrial ecosystem model that has the potential of analysing the impact of
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temperature regulation on decomposition and heterotrophic respiration of carbon 

and nitrogen fluxes. An exponential increase in tropical soil CO2 with increasing 

temperature was observed under optimal soil conditions. However, a decreasing 

response was observed under limited substrate availability, and there was a high 

correlation between heterotrophic respiration and various soil organic carbon and 

nitrogen content. Overall, soil carbon is more sensitive to temperature regulation 

than soil nitrogen content and net nitrogen mineralization.

In contrast to the work of Carter et al. (1998), Giardina et al. (2000) provided 

evidence suggesting that the decomposition rates of organic compounds do not 

change with temperature for some forest soils but are fairly constant on a global 

scale. They inferred that it was not only temperature changes that are responsible 

for the decay of forest carbon. Braswell et al. (1997) examined the response 

of terrestrial carbon storage to climate variability using CO2 , temperature and 

vegetation index data derived from satellite information. They carried out three 

different sets of analysis and found that ecosystems exhibit a complex behaviour 

in response to climate variability. One of the analyses involved regression of NDVI 

and temperature anomalies using a weighted least square regression to account 

for large correlation. The results indicated a significant correlation between these 

two variables that varies across different ecosystems. They concluded that there 

was diversity in the biospheric response of the ecosystem to climate change.

Moreover, Lloyd & Taylor (1994) reassessed the published data to investigate 

the suitability of linear, exponential and Arrhenius models earlier used in the 

work of Reich & Schlesinger (1992) and Braswell et al. (1997) for predicting the 

relationship between soil respiration and temperature. The implication of each 

individual method for the seasonal cycle of soil respiration and net ecosystem 

production was further examined. They concluded that additional information is 

required on temperature sensitivity of carbon input to the soil through NPP to 

better understand the effect of temperature changes on soil carbon.

Kirschbaum (2000) extended the work of Lloyd & Taylor (1994) by investigat-
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ing the relative impact of temperature changes on the decomposition rates of soil 

organic carbon and NPP. In addition, he also examined whether changes in soil 

organic carbon would act as a positive or negative feedback on climate change. 

He observed that the decomposition rate of organic carbon is more sensitive to 

temperature than for NPP, and as a result, could potentially cause a significant 

positive feedback from soil organic carbon into the atmosphere. Nevertheless, he 

concluded that the overall feedback will be relatively small, because the positive 

feedback observed could be easily offset by the beneficial effect of CO2 fertiliza­

tion, which is capable of enhancing plant productivity and soil organic carbon 

storage.

3.3 M odelling crop yields

This section focuses on a general review of crop yield modelling. The following 

notable agricultural crops, namely temperate cereals, rice, maize and oil crops 

(sunflower, soybeans, rapeseed, groundnut), are considered in this thesis. The 

relationships between crop yields, weather and climate have attracted consider­

able attention. Weather is the state of atmosphere (temperature, precipitation, 

cloudiness) while climate is the accumulation of daily and seasonal weather events 

over a long period of time. Impacts of climate change on crop yields are already 

happening across the world and adverse impacts are common globally. However, 

in some places, for instance in the UK and China, positive impacts of climate 

change on crop yields are observed (Stocker, 2013; Vermeulen, 2014).

The world population is projected to increase by 35% by the middle of this 

century (Crossette, 2010). This will cause a rise in demand for major food crops 

that will necessitate a considerable increase in crop production. Climate change, 

food insecurity and how to effectively feed over 9 billion people by mid-century 

are major problems threatening human prosperity (Dobermann & Nelson, 2013; 

Godfray et al., 2010; Smith et al., 2013). Rising temperatures and CO2 levels, 

with the change in precipitation patterns, are important biophysical effects that
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will affect crop production (Parry et al., 2004). The problems highlighted above 

require multi-disciplinary approaches and, to effectively tackle them, a robust and 

coherent assessment of the climatic impact on future crop-yields is essential to 

inform policy makers. Adequate knowledge of crop yield responses under various 

climatic scenarios is essential for agricultural policy implementation and global 

food security.

Kart (1979) examined the empirical relationship between crop and weather 

using a ridge regression approach. He used empirical relations between crop and 

weather for the yield predictions. He observed that most of the estimated param­

eters are not stable and that adequate care must be made in choosing statistical 

methods for developing models for crop yields. Miller (1976) analysed similar data 

using a least squares regression method. Reddy et al. (2000) estimated changes 

in crop yield from monthly weather projections of climate variables. Similarly, 

Wallach (2011) extended the Kart (1979) approach by estimating wheat produc­

tion using a multiple regression approach, this involves the concept of using a 

weighted amount of rainfall rather than actual rainfall and this was found to 

improve the predictive power of the model. In a related analysis, Bornn & Zidek 

(2012) evaluated wheat prediction using a Bayesian method. They examined the 

significance of incorporating spatial information in crop-yield modelling and the 

consequence of neglecting such important information.

Drummond et al. (2003) compared the performances of several statistical 

techniques for modelling the relationship between grain yield and soil proper­

ties. They adopted linear and non-linear methods and evaluated them. They 

further compared the predictive performance of a stepwise multiple linear regres­

sion. Schlenker et al. (2006) investigated the effect of change in average weather 

on crop-yield, focusing more on the non-linear effect of temperature on growing 

season. However, this study did not incorporate CO2 fertilization effects, which 

is the crop response to elevated CO2 emission in the assessment, and which can 

substantially increase plant growth.
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In contrast to the regression approaches of Wallach (2011), Schlenker et al. 

(2006), Osborne et al. (2013), Matis et al. (1989) and Jain & Agrawal (1992) 

several researches applied a non-parametric Markov chain approach to crop yield 

prediction. Kim et al. (2005) applied a Bayesian bootstrap method to similar 

data by obtaining the posterior distribution of the parameters rather than the 

distribution of a sample statistic. Sacks et al. (2010) described the relationships 

between climate and the dates of planting and harvesting for some notable crops.

A phenological approach to examine how vegetation dynamics is dependent 

on climate variability is discussed in Horion et al. (2013). In a related study, 

Osborne & Wheeler (2013) examined crop yield variability through time and 

assessed whether such variability can be attributed to climate change. In the same 

vein, Lobell (2013) investigated the impact of measurements error on statistical 

models. He focused on the effect of inherent error from climate ensembles on the 

quality of statistical crop models, van Wart et al. (2013) performed yield gap 

analysis relative to different agro-climatic zones. Interactions between climatic 

cycles and crop productivity were investigated by Maxwell et al. (2013), while Liu 

et al. (2013) evaluated crop yield predictions under various soil tillage systems.

Similarly, Kitchen et al. (1999) compared the predictive performance of step­

wise multiple linear regression with that of projection pursuit regression and 

neural networks. These methods were used to model the relationship between 

yield and soil properties. It was found that neural networks performed better 

than the other methods. In related studies Schlenker et al. (2006) and Sacks et 

al. (2 0 1 0 ) considered multiple linear regression techniques using polynomial and 

interaction terms for modelling crop productivity measure.

In contrast to the least squares approach, Lobell et al. (2006) developed a non­

linear model to relate weather and climate to crop yields. Chebyschev coefficients 

derived for the probability distribution of temperature were used. They observed 

a significant nonlinear relationship between temperature (degree days) and yields. 

Osborne et al. (2013) described the relationships between planting and harvesting
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dates with climate for some notable crops. Several studies in the literature have 

explored the impact of climate change on crop yield. However, very few studies 

have examined the combined effect of climate and CO2 fertilization on crop yields 

under various emission scenarios and GCMs. For instance, Parry et al. (2004) 

used only one GCM but in combination with inclusion of CO2 fertilization, while 

Sacks et al. (2010) incorporated several GCMs in their analysis but did not assess 

the impact beyond 2030. Osborne et al. (2013) also used several GCMs but 

focused only on the single time point of 2050s and one emission scenario.

Not many studies have evaluated the impact of crop-yield at a global scale; 

most have concentrated on smaller regions within a country. For instance, Reddy 

et al. (2000); Schlenker et al. (2006) and Drummond et al. (2003) only focused 

on the United States, Bornn & Zidek (2012) concentrated on a smaller region 

consisting of a Canadian Province, while Osborne et al. (2013) focused on the 30 

top producers of wheat and soybean and Liu et al. (2013) focused on Northeast 

China.

Consequently, none of the above literature adequately examined the joint 

impact of climate change and CO2 fertilization effects under various crop man­

agement options, emission scenarios and GCMs on a global scale. Consequently, 

very little is known about how crop-yield will respond to climate change under 

different levels of management practice combined with CO2 effects and emission 

scenarios. Hence further research is needed in this area.

The work reported in this thesis will extend existing works in this area by em­

ulating the joint response of potential crop-yield to climate change under various 

future scenarios, simultaneously incorporating several Representative Concentra­

tion Pathways (RCPs), General Circulation Models (GCMs), CO2 fertilization 

effects, and crop management practices. GCMs are numerical models represent­

ing the climate systems while RCPs are the CO2 emission scenarios adopted by 

IPCC for the running of global climate models. The CO2 fertilization effect is 

the crop response to elevated CO2 emission.
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3.4 Em ulation techniques

Several methods have been used to construct statistical emulators for modelling 

purposes (Santner et al., 2003). There are Monte Carlo approaches that give 

reliable method when the simulation code is fast to run (Higdon et ah, 2003; 

Kettleborough et ah, 2007). Gaussian process emulators are a more efficient ap­

proach but have limited ability for modelling high-dimensional or time-dependent 

analysis. (Currin et al., 1991; Kennedy et al., 2001; Oakley &; O’Hagan, 2002).

A filtering method is applicable when simulation data is in a sequential form, 

while an ensemble Kalman filter can additionally handle multivariate parameter 

estimation (Annan et al., 2005). Numerical integration has been applied to low 

dimensional problems and MCMC methods have also been used, although these 

involve many iterations to reach convergence (Annan et al., 2005). Annan et al. 

(2005) used an ensemble Kalman filter for parameter estimation and forecasting 

in climate modelling. Kalman filtering is often applicable for integrating noisy 

measurements. A very fast simulated annealing method was used in Jackson et 

al. (2004). Spline interpolation has been used for equally spaced data points by 

constructing polynomials of low degree in a regression method (Faraway, 2006).

Shahsavani et al. (2011) used a sequential adaptive design in combination 

with polynomial regression to develop a surrogate model for the estimation of 

sensitivity indices for different sets of inputs. The method can be applied when 

there is no prior information on the response surface and the objective is to 

examine the global variability in the model. A dominant mode analysis was 

discussed in Young (1999) and the method was used as an emulator to extract the 

dominant mode of a higher order dynamic model. Young et al. (2011) described 

the behaviour of large linear dynamic models using the statistical principle of 

dynamic emulation. The approach identifies a low-order dynamic model that 

could approximate the behaviour of the higher-order dynamic simulator at a low 

computational cost.

Emulation can also provide a measure of the uncertainties associated with the
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projections. There are many sources of uncertainty in projected climate changes. 

For instance, there may be deficiencies in modelling key processes that regulate 

important biophysical effects, such as the water and carbon cycles. Also, bound­

ary conditions for different global climate models can introduce uncertainty, as 

can regional climate variability (Christensen et al., 2007). Nevertheless, generat­

ing ensembles of simulations can provide a useful means of quantifying the uncer­

tainty in projections of regional climate changes (Graham et al., 2007; Beniston 

et al., 2007).

Addressing a different issue, a number of works have mainly focused on un­

certainty quantification. For instance, Osborne et al. (2013) quantifies the uncer­

tainty introduced by different GCMs in a crop impact study. They observed that 

the impact of climate change on crop yield is mostly attributed to the change in 

growing season temperature and that even under a policy of no adaptation the 

degree of impact varies both from one crop to another crop and between countries.

Webster k  Sokolov (2000) and Kettleborough et al. (2007) quantified uncer­

tainty in a climate model using the combination of a deterministic equivalent 

modelling technique and a Monte Carlo approach. Their assumption was that, 

if the model response can be represented by a polynomial, then the response 

can be easily approximated by deterministic equivalent models. Webster et al. 

(2003) examined uncertainty in emission projections under different policy sce­

narios. Recently, Osborne et al. (2013) quantified the uncertainty associated with 

a global climate model (GCM) in a crop impact study, confining their attention 

to soybean and spring wheat.

3.5 Censored regression

This section discusses literature on existing methods for censored data. Censored 

regression is performed when the variable of interest is not observed over its entire 

range; therefore it often causes estimated mean and variance to be biased. For 

instance, in a study following patients who have been treated for cancer, the
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study will stop after a set period of time, and the survival time of patients who 

survive a long time will not be known.

Censored regression is closely related to truncated regression models that 

arise when there are missing observations in both dependent and independent 

variables. For instance, let Y  =  [yi, . . .  ,yn] be censored data when we observe 

X  =  [ x i , . . . , x n] for all observations, but we only know the true value of Y  for a 

limited range of observations. The values of Y  in some ranges are reported as a 

single value, such as zero or clustered around zero (Schnedler, 2005). Table 3.1 

shows different types of censored data as left, right, interval censored data and a 

complete observation. With left-censored data we do not know the precise value 

of small observations; with right-censored the precise value of the large observa­

tions are unknown; and with interval censoring, the data are known to lie in one 

of a number of intervals, but the precise values are unknown.

Complete Left censored

Interval censored

1 1 1 1 1 1 1 
1 1 1 1 1 1 1

X-j i X2  ■ X3 1 X4 1X5 1 Xg 1 X7  1 Xg 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1

Right censored

J  1 X
Figure 3.1: Diagram illustrating the distribution of different types of censored data.

Commenges (2002) applied multi state models to interval censored data. 

Multi-state models can be defined as any process that takes a finite number 

of states. These processes are usually denoted by their transition probabilities,
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which in a Markov-chain representation are the probability of transitioning from 

one state to another. The motivation for applying this technique is based on 

the deficiency of information in the data. The data can only be observed at a 

discrete point in space. Early work of Amemiya (1973) estimated the regression 

parameters of a normally distributed dependent variable that is truncated to the 

left of zero. Schnedler (2005) described the maximum likelihood estimation for 

multi-dimensional censored data.

Miller (1976) analysed right censored data with a least squares regression 

method. The approach was based on the product-limit estimator of a distribu­

tion function of right-censored data. The Kaplan-Meier (product-limit estimator) 

is a non-parametric maximum likelihood estimator of a distribution function. It is 

an empirical method of estimating a survival function from right-censored obser­

vations. It relies on simple assumptions based on information from the censored 

samples in its estimation (Kaplan & Meier, 1958, 1992).

Zhang & Li (1996) used Buckley James Ritov-type estimators for the estima­

tion of linear regression parameters of doubly censored data. Double censored 

data occurs when there is presence of both the left and right censored observa­

tions. The Buckley-James method, described in Buckley & James (1979), is an 

extension of linear regression estimators to censored variables. It is an iterative 

and updating procedure for estimating regression parameter from censored data. 

It is based on a non-parametric estimation of the residual distribution to deal 

with censoring. One major caveat of this method is the difficulty of computing 

the variance estimator of the Buckley-James estimator. Lai & Ying (1991) modi­

fied this approach slightly to accommodate asymptotic variance in order to avoid 

the difficulty associated with the variance estimation.

Closely related is the work of Potter (2000), which generalized the Buckley- 

James technique to a multivariate case based on a non-parametric method. Sim­

ilarly, Ritov (1990) also applied this iterative technique on censored data, replac­

ing unobserved Y  values with their estimated conditional expectation. Miller &
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Halpern (1982) compared the performance of four regression techniques applica­

ble to censored data. These are the methods of Cox (1972) which implemented a 

partial likelihood estimation of regression parameter, and the methods of Miller 

(1976); Ritov (1990); Buckley & James (1979). Miller & Halpern (1982) con­

cluded that Cox and Buckley & James estimators are more reliable than other 

methods, particularly for censored data. The other methods also have some 

methodological limitation so for instance, Miller’s estimator is influenced by the 

censoring pattern.

Addressing a different issue, Jammalamadaka & Mangalam (2003) considered 

non-parametric maximum likelihood estimation (NPMLE) from middle-censored 

responses using the self-consistency equation. Middle censored data arise when 

the observations are not fully observed (incomplete) in some random interval. 

Further work on self-consistent estimators of interval censored data can be found 

in Chang & Yang (1987). Recently, Frydman & Liu (2013) also applied this non- 

parametric maximum likelihood procedure to the distribution function of interval 

censored data.

Kim et al. (2005) applied the Bayesian bootstrap method to doubly censored 

data while Rubin (1981) had earlier generated the posterior distribution of the 

parameters rather than sampling the distribution of a statistic. The posterior 

probability for the Bayesian bootstrap is computed from the Gibbs sampler algo­

rithm, which is constructed from the empirical likelihood. This method is simpler 

and faster than the usual bootstrap algorithm.

Ren & Gu (1997) analysed doubly censored observations using M-estimators, 

which is a robust technique of parameter estimation especially in the presence of 

many outliers. Let rj  =  (Yj —  Y)  be the residual from a fitted model, the least 

squares method minimizes the function XX^?' —  Y) 2. This minimization often 

results in inconsistent estimates if some observations are extreme. M-estimators 

can be applied to reduce the effect of distortion from the extreme observations 

by replacing the residual with a linear function, see further details in Ren & Gu
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(1997); Shen (2013) and Szatmari-Voicu (2011). Ren (2003) applied a similar 

method but focused more on an independent identically distributed version of 

doubly censored data. In contrast, Zhao & Hu (2013) focus on right censored-data 

and use a non-parametric semi-Markov model where the transition intensities are 

a function of the present state and its duration. On a different note, Ren (2008) 

applied a weighted empirical likelihood-based method which is essentially a semi- 

parametric maximum likelihood estimator applied to double censored data. Lin 

et al. (2 0 1 2 ) used quartile regression.

3.6 Bayesian em ulation

This section provides a review of Bayesian techniques for emulation. Under a 

Bayesian perspective unknown parameters are treated as random variables. A 

Bayesian framework for emulation is almost always based on the assumption that 

a Gaussian process prior distribution can be specified for unknown parameters 

and hyperparameters. The given prior distribution can be updated from training 

data. Applying Bayes rule to this setting, a posterior distribution can be obtained. 

The posterior distribution is also a Gaussian process. The posterior distribution 

of the parameter that determine the function fj(.) in equation (2 .1 ) is referred 

to as an emulator. Then fj(.) is a GP with mean and covariance functions m(.) 

and Cov(fj ( .) , f j (/) )  respectively.

Tebaldi et al. (2005) proposed a Bayesian statistical model that combines 

information from a multi-model ensemble of Atmospheric Ocean General Circu­

lation Models (AOGCMs) with observations in order to determine the probabil­

ity distribution of future climate change. In the same vein, Lopez et al. (2006) 

developed a Bayesian statistical model to produce probabilistic projections of re­

gional climate change using observations and ensembles of GCMs. A probabilistic 

method to overcome the challenge of inclusion of model inadequacy in order to 

improve the quality of a simulator ensemble was presented in Kennedy et al. 

(2008) and Rougier (2007). Gosling et al. (2007) estimated the uncertainty asso­
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ciated with the carbon flux simulated from a dynamic global vegetation model. 

They used a GP emulation technique proposed by Oakley &; O’Hagan (2 0 0 2 ) to 

quantify these uncertainties for England and Wales.

Similarly, Higdon et al. (2008) applied the Oakley & O’Hagan (2 0 0 2 ) ap­

proach in conjunction with a PC A for basis representations of high-dimensional 

output. Apart from reducing the dimensionality of the problem this PC A tech­

nique also reduces the computation time required for obtaining the posterior 

distributions. A closely related study of Wilkinson (2010b) performed a cal­

ibration of multivariate experiments by extending the approach of Kennedy et 

al. (2001) to multivariate models. This study incorporated principal component 

analysis, like Higdon et al. (2008), to project the multivariate output to a lower 

subspace. Boukouvalas et al. (2008) focuses on a variety of dimension reduction 

methods, like principal component analysis, independent component analysis and 

a Gaussian process latent variable model. They illustrated the methodologies by 

modelling time series output data.

Young et al. (2011) described the behaviour of large linear dynamic models 

using statistical principles of dynamic emulation. Their approach identifies a low- 

order dynamic model that approximates the behaviour of the high-order dynamic 

simulator at a low computational cost. A dominant mode analysis of Young 

(1999) is used to extract the dominant mode of a higher order dynamic model as 

an emulator for the construction of a low order dynamic model. In other words, 

it is the statistical identification and estimation of linear differential equation 

models.

Kennedy et al. (2001) applied a Bayesian technique to calibrate computer 

models. They obtained the posterior distribution of a parameter that measured 

residual uncertainty. Oakley & O’Hagan (2004) described a Bayesian method for 

quantification of uncertainty in complex computer models. They also extended 

variance decomposition and regression approaches to perform probabilistic sen­

sitivity analysis under a Bayesian framework. This method performed better
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than Monte-Carlo-based and Latin hypercube sampling methods. Kennedy et al. 

(2006) described some notable examples where GP modelling applications have 

been implemented.

A major difficulty with GP modelling is the computational effort associated 

with dealing with large data, as computer time scales are of order 0 ( n 3) where n  is 

the number of observations. Several techniques have been adopted to overcome 

this computational problem. Earlier techniques are documented in Rasmussen 

Sz Williams (2006) and Quinonero-Candela & Rasmussen (2005). In particular, 

Shi et al. (2005a) used hierarchical Gaussian process mixtures for regression of 

a large data-set with repeated measurements. Also, Shi et al. (2003), focusing 

more on heterogeneous data, use a hybrid Markov chain Monte-Carlo method, 

while Rasmussen (1999) demonstrated a Markov Chain Monte Carlo (MCMC) 

implementation of a hierarchical infinite Gaussian mixture model that is similar 

to a Dirichlet process mixture model. Dirichlet process modelling is a method of 

assigning a high-dimensional probability distribution to categorical values and is 

common in Bayesian non-parametric models (Hannah et al., 2011). The method 

performs better for multidimensional data.

Subsets of regressors is another popular approach for approximating high di­

mensional data (Brailovsky, 1987; Poggio &; Girosi, 1990). For large data sets, 

the standard GP technique involves inversion and the solving of large systems of 

linear equations. With large dataset the computation that is required is often too 

great to be practicable. Subsets of regressors provide a low rank approximation 

technique. For a subset of size p, the idea is to reduce the time taken to obtain the 

predictive mean from 0{n2) to O(p) and for the variance from 0 ( n 3) to 0 (p2). 

The method involves partitioning of the covariance matrix to a low order. An­

other closely related approach is to choose a subset of the dataset. Similarly, Luo 

& Wahba (1997) implemented a mixture of regression and smoothing spline to es­

timate multivariate functions. Reduced rank approximation of the Gram matrix 

that involves speeding up the inversion of the covariance matrix K nxn was demon­
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strated by (Bunea et al., 2011) and (Drineas & Mahoney, 2005b). They reduced 

the matrix dimension to a low rank p using the Sherman-Morrison-Woodbury 

formula. This gives the covariance matrix as Kpxp for p < n, see details of this 

method in Riedel (1992).

In the same vein, Sang &; Huang (2012) extended the previous works of Bunea 

et al. (2011) and Drineas & Mahoney (2005b) by providing an approximation 

scheme that combined a reduced rank covariance method with a sparse matrix 

technique. Further modification to the residual of the reduced rank approxi­

mation was then applied. Recent works on reduced rank approximation can be 

found in Hirano (2014) and in the work of Solin & Sarkka (2014), who applied 

expansion of Laplace operators to eigendecompositions of covariance functions. 

An extension of the Skilling algorithm (Skilling, 1993), which is an iterative tech­

nique for decomposing large matrices, was discussed in Gibbs & MacKay (1997). 

The strategy is to limit the maximum order of matrix operation to 0 (n 2), a pro­

cedure similar to the conjugate gradients method in Seeger (2000) and Brown et 

al. (1994).

A Bayesian Committee Machine (BCM) is a combination of ensembles of esti­

mators on different datasets. In BCM, training data are sub-divided into smaller 

set of different sample sizes that are trained independently, but their prediction 

results are combined together with a covariance-based weighting scheme (Tresp, 

2001, 2000). This is closely related to the Nystrom approach documented in 

Williams & Seeger (2001), which can be used for approximating a large set of 

eigenvalues and eigenvectors. A filtering approach discussed in Shi et al. (2005b) 

is a two-stage procedure, where a smaller filtered dataset is generated to represent 

the original data. Prediction is then based on the filtered data. The approach 

also involves a Nystrom approximation of eigendecompositions of the covariance 

matrix.

In order to examine the contribution of various inputs to the uncertainty in 

model output, Oakley & O’Hagan (2004) also illustrated a Bayesian technique
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for probability sensitivity analysis that is computationally more efficient than 

MCMC methods. Svenson et al. (2014) extended Oakley & O’Hagan (2004) by 

using the procedure for sensitivity analysis based on a GP. They further derived 

quadrature-based methods of estimation with GP using Gaussian or Bohman 

correlation functions. The next section focuses on the multivariate technique as 

applied to GP emulation.

3.7 M ultivariate G P em ulation

Multivariate emulation deals directly with multiple outputs when diverse treat­

ments have been applied to datasets. Some studies considered the outputs as 

a combination of separate univariate output, and emulated each independently. 

The principal disadvantage of this simple approach is that the data are assumed 

to be independent, which may not be true in general.

Some authors have emulated linear combinations of the output responses with 

a single emulator. A limitation of this approach is that it increases the com­

putational burden into a two- stage method by first evaluating the best linear 

combination and then emulating the results. Another problem is that it can be 

difficult to back-transform the results to the original scale for proper interpreta­

tion. A related idea is to incorporate an output index as an additional input in 

the emulation, see Fricker et al. (2010) and Conti & O’Hagan (2010) for details 

of this approach.

Heitmann et al. (2006) applied a singular value decomposition to emulate 

multivariate responses and in the same vein Higdon et al. (2008) used a princi­

pal component approach to reduce the dimension of the response data. On the 

other hand, Bayarri et al. (2007) applied a wavelet technique to a set of func­

tional outputs. Closely related are works of Morris et al. (2003) and Morris & 

Carroll (2006), where a Bayesian wavelet approach is also investigated. Similarly, 

Wilkinson (2010a) illustrated the application of Bayesian calibration to multi­

variate outputs and applied the PCA to project the response data onto a lower
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dimensional space.

Fricker et al. (2010) illustrated both convolution and coregionalization meth­

ods for multivariate emulation where a non-separable covariance structure is im­

plemented. A linear model of coregionalization utilizes eigendecompostion of the 

covariance matrix. A similar procedure is found in the works of Skilling (1993) 

and Shi et al. (2005b). The results of their studies clearly indicated the superior­

ity of a non-separable covariance method over the separable covariance method. 

A common disadvantage of this approach is the problem associated with the 

inversion of the covariance function for a large dataset.

Rougier (2008) provides a comprehensive review of multivariate emulation 

techniques. He also illustrated an outer product emulation technique with a 

separable residual covariance function for multivariate emulation. The advantage 

of this approach is that it has been demonstrated to speed up the required time 

for emulator construction. Rougier et al. (2009) extended Rougier (2008), but 

enables the inclusion of expert opinion in the choice of parameter setting. Conti 

et al. (2009) demonstrated the dynamic emulation of multiple outputs. A more 

detailed treatment can be found in Conti & O’Hagan (2010), where an application 

to a dynamic vegetation model is given. The derivation of a multivariate extension 

of the Oakley (1999) technique is described in Hankin (2 0 1 2 ).

3.8 Conclusion

Having reviewed the relevant literature on climate change and elevated CO2 ef­

fects on terrestrial biosphere and various models that could be used to analyse 

such data, we can deduce that the terrestrial biosphere is indeed sensitive to cli­

mate change and CO2 emissions. Emulation techniques reviewed in this thesis 

are applicable in diverse areas. We shall explore some of these methods that are 

more relevant to vegetation-climate impact studies, which is the aim of this the­

sis. Particularly, we shall consider the OLS, PC A, WLS, CR and GP methods on 

our crop yield and carbon fluxes data. We shall give full details of these methods
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and their procedures in Chapter 5. Results and comparison of the performances 

of these methods will also be covered in Chapters 6 , 7 and 8 . These selected 

methods will enable us to assess the climatic impact on vegetation and provide a 

measure of uncertainty in the biospheric response to climate change.

Our data consists of simulated historical (1901-2000) and future (2001-2100) 

carbon fluxes and potential crop yields measurements at 0 . 5  by 0 . 5  degree spatial 

resolutions. Data analysis in this thesis will be demonstrated with the selected 

methods for the design of statistical emulators as a surrogate to LPJmL. Then 

we will compare the performance of each method in its ability to predict reliable 

estimates for various scenarios.

In the next Chapter we shall give full descriptions of impact models used 

for the simulation data in this thesis. The descriptions will comprise the cli­

mate (MAGICC6 ) and impact simulating models (LPJmL), as well as the climate 

downscaler (ClimGen). A detailed description of the simulation procedures will 

be provided.

46



Chapter 4 

Im pact m odels and sim ulation  

data

The focus of this chapter is to describe the computer models (simulators) and 

procedure for generating the simulation data. A computer model can be defined 

as the mathematical equations used to represent the behaviour of the physical 

system that is being modelled. For instance, in the climate system modelling 

where a global climate model (GCM) is run to represent key features of the 

climate system; (atmosphere, ocean and sea ice) for the projection of future 

climate change.

We built the emulators using simulation outputs from the following models, 

Model for the Assessment of Greenhouse Gas Induced Climate Change (MAG- 

ICC), spatial Climate Generator (ClimGen) and Lund-Potsdam-Jena managed 

Land dynamic global vegetation (LPJmL).

4.1 M AG ICC6 m odel

MAGICC is a simple carbon cycle climate model that simulates greenhouse gas 

(GHG) cycles, radiative forcing, and ice melt. The gas cycle uses standard formu­

lae to convert surface emissions of gases to atmospheric concentrations and these, 

in turn, are then converted to radiative forcing. The generated radiative forcing
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is then used to drive a diffusive energy balancing model to estimate global climate 

change. MAGICC6  is a new version of MAGICC (Meinshausen et al., 2 0 1 1 b) and 

is able to simulate global mean temperature (GMT) trajectories based on emu­

lation of the seven Atmospheric Ocean General Circulation Models (AOGCMs) 

used in Solomon et al. (2007) for the Fourth Intergovernmental Panel on Climate 

Change (IPCC) assessment report.

4.2 C lim G en m odel

ClimGen is a spatial climate scenario generator. It is based on the pattern-scaling 

method (which will be described in section 6.4.3) and produces spatial climate 

change information for a given global-mean temperature change. The method 

uses the assumption that the pattern of climate change simulated by the coupled 

AOGCMs is relatively constant but the amplitude changes. These normalised 

patterns of climate change usually show considerable variation between different 

AOGCMs, and it is this variation that ClimGen is mainly designed to explore 

(Osborn, 2009).

The GCM climate change data derived from the pattern scaling method at 

a 5° by 5° spatial resolution is combined with observations of climate at 0.5° 

by 0.5° resolution, thereby enabling future climate to be modelled at 0.5° by 

0.5° spatial resolution. It facilitates direct coupling between the MAGICC6  and 

LPJmL models by downscaling the original MAGICC6  results to 0.5° by 0.5° 

spatial resolution in order to capture detailed representation of spatio-temporal 

processes involved in the LPJmL model (Osborn, 2009; Mitchell et al., 2004).

One of the downscaling techniques in ClimGen is to incorporate the observed 

monthly mean climate, and the observed fluctuations in the monthly mean cli­

mate (observed time series of deviations), in the future scaled pattern of climate 

change. The aim is to produce a realistic climate model. The method is used for 

temperature and precipitation and produces an annual time series that includes 

natural variability. Precipitation is further modified for inter-annual observed
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variability prior to combining it with the climate change pattern. However, wet- 

day frequency is not calculated directly and instead it is computed from the 

downscaled precipitation data.

4.3 LPJmL m odel

The Lund-Potsdam-Jena managed land (LPJmL) model of Bondeau et al. (2007) 

is a dynamic global vegetation model (Sitch et al., 2003). It uses eco-physiological 

relations and plant trait parameters for the estimation of photosynthesis, plant 

growth, maintenance and regeneration loss, fire disturbance, soil moisture, runoff, 

evapo-transpiration, irrigation and vegetation structure. It generates global veg­

etation dynamics and the associated carbon and water fluxes.

Agricultural landuse productivity is simulated through varieties of crop func­

tional types (CFTs), both rainfed or irrigated crops. As input variables, the 

LPJmL model takes climate variables such as precipitation, temperature and in­

solation. The monthly input and output data are spatially explicit time series 

of about 60,000 global 0.5° grid cells. Each grid cell can contain a variety of 

natural or agricultural vegetation types, whose daily growth and productivity is 

simulated. It derives process-based, large-scale representations of terrestrial veg­

etation dynamics in terms of plant and crop functional types. A simulation of 

100 years takes about 8  hours when the model is run in parallel on 40 processors. 

But to achieve equilibrium in the carbon pools it is necessary to run the model 

for about 1000 years prior to the transient time. This is very time consuming 

(Sitch et al., 2003; Gerten et al., 2004).

In addition, global crop models are tuned to approximate current manage­

ment practices. In LPJmL, this tuning is based on the maximum Leaf Area 

index (LAImax) value that can be reached within a growing period and two asso­

ciated parameters. These parameters encompass the effects of vegetation density, 

fertilizer application, pests and other factors. Fader et al. (2010) described the 

implementation of LPJmL in detail and Bondeau et al. (2007) described further
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the performance of LPJmL in simulations of crop yields, crop phenology and 

carbon fluxes.

In summary, MAGICC emulating the global-mean temperature response to 

forcings. MAGICC6  generates and provides future trajectories of global mean 

temperature to ClimGen in order to ensure consistency between the global and 

regional climate simulations. ClimGen emulates the spatial response patterns by 

disaggregating the temperature trajectories to 0.5° resolution of spatial climate 

change patterns of air temperature, precipitation, wet day frequency and cloud 

cover, adding natural variability (weather).

ClimGen generated the climate scenarios which are then supplied as inputs 

to run the LPJmL simulation for the assessment of climate impacts on variables 

such as potential crop yields and carbon fluxes. There must be consistency be­

tween the spatial scale of LPJmL and climate models and since LPJmL requires 

climate inputs on a 0.5° by 0.5° grid, the outputs from the global climate models 

were downscaled using the ClimGen to this spatial resolution. We used CO2 tra­

jectories (annual concentrations) associated with MAGICCs global temperature 

trajectories as an additional input to LPJmL.

4.3.1 LPJm L Sim ulation

LPJmL was run on seven climate change patterns, namely, Canadian Centre 

for Climate Modelling and Analysis Coupled Global Climate Model (CCCMA- 

CGCM31), Center for Climate System Research. Two versions of the Model for 

Interdisciplinary Research on Climate (CCSR-MIROC32HI), CCSR-MIROC32MED 

and Hadley Centre Global Environmental Model, Met Office United Kingdom 

(UKMO-HADGEM1 ), Goddard Institute for Space Studies (GISS-MODELEH), 

GISS-MODELER, and Institut Pierre Simon Laplace (IPSL-CM4) that had been 

generated using ClimGen, which used trajectories of global mean temperature 

constructed by MAGICC. In the MAGICC model, the forcing pathways of all 

four Representative Concentration Path-ways (RCPs) were used which cover a
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GMT

28 scenarios of cloud cover, temperature 
precipitation, wet day frequency +  CO2 emission

M A G IC C 6  m o d e l
Generates future trajectories of global mean temperature (GMT) for the 

anthropogenic climate forcing of the four RCP scenarios.

C lim G en  m o d e l
Generate the temperature patterns from the global mean trajectories and convert the 

temperature patterns to the required 0.5° by 0.5° spatial resolution for coupling with LPJmL. 
(cloud cover, temperature, precipitation, wet-day frequency.)

L P Jm L  m o d e l
Eco-physiological relations and plant trait parameters for the estimation of photosynthesis. 

Spin-up followed by a transient simulation followed by scenario simulations (period 2001-2100). 
Simulates 12 agricultural Crop Functional Types (CFTs), either rainfed or irrigated. 

Outputs are provided on 0.5° by 0.5° spatial resolution.

Figure 4.1: Schematic diagram of coupling between climate model (MAGICC6), spatial 
scenario generator (ClimGen) and impact model (LPJmL) which show key stages for 
the simulation set up.

range of climate model-structural uncertainty.

The simulations involve a spin-up stage that was used to equilibrate the long­

term carbon stores (in natural and agricultural ecosystems) by repeating the 

observed climate (1901 — 1930 period) 33 times, immediately followed by an 

additional 13 repetitions in which landuse change were incorporated for the re­

construction of historical soil carbon pools (Fader et al., 2010). Then simulations 

followed for the period 1931 — 2000, with transient climate and land use change 

data. The scenario period covers (2001 — 2100) for different RCPs and GCM 

patterns. Land use change pattern and irrigation were held constant at their 

year 2000 values. The experiment simulated changes in the carbon fluxes and 

potential crop yields of each of 1 2  rainfed and irrigated crop types.

4.3 .2  S im ulation  data

The input data are monthly climate variables (temperature, precipitation, cloud 

cover and wetday frequency) from ClimGen. All the simulation data are on 

a global 0.5° x 0.5° degrees resolution. The data cover the period 2001 — 2100.
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There are seven different General Circulation Models (GCMs) and each is applied 

to four RCPs, giving a total of 28 different climate scenarios. The other inputs 

are annual CO2 concentrations for all the four RCPs, and soil data that describes 

8  different soil types.

The output data from LPJmL are carbon fluxes, namely NPP, FC, HR and 

potential crop yields. The carbon fluxes are monthly data while the crop yields are 

annual values for each of 1 2  CFTs, with rainfed and irrigated outputs considered 

separately. We have chosen the following CFTs (temperate cereal, rice, maize 

and oil (soybeans, rapeseed, groundnut, sunflower) for emulation.

In addition, the crop yields have 7 seven different crop management levels for 

each scenario, and simulations were performed both with and without the CO2 

fertilization effect. In calibrating crop management, the Leaf Area Index (LAI) is 

a key parameter. LAI is the ratio of total upper leaf surface of vegetation divided 

by the surface area of the land on which it grows. Crop management levels are 

represented by maximum leaf area index LAImaa;. In LPJmL, it is defined as 

aggregated natural and artificial nutrient availability in combination with other 

management factors. It represents a proxy for vegetation density (thus reflecting 

the vegetation response to the overall management intensity). Together with 

other synchronously varied parameters, it is used to calibrate the modelled yields 

with respect to observed yields that vary with local management practice, as in 

Fader et al. (2010). Here we use seven simulations with fixed parameters for each 

grid cell and crop type so as to derive the yield levels that would be achieved if 

those management levels were in place.

Different LAImax levels represent different management practices in the LPJmL 

model. Developed countries are assigned higher LAImax value and developing 

countries take relatively low values. A low LAImaa; can be interpreted as a low 

management practice. The LAImaa; parameter takes values between 1 and 7 for 

each CFT and varies with country. A LAImaa: of 7 corresponds to very high man­

agement intensity while hAlmax of 1 means a poorly managed system. These
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parameters are the same for both rainfed and irrigated simulation data (Fader et 

al., 2 0 1 0 ).
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Chapter 5

M ethodology

In this Chapter we describe the standard statistical methods used in this thesis. 

Figure 5.1 gives an overview of the emulation.

INPUTS
Data from LPJmL 
MAGICC6 
and ClimGEN

STAGE 2
Perform PCA on stage I predictions 
Obtain w eights with a squared  
distance metric.
Project predictions onto  th e  PC axis 
and use projected predictions (scores) 
as explanatory variables.
Perform WLS regression on residuals 
to  obtain new  residual estim ate  
Final predictions = estim ated  

residuals + predictions

STAGE I
Stepw ise regression to  
obtain a parsim onious 
m odel for predicting crop 
yields and carbon fluxes 
from clim ate and other  
input variables. 
.Predictions and residuals.

OUTPUTS
Emulator results 
(cereal, rice, m aize, oil, 
NPP, HR FC)
0.5 by 0.5 spatial 
resolution for 
rainfed and irrigated

Figure 5.1: Key stages for emulator construction.
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5.1 Ordinary Least Squares (OLS) m ethod

A standard statistical task is to predict the value that a dependent variable will 

take when the independent variable takes some specified value, say x0.

A univariate regression model is given by

Y  = X(3 + e (5.1)

where, Y  is a {m x 1 ) matrix of observations, m  is the number of observations, X  

is a (m x p )  matrix of predictor variables, p is the number of predictor variables, £ 

is a ( m x l )  matrix of error terms that are independent and identically distributed, 

and (3 is a (p x 1 ) matrix of regression coefficients. The least squares estimate (3 

of (3 is obtained by minimizing the residual sum of squares

£ 'E  = ( y - X / 3 ) ' ( y - X P )  (5.2)

which gives

Pole =  ( X ' x y ' X ' y  (5.3)

where (3 is the least square estimate of (3 (Yeniay, 2002; Draper et ah, 1980; 

Faraway, 2006; Brown, 1993).

OLS will be applied directly to our data to fit a linear model to explain much 

of the variation between the response and input variables. We shall use a bi­

directional stepwise regression to perform variable selection by combining both 

forward selection and backward elimination. This method will enable us to obtain 

a parsimonious model for predicting carbon fluxes and crop yield from seasonal 

climate and other explanatory variables. The same procedure will be applied to 

NPP, HR, FC, and crop yields (cereal, rice, maize and oil). These analyses will

be done using the Revolution R  Enterprise, which has a mechanism for scaling

data to handle big computation.
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5.2 M odel selection  criterion

In our analysis, we shall consider quadratic terms with all interactions included. 

This will result in a large number of regression terms. When there are many 

parameters to be estimated in a model, it leads to over-fitting. Therefore, it 

is important to drop all unimportant predictor variables in order to obtain a 

parsimonious model. For us to achieve that we use stepwise regression. We 

describe briefly the model selection criteria used in this thesis. There are many 

criteria for model selection in statistical models such as cross-validation which is a 

non-parametric method, to parametric methods such as the likelihood ratio test, 

Akaike and Bayesian Information Criterion (BIC). There is also a Risk Inflation 

Criterion (RIC) which uses a penalty of 21n(p) see details in Foster & George 

(1994).

In statistical inference, the choice of model selection criterion is a critical 

step towards model improvement. Akaike Information Criterion (AIC) of Akaike 

(1973) is a prominent selection criterion based on the principles of information 

theory and it is a reliable model selection method. It selects a model that min­

imizes the expected error of new or test data, and uses the assumption that all 

future and past data sets are drawn from the same underlying process and share 

the same distributional properties as the training data. The best model is the one 

with the minimum AIC value among the set of models that have been considered. 

The AIC value is given as

A I C  = — 2  In (L) +  2p =  n ln (SSEp) — n\n(n) +  2 p  (5.4)

where p is the number of parameters in the model (used as a penalty for too many 

terms in the models), and L  is the maximized value of the likelihood function for 

the model, S S E P is the sum of squared error for the model and n is the sample size. 

There is a compromise between the maximized log likelihood and p, the penalty 

component that measures model complexity (Bozdogan, 2000). A modification
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of the AIC technique using a quasi-likelihood was proposed in Pan (2001) and 

applied to a generalized estimating equation for correlated response data.

Another popular criterion is the Bayesian Information Criterion (BIC) docu­

mented in Schwarz (1978). It is a likelihood criterion that also penalizes by the 

number of parameters to be estimated. It is used as an asymptotic approxima­

tion of the Bayesian posterior probability of a given model and is based on the 

empirical log-likelihood. It penalizes model terms more stringently than AIC. It 

is given as

B I C  = - 2  ln(L) +  p ln(n) (5.5)

The best model in this case is defined as the one that maximizes the BIC value 

(Schwarz, 1978; Chen & Gopalakrishnan, 1998). The BIC procedure has been 

applied in various applications, such as linear regression Foster & George (1993). 

(Posada & Buckley, 2004) compared the performances of AIC and BIC with the 

likelihood ratio test. Recently, Volinsky & Raftery (2000) applied a BIC criterion 

on censored data.

Backward elimination: This procedure involves starting with a model that 

includes all p input variables. At each stage of the procedure, the algorithm com­

putes the partial F-statistic for each variable, assuming it was the last variable to 

enter the model. The lowest partial F-statistic is compared with a pre-selected 

significance value F0. If it is greater than F0, that variable will be included oth­

erwise the variable will be removed from the model. A new regression model is 

fitted with p — 1  variables, the partial F-statistic is computed and the procedure 

repeated continuously. The algorithm stops when the least partial value is greater 

than the F0. The forward selection procedure is similar to the backward elimina­

tion except that the model fitting is started with only the intercept term, then a 

partial F-statistic is computed and compared at each step to the pre-selected Fc 

value. The term is added to the model provided its partial F-statistic is greater 

than F0. The procedure stops when no more terms are important enough to add 

to the model.
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The stepwise regression procedure that combines both backward and forward 

selection is a modified version of a forward regression that permits re-examination, 

at every step, of the variables incorporated in the model in previous steps. A 

variable that entered at an early stage may become superfluous at a later stage 

because of its relationship with other variables subsequently added to the model. 

F-statistics are computed and used for determining candidate variables to include 

or exclude from the model. The stepwise regression in this thesis employs both 

AIC and BIC to decide which variables are important. In particular, we use AIC 

to add important terms at each stage of the stepwise process, and BIC to drop 

irrelevant terms. This procedure is automated and continuous until the AIC or 

BIC values become smaller which indicates the convergence of the algorithm. The 

algorithm then stops.

Details of stepwise regression procedure for modelling carbon fluxes are given 

under sections 6.3 and 6.4.2 of Chapter 6  and subsection 7.1.1 of Chapter 7 for 

crop yields.

5.3 Censored regression

As stated in section 3.5, censored regression is used when the data on the response 

variable are limited or it is difficult to observe the full response variable. A cen­

sored observation contains partial information about the random variable under 

consideration. Censored data are common in medical experiments particularly 

survival analysis. In a clinical trial, when a patient is lost to follow-up (so that 

the available data provide a lower limit on survival of that patient), or by with­

drawing from a treatment such that they can no longer be observed or studied. 

It also occurs when a subject fails without completing the study or experiment. 

Similarly, in econometrics for instance, duration of unemployment or lifetime of 

firms is often censored (Dufresne et al., 2 0 0 2 ; Currin et al., 1991; Gosling et al., 

2007; Draper et al., 1980).

Censored data are sometimes referred to as a defect of the sample. A closely
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related concept is truncation, in which there is a loss of data on both the re­

sponse and explanatory variables. Truncation involves a greater form of loss of 

information than censoring. It occurs when observations are incomplete due to 

some systematic selection process (Field et al., 1998). There are three common 

forms of censoring namely left-censoring, right-censoring and double censoring. 

Left-censoring arises when a data point is below a certain value but it is unknown 

by how much.

In a medical context, if a patient is diagnosed with an illness at time t\, and 

dies at time £2 , then the time between contracting illness and death is at least 

h  —th  but it could be much longer, depending on the time between contracting 

the illness and diagnosis. Thus, such situations give rise to left censored data.

In contrast, right-censoring occurs when a subject is lost to follow-up or with­

drawn before the end of the experiment. For right-censored data in the form of 

a lifetime variable, suppose that Y  — Yi , . . . ,  Yj-: is a vector of responses that 

are right-censored beyond some threshold tj. Then we shall observe the random 

variable

Zi = mm(Yi,ti) (5.6)

and the censoring indicator is given by

Si =  <
1 , if Yi <U  (uncensored) 

0 , if Yi > U (censored).

We shall observe the random variable for left-censored data and the censoring 

indicator given by

Zi = max(Yi,ti) (5.7)

and

( 1 , if Y i > t i  (uncensored)

0 , if Yi < t i  (censored)
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where U is the censoring time, which can be a fixed time or a random variable, 

and Si is a censoring indicator showing the event status. For left censored data, 

observations with values at or below value t are set to U.

On the other hand, double censoring occurs when both right and left censoring 

are present in a dataset. Suppose, Y{ =  /LX* +  with i =  1, . . .  , p.  A variable Yi 

is said to be doubly censored if (Zi, <5*, Xi) is observed instead of (Yi, Xi), such 

that Z  =  max(min(l^, Ui),Vi) and

Si — <

1 , if Vi < Z i  = Y i<  Ui (uncensored),

2 , if Zi = Ui <Yi  (right-censored),

3, if Zi = Vi >Yi  (left-censored)

with —o o < V i < U i < o o  and Si is independent of (Xi,Ui,Vi). The situation 

may arise where infection time may or may not be known exactly, in this case 

there are may be left-censored data, and the diagnosis procedure can also be fully 

observed or not (right-censored).

5.3.1 W h y use censored  regression to  analyse crop y ield?

OLS is often applied to investigate the relationship between a response variable 

and its covariates and usually the responses are completely observed and there 

are no defects in the sample. However, when the responses are not completely 

observable due to censoring, censored regression is usually considered. Our actual 

crop yield data from LPJmL can be viewed as censored data. We model a change 

in crop yield which is a good example of doubly censored data. The change in 

yield data are characterized by the presence of both positive and negative real 

numbers with the majority of the data clustered around zero. These zeros in the 

crop data have physical meaning in the real world. They represent regions where 

the crop is not currently grown.

Figure 5.2 is an idealized representation of the relationship between crop yield

60



Oyebamiji, O.K. CHAPTER 5. METHODOLOGY

and temperature. The relationship is well-modelled by the straight line until the 

yields drop to zero. The zero yield values are not informative, they show that 

the predicted yield given by the line should not be positive for low temperatures. 

How to model this? One good option is to treat the values of zero as left-censored 

observation that take the value zero or less. Censored non-positive predictions 

for low temperature are then consistent with the data. The regression model will 

predict values that are less than zero but the extent to which they are less than 

zero is informative - a predicted value that is just below zero could become a 

positive yield if the temperature increases by a small amount while a value far 

below zero will need a large increase in temperature before it becomes a positive 

yield.

Cereal yield Vs summer temperature

>-

100 5 15 20 25
Tem perature d egree  C

Figure 5.2: Cereal yield Vs summer temperature in (2005-2014) for management level 
of 5, RCP6 with C02 fertilization from CCSR-MIROC32HI.

Figure 5.3 is the normal QQ plot for the actual cereal yield from LPJmL (top) 

for decade 2005-2014, and for a change in yield (bottom) between decades (2005- 

2014) and (2085-2094). The positivity of yield gives the data the appearance of 

being left-censored in the (top) figure. In the lower figure the effect of the zero is 

more complex. When looking at change in yield between two decades, the yield 

may be zero in the first decade and/or the second decade, or zero in neither. The 

consequence is that the change is subject to double censoring.

The censoring indicator is summarized below. Let Yi>t and Yi i t + 1  each represent 

n x 1  matrix of crop yield for any two consecutive decades from LPJmL, with 

n =  1, . . . ,  59199, t = 1, . . . ,  9 and let (+) sign indicates that crop grows and (—)
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Normal OQ plot for cereal
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(a) QQ plot for actual cereal yield in (2005-2014) for management level of 5, RCP6 
with CO2 fertilization from CCSR-MIROC32HI.

Normal QQ plot for change In cereal
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Theoretical Quantifes

(b) QQ plot for change in cereal yield between (2085-2094) and (2005-2014) for man­
agement level of 5, RCP6 with CO2 fertilization from CCSR-MIROC32HI.

Figure 5.3: QQ plots for absolute and change yield, 

sign indicates that crop does not grow, then

Zt =  AY =  Yi«,(*+!)

Si =  <

(5.8)

(5.9)

1, if Yiit = +  & *i,(t+i) =  +  (nncensored)

2, if Yitt =  +  & 1) =  — (left-censored)

3, if Yitt = — & yi,(t+i) =  +  (right-censored)

0 , if Yitt =  — & Y%,(t+1) =  -  (removed)

Also, when an observation is censored, we do not know the exact value of the 

response, thus we do not know the magnitude of error between the response 

and the regression line relating the dependent to the independent variable. This 

implies that we cannot use the OLS method to analyse such data (eg crop yield 

are represented by zeros in areas where the crops are not grown) because we
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cannot minimize efe to obtain the true parameter estimate.

The censored regression approach captures information on the non-responses 

(zero observations) in our model. The approach will treat the zeros as censored 

observations. Censoring is needed because we do not know a priori how unsuitable 

the climate is for the plant growth. The climatic condition may be close to or far 

from optimal condition.

It is possible to have the same amount of crop harvest in any two decades 

(response equal to zero). The zero observed in the change in crop yield for any 

two successive decades can arise as a result of observing zero in both cases (the 

crop does not grow in either decade) or when the same amount of crop yield is 

harvested in a grid cell for two consecutive decades. Censoring is only relevant 

in the first case and not the latter, in which no threshold-type behaviour has 

occurred. We use a censored regression, which is a parametric survival model that 

uses a maximum likelihood for the estimation of its parameters. The procedure 

is described below.

5.3.2 M axim um  L ikelihood E stim ation  (M LE)

A likelihood function is the probability distribution of the observed data but 

viewed as a function of the model parameters while the data are treated as fixed. 

It is used to estimate the parameters of the statistical model. Let there be a 

sample y2, . . . ,  yn of n independent and identically distributed observations 

with a probability density function f(y\9) and let the joint probability density 

function be

f ( y u - - - , y n I 0) = f(yi\9)  x . . .  x f {yn\0) (5.10)

Then the log likelihood function is defined as
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The value of 9 that maximizes the likelihood function L(9) is denoted as 9. As 

an example for a Gaussian distribution,

f (v i ,  ■ • ■ ,Vn\P, <r) =  n  — 7= =  c x i r (y'~lj)7/,2a"> (5.12)
7=7 o-v (2 tt)

= ---- 3 ;---exP[“  XA* -  P) )/(2cr2)] (5.13)<J
1 = 1

and

In /  =  ~ Y n ln(27r) -  n In a  -  ^   ̂ (5.14)

d(ln/) _  Utiivi-P) _ 0 (5
dii ~  ^  _  l 5 ' 1 5 j

^\n
g  A=d= iVi (5 .1 6 )

n

« ( £ f t  = _ n  + U m - P f  =  0 (5 17)
da a aA

? = \ r  » 0)2■ (5-18)

The survival function is defined as the probability of an individual surviving

beyond time ?/, and can be given as

S(y) = P r (Y  > y) = 1 — F(y) = 1 — P r(Y  < y). (5.19)

Let ?/i, y2, . . . ,  yn be a random sample of data, and let f ( y ), S(Cr), 1 — S(Ci) 

denote uncensored, right and left-censored observations respectively. Then the 

joint likelihood function for double censored data is

j - n w n ^ n a - ^ ) )  ( 5 - 2 0 )i€U i€.R i£L

where U is the set of uncensored observations, R  is set of right-censored data, L 

is the left-censored data,with n = UURUL.  For right censored data, we observed 

a pair of random variables (Z, £), where <5 is a censoring indicator represented by
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0 (right-censored) and 1 (uncensored) data, and Z  = argmin(Y, Cr), with ti in 

equation 5.6 replaced by C r  here (Lee et al., 1980; Bravo &; De Fuentes, 2002; 

Balakrishnan, 1989). For the case where (5 =  0

Pr[Z, 8 = 0] =  Pr[Z = Cr\5 =  0] x Pr[8 = 0] =  Pr{Z  > Cr) = S(Cr) (5.21)

and when 5 = 1, we have

Pr[Z , 8 = 1} = Pr[Z = Cr\8 = 1] x Pr{8 = 1] =  Pr[Y < Z \Y  < Cr} (5.22)

=  l l J f e ) ]  x I1 -  5 (C-)1
which gives by combining the two results

Pr(f(z),6)  = [f(z))slS(t)}1- 1 (5.23)

Therefore the likelihood function for n  random samples of pairs (Zi:8i) is given 

as
n n

c  = n  F r U { z i ) ,  Si) =  (5-24)
i=1 i=1

where S(zi) = 1 — F(zi).

In the case of double censored data, the general likelihood is given as

n —r 2

C oc [F(^n+1)]ri J J  f { Zi) \ l - F ( z n. r2)Y \  (5.25)
i=n+l

Suppose z(9) ~  A (̂/3, cr), and let = r2 = 0, then we shall have a complete 

sample as in equation 5.11, and estimates of (30 and a are given respectively by 

equations 5.16 and 5.18. Also, let rq =  0, then we have right-censored observa­

tions where the ML is given in equation 5.24, and r2 = 0, give rise to left-censored 

observations (Balasubramanian et al., 1992; Balakrishnan, 1996, 2000). Suppose
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we fit a parametric censored regression model of the form

Z  =  \X \ - \ - . .  .+ (3pXp-{-(31^1^ +  . .  • + (3pXp^p-\-f3i£XiX2-\---------K/3̂ p- i ^ px^p-i^xp -\-cr£

(5.26)

where (3 = [//, /3i,. . . ,  fip] is a vector of regression coefficients and e is N (0 ,a2) 

and X  represents the n x p matrix of explanatory variables. In any of these cases, 

6 = [/3, d2} can be easily estimated using a numerical algorithm from R  statistical 

package. One major problem with censored regressions is that the likelihoods 

do not always exist in closed form and as a result, it often takes much time to 

estimate all the regression parameters using a numerical algorithm. However, we 

apply censored regression to the crop yield data using survival package in R , and 

some results will be shown in section 7.1 Chapter 7.

5.4 W eighted least squares regression

Weighted least square regression is a generalization of least squares regression. 

Rather than minimizing a residual sum of squares, as in equation 5.3, instead we 

minimise the weighted sum of squares

e’e = ( y - X p ) ' W { y - X I 3 )  (5.27)

where W  is a diagonal matrix, W  =  diag[wi, . . . ,  wn], and the Wi are non-negative 

values called weights. The new (3wls estimate is (Faraway, 2006; Brown, 1993)

Pwl S =  ( X ' W X y ' X ' W y .  (5.28)

5.5 Principal com ponent analysis

PCA is a multivariate analysis technique. It is a decomposition of the data 

matrix Y  into two different matrices T and D that captures much of a significant
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pattern in the data Y. PC A is charged with determining the variance-covariance 

structure of the data by using linear combinations of the original variables. It 

is a statistical principle for reducing a complex dataset to a lower dimension to 

show simplified structures that underlie it. PC A can be solved in two different 

ways, namely the singular value decomposition of the data matrix or the eigen 

decomposition of the covariance matrix.

Consider the matrix Y Y '  that is required for a PCA, where Y  is a N  x p 

matrix, where N  is the number of observations and p is the number of data 

variables. Let the covariance matrix £  be defined as

£  =  — YY' .  (5.29)
71— 1

Then the eigen decomposition theorem gives

Y Y ' = T A T '  (5.30)

where diag{A) =  Ai,. . . ,  An is a diagonal matrix of associated eigenvalues, T  is 

an N  x N  orthogonal matrix of eigenvectors and n is the rank of the covariance 

matrix £ .

Considering the singular value decomposition of matrix Y  that gives

Y  =  U D V ' (5.31)

where U  is an N  x n matrix such that (U 'U  =  I) and its columns are orthonormal 

eigenvectors of YY '. V  is a p x n matrix (V 'V  =  I) of eigenvectors Y 'Y , while 

D is a n x n diagonal matrix which elements are called the singular values of Y  

(square root of the eigenvalues of Y Y ' or Y 'Y ).

The columns of U  are the eigenvectors of Y Y ' while the columns of V  are

the eigenvectors of Y 'Y . The diagonal elements of D are the square root of the

eigenvalues of Y Y ' or Y 'Y . The eigenvalues obtained from the decomposition
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are sorted into descending order. The eigenvector with the highest eigenvalue is 

the most dominant principal component of the data. The principal components 

(PCs) P  are given by the projection of the data Y  onto the eigenvectors (Abraham 

& Inouye, 2014; Wold et al., 1987). We use the PCA routine in R  to perform the 

decomposition.

P  =  Y V  -  TD. (5.32)

We use the PCA technique in the second stage of the emulator for interpola­

tion of residual. Residual interpolation estimates residuals using WLS regression. 

However, there are a large number of observations from the LPJmL emulator. 

The data matrix for any scenario is a 59199 x 16 matrix, whose size may make 

it difficult to observe the true residual patterns. In order to use this large data 

for residual interpolation, it is necessary to reduce its dimension. Thereby, we 

form linear combinations of the data matrix using PCA. The procedure of imple­

menting PCA to achieve data reductions in this thesis will be discussed in section 

6.4.3 Chapter 6 and section 8.2 of Chapter 8.

5.6 Bayesian regression

Bayesian linear regression is a linear regression using the framework of Bayesian 

inference. Bayesian computations have extended and broadened the scope of 

statistical models that can be handled in practice. This is because of the devel­

opment of Markov Chain Monte Carlo (MCMC). However, if the model errors 

have a Gaussian distribution and a given form of the prior distribution is assumed, 

then the posterior distributions of the model’s parameters can be obtained ana­

lytically, without MCMC method. A major benefit of using Bayesian regression 

is the provision of a measure of uncertainty in its analysis. Bayesian regression is 

based upon the theory of the multivariate normal distribution and matrix parti­

tioning.
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5.6.1 M ultivariate G aussian d istribution

A random variable z follows a multivariate Gaussian distribution with mean fi C 

R p and covariance matrix El if

P(z; n, S ) =  * |S |ea ;p (-^(z  -  /j) 'E  \ z  -  ft)), (5.33)

where El is a symmetric positive definite p x p matrix. We write z N  (/*,£).

Also, suppose the random variable z is partitioned as

z = and put /x =

V " )
s =

V
"'nm v n n

(5.34)

/

where the partitioning is conformal. Then zm ~  N(/xm, Elmm) and zn ~  N(/xn, E nn) 

respectively. The conditional distributions are

zm|zn -  N(/xm +  S mn(Elnn) - 1(zn -  /xn), Elmm -  ^ ^ ( E 1111) - 1^ 11111) (5.35)

5.6 .2  B ayesian  linear regression

Let a standard linear regression be

yi =  x ;t /3 +  Ei (5.36)

where (3 is a k x 1 vector, and the E{ are independent and identical normally 

distributed random variables e* ~  N(0, <r2). The likelihood for /3, cr2 given by a 

vector of observations y is given by

L {p y ) = p{y \ X ^ ) = X l p{yi \Xi, ^ ) = X l  r  * , , exp( ^  ^  ®  )
«=i i=i v iU D ^ p  Aap

(5.37)

=  (2 J ]  a 2) - ^ 2 exp ( - 2 ^ 2  f r  "  X /3)T(y -  X 0 ) )  =  ^ ( X 3’/3- < # ) (5-38)
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maximum likelihood would give unbiased estimates of the regression parameter 

/3, which are also equivalent to OLS estimate in equation 5.3, where X is the 

p x k matrix of input variables and y  is the column p—vector [yi • • • yP]T- 

In the Bayesian context, the data are augmented by a prior distribution. This 

prior information given over the parameters is then combined with the likelihood 

function using Bayes theorem to give the posterior distribution for the parameters 

(3 and cr2.

p(/3, cr2 |y ,X ) =
p(y|X,/3,<j2)p(/3,cr2)

(5.39)
p(y|x)

Let the prior distribution for p(/3, cr2) be given as p(/3, cr2) =  p(cr2)p(/3|c7*2) which 

is a conjugate prior by giving the same posterior distribution, such that a2 

has an inverse-gamma distribution defined as p(cr2) oc ((j2)_0V2+1) exp 

and ((3\a2) has a normal distribution given by Af (fi ,a2A -1), with vs2 = (y — 

X/3)T(y — X/3) and v — p — k. The marginal likelihood is then given as

P(ylx ) =  /  [  p (y |X ,/3 ,a2)p(/3,cr2)d^do-2 (5.40)
J d B  J d a 2

The posterior distribution is

p((3, cr2|y, X) oc p(y|X, /3, cr2)p(/3|cr2)p(o-2)

_  ( ( j 2 j  p / 2 e x p
2cr2

( y -X /3 ) T(y -X /3 )

x (cr2) fc/2exp
1

2cr2
(P -  p )TA ( p  -  jj) ■2\-(q+1) exp

cr"

(5.41)

After some algebraic transformation and using 5.38 and 5.40, then we have a 

product of normal distribution and inverse-gamma distribution:

p(/3>0-2 |y ,X)oc(cr2) p/2 exp

( ct2 ) - ( p + « ) / 2 - i  e x p

2cr2

(5.42)

=  p(/3k2,y,X)p((72|y,X ) =  Af (T2A V1) x I G (ap,bp) (5.43)
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where A p = (XTX +  A), fip =  (Ap) 1(X TX{3 +  A/z), ap = a  +  p/2, bp = 

b +  | ( y Ty +  VTA f i  -  fipApfip), and b = vs2/ 2.

=  p ( P ,  ^ l y , x ) a: p{P\(T2, y, X)p(cr2|y ,x )- (5.44)

The predictive distribution is then given as

p(y|x) = T2a (/j,p, li^E)
ap

(David, 2002; Murphy, 2007).

Let the prior distribution for (3 be given as (3 ~  N ( 0, E2) and for a situa­

tion where <r2 is known. The likelihood function is quadratic in (3: after some 

transformation by completing the square makes the likelihood becomes normal 

in ((3 — (3). Let

(y -  X j 3 f ( y  -  X(3) = (y -  X ^ )T(y -  X0 )  +  (0 -  0 ) T(XTX)(/3 -  0).  (5.45)

Using 5.38 and 5.40, then we have (the product of two Gaussian distributions is 

Gaussian distributed)

p(P |X ,y) oc exp 2 ap2
{y -  X 1 P)1 (y -  X 1 (3) x exp

(5.46)

p(P lx .y) “ exP - o i / 3 - P )  ( -o x x  + z ; 1y p - p )a,
(5.47)

The resulting posterior distribution is a Gaussian distribution with mean /3 and

covariance matrix A  1 as 0  = ^ ( ^ X X T +  Ep x) *Xy, A = d^XXT +  E - l
p
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p(fl |X ,y) oc N ^ A - ' X y ,  A -1) (5.48)

The posterior predictive distribution over the test output y* =  /(x*) for a 

test input x* using 5.48 is equivalent to averaging over all the Gaussian posterior 

such that

p(f*|x*,X,y) =  [  p(f*|x*,/3)p(/3|X,y)d/3 =  N ^ x ^ A ^ X y ^ A ^ x * ) .
J d/3 a p

(5.49)

See further details in (Rasmussen &; Williams, 2006; David, 2002; Murphy, 2007).

5.6 .3  G aussian process (G P )

A Gaussian process (GP) is a collection of an infinite number of random vari­

ables that has a joint multivariate Gaussian distribution. GP regression under a 

Bayesian framework assumes a Gaussian prior on functions and the smoothness of 

the prior depends on the covariance function (Quinonero-Candela & Rasmussen, 

2005). GP is a generalization of a Gaussian probability distribution and it is 

usually specified by mean m(x) and covariance functions K ( x :x'). GP can cap­

ture non-linearity in the interactions between input and dependent variables, thus 

making it more applicable and flexible than standard linear regression. However, 

it can be computationally expensive and numerically unstable for large datasets.

GP emulation is based on the Bayesian technique and the experimental de­

sign of computer experiments. Its purpose is to predict model outputs at specified 

input points (Sacks et al., 1989; Santner et al., 2003). A GP emulator gives a 

probabilistic prediction of the set of outputs that the simulator would produce 

if it were run for a particular input design. The probabilistic predictions could 

either be a fully Bayesian posterior distribution where the prediction is a com­

plete probability distribution of the output for some design points, or the Bayes 

linear approach may be followed in which the emulator provides summary in­

formation like expectation (means), variances and covariances of the simulator
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outputs (Goldstein & Rougier, 2006; Goldstein, 1995).

A GP emulator assumes that a simulator output is an unknown function g(.). 

We can then choose a prior distribution for g(.) using the Bayesian approach 

and update this distribution, with some data obtained from the simulator runs. 

In particular, g(.) is often assigned to be a Gaussian Process (GP), that is for 

any set of input x  =  . . .  , x n)T the joint distribution of simulator outputs

g =  (g(xi ) , . . .  ,g(xn)) is a multivariate normal with mean m(x)  and covariance 

functions K(x,x ')  (Rasmussen & Williams, 2006). Let

z =  g(x) =  h(x)T/3 +  £(x) (5.50)

where h(x) =  [l:x , x 2: ...] a vector of known functions that is chosen to reflect 

the functional form of the simulator output, and (3 is an unknown hyperpa­

rameter to be estimated, £(x) is a stochastic process with mean zero and co- 

variance function cr2. The covariance function must be positive definite that is
n n

^  aiajC(xi, Xj) > 0

Cov[g(x), g(x')] =  cr2C(x, x') (5.51)

where C(x, x') is a correlation function with an hyperparameter a2 called process 

variance. Various correlation functions have been used, depending on the assump­

tions about the function being modelled. We used the correlation function given 

below
n

C (x,x ') =  J I e x p - a^ - x̂  (5.52)
0=1

where aj > 0, Vj with 0 < (j) < 2. We chose (f) as 2, since the GP becomes

infinitely differentiable (i.e very smooth). This correlation function is reliable

when Gaussian processes are used to analyse outputs of computer experiments. 

The vector of smoothness hyperparameters a  =  (au, . . . ,  an)T measure the rate 

at which the output response changes with a unit change in input and will be
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estimated from the data using MLE technique to be described shortly. A function 

g(x) can be denoted as a GP,

g(x) ~  GP(m(x), K(x, x')). (5.53)

Suppose a GP is given as in equation (5.50). GP regression is based on a 

Bayesian framework. The general principle in Bayesian analysis is to assign prior 

distributions to the parameters (3 and a2 of the GP, and update these prior dis­

tributions with respect to some data z, in order to obtain the posterior estimates 

using Bayes theorem. A major problem with Bayesian analysis is that the in­

ference on the unknown parameters is often analytically intractable. Analytical 

solutions are only available for simple models that involve a Gaussian observation 

model or with the use of suitable conjugate priors. In making inference about hy­

perparameters, the best approach is to integrate over all uncertain parameters but 

this approach is not often practicable. Therefore, several numerical techniques 

have been used to facilitate the Bayesian inference with non-analytical models. 

The most usual technique is to draw samples from the posterior distribution using 

a Markov chain Monte Carlo (MCMC) method. The limitation with the MCMC 

algorithm is that the computational cost with a large parameter space is high.

Let z =  [(zi,g(xi)\i — l , . . . , n ) ] T be the simulation data. Given a prior 

distribution for hyperparameters,

P(/J, a2|z) =  P(z|/3’^ (/3,<t2) oc P(z|/3, <t2)P(/3, a2) (5.54)

where P{(3, cr2|z) is the parameter posterior distribution, P(z|/3, a2) is the likeli­

hood, P(f3, a2) the prior distribution for hyperparameters. The marginal likeli­

hood or normalising factor P(z) can also be expressed as

P(z) = J  P (z\(3, a2)P(f3, a2) d(3 da2. (5.55)
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Under a full Bayesian framework, the posterior distribution in equation (5.54) 

and the marginal distribution in equation (5.55) are often difficult to compute for 

an arbitrary prior distribution as they may not exist in closed form. Conjugate or 

non-informative priors can be used to overcome this non-analyticity. A conjugate 

distribution arises when both the posterior and prior distributions come from 

the same family. Suppose, we want to make predictions at point xnew given some 

training data z, then the joint distribution of the observed values z and test point 

znew under a given prior can be obtained. We already know that data z is

z ~  N(H/3, <t2C) (5.56)

and znew — g(xnew) have a joint multivariate Gaussian distribution. Then we 

have

znew\z,/3,a2 ~ N [m * (.) ,a2C*(.,.)]. (5.57)

such that

m*(x) =  h (x)/3 +  cC [z — H(x)]/3

C*(x,x') = c(x,x') — c(x) C c(x'),

where H T =  [h(xi) , . . . ,  h(xn)] and c(x)T =  [c(x, aq), . . . ,  c(x, xn)\ is the correla­

tion between the training and test points. The correlation matrix of the input 

(training) design matrix is given by

C =

(  1 c(xu x  2 ) . . .  c(xi ,xn) \

c(x2,x  1) 1 :

\c{xn, Xi)

(5.58)

In order to make predictions, we integrate over the posterior distribution. The
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posterior predictive density is given by

P(znew\ z ) =  [  [  P(znew\/3, <t2)P(/3, <t2|z) d/3 do3. (5.59)
Jd(3 Jda2

As mentioned above it can be difficult to obtain P(znew\z) analytically. The joint 

prior distribution P((3, <J2\z) in equation (5.59) can be further re-expressed using 

the probability product identity

P(/3,cr2 |z) =  P(/3\a2,z)P(cr2\z). (5.60)

Let the prior distribution on the regression parameter (3 and a2 be given by a 

weak prior such that

P(f3,a2) (x \  (5.61)
<jz

Substituting equations (5.56) and (5.61) in the posterior distribution in equa­

tion (5.54) and with little algebraic manipulation we can infer that P(/3|cr2,z) ~  

N 0 ,  ^ ( H C - ' H ) - 1) and cr2|z has an inverse-gamma distribution where P(a2|z) =  

f  P(cr2, (3\z)d(3 ~  (n — p — 2)a2X(^-p)- ft and 0-2 are unknown and need to be 

estimated (given as generalized least squares estimates in equations 5.66 and 

5.67).

Integrating over all hyperparameters values weighted by their posterior. There­

fore, equation (5.59) can be expressed as

P(znew\z)= [  [  P(znew\/3,a2)P((3\cr2,z)P(cr2\z) d(3 dcr2, (5.62) 
J df3 J da2

«  [  [  P(znew\f3, <t2)P(/3|<t2, z)(n -  p -  2)oax £ rt d/3 da2
J  d/3 J  da2

= (n — p — 2)a2x ^ _ p) [  P{znew\(3, a2)P(f.3|<r2, z)d(3.
J d p

The values of the integrand can be evaluated noting that the first term in the 

integral follows from equation (5.57), and also recorgnise that P(/3|<r2,z) ~
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N ( 0 , d 2(HC 1H)  (product of two Gaussian distribution). Therefore

P(znew\z) = (n — p — 2)fr2x ( 2_p) X iV[m*(.), a2C'(., .)]. (5.63)

where

m*(x) =  hT(x)/3 +  cC 1[z — H(x)/3]

C*(x, x') =  C*(x,x') +  (h(x)Tc(x)C~ 1 H) (HTC _1 H )_1 (h(x)Tc(x)C _1 H )T

P(znem\z) = T(„_p) (m ’ (x) (5.64)

where T(n_p) is a student t distribution with (n — p) degree of freedom (Oakley, 

1999; Murphy, 2007; Floresa et al., 2014).

M LE estim ation  of co rre la tion  p aram eters

GP. Maximum likelihood, restricted maximum likelihood and MCMC methods 

are the standard ones. Maximum likelihood is computationally feasible and de­

pends on the assumption of a multivariate Gaussian distribution. Estimation of 

the hyperparameter a  using the MLE method is described here. Noting that 

under GP regression, the prior distribution for the data z is also a Gaussian dis­

tribution.

Let the log-likelihood of the parameters be given as

where a  =  [ai , . . . ,  a n] is a vector of correlation lengths and det(C) is the deter-

There are several techniques for estimating correlation hyperparameters of the

L(/3, (j2, a)  = — i  (n — p) log(cr2) +  log(det(C)) +  (z — H/3)TC 1(z — H/3)/<r2
Zi L

(5.65)

minant of the correlation matrix C. Given a  the estimate of (3 is its generalized 

least squares estimate:

/3 =  (H C - 1 H )r H C -1z (5.66)
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and, for cr2,

C72 =
- T

( z - H (3) C (z — H/3) (5.67)
{ n - p )

In order to compute the MLE of a ,  the estimates of (3 and a2 are substituted in 

equation (5.65) and maximized over (3 and a2 to obtain

L({3, a2, a )  =  —̂  n log{d2)(a) +  log{det{C (a))) +  n (5.68)

See Santner et al. (2003); Rasmussen & Williams (2006) for further details. The 

posterior distribution is obtained as P(z\{3: <r2, a) ~  N[m'(x),<j2C*(x,x')\, with 

posterior mean function given as

ra*(x) =  h (x)/3 +  c(x)C z — H(x)/3 (5.69)

and posterior covariance

C*(x, x') =  C*(x,x') +  (h(x)Tc(x)C _1 H) (HTC _1 H )_1 (h(x)Tc(x)C _1 H )T

(5.70)

In Chapter 8  of this thesis, we use GP regression for interpolating the residual 

in the second stage of the crop yield emulator. Some results from GP and its 

comparison with the WLS for residual interpolation are also provided in Chapter

5 .6 .4  K riging

Kriging is a statistical technique that interpolates across space and allows for 

a spatial lag relationship for systematic and random components. Kriging can 

incorporate a wide range of spatial relationships to describe the hidden patterns 

across locations. It is another method for statistical emulation and it is closely 

related to Gaussian process emulation. Although we do not use this approach to 

analyse any data in this thesis, the theory and derivation behind it is similar to

78



Oyebamiji, O.K. CHAPTER 5. METHODOLOGY

GP regression (Cressie, 1993; Sacks et al., 1989). In addition, prior covariance 

function is an integral part of kriging modelling technique for measuring degree of 

spatial proximity. We will use various parametric covariance functions under the 

WLS regression for incorporating correlation parameters into our distance metric. 

In order to really understand parametric covariance functions, it is essential to 

discuss kriging, which describes its usefulness in spatial statistics.

Kriging assumes that data W(x) =  ( I T ( x i ) , . . .  , W ( x n ) )  arise from a random 

field defined on the spatial area of interest, such that the mean

E Q V ( x ) ) = Mx)

and cov(W(x)) = E. Kriging uses a linear model for interpolating W (x q) at an 

unobserved location x'0, taking

N

W(x'0) = ' £ f 3 iW(x'i),
i =1

for observed locations x [ , . . . ,  x'N, where the coefficients or weights are esti­

mated to minimize the variance of prediction error,

N  N  N

E[(w(x’0) - w(x’0 ))2]=E E x’3)+VarK) - 2 E / w*
i=1 j =1 i =1

subject to
N

E(W(x'0) -  w{x'Q)) = E  A(®o)/*(®5) -  M*o) =  0 ,
z—1

where fi(x') = E (W (x t)) and C(x[ ,x f2) = Cov(W(a^1)i W (x ,2)) is the covariance 

function of the random field W  (x ').

There are several types of kriging including simple, universal, ordinary and 

Bayesian kriging. They differ in the specification of their mean function //(x). 

For instance, simple kriging is based on the assumption that the mean function 

is a constant that can take different values for different points, universal kriging
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takes the form

Mz) = =  PTf(x),
i= 1

where — (/?i,. . . ,  j3p) are unknown regression parameters, and / (x )T =  (/i 

are known covariates depending on spatial locations. For any form of kriging the 

nature of E is specified through a covariance function relating Z(x)  and Z(y ), so 

that

cov(Z(x) ,Z(y)) = a K e(| x - y  |),

where a > 0  is a scale parameter, and 0T — (#i, . . . ,  0q) is a vector of real-valued 

structural parameters for the covariance function (Handcock &; Stein, 1993; De 

Oliveira et al., 1997). The kriging estimate of Z(x'0) is then given by

Zs(x’0) = k j K ^ Z  + b J m ,

in which k j  = {Kq{xo, £i), . . . ,  K q(xo, x n )), K q is the N  x N  matrix with (i , j ) th 

element Ke{xi^Xj) which is a function relating the covariance function to the 

distance between pair of locations, be = f ( x o) — F TKQ1ke, F  is the N  x p  matrix 

{f j(xi)}  and

fa = (Ft K q1F)~1F t K q1Z

5.6.5 P aram etric covariance functions

We investigate the covariance between each pair of scenarios in Chapter 7 to see 

how it relates to our proposed distance metric in the second stage and to deter­

mine if it will improve the efficiency of the estimated WLS regression. Covariance 

functions are often used in spatial statistics as a measure of similarity. Several 

covariance functions will be applied in the WLS fitting for residual interpolation 

in Chapter 7. The Matern model for the covariance function 7 (d) between two

80





Oyebamiji, O.K. CHAPTER 5. METHODOLOGY

points at distance d = x — x' apart is defined as

l ( d ) = 2«-ir(fc)

for K:(f):d > 0, T is the gamma function, and (3K is the modified Bessel function 

of the second kind of order k (k is a smoothness parameter). The Gaussian 

covariance model is given by

7 (d) : a2 exp(-<f)d2) — cr2e x p ( -3 ^ ) ,

the exponential covariance model is given by

7 (d) = a2 exp(—(f)d) =  <r2 exp(—3^),
<t>

and the spherical covariance model is

3 d 1 d
7 (d) = <j2(1 — —  +  )3), d < 0, and 0 otherwise

20 2 0

(Schabenberger & Gotway, 2005; Chiles & Delfiner, 1999; Cressie, 1993; Handcock 

& Stein, 1993).

5.6 .6  Variogram

Distance computations are crucial and often applied in variogram analysis to 

evaluate the magnitude of a spatial relationship, which might help in specify­

ing priors parameters in Bayesian modelling. Just like a covariance function, a 

variogram is a reliable tool for determining the degree of spatial dependence for 

any spatial random process Z(x).  It is used to estimate covariance parameters 

in geostatistics. It can also be used to compare empirical and theoretical models. 

It is the variance of the difference between field values at two different locations. 

For a set of random processes Z j, i = 1, . . . ,  n at spatial points Xi , . . . ,  xn, the
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empirical variogram in this context is defined below as

(5.71)

where N(h)  is the number of pairs of observations at lag h, such that h = \x — x'\ 

is their distance apart. A valid variogram must be symmetric and positive definite 

as we described under the GP. It is closely related to the covariance function. For 

a stationary process the relationship is 2 7 (2 ;, x') = C(x, x) +  C(x', x ') — 2C(x, x'), 

C (x ,x ) =  C(x',x') = a2 (Ecker & Gelfand, 1997; Cressie, 1993).

5.7 M odel perform ance

We assessed the performance of the emulator using other climate models that 

had not been used to construct the emulator, taking the proportion of variance 

(p) that the emulator explained as a measure of emulator efficiency. For the 

crop emulators, this proportion was calculated separately for each combination 

of climate model/irrigation regime/crop. For one combination, let y denote the 

average value given by LPJmL and let be the emulator final predictions

for the ith RCP, CO2 fertilization level j ,  management level k : time slice t and 

grid point n. Also, let yijktn denote the actual LPJmL value to which the latter 

corresponds.

We compute the squared differences between the actual LPJmL values and 

y and also compute the squared differences between the LPJmL values and the 

emulator predictions. The proportion of the variance in the LPJmL values that 

is explained by the emulator is

'  4 2 7 8 N

i = l  j —1 k = 1 1= 1 n= l

4 2 7 8 N
(5.72)

E E E E E  (y,,kin -  y )2
i = l j = l  k = l t = l n = l
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and the overall cross-validation root mean squared error (RMSE^y) is

4 2 7 8 AT 1/2

RMSEcy -  EEEEE ' i jk tn (5.73)
i=1 j = 1 k=1 t=l n=l

( 4 x 2 x 7 x 8 x i V )

The data are divided into two different groups, namely test and training data 

for cross-validation of crop yield emulators in Chapters 7 and 8. The training 

data consist of the two GCMs we used to build the emulators while another five 

GCMs are used as the test data for validation. This similar procedure is also 

applied to carbon flux emulators where we left-out some observations from the 

training GCM data. We used methods described in this chapter to fit our data. 

Some results for the percentage of variance explained are provided in Chapter 6 

for the carbon flux emulators and Chapters 7 and 8 for the crop emulators.

In this section, we discuss sensitivity analysis and various forms of sensitivity 

methods and their derivations. Sensitivity analysis aims to identify the relative 

importance of variables in a model, that is, the contribution of each variable to 

the total variance. The main objective of sensitivity analysis is to examine the 

sensitivity of the output response of a model with respect to the inputs of the 

model. Sensitivity analysis is a useful tool for understanding the behaviour of 

a predictive model. For instance, it can help identify variables or parameters 

that are irrelevant, and such variables can be removed from the final model. It 

can also assist in a calibration study for investigating the tuning importance of 

each parameter. Sensitivity analysis can be related to error propagation which is 

described as the influence that input variability will have on the model outputs. 

It is also closely related to uncertainty analysis that deals with the quantification 

of the overall uncertainty associated with the output responses as a result of the 

model input uncertainties (Monod et al., 2006; Saltelli et ah, 2000).

There are two types of sensitivity analysis, namely local sensitivity and global

5.8 Sensitiv ity  analysis
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sensitivity. Local sensitivity focuses on the local impact of the input variables. It 

is performed by computing partial derivatives of the output variables with respect 

to the input variables. The problem with a local sensitivity measure is that the 

input parameters are only allowed to vary within a small interval around their 

nominal value and this is less reliable when there are many input parameters that 

can vary simultaneously.

Global sensitivity analysis, on the other hand, distributes output uncertainty 

to the uncertainty in input variables, based on their probability distributions 

that cover the entire range of such variables. It involves the whole range of 

variations and probability distributions of the input variables. A global sensitivity 

measure can accommodate many input variables simultaneously, unlike a local 

sensitivity measure. The standard methods for performing global sensitivity are 

standardized linear regression coefficients (SRC), partial correlation coefficients 

(PCC) and Morris method. There is also a Monte Carlo Sobol method which 

computes the indices by decomposing the variance up to a specified order (Saltelli, 

2002; Santner et al., 2003). This method computes the first order and total indices 

with a minimal cost. We shall describe more fully the variance-based sensitivity 

method of Sobol that we use in this thesis. Variance based methods are model- 

free because they do not rely on model approximations. They also cover the full 

ranges of the input factors, but they can be computationally demanding as they 

require a large number of simulations.

The variance based decomposition technique is based on the Sobol principle 

(Sobol, 1993). The key principle is to decompose the total output variance D of 

the function /(x )  into summands of increasing dimensionality. The approach is 

closely related to the analysis of variance (ANOVA). Let the space of the input 

factor D be defined as

ttp = (x|0 < Xi < 1; i = 1, . . .  ,p) (5.74)
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Then we have

p
f ( x u . . . , x p) =  / o + J ] /;(£ ;)+  fi,j(xi, Xj)+. . .+/i,2,...,P(^i, • • • ,p)- (5.75)

i=l

It follows from Sobol (1993) that for equation (5.75) to hold, /o must be a constant 

and integrals of every summand over any of its variables must be zero. Therefore, 

we have

/  /*!,...,*,(£*!>• • •, x iq)dXiP =  0 provided 1 <  p < q. (5.76)
Jo

We can infer orthogonality properties from equations (5.75) and (5.76), such that 

for any (xh , . . . ,  xiq) + [xh , . . . ,  xjt), then

[  =  0 (5.77)
JQP

and similarly

f o =  [  jf(x)dx - 0 (5.78)
Jqp

Sobol (1993) evaluated equation (5.75) using multidimensional integrals

fi(xi) = ~fo + / , . . .  f /(x )d x ^ , 
Jo Jo

fij(xh X j )  = - /o  -  fi(Xi) -  fj(Xj) + / *>■• • /  f ( X)d*r Jo Jo

where d x ^  is the integration over all variables except Xi and dx^- integration over 

all variables except X{ and Xj. Higher order terms can be obtained accordingly. 

The variance of /(x )  is defined as

D = [  / 2(x ) d x - / 02, (5-79)
J q p

and partial variance for each term of equation (5.75) is

Dh,..,iq = /  f i1,...,iq(xi1, - - - , x iq)dxi1, . . . ,X iq (5.80)
Jo Jo
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1 < ii < . . .  < iq < p, and q = 1, . . .  ,p. The estimates of / 0, D  and Di are given 

respectively as f 0 = £ £  / ( x m), D  =  ± / 2(xm) -  / 02, andn
771=1  771=1

U im=l

n is the sample size used to generate MC estimates, xm is a sample point G

and X(^) (^lmj 2̂7715 • • • 5 ^(i—l)m; ^(1+1)7715 • • ■ j %pm)'

If we square and integrate equation (5.75) over Q,p and use the orthogonality 

property in equation (5.77), then

D — ^ 2  A  + ^ 2  Aj + • • • + A >2,...,p (5.81)
1 = 1 i<i< j< p

and sensitivity measures are given as

=  ^ ’y 1'  1  <  i i  <  . . .  <  i q <  P  (5.82)

where Si is the first order sensitivity index for variable Xi and measures the main 

effect, while 5# is the second order index that measures the interactive effect 

provided i ^  j  (Saltelli et al., 2000).

The general steps taken for performing sensitivity analysis involve:

(i) Design of experiment to identify questions to answer.

(ii) Determine the relevant input factors.

(iii) Assign the probability density to each input variable.

(iv) Generate a sample from each input distribution.

(v) Evaluate the model and compute the relative measure of importance of each 

input variable on the output response.

Suppose our model is represented by y = f ( X )  as defined in equation 6.1.
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The indices are given respectively as

=  Var[E{y\Xi) ] 
Var{y)

and

0 _  V a r ( y ) - V a r [ E { y \ x u . . . , X i _u x i+u . . . x p)} OA
Sri = Var(y) -----------------------------------------------------------------------  ( 5 ' 8 4 )

where Var[E(y\xi)] is the first order effect of variable Xi, and Var(y)  is the total 

variance of y. We followed this procedure for our sensitivity analysis in Chapters 

6 and 7.

The general procedure to compute the indices is to choose a probability dis­

tribution for the input variables (sampling and resampling matrices). We use this 

approach for the carbon fluxes. However, for the crop yields, we sample directly 

from the simulation data since we have a large crop data. We randomly sample 

20,000 observations across all the simulation scenarios but only from simulation 

with CO2 fertilization effects. This sample data will be used to compute the 

Monte Carlo estimates of the sensitivity indices. We present some sensitivity 

results for the carbon and crop yield emulators in Chapter 6 and 7 respectively. 

These results will provide hints on how variations in input variables or parameters 

affect the response variables.
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Chapter 6

T he em ulation o f carbon fluxes

This chapter will deal step by step with the procedures and techniques that 

we have adopted to emulate LPJmL output data. We focus on the emulation 

of carbon fluxes and construct emulators using varying techniques both for low 

resolution data (2° x 2° grid cells) and high resolution data (0.5° x 0.5° grid 

cells). The procedures are described below. We also present results from each of 

the techniques. Important questions we would like to answer at the end of this 

chapter are:

1 Can LPJmL output (vegetation) be predicted for arbitrary CO2 scenarios?

2 Can LPJmL output be predicted for arbitrary climate input?

6.1 Em ulation of carbon fluxes

The main objective in this section is to model the global terrestrial biospheric 

response to climate change and anthropogenic CO2 concentration by constructing 

a statistical emulator. This is necessary to facilitate the coupling between climate 

and impact models. Here, we assess and demonstrate the feasibility of taking 

output data from one model and using it as input data for another model. The 

results from this chapter give an insight into the feasibility of doing this for 

LPJmL land-use impact model, when its input variables are climate variables
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from the ClimGen model.

In this chapter, we adopt a linear model for the global prediction of carbon 

fluxes from LPJmL simulations. Two different datasets are analysed. In par­

ticular, we investigate the spatial relationship between NPP, HR, FC, climate 

variables and CO2 concentration for the first dataset. We also consider a regional 

model by clustering the data into five world regions. We construct an individual 

emulator for each region (although these results are not shown). We utilize a 

similar approach to construct emulators for the second dataset that represents a 

future scenario dataset with four different RCPs, namely RCP 2.6, 4.5, 6.0 and 

8.5.

In this chapter, we consider two different approaches for the modelling of the 

carbon fluxes, namely one-stage using OLS (low resolution data) and a two-stage 

technique using a combination of OLS, PCA and WLS (high resolution data).

6.2 Sim ulation data used for th is analysis

We use data from the LPJmL simulation output, which include monthly net pri­

mary productivity (NPP), heterotrophic respiration (HR) and annual fire carbon 

(FC) on a 0.5° x 0.5° resolution over land. Section 6.3 deals with the procedure 

for emulating NPP on low resolution. Both heterotrophic respiratory and fire 

carbon loss will be analysed in section 6.4 of this chapter as they are important 

determinants to complete the link from emissions to vegetation.

The climate data are provided by the MAGICC6 and ClimGen models dis­

cussed in Chapter 4. We consider two different simulation datasets in this chap­

ter. The first dataset is monthly data from 1901-2000 that describes the past 

climate. The input variables are surface temperature, precipitation, wet-day fre­

quency, vapour pressure, diurnal temperature range, near surface temperature 

maximum and near surface temperature minimum. The second dataset involves 

future scenarios from 2001-2100, corresponding to possible future emission pro­

jections. The climate variables in the second dataset are surface temperature,
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precipitation, cloud cover, wet-day frequency and anthropogenic CO2 concentra­

tion (which is annual data). There are four different RCP’s and four GCMs in 

the second dataset. There are 59199 grid cells in the data. The two sets of 

variables are both valid input variables for the emulation of the LPJmL simula­

tion data, even though the inputs to the simulator itself are the same in both 

cases (temperature, precipitation, cloud cover and wet day frequency). The three 

additional variables of near surface temperature minimum, near surface tempera­

ture maximum and diurnal temperature range (that are not provided to the 21st 

century emulator) are summary statistics, which can be derived from simulator 

input variables. Summary statistics are interesting to consider as inputs as they 

have been used to model the effects of climate change on terrestrial ecosystems 

in the literature.

In section 6.3, we shall consider only one GCM (UKMO-HADGEM1) while in 

section 6.4 we shall use all four GCMs. Our analyses involve all the four RCPs. 

The reason for the inclusion of several RCPs in our model is to incorporate 

information on different emission profiles. Their inclusion gives a broad range of 

emission pathways.

6.3 Em ulation of N P P  using OLS: low resolu­

tion

Carbon flux emulators include emulators for NPP, HR and FC. Here, we present 

the results for an NPP emulator that uses a low resolution so as to reduce the 

dimension of the data and make the data more manageable for emulation. The 

dimension of the grid cell was increased to 2° x 2° resolution, which made handling 

and processing of the data much easier. We chose to handle the large temporal 

variability that occurs at high spatial resolution by averaging the monthly data 

to decadal values. The average decadal NPP given by LPJmL was computed for 

each 2° x 2° grid cell. We then obtained the change in NPP between every two
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successive decades. We applied the change in seasonal climate, initial seasonal 

climate and latitude as explanatory variables in an ordinary least squares regres­

sion. We included CO2 concentration as an additional input to the 2001-2100 

data. The input variables are listed in Table D .l of Appendix D except that the 

variables LAI and soil were not included. We left-out 500 observations from each 

decade for cross-validation purposes.

Before we fitted the regression, the descriptive statistics for decadal NPP 

(Table 6.1) were computed for the first dataset. This enables the distribution of 

NPP to be examined. Our analysis involves prediction of the global average NPP 

change for 10 time-slices from 1901-2000 as a function of the input variables. We 

also predicted mean decadal change in NPP between the first and last decade, as 

well as regional predictions by clustering the data into five world regions that are 

each emulated separately.

To construct our emulator for the prediction of NPP change for all decades, 

we model the LPJmL simulation output by fitting a quadratic model to the data:

y — /(X )+ e  — A)+/3i£i+- • .+fipxp+(3lx \ l+ . . .+(3px 2pp-\-(3l 2x\X2~\-----

(6 .1)

where y is the LPJmL simulated mean decadal NPP change, p is the number 

of parameters for estimation and x i , . . . , x p are independent variables. They are 

seasonal climate variables, CO2 , and CO2 change. We assume e ~  A(0,cr2).

We built the emulator using the M A S S  package in R (2013) and combined 

this with a stepwise algorithm to reduce the number of terms in the model, as 

in Holden et al. (2010a,b). This is similar to Box (1988) who earlier used a 

regression-based approach to establishing an empirical relationship between cli­

mate and NPP. For the variable selection procedure, both forward and backward 

stepwise regressions were used to fit the model. In the forward stepwise mode, 

we fitted a linear model (starting from a null model), and variables were included 

step by step until the algorithm selected about 250 terms in the model. AIC
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was used as the stopping rule criterion. This process was followed by backward 

elimination using BIC where non-significant variables are removed step by step 

until BIC would be reduced by any further removal. BIC is a more stringent 

criteria for variable selection than AIC so the number of terms in a model was 

reduced substantially.

Having built the emulators, we also performed a sensitivity analysis to exam­

ine the relative contribution of each input variable in our respective models. As 

explained in section 5.8 of Chapter 5, calculating the total effects of each explana­

tory variable helps identify the relative importance of variables in a model, that 

is, the contribution of each variable to the total variance. We use the Sobol global 

sensitivity method. This computes the indices by decomposing the variance up to 

a specified order. The method we used computes the first order and total indices 

with a minimal cost. Suppose our model is represented by y = /(X ) as defined 

in equation 6.1. The indices are given respectively by equations (5.83) and (5.84) 

where Var[E{y\xj)) is the first order or main effect of variable Xj, and Var(y ) is 

the total variance of the response y. Srj  is the result of the main effect of Xj and 

all its interaction with other parameters up to order p (Saltelli, 2002; Santner et 

al., 2003).

We assumed that all our input variables were from a Gaussian distribution; we 

generate a Monte Carlo sample of 20000 observations to estimate the sensitivity 

indices. This procedure is automated in the sensitivity  package of R (2013).

In Table 6.1, the minimum decadal NPP is -1.3920 gCm~2 so in 1931-1940, in 

that decade, the total respiratory carbon loss exceeded the total carbon fixed by 

the plants for a particular grid cell. The median NPP is the same for the first two 

decades at 28.52 gCm~2. Similarly, mean decadal NPP is the same for decades 

1 and 2, both the NPP decadal mean and median are increasing with time. The 

last decade in the century has the highest median and mean NPP (31.8 and 33.53 

gCm ~2) respectively. The maximum NPP for the century occurs in 1961-1970 

with 145.8 gCm~2. The data are fairly skewed, we could have transformed the
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Table 6.1: Summary of mean decadal NPP in gCm 2 for 10 time-slices from 1901-2000. 
The results show the mean and quartiles

Year Min 1st Qu. median mean 3rd Qu. max
1901-1910 0.7967 6.6290 28.5200 29.9700 43.6500 123.2000
1911-1920 -0.7967 6.6290 28.5200 29.9700 43.6500 123.2000
1921-1930 -0.7537 7.0390 28.5500 30.1700 43.8200 117.6000
1931-1940 -1.3920 7.1400 29.1300 30.4300 43.7600 130.4000
1941-1950 -0.7262 7.5730 29.3400 30.8400 44.7500 139.9000
1951-1960 -0.7262 7.5730 29.3400 30.8400 44.7500 139.9000
1961-1970 -0.5127 8.2390 29.0500 31.2500 45.2900 145.8000
1971-1980 -0.1701 8.9090 30.3800 32.3500 46.1100 142.9000
1981-1990 -0.6856 9.2290 30.7000 32.6200 46.9200 144.6000
1991-2000 -0.5185 10.8500 31.8000 33.5300 47.8000 138.7000

Table 6.2: Proportion of variance p obtained from the prediction of mean NPP changes 
for successive decades, using seasonal climate change, baseline climate and CO2 as 
inputs. The stepwise algorithm selects about 180 terms in the model.

p for p for 2001-2100
1901-2000 RCP3 RCP4.5 RCP6 RCP8.5

Decades (1 & 2) 0.74 0.94 0.95 0.94 0.89
Decades (2 &; 3) 0.78 0.96 0.96 0.95 0.82
Decades (4 & 5) 0.79 0.94 0.95 0.95 0.91
Decades (9 & 10) 0.73 0.92 0.93 0.93 0.91

All time-slices
All decades 0.79 0.81 0.83 0.82 0.52
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data represent a normal sampling.

Table 6.2 (above) shows the p values from various quadratic models fitted to 

each decadal change in NPP for the two datasets. For the period 1901-2000, these 

models explained at least 73% of the variance in the response variable, and the 

best model explained 79% of the response variance for NPP change in decades 

(9 to 10) and (4 & 5) respectively (Table 6.2). The result of decades 4 & 5 is 

further examined in Figures 6.1 and 6.2. For the future scenario data with four 

RCP’s, the response variance of NPP under RCP 8.5 is explained less well than 

for other RCP’s. We have p as high as 0.96 for the predicted change in NPP 

between decades (2 & 3) for RCP 3 and RCP 4.5. The emulation results are 

generally much better for the future simulations than for the past simulations, 

probably because the changes in carbon flux under future scenarios are larger, 

increasing the signal to noise ratio relative to the past climate data.

The bottom row of Table 6.2 shows the results for a model fitted to the 

aggregated data that is, fitting a single model to the entire data. This procedure 

enables us to include CO2 and CO2 change as inputs into the model. The CO2 

can only be included as an input to the model by aggregating all the data because 

the CO2 data are not spatially resolved; they are a global average. The results 

are generally good with p > 0.80 except for RCP 8.5 where p = 0.52. The model 

fitted to individual decadal data is consistently better than the joint model, as 

perhaps one would expect.

Figure 6.1(a) shows diagnostic plots for the fitted model used for predicting 

mean decadal change in NPP between decades 4 & 5. It indicates that our fit­

ted models (emulators) satisfy the basic assumptions of linear regression. First, 

the fitted vs. residual plots are evenly scattered, showing no evidences of het- 

eroscedality. Second, the normal QQ-plot (top-right) is almost a perfect straight 

line, suggesting that the assumption of normality is not seriously violated. The 

scale-location plot of the standardized residual against the fitted values also in­

dicates that most of the points are within 2 standard deviations of the regression
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Figure 6.1: Mean decadal NPP change in gCrrT2 between (1931-1940) & (1941-1950): 
(a) diagnostic plots; (b) pair plot between observed and predicted change in NPP; (c 
& d) spatial plots of observed and predicted NPP change. The observed values (c) are 
the simulated NPP values given by the LPJmL model while the predicted values (d) 
are the given by the emulator
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Figure 6.2: Mean decadal NPP change in gC m ~2 between (1931-1940) & (1941-1950): 
(a) & (b) spatial maps for the 500 points omitted for cross-validation, observed (a) and 
validated (b) respectively; (c) sensitivity index for variable importance; (d, e & f) are 
spatial plots of the 3 most important predictors, namely summer diurnal temperature 
range (d), spring temperature (e) and summer temperature minimum (f).

96



Oyebamiji, O.K. CHAPTER 6. THE EMULATION OF CARBON FLUXES

Figure 6.3: Plots of the long-term mean decadal NPP for the four RCPs future scenarios 
(2001-2100) from UKMO-HADGEM1.
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line while the bottom-right plot identifies few visible outliers in the large dataset.

Figure 6.1(b) is a pairwise plot of the observed NPP (LPJmL simulated) and 

the predictions given by the emulator. The plot clearly shows a high correlation 

between them; there is a correlation of 0.92 between the observed and predicted 

values. Figure 6.1(c & d) are the spatial plots of observed and predicted change 

in NPP. The observed global pattern of NPP is very similar to our model’s pre­

dictions.

Figure 6.2(a & b) are spatial plots comparing the emulator with LPJmL for 

the 500 observations left-out for cross-validation. The results indicate that the 

model does relatively well in most regions. Figure 6.2(c) is a sensitivity index 

plot for the relative contribution of each predictor in the model. This identifies 

variables that are more relevant for predicting the true dynamics of change in 

NPP between decades 4 & 5. The model identifies the three most important 

predictors as summer diurnal temperature range (sdtr), summer temperature 

minimum (stmn) and spring temperature (sptmp). Although these significant 

variables are absent in the future data, they are correlated with temperature 

which is present in the 21st century data. As mentioned under section 6.2, these 

three variables can be derived from other input variables.

Their spatial distribution is given in Figures 6.2(d-f). Overall, temperature 

seems to be the most important factor for determining the global NPP level.

Figure 6.3 shows the long-term mean decadal NPP for the four RCPs future 

scenarios. It gives a plausible description of the future NPP pattern under future 

climate change and CO2 emissions. The plot shows a low NPP level for RCP3. 

The RCPs 4.5 and 6 scenarios give rise to a slight increase in NPP level. For 

RCP 3, NPP level is increasing but very slowly while for RCP 8.5 the increase is 

about an order of magnitude greater.

Figure 6.4 shows the results of the model for the prediction of mean decadal 

change in NPP between decades 2 & 3 for RCP3. Figure 6.4(a) is the diagnostics 

plot for checking the model assumptions (cf Figure 6.1(a)). None of the assump-
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Figure 6.4: Diagnostic plots for the mean decadal change predictions of NPP in gC m ~2 
for period between 2011-2020 & 2021-2030 for RCP3; (b) sensitivity index for important 
variable; (c) pairwise plot between observed (LPJmL) and predicted (emulated) NPP 
change for the whole century; (d) pairwise plot between observed and predicted NPP 
change.
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Figure 6.5: Spatial plots for predictions of mean decadal change in NPP between 2011- 
2020 & 2021-2030 for RCP3, (a) observed and predicted NPP change (gC m ~2); (b) 
change in summer temperature (cstmp) and change in winter temperature (cwtmp) in 
°C. The plots of other significant variables are not shown.
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Sensitivity indices for decades (1 & 2) Sensitivity indices for decades (3 & 4)

Sensitivity indices for decades (4 & 5) Sensitivity indices for decades (5 & 6)

Figure 6.6: Sensitivity index for the predicted mean decadal NPP change between 
decades (1 & 2) top-left, (3 & 4) top-right, (4 & 5) bottom-left and (5 & 6) bottom- 
right plots for RCP3. Note: each decade of data is modelled independently.

tions seem to have been seriously violated by our fitted model. The residual vs. 

fitted plots are uniformly scattered, and the QQ plot is almost a straight line, 

except for the end of the plot.

Figure 6.4(b) is the sensitivity index for the fitted model and identifies the four 

most im portant predictors. These were change in summer tem perature, change 

in winter tem perature, change in spring wetday frequency and change in au tum n 

wetday frequency. Thus, in this model, tem peratu re and wet-day frequency are 

the im portant climate variables for the prediction of global mean decadal N PP  

change.
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Figure 6.7: Boxplots comparing the observed (simulated by LPJmL) and predicted 
(emulated) mean decadal NPP in gCm~2 for decades (1-4); top-left, top-right, bottom- 
left and bottom-right plots respectively for RCP3
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Figure 6.4(c) is a pairwise plot that shows high correlation between the ob­

served and predicted NPP (correlation of 0.96) for the whole century (aggregated 

data). This is obtained by adding the previous predicted mean decadal NPP 

(absolute) to the predicted mean decadal change. It will be used as a guide to try 

to improve on our emulator, while Figure 6.4(d) is the plot of observed (LPJmL) 

against predicted (emulated) NPP for (2011-2020) and (2021-2030).

Figure 6.5 shows the mapping of observed and predicted NPP and the two 

most significant variables for prediction. The fitted model predicted the simula­

tion output well, especially in the tropical climate and high latitude regions. For 

instance, the predicted and observed NPP change in the upper latitude regions 

are almost the same.

Figure 6.6 gives the sensitivity index plots for the fitted model of NPP change 

between decades (1 & 2), (3 & 4), (4 & 5) and (5 & 6). Temperature and wetday 

frequency were the most significant predictors of NPP change. It is interesting to 

see that different variables are picked as its significant variables in the different 

plots. Each decade of data is modelled independently and there is a possibility 

that the stepwise algorithm picked different combination of terms in the final 

model.

Figure 6.7 gives the boxplots that compare the distribution of simulated NPP 

(LPJmL) and the NPP predicted from the emulator for decades (1-4). The me­

dian decadal NPP for both the LPJmL and emulator are virtually identical in 

all four decades (about 40 gCm~2), slightly lower for decades 1 and 2. There are 

noticeable outliers for both the LPJmL and emulator in each decade.
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6.4 Em ulation o f carbon fluxes using com bina­

tion  of OLS, PC  A and WLS: high resolution

We extend the approach of the last section for the 2001-2100 data, where we 

described the procedure for emulating NPP using OLS on low-resolution data. 

We would like to emulate NPP, FC and HR at high spatial resolution in order to 

capture detailed representation of their spatial patterns. High spatial resolution 

data provide more useful information than low resolution data. Secondly, the 

modelling in this section is extended into a two-stage approach, where we use the 

OLS method as in the previous section 6.3 but incorporate an additional step 

for residual analysis. Residual analysis will enable us to interpolate unexplained 

variation in the OLS results and improve estimation.

6.4.1 A  procedure for sta tistica l em ulation

Here we consider an emulation of the change in mean decadal value of carbon 

fluxes (NPP, FC and HR). We first model the carbon responses using the OLS 

regression approach. For modelling NPP and FC, we applied precisely the same 

procedures as in section 6.3 but there is a modification for modelling heterotrophic 

respiration (HR). The motivation for HR, like NPP and FC, is to understand 

its dynamics under future climate change. HR is characterized by high spatial 

variability, and it is usually positively correlated with mean annual temperature 

(Tuomi et al., 2008; Raich et al., 2002). Our HR modelling will provide a better 

understanding of the carbon exchange between terrestrial ecosystems and the 

atmosphere.

Most analyses of HR have considered the change of HR as the temperature 

increases by 10 °C (Lloyd k  Taylor, 1994). A widely used model for the growth of 

respiration rate as a function of temperature is the exponential function (Tuomi et 

al., 2008; Suseela et al., 2012). Cox et al. (2000) indicated that temperature, with 

the availability of sufficient water, will always increase HR. Berridge et al. (2003)
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emphasise the dependence of soil respiration on climate and in a recent study, 

Wang et al. (2014) reinforced the increase in the rate of heterotrophic respiration 

under global warming. Given the exponential dependence on temperature, we 

modelled the change in HR between any two successive decades after a logarithm 

transformation. That is, the dependent variable is

Where 5 is the mean decadal change in HR after a log-transformation and Yj is 

the HR value in j th decade for LPJmL. After transforming the HR data, we then 

apply equation (6.1) to fit the regression model.

values of LPJML and the predictions from emulator are low and vary between 

0.38-0.54 for HR. We tried introducing additional explanatory variables (eg lat­

itude) to improve the models with no substantial improvement. We then per­

formed a residual analysis of the results to look for any visible patterns. The 

residual plots for HR (see Figures 6.8, 6.9, 6.10) clearly indicated some similar­

ity in spatial patterns both across the GCMs and RCPs. The major motivation 

for the second stage approach is to improve results. The OLS regression ignores 

spatial relationships in the dataset, but a grid cell has features that are not all 

captured by the explanatory variables. The second stage of the analyses allows 

for a more general multilinear relationship in the residuals. Our approach is re­

lated to the technique suggested in O’Hagan (2006), which involves combining 

a regression with a GP for improved emulator performance. The procedure is 

described in the next section.

6.4.2 F irst stage algorithm

The average decadal flux given by LPJmL from 2001-2100 was computed for 

each carbon flux in each grid cell. We then obtained the change in carbon flux

5 = log(YJ+i) -  log(Yj) =  log (6 .2)

We observed from the OLS results that the correlation between the observed
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Figure 6.8: Residual map for the mean decadal change in heterotrophic respiration 
between (2055-2064) and (2065-2074), RCP 6 and RCP8.5 for UK MO-HAD GEM 1.
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Figure 6.9: Residual map for the mean decadal change in heterotrophic respiration 
between (2055-2064) and (2065-2074), RCP 6 and RCP8.5 for IPSL-CM4.
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Figure 6.10: Residual map for the mean decadal change in heterotrophic respiration 
between (2055-2064) and (2065-2074), RCP 6 and RCP8.5 for GISS-MODELEH.

between any two successive decades. We calculated the change in seasonal climate 

variables for the input variables.

The emulators were built from three GCMs, GISS-MODELER, UKMO-HADGEM1, 

and IPSL-CM4, four RCPs, giving 12 (3 x 4) different scenarios. Each scenario 

has nine time-slices, with each time-slice consisting of 59199 observations. An­

other GCM, CCSR-MIROC32HI was used for the cross-validation to evaluate the 

performance of the carbon flux emulators. We use observations from 10000 ran­

domly sampled grid points because the stepwise algorithm could not fit the whole 

dataset. The 10000 grid points are fixed across the time-slice, RCP, GCM. We 

fitted a single model to the sampled data for each carbon flux. This procedure 

enables LPJmL emulators to predict the change in carbon flux for a range of 

climate forcing scenarios that are not restricted to the RCPs and climate models 

(GCMs) used to construct them.

An emulator is constructed in two stages. Stage 1 is essentially the same as 

the OLS (low dimension) emulator described in section 6.3 except that it was
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built using the Revolution R  Enterprise, which has a mechanism for scaling data 

to handle big computation. We are now using more data because it is high 

resolution rather than the low resolution. The response variable is the change in 

carbon flux (NPP, HR and FC) between any two consecutive decades given by 

LPJmL and is denoted by y. As noted earlier, each combination of RCP and 

GCM is referred to as a scenario, giving 12 scenarios (3 GCMs, 4 RCPs). Let N  

denote the number of grid cells for each carbon flux. LPJmL gave values for nine 

different time slices. Hence y has 12 x 9 x N  data values, where y as defined in 

above. The input variables are listed in Table D .l of Appendix D excluding LAI 

and soil.

The explanatory variables can enter the regression as linear or quadratic terms. 

All two-way interactions were also considered for inclusion. Thus spre, spre2 and 

spre.wwet are examples of the potential terms in the regression model.

First stage sum m ary

The following are the steps for building the first stage algorithm of the emulator

(i) Compute the LPJmL average decadal NPP for each time-steps, RCPs, 

GCMs.

(ii) Randomly sample 10000 grid points from the global data. The sampled 

grid points are applied across the time-step, RCP, GCM.

(iii) Perform steps (i-ii) on the input variables as well.

(iv) Fit the model using equation 6.1 above with automated stepwise function 

in Revolution R.

(v) Obtain both prediction and error of predictions for all scenarios (time-step, 

RCP, GCM).

(vi) Repeat steps (i-v) for HR and FC.
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6.4 .3  Second stage algorithm

The second stage combines the PC A with WLS regression to explain some of the 

residual variation that is left unexplained by the first stage. In contrast to stage 

1, here we form a separate emulator for each time slice. A scenario is defined 

as any combination of RCP and GCM. In this section, we have 12 scenarios 

(3 GCMs x 4 RCPs). The distance between scenario points is the sum of the 

square differences between the set of known and unknown scenarios scaled by 

their eigenvalues. This will be used in the computation of estimated weights for 

the WLS regression. Consider just a single time point for NPP and let y$ be 

the vector of changes in NPP given by LPJmL for that combination in the ith 

known scenario (z =  1, . . . ,  12). We let y* be the corresponding predictions given 

by the stage 1 emulator and e* = y* — y* is the error in prediction. Each y* 
and £{ is an N  x 1 vector, where N  denotes the number of grid cells for the 

NPP (N=59199). As yi,... ,yi2 are predictions on training data, the values of 

£ i , . . . ,  £ 1 2  are known.

Given a new vector of predictions, y*, from a fresh scenario (any arbitrary 

RCP/GCM combinations) of NPP where the LPJmLem values are unknown, the 

aim is to estimate the error of y* from E  =  (eq,. . . ,  e 12) and Y  =  ( y i , . . . ,  y i2 )- 

We apply a PC decomposition to the 12 x N  matrix Y T and select just the first 

four principal components. The resulting 12 x 4 matrix X 0 of PC scores given 

by these four components is then used as explanatory variables for the WLS 

regression of our residual patterns E. Details are given in the next section.

Our method in this stage is similar to a pattern scaling approach that is 

commonly used in climate scenario generation. Pattern scaling assumes that 

given any particular point in space and time, there exists a linear relationship 

between climate change pattern and global mean temperature with a constant 

spatial pattern. Here, we allow for a more general multilinear relationship in 

the residual (c.f. Holden et al. (2014)). As noted earlier, the residual patterns 

from the OLS results in stage 1 indicated that the residual patterns are relatively
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similar across RCP and GCM (see Figures 6.8, 6.9 and 6.10 for HR residual 

patterns). Hence, for example, if a grid cell has a negative residual in one scenario, 

then that grid cell is likely to have a negative residual for other scenarios. Stage 

2 exploits the similarity between the error patterns across scenarios.

Having obtained the residuals E by calculating the differences between the 

emulator predictions and the actual LPJmL values for each scenario, we then in­

terpolate these residual patterns using distance-weighted regression. More weight 

is assigned to known scenarios that are similar in pattern to the unknown sce­

nario, with similarity determined by the distances from the known scenario points 

y*}•••} y i2 to the unknown scenario y*; closer scenarios are more similar and re­

ceive greater weight.

There is a need to take account of the distance between scenario points when 

modelling the residual. We tried linear, square and cubic distance metrics. We 

chose a squared distance method scaled by the eigenvalues because it is amongst 

the best metrics in terms of the proportion of variance it explained (equation 

5.72). The same weighting scheme is applied across all grid points. The weights 

form the non-zero elements of a 12 x 12 diagonal matrix, W .

A separate weighted regression is performed for each grid cell. For the nth cell, 

the dependent variable is the nth row of E, (n =  1 , . . . ,  N) but the data matrix 

for the explanatory variables (Xo) and the weight matrix (W) are the same for 

each grid cell. Thus most of the calculations for estimating regression coefficients 

need only be performed once, rather than once for each grid cell. From the stage 

1 predictions for the new scenario, y*, we calculate its PC score (x*) and use the 

regression equation for the nth grid cell to estimate the error in prediction for 

that cell. If £* is the resulting estimate then we revise the prediction for the cell 

by adding e* to it.
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6.4 .4  C alcu lation  in stage 2

Predictions given by stage 1 for the 12 training scenarios form the N  x 12 matrix 

Y  =  (yi, • • •, y i2). Usually a principal component (PC) analysis would be applied 

to Y: in the standard data analysis problem, each column of Y  would relate to 

a different variable and the aim would be to condense the different variables into 

a few components. Here, each column of Y  corresponds to a different scenario 

and these different scenarios must retain their identities. However, we want to 

condense the information given by the N  grid points into a few summary statistics. 

Thus, we want to reduce the number of rows (rather than the number of columns) 

so a principal component analysis is applied to Y T. The spectral decomposition 

theorem gives

Y Y t =  T A rT (6.3)

where A =  diag(Ai,. . . ,  An ) is a diagonal matrix of eigenvalues Ai >  A2 >  . . .  > 

Ajv, and T  =  (7 i , - - - , 7 jv) is an N  x N  orthogonal matrix, where 7 i is the 

eigenvector corresponding to A*. The rank of Y Y T is 1 2  (or possibly less), so 

A1 3 , A14 . . .  and An  each equal 0. The PC transformation from y  G to x  G M12 

is given by

y r Ty =  x. (6.4)

Put Xf =  T Tf i  for i =  1 , . . . ,  12 and put x* =  r Ty*, where y* are the stage 1 

predictions for the new scenario. Then (y* — yi)T(y* — y*) =  (x* — Xi)T(x* — x*). 

We wish to give more importance to the eigenvectors that correspond to large 

eigenvalues, so we define the distance between y* and y» as

' N 1/2 ‘ 12 1/2

=

J = 1

—

J = 1

where x*j and X{j are the j th components of x* and 5c*, respectively.

In forming regression equations, we use only the first four principal compo­

nents; for every carbon flux/time slice combination, these explained at least 95%

111



Oyebamiji, O.K. CHAPTER 6. THE EMULATION OF CARBON FLUXES

of the variation in Y. Let T be the first four columns of T, so f  =  (7 l5  7 2 , 7 3 , 7 4 ). 

We put X =  Y Tf .

Let y i be the i V x l  vector of observations given by LPJmL for the ith scenario 

of the training set (i =  1 , . . . ,  12); is the corresponding vector of prediction 

given by stage 1, and £i = yi — yi gives the error in the stage 1 predictions. A 

weighted least squares (WLS) regression is used to estimate e*, the corresponding 

error in y*. A separate regression equation is determined for each component of 

e*. We put E  =  (ei}. . . ,  e i2) so for the j th regression (the j th grid cell) the values 

of the dependent variable are e j ,  where e j  is the j th row of E.

If any distance di is close to 0, then weighted regression is unnecessary as 

the scenario with the zero-distance gets a weight of infinity, and the errors for 

that scenario are taken as the errors in y*. Sometimes the distance equals 0  

for more than one scenario and then the errors for those scenarios are averaged. 

Specifically, if Q denotes the set of integers such that di = 0 for i E Q, then the 

vector of estimated error for the new scenario is e* =  J2ieQ£i' ^or non_zero di, 

the weights Wi (i = 1 , . . . ,  12) and weight matrix W  are defined as

0 ... o '

w 2 ’ •• :

0

. . .  0  w 12J

We take one grid point at a time and form a separate regression equation for 

that grid point. The data for one of these regressions is the (12 x 1) vector of 

responses Sj (the errors at that grid point) and the (12 x 4) matrix X, which 

holds the values taken by the explanatory variables. So as to include a constant 

term in the regression model, we put X 0 =  X. The weighted linear regression 

uses W  as the weight-matrix.

For the nth grid point, the regression model is E (en | x0) =  / ^ x 0 where en is 

a random variable whose observed value is the ith component of £n when x j  is

Wi = (!/<$) and W  =

w 1 

0
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the ith row of X 0. The WLS estimate of /3n is

b n =  (X jW X 0)_1Xo W en. (A.4)

For the new scenario, put x j =  rTy*. Then the estimate of the prediction error
^  T

in y* at the n grid point is £* = /3nxJ, which (using (A.4)) can be written as

e* = eJW X 0(X jW X 0)-1xJ. (6.6)

Equation (6.6) estimates the prediction error separately for each grid cell. To 

combine the calculations for all grid cells into a single step, let e* — (£*,... ,e)v)T. 

Then the equation for estimating all the residuals in y* is given as

r  =  E t W X 0 (X J  W X 0)_ 1 x j . (6.7)

The similarity of our method to pattern scaling stems from this equation. The 

vector e* is the estimated error pattern for the new scenario and e* is the (known)

error pattern for the ith training scenario. If we put W X 0(Xq W Xo)-1xj5 =

(aq, . . . ,  aq2)T, then (6.7) may be written as

12

£  ^  ^ EjLj£j,

i = 1

the estimated error pattern for the new scenario is simply a linear combination 

of the error patterns of the training scenarios.

To avoid extrapolation, we bound the nth component of £* to be within the 

range of en. Let £ ^ denote the resulting vector when a component of e* is set 

equal to any bound it exceeds. We take y* = y* +  as the emulated value of y 

for the new scenario.
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Second stage sum m ary

The following is a summary of the calculations in Stage 2.

(i) Perform a principal components analysis of YTY. The non-zero eigenvalues 

are Ai > A2 > • • • > A12 and the corresponding eigenvectors are 7 l 5 . . . ,  7 12. 

Put x* =  (7 1}. . .  , 7 i2 )Ty* and 5c* =  (7 ^  . . .  , 7 i2)Tyi for z =  1, . . . ,  12.

(ii) Denote the j th components of x* and 5c* by x£ and a^-, respectively. Then 

W\ , . . . ,  W\2 are the non-zero elements of the diagonal matrix W , where 

Wi =  with dj = Y^jLi *Axj -  Xij)2-

(iii) The explanatory variables for the WLS regression are constructed from the 

first four eigenvectors of T.  We put T = (7 1 , 7 2 , 7 3 , 7 4 ) and Xo =  YTr.

(iv) Weighted least squares gives (3n = (Xj1W X 0)_1X jW e n as the vector of 

regression coefficients for the nth grid cell, where is the nth row of E.

A rp a

(v) The estimated error for the nth grid cell is £* =  /3nxJ, where xj$ =  r Ty*.

(vi) In order to avoid unusual values and prevent too much extrapolation from 

known residuals, we compare £*, with each component of en. Let (£™m, £™ax) 

denote the range of these components. If £*n is outside this range, we set it 

equal to the range’s nearer endpoint. Thus the revised estimate of y for the 

nth grid point is y* +  ejf, where y* is the nth component of y* and

£t = <

•r ^  _min  
11 t n ^  fcra

if £™in < £ t <  £™ax (6-8)

if £* > £mc n c n

Our methods described above are flexible to apply. We present the results from 

the carbon fluxes emulator after performing the residual analysis of the second 

stage.
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6.5 R esults

Before fitting the OLS regression to the 2001-2100 dataset, we first plot the 

histograms of our response data in Figure 6.11 to show the distribution and 

summarise the data. We can see from Figures 6.11 that the distributions are 

fairly symmetric and normal, about 95% of the NPP data are within -10 to 15 

g C/ m2, for fire carbon that varies between -20 to 20 gC/ m2. Similarly, Figure 

6.12 which is for respiration after logarithm transformation, the values range from 

-0.4 to 0.5.

Histogram of NPP

-20  -10  0 10 20 
mean change in NPP (gC/mA2)

(a)
Histogram of FC

-30  -20 -10 0 10 20 30
mean change in FC (gC/mA2)

(b)

Figure 6.11: Histogram of mean decadal changes in NPP and FC respectively (gC/m2) 
for all time points, RCPs and 3GCMs.

Figures 6.13, 6.13 and 6.13 are pairwise diagnostic plots for NPP, FC and 

HR. They compare the performance of the emulator among RCPs for the periods 

between (2055-2064) and (2065-2074). We can see that the correlation between 

the emulator and LPJmL is high for NPP in Figure 6.13 with the 45° passing 

through the center of the cloud. LPJmL outputs are relatively well predicted in 

all the four RCPs and similarly for HR in Figure 6.14. Fire carbon is also fairly
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Histogram of HR

-0.4 -0.2 0.0 0.2 0.4
mean change in HR

Figure 6.12: Histogram for the mean decadal change in HR for all time points, RCPs 
and 3GCMs. NOTE: these values have been log-transformed.
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L PJm L  v e r s u s  e m u la to r  R C P6 L P Jm L  v e rs u s  e m u la to r  RC P85

Figure 6.13: LPJmL versus emulator prediction for the mean decadal change in 
NPP (gC/m2) between (2055-2064) and (2065-2074), for the four RCPs and CCSR- 
MIROC32HI.

well predicted. There is a relatively good agreement between the LPJmL values 

and emulator predictions.

Table 6.3 indicates the performance of the three carbon emulators across the 

time point (decade). The values are the proportion of variance explained by the 

emulator for the cross-validated data. The values are decreasing with time espe­

cially for NPP, and this is expected because we modelled change in carbon fluxes 

between two consecutive decades thereby accumulating the emulator error. The 

proportion is also relatively decreasing with time for FC except at the I s* decadal 

change that has 57% variance. There is no visible pattern for the respiration.
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Figure 6.14: LPJmL versus emulator prediction for the mean decadal change in het­
erotrophic respiration (back-transformed from logarithm) between (2055-2064) and 
(2065-2074), for the four RCPs and CCSR-MIROC32HI.
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Figure 6.15: LPJmL versus emulator prediction for the mean decadal change in fire 
carbon (gC/m2) between (2035-2044) and (2045-2054), for the four RCPs and CCSR- 
MIROC32HI.

NPP emulator seems to estimate LPJmL values much better than for HR and 

FC emulator. The percentage of variance explained varies between 66 — 92% for
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NPP, between 58 — 84% for HR and between 45-90% for the fire carbon emulator. 

Table 6.4 provides the overall performance of the emulator for each RCP. We 

observed that the emulator performs less well under RCP 8.5 than for other 

RCPs. This may be because RCP 8.5 is an extreme and so there may be climate 

states that are not well sampled in the training data. The last column of Table

6.4 gives the overall proportion of variance explained by these emulation.

Table 6.3: Table of cross-validated proportion of variance p showing the performance 
of the emulators for NPP, HR and FC for each time point from CCSR-MIROC32HI.

decade j / carbon 1 2 3 4 5 6 7 8

NPP 0.92 0.87 0.81 0.77 0.71 0.75 0.70 0 . 6 6

HR 0.84 0.76 0.70 0.58 0.67 0.69 0.69 0.60
FC 0.57 0.90 0.76 0.60 0.59 0.63 0.52 0.45

Table 6.4: Table of cross-validated proportion of variance p showing the overall per­
formance of the emulators for NPP, HR and FC for all RCPs and time slices from 
CCSR-MIROC32HI.

RCP/carbon RCP3PD RCP4.5 RCP6 RCP8.5 Overall
NPP 0.85 0.78 0.78 0 . 6 8 0.77
HR 0.76 0.74 0 . 6 6 0.60 0.70
FC 0.73 0.72 0.73 0.63 0.61

Figures 6.16, 6.17 and 6.18 are the spatial maps comparing LPJmL with 

emulator predictions for NPP, HR and FC. The results are for the period (2055- 

2064) and (2065-2074), RCP 6  and 8.5. LPJmL and the emulators agree relatively 

well in most of the regions for both RCPs, although the NPP emulator under RCP

8.5 seems to under-predict the fluxes in Russia and Europe. Large carbon changes 

are observed in some places in Brazil, Russia and USA, while there are relatively 

small changes estimated in subtropical regions for both RCPs. The reduction 

in carbon fluxes in these regions can be attributed to rising temperature and 

cloudiness. LPJmL is over-estimated by the emulator in every region in Figure

6.17. There are some large extreme changes in a few areas under RCP 8.5. Figure

6.18, comparing the fire carbon, changes are over-estimated by the emulator for 

RCP6 . RCP8.5 is also less well predicted. The potential for wide occurrence of a
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large amount of carbon due to fire outbreak is relatively high. Most regions have 

large increases in carbon loss due to fire disturbance, especially for R.CP 8.5.
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Figure 6.16: Cross-validated spatial map for the mean decadal change in NPP (gC/m2) 
between (2055-2064) and (2065-2074), RCP 6 and RCP8.5 for CCSR-MIROC32HI.
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Figure 6.17: Cross-validated spatial map for the mean decadal change in logarithm of 
heterotrophic respiration (back-transformed from logarithm) between (2055-2064) and 
(2065-2074), RCP 6 and RCP8.5 for CCSR-MIROC32HI
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Figure 6.18: Cross-validated spatial map for the mean decadal change in fire car­
bon (gC/m2) between (2035-2044) and (2045-2054), RCP 6 and RCP8.5 for CCSR- 
MIROC32HI
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6.6 Conclusion

There have been a large number of studies that have investigated carbon flux 

response under climate change, and various approaches have been considered. 

In this chapter, we have presented a regression method for predicting terrestrial 

biospheric response of net primary productivity, heterotrophic respiration and 

fire carbon to climate change and anthropogenic CO2 emission. We examined a 

series of models for estimating mean decadal change in NPP, FC and HR for the 

1901-2000 and 2001-2100 datasets.

We analysed both datasets by examining the relationship between NPP, FC, 

HR and the explanatory variables. The explanatory variables include seasonal 

climate data (surface temperature, precipitation, wet day frequency, cloud cover, 

diurnal temperature range, surface temperature minimum, surface temperature 

maximum) and CO2 concentration. We fitted several quadratic models to relate 

the terrestrial biospheric response of each of NPP, HR and FC to climate variables. 

We tried avoiding over-fitting in our models by limiting our analysis to linear 

or quadratic terms and used term selection. We used proportion of variance 

explained p to test the model performance and AIC and BIC to select variables. In 

addition, we performed a sensitivity analysis to identify important environmental 

variables that will determine the level of carbon fluxes in the future.

We emulated the mean decadal NPP, both absolute and change. We predicted 

mean decadal change in NPP, FC, HR for each successive decade from (1901- 

2000) and mean decadal change for the period (2001-2010). The literature on 

climate change and CO2 impact of terrestrial biosphere shows that the terrestrial 

biosphere is sensitive to climate change and CO2 emissions. The results of our 

analyses concurred with this finding. The results from this chapter provided 

useful insight and direction for the remaining work in this thesis. The next 

chapter will deal with emulation of potential crop yields from LPJmL.
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Chapter 7

The em ulation o f crop yields

This chapter deals with procedures and techniques for the emulation of crop 

yield data. In addition to having both low and high-resolution emulators for 

crop yield, we also have rainfed and irrigated crop emulators. In addition to the 

form of emulator described in Chapter 6  we also build an emulator that used 

censored regression. These four CFTs were selected for emulation: temperate 

cereal, rice, maize and oil crops (sunflower, soybeans, rapeseed and groundnut). 

The crops are chosen because they are widely grown across the globe. Cereal, 

rice and maize are very prominent staple food crops and provide over 50% of all 

calories consumed by the world. Oil crops are used domestically as a vegetable 

oil and also forms ingredients used in manufacturing products. The emulation 

procedures are described below.

7.1 Em ulation of crop yield  using censored re­

gression

We consider the use of censored regression to model the following agricultural 

crops: cereal, rice, maize and oil. Oil is modelled as the average of soybean, 

groundnut, rapeseed and sunflower in this section. Analysis here is motivated 

by the presence of many zeros in the crop simulation data. Censored regression
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is used when the data on the response variable are limited, or it is difficult to 

observe the full response variable. Observations clustered on threshold values or 

at the endpoints of a permitted range are classified as censored data.

Ordinary least squares is a procedure usually used to compute the best fit 

line to data while censored regression is applicable when the recorded data on 

the dependent variable cuts off outside a certain range, typically with multiple 

observations at the minimum or maximum points of that range. When the data 

are censored, variations in the observed dependent variable will downplay the ef­

fects of the regressor on the dependent variable. We already know that using least 

squares regression to analyse this crop data will make the estimated coefficients 

biased towards zero (Kenneth & James, 2001; Cleves et al., 2008).

Because the crop yield data have a large proportion of observations at their 

minimum point (zeros), the data are not observable on the entire range (in the 

sense that negative yields are not meaningful), which causes the estimate of both 

the variance and mean to be biased. Some locations might be a “long way below 

0 ” , so that a moderate improvement in the climate would still leave them with 

a yield of 0. Other locations might be “quite close to 0” , so that they would 

have a positive yield if the climate improves slightly. Our model must distinguish 

between these situations. So in this section, we use censored regression to analyse 

the crop data.

7.1.1 Crop yields: low -resolution  resu lts

The LPJmL crop-yield data were based on simulations for 59199 grid cells on

0.5° by 0.5° as discussed under subsection 4.3.2 of Chapter 4. In this section, we 

shall focus only on rainfed crops and one management levels using three GCMs, 

IPSL-CM4, GISS-MODELER and CCSR-MIROC32HI to build the emulator and 

UKMO-HADGEM1 for cross-validation.

We reduced the dimension of the dataset by aggregating to 2° by 2° resolution. 

We then obtained mean decadal yield for cereal, rice and maize for each decade in
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the data range (2001-2100). We used change in seasonal climate, initial climate, 

baseline yield, CO2 and change in CO2 as emulator inputs.

We computed change in seasonal climate for each successive decade (precipi­

tation, wet-day frequency, cloud cover and temperature). We used initial seasonal 

climate (previous mean decadal climate variables) as explanatory variables. We 

formed a matrix of initial crop yields (previous decadal mean yield) which pro­

vides historical information for the prediction. We used equation (6.1) to model 

the data with inclusion of CO2 and change in CO2 as additional inputs to the 

model, see Table 7.1.

Table 7.1: The emulator’s input variables for censored regression.

Variables Full names
2001-2100 data

scld /  weld /  spcld /  acid 
spr e/wpre /  sppre /  apre 

stmp /  wtmp /  sptmp /  atmp 
s wet /  w wet /  spwet /  awet 
iscld /  iweld /  ispcld /  iacld 
ispre/i wpre /  isppre /  iapre 

istmp /  iwtmp /  isptmp /  iatmp 
iswet /  iwwet /  ispwet /  iawet 

C02 and CC02

Change in mean cloud cover in summer/winter/spring/autumn 
Change in mean precipitation in summer/winter/spring/autumn 
Change in mean temperature in summer/ winter/spring/autumn 

Change in mean wet day frequency in summer/winter/spring/autumn 
Initial (baseline) mean cloud cover in summer/winter/spring/autumn 

Initial mean precipitation in summer/ winter/spring/autumn 
Initial mean temperature in summer/winter/spring/autumn 
Initial wet day frequency in summer/winter/spring/autumn 

Initial (baseline) mean CO2 and change in mean CO2

In the northern hemisphere, summer =  (June July August}, winter — (December January 
February}, spring = (March April May} and autumn = (September October November}; ob­
vious changes are made for the southern hemisphere.

The emulators are built using the survival package in (R, 2013). We also 

combined this approach with a stepwise regression algorithm from the M A S S  

package of (R, 2013) to reduce the number of terms in the model. We fitted a 

quadratic model to the decadal mean crop yield changes. We use equation (6.1), 

where y in this case is the decadal mean change in crop yield. The crop yield 

data are censored observations, p is the number of parameters for estimation and 

X i,. . .  ,xp are p independent variables.

We used censored regression for the emulation of crop yields. Censored re­

gression algorithm often takes time to fit a large dataset (i.e., it is computational 

demanding). We need to reduce the number of observations in order to speed-up 

the algorithm, so we used just five decades of data. We obtained five time-slices
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(2001-2060) of mean decadal crop yield change for rice, temperate cereal, maize 

and oil. Oil is modelled as the average of soybean, groundnut, rapeseed and 

sunflower in this section. We fitted a single model that combined three different 

climate models (GCMs). Another dataset from a fourth climate model was left 

out for the cross-validation.

The reason for incorporating multiple GCM inputs and cross-validating against 

unused input data, is to ensure that the emulator is representing the underlying 

relationship between climate variables and vegetation dynamics relatively well, 

rather than simply reproducing a spatial pattern of vegetation change on the 

basis of a spatial pattern of climate change that is characteristic of the models 

used. Since different climate models will produce quite different patterns of cli­

mate change in some regions, testing the prediction with a different climate model 

input, not used to build the emulator, provides some confidence that underlying 

relationships are being represented. Multiple GCMs will capture the variability 

in the climate models and allow for one source of uncertainty in future projections 

of vegetation dynamics.

We slightly modified the stepwise regression approach used for carbon flux 

emulation in Chapter 6 , to accommodate three major steps in fitting our final 

model in this section. We first fitted the regression starting from the 1st order 

terms. We used all the relevant explanatory variables in the model. Secondly, we 

chose BIC for the backward variable elimination procedure to reduce the linear 

model terms. This step will remove less relevant variables from our results. It 

would also prepare the algorithm for more rigorous variable selection. Thirdly, 

we fitted the second stepwise model to only the variables selected in the previ­

ous stage. But here, we allow the model terms to grow to a higher degree of 

quadratic terms (including two-way interactions). The variables are added step 

by step until the algorithm converges using AIC as the criteria for inclusion. The 

BIC selection criterion that we used is more penalized (selected fewer variables) 

than the AIC method. We further improved the model by allowing the highly
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significant variables to grow to cubic terms.

The essence of performing the stepwise procedure this way is to ensure that in 

the final model we have fewer cases where interaction terms are included before 

their main effects, which are much likely under the stepwise procedure in Chapter 

6 . We summarized the censoring procedure below.

1 . Obtain the indicator of the censoring for the emulator of the change in yield, 

using the following rule. Let Y\j and Y^ be the vector of actual yield given 

by LPJmL for any two consecutive decades, with i = 1 , . . . ,  2257. Then the 

change in yield and corresponding censored indicator are given respectively 

as

AY =  Y2ii -  Yu

1 , if

oA>? &

oA>7 (uncensored)

2, if

oA>? & Ylti < 0 (right-censored)

3, if

oV>? &

oAX

(left-censored)

o, if A o & X A o (truncated)

2. Perform the cross-validation by obtaining the predictions for each of the 

change in yield emulators.

Here we provide plots of the results comparing LPJmL values with those of 

our built emulator. The emulators are able to reproduce the global pattern of 

crop yield change in response to climate change and C 0 2 emissions. Table 7.2 

gives a comparison of the performance of the least squares and censored regression 

methods. The results show that the censored regression out-performed the OLS 

method in term of percentage of variability of response explained by the model. 

The results support the use of censored regression to model our data. The spatial 

maps below compare the change in mean decadal yield from LPJmL with the built 

emulators for the cereal, rice and maize (Figures 7.1, 7.2, 7.3). The emulators do 

an excellent job of reproducing the spatial pattern of crop yield given by LPJmL.
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Table 7.2: Comparison of correlation of OLS and censored regression for the crop 
emulators on 2 by 2 degree resolution. There are 33855 observations in our data. This 
corresponds to 5 decadal changes of data period (2005-2065); each decadal change has 
2257 observations and there are 3 GCMs. % of observations censored are the proportion 
of observations at 0 out of the total 33855 observations.

Crop % of observations censored p (OLS) p (Censored regression)
cereal 42.8 0 .771 0.798
rice 75.6 0.536 0.667

maize 40.8 0 .688 0.710
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Figure 7.1: Change in mean decadal yield for cereal using a censored regression, between 
(2001-2010) & (2011-2020) (top) and (2011-2020) & (2021-2030) (bottom) (top-left) 
LPJmL (top-right) emulator (left) LPJmL (right) emulator from UKMO-HADGEM1.

7.1.2 Crop yields: high-resolution results

In this section, we move back to the original half degree scale of the data as we 

did under carbon flux in Chapter 6. The procedure here differs a little from the 

previous section 7.1.1 in that here we are constructing two different emulators, 

one for the actual yield and the other for a change in yield. We have earlier 

seen in section 7.1.1 that the censored regression can capture information on the 

non-responses (zero observations) in our model. The approach treats the zeros
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Figure 7.2: Change in mean decadal yield for rice using a censored regression, between 
(2001-2010) & (2011-2020) (top) and (2011-2020) & (2021-2030) (bottom) (top-left) 
LPJmL (top-right) emulator (left) LPJmL (right) emulator from UKMO-HADGEM1.
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Figure 7.3: Change in mean decadal yield for maize using a censored regression, between 
(2001-2010) & (2011-2020)(top) and (2011-2020) & (2021-2030) (bottom) (top-left) 
LPJmL (top-right) emulator (left) LPJmL (right) emulator from UKMO-HADGEM1.
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as censored observation (not real observed values). As crop yield is a continuous 

variable taking only the value zero (where the plant does not grow) and some 

positive values, our data are left censored. The change in crop yield is a doubly 

censored variable as there is a possibility of both positive and negative observa­

tions as well as zeros. In other words, we have both left and right-censored data 

present in the change in crop yield (while the actual yield is only left-censored).

We first built emulators for the actual yield for cereal, rice and maize. We 

made some predictions from these actual yield emulators. We then used these 

predictions to determine the spatial points on the globe that will be censored. For 

instance, those points where the actual yield emulators produce positive predic­

tions will be right-censored. This will be left-censored for corresponding negative 

predictions, and where there is no change of sign in the predictions, those points 

are left uncensored. We also completely truncated (removed) any points where 

the crop are not currently growing (grid cell that has zero in both decades).

Unlike the last subsection (7.1.1), here we constructed the emulators for the 

change in crop yield directly from the actual yield emulators as follows.

1 . Obtain the indicator of the censoring for the emulator of the actual yield. 

Suppose that Y  — YI,. . . ,  Yi, is a vector of actual yield given by LPJmL. 

Then the indicator Si of actual yield emulator censoring, is defined as fol­

lows.

I I, if Yi > 0  (uncensored)

0 , if Yi — 0  (censored)

2 . Construct an actual yield emulator for each crop.

3. Compute the crop predictions for each of the actual yield emulators.

4. Obtain the indicator of the censoring for the emulator of the change in 

yield, using the following rule. Let Y\j and Y2,i be the vector of predictions 

given by actual yield emulator for any two consecutive decades, with i =
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1, . . . ,  59199. Then the change in yield and corresponding censored indicator 

are given respectively as

AY =  Y2,j -Y i,i

1 , if

oA>? & V 0 (uncensored)

2 , if V o &

0V>7 (left-censored)

3, if F2 ,Z < 0 &
0A (right-censored)

o, if A 0 & A 0 (truncated)

Results of censored regression are only provided for maize under RCP3 and 

8.5, Figure 7.4. We note that the censored regression emulator gives the best 

results for maize. It produces fairly good results in most places but does not cap­

ture the extreme values as well, extreme data are under-estimated in RCP 3 and 

over-predicted in RCP 8.5. a limitation of this approach is that censored regres­

sion uses a numerical method that often required a long time for the estimation 

of the likelihood parameters, as we discussed under section 5.3.2 in Chapter 5. In 

addition, the results are not much better than for the corresponding OLS results. 

Besides, the algorithm could not handle all the data at once. This prompted a 

move back to the two-stage method that was used for carbon flux in Chapter 6 .

7.2 Em ulation o f crop yields using com bination  

of OLS, P C A , W LS

The emulator is essentially the same as the two-stage emulator described in Chap­

ter 6 , but some details differ and are described in this section.

7.2.1 A  procedure for sta tistica l em ulation

The LPJmL crop-yield data were based on simulations for 59199 grid cells on 

0.5° by 0.5°, but here we only consider those cells where crops actually grow in
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Figure 7.4: Spatial map for the mean decadal change in yield (gC/m2) for maize as 
these give the best result using censored regression between (2055-2064) and (2065- 
2074), RCP 3 and RCP8.5 for management 7 under UKMO-HADGEM1.

the simulation (the other cells are truncated). We built separate emulators for 

the rainfed and irrigated crops.

Groundnut is categorised as a separate group in this section. Therefore, the 

following five CFTs were selected for emulation; temperate cereal, rice, maize, 

groundnut and oil crop. The oil crop is a maximum yield among soybean, sun­

flower and rapeseed which is different from previous definitions. Groundnut crop 

is emulated separately in this section because it is not appropriate to group the 

four oil crops together. Functionally rapeseed is quite different to groundnut and 

therefore might respond quite differently to climate change as we mentioned in 

Chapter 2. In addition, we observed from the sensitivity results under section 7.1 

(not shown) that oil is sensitive to winter temperature which might have been 

driven by the vernalization response in rapeseed, whereas there is no obvious
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reason why groundnut would be sensitive to winter temperatures.

The average decadal yield given by LPJmL from 2005-2095 was computed 

for each crop and each scenario. We then obtained the change in yields relative 

to the baseline values. Baseline values are the average decadal yield of LPJmL 

outputs and climate data for the period 2005-2014, and are used as a reference for 

computing the relative change in yields and climate. We calculated the change 

in seasonal climate variables for the input variables listed in Table D.l. Baseline 

yields, baseline seasonal climate and change in seasonal climate variables are used 

as input to the emulator. CO2 , latitude, soil type and LAImax are also included 

as additional inputs.

The emulators were constructed in two stages (see figure 7.5). We built a 

single emulator for the two CO2 fertilization levels (“on” and “off”), but treat 

irrigated and rainfed crops separately. This allows the emulator to be flexible in 

predicting yield changes for any level of CO2 .

The emulators were built from two GCMs with relatively moderate equilib­

rium climate sensitivity, CCCMA-CGCM31 and CCSR-MIROC32HI, four RCPs, 

and two simulation categories (with and without CO2 fertilization effect), giving 

16 ( 2 x 4 x 2 )  different scenarios. Each scenario has seven crop management levels 

and eight time-slices, with each time-slice consisting of 59199 observations. After 

removing the zero observations from the data, there are 16649,6913,19139, 7100 

and 8427 valid grid points per scenario for rainfed temperate cereal, rice, maize, 

groundnut and oil, respectively, and 8963, 7325, 9146, 2386 and 2731 for irri­

gated crops. In order to evaluate the performance of LPJmLem another five 

GCMs, UKMO-HADGEM1 , GISS-MODELER, GISS-MODELEH, IPSL-CM4 

and CCSR-MIROC32MED were used for cross-validation purposes.

We used all the simulation data for irrigated oil and groundnut emulators 

because each of these crops has less than 5000 valid grid cells in each scenario. 

For other crops, we use observations from 5000 randomly sampled grid points 

because the stepwise algorithm could not fit the whole dataset. The 5000 grid
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points are fixed across the time-slice, RCP, GCM and management levels as well 

as simulation categories and similarly in each of 37 input variables (see Table D.l) 

in Appendix. We then fitted a single model to the sampled data for each crop- 

yield when crops are rainfed. This procedure was carried out for each of the five 

crops and repeated for the case where crops are irrigated. We use cross-validation 

to examine emulator performance, testing the emulators on five climate models 

that played no part in their construction.

new prediction

IN P U T S
Data from LPJmL 

MAGICC6 
and ClimGen

O U T P U T S
emulator results 

(cereal, rice, maize, groundnut, oil) 
on 0.5° by 0.5° spatial resolutions 

rainfed and irrigated

S T A G E  1
Stepwise regression 

to obtain a parsimonious model for 
predicting crop yield from climate 
and other explanatory variables. 

Produce predictions and residuals.

ST A G E  2
Perform PC A on stage I predictions 

Project predictions onto the PC axis and 
obtain weights with a squared distance metric. 

Using projected predictions as explanatory variables, 
perform WLS regression on residuals 

to obtain new residual estim ate 
new predictions=new residuals +  predictions

Figure 7.5: Stages for emulator construction.

7.2.2 F irst stage algorithm

In the stepwise regression of stage 1 the response variable is the change in yield 

given by LPJmL. As noted earlier, each combination of RCP, GCM and CO2 

fertilization level is referred to as a scenario. Here this gives 16 scenarios rather 

than the 12 scenarios used in Chapter 6 . Letting N  denote the number of grid 

cells for the combination of crop and irrigation regime of current interest, for each 

scenario we have 7 x 8  x N  data as LPJmL gave values for seven management 

levels and eight different time slices. Hence y has 16 x 7 x 8  x iV data values. 

The explanatory variables are listed in Table D .l and now include soil and LAI.

An integer with values between 1 and 7 was used to represent the LAlmax 

parameter and this formed a factor variable in the regression analysis. The other
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explanatory variables can enter the regression as linear or quadratic terms. As 

before, all two-way interactions were also considered for inclusion. The regression 

model has the form given by equation (6 .1 ).

7.2 .3  Second stage

We formed a separate emulator for each combination of crop, irrigation regime, 

management level and time slice. Let y * be the vector of changes in yield given 

by LPJmL for that combination in the ith scenario (z =  1 , . . . ,  16). The y» is 

the corresponding predictions given by the stage 1  emulator and e* =  y* — y* is 

the error in prediction. Each y» and e, is an iV x 1 vector, where N  denotes the 

number of grid cells for that crop/irrigation regime.

As when emulating carbon fluxes, the residual patterns from the OLS results 

in stage 1  for crop yields indicated that the patterns are relatively similar across 

RCP and GCM (see Figures 7.6 and 7.7). Figures 7.6 and 7.7 are two maps of 

residuals from stage 1 for rainfed cereal. They show a marked degree of similarity 

across scenarios. In Chapter 6 , we only used linear, square and cubic distance 

metrics. In this section, we considered additional distance metrics namely spher­

ical, exponential, Gaussian and three forms of Matern metric. Details of these 

metrics are given in Chapter 5 section 5.6.5.

A variogram result is also given in Chapter 7 section 7.3.2 that illustrates 

the need to take account of the distance between scenario points when modelling 

stage 1 prediction error. Performances of the metrics under validation data were 

compared. We chose a squared distance method scaled by the eigenvalues as in 

Chapter 6  because it is amongst the best metrics in terms of the proportion of 

variance it explained. We then fitted a separate weighted regression for each grid 

cell. The remaining procedure is the same as in subsection (6.4.4) of Chapter 6  

except that here we used 16 different scenarios. Thus where subscripts have an 

upper limit of 12, that limit must now be changed to 16. For clarity, a summary 

of the second stage is given again with that change.

134



Oyebamiji, O.K. CHAPTER 7. THE EMULATION OF CROP YIELDS

RCP3PD RCP45

o10

o
CM

o
N..0

CM1
o

100-100 -50 0 50 150 -100 -50 0 50 100 150

R CP6 RCP85

o
CO

o

o
CM

O
O
CM

OV

100 -50 150-100 -50 0 50 150 -100 0 50 100
residual (gC/mA2)

(a) W ith CO2 fertilization effect

RCP3PD R CP45

o

03TJD

o

150 residual (gC/mA2)100

(b) Without C02 fertilization effect

Figure 7.6: Residual map for cereal change between (2085-2094) and (2005-2014), man­
agement level 5 with and without CO2 fertilization effect from CCSR-MIROC32HI
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Figure 7.7: Residual map for cereal change between (2085-2094) and (2005-2014), man­
agement level 5 with and without CO2 fertilization effect from CCCMA-CGCM31
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Second stage sum m ary

(i) Perform a principal components analysis of Y TY. The non-zero eigenvalues 

are Ai > A2 > • • • > Ai6 and the corresponding eigenvectors are 7 1;. . . ,  7 16. 

Put x* =  (7 l 5 . . . ,  7 i 6 )Ty* and x* =  (7i, • • •, 7 16)Tyi for i = 1 , . . . ,  16.

(ii) Denote the j th components of x* and x* by x* and Xij, respectively. Then 

W\ , . . . ,  W\q are the non-zero elements of the diagonal matrix W , where

wi =  with =  £ “ 1 (x*j -  Xij)2.

(iii) The explanatory variables for the WLS regression are constructed from the 

first four eigenvectors of I \  We put T = (7 1 , 7 2 , 7 3 , 7 4 ) and X 0 =  Y Tr .

(iv) Weighted least squares gives {3n =  (X jW X 0 )~1X jW £ n as the vector of 

regression coefficients for the nth grid cell, where is the nth row of E.

a t  ^
(v) The estimated error for the nth grid cell is £* =  where x$ =  r Ty*.

Put

=  <^ T)

•r ^  c-min 
£ n ^  £ n

if e T n < e t <  e™ax (7-3)

~max if v. _m a x  
' n  11 £ n >  £ n  •

A Gaussian process model could not be applied directly to our data because 

of the computational difficulty from the large sample size coupled with the large 

number of parameters to be estimated. GP scales cubically with the number of 

observations 0 ( N S), which is not appropriate for our present data -  even after 

averaging decadally and sampling from each scenario, the data matrix contains 

approximately 4.5 million values. It might be possible to use GP for residual 

interpolation, rather than WLS, but this would still have a high computational 

cost and it would be necessary to reduce the resolution and aggregate data to 

a country level in order to reduce the computational load. However, we shall 

demonstrate how we can use GP regression to handle these data in Chapter 8 .
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7.3 R esults

7.3.1 C ross-validation  resu lts

Figure 7.8 gives density plots over grid cells for the percentage change in crop 

yield (2084-2095) relative to the baseline yield for both CCSR-MIROC32HI and 

CCCMA-CGCM31 GCMs. We consider all management levels and a moderate 

emission scenario, RCP 6 . The right-hand plots show the change in crop yield 

when there is no CO2 fertilization while the left-hand plots show change in yield 

with CO2 fertilization. In the right-hand plots, most crops show a preponderance 

of negative values, indicating a general reduction in yield. The exception is oil, 

which mainly shows positive values. The distributions each have a single major 

peak but vary as to whether they have a further minor peak (or even several 

minor peaks). The skewness of the density function also varies markedly with 

crop.

Now considering the left-hand plots (with CO2 fertilization), the density plots 

show a preponderance of positive values and are more diverse in pattern, which 

could be a result of non-linear interactions between climate and CO2 . Comparison 

of the left- and right-hand plots shows that CO2 fertilization has a marked effect 

on all crops except maize, for which the two plots are strikingly similar. (Maize is 

less affected by CO2 fertilization because it is a C4 plant and has a mechanism to 

efficiently transport CO2 to the photosynthetic parts, limiting photorespiration 

rate thereby reducing water losses). Overall, the varying patterns in Figure 7.8 

clearly show the diversity of the effects we are emulating. The changes in crop 

yields are characterized by high variability and there are varying patterns across 

different scenarios.

Figure 7.9 gives time series plots showing the percentage change in global 

crop yield over each decade relative to the baseline period under the CCSR- 

MIROC32HI, either without CO2 fertilization (right-hand plots) or with CO2 

fertilization (left-hand plots). It shows temporal variability of the rainfed crops
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Figure 7.8: Probability distribution for the percentage decadal change between (2085- 
2094) and (2005-2014) for rainfed cereal, rice, maize, groundnut and oil respectively, 
RCP 6 and all management levels. Left-hand plots: with CO2 fertilization; right-hand 
plots: without CO2 fertilization.
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Table 7.3: Cross-validated proportion of variance p and root mean squared error 
RMSEcy showing the overall performance of the emulators for rainfed and irrigated 
crops, with all management levels, RCPs, and time slices, but with CO2 fertilization 
only, for UKMO-HADGEM1.

Crop 1st stage p 2nd stage p RMSEcy {gC/m2)
rainfed irrigated rainfed irrigated rainfed irrigated

Cereal 0.41 0.41 0.60 0.64 16.72 14.94
Rice 0.39 0.37 0.62 0.78 14.71 24.02

Maize 0.35 0.45 0.74 0.80 17.79 20.45

Oil1 0.51 0.49 0.73 0.81 12.34 7.65

Groundnut 0.24 0.40 0.62 0.79 12.04 17.72

1 Oil=yieldmax[soybean, rapeseed, sunflower].

under the RCP6 scenario with a separate line for each management level. The 

sensitivity of change in yield to the CO2 fertilization effect is apparent, with 

CO2 fertilization greatly improving the change in yield of most crops. Taking 

management level 4 and the last decade (2085-2094) as an example, for cereal a 

decline in yield of 6% becomes a growth of 18%; rice and oil show improvements 

of 37% and 25%, respectively, while groundnut has an increase of 32.5%. Maize 

exhibit a weak sensitivity to CO2 , with the globally averaged yield increasing 

by 11%. When there is no CO2 fertilization, with all management levels there is 

a fairly steady reduction in yield for cereal, rice, maize and groundnut while oil 

shows an increase in yield. When there is CO2 fertilization, maize and groundnut 

yield still change comparatively little over the decades and the effect of random 

variation is more apparent in their time series plots. Oil, unlike the other crop 

categories, increases with or without CO2 fertilization but at a much lower rate 

when CO2 fertilization is absent.

Table 7.3 summarises the cross-validated performance of the emulators for 

stage 1 and stage 2 using equation 5.72, for both rainfed and irrigated crops under 

UKMO-HADGEM1. Maize and oil cross-validated noticeably better than other 

crops with 74%/73% variance explained when rainfed and 80%/81% explained
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Table 7.4: Cross-validated proportion of variance p for four GCMs, with CO2 fertiliza­
tion, management level 5, RCPs 4.5 and 8.5, and all time slices

Crop CCSR-
MIROCMED

GISS-
MODELER

GISS-
MODELEH

IPSL-
CM4

rainfed irrigated rainfed irrigated rainfed irrigated rainfed irrigated
Cereal 0.79 0.82 0.67 0.62 0.72 0.80 0.74 0.83

Rice 0.79 0.91 0.75 0.77 0.68 0.85 0.75 0.88

Maize 0.86 0.85 0.72 0.66 0.75 0.76 0.83 0.87

Oil1 0.88 0.93 0.69 0.78 0.72 0.84 0.81 0.82

Ground

1 /"\:i

0.78 0.89 0.70 0.69 0.70 0.82 0.71 0.84

1 Oil=yieldmax[soybean, rapeseed, sunflower].

when irrigated.

Generally, the emulator of the irrigated crops performed better than the emu­

lator of the rainfed crops. This could be attributed to the water stress in rainfed 

locations, difficult to model, that could complicate the predictions. Stage 1 ex­

plained less than 50% of the variance except for rainfed oil. However, the second 

stage of the algorithm improved results for both the rainfed and irrigated crop 

systems. For the rainfed crops, the values of the variance explained increased 

from (24-51%) to (60-74%) for all the crops. For the irrigated crops, the first 

stage explained variance was between 37-49% for all the crops and this increased 

to 64-81%, as shown in Table 7.3.

The last two columns of Table 7.3 show the computed RMSE^y for all sce­

narios, time slices and management levels, which further examines the accuracy 

of the emulators. RMSE^y is the difference between the LPJmL and emulator 

predictions and provides a measure of uncertainty associated with the emulator. 

Irrigated oil and rice have the lowest and highest values with 7.65 and 24.02 

gC /m 2 respectively; a low value indicates more accurate predictions.

The cross-validation of stage 2 predictions for four additional GCMs are shown 

in Table 7.4. We can see that the emulators again performed well, with re-
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suits that are typically a little better than in Table 7.3. The results for CCSR- 

MIROCMED are better than for other GCMs; this was to be expected because 

a very similar GCM, CCSR-MIROC32HI, gave part of the training data. Re­

sults for irrigated crops are better than for rainfed crops, which was also the case 

in Table 7.3, though the results with GISS-MODELER for cereal, maize and 

groundnut are an exception.

We now consider the spatial comparison between LPJmL and the emulators of 

UKMO-HADGEM1 for temperate cereal. The map in Figure 7.10 displays results 

for both rainfed and irrigated temperate cereals. The emulator under-predicts 

yield change across the United States for rainfed cereal and over-predicts yield of 

the irrigated crop in some regions, especially in Eastern Asia and Europe. Overall, 

the emulator reproduces the global patterns well, especially for the irrigated crop 

(p = 0.69 for rainfed cereal and 0.74 for irrigated cereal).

Figure 7.11 shows results for the rice emulator. The emulator for the rainfed 

crops under-predicts the rice almost everywhere except in Eastern Asia where 

it reproduces the pattern quite well. On the other hand, an emulator for the 

irrigated crops reproduces the yield better than the rainfed (p =  0.74, 0.90 re­

spectively). There is a potential for higher irrigated rice yield in Europe and Asia 

as shown by both the LPJmL and irrigated emulator plots. Higher yield changes 

are more prominent with irrigated rice than for rainfed. More irrigated rice is 

grown than rainfed rice especially in latitude > 30°, this area is also characterized 

by a high change in yield.

Similar to what we observed for cereal and rice, the rainfed crops emulator 

under-predicts maize in Europe and some part of Russia (7.12). The emulator 

relatively well predicts all other areas. The irrigated crop emulator captures the 

spatial patterns of maize very well. Higher yield changes are associated with 

rainfed maize than for irrigated especially at latitudes >  50°. Figure 7.13 shows 

oil plots, the rainfed emulator under-predicts oil in some part of Russia while 

other regions are well predicted by the emulator. The rainfed LPJmL pattern
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is quite different to the irrigated LPJmL pattern. Oil values are over-predicted 

in most areas across the globe by the irrigated emulator. Groundnut results are 

shown in Figure 7.14, the emulator seems to over-predict LPJmL values in Africa 

and some part of Asia. Other regions are quite well predicted.

Overall, rainfed crop patterns are quite different from the irrigated, as ex­

pected, because irrigation allows some crops to be grown where they would not 

have grown naturally (e.g. rice is grown in Europe with irrigation). Also, more 

negative changes are prominent in both the LPJmL and emulator predictions for 

rainfed rice than for other crops. We can clearly see that the emulators cross­

validated well as indicated by their p values (Tables 7.3 and 7.4) and thus cap­

tured relatively well the spatial patterns of LPJmL. The maps show visually that 

the emulator produces patterns that are quite similar to the LPJmL patterns, 

although there are over- and under-predictions in some instances.
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Figure 7.10: Cross-validation of the comparison between LPJmL and difference between 
LPJmL and predictions for rainfed and irrigated temperate cereals, plotted as mean 
decadal change in yield between (2085-2094) and (2005-2014). The plots correspond 
to crop-yield for management level of 5, R.CPG with CO2 fertilization from UKMO- 
HADGEM1. The white over land correspond to grid cells with zero observations.

144



Oyebamiji, O.K. CHAPTER 7. THE EMULATION OF CROP YIELDS

LPJmL rainfed rice Emulator rainfed rice

O

-50 50 100-100 0
LPJmL irrigated rice

o
■'fr

o

-50 50 100 150-100 0

o

o

-100 -50 50 1000
Emulator irrigated rice

o

o

15050 100-100 -50 0

y ie ld  (g C /m A2)

Figure 7.11: Cross-validation of the comparison between LPJmL and LPJmLem for 
rainfed and irrigated rice. This plot is mean decadal change in yield between (2085- 
2094) and (2005-2014). The plots correspond to crop-yield for management level of 5, 
RCP6  with CO2 fertilization from UKMO-HADGEM1. The white over land correspond 
to grid cells with zero observations.
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Figure 7.12: Cross-validation of the comparison between LPJmL and LPJmLem for 
rainfed and irrigated maize. This plot is mean decadal change in yield between (2085- 
2094) and (2005-2014). The plots correspond to crop-yield for management level of 5, 
RCP6  with CO2 fertilization from UKMO-HADGEM1. The white over land correspond 
to grid cells with zero observations.
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Figure 7.13: Cross-validation of the comparison between LPJmL and LPJmLem for 
rainfed and irrigated oil. This plot is mean decadal change in yield between (2085- 
2094) and (2005-2014). The plots correspond to crop-yield for management level of 5, 
RCP6  with CO2 fertilization from UKMO-HADGEM1 . The white over land correspond 
to grid cells with zero observations.

7.3.2 V ariogram s and distance m etrics

Distance weighted regression is used to estimate the residual pattern of an un­

known scenario from the scenarios with known residual patterns (Section 7.2.3). 

More weight is assigned to known scenarios that are similar in pattern to the 

unknown scenario. The distance, d*, between the unknown \th (known) scenario 

is defined in equation (6.5) and is taken as the measure of pattern similarity.

Three simple metrics for converting the di distances to weights were consid­

ered: linear (Wi oc o f1), quadratic (Wi oc d /2), and cubic [wi oc d“3), where the 

weights are scaled so that J 2 wi =  1- The use of covariance functions to de­

termine weights was also explored using variograms. For each crop/irrigation 

regime/time slice/ management level there are sixteen different training sce­

narios that predict the yield in a grid cell. Generalising equation (6.5), let

dik E ! k  -  *kj)‘
1 /2

denote the distance between the \th and kth sce-rth

narios, and let Zikn denote the difference between their prediction errors in grid
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Figure 7.14: Cross-validation of the comparison between LPJmL and LPJmLem for 
rainfed and irrigated groundnut. This plot is mean decadal change in yield between 
(2085-2094) and (2005-2014). The plots correspond to crop-yield for management level 
of 5, RCP6  with CO2 fertilization from UKMO-HADGEM1. The white over land 
correspond to grid cells with zero observations.

cell n.

To obtain the empirical variogram, we split the range of d^ into sections (bins) 

of equal length. The empirical variogram, 7 (d) is defined as (Cressie, 1993)

1 N

(i,k)& Qe n =  1

where d? is the middle of bin £, (i, k) E if d^ is in bin £, and Me is the number 

of items in VLp. In Figure 7.15 the small circles are the values of y(d^) at the 

midpoint of each bin. The lines in the figure show the theoretical variograms for 

the following covariance models.

The parameters cr and </> are estimated from the parametric variograms given 

in Chapter 5 section 5.6.5. For the Matern model, k, must be specified and we 

consider three values, k = 0.1, /c =  0.5 and k — 2 .
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Figure 7.15: Empirical and theoretical variogram for rainfed cereal. The points are the 
estimated variogram bins using the residual data, while the curves are the theoretical 
models fitted using various covariance models.

Figure 7.15 shows the variogram plot for rainfed cereal. Here, the residuals 

are averaged over all the grid cells. The plotted points in Figure 7.15 show 

that 7 (dg) increases rapidly as dg increases from 0  (and then levels off), so it 

is clear that errors for the different scenarios are correlated and the correlation 

increases as distance reduces. There are variations in ability of each parametric 

model to capture all the points. Variogram plots for different crops are given 

in the Appendix (Figures B.l). These show the same trend. For all crops, the 

theoretical covariance models follow the empirical points reasonably closely with 

no model being clearly the best. Additional variogram plots for some randomly 

selected grid cells are also shown in Appendix Figure B.2 that again show an 

increase in 7 (dg) as dg increases.

A covariance model assigns weights to scenarios so that Wi oc {7 (d; ) } _ 1  where, 

as with the other metrics, weights are scaled so that Wi =  F The emulator was 

fitted using different weight functions, enabling the covariance models and other 

metrics to be further compared using cross-validation. Results are presented in 

Table 7.5. The exponential covariance model led to poor predictions for rainfed 

oil and rainfed groundnut, but otherwise all the methods of choosing weights led 

to reasonably good predictions. The quadratic distance metric gave somewhat
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Table 7.5: Cross-validated proportion of variance p for various covariance functions 
used as a weight in WLS fitting compared to quadratic metric with management level 
5, RCP 6 between (2085-2094) and (2005-2014).

Function Cereal Rice Maize Oil1 Groundnut
rain3 irrig2 rain irrig rain irrig rain irrig rain irrig

Quadratic 0.69 0.74 0.74 0.90 0.81 0.86 0.80 0.88 0.68 0.79

Spherical 0.76 0.82 0.78 0.84 0.83 0.73 0.75 0.84 0.68 0.79

Matern k = 0.5 0.78 0.82 0.78 0.84 0.84 0.87 0.79 0.88 0.67 0.79

Matern n = 2 0.78 0.82 0.80 0.85 0.85 0.88 0.79 0.88 0.68 0.81

Matern k = 0.1 0.79 0.82 0.78 0.83 0.83 0.88 0.79 0.88 0.67 0.79

Exponential 0.76 0.81 0.65 0.89 0.79 0.86 0.45 0.82 0.59 0.85

Gaussian 0.76 0.80 0.76 0.68 0.77 0.56 0.70 0.79 0.66 0.75

1 Oil=yieldmax [soyabean, rapeseed, sunflower], 2 “irrig” denotes irrigated crop 
3 “rain” denotes rainfed crop.

better results than the covariance models in Table 7.5 and it explained 68-90% of 

the variation in the LPJmL predictions, compared with 45-89% for the covariance 

models. Because of its simplicity and comparable performance, we chose it as the 

means of determining weights for the WLS regression in stage 2 of the emulator 

algorithm. We observe that Matern results changes with respect to the choice of 

smoothing parameter k, except for irrigated cereal, and rainfed and irrigated oil.

7.3.3 W LS d iagnostic resu lts

Diagnostics plots for WLS regression are shown in Appendix Figures C.l and 

C.2. The random errors are the unexplained variation left after applying the 

WLS to the residual from stage 1 (i.e observed residual minus expected residual). 

The regression assumptions hold reasonably well. Figure C .la (top-left) plots 

residual against the fitted values and is relatively good as there are no obvious 

patterns, with the points randomly scattered. QQ plot (top-right), the extreme 

values deviate from the straight line at both ends, but the sample-size is only 

16 and the Q-Q plot is close to normal away from the extremes. The plot of a
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standardized residual against the fitted values (bottom-left) gives no indication 

of variance heterogeneity, with no increasing or decreasing patterns. In general, 

there is no obvious problem with these plots. Similar results are observed for 

equivalent plots from other randomly chosen grid points Figures C.lb, C.2a and 

C.2b.

7.4 Sensitiv ity  results

Here, we investigate how the uncertainty in the crop-yield can be partitioned to 

the various uncertainties in the input variables. We sampled 20 000 observations 

directly from the simulation with the CO2 effect for each of the 37 input variables. 

We computed both the first order (results are not shown) and total sensitivity 

indices as described briefly in Chapter 5 section 5.8. The Bootstrapping technique 

was used to compute the 95% Confidence Interval on the estimated indices. This 

procedure was applied to all the five crops for both rainfed and irrigated crops. 

The “sensitivity” package in R (2013) was used for this analysis. Total sensitivity 

results are shown in Figure 7.16a for rainfed crops. Results for irrigated crops 

are given in Figure 7.16b
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Figure 7.16: Barplots showing the sensitivity indices for the five rainfed crops over all 
time-slices, RCPs and GCMs (negative indices are set to 0). See Table D.l for full 
names.

The six most relevant parameters for prediction of temperate cereal yields 

are initial winter cloud cover, CO2 change, initial spring wetday frequency, initial 

spring temperature (‘initial’ represents baseline value), latitude and LAI, with in­

dices of 0.43, 0.32, 0.30, 0.27, 0.23 and 0.23, respectively. The parameter with the 

second highest rank is C 0 2 change, reflecting the sensitivity of yield to the C0 2 

fertilization effect. Atmospheric C 0 2 improves crop productivity by stimulating
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photosynthesis, thus increasing the number of fruits, seeds. The fourth most sen­

sitive parameter is initial spring temperature, which generally has a considerable 

effect on plant growth.

Initial summer temperature, latitude, CO2 change, LAI, initial spring precip­

itation are the five most important variables for rice. Their indices are 0.86, 0.42, 

0.23, 0.18 and 0.18, making it very clear that summer temperature is the most 

important parameter for rice. It is twice as influential as latitude (although tem­

perature and latitude are obviously correlated) and four times more influential 

than CO2 change. Rice is a C3 plant that utilizes direct carbon fixation of CO2 , 

so CO2 change is expected to be an important parameter.

The most relevant variables for maize are initial spring, autumn and summer 

temperature, as well as initial winter cloud cover and LAI. Their indices are 1.1, 

0.25, 0.22, 0.19 and 0.14, respectively. It is unsurprising that, as these results 

show, seasonal temperatures play a key role in the growth and development of 

maize plants. Maize is less affected by CO2 fertilization because it is a C4 plant 

which has a more efficient mechanism to transport CO2 to photosynthetic paths. 

Oil has the following important variables: initial winter temperature, autumn 

and summer temperature change, LAI and latitude with indices of 0.85, 0.78, 

0.40, 0.26 and 0.20, respectively.

Overall, we can see from Figure 7.16a that baseline seasonal temperature, 

spring precipitation and wetday frequency, LAI, latitude, CO2 change and cloud 

cover are the most important variables across the five crops. Although CO2 

change has a negligible effect on maize, groundnut and oil, our results further sup­

port the joint interactive effect of elevated CO2 and temperature on crop-yield. 

Some variables are less important (examples are the change in seasonal precipita­

tion and cloud cover), and some are unimportant (such as summer precipitation 

and soil) because their calculated sensitivity indices are very low. Baseline CO2 

is of limited importance in this analysis because its level is represented by a single 

global value and does not vary with time-slice, RCP, or GCM. Similarly, soil is
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represented in this study by discrete values that range from 1-8 across the globe 

and these are constant across RCP and GCM scenarios.

Figure 7.16b shows the results of a sensitivity analysis for irrigated crops. The 

most sensitive parameters for cereal are initial spring temperature, change in au­

tumn temperature, initial spring wetday, initial summer wet day, CO2 change and 

LAI, with indices of 1.05, 0.46, 0.32, 0.31, 0.21 and 0.21, respectively. Similarly, 

rice is heavily dependent on temperature as indicated by the indices for initial 

winter temperature, initial summer temperature, initial autumn temperature and 

change in summer temperature with indices of 1.52, 0.75, 0.47 and 0.26. But it is 

less sensitive than cereal to latitude, LAI and CO2 change, with indices of 0.31,

0.20 and 0.19.

Maize is determined primarily by initial summer temperature (0.59) and less 

dependent on precipitation and cloud cover, but it is non-sensitive to CO2 change. 

Similarly, oil is sensitive to seasonal temperature, like other crops, but it is not 

dependent on CO2 and CO2 change. Irrigated crops are less dependent on precip­

itation than rainfed crops but rely more on temperature. Also, irrigated crops are 

less sensitive to latitude, soil, and CO2 as compared to rainfed in Figure 7.16a.

In general, these sensitivity analyses result clearly indicated that temperature 

is the most uncertain parameter in crop yield projection. This high sensitivity of 

(growing season) temperature was earlier observed as the major determinant of 

crop yield change under future climate by Lobell & Burke (2008) and Osborne et 

al. (2013).

7.5 Conclusion

The objective of this chapter was to provide a means of emulating crop yield 

patterns under climate change. We have shown that this can be done using OLS- 

PCA-WLS combinations, including parametric covariance functions that intro­

duce much flexibility to our distance metrics. It was demonstrated that emulation 

can provide reliable and useful predictions for the LPJmL.
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In comparison to other crop modelling studies, our emulation approach ex­

tends the work of Lobell & Burke (2010, 2008) with incorporation of other covari- 

ates like soil, latitude, crop management levels in addition to climate variables for 

crop predictions. Specifically, our approach integrated the three methods of time 

series, panel and cross-sectional analyses described in Lobell & Burke (2010) for 

crop predictions. We performed extensive cross-validation for five climate models 

and four RCPs unlike Lobell & Burke (2010) that do not test the validity of their 

statistical models in other sites not included in the training data.

The global sensitivity analysis in this chapter provides a measure of the contri­

bution of each variable to the overall uncertainty. Apart from using the popular 

variance based decomposition technique, the results can be additionally used for 

future calibration especially for LPJmL with numerous parameters. In accor­

dance with Lobell & Burke (2008), our sensitivity results also indicated that 

temperature is a greater source of uncertainty than other variables for future 

crop impacts assessment.
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Chapter 8

Bayesian em ulation o f crop yields

8.1 Introduction

Bayesian methods, particularly Gaussian process (GP), have been prominent 

in the construction of emulators. Our simulation data for both crops and cli­

mate are high-dimensional gridded global data that cannot be modelled directly 

by GP. Several approximation techniques have been developed to handle multi­

dimensional data. For instance, a low-rank approximation of the Gram matrix 

was described in Rasmussen & Williams (2006); Drineas Sz Mahoney (2005a). 

The use of subsets of regressors and subsets of data as an iterative solution under 

a linear model, to reduce the computational burden of the GP inversion for a 

large data matrix was investigated by (Silverman, 1985; Wahba, 1990; Wahba 

et al., 1995). Several studies have used Bayesian techniques for emulating high­

dimensional data (Rougier, 2008; Rougier et al., 2009; Heitmann et al., 2006; 

Higdon et al., 2008; Dancik, 2011). In particular, Bornn & Zidek (2012); Finley 

et al. (2011) used Bayesian methods for predicting crops.

Bayesian methods typically offer wide applicability and flexibility. In the 

context of emulation, a further benefit is that they can help quantify model un­

certainty. A disadvantage is that, computationally, they can be very demanding. 

This is a serious drawback for the emulation problems addressed in this thesis for 

the following reasons.
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1. Climate varies considerably from one spatial scale to another. This vari­

ability is determined largely by atmospheric circulation and its interactions 

with large-scale ocean currents. Regional or local climate is much more 

variable than global climate because climate on a large spatial scale is less 

influenced by internal dynamics of the continental or global climate. There­

fore, even if we decide to use a PC decomposition or aggregation of the crop 

yield data (to reduce the dimension), we would not be able to apply that 

data reduction strategy to climate input parameters as they vary from one 

location to another. The decomposition of the data is non-trivial as cli­

mate may vary a lot within a country so that the average climate across 

a country may be a poor approximation to the local climates within the 

country. In addition, LPJmL data is a non-linear response so large scale 

average climate may be an inappropriate input to our problem.

2. The LPJmL data that we are using are monthly data and they have been 

averaged to decadal level. We have already lost some information due to 

decadal averaging because the LPJmL model itself works on a daily time 

step. We do not want to loose further vital information from the data 

by further averaging or by applying principal components to reduce the 

dimension of our data. Applying PCA to reduce dimension of LPJmL 

will result in PC components that ignore information about the climate 

input variables thereby resulting in PC components that may be difficult 

to explain by the original input variables.

These drawbacks limit the ways in which we can simplify our problem so 

that GP method can be incorporated in an emulator. In Chapter 7, a two-stage 

technique was proposed for emulating LPJmL crop data. In the first stage of 

that method, OLS regression was applied onto crop yield, and WLS was used for 

residual interpolation in the second stage. A Gaussian process model could not 

be applied directly to the first stage because of the computational difficulty in the 

sample size coupled with the large number of parameters to be estimated. GP
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scales cubically with the number of observations 0 ( N 3), which is not appropriate 

for our present data, even after averaging decadally and sampling from each sce­

nario. The data matrix contains approximately 4.5 million values. Following Lee 

et al. (2013) and Lee et al. (2012), we considered treating each spatial point as a 

GP and then emulating each cell individually. However, this option is intractable 

since we have 59199 grid points meaning that about 236,796 emulators would 

have to be constructed and validated for the four crops we are emulating.

It is possible to replace WLS with GP in the second stage of the emulator and 

that is the focus of this chapter. However, the approach still has a high compu­

tational cost, and it is necessary to reduce the spatial resolution and aggregate 

data to a country level in order to reduce the computational load.

We will compare the PC A-WLS method that we described in Chapter 7 with 

a PCA-GP model. In particular, we demonstrate the use of a PCA-GP model 

in emulating the crop yield response under global climate scenarios. We examine 

whether the non-parametric modelling of the unexplained residual using Gaus­

sian process (GP) in our second stage provides a more accurate result than the 

weighted linear regression described in the last chapter. In this thesis, we focus 

only on emulator uncertainty rather than parametric uncertainty of the input 

space.

8.2 G P em ulation procedure

Our objective is to produce a statistical approximation that will link the model 

climate inputs X to the deterministic vector outputs y =  /(X ) from LPJmL. 

Recall from Chapter 7, the relationship between the climate input data from 

MAGICC6/ClimGen and each output from LPJmL is represented by a model

y =  /(X ) +  e,
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where y is the (vector) simulated mean decadal change for LPJmL crop-yield over 

the grid cells for all scenarios, with /(X ) as defined by equation (6.1) in Chapter 

7. The vector e represents all the unexplained variation in /(X ) which is not 

captured by the OLS method in the stage 1 emulator. Values of e are spatially 

correlated for scenarios that are very close in the input space. In this section, 

we model £ as a Gaussian random process with known mean and covariance 

functions. GP is an extension of multivariate Gaussian distributions to infinite 

dimensionality with associated mean and covariance matrix.

Consider a single crop/irrigation regime/management level/time slice com­

bination and let y* be the vector of changes in yield given by LPJmL for that 

combination in the ith scenario (i = 1 , . . . ,  16). As in Chapter 7, we let y* be the 

corresponding predictions given by the stage 1 emulator and Si =  y* — y* is the 

error in prediction. Each y» and s* is an N  x 1 vector, where N  denotes the num­

ber of grid cells for that crop/irrigation regime. As yi, •. •, yi6 are predictions on 

training data, the values of eq ,. . . ,  £\% are known.

Given a new vector of predictions, y new, from a new scenario where the em­

ulator values are unknown, the aim is to estimate the error of y* from E  =  

( e i , . . . ,  ei6) and Y  =  (yi, • • • ,yi6)- In order to reduce the dimension of data 

we apply a PC decomposition to the 16 x N  matrix Y T, and select just the first 

four principal components. The resulting 16 x 4 matrix of PC scores given by 

these four components is denoted as U. The columns of matrix U  will be used 

as explanatory variables for the GP regression of residual patterns. In Chapter 

7, WLS was used instead of GP regression.

Let £new denote the error in y new after stage 1. A separate GP regression is 

used for each component of enew. The dimension of the residual matrix E T is 

16 x N, (N  = 16648 for rainfed cereal) which is very large for the purposes of 

GP regression. As each GP regression is computationally intensive, performing 

many GP regressions is impractical. However, often the results from an emulator 

are only required at the level of individual countries, rather than at the level
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of individual grid cell. As there are only 186 separate countries (excluding very 

small countries), performing a separate GP regression for each country is feasible 

and that is what we do in this chapter. To this end, we apply spatial aggregation 

to reduce the dimension to a country level using equation (8.10). The countries 

we consider are listed in Table 8.1.

The spatial aggregation will transform ET to matrix Z of dimension 16 x 186 

(®i6xn  Zi6xi86)- Details of the aggregation are provided under section 8.3. So

for the nth GP regression (the nth country) the values of the dependent variable 

are zn, where zn is the nth column of Z (ie Z =  (z i,. . . ,  Z i 86) )  is a vector of 

observed residuals for the nth country.

After aggregating the residual to a country level, we take one country at a 

time and form a separate GP regression equation for that country. The data for 

one of these regressions is the (16 x 1) vector of responses z (the residuals for 

that country) and the (16 x 4) matrix U, which holds the values taken by the 

explanatory variables.

For the new scenario, put u new =  r Ty neu;. Then the estimate of the prediction 

error in y new at the nth country is derived as following. Set up the Gaussian 

process by selecting a mean and a covariance function. Then the residual z can 

be modelled as a GP regression given by

z =  g( u) =  hT(u )(3 +  6( u), (8.1)

where h(u) is a vector of regression functions and is chosen to reflect the functional 

form of our response data. In a GP regression, h(.) can be either a constant mean 

function (h(.) =  1, corresponding to only an intercept term) or it can be modelled 

as a simple linear regression function of the inputs (h(u) =  (1, uT), including an 

intercept term). We used h(u) =  (1, uT in this thesis.

The vector (3 is an unknown hyperparameter to be estimated and £(.) is 

a stationary GP representing stochastic noise with mean zero and covariance
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Table 8.1: List of UN countries used in the analyses of Chapter 8

Index Country Index Country Index Country
1 Ocean 63 French Polynesia 125 New Zealand
2 Afghanistan 64 French Southern Territories 126 Nicaragua
3 Albania 65 Djibouti 127 Niger
4 Antarctica 66 Gabon 128 Nigeria
5 Algeria 67 Georgia 129 Norway
6 Angola 68 Gambia 130 Pakistan
7 Azerbaijan 69 State of Palestine 131 Panama
8 Argentina 70 Germany 132 Papua New Guinea
9 Australia 71 Ghana 133 Paraguay

10 Austria 72 Kiribati 134 Peru
11 Bahamas 73 Greece 135 Philippines
12 Bangladesh 74 Greenland 136 Poland
13 Armenia 75 Guatemala 137 Portugal
14 Belgium 76 Guinea 138 Guinea-Bissau
15 Bhutan 77 Guyana 139 Timor-Leste
16 Bolivia 78 Haiti 140 Puerto Rico
17 Bosnia and Herzegovina 79 Honduras 141 Qatar
18 Botswana 80 Hungary 142 Romania
19 Brazil 81 Iceland 143 Russian Federation
20 Belize 82 India 144 Rwanda
21 Solomon Islands 83 Indonesia 145 Saint Vincent and Grenadines
22 Brunei Darussalam 84 Iran 146 Saudi Arabia
23 Bulgaria 85 Iraq 147 Senegal
24 Myanmar 86 Ireland 148 Serbia
25 Burundi 87 Israel 149 Sierra Leone
26 Belarus 88 Italy 150 Slovakia
27 Cambodia 89 Cote d’Ivoire 151 Viet Nam
28 Cameroon 90 Jamaica 152 Slovenia
29 Canada 91 Japan 153 Somalia
30 Cape Verde 92 Kazakhstan 154 South Africa
31 Cayman Islands 93 Jordan 155 Zimbabwe
32 Central African Republic 94 Kenya 156 Spain
33 Sri Lanka 95 Democratic Republic of Korea 157 South Sudan
34 Chad 96 Republic of Korea 158 Sudan
35 Chile 97 Kuwait 159 Suriname
36 China 98 Kyrgyzstan 160 Swaziland
37 Taiwan 99 Lao Republic 161 Sweden
38 Colombia 100 Lebanon 162 Switzerland
39 Comoros 101 Lesotho 163 Syrian Arab Republic
40 Congo 102 Latvia 164 Tajikistan
41 D.R Congo 103 Liberia 165 Thailand
42 Costa Rica 104 Libya 166 Togo
43 Croatia 105 Lithuania 167 Trinidad and Tobago
44 Cuba 106 Luxembourg 168 United Arab Emirates
45 Cyprus 107 Madagascar 169 Tunisia
46 Czech Republic 108 Malawi 170 Turkey
47 Benin 109 Malaysia 171 Turkmenistan
48 Denmark 110 Mali 172 Uganda
49 Dominican Republic 111 Mauritania 173 Ukraine
50 Ecuador 112 Mauritius 174 The former Yugoslav
51 El Salvador 113 Mexico 175 Egypt
52 Equatorial Guinea 114 Mongolia 176 United Kingdom
53 Ethiopia 115 Republic of Moldova 177 United Republic of Tanzania
54 Eritrea 116 Montenegro 178 United States of America
55 Estonia 117 Morocco 179 United States Virgin Islands
56 Faeroe Islands 118 Mozambique 180 Burkina Faso
57 Falkland Islands (Malvinas) 119 Oman 181 Uruguay
58 South Georgia and South SS 120 Namibia 182 Uzbekistan
59 Fiji 121 Nepal 183 Venezuela
60 Finland 122 Netherlands 184 Samoa
61 Aland Islands 123 New Caledonia 185 Yemen
62 France 124 Vanuatu 186 Zambia

function

K  = Cov( z (u ),z(uT)) =  cr2C(u, u T),
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where C(u, uT) is a correlation function. The covariance function K  must be 

a semi-positive definite function to ensure that it can be inverted. We chose a 

squared exponential correlation function that decreases as the distance between 

u and uT increases. It has the form

C =  Cor(u, uT) -- exp
E uT)2Lj'=l (8 .2)

where cx — ( a i , . . . ,  aq) is a smoothness parameter that measures the rate of 

change in the response as the input value changes; it will be estimated from the 

training data.

The Gaussian process has the same functional form as the multivariate Gaus­

sian distribution. If we assume a Gaussian prior process for the output function 

g(.) and update this with our training data D T =  [fa, g(uij));i =  1 , . . . ,  16; j  = 

1, . . .  ,4], we obtain a posterior distribution that is also a Gaussian distribution. 

GP regression will be used to estimate znew: the corresponding error of u new. In 

order to predict the response at a new input point unew, given some training data 

D, the joint distribution of the observed values D and test point znew can be 

obtained using a multivariate Gaussian identity. Suppose that

N
r 'V'' 

\ Hy
A

'c(u) t(uT)N'

t(u)
a

J

(8.3)

where t(u) =  Cor(u, uneu;)T is a correlation vector of training data U  with a 

new input point unew, C is a 16 x 16 correlation matrix among the training data 

U, c =  Cor(unew, (uneu;)T) is the correlation between the test data. Then, the 

conditional posterior distribution has the form

(8.4)

and after some algebraic manipulation (by integrating out the hyperparameters)
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the posterior mean and covariance functions are given respectively as

/i#(u) =  hT(u)(3 +  t(u)C 1[D — H(u)/3] (8.5)

K*{u, uT) =  a2 ^c(u) — t(uT)C 1t(u)^ (8.6)

These equations directly follow from subsection 5.6.3 in Chapter 5, where H is 

the 16 x 4 matrix given as HT =  [h(ui),. . . ,  h(ui6)], with u* denoting the ith 

design point and hyperparameters /3, a2 and a. are obtained using maximum

covariance function K*(u, uT) is a measure of uncertainty associated with this 

mean function.

Computation of the inverse and determinant of the correlation matrix CnXn is 

always tedious and time-consuming for large n which is one of the limitations

Dancik (2011). Further information on GP regression is given in subsection 5.6.3 

of Chapter 5.

Having obtained both the posterior mean and estimated variance of the actual 

residual at a new input point for each country, we need to compute the final 

predictions from the emulator. These are then given as Yagg:

country level. To combine the calculations for all countries into a single step, we 

fitted an independent GP regression in parallel to the columns of Z.

We applied the same concept to model each of the four crops (cereal, rice, 

maize and oil). Groundnut is not emulated in this chapter. This process was re­

likelihood. The mean function //*(u) is an estimate of the function g(u) and the

0  =  (HC-1H)t H C-1z

= H/3)r C -1 (z -  H/3) .
n L J

(8.7)

(8.8)

of GP regression. Our analysis is fitted with the package mlegp documented in

.new (8.9)

where y™™ is obtained by aggregating half degree data y new to obtain values at
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peated for all the time slices, RCPs and management levels. The training GCMs 

are CCSR-MIROC32HI and CCCMA-CGCM31. In order to test the perfor­

mance of the emulator, a complete cross-validation was performed using another 

five selected GCMs, UKMO-HADGEM1, GISS-MODELER, GISS-MODELEH, 

IPSL-CM4 and CCSR-MIROCMED. Some cross-validation results are provided 

in section 8.4.

8.3 Spatial aggregation procedure

In order to apply the GP regression for residual interpolation, we reduce the reso­

lution of the residuals data from half degree to a country level by aggregating the 

residual matrix E T. Country-level residual values are computed by multiplying 

the residual at each grid cell by the crop growing area for each cell (separately 

for rainfed and irrigated crops). We calculated the area-weighted sum for each 

country to determine the total residual for that country, and finally divided this 

total residual by the total (country) area.

Therefore, for the ith residual scenario,

m
E  E f y , X A,

Z m  =  1 s   (S-10)
£  A. j

3 = 1

where m  is the number of grid cells that fall into country n, E  is the residual as 

defined earlier and Aj is the crop growing area for the j th grid cell (i =  1 , . . . ,  16; 

j  = 1 , ...,7V). This analysis is performed with the rworldmap package in R. 

The package documents the aggregation of global half degree gridded data to a 

country level; for further detail see South (2011).
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8.4 G P results

We choose one combination of crop/management/time point from a particular 

scenario to demonstrate the results. The results shown here are for the 8th decade 

corresponding to change between the average yield in the period 2085-2094 and 

average yield in the baseline period average (2005-2014). The situation we con­

sider is where the C 0 2 fertilization effect is included. The climate at this time 

point is assumed to be characterized by a relatively large climate uncertainty 

associated with a high impact on yield change, and RCP 6  which is a moderate 

emission scenario under management level 5. Crop management level is a mea­

sure of vegetation density in cropping systems as influenced by machinery and 

fertilizer application. A well-managed system is assumed to have values of > 5 

for developed countries, while under-developed countries like Sub-Sahara Africa 

are assigned values between 1 and 3. Figure 8.1 shows the percentage of variance 

explained by each PC component for the four crops we consider in this chapter. 

We can see that the first 4 PCs explained at least 95% of the variance for each 

crop.

o -

CO

□  Cereal 
E  Rice
□  Maize 
■  Oil

o
CM

O -

Number of principal component

Figure 8.1: Percentage of the variance explained by each PC for the four rainfed crops. 
The plots correspond to crop-yield for management level of 5, RCP6  with C 0 2 fertil­
ization from UKMO-HADGEM1. 1 Oil=yieldmaa; [soybean, rapeseed, sunflower].
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LPJmL Vs emulator with 95% confidence interval
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(a) LPJmL and emulator predictions including their 95% C.l vs. UN country levels
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(b) Pair plot of emulator predictions vs. LPJmL values including their 95% C.l

Figure 8.2: Cross-validation for rainfed cereal; LPJmL and emulator with its 95% C.l 
for each countries for mean decadal change in yield between (2085-2094) and (2005- 
2014) with their 95% C.L The plots correspond to crop-yield for management level of 
5, RCP6  with CO2 fertilization from UKMO-HADGEM1.

Figure 8.2 is the GP emulation results for the 8th decadal change of rainfed 

temperate cereal under RCP6 , management level 5 and 8th decadal change for 

UKMO-HADGEM1. Figure 8.2a shows the performance of the 106 GP rainfed
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emulators for the cereal. Each GP corresponds to an individual country where a 

rainfed cereal crop is grown.

The four countries with the largest increase in yield are Tajikistan, Mon­

tenegro, Canada and Luxembourg. See Table (8.1) for a list of UN countries. 

Uruguay, Morocco, Ireland and Algeria are four countries with the greatest re­

duction in cereal yield (corresponding to the four largest negative peaks in Figure 

8.2). There is relatively little increase in yield in other countries. The observed 

values for LPJmL are within the 95% C.l of the emulator predictions for 57 out 

of 106 countries considered which is equivalent to ~  54%. The emulator predicts 

Tajikistan relatively well, giving it the largest increase. Uruguay has the lowest 

change in yield and the change is under-predicted by the emulator; the confidence 

interval given by the emulator is —1.21 ±  0.05 tonne/Ha, while the value given 

by LPJmL is -1.46 tonne/Ha.

Figure 8.2b is a bilinear plot between LPJmL and the emulator for the 106 

countries. The LPJmL values are arranged in ascending order from least to 

highest. The plot shows more clearly that the change in yield for LPJmL are 

clustered together for most of the countries. The two end points correspond to 

Tajikistan and Uruguay, and uncertainties at either end are large, as seen in the 

plot. The total percentage of variance explained by the emulator for cereal is 

92%.

Figure 8.3 shows the corresponding plots for cereal when it is irrigated rather 

than rainfed. Figure 8.3a shows the observed change in yield (LPJmL) and 

predicted change in yield (emulator). The observed values are mostly within 

the 95% C.l given by the emulator. Overall, we see that the change in yield of 

cereal is well predicted for both rainfed and irrigated crops with the majority 

of points lying within their uncertainty limits. Further tests involved computing 

cross-validated root mean squared error (RMSEcv) as given by equation (5.73) 

in Chapter 5. The RMSEcv are 0.0082 and 0.0018 tonne/Ha for rainfed and 

irrigated respectively. Thus, predictions are much better (low RMSE^y) for
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LPJmL Vs emulator with 95% confidence interval
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(a) LPJmL and emulator predictions including their 95% C.l vs UN country levels.

LPJmL Vs emulator with 95% confidence interval (ton/Ha)
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(b) Pair plot of emulator predictions vs LPJmL values including their 95% C.l

Figure 8.3: Cross-validation for irrigated cereal yield; LPJmL and emulator with its 
95% C.l for each countries for mean decadal change in yield between (2085-2094) and 
(2005-2014) with their 95% C.L The plots correspond to crop-yield for management 
level of 5, RCP6 with CO2 fertilization from UKMO-HADGEM1.

irrigated change in yield than for rainfed change in yield.

Results for the major producing countries are given in Figures 8.4 and 8.5. 

The four largest producers of cereal are China, India, USA and Russia and LPJmL
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Figure 8.4: Change in percentage yield by emulator with 95% C.L in comparison with 
LPJmL values for major producers of selected crops.
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and emulator change in yield of rainfed cereal are shown in Figure 8.4a. Emula­

tor predictions are similar to LPJmL values except for India where the emulator 

under-predicts the change in yield. (LPJmL gives a 17% change while the emu­

lator predicts a change of 13 ±  0.4%). There is a substantial change in yield of 

cereal in the USA, larger than for other major producers of cereal crop. For the 

change in irrigated cereal in Figure 8.4b, the emulator predicts relatively well the 

change in yield for China, India and Russia. In each of these cases, the LPJmL 

values are within the 95% C.l band given by the emulator. There is a general 

increase in yield under climate change in these four countries with a growth of 

6-36% across both rainfed and irrigated crops.

Figures 8.4c and Figure 8.4d give the change in yield of rice for its four largest 

producers. China has a substantial change with a rise of 26% in yield for rainfed 

and a rise of 30% under irrigation. The emulator predicts 284=0.18% and 304=2.2% 

respectively. The results of other countries are relatively close, except for rainfed 

rice in Bangladesh where the emulator under-predicts the change in yield. For 

irrigated rice, the emulator under-predicts the change in Indonesia and over­

predicts the change for Bangladesh. In Figure 8.5a, rainfed maize shows a change 

in yield of slightly more than 2% in China and Brazil but in contrast, there is a 

relatively steady reduction in yield in USA and France as simulated by LPJmL. 

The emulator does not capture these changes well. For instance, while LPJmL 

produces a growth of 2.5% in Brazil, the emulator projects a reduction of 1.2 4= 

0.12%. In France, LPJmL gives a decline of 1.5% and the emulator predicts a 

rise of 4 ±  1%.

Emulator predictions for irrigated maize in Figure 8.5b are much better than 

for rainfed maize. LPJmL values are within the 95% confidence band given 

by the emulator. A slight increment in yield of less than 3% is predicted in 

China and USA while France has a considerably larger predicted growth of 20%. 

However, there is a decline in maize yield in Brazil. Figure 8.5c shows a large 

increase of more than 60% in the yield of rainfed oil crops in Argentina and Figure
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8.5d indicates a large increase in irrigated oil crops in three of the four largest 

producers, Brazil being the exception. Overall, there is an increase in yield for 

most of the countries. This was expected because of the beneficial effect of CO2 

fertilization, included in this simulation.

We now consider the spatial map of rainfed cereal in Figure 8.6 (top). The 

white coloration in this map represents regions that are not currently growing 

cereal crop. Most of the countries are reasonably well-predicted. Though, the 

Russia Republic and Canada are under-predicted by the emulator. LPJmL sim­

ulates increases in yield of 0.52 and 0.90 tonne/Ha for Russia and Canada, while 

the emulator predicts growth of 0.49 ±0.01 and 0.61 ±0.09 tonne/Ha respectively. 

Values predicted by the emulator are noticeably higher than the LPJmL values 

for Mongolia, Tajikistan and South Africa. For instance, while LPJmL gives 

an increase in yield of 0.20 tonne/Ha for South Africa, the emulator predicts 

0.38 ±  0.003 tonne/Ha.

With the beneficial CO2 effect that we have been considering, both the emu­

lators and LPJmL predict increases in yield for most countries. There are signifi­

cant yield increases in Europe, China, USA and Russia - countries that all have a 

well-managed land system. In particular, Wu et al. (2014) associated significant 

increases in food production in China with technological advances and changes 

in agronomic practices in that country. In addition, an increase in warming con­

ditions, as projected under climate change, will give rise to a prolonged growing 

season in these regions which will increase yield (Bates et al., 2008; Stocker, 2013; 

Zhou et al., 2013).

Yield changes of cereal are significantly higher for high latitudes and middle 

latitudes than for low latitudes, in agreement with the literature (Rosenzweig et 

al., 1994; IPCC, 2007; Parry et al., 2005; Vermeulen, 2014). Climate change will 

cause low latitudes to experience a greater degree of heat and water stress, which 

will often cause a decline in yield even in the presence of the CO2 fertilization 

effect. For instance, in Australia there is a low change in yield that could probably
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Figure 8.5: Change in percentage yield by emulator with 95% C.L in comparison with 
LPJmL values for major producers of selected crops.
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Figure 8 .6 : Cross-validation of the comparison between LPJmL and LPJmLem for rain­
fed and irrigated temperate cereals, plotted as mean decadal change in yield between 
(2085-2094) and (2005-2014) with their 95% C.L The plots correspond to crop-yield for 
management level of 5, RCP6  with CO2 fertilization from UKMO-HADGEM1. The 
top row plots are for rainfed crops while the bottom row plots are for irrigated crops. 
The first column is LPJmL values, the second column is emulator predictions, the third 
column is for emulator confidence interval.

be due to a large variability in precipitation, extended droughts and a greater 

incidence of extreme weather events that could disrupt agricultural production. 

In addition, Australia and New Zealand exhibit a wide diversity of climates with a 

significant constraint on water resources as described in Stocker (2013). Algeria, 

Ireland, Morocco and Uruguay also have a substantial predicted reduction in 

yield. Uncertainty levels are low and vary from one country to another because 

each country is modelled by an independent Gaussian process regression.

Under irrigation, Figure 8 . 6  (bottom) shows the change in yield for cereal in 

USA, China and Russia is lower than when the crop is rainfed, unlike Canada 

that has a larger increase in yield when the crop is irrigated. The reduction in 

crop yield is larger in Argentina, Yemen, South Africa and Ethiopia. The increase 

in cereal yield is substantial for Canada, Armenia and Spain.

Next, we extend our cross-validation to other crops. Figure 8.7 (top) is for 

rainfed rice. The plot indicates that the emulator predicts the change in yield
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reasonably well in most countries, though the emulator under-predicts the change 

in yield in Russia and Argentina. Both LPJmL and the emulator produce a higher 

increase in yield for the Russia Federation and Argentina than for the USA and 

China. The uncertainty around predictions in most countries is quite low.

For irrigated rice (bottom) plot, LPJmL values are quite well predicted in 

most countries. Chile, Morocco, Macedonia and Hungary have a substantial 

increases in yield, more than in other countries. Uncertainty levels are quite low 

for most of the predictions. In Figure 8.8 (top) for example, predictions are quite 

close to the LPJmL values in most regions for both rainfed and irrigated crops. 

The uncertainty associated with predictions is fairly similar in most countries, 

and the values are small. The Russia Federation has a high value under rainfed 

rice as we have earlier observed, and a similar high value is also apparent for the 

irrigated crop. Maize, unlike other crops, exhibits little change in yield under this 

scenario.

Figure 8.9 for rainfed oil shows a rise in yield for most countries, with emulator 

predictions comparable to the LPJmL simulation. The results are also similar 

under irrigation and uncertainty levels are generally low.

We summarise the performance of the emulators in Table 8.2, which calculates 

the overall proportion of the variation in LPJmL prediction for the cross-validated 

data that is explained by the emulator. The results are over all management 

levels, RCP and time point with CO2 fertilization for UKMO-HADGEM1. We 

also compare the performance of the GP emulator with the WLS techniques used 

in Chapter 7. In this case, we use the same procedure set out in this chapter, but 

instead of performing GP regression we used the WLS approach. The proportions 

of variance explained when WLS is used is also shown below in Table 8.2.

Results for the GP regression are slightly better than with the WLS method 

for all the cases except for rainfed oil and irrigated rice. Results for irrigated cereal 

and maize are much better under the GP models than with the WLS approach. 

The two techniques produce relatively similar results for irrigated rice and oil.
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Figure 8.7: Cross-validation of the comparison between LPJmL and LPJmLem for 
rainfed and irrigated temperate rice, plotted as mean decadal change in yield between 
(2085-2094) and (2005-2014) with their 95% C.L The plots correspond to crop-yield for 
management level of 5, RCP6  with CO2 fertilization from UKMO-HADGEM1. The 
top row plots are for rainfed crops while the bottom row plots are for irrigated crops. 
The first column is LPJmL values, the second column is emulator predictions, the third 
column is for emulator confidence interval.

C ro p  Y ie ld  c h a n g e  in  ( to n /H a)

100°W 0° 100'
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LPJML irriqated maize Emulator irriqated maize Irriqated uncertainty

Figure 8 .8 : Cross-validation of the comparison between LPJmL and LPJmLem for 
rainfed and irrigated temperate maize, plotted as mean decadal change in yield between 
(2085-2094) and (2005-2014) with their 95% C.L The plots correspond to crop-yield for 
management level of 5, RCP6  with CO2 fertilization from UKMO-HADGEM1. The top 
row plots are for rainfed crops while the bottom row plots are for irrigated crops. The 
first column is LPJmL maps, the second column is emulator maps, the third column is 
for emulator confidence interval.

Overall, the GP emulator explains between 70-94% variance while WLS ranges 

from 63-93% for both rainfed and irrigated crops.
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Figure 8.9: Cross-validation of the comparison between LPJmL and LPJmLem for 
rainfed and irrigated temperate oil, plotted as mean decadal change in yield between 
(2085-2094) and (2005-2014) with their 95% C.L The plots correspond to crop-yield for 
management level of 5, RCP6  with CO2 fertilization from UKMO-HADGEM1. The top 
row plots are for rainfed crops while the bottom row plots are for irrigated crops. The 
first column is LPJmL maps, the second column is emulator maps, the third column is 
for emulator confidence interval.

Results from the cross-validation with four additional GCMs are given in 

Table 8.3. We see that results for CCSR-MIROCMED are much better than 

for other GCMs. This is because CCSR-MIROCMED is very similar to CCSR- 

MIROC32HI, which gave part of the training data. Results from GP models 

are better than from the WLS technique among all GCMs except for rice under 

IPSL-CM4, where the result is slightly better than for GP. The improvement give 

by the GP model over WLS is often substantial.

Table 8.2: Table of cross-validated proportion of variance p showing the overall per­
formance of the GP emulators, and a comparison with the WLS method, for rainfed 
and irrigated crops, with all management levels, RCPs, and time slices, but with CO2 

fertilization only. The list of countries are shown in Table 8.1.

p Number of countries GP WLS
crops rainfed irrigated rainfed irrigated rainfed irrigated
cereal 106 83 0.89 0.94 0.81 0.87
rice 79 95 0.82 0.92 0.77 0.93

maize 141 1 0 0 0.70 0.80 0.63 0.76
oilman 139 64 0.89 0 . 8 8 0.91 0 . 8 8

Figures 8.10a shows the average global changes in yield for rainfed crops that
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Table 8.3: Comparison of GP with WLS methods for four GCMs, with CO2 fertilization, 
management level 5, RCPs 4.5 and 8.5, and all time slices for rainfed crops. The values 
are the proportion of variance p explained.

Crop CCSR-
MIROCMED

GISS-
MODELER

GISS-
MODELEH

IPSL-
CM4

GP WLS GP WLS GP WLS GP WLS
Cereal 0.87 0.81 0.71 0.66 0.78 0.72 0.75 0.72

Rice 0.83 0.81 0.71 0.67 0.83 0.67 0.71 0.72

Maize 0.92 0.86 0.69 0.67 0.76 0.68 0.87 0.80

Oil1 0.89 0.83 0.84 0.78 0.83 0.74 0.83 0.77

Oil=yieldmax [soybean, rapeseed, sunflower].

are predicted by the GP emulator in all countries and compares them with LPJmL 

values. The emulator predicts the global average change in rainfed yield for cereal 

and rice relatively well and LPJmL values are within the 95% confidence interval. 

However, rainfed yields of the maize and oil crops are under-predicted by the 

emulator. LPJmL simulates a small increase of 1.9% for maize; the emulator 

predicts a reduction of -0.25%. Figure 8.10b for irrigated crops indicates that 

the yield from the oil crops is under-predicted by the emulator, while emulator 

predictions for cereal, rice and maize are relatively similar to the LPJmL values. 

Uncertainty is much higher for the yield from oil crops than for other crops. 

Comparing the top and bottom plots in Figure 8.10b, for irrigated rice and maize, 

the global percentage changes in yield are higher than for rainfed rice and rainfed 

maize. In contrast, for irrigated cereal and oil the percentage changes are a little 

lower than for the rainfed crops.

8.5 Conclusion

In this chapter, we have demonstrated a means of making inference about the 

parameters of the emulator using GP regressions. Combinations of OLS, PCA and 

GP methods were used to emulate major crop-yield as a linear function of seasonal
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Figure 8.10: Global percentage change in yield by emulator with its 95% C.L in com­
parison with LPJmL values for a period (2085-2094) relative to (2005-2014) with their 
95% C.L The plots correspond to crop-yield for management level of 5, RCP6  with 
C0 2 fertilization from UKMO-HADGEM1.

climate variables and other relevant variables. Aggregated country average of 

actual yield change was calculated by combining yields simulated by LPJmL for 

both rainfed and irrigated crops. We consider eight time-slices averaged over ten 

years with the baseline corresponding to the average in the decade (2005-2014).

In order to implement GP, it was necessary to reduce the computational bur­

den by aggregating the OLS residuals from a fine to a more coarse resolution on 

a country level. GP is computationally intensive, making it important to reduce
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the dimensionality of data for tractable application of GP modelling. From a 

methodological viewpoint, the most important finding is that the GP regression 

appears to be better than WLS as a means of performing stage 2 analysis. The 

cross-validation results (Table 8.2) found that the GP emulator explained 70- 

94% of the variance in LPJmL values, while WLS explained only 63-93%. Hence, 

while GP cannot be applied at a grid-cell level (too many regression would be 

needed), it would seem to be the preferable for stage 2 when it is viable to use it.

Another advantage of the GP method is that the prediction is probabilistic 

so confidence intervals can be formed as a measure of uncertainty. Also GP has 

some flexibility because different correlation and linear regression functions can 

be specified. Additional information in the form of a prior distribution could, in 

principle, be used to improve the prediction.

These emulators can predict the change in global crop yield as a function of 

climate from any GCM/RCP combination and for different management level 

options and CO2 fertilization level. Overall, cereal is more predictable in South 

America, Africa and China than in other parts of the world. Similarly, rainfed 

rice is more predictable in North America, China and India but is more difficult 

to predict in Australia. Maize and oil can be predicted well in most countries, 

Canada and Mongolia values being exceptions. Uncertainty levels are also rel­

atively low for all the four crops and there are only a few countries with wide 

confidence band, which could be attributed to a large variability in the training 

data for those countries.
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C hapter 9

Sum m ary

The introduction chapter gave the scope of work in this thesis as the use of 

statistical emulation as a cheaper surrogate to study the impact of climate change 

on terrestrial ecosystems. In this chapter, we will conclude by describing the 

progress made so far towards achieving that stated objective. Suggestion for 

some possible future research that could emanate from this study and towards a 

wider application on integrated impact assessments will be provided.

9.1 D iscussion

We presented a statistical method for emulating the underlying physical dynam­

ics of carbon fluxes and crop-yield responses to change in climate. This thesis has 

addressed the joint emulation of the impact of climate change; CO2 fertilization 

effect and crop management levels on global crop yields. In addition, we have 

emulated NPP, FC and HR using a variety of techniques. We applied a com­

bination of OLS, WLS, PCA, CR and GP regressions to fit our models to the 

response data. The emulators are designed to predict the change in global crop 

yield and carbon fluxes as a function of climate and other important variables 

like soil, LAI, CO2 .

In Chapter 1, we introduced the work to be covered in this thesis and its 

motivation. Chapter 2 dealt with general background. We reviewed literature
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that relevant to the research work to be carried out in Chapter 3, while Chapter 

4 provided descriptions of important models that simulated the data we used 

in this study. In Chapter 5, we described the different statistical methodologies 

used for the analyses. Chapters 6, 7 and 8 developed and tested novel approaches 

to statistical emulation and we then obtain important results. The results are 

novel contributions to the knowledge about the impact of future climate change 

on global vegetation. We provided a statistical emulation procedure as a viable 

and cheaper alternative to the process-based simulation model of LPJmL that is 

computationally expensive to run in the assessment of global impact of climate 

change on vegetation.

9.2 Conclusion

This thesis combined several statistical techniques in new ways to form effective 

emulations of global carbon fluxes and crop yields. Chapter 6 described the 

emulation of change in carbon fluxes for NPP, HR and FC. Chapters 7 and 8 

developed a procedure for constructing an emulator for LPJmL simulations of 

potential crop yield for cereal, rice, maize, groundnut and oil crop functional 

types. Two emulators were built for each crop, one for the rainfed crop and 

the other for its yield under irrigation. Each emulator was constructed using a 

novel form of two-stage process. The first stage used OLS to fit crop-yield as 

a smooth function of climate variables under the assumption that each spatial 

point is an independent sample. The second stage involves interpolation of the 

spatial residuals of unknown scenarios from known scenarios (an approach similar 

to pattern scaling) using a combination of WLS and PC A. We made similar 

assumptions to those of GP emulators (O’Hagan, 2006; Oakley & O’Hagan, 2004; 

Conti et al., 2008). In particular, it is assumed that the emulator is a smooth 

and continuous function of its input variables. The second stage indeed improves 

the overall predictions.

We used cross-validation to test the accuracy of the emulator and performed a
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sensitivity analysis for each crop response. LPJmL uses daily time-steps as crop- 

yields respond to daily variability. Here, we have chosen to use only seasonal 

mean climatic variables as input as these are readily available input data. With 

these inputs, under cross-validation the emulators explained 62-93% of the vari­

ance for irrigated crops and 60-88% of the variance for rainfed crops. Sensitivity 

analysis indicated that the predicted yield of rainfed crops depends most heavily 

on baseline seasonal temperature, CO2 change, latitude and LAI. Irrigated crops 

are dominantly sensitive to temperature and less dependent on precipitation, as 

expected. We provided spatial plots visually to compare the performance of the 

emulators with the LPJmL simulations.

We noted that using Bayesian technique of GP emulator directly on LPJmL 

data would be challenging, because of the large number of parameters to be 

estimated. We have to sample from all scenarios (time-slice, RCP, GCM, man­

agement levels). In order to overcome the problem, it was necessary for us to 

reduce the resolution and aggregate data to a country level in order to reduce 

the computational load. GP was used to emulate these data because of its wider 

applicability and flexibility in modelling complex data. Although Bayesian meth­

ods require much experience in selecting prior distribution of hyperparameters, 

this was not a problem in this study as we used conjugate priors. We applied a 

combination of PCA-GP in Chapter 8 to perform GP regression of crop yields. 

Cross-validation under GP regression in Chapter 8 explained between 55-86% 

and 60-89% of the variance of the response data.

LPJmL crop data are characterized by a large proportion of zero observations. 

Grid points where particular crops are not currently grown are represented as 

zeros in the simulation. A censored regression approach (Moore et al., 2000; 

Cai & Cheng, 2004) was also used to model these data by treating the zero 

observations as censored observations (results shown in Chapter 7). However, 

this method was not helpful because of the large dataset we have, coupled with 

the fact that the censoring algorithm takes a longer computation time, even after
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reducing the data size from 0.5° x 0.5° to 2° x 2° resolution.

Nevertheless, for the first stage we analysed a small sample of this data with 

censored regression but the results were not better than OLS. Using either non­

linear regression or a Gaussian process emulator would be challenging because of 

the large number of parameters to be estimated with samples from many scenarios 

(time-slice, RCP, GCM, management levels, irrigation regime).

We might also have used a dynamic emulation by emulating each grid-cell 

individually as a function of time. Rather, our choice of OLS is driven by its 

simplicity.

Our crop emulation approach extends the work of Lobell & Burke (2010, 

2008), which models temporal and spatial variation to predict future crop yields 

from climate variables and performs sensitivity analyses to examine the impor­

tance of temperature and precipitation on future yields. However, unlike Lobell 

Sz Burke (2010, 2008), our predictions were not based solely on climate variables 

but also incorporated soil, latitude, crop management levels and other covariates. 

Our analyses and aims are also broader; Lobell & Burke (2010) work with just 94 

crop-region combinations and only examine temperature and precipitation while 

Lobell & Burke (2008) work solely with the yield of maize in 200 sites in Sub- 

Saharan Africa. Our emulators provide estimates of projected change in crop 

yields at any level of CO2 emission on high spatial gridded resolutions for five 

different crops. We also performed rigorous and extensive cross-validation for 

several climate models and RCPs, and our global sensitivity analysis measures 

the individual contribution of a number of different variables to the overall un­

certainty. In agreement with Lobell & Burke (2008), the clearest result from our 

sensitivity results is that temperature is the dominant source of uncertainty in 

future impacts assessment. The sensitivity analysis used a variance based decom­

position technique and the contributions of other variables that it quantifies have 

not previously been reported.

The emulators reduced the LPJmL model down to a two-stage process that is
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capable of predicting global crop-yields of different crop functional types, and the 

spatial distribution and temporal dynamics of these yields in response to a chang­

ing climate. These emulators are much faster to run compared to the LPJmL 

model. LPJmL is computationally expensive to run, while these emulators give 

results almost instantaneously. The LPJmL emulator, without considering the 

MAGICC and ClimGen simulation time, takes about 8 — 10 minutes to produce 

eight decadal changes of crop-yield data (on 0.5° x 0.5° resolutions) with a 24G 

RAM, 4-cores Window machine. This approximately 60-fold increase in compu­

tational efficiency is particularly useful when the model is coupled to one or more 

models for the integrated assessment of climate impact.

There will be limitation in using an emulator as a substitute for LPJmL 

because emulator outputs will only be an approximation to the LPJmL. Thus, 

there will be some differences (error) between outcomes predicted by the emulator 

and outcomes observed from LPJmL. The major objectives of this thesis are to 

obtain good predictions of the major simulation outputs from LPJmL and to 

provide a measure of uncertainty associated with these predictions.

This thesis described statistical emulators that are useful to approximate com­

plex models when the simulator is time-consuming due to the computational ex­

pense of the model. These emulators provide good approximations to the true 

dynamics of LPJmL response outputs to climate and CO2 emissions. In addi­

tion, these emulators have been applied already as a flexible way for data ex­

change among the coupled models that were used in the ERMITAGE project. In 

particular, it has been coupled with the GEMINI-E3 model in the ERMITAGE 

project.

The ERMITAGE project in general provided useful information for decision 

and policy-makers on the interactions between climate, agricultural, ecosystems, 

economy and technologies in order to effectively assess the economic impact of 

global climate change.
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9.3 Future work

This thesis has demonstrated emulation techniques as a means for assessing the 

impact of climate change on global terrestrial vegetation. Several techniques of 

emulating global carbon fluxes and crop yields have been used. However, there 

are still some interesting analyses we could not cover due to time constraints and 

non-availability of required simulation data.

Throughout this thesis, we have applied a decadal averaging as a strategy to 

condense the dimension of the data. It is not clear as at now the effect of this 

decadal averaging on the emulator. It will be interesting to assess the implication 

of decadal averaging on the emulator algorithm using another data reduction 

strategy that can minimize non-relevant information. Similarly, we have used 

various regression techniques namely OLS, WLS, censored and GP regression 

for our parameter estimation. Alternative approaches for estimating the model 

parameters in this thesis could also be further investigated.

The use of LPJmL emulator to interpolate paleoclimate data is another im­

mediate and beneficial application of the work in this thesis. Examination of past 

climates and the forcing that caused them to change will provide a better under­

standing of how future climate will change. There is currently little simulation 

data on crop yields for paleoclimate study and it is difficult to run a simulation 

model for the long times scales associated with paleoclimate studies. Emulation 

is a useful tool for making such projection.

The line of research that follows from Chapter 8 is a Gaussian process regres­

sion that is flexible and widely used in various applications. In this thesis, we 

have used an exponential correlation function for the GP to model an unknown 

function emanating from the residuals of change in crop yield. Examination of 

the sensitivity of the GP model to the choice of prior distribution parameters 

and investigation of robustness to different choices of correlation functions could 

potentially improve the results in this thesis.

We have investigated the contribution of each climate variable to the overall
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variance in the LPJmL output through sensitivity analysis. However, LPJmL has 

a large number of parameters that are calibrated for the simulation of outputs. 

A quantification of LPJmL parametric uncertainty by considering the sensitivity 

of the output to the individual parameters will enhance the understanding of 

the most influential parameters and improve the interpretation of our sensitiv­

ity analysis. An improved understanding of relevant parameters is essential for 

making a better choice in designing plausible experimental points. In addition, 

it will help to determine the influence of parametric uncertainty on the LPJmL 

simulation outputs. These analyses are not performed in this work because there 

are no available simulation data.

There is a need to assess the full range of local climate changes, considering 

particularly the uncertainty stemming from the often substantial differences in 

precipitation projections among GCMs (e.g. Knutti & Sedlacek (2013); Ramesh 

& Goswami (2014)). This thesis focused only on few selected GCMs to demon­

strate the impact of climate change on vegetation rather than attempting to 

provide a comprehensive assessment based on projections from the ~  20 GCMs 

available in global climate data archives such as CMIP3 or CMIP5. It is possible 

for the crop and carbon flux response patterns to differ under different climatic 

projections from other GCMs training data. Further research to incorporate a 

large number of GCMs will enhance the findings in this study.

For a broad understanding of the impacts of climate change on agriculture, 

quantification of potential impacts on most of the agricultural crops are essential. 

In order to address this issue, we have adopted an emulation approach for studying 

the impact of climate change on some selected agricultural crops (cereal, rice, 

maize, groundnut and oil (sunflower, rapeseed, soybean)) but there are still a large 

number of other crops (including biofuels) that could also offer useful information 

on the impact of climate change on global food production and energy security. 

Another possible extension of this study is to accommodate more crop functional 

types in the modelling to provide a comprehensive assessment.
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Another interesting aspect that we could have covered in the thesis is the 

assessment of climate change impact on water runoff. Evaluation of the poten­

tial impact of climate change on water resources and its availability is essential. 

Water is valuable for its supporting role in ecosystems function and irrigated agri­

culture. Higher temperatures and increased variability of precipitation could lead 

to an increased irrigation water demand. The world population is projected to 

increase by the middle of this century (Crossette, 2010). This increase will cause 

a rise in demand for major food crops thereby causing a growing pressure on 

water resources. The problem will worsen under climate change because of rising 

temperature and changing precipitation patterns that will affect crop production 

(Parry et al., 2004). Change in precipitation patterns affects water availability 

and runoff. Relatively few studies have investigated the impacts of climate change 

on the hydrology cycle and runoff and studies that examine projection of natural 

water cycle variability are limited by inter GCM uncertainty.

There is a rise in demand for projections about the potential impacts of cli­

mate change on water resources from decision-makers. A better understanding of 

projected climatic impact on the hydrological cycle is essential. A sound knowl­

edge of the hydrological cycle will enhance better management of global water 

resource. Water-climate studies are necessary to understand the major sources 

of uncertainty in water modelling. Further work is needed to explore the impact 

of climate change on a simulated water runoff from LPJmL, which can also be 

addressed using a statistical emulation. Emulation offers a cheaper and relatively 

quicker alternative approach and can quickly evaluate a large number of scenarios 

for a policy-maker.
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List of em ulators

(i) NPP emulator

(ii) Fire carbon emulator

(iii) Heterotrophic respiration emulator

(iv) Temperate cereal emulator (rainfed)

(v) Rice emulator (rainfed)

(vi) Maize emulator (rainfed)

(vii) Oil-crop emulator (rainfed)

(viii) Cereal emulator (rainfed, high resolution)

(ix) Rice emulator (rainfed, high resolution)

(x) Maize emulator (rainfed, high resolution)

(xi) Oil-crop emulator (rainfed and irrigated, high resolution)

(xii) Cereal emulator (irrigated, high resolution)

(xiii) Rice emulator (irrigated high resolution)

(xiv) Maize emulator (irrigated, high resolution)

(xv) Groundnut emulator (irrigated and rainfed, high resolution)
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Variogram plots

30 50

(a) Rainfed rice

15 25

(b) Rainfed maize

(c) Rainfed oil

Figure B.l: A sample of further variograms that again show an increase in 'y(df) as dp 
increases for rainfed rice, maize and oil averaged over all grid cells. The points are the 
estimated variogram bins from the residual data while the curves are the theoretical 
models fitted using the covariance functions.
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WLS diagnostics

R e sid u a ls  v s  Fitted

o

t?
o

cc

o

N orm al Q -Q

F itte d  v a lu e s T h e o r e t ic a l  Q u a n t i le s

S c a le -L o ca tio n

F itte d  v a lu e s

z:T3

-o

L e v e r a g e

(a) cereal at 7000</l grid point
R e sid u a ls  v s  Fitted

o

o

N orm al Q -Q

F itte d  v a lu e s T h e o r e t ic a l  Q u a n t i le s

S c a le -L o ca tio n

p

•o o

-20 15 10 -5 0-25
F itte d  v a lu e s

R e sid u a ls  v s  L everage

0.4 0.6

L e v e r a g e

(b) cereal at 14000 grid point

Figure C.l: WLS diagnostic plots for some randomly chosen grid points for rainfed 
cereal. The points are the 16 data values representing scenarios.
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A ppendix D

List o f input variables

Table D.l: The emulator’s input variables.

Variables Full names
1991-2000 data only

csdtr/cwdtr/cspdtr/cadtr 
csvap /  cwvap /  cspvap /  cavap 

cstmn /  cwtmn /  csptmn /  catmn 
cstmx /  cwtmx /  csptmx /  catmx 

sdtr /  wdtr /  spdtr /  adtr 
s vap /  wvap /  spvap /  avap 

stmn /  wtmn /  sptmn /  atmn 
stmx /  wtmx /  sptmx /  atmx

Change in mean diurnal temp range in summer/winter/spring/autumn 
Change in mean vapour pressure in summer/winter/spring/autumn 

mean near surface temp min in summer /winter/spring/autumn 
mean near surface temp max in summer/winter/spring/autumn 

baseline mean diurnal temp range in summer/winter/spring/autumn 
baseline mean vapour pressure in summer/ winter/spring/autumn 

baseline mean near surface temp min in summer/winter/spring/autumn 
baseline mean near surface temp max in summer/winter/spring/autumn

2001-2100 data
scld /  weld /  spcld /  acid 
spre /  wpre /  sppre /  apre 

stmp /  wtmp /  sptmp /  atmp 
s wet /  wwet /  spwet /  awet 
iscld /  iweld /  ispcld /  iacld 
ispre /  iwpre /  isppre /  iapre 

istmp /  iwtmp /  isptmp /  iatmp 
iswet /  iwwet /  ispwet /  iawet 

co2 and cco2 
soil, lat and LAI

Change in mean cloud cover in summer/winter/spring/autumn 
Change in mean precipitation in summer/winter/spring/autumn 
Change in mean temperature in summer/winter/spring/autumn 

Mean change in wet day frequency in summer/winter/spring/autumn 
Initial (baseline) mean cloud cover in summer/winter/spring/autumn 

Initial mean precipitation in summer/winter/spring/autumn 
Initial mean temperature in summer/winter/spring/autumn 
Initial wet day frequency in summer/ winter/spring/autumn 

Baseline mean CO2 and change in mean CO2 

Soil and latitude parameters, and maximum leaf area index

In the northern hemisphere, summer = {June July August}, winter = {December January 
February}, spring = {March April May} and autumn = {September October November}; ob­
vious changes are made for the southern hemisphere.
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G lossary

Table E.l: Glossary

Glossary Full meaning
Emulator 

GCMs, AOGCMs 
Grid 

Projection 
RCPs 

Spin-up period

Weather 
Climate 

Cloud cover 
Insolation 

Evapotranspiration 
Growing degree days

Growing season 
Precipitation 

MAGICC 
MAGICC6 
ClimGen 

IPCC 
PFTs 

Rainfed crops 
Irrigated crops 

LAI
CCCMA-CGCM31
CCSR-MIROC2HI

UKMO-HADGEM1

Approximation to simulator which gives predictions of simulator outputs at untried input points. 
General Circulation (or Global Climate) Model, Atmosphere-Ocean GCM.

Horizontal and vertical spatial resolutions.
A climate prediction along a specified scenario.

Representative Concentration Pathways.
Time taken between the initial time of a climate simulation 

and the moment when the model reaches its own equilibrium.
State of the atmosphere (temperature, precipitation, cloudiness)

Accumulation of daily and seasonal weather events over a long period of time.
Amount of the sky obscured by clouds when observed at a particular location.

Solar radiation that is reflected by atmospheric components to the Earth’s surface. 
Vaporization of water through direct evaporation from wet surfaces.

A growing degree-day is defined as a day on which the mean daily temperature is one degree 
above the base temperature-minimum temperature required for growth of a particular crop. 

The number of days between last spring freeze date and first fall freeze date.
Any form of water particles-liquid or solid-that falls from the atmosphere.

Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC). 
Updated version of MAGICC 

spatial climate scenario generator 
The Intergovernmental Panel on Climate Change.

Plant Functional Types (natural vegetation at the level of biomes).
Water requirements and water consumption depend on precipitation.

Water requirements and water consumption depend on irrigation.
Leaf Area Index

Canadian Centre for Climate Modelling and Analysis Global Climate Model.
Center for Climate System Research Model for Interdisciplinary Research on Climate. 

Hadley Centre Global Environmental Model, Met Office UK.
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