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ABSTRACT

Bioethanol can be produced from a range of substrates and it is considered to be 

renewable. Lignocellulose is one of the substrates that can be used for bioethanol 

production. Genetic engineering of a microorganism that can completely convert all the 

sugars of cellulosic material into ethanol is one of the important steps for the production 

process.

This study has two parts that aim to produce bioethanol by using genetically modified 

microorganisms. The first part of the study deals with bioethanol production from 

lignocellulosic material by microbial fermentation in two steps. The first step is the 

degradation of the lignocellulosic material by Bacilli to produce cellobiose, and the second 

step is to convert cellobiose into glucose by a p-glucosidase expressing recombinant yeast 

strain. As lignocellulosic material, wood powder from industrial waste was used and the 

degradation of the wood powder into glucose was confirmed by following the growth 

curve of the microorganisms and through appropriate enzymatic assays.

The second part of the study utilizes two novel technologies, Yeast Artificial Chromosome 

(YAC) and Bridge-Induced Translocation (BIT) to introduce new, multi-factorial genetic 

traits into a yeast strain, a process that would otherwise take several time-consuming and 

labor-intensive rounds of genetic engineering. After cloning exogenous cellulases onto a 

YAC vector, this was transformed into a PEP4 mutant yeast upon which BIT technology 

was applied. This technology allowed the research to gain two advantages; one of them 

was to stabilize the YAC within the yeast genome and the other one was to have increased 

gene expression level consequent to the translocation event.

In conclusion, this work defines a successful microbial system that is able to efficiently 

utilize lignocellulosic material as a carbon source and a translocant yeast strain that has 

high level of cellulase activity.
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1. INTRODUCTION

1.1 YEAST AS A MODEL ORGANISM

Saccharomyces cerevisiae has been established over the years as a model eukaryotic 

organism. The origin of the name is coming from Latinized Greek where Saccharomyces 

means sugar-fungus; Saccharo stands for ’’sugar” while mycos means ’’fungus” and 

cerevisiae is Latin origin and means ” of beer” . It represents a typical eukaryote that 

offers the advantages of simplicity in cellular organization and easiness of manipulation 

via both classical genetics and modem recombinant DNA technology. The many features 

of this organism help in scientific studies.

For the scientific studies, yeast has a lot of advantageous to work with. S. cerevisiae does 

not require any complicated working conditions and is remarkably inexpensive compared 

to higher eukaryotic organisms. To work with, it does not need any special safety 

equipment and does not cause any infections or have toxicity for humans. It grows easily 

and rapidly at 30°C with a doubling time around 1,5- 2 hours.

The genetic system of the S. cerevisiae is very well defined and this helps a lot to scientific 

studies. Transforming with exogenous DNA can be done without any difficulty and this 

makes genetic engineering and genome manipulation easily efficient (Botstein, Chervitz, 

& Cherry, 1997; Merlini, Dudin, & Martin, 2013).

S. cerevisiae can be in haploid or in diploid form in nature and divides by budding. Meiotic 

division converts diploid strain to haploid strain similar to gametes and this division can be 

induced by starvation where there are no fermentable carbon sources (Byers, 1982). 

During the meiotic division, yeast produces asci containing four haploid spores that can
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undergo vegetative growth or can subsequently mate. Haploid yeast cells 

appear in two mating types in nature as a mating type a or mating type alpha and they can 

stay either in stable haploid form or they can mate with the opposite mating type to 

produce diploid yeast cells (Herskowitz, 1988; Neiman, 2005). This feature of two forms 

of yeast life cycle is an additional aspect that makes yeast cells interesting to geneticists. 

Figure 1.1 shows the life cycle of the budding yeast.

Germination

Haploid
phase

Meiosis Sporulation

Mitosis

Figure 1.1: Y east life cycle.

Budding yeast, -S', cerevisiae has a small genome, which is around 12.5 Mb and contains 16

chromosomes ranging in size from 200 to 2000kb (A Goffeau et al., 1996; Mortimer &
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Schild, 1985). Genome replication begins at the origin of replication locus and occurs 

bidirectionally. Yeast cells can have both mitotic and meiotic recombination. Mitotic 

recombination takes place in G1 phase before DNA synthesis where else meiotic 

recombination takes place in G2 after DNA synthesis. Due to the knowledge of the yeast 

recombination system, S. cerevisiae is a perfect model organism to study the 

recombination process in eukaryotic organisms (Herskowitz, 1988; Wagstaff, Klapholz, & 

Esposito, 1982).

The scientific community of yeast has a strong collaboration among itself. This helps us to 

go faster in yeast molecular biology and genetics field. All over the world, a large number 

of yeast mutants was collected and characterized. The first genetic map of S. cerevisiae 

was done in 1960s and by the help of it, research with yeast developed rapidly (Goffeau et 

al., 1996; Goffeau, 2000; Hawthorne & Mortimer, 1960; Mortimer & Schild, 1985). Yeast 

genome sequencing was completed in 1996 and this microorganism became the first 

eukaryote with the known DNA sequences (Mewes et al., 1997). Having the whole 

genome sequenced was a big achievement in science, able to allow and to make the 

progress smooth for the further experiments. Since the yeast genome sequenced, 5000 out 

of estimated 6000 yeast genes are well recognized (Goffeau, 2000; Pena-Castillo & 

Hughes, 2007) that make yeast a model organism in a wide variety of genetic analysis 

regarding to cell’s behaviour, evolution, metabolism, DNA repair pathways and many 

others (Goffeau, 2000).

Respiration in yeast cells can be done in both ways; aerobic in the presence of oxygen and 

anaerobic in the absence of oxygen. Yeast cells are able to metabolize wide range of 

carbon sources depending on whether they are grown aerobically or anaerobically. When 

they have enough oxygen, they oxidize the sugars into carbon dioxide and water but if 

there is no oxygen, they grow anaerobically to convert the sugars to carbon dioxide and
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ethanol (Gasmi et al., 2014; Murray, Haynes, & Tomita, 2011; Verduyn, Postma, 

Scheffers, & Van Dijken, 1992).

Yeast has some mutual features with other organisms. It possesses mitochondria to do 

aerobic respiration as eukaryotes. In addition to mitochondria, they have a nucleus with its 

own membrane, peroxisomes and a secretion system. Moreover, yeast contains also very 

large vacuoles, which are common in plants but missing in animals and it has a thick cell 

wall like in plant cells that generates periplasmic space between the wall and cell 

membrane (Banta, Robinson, Klionsky, & Emr, 1988; Wiederhold, Veenhoff, Poolman, & 

Slotboom, 2010). These features make it share the internal cell architecture with plants and 

animals.

All of the characteristics mentioned above, as well as numerous others, make yeast the 

organism of choice in genetic studies like; DNA repair mechanisms, recombination, cell 

behaviour, heterologous gene expression and heterologous protein production.

1.1.1 HETEROLOGOUS GENE EXPRESSION IN YEAST

Current heterologous gene expression researches involve either prokaryotic (.Escherichia 

coli, Bacillus subtilis) or eukaryotic (yeast or various mammalian cell) hosts (Nielsen, 

Larsson, van Maris, & Pronk, 2013; Schmidt, 2004).

S. cerevisiae is one of the attractive hosts for the heterologous gene expressions for the 

production of foreign proteins. Before, E. coli was the main host for heterologous gene 

expressions but since it produces toxic and pyrogenic cell wall components and also 

mechanism of transcription, translation and post-translational process hold differences 

from eukaryotes, foreign protein production was having difficulties (Botstein & Davis, 

1982). By the development of the exogenous DNA transformation into yeast (Hinnen, 

Hicks, & Fink, 1978), cloning and analyzing of foreigner genetic information in a 

eukaryotic organism became unproblematic. Since from this success, a wide range of



alternative systems for yeast transformation and different plasmid systems were 

developed (Bruschi, Comer, & Howe, 1987; Gietz, St Jean, Woods, & Schiestl, 1992; Ito, 

Fukuda, Murata, & Kimura, 1983). Within the past years, plasmid and yeast engineering is 

a key tool for the biotechnology industry. Development of recombinant yeast artificial 

chromosome is an important example of cloning and analysis of eukaryotic genes (Burke, 

Carle, & Olson, 1987). The most important advantages offered by this yeast technology are 

rapid and cheap growth, safety, most of the higher eukaryotic pathways are conserved and 

easy genome manipulations (Castelli, Mardon, Strike, Azad, & Macreadie, 1994).

When the yeast took an important place for the foreign protein production, it helped 

different biotechnology fields to be developed faster. By the help of the recombinant DNA 

technology, developing vaccines, therapeutic agents and bioactive compounds have 

received an extensive attention recently. Yeast has become the suitable alternative model 

organisms for the biotechnological compounds because of its simplicity, and being easily 

manipulated. Hence, yeast plasmid system that can be engineered and then transformed 

and selected in yeast, has had increased interest. Whole genome manipulation and cloning 

techniques do not just allow the analysis of the genetic sequence by itself, but also allow 

the analysis of its expression, function and purification (Kazemi Seresht, et al., 2012).

To express a gene in a host, easy way is to be in a plasmid that can replicate and stay in the 

host cells. Not always expressed heterologous proteins have the expected biological 

activity in the host cells because of the incorrect processing or different conformation. To 

keep the function of the gene product and expressing the gene enough to analyze, are the 

important steps in heterologous gene expression studies (Hou, Tyo, Liu, Petranovic, & 

Nielsen, 2012). Since the first aim is to analyze the expressed recombinant protein itself, 

expression of the gene must be easily manipulable and efficient. So that, bacteria or yeast 

have some advantages for the foreign protein production because of their being able to be 

transformed with plasmids efficiently and growing easily and fast.
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When a protein get produced by direct expression without a signal sequence, it 

localizes to cytoplasm and it will have similar features whether produced in a prokaryotic 

or eukaryotic cell. Protein synthesis generally starts with AUG codon (methionine) except 

that some bacterial mRNAs also utilize some other initiator codons (Clements, Laz, & 

Sherman, 1988). Even though certain enzymes exist, in both eukaryotic and prokaryotic 

organisms that are able to modify the amino terminal ends of cytoplasmic proteins, the 

effect is probably minimum on biological activity. For example, in the expression of IFN- 

gamma in yeast, high-level expression resulted in the production of amino terminal 

analogues, which maintained the full biological activity (Fieschko et al., 2004). But still, 

amino terminal specificity should be considered when choosing a host for expression aims.

1.1.1.1 Yeast Vectors and Promoters

Most of the yeast vectors are based on the 2-micron plasmid and also able to replicate in 

bacteria. They contain sequences of promoter and terminator for the efficient transcription 

of the heterologous genes. Recent heterologous protein expression studies head to an 

increase in understanding of yeast plasmid system, especially increasing the strength of the 

promoter and stability of the vectors, which are now some of the restrictions that 

biotechnology is dealing with.

There is a wide range of expression vectors for the expression of foreign genes in yeast and 

they contain yeast transcription promoter sequence and transcriptional terminator sequence 

as well as some unique cloning sites for the insertion of the desired sequences to express. 

Yeast plasmids can be divided into groups like: YRp (yeast replication plasmids), YCp 

(yeast centromeric plasmids), YEp (yeast episomal plasmids), Yip (yeast integrating 

plasmids), YLp (yeast linear plasmids). YRp plasmids are able to replicate in yeast cells by 

having ARS (autonomous replication sequences) and it is highly unstable in the cells. YCp 

plasmids own both origin of replication and centromeres, which allow them to replicate in 

the cells and present low copy numbers from 1 to 2 copies per cells. YEp plasmids are



episomal vector that can replicate in the yeast cells and they contain 2-micron 

sequences, which allow them to be of high copy number. Yip plasmids are differed from 

the plasmids that mentioned above, they cannot replicate autonomously but they integrate 

to the genome with low homologous recombination frequency. Generally, they integrate as 

a single copy and integration is directed by the two copies of flanked sequences homolog 

to yeast genome. YLp plasmids contain sequences that function as telomeres and 

centromere. Copy number of the plasmid is 1 per cell and these artificial chromosomes are 

less stable compared to the natural chromosomes (Gunge, 1983; Lundblad, 2001; 

Romanos, Scorer, & Clare, 1992).

In this study, Yeast Artificial Chromosomes (YACs) were used for the strain improvement 

of the yeast cells for the bio-ethanol production. YACs are generally used for cloning and 

manipulation of large DNA inserts in yeast cells (up to 3 Mb pairs). Moreover they can be 

amplified in bacterial cells also because they are shuttle vectors. They contain centromere, 

telomeres, origin of replications and restriction sites for cloning experiments. As a 

chromosome YACs has to reach a certain size to be stable which is around 150 kb. This 

instability can be a restriction of the YAC cloning. YACs are important in biotechnology 

field since they are transportable to other organisms and they can carry big inserts. For 

these reasons, it is generally used for production of heterologous protein, recombination 

studies and analysis of foreign genomic sequences (Amak, 2012; Burke et al., 1987).

Another important point for the heterologous gene expression is promoter strength. 

Strength of the promoter is particularly useful when the promoter is inducible and highly 

expressed. In yeast, heterologous proteins can be highly expressed compare to the total cell 

protein by playing with the promoter.

Heterologous gene expression in yeast can be driven by a large variety of promoters 

including PGK, phosphoglycerate kinase (Bitter & Egan, 1984), ADH1, alcohol 

dehydrogenase (Ammerer, 1983), and PHQ5, acid phosphatase (Dumont et al., 1989).



These promoters are known as strong promoters to express high amount of 

proteins. For example ADH1 promoter is able to have high amount of transcripts, which is 

almost 4-5% of the total mRNA (Romanos et al., 1992).

In some cases, the product of the heterologous gene itself or accumulation of it can be 

toxic for the host cell and this issue requires some control. Because of this reason some 

yeast promoter have been developed, which are able to being regulated according to the 

conditions. GAL10 is one of them, which is able to express the gene inducibly rather than 

constitutively (Guarente, Yocum, & Gifford, 1982). By the help of the regulation system of 

this kind of promoters, transformed cells can be grown in culture till desired density 

reached and then expression of the genes can be induced. With this approach, inhibitory 

effects of expressed protein for the cell growth is easily avoided.

Evidently, more expressed gene products are related to the strength of the promoters. There 

is a possible problem with inducible promoters that display high expression levels. Since 

they are controlled, the inducer elements can be limiting in cells. Using a high copy 

number plasmid expression system to increase the gene expression level can be effected by 

these limits. This problem can be handled by elevating the internal level of the trans

activator protein in the cells through the genetic manipulation.

For the heterologous gene expression in yeast, not just the expression system but also the 

environment, where the expression is taking place has to be considered. In particular, 

which kind of nutrient is used for the growth of the host cells. Components of the media, 

carbon sources can affect the expression level of heterologous genes (Weinhandl, Winkler, 

Glieder, & Camattari, 2014).

In this study, different promoters were used for the expression of cellulase genes in yeast 

cells. GAL10 inducible promoter was used for the expression of Bgl6 protein. This 

promoter is very well characterized and mostly used for the heterologous gene expression 

in yeast. However, there is a restriction in this process because gene expressions under this



promoter are inhibited in the presence of glucose. Glucose concentration has to be at 

a low level for the successful induction of the promoter (Matsuyama, Yamanishi, & 

Takahashi, 2011). For this reason, raffinose was used in the media with the addition of 

galactose for the induction experiments.

ADH1, TEF1 and PGK1 strong constitutive promoters were also used for the expression of 

cellulase genes; EGC1, CBH2 and BGL5. In contrast to inducible promoters, constitutive 

promoters does not require any special conditions or regulations for the expression of the 

proteins, as they are able to direct the transcription of the heterologous genes constantly as 

long as there is RNA polymerase available (Partow, Siewers, Bjom, Nielsen, & Maury, 

2010). ADH1 is the promoter of alcohol dehydrogenase and it is widely used as 

constitutive yeast promoter (Ruohonen, Aalto, & Keranen, 1995). Phosphoglycerate kinase 

is under the control of PGK1 promoter, which is used for heterologous gene expression 

studies as a constitutive yeast promoter (Castelli et al., 1994). TEF1 promoter controls the 

expression of translation elongation factor EF1 alpha and known as constitutive yeast 

promoter (Gatignol, Dassain, & Tiraby, 1990).

External genetic information carried by yeast plasmids can be selected and maintained in 

selective media. There are several resistance marker genes against antibiotics or some toxic 

compounds and they are used in yeast for the selection of plasmids. However, using 

marker genes has some negative effects, as they need toxic compounds in the media and 

besides their toxic effects, they are also costly. Additionally, also the resistant strains can 

have negative effect by the antibiotics. For this reason new marker genes that are 

responsible of yeast auxotrophy became alternative to antibiotics (Pronk, 2002). 

Auxotrophy markers can be selected based on yeast genome according to its specific 

nutritional requirements. According to yeast auxotrophy markers, plasmids can be selected 

and maintained in minimal synthetic medium that is a mixture of carbon source, nitrogen 

source and a selection of vitamins and amino acids. One or more amino acids are deleted
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from the synthetic media for selection of the plasmids. Cells that contain the mutation in 

a gene required for the growth of the cell in the synthetic media are maintained by the 

presence of the plasmids that express the complementation of the required gene product 

actively (Kaiser, Michaelis, & Mitchell, 1994a). LEU2, URA3, HIS3 and TRP1 are the 

ones that are used often as a marker for plasmid selections. Moreover, it has been already 

shown that auxotrophy markers have different fitness profiles (Ugolini, Tosato & Bruschi, 

2002) and are affecting positively the expression level of heterologous genes. For this 

purpose, modulations of auxotrophy markers are important (Kazemi Seresht, Norgaard, 

Palmqvist, Andersen, & Olsson, 2012).

1.1.2 THE SECRETORY PROCESS IN YEAST

High amount of recombinant protein can be produced just by direct expression system, but 

many of them also need a eukaryotic secretion pathway. There are some proteins getting 

secreted naturally like human tissue plasminogen activator (TPA) and bovine growth 

hormone (BGH). When these kinds of proteins express cytoplasmicaly, they become 

inactive because of not being cleaved properly (Schoner, Ellis, & Schoner, 1985). What is 

more is that, sometimes proteins require glycosylation like viral envelope proteins. All 

these requirements and special features play an important role in the analysis of 

recombinant proteins compare to the native proteins (Romanos et al., 1992; Schultza et al., 

1987). For the similarity of secretion system, eukaryotic organisms are closer to yeast than 

the bacteria, which is helping to obtain a mature recombinant protein like the native one 

(Julius, Schekman, & Thomer, 1984).

Another advantage of using the secretory pathway for the heterologous proteins is that 

purification of the gene product can be done by having it exported into the extracellular 

location. There are quite a lot of yeast promoters that can be used efficiently in expression 

systems because of their being able to direct the gene product naturally into the secretory 

pathway. These include MFal (Miyajima, Bond, Otsu, & Arai, 1985) and SUC2 gene
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(Smith, Duncan, & Moir, 1985) and some others. All of them have already shown to 

direct the heterologous products into the secretory pathway of yeast and successfully 

produce the active mature proteins. Additionally, It is also demonstrated that if the 

heterologous gene contains its own signal sequences and it is under the control of a direct 

expression yeast promoter like PH05  or ADH1 (Jabbar, Sivasubramanian, & Nayak, 1985; 

Verbakel, Dekker, Rutgers, Pouwels, & Enger-valk, 1987), it can successfully direct the 

gene product into the secretory pathway.

There are different microorganisms that are used for the heterologous protein production 

for medical or biotechnological purposes. Bacteria are widely used for these purposes but 

they do not have post-translational modifications for the product of eukaryotic genes. 

Yeasts can produce the recombinant mature and active proteins since they are able to do 

post-translational modifications (Idiris, Tohda, Kumagai, & Takegawa, 2010; Mumberg, 

Muller, & Funk, 1995; Singhania, Patel, Sukumaran, Larroche, & Pandey, 2013). Figure

1.2 shows the secretory pathway of heterologous proteins in yeast.

Simplicity of genetic engineering, rapid growth, safety, being well characterized 

genetically and high density of recombinant protein production ability are the positive 

features that yeast has. Moreover, since S. cerevisiae is also able to secrete recombinant 

proteins in their native, biologically functional form, it became a chosen host organism for 

a wide range of foreigner proteins. Hepatitis B vaccine (Valenzuela, Medina, Rutter, 

Ammerer, & Hall, 1982), insulin (Thim, Hansen, & Sorensen, 1987) and human serum 

albumin (Okabayashi et al., 1991) are some examples of yeast expression and secretory 

system usage.

Directing the recombinant protein into the secretion pathway is carried out by the signal 

sequences, which are short peptides containing approximately 20 to 30 amino acids. There 

are different leader peptides that direct the secretions and secretion sequence from the 

MFal gene encoding alpha-factor is one of them that is used quite often for the purpose of
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heterologous protein secretions. Alpha factor is able to provide high level of 

secreted protein by getting fused in to the frame with the heterologous gene sequence 

(Grant A Bitter, Chen, Banks, & Lai, 1984; Brake et ah, 1984). Apart from yeast leader 

peptides, it is also possible to make use of the native secretion signal of the foreign protein, 

which can work on the secretion and production of mature proteins in yeast cells (Idiris et 

ah, 2010).

Secreted protein

Extracellular
degradationER

Miftsortmg * Vacuole
to vacuote \Nucleus Golgi

JT

inefficient
translocation

Figure 1.2: Secretory pathw ay o f  heterologous proteins in yeast (A dapted from Idiris, et ah, 2010).

When the protein is expressed in the yeast cells, firstly it takes place in the cytoplasm of 

the cells and then secretion occurs similar to mammalian cells. Basically, proteins that will 

be secreted have a chain of transportation between cellular compartments. To start the 

secretion, first direction of the proteins is the endoplasmic reticulum (ER), after which is 

followed by the translocation from the ER to Golgi and then transport from Golgi to 

extracellular area.
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Different secretory signal sequences have been used for heterologous protein secretion 

and MFal gene encoding alpha-factor is one of them that is used quite often (Brake et al., 

1984; Ernst, 1986). The sequence of secretion signal is playing important role for the 

direction of secretory pathway by their hydrophobicity and interaction ability with the 

signal recognition particles (SRP). In S. cerevisiae, transfer from cytosol to ER can happen 

either via co-translational pathway or via post-translational pathway (Hou et al., 2012; 

Idiris et al., 2010; Shuster, 1991).

In co-translational pathway, the signal recognition particles (SRP) are ribonucleoproteins 

that bind to signal peptide and become a complex together. After that, this complex 

cooperates with the signal recognition particle receptor (SRPR), which is an important 

membrane protein related to endoplasmic reticulum (ER) and pre-protein is getting 

translocated into the lumen of ER. Moving into the lumen of ER requires some energy and 

this energy is provided by GTP hydrolysis (Shan & Walter, 2005).

Post-translational pathway is used when the secretory proteins show weak hydrophobic 

signal and they do not bind to SRP during their synthesis in cytosol. Because of this 

reason, translation takes place in cytosol where these proteins stay unfolded or folded but 

very lightly and they get stabilize by cytosolic chaperones. SRP independent of these 

proteins move to ER by the collaboration of Sec61 and Kar2p proteins (Plath, Mothes, 

Wilkinson, Stirling, & Rapoport, 1998).

When the protein translocates into the ER, several modifications appear for the process of 

folding and quality control of the proteins. Glycosylation, which can be done in two ways; 

N-linked, and O-linked, occurs during this translocation from ER to Golgi and it assists 

proteins for folding and checks the quality of the process. It also protects immature 

proteins from proteases. Through ER processing, misfolded proteins can be detected and 

retro-translocated to cytosol for their degradation by proteosome. Furthermore, properly
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folded proteins continue the transportation between cellular compartments and move to 

the Golgi (Young & Robinson, 2014).

After ER process, proteins move to Golgi and last modifications of the proteins take place 

here, which allow protein to become mature with the correct functions. One of the 

modifications is cleavage. Most of the secreted proteins require proteolytic cleavage in 

order to be mature structurally and functionally (Diane Hopkins, Sato, Nakano, & Graham, 

2000). There are different proteases, which are responsible for cleavage of proteins and 

they recognize different sequences. Cleavage of proteins makes them mature, active and 

arranges their conformation for the receptor. One of these proteases is Kex2 protein, it is 

an endopeptidase that locates in Golgi where it helps for the maturation of the secretion 

signal by recognizing the Lys-Arg and Arg-Arg pairs (Brenner & Fuller, 1992).

When proteins complete their Golgi process, they move into secretory vesicles by which 

they are transported from cytoplasm to extracellular environment. Some of the last 

modifications take place in the secretory vesicles. These vesicles interact with the cell 

membrane and release the secreted protein by exocytosis (Hou et al., 2012; Young & 

Robinson, 2014). Figure 1.3 basically shows all the steps for the protein secretion.

Therapeutical, environmental and food industry are the most common areas that yeast is 

used for recombinant protein production. Since yeast can be grown easily in large scale 

and it is generally recognized as safe (GRAS), yeast secretory systems is becoming more 

important for the biotechnological purposes (Young & Robinson, 2014).
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Figure 1.3: O verview  o f  the secretory m achinery (SR P, signal recognition particle; SPC, signal peptidase 

com plex; PMT, protein O -m annosyl transferase; O ST, oligosaccharyl transferase; Ubiq, ubiquitin; Lect, 

Lectin; ALP, arginine transporter pathway; CPY, carboxypeptidase Y pathw ay). (M odified from Hou et al., 

2 0 1 2 ).

15



1.1.2.1 Yeast Secretion Signal: Mating Pheromone Alpha Factor

Alpha factor is the product of mating type alpha cells, and it is naturally secreted from the 

cells. It contains a pro-sequence that directs the secretion and this signal can be used for 

the secretion of recombinant proteins (Bitter et al., 1984). As it is mentioned before, 

secretion of recombinant proteins in yeast can be directed either by native secretion signal 

of the peptides or by yeast signal. Most commonly used yeast signal sequences are; acid 

phosphatase, invertase and alpha factor (Romanos et al., 1992).

In this study, alpha factor was used as a secretion signal and cellulose degradation genes 

were cloned in frame with this signal under the strong constitutive promoters.

The alpha factor produces a precursor protein and it contains approximately 165 amino 

acids. Analysis of these sequences shows that the precursor contains an amino terminal 

hydrophobic signal sequence of 19 amino acids, a leader segment of 60 amino acids and 

four tandem copies of the mature alpha factor peptide preceded by a spacer of 6 to 8 amino 

acids. This leader peptide is expressed constitutively and is secreted from cytoplasm to 

extracellular environment in alpha mating type cells. Its expression depends on the mating 

type of the cells and because of this reason it is not produced in a mating type cells (Bitter 

et al., 1984; Caplan et al., 1991; Zsebo et al., 1986).

The alpha factor directs the polypeptide into secretory pathway and following the 

translocation into endoplasmic reticulum, where amino terminal of the signal sequence is 

removed. Moreover, this precursor molecule gets glycosylated and only glycosylated 

product is secreted. As it is mentioned before, there are different proteases, which are 

responsible for cleavage of proteins for their function and maturation. During the 

processing of the alpha factor, the KEX2 protease plays an important role on cleavage. It 

recognizes and cleaves after Lys-Arg and Arg-Arg pairs on the carboxyl side of the dibasic 

residues. These amino acids take place between alpha factor and heterologous protein and
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later on they allow heterologous protein to be separated from leader sequence by Kex2 

peptidase activity (Brenner & Fuller, 1992).

To sum up the importance of yeast in biotechnological science, it can be said that S. 

cerevisiae has been demonstrated as a good model organism for the foreign protein 

production and analysis. For biotechnological purposes, high level of heterologous protein 

can be obtained via yeast expression and secretion systems. Since yeast is able to direct the 

expression and secretion of foreign proteins correctly, it becomes preferred organism. 

There are still things to understand more and improve more for the heterologous protein 

production in yeast.

1.2 BRIDGE INDUCED TRANSLOCATION SYSTEM

The Bridge Induced Translocation (BIT) system was first developed in the Yeast Molecular 

Genetics Group at the ICGEB-Trieste. This Group started working on the field of 

chromosomal translocations since 2005 and developed a system to induce the chromosomal 

translocations by using S. cerevisiae as a model organism. The BIT technology development 

helped to study and to understand the mechanisms of non-reciprocal chromosomal 

translocations. The BIT system requires a DNA cassette with a selective marker (in this study 

kanamycin gene was used as a marker) that is flanked by two regions of homology to different 

chromosomal loci on the yeast genome and translocation is induced in vivo by the help of the 

homologous recombination (Tosato, Waghmare, & Bruschi, 2005). In figure 1.4 schematic 

representation of BIT system is shown.
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BIT system creates several changes at both genomic and transcriptomic level in the yeast cells. 

In Yeast Molecular Genetics Group, lots of translocant yeast strains that carry different 

translocation background were produced and characterized to see the BIT system effects. It 

has also been shown that one of the important result after BIT event is that around the 

translocation break point, gene expression level is increasing in translocant yeast cells 

comparing to the wild type yeast cells (Nikitin et al., 2008). This feature o f BIT event was
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aimed and used in this thesis for the strain improvement of recombinant yeast strain for the 

bio-ethanol production.

As it is mentioned above, BIT event creates several changes in the yeast cells on their cellular 

morphology, physiology and genome re-organization. All of these BIT effects state that one 

single translocation event can result in a mixture of chained molecular events in the cells. It is 

also shown that regardless of the translocation origins, all translocant cells show differences of 

their phenotypes, ability to sporulate, regulation of gene expression and morphology. In 

another word, translocations that are produced by the integration of the same DNA cassette 

can cause different genomic alterations among the cells (Rossi, Noel, & Bruschi, 2010).

All of these results that occur after BIT event have been shown to be important for the 

manipulation of the genome. Since BIT technology does not require any previous genomic 

modification or engineering, it is simple and allows producing translocation between any 

desired points in the genome. All of these features make the BIT system suitable for the 

translocation studies compare to the other approaches developed until now. Apart from the 

advantages of the system, there are also some restrictions. Efficiency of the system requires to 

be improved, because obtaining a translocant chromosome possibility is not as high as it could 

be expected. Depending on the target regions’ recombination aspect, frequency of obtaining 

translocants can fluctuate between 1-5% of transformants. For the same regions, the gene 

knock-out frequency can be around 80-90%, which is really much higher comparing to the 

BIT system. Furthermore, it has also been shown that most of the time, DNA cassette 

integrates either only in one of the targeted loci or somewhere in the genome randomly 

(ectopic integration). This low efficiency of BIT system is inhibiting the experimental 

procedure but on the other hand is opening other doors and is addressing a wide range of 

evolutionary concerns (Nikitin et al., 2008; Rossi et al., 2010; Tosato et al., 2012).
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1.3 BIOETHANOL

Renewable and sustainable energies have become an important topic for the future energy 

technology development. Some of the renewable energies are produced by wind energy, 

solar energy or hydro energy but their contributions are currently very minimal to the 

world’s energy necessity. Also all over the world, the main energy problem is rising 

because of oil reserves diminishing, global warming and expensive gasoline prices. 

Altogether, these facts have increased the attention for the production of bioethanol as an 

alternative fuel which has pros and cons for the environment (Chang et al., 2012; Kumari 

& Pramanik, 2012).

Some of the benefits of bioethanol are summarized as the following:

- Decreases air pollution

Bioethanol is very environmental friendly and clean comparing to other energy types. For 

example fossil fuels produce sulphur dioxide and nitric oxide, which cause air pollution. 

Also, high amount of sulphur dioxide can cause breathing problems.

- Biodegradable and renewable

Since it is produced from organic materials, it is extremely degradable compare to the 

petrol and it can be continuously replenished.

- Promotes being independent from fossil fuels

Another advantage of bioethanol is that it is an alternative energy production way to the 

fossil fuels. This kind of alternative energy development decreases the dependence on one 

kind of source.

- Development of agriculture

Bioethanol, which can be produced from crops or from crop remains, is able to increase the 

interest on agriculture and this interest positively affects the development of agriculture.
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Apart from the benefits, unfortunately bioethanol also has some disadvantages that 

are summarized as the following:

-Energy yield

Compare to the traditional fuels, bioethanol has lower energy yield. Because of this reason, 

it requires to be produced larger amounts to provide the enough level of energy.

-Cost

Even though that low cost feedstock is used as a substrate, the cost of the bioethanol has to 

be reduced. Especially, pretreatment of the feedstock has to be improved in order to find 

out cheap methods.

-Restriction in its use

The vehicles need some engine modification in order to consume some type of bioethanol. 

-Food field

To produce the crops for the bioethanol production, there is a field competition with food 

production. It is decreasing the food fields.

As it is mentioned above, bioethanol is a renewable fuel that can be produced from 

different biological sources and the production of bioethanol from cheap biomass, like 

waste of plant material, is important for fuel industry. All over the world, there are a lot of 

studies about bioethanol production from different biological sources and lignocellulosic 

biomass is one of them, which has numerous environmental and social benefits for 

bioethanol production (Lange & Solutions, 2007; Lee, 1997; Wyman, 1994).

In the beginning, bioethanol was produced from crops like sugar cane (juice) and com 

(starch). This first attempt on bioethanol production was called first generation bioethanol. 

Even though bioethanol is clean and has some advantages, first generation bioethanol also 

brought forward many sustainability discussions. The reason for the discussions was that 

application of the first generation bioethanol was limiting the food production by



increasing the competition of crops in agricultural lands (Kricka, Fitzpatrick, & 

Bond, 2014).

All of these discussions induced the research on looking for alternatives feedstocks and 

second generation biofuels term came into the bioethanol world (Karp & Richter, 2011). 

Lignocellulosic materials found in agricultural remains and wood, which are abundant, 

renewable and cheap are generally used as a source for second generation biofuels (Kricka 

et al., 2014). For the production of bioethanol from lignocellulose, the process firstly 

requires the releasing of fermentable carbohydrate from biomass by using a set of enzymes 

and then these carbohydrate can undergo a saccharification and a subsequent conversion to 

ethanol by fermentation using yeast or bacteria (Lynd, Weimer, van Zyl, & Pretorius, 

2002).

Conversion of lignocellulosic material into ethanol is not that easy, as there are some 

restrictions. The main limitation of lignocellulose degradation is its structure since it 

inhibits releasing of the sugars from biomass. As a result of increased interest on 

lignocellulosic-based bioethanol, necessity to develop technologies for making fermentable 

sugars easily reachable also increased. These lignocellulose deconstruction technologies 

are the key point for bioethanol production and that is why their cost, productivity, 

efficiency and sustainability are important for the whole process. This also explains the 

reason for strong interest in pre-treatment researches of biomass (Xu & Huang, 2014).

There are different ways to produce ethanol like by synthetic systems or by 

microorganisms. Among them, S. cerevisiae has more advantages and is an ideal model 

organism for bioethanol production studies because of its high ethanol productivity, high 

tolerance to ethanol, simplicity of genetic engineering and being a GRAS organism. For 

that reason, generating a recombinant yeast strain that can efficiently degrade the 

carbohydrate part of the biomass and produce ethanol out of it has drawn attention over
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recent years (Chang et al., 2012; Fan, Zhang, Yu, Xue, & Tan, 2012; Kumari & 

Pramanik, 2012).

Since S. cerevisiae cannot degrade some particular sugars, some set of enzymes have to be 

expressed and secreted in yeast cells to make them able to utilize all sugars of biomass for 

the ethanol production. In this study cellulose was targeted as a sugar source for the 

ethanol production. Cellulose is one of the carbohydrate polymers that cannot be utilized 

by S. cerevisiae and degradation of the cellulose requires at least three enzymes namely 

endoglucanases (EGC), cellobiohydrolases (CBH) and p-glucosidases (BGL), for cellulose 

conversion into glucose (Bhat & Bhat, 1997). Detailed information about these enzymes 

will be mentioned later on but basically EGC and CBH are playing roles in the degradation 

of the cellulose chains to cellobiose and in the final step of enzymatic cellulose 

degradation, BGL hydrolyzes cellobiose molecules to glucose. In nature, there are some 

bacteria and fungi strains that have these cellulase enzymes and in this study we used 

Pichia stipitis and Trichoderma reesei as a source of the cellulase enzymes (Jeffries et al., 

2007; Tsai, Goyal, & Chen, 2010).

1.3.1 LIGNOCELLULOSE STRUCTURE

As mentioned before, lignocellulosic biomass is important and preferred biomass for the 

production of second-generation biofuels. It is a main component of the plants and it 

contains carbohydrate (Cellulose and Hemicellulose) and aromatic compounds (Lignin). 

Carbohydrate parts of the lignocellulose are bound to lignin part via hydrogen and covalent 

bonds (Figure 1.5). Carbohydrate parts are the important compounds for the energy 

production but besides this principal advantage, structure of the lignocellulosic material is 

making process more complicated since the lignin part is tightly attached to the 

carbohydrates. For this reason, pre-treatment of the biomass is having a key role in 

releasing the fermentable sugars for microbial degradation and fermentation (Lee, 1997; 

Sun & Cheng, 2002).
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Depending on the type and the age of the plants, structure and composition of the 

lignocellulose can be different. Due to the economical reasons, most suitable lignocellulose 

should contain high amount of fermentable sugars for the bioethanol production. Table 1.1 

shows the percentages for the components of different lignocellulosic material (Sweeney & 

Xu, 2012).

Table 1.1: Composition of different lignocellulosic materials.

Lignocellulosic Material Lignin (%) Cellulose (%) Hemicellulose (%)

Hardwood 18-25 45-55 24-40

Softwood 25-35 45-50 25-35

Grass 10-30 25-40 25-50
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Figure 1.5: C om position and structure o f  lignocellulose (A dapted from http://b iofuel.w ebgarden.com  web

page).

Cellulose component of lignocellulose is the target part in this thesis as a source for 

bioethanol production and more details about its structure and degradation will be given on 

the following section. The cellulose part is the biggest component of plant biomass that 

contains the most abundant polymers for the ethanol production. It is composed of D- 

glucose molecules bound to each other by (3-(l,4)-glycosidic bonds (Mba Medie et al.,
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2012). The cellulose molecules can contain the amorphous region and crystalline region. 

The difference of these regions is related to the order of microfibrils. In amorphous region, 

micro fibrils are more disordered than the crystalline region. Hydrogen bonds and Van der 

Waals forces of each cellulose microfibrils are creating crystalline structure. That is why 

enzymatic degradation of the cellulose can be limited. Close association of cellulose, 

hemicellulose and lignin via complex and tight bonds decrease the accessibility of 

cellulase enzymes to cellulose (Beguin, 1990).

Hemicellulose is the other important carbohydrate part of lignocellulose for bioethanol 

production. Its structure is heterogeneous that contains branched and linear polymers of 

different sizes, which are the combination of different pentoses (D-xylose and L- 

arabinose), hexoses (D-mannose, D-glucose, and D-galactose), and sugar acids (4-0- 

methyl-glucuronic, D-galacturonic, and D-glucuronic acids). Hemicellulose is connected 

with cellulose by hydrogen bonds and with lignin by covalent bonds. This makes the 

structure of lignocellulose inflexible and as it is mentioned before, it requires the pre

treatment of the biomass to reach the hemicellulosic part. 20-35% of the lignocellulose is 

composed of hemicellulose sugar and xylose of hemicellulose is the main component that 

is generally used for microbial fermentation (Kricka et al., 2014; Kumari & Pramanik, 

2012).

Apart from the carbohydrate parts of the lignocellulose, 10-25% of the lignocellulose is 

composed by lignin. Lignin is tightly branched aromatic polymer and connected to other 

parts via ether and carbon-carbon linkages. It has three phenolic components: p-coumaryl 

alcohol (p- hydroxyphenyl propanol), sinapyl alcohol (syringyl propanol) and coniferyl 

alcohol (guaiacyl propanol). These components polymerize to produce lignin complex and 

their amount diverge among different plants and wood tissues (Lee, 1997; Xu & Huang, 

2014).
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All these structural features have brought difficulties to deal with for the ethanol 

production. As a result of this barrier, different methodologies were developed that can 

efficiently overcome the structure of lignocellulose with sustainability and low cost 

(Mosier et al., 2005). These pre-treatment methods are necessary to make carbohydrates 

accessible for converting them into fermentable sugars. There are different ways to 

degrade lignocellulosic materials; chemically, physically and biologically (Kumar et al. , 

2009; Lange & Solutions, 2007). Even though there are methods to deal with the 

lignocellulose structure, still they need to be improved for some parameters like; more 

efficiency, less time consuming and less cost.

1.3.1.1. Cellulose Structure

Cellulose is an ideal substrate for the bio-energy research and as it is mentioned above, it is 

the most abundant, renewable molecule on earth that provides the high amount of carbons. 

Cellulose is the component of plant cell walls that provides the structural stability. It can 

be found in nature in pure form like in cotton plants (95% cellulose) or it combines with 

other carbohydrates and lignin in the cell wall of plants. Lignocellulosic materials are the 

most common and important source of cellulose (Bayer et al., 1998).

Cellulose molecules are composed of linear polymeric chains of p-l,4-glycosidic linked D- 

glucopyranose units (Figure 1.6). It has a polar structure by having one end containing a 

free semi-aldehyde group, which is a reducing end and the other end containing a free OH 

group, which is a non-reducing end. These free hydroxyl groups and oxygen atoms are 

responsible for the formation of hydrogen bonds that generate hydrogen bonds complex 

within the cellulose structure (Kricka et al., 2014).

27



Figure 1.6: C ellulose structure (A dapted from http://w w w .doitpom s.ac.uk/tlplib/w ood/index.php w ebpage).

Morphology of cellulose presents fibrillar elements. Cellulose molecules get together and 

create protofibrils and these protofibrils get attached to each other to produce microfibrils 

complex. These microfibrils are connected via hydrogen and Van der Waals bonds to form 

a stiff molecular structure, which is called macrofibril. These macrofibrils are not 

homogeneously distributed and ordered in entire cellulose molecules. That is why it has 

different regions called amorphous and crystalline structure. The amorphous region 

contains low order of macrofibrils, where else crystalline region contains high order of 

these macrofibrils. On top of these structural features, cellulose also contains a wide range 

of irregularities like bend or twist of fibrils, or different surface holes like micro and large 

pores.
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In conclusion, cellulose fibres are generally establishing complex with other 

biopolymers especially hemicellulose and lignin. Even though these interactions vary 

according to plant type and age, they are an outstanding feature limiting the amount and 

efficiency of biomass utilization.

I.3.I.2. Enzymes Involves In Cellulose Degradation

Cellulose is one of the most abundant substrate on earth (Nielsen et al., 2013), and for that 

reason the enzymes can degrade cellulose, and the microorganisms possessing these 

enzymes are crucial for the world carbon cycle (Lynd et al., 2002). Microbial degradation 

of cellulose can take place in both aerobic and anaerobic conditions. Since cellulose 

structure is stiff and not easy to break, the complete enzymatic degradation of cellulose is 

restricted. In a classical cellulose degrading ecosystem, a wide range of cellulolytic 

bacteria and fungi strains cooperate to convert the cellulosic materials to fermentable 

sugars, mostly to glucose molecules, which can be transferred into the cell (Beguin, 1990).

Degradation of cellulose to glucose requires a set of enzymes to work in concert 

synergistically. These enzymes, which are involved in hydrolysis of cellulose via their 

complementary action, are endoglucanase (EGC), cellobiohydrolase (CBH) and p- 

glucosidase (BGL). Cellobiohydrolases and endoglucanases are playing role on hydrolysis 

of cellulose to cellobiose. The endoglucanases are responsible of cutting cellulose chains at 

amorphous sites to generate oligosaccharides fibrils by random cleavage of P-glucosidic 

bonds. Where else cellobiohydrolases are acting against crystalline structure of cellulose 

and remove cellobiose molecules from the reducing or non-reducing ends of the cellulose 

chains. The last step of cellulose degradation is the conversion of cellobiose into glucose 

and this step runs by BGL.
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Synergism between cellulase enzymes is required for the efficient and complete 

degradation of cellulose (Fan et al., 2012; Matano, Hasunuma, & Kondo, 2012; Wen, Sun, 

& Zhao, 2010). As a result o f this synergism, metabolisable carbon sources are provided 

for the microorganisms. A schematic view of degradation via these cellulase enzymes is 

shown in Figure 1.7.
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1.4 BACILLI AND THEIR ROLE IN BIOETHANOL PRODUCTION

As it is mentioned in previous sections, lignocellulosic material needs pre-treatment to 

release the polysaccharides from the biomass and there are chemicals (enzymatic 

treatment, acid treatment, etc.), physical (applying pressure, applying heat, mechanical size 

reduction, etc.) and biological (microorganisms) pre-treatment methods for this purpose. 

The biological degradation of lignocellulose needs some enzymes for the separation of 

sugars (Lynd et al., 2002) and the microorganisms (some bacterial and fungal strains; 

Pleurotus ostreatus, Phanerochaete chrysosporium, Postia placenta, Streptomyces 

cyaneus, etc.) that are able to work in this degradation pathway can be found either free in 

the environment or as part of the digestive tract of animals (Shallom & Shoham, 2003).

The rumen is one of the environments where the lignocellulose can be degraded 

biologically by the help of bacteria (Akin & Benner, 1988). Bacilli are the rumen bacteria, 

which are gram-positive, rod-shaped microorganisms and they have been used for many 

important industrial applications. They have been used as a model microorganism for 

production of enzymes such as extracellular polysaccharide hydrolyzing enzymes (Bhat & 

Bhat, 1997), recombinant proteins, antibiotics, insecticides, amino acids (Arbige et al., 

1993). One of the important task of Bacilli that was target in this study is their ability on 

catabolism of low molecular weight aromatic compounds, in particular ferulic acid and p- 

coumaric acid, which are the main phenolic compounds that bind to the complex lignin 

polymer for the separation of the hemicellulosic and cellulosic parts (Degrassi, Polverino 

De Laureto, & Bruschi, 1995; Zago et al., 1995).

In this study different Bacilli strains (B. circulans, B. atrophaeus, B. licheniformis, B. 

macerans, B. pumilus and B. subtilis) were used and they had been previously isolated 

from the rumen of the cow by our laboratory in collaboration with School of Veterinary 

Medicine, University of Udine.
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1.5 AIM OF THE STUDY

This Ph.D. Thesis was meant to provide a novel view of lignocellulosic-based bioethanol 

production.

As it is mentioned in the Results section, this study divided in two chapters. First part of 

the research is interested in microbial combination system that is able to efficiently utilize 

the lignocellulosic waste as a carbon source. It aimed to study simultaneous 

saccharification and fermentation of wood waste to glucose molecules by using Bacilli and 

recombinant S. cerevisiae strains together.

Second part of the work was dealing with the two novel technologies for bioethanol 

production. Furthermore, it aimed to study the evolutionary effect of bridge induced 

translocation (BIT) technology to improve S. cerevisiae capacity to produce ethanol via the 

acquisition of an advantageous homoeostasis following the de-regulation of cellulose 

degradation genes carried on yeast artificial chromosome (YAC).

Covered fields involve in this thesis; (1) Production and secretion of cellulase genes in S. 

cerevisiae, (2) Using new techniques to improve yeast strains for bioethanol productions, 

(3) Pre-treatment of lignocellulosic material by Bacilli (4) Using wood waste directly for 

the microbial fermentation in the matter of cost and time effective process.
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2. MATERIALS AND METHODS

2.1 ORGANISMS, PLASMIDS AND MEDIUMS

2.1.1 MICROBIAL STRAINS

For routine plasmid preparation the E. coli XL 10-Gold (endAl (glnV44 recAl thi-1 

gyrA96 relAl lac Hte A(mcrA)183 A(mcrCB-hsdSMR-mrr)173 tetR F'[proAB lacIqZAM15

TnlO(TetR Amy CmR)]) strain and the Stbl2 strain [(F" mcrh A(mcrBC-hsdRMS-/wr)

recAX endAXlon gyrA96 thi supEAA relAX X~ A(lac-proAB)] were used.

All strains of Bacilli (B. circulans, B. atrophaeus, B. licheniformis, B. macerans, B. 

pumilus and B. subtilis) used in this study had been previously isolated from rumen of the 

cow stomach by our laboratory in a collaboration with University of Udine.

Cellulose degradation genes were amplified from Pichia stipitis NBRC 10063 (CBS 6054) 

and Trichoderma reesei QM9414 strains.

S. cerevisiae BAP4 strain was used as a host for the cellulose degradation experiments. 

BAP4 strain is a diploid pep4-3 mutant strain, it is produced by mating CBL1-20 strain: a, 

[cir°], ura3-52, leu2-3,112, trpl-289, pep4-3 (Ludwig & Bruschi, 1991; Ludwig, Ugolini, 

& Bruschi, 1993) and PEP4 knock-out YPH4 strain: a, ura3-52, lys2-801, ade2-101 and 

his3-A200 (prepared in this study).
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2.1.2 PLASMIDS

pBLAST (Ludwig D.L. and Bruschi C.V., 1991), pFA6KanMX4, pGFKG, pVTlOO-U, 

pJL49 (Designed by Jean-Luc Parrou, CNRS Toulouse/France), pTEF and pYAC3 

plasmids were used in this thesis (Appendix). Sequences of promoters and secretion signal 

were given below;

ADH1 promoter:

CAACTTCTTTTCTTTTTTTTTCTTTTCTCTCTCCCCCGTTGTTGTCTCACCATATCCGCAATGACAA  

A AAAAATG ATGG AAGACACTAAAGG AAAAAATTAACGACAAAG ACAG CACCAACAG ATGTCG  

TT GTT CC AG AGCT G ATG AGGGGT AT CTTCG A AC AC ACG A A ACTTTTTCCTTCCTTC ATTC ACGC A  

C ACT ACTCTCT A ATGAGC A ACGGT AT ACGGCCTTCCTTCC AGTTACTTG A ATTTG A A ATA A A A  A 

A AGTTTGCCGCTTTGCT ATC AAGT AT A A AT AGACCTGC A ATTATTA ATCTTTTGTTTCCTCGTC A 

TTGTTCTCGTTCCCTTTCTTCCTTGTTTCTTTTTCTGCACAATATTTCAAGCTATACCAAGCATAC  

AATCAACT

PGK1 promoter:

TCTAGAGTCGAGATCTTGTTTTATATTTGTTGTAAAAAGTAGATAATTACTTCCTTGATGATCTG  

T AAAAAAGAGAAAAAG AAAG CATCTAAGAACTTG AAAAACTACGAATTAGAAAAG ACCAAAT  

ATGT ATTTCTTGCATTGACCA ATTT ATGC A AGTTT AT ATAT ATGTA A ATGTA AGTTTCACG AGGT  

TCTACTAAACTAAACCACCCCCTTGGTTAGAAGAAAAGAGTCGGGACT

TEF1 promoter:

ATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGCCG  

TACCACTTCAAAACACCCAAGCACAGCATACTAAATTTCCCCTCTTTCTTCCTCTAGGGTGTCGT  

T A ATT ACCCGT ACT A A AGGTTTGG AA A AG A A A A A AG AG ACCGCCTCGTTTCTTTTTCTTCGTCG  

AAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAAAATTTTTTTTTTTGATTTTTTTCT  

CTTTCG ATG ACCTCCC ATTG AT ATTT A AGTT A AT A A ACGGTCTTC A ATTTCTC A AGTTTC AGTTTC  

A TTTTTCTTGTTCTATTACAACnTTTTTACTTCTTGCTCATTAGAAAGAAAGCATAGCAATCTAA  

TCT A AGTTTT CT AG A ACT AGT A A A AG A
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GAL10 promoter:

ACGG ATT AG A AGCCGCCG AGCGGGTG AC AGCCCT CCG A AGG A AG ACT CTCCTCCGTGCGTCCT C 

GTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAA  

GATT CT AC A AT ACT AGCTTTT ATGGTT AT G A AG AGG A A A A ATTGGC AGT A ACCTGGCCCC AC A A 

ACCTT C A A AT G A ACG A AT C A A ATT A AC A ACC AT AGG ATG AT A ATGCG ATT AGTTTTTT AGCCTT  

ATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGCAA  

A A ACTGC AT AACCACTTT AACT A AT ACTTTC AAC ATTTTCGGTTTGTATTACTTCTTATTC A A AT  

GT A AT A A A AGT ATC A AC A A A A A ATTGTT A AT AT ACCTCT AT ACTTT A ACGTC A AGG AG A A A A A A  

CC

Secretion signal falpha factor):

ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTC  

AACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATT  

T AG A AGGGG ATTTCG AT GTT GCT GTTTTGCC ATTTTCC A AC AGC AC A A ATA ACGGGTT ATTGTTT  

AT A A AT ACT ACT ATTGCCAGCATTGCTGCT A A AG A AG A AGGGGT ATCTTTGGAT A A AAGGG AG  

GCTGAAGCT

2.1.3 GROWTH MEDIA

All media were autoclaved with standard parameters (20min, 15 lb/sq.in. on liquid cycle). 

In the case when solid medium was required, the mixture was supplemented with 2% 

bacto- agar (214010, BD Biosciences) and pH of the solution was brought to 6,8- 7,2.

2.I.3.I. Yeast Media

The media preparations are as listed below and preparations were made according to 

literature with some modification (Kaiser, Michaelis, & Mitchell, 1994b). All media were 

autoclaved with standard parameters. Where solid agar medium was required, bacto-agar 

was added to 2% prior to sterilization. The plates were let dry for several hours prior to 

use. When necessary, either liquid or solid media was supplemented with 200pg/ml 

Geneticin G418 (Gibco, Rockville, USA.) to select for kanamycin resistant clones. YPD
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was modified for some experiments and instead of glucose some other type of 

carbohydrates were used; with raffinose YPR, with cellobiose YPC and with 

carboxymethyl cellulose YPCMC were prepared.

For some selection conditions, synthetic media was prepared. Where dropout medium was 

desired, one or more of the components was misplaced from the supplements. For 

example, if uracil dropout medium was required, a supplement was made containing all the 

other components, but uracil.

YPD (yeast extract, dextrose, peptone')

2% Glucose (G8270, Sigma- Aldrich)

2% Bacto-peptone (211677, BD Biosciences)

1% Yeast extract (212750, BD Biosciences, Madison, USA)

Synthetic minimal and complete medium

2% Glucose (G8270, Sigma- Aldrich)

0.5% Ammonium sulphate

0.17% Yeast nitrogen base 

0,2% Drop-out mix 

Drop-out mix

0.5g Adenine 

2g L-Arginine 

2g L-Histidine 

lOg L-Leucine 

2g L-Lysine 

2g L-Methionine

2g L-Tyrosine 

2g Uracil 

15g L-Threonine 

2g L-Phenylalanine 

2g L-Tryptophan 

2g Proline
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2.I.3.2. Media For Bacteria

For the growth of all bacterial cultures the nutrient medium LB was used, as described by 

Sambrook, etal. (1989).

Ingredients:

1. 1 % (w/v) Tryptone

2. 0,5% (w/v) Yeast Extract

3. 0,5% (w/v) NaCl

In order to obtain solid LB media, the pH was adjusted to value 6,8-7,2 and solution was 

supplemented with 2% (w/v) bacto-agar. Media was autoclaved under standard conditions 

(20 minutes with pressure 15 lb per square inch on liquid cycle). When media cooled 

below 55°C, as a selection for plasmids, antibiotics were added. Final concentration of 

antibiotics was lOO^g/ml for ampicillin (194526, MpBio, France) and kanamycin 

disulphate (G4181, ForMedia Ltd., England). Prepared media was poured into plastic petri 

dishes immediately. Solidified and dried plates were closed by parafilm and stored for up 

to two weeks at 4°C.

For some experiments, LB poor media was modified and LB poor was prepared (0,5% 

NaCl, 0,5% tryptone, 0,25% yeast extract). For lignocellulosic degradation experiments, 

LB poor media was supplemented with wood powder. Wood powder was a waste product 

of wood industry (Lasole Company) moreover it was coming originally from fir and beech 

trees. First, wood powder was sterilized by heat (3 days at 80°C) and then mixed with LB 

poor for the Bacilli fermentation for seven days. Bacilli strains were used for the pre

treatment of wood powder. They degraded the wood to fermentable sugars for the yeast 

fermentation.
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2.2 GENERAL MOLECULAR BIOLOGY TECHNIQUES

For routine plasmid preparations, the Wizard Plus Miniprep System was used (A1330, 

Promega, USA). For standard DNA gel extraction, Qiagen Gel Extraction Kit was used 

(28704, Qiagen, Germany). Due to limitations of the maximum DNA size possible to 

isolate with this kit (-10000 bp), QIAEX II Gel Extraction Kit was utilized when 

necessary (20021, Qiagen, Germany). For RNA extraction, Promega Total RNA Isolation 

System (Z3101, Promega, USA) was used.

Unless otherwise indicated, all chemicals were purchased from Sigma-Aldrich.

2.2.1 OLIGONUCLEOTIDES

The sequences of the PCR primers were listed in Table 2.1 and were synthesized by 

Integrated DNA Technologies (Bologna/Italy). For PCR amplification, unless otherwise 

specified, the reaction was performed in a 50 pL of mixture consisting of lOng of DNA 

template, lx  buffer, 0.2mM of each primer, 0.25mM dNTPs, and 2U of DNA polymerase. 

The typical PCR program consisted of an initial denaturation of 2 minutes at 95°C, 

followed by 30 cycles of denaturation at 95°C for 1 minute, annealing at appropriate 

temperature depends on the primers and extension at 72°C for 1 minute per lkb with a 

final 10 minutes elongation at 72°C.

Table 2.1: Sequences o f  the primers used in this study.

Name of the Primer Sequence (5’-3’)

FwBGL5-Ext. ACATCCCGTTTTGACGCTAC

RevBGL5-Ext. GGGGGTTCGATTCCTATTGT

F w B gl5ecoR l CCCGAATTCCCCATGGGTGTTCAAGAATTAGA
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R evBgl5xhol CCGCTCGAGCGGCTATAATCCCAACCAGTAGA

FwEGCl-Ext. GATGAAACAACACGGTT ACG

RevEG Cl-Ext. GAT CTTTG AT A AGG AGT AGGG

F w E G C lxhol CCGCTCGAGCGGATGTCTACAGGATTCTTAACC

R evEG C lbam H l GCCGGGATCCCGGTTAATTCTTGTAATCCTTCAAGA

Fw C BH 2ecoR l CCCGAATTCGGGCAAGCTTGCTCAAGCGTCT

RevCBH 2clal CCCATCGATGGGCAGGAACGATGGGTTTGCG

Fwalphafactor (fused to each gene 

with appropriate restriction sites)
ATGAGATTTCCTTCAATTTTTAC

Revalphafactor (fused to each gene 

with appropriate restriction sites)
CTTTT ATCC A A AG AT ACCCCT

FwYackan TGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTG

GAGAAACTCAACGAGCTGGACGCGGATGAACAGGCA

GACATCGTCGACGGATCCCCGGGTTAA

R evPA D lkan TTT C AG AC AGG A ATGC A A AGTCTGT A A A AT AC AT CCA  

ATTT CTT GT CTGC A ATTT AT GT CAT A  AC AT GTT A  AGCG  

TTTTCCGCGCGTTGGCCGATTCAT

BITControl a l TCAGTAACCCGTATCGTGAG

BITControl b l TGCGGTAAAGCTCATCAGCG

K1 ACAATCGATAGATTGTCGCAC

BITControl a2 GCGGTCTTGCCATGATATTC

BITControl b2 AACGGTAAACAGGAAAGGCG

K2 TCAGTCGTCACTCATGGTGAT

FwBGL6-I TTACTGCTTGTAAAGCACAGG

RevBGL6-I ACCAGATGATTGGTCTAGAAG

FwBgl6Pwo ATGGGAGCACAAGAACTAGA

39



RevBgl6Pw o CT ACAACCCCAACCAGTAGA

FwBgl5rt GGTTCCATCAACGGTCAGGT

RevBgl5rt
ATCGGCTGCAACAGACAAGT

FwEGClrt ACATGGGTCGCTGGTTTCAA

RevEG Clrt CCATGGAGTAGGTGTTGGCA

FwCBH2rt CGGGAACCGCTACGTATTCA

RevCBH2rt AAGAGGGAACCTTTGCGACA

FwACTlrt G A A ATGC A A ACCGCTGCTC A

RevAC Tlrt TACCGGCAGATTCCAAACCC

FwPA D lrt TAACCAGGGCATCAACTTCG

R evPA D lrt AGCGTGGATGCCAAAGCAGT

F wEGC 1 construct-aat2 AAAAAGACGTCAAACCTGGTATCTTTATAGTCCTG

R evEG Cl construct- snabl(sac2- 

a sc l)

GGGCTACGTAGAGAGGCGCGCCAAGAAGAACCGCGG  

GAG A AGGT AGTCTAGT ACCTCCTG

F wBGL5construct-asc 1 GAGAGGCGCGCCGAGAGCTTTACACTTTATGCTTCCG

RevB GL5 construct-sac2 GAGACCGCGGGAGAATGTGCTGCAAGGCGATTAA

FwCBH2construct-sac2 CGAGCCGCGGGCACGAGGGAACAAAAGCTGGAGCT

RevCBH2construct-pme 1 C ACGGTTT A A ACCG AGGCGT A ATACG ACTC ACT AT AG

FwPEP4KO ATGTTCAGCTTGAAAGCATTATTGCCATTGGCCTTGTT  

GTTGGTT AGGCGT AT C ACG AGGCCC

RevPEP4KO TGTTCAGCTTGAAAGCATTATTGCCATTGGCCTTGTTG  

TTGGTT AGGCGT AT C ACG AGGCCC

FwcontrolPEP4 GAGAAGCCTACCACGTAAGG

RevcontrolPEP4 GACATTATGGGCAGCAGCATA
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2.2.2 GEL ELECTROPHORESIS

Gels were prepared and run as described by Sambrook, et al. (1989). For the visualization 

of DNA plasmids and fragments of size 500 to 20,000 base pairs, a 0.8% agarose 

(16500500, Invitrogen, Carlsbad, USA) gel was prepared in 0.5xTBE buffer and melted in 

a microwave. The tray was assembled with the proper comb and moved into the gel tank. 

After the mixture had cooled to less than 60°C, the agarose was poured into a gel tray and 

left until it solidified. Once the gel solidified, it was placed into the horizontal gel 

apparatus and submerged with 0.5xTBE buffer. The DNA samples that had been treated 

with at least one-third volume of DNA gel running buffer were loaded into the wells. A 

known DNA base pair marker was typically placed in the first well for size identification. 

The gel was run at approximately 90 volts (65mA) for at least half an hour to ensure an 

optimal separation of the fragments. For smaller fragments, lower voltages were utilized. 

Afterwards, the gels were stained with ethidium bromide for 10-15 min. The DNA bands

were visualized on a UV transilluminator at approximately 300nm. If the gel stained too

intensely, it was destained in H2 O.

1 OX TBE (Running gel buffer)

1. 890mM Tris base (15504-020, Invitrogen)

2. 890mM Boric acid (B6768, Sigma- Aldrich)

3. 20mM EDTA (E9884, Sigma- Aldrich)

6x Loading buffer fSTEBl for DNA

1. lOOmM Tris base HC1, pH 7.5 (15504-020, Invitrogen)

2. 20% (w/v) Glycerol (49779, Sigma- Aldrich)

3. ImM EDTA (E9884, Sigma-Aldrich)

4. A few grains of Bromophenol blue (B5525, Sigma- Aldrich)
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2.2.3 DNA PRECIPITATION

DNA precipitation was used routinely as a method to purify and concentrate the DNA. 

Samples were transferred into the 2 ml eppendorf tube, and afterwards the 1/10 of the total 

mixture volume, 1M Sodium Acetate pH 5.2 (32319, Honeywell Riedel- de Haen, Seize, 

Germany) and 2.5 volumes of ice-cold ethanol (02860, Sigma Aldrich) were added. 

Reaction tubes were kept on dry ice for at least 20 minutes. Following that, samples were 

centrifuged for 15mins at 13000 rpm at 4 °C. Ethanol was removed and remaining pellet 

was washed with 250pl of 70% ice-cold ethanol. After 5 minutes 13000 rpm centrifugation 

at 4°C, ethanol was removed and tubes were left open in the room temperature 

approximately for 10 minutes for the evaporation of the remaining ethanol. Pellet was 

subsequently resuspended in water and stored at -20°C.

2.2.4 LITHIUM ACETATE YEAST TRANSFORMATION

Eurofan protocol based on the LiAc/ssDNA/PEG method (Ito et al., 1983) was followed 

for the transformation of the exogenous DNA inside the yeast nucleus.

A single yeast colony was picked and resuspended into 10 ml of YPD and incubated on a 

rotary shaker at 250 rpm and 30°C overnight. Following day, cell count from the overnight 

culture was determined by optical density measurements using GeneQuant Pro 

spectrophotometer (GE Healthcare, Buckinghamshire, England) and cells were diluted to 

reach 2x106 cells/ml. Reinoculated culture was grown till the late exponential phase 

(number of cells was closed to lxlO7 cells/ml). The cells were washed once with 25 ml of 

sterile ddH20, once with 1 ml of 0.1 M LiAc (517992-100G, Sigma- Aldrich). Then the 

cells resuspended in 250pl of 0.1 M LiAc to reach concentration of about 2x109 cells/ ml 

and incubated at 30°C for 20 minutes. In the meantime, a 10pg/pl sheared herring sperm 

carrier DNA was denatured at 95°C for 10 minutes (D816, Promega) and straight away

after denaturation placed on ice. Transforming DNA was added into 50pl of LiAc treated
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cells with denatured herring sperm in concentration correlated to amount of DNA 

used. A negative control not including the transforming DNA was also set up and 

incubated for 20 minutes at 30 °C. After that 300pl of a mixture of lOOmM LiAc and 40% 

w/v 3350 PEG (P4338, Sigma- Aldrich) were added to the reaction tube and incubated at 

30°C for 20 minutes. Following the incubation, tubes were placed in circulating water bath 

set at 42°C and kept for another 20 minutes. When this heat-shock was terminated, tubes 

were centrifuged at 4000 rpm for 5 minutes and LiAc/PEG mixture was removed and cells 

were resuspended in 1 ml YPD and incubated at 30°C for 1 hour. Afterwards, cells were 

centrifuged at 4000 rpm for 5 minutes, resuspended in water, and plated on the selective 

media.

2.2.5 BACTERIAL COMPETENT CELL PREPARATION

A single bacterial colony was picked and inoculated into 10 ml of LB and incubated on a 

rotary shaker at 37°C overnight. Next day, 1 ml of the over night culture was inoculated 

into 40ml LB and let it grow till 0,3 OD reached (usually couple of hours). After that the 

cells were moved to 50 ml sterile falcon tubes and chilled on ice for 10 min. The cells were 

pelleted at 5000-6000 rpm at 4°C for 10 minutes and resuspended in 20ml of ice-cold 

50mM CaCl2 . Resuspended cells were incubated on ice for 20min and pelleted again for 10 

min (5000-6000 rpm, 4°C). The pellet was resuspended with 4 ml of ice-cold 50mM CaCh. 

300 j l i 1 aliquots of the cells were prepared by mixing 192pl of cells and 108pl of 50% 

glycerol and stored at -80°C.

2.2.6 BACTERIAL TRANSFORMATION

An aliquot of competent bacterial cells from -80°C was thawed on ice for 10 min. For each 

transformation, lOOpl of bacteria cells were mixed with lOOng of DNA and left on ice for 

30 min. For the heat shock, cells were transferred to circulating water bath preheated to 

42°C for 90 seconds. At the end of the heat shock, 500pl LB medium was added to the



cells for recovery and the tubes were further incubated for 90 minutes at 37°C with 

shaking. In the last step, cells were spun down and pellets were resuspended in 200pl of 

ddFkO. Water resuspended cells were plated on selective LB-agar plates and then plates 

were incubated overnight at 37°C.

2.2.7 COLONY PCR

After transformations, cells were checked by colony PCR approach to verify the positive 

transformants. PCR template derived directly from the colony growing on plates. 

Depending on the organism subjected to this analysis, cell destruction and release of the 

DNA is achieved differently.

For bacterial colony PCR, colonies were added directly in PCR mixture after heat pre

treatment. Their cell walls can be easily destroyed just by heating. Bacterial cells can be 

boiled in the microwave on full power for 5 minutes and after centrifugation, supernatant 

can be used as a PCR template.

For yeast cells, colonies (~ 1mm) were scraped with sterile toothpick and resuspended in 

60U/ml zymolase solution (120491-1, Seikagaku Biobusiness Corporation, Japan). Tubes 

were incubated at 37 °C for 30 minutes and later centrifuged for 5 minutes at 2000 rpm. 

Zymolase was removed, cells were resuspended in sterile H2 O and kept at 95 °C for five 

minutes. In the meantime, PCR master mix was prepared. All reactions were done using 

GoTAQ polymerase (M31175, Promega).

After heating, lOpl of every sample was transferred into new PCR tube and 15pl of master 

mix was added. Programs used are presented in the respective sections. Afterwards, 

reaction samples were visualized in the agarose gel.
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2.2.8 PLASMID CONSTRUCTION

Standard protocols were followed for DNA manipulations (Sambrook, Fritsch, & Maniatis, 

1989). The enzymes for DNA cleavages and ligation were purchased from New England 

Biolabs (NEB) and used as recommended by the supplier. For sticky end ligations, DNA 

was added to the reaction at a molar insert to vector ratio of at least 3:1. For blunt end 

ligations, this ratio was sometimes increased to 10:1 or greater. Following overnight 

ligation incubation, the reactions were either added directly to competent E. coli for 

transformation, or an aliquot first analyzed by agarose gel electrophoresis, to visualize the 

formation of higher molecular weight ligation products. All the primers used for cloning 

were given in table 2 .1 .

2.2.9 DELETION OF PEP4 GENE AND DETERMINATION OF THE PEP4-3 

MUTATION

YPH4 haploid strain used for PEP4 gene (chromosome XVI) deletion to prepare a host 

strain for the heterologous gene expression. For the deletion, the STIK approach 

(Waghmare, Caputo, Radovic, & Bruschi, 2003) was applied by using pGFKG plasmid, in 

which kanamycin resistance genes is flanked by FRT sequences. To release the kanamycin 

gene from genome by the help of FLP-FRT recombination, cultures were incubated at

30°C for at least 10 generations to 2-3x10^ cells/ml, where stationary phase was reached. 

At this time, serial dilutions were made, and cells plated onto several YPD plates to yield 

100-300 cfu/plate. After three days growth, colonies were replica-plated onto selective 

medium (YPD+G418). Non-resistant colonies were chosen after pop-out of the kanamycin 

and used for the mating experiment to obtain diploid pep4-3 mutant strain.

Determination of the presence of the pep4-3 mutation in yeast strains was performed 

according to Jones (1977). The pep4-3 mutant yeast was streaked onto a YPD agar plate 

and allowed to grow at 30°C for two days. The detection system involved overlaying the
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yeast plate with a mixture of 3ml of 0.6% agarose, made with water and cooled to less 

than 50°C, and 2ml of 4mg/ml APE (N-acetyl-DL-phenylalanine-b-naphthyl ester) in 

water. After the overlay had solidified, the plate was allowed to set for 10 minutes and then 

flooded with 5ml of Fast Red stain at 5mg/ml. As soon as the plate was soaked, about 30 

seconds, the stain was aspirated off, and the colony colour monitored. Those colonies 

derived from cells that are wild type PEP4, cleave the APE substrate, which reacts with the 

stain, and turns the colonies red. Those that are mutant, therefore remain white. Eventually, 

all colonies will become red, but the mutants can be readily distinguished after the initial 

staining period. A negative and a positive control strains were analyzed in parallel.

2.2.10 CHEF (CLAMPED HOMOGENOUS ELECTRIC FIELDS) GEL

Isolation and visualization of yeast chromosomes was performed as described by Bio-Rad 

for the CHEF-DRII system. Yeast cultures of selected strains were grown overnight in 

10ml YPD medium to stationary phase. The cells were pelleted in a centrifuge at 3000rpm 

for 10 minutes. The supernatant was discarded and the cells resuspended in 180pl of 

0.05M EDTA, pH 8.0 and 15pi of 2mg/ml Lyticase was added. During cell preparation, a 

1.0% gel solution was prepared by melting Low Melt Preparative Gel Agarose in 0.125M 

EDTA, pH 7.5. The mix was allowed to cool to about 50°C. In fresh eppendorfs, 300pl of 

agarose solution was mixed with 180pl of cell/enzyme mix, then pipetted into individual 

mold chambers with a pipet. After cooling at 4°C for 20 minutes, the plugs were removed 

from the mold, with a clean spatula, and placed into individual falcon tubes. The plugs 

were then covered with LET buffer and incubated at 37°C overnight. Afterwards, the LET 

buffer was removed, and the plugs washed three times for 15 minutes each in 50mM 

EDTA, pH 8.0. NDS buffer was then added to the tubes, covering the plugs, and the tubes 

incubated overnight at 50°C. After this step, the plugs were washed 4 times for 1 hour each 

in 50mM EDTA, pH 8.0. The wash was then removed, the plugs were stored for prolonged 

periods at 4°C in the 50mM EDTA solution. The CHEF gel was cast using the provided



mold, with a 10 well comb. A 1.0% gel was prepared by chromosomal grade agarose 

(161-0137, Bio-Rad) in 0.5xTBE, in a volume of 100ml. After cooling to 50°C, the gel 

was poured, and allowed to solidify. The comb was then removed from the gel, and 

portions of the yeast plugs were placed into the wells such that they would occupy less 

than 90% of the volume of the wells. Typically, Bio-Rad yeast chromosomal marker plugs 

were placed in the outside wells for control. The sample wells were then filled in with a 

preparation of 1.0% low melting preparative grade agarose (9414, Sigma), cooled for 

50°C. Care was taken to avoid trapping air bubbles. It was not necessary to fill in the wells 

that lacked sample plugs. After 15 minutes, the gel was ready for electrophoresis. The 

electrophoresis unit was placed in a 4°C cold room and the electrophoresis chamber filled 

with 2 litres of 0.5xTBE. The buffer was circulated by pump through a 4°C water bath to 

facilitate cooling of the buffer. The buffer should cover the gel by approximately 2mm. 

The flow rate of the buffer was adjusted to about lL/min. The pulse unit was programmed 

to ramped switch time from 50 to 90 seconds for 22 hours. The voltage was set at 200V. 

After the run had been completed, the gel was stained with ethidium bromide and the 

bands visualized by ultraviolet light. For DNA hybridization, the gel was soaked for 15 

minutes in 0.4N NaOH. Transfer to nylon membrane was accomplished via Southern blot, 

except that the transfer solvent was 0.4N NaOH. After at least 24 hours, the filter was 

removed and neutralized in 0.5M Tris, pH 7.0 for 5 minutes. Afterwards, it was rinsed 

briefly in 2xSSC, then dried and baked, as described for Southern transfer.

LET buffer NDS buffer

0.5M EDTA (pH 8.0) 0.5M EDTA (pH 8.0)

0.01M Tris-Cl (pH 7.6) 0.01M Tris-Cl (pH 7.6)

7.5% (3-Mercaptoethanol 1% Lauryl-sarcosine

+ 1 mg/ml Proteinase K
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2.2.11 SOUTHERN BLOT AND HYBRIDIZATION

Southern blotting was employed, essentially as described by Sambrook, et al., (1989) and 

based on the experimentation of Southern (1975). After EtBr staining and photography of 

the DNA gel, it was soaked for 30 minutes with gentle agitation in several volumes of 

denaturing solution (0.5N NaOH, 1.5M NaCl). After denaturation, the gel was briefly 

rinsed in water, then neutralized in several volumes of 1M Tris-Cl, pH 7.5, 1.5M NaCl for 

30 minutes with gentle agitation. Afterwards, the gel was incubated for an additional 15 

minutes in fresh neutralizing solution. During these incubations, several pieces of 

Whatman 3M filter paper, and a piece of nylon membrane (Hybond N+), was cut to the 

dimensions of the gel. Transfer was performed by capillarity. A Whatman filter paper wick 

was cut to the width of the gel, and long enough to span the length of the gel bridge and 

adequately touch the buffer in the tray. For most transfers, lOxSSC was used as the transfer 

buffer, and the reservoir was filled to just below the bottom of the gel bridge. The wick 

was completely soaked with buffer, and any air bubbles removed. The gel was then placed 

face down onto the wick. The nylon membrane was first wetted in water, prior to use, then 

placed on top of the gel. As before, trapped air bubbles were carefully removed. At least 5 

sheets of Whatman filter paper cut to the size of the gel were then placed on top of the 

nylon filter. Several thicknesses of tissue papers were then cut to the size of the gel, and 

placed on top of the Whatman paper. A weight equivalent to 500g was then placed on the 

top of the blotting pads, and the transfer allowed to run at least 16 hours. Afterwards, the 

nylon filter was first floated on 6 xSSC, and then submerged into the solution for 5 minutes. 

The nylon filter was then sandwiched between two fresh pieces of filter paper, and baked 

for 2 hours at 80°C. At this point, the filter was either used immediately or wrapped in 

aluminium foil, in the filter paper sandwich, and stored at room temperature. The agarose 

gel was restained with EtBr and visualized on a UV transilluminator to determine the 

degree of DNA transfer to the nylon filter.
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20xSSC 

175.3gNaCl 

88.2g NaCitrate

pH to 7.0; bring to 1L with water

The hybridization procedure was performed essentially as described by Sambrook, et al. 

(1989). To prepare the nylon filter for hybridization, it was rewet in 6 xSSC for 2 minutes, 

then placed into a plastic hybridization bag containing 0 .2 ml of pre-hybridization fluid for 

each square centimetre of filter. The bag was then sealed with a heat sealing unit, and 

incubated at 65°C, with occasional agitation, for at least 2 hours. Afterwards, one comer of 

the bag was cut with scissors, and the pre-hybridization fluid drained from the bag. 

Hybridization fluid with the probe (synthesized by using PCR DIG probe synthesis kit, 

Roche), pre-warmed to 65°C, was added into the bag at 50jil of fluid for each square 

centimetre of filter. The bag was then smoothed out to carefully remove trapped air 

bubbles from within the bag. The hybridization bag was then sealed into a second larger 

bag, to prevent contamination from possible leakage of radioactive fluid from within the 

hybridization bag. The hybridization was placed on a rocker platform at 65°C and 

incubated for at least 16 hours. After that, washing and detection steps were followed. One 

side of the bag was then completely opened, and hybridization solution was removed, and 

immediately placed into 200ml of 2xSSC, 0.5%SDS. The membrane was incubated in this 

solution for 5 minutes at room temperature, with gentle agitation, then the solution 

discarded into liquid waste. A second 200ml of 2xSSC, 0.1% SDS was then added, and the 

filter washed at room temperature for 15 minutes. This solution was then discarded, and 

the filter placed into 200ml of O.lxSSC, 0.5%SDS. It was then incubated in this solution, 

with gentle agitation, for 30 minutes at 65°C. The membrane was then transferred to 

another 200ml of O.lxSSC, 0.5% SDS and incubated for 30 minutes at 65°C. Afterwards 

the membrane was incubated 30 minutes in blocking buffer, 30 minutes in antibody

49



solution, 5 minutes in detection buffer, 5 minutes in CDP-Star Chemiluminescent 

Substrate and the hybridization was visualized by Kodak film.

Pre-hvbridization solution

6 xSSC

0.5% SDS

5x Denhardt's solution

lOOpg/ml herring sperm DNA

Hybridization solution

6 xSSC

0.5% SDS

lOOpg/ml herring sperm DNA

5Ox Denhardt's Solution

1% Ficoll

1% Polyvinylprrolidone

1% Bovine serum albumin (Fraction V)

Blocking Buffer

12ml of lOx Blocking reagent

108ml of maleic acid buffer

Antibody solution

20ml Blocking buffer

2pl DIG antibody

Detection Buffer 

0.1M Tris 

O.lMNaCl

2.2.12 QUANTITATIVE PCR

Translocant strains were grown in YPD supplemented with 200pg/ml Geneticin G418 

overnight. The following day the RNA was isolated using Promega Total RNA Isolation 

System (Z3101, Promega, USA) and the AMV Reverse Transcriptase (M501, Promega, 

USA) was used to produce cDNA on the RNA template according to the protocol provided 

by the manufacturer. Resulting cDNA was used as a template for amplification of BGL5, 

EGC1, CBH2, PAD1 and ^4C77 gene (primers in the Table 2.1). PCR was carried out by 

using Rotor-Gene SYBR green kit (Qiagen) with the already provided PCR program

50



designed for the Rotor-Gene Cycler from Qiagen. ACT1 mRNA level was chosen as a 

control. The final data were reported as normalized expression level of every gene 

analyzed with respect to its parental copy. The experiments were repeated at least three 

times and standard deviations were calculated.

2.2.13 DETERMINATION OF BETA-GLUCOSIDASE AND TOTAL 

CELLULASES ACTIVITY

To determine P-Glucosidase activity, the pNPG (p-Nitrophenyl-D-glucopyranoside) assay 

was performed by following what suggested in the literature (Jeon et al., 2009). The unit 

definition of the beta-glucosidase is the amount of enzyme, which catalyzes the formation 

of 1 prnol of p- Nitrophenol per minute at 37°C starting from PNPG (p-Nitrophenyl-D- 

glucopyranoside). The method of assay is based on the spectrophotometric determination 

at 405nm of p-Nitrophenol, which is formed during the reaction. Cells were centrifuged at 

13,000 rpm for 4 min and the supernatant was incubated in 50mM acetate buffer with 

5mM pNPG at pH 5.0, at 37°C for 15 min. The p-nitrophenol released from pNPG was 

detected at 405 nm after adding 2 ml of Na2 C0 3  0.2 M to stop the reaction. Appropriate 

blanks without enzyme or substrate were also run in parallel as control.

For cellulases activity assay, we used EnzChek Cellulase Substrate (E33953) from 

Invitrogen and followed the protocol as it is suggested by the supplier. EnzChek Cellulase 

Substrate is fluorescence-based cellulase substrate that was developed for simple and rapid 

quantitation of cellulase. Cellulase assay with this fluorescence substrate is highly 

sensitive, with a detection limit as low as 40pU/mL cellulase.

Different sample dilutions and standards were run in parallel and read the absorbance at 

360nm.
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2.2.14 CHROMOSOME STABILITY

Recombinant YAC and translocant YAC was checked by their stability in cell under non- 

selective conditions. At least three individual YAC-containing colonies were picked and 

used to inoculate separate vials containing 10ml of YPD to a density of approximately

2x10 ^ cells/ml. Cultures were incubated at 30°C for at least 10 generations to 2-3x10 ** 

cells/ml, where stationary phase was reached. At this time, serial dilutions were made, and 

cells plated onto several YPD plates to yield 100-300 cfu/plate. After three days growth, 

colonies were replica-plated onto selective medium (SC-URA) and scored for growth as an 

indication of YAC-containing cells.

Stability was measured as a percentage of prototrophic cfu relative to total cfu plated. In 

total 2500 colonies were examined per each condition; recombinant YAC and translocant 

recombinant YAC containing cells.

2.2.15 ANTHRONE TEST

To estimate the amount of cellulose produced by Bacilli, we used the anthrone test (Bailey, 

1958), which is a simple colorimetric method to measure the total amount of 

carbohydrates. The amount of total carbohydrates in the sample is estimated via reading 

the absorbance of the resulting solution against a glucose standard curve. The principle is 

based on the fact that, in the presence of sulphuric acid, glucose is converted into 5 - 

hydroxymethylfurfural and this reaction with anthrone results in a product that has the 

blue-green colour, whose maximum absorbance is read at 620nm.

All Bacilli strains were grown for 7 days in the LB poor media with or without wood 

powder. 1 ml from the media was mixed with 2 ml 75% H2 SO4 and 4ml anthrone solution 

and let them boiling for 15 minutes at 100°C. Absorbance was read at 625nm. Appropriate 

controls were also run in parallel. Different concentrations of glucose solutions were used 

for the standard curve.
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Anthrone solution:

0.1 gr Anthrone 

50ml 75% H2S04

2.2.16 GLUCOSE DETERMINATION TEST

After 7 days of Bacilli fermentation (starting from lxlO5 cells/ml of B. licheniformis and 

lx l0 5 cells/ml of B. pumilus) in LB poor media supplemented with the 4%wood powder, 

media was filtered to check the presence of cellobiose molecules by enzyme assay.

To estimate the amount of glucose molecules in the wood media after Bacilli fermentation, 

we used GO test (Sigma GAGO-20). The GO test protocol followed according to the 

manual to detect the glucose amount in the samples. For cellobiose detection, filtered 

mediums were treated with cellobiase (Biorad) according to the kit instruction for 2 hours 

at 37 °C and then GO test was applied to see whether or not glucose molecules were 

generated from the degradation of cellobiose. Appropriate controls were also run in 

parallel.

2.2.17 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

After 7 days of Bacilli fermentation (starting from lx l0 6 cells/ml of B. licheniformis and 

lx l0 6 cells/ml of B. pumilus) in LB poor media supplemented with the 4%wood powder, 

media was filtered to check the presence of glucose and cellobiose molecules by HPLC 

analysis.
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HPLC-ELSD analysis was done by SPRIN Technologies Company, Trieste/Italy by 

using the conditions below:

Column: Supelco apHeraTM NH2 Polymer, 250 x 4.6 mm, 5 pm

Mobile phase: Acetonitrile.-Water 75:25, isocratic

Flow rate: lml/min

Column temperature: 30°C

Drift tube temperature fELSDh 60°C

Spray chamber temperature (ELSDE 45°C

Appropriate controls and standards were also run in parallel.
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3. RESULTS

This chapter was divided in two parts; A and B. In Part A “Wood Powder Degradation By 

Microbial Fermentation” results and in Part B “Implementation Of The Bridge Induced 

Chromosome Translocation (BIT) Technology For Strain Improvement” results were 

shown.

PART A: WOOD POWDER DEGRADATION BY 

MICROORGANISMS 

A.3.1 ANTHRONE TEST RESULTS

The various species of Bacilli (B. circulans, B. atrophaues, B. licheniformis, B. macerans,

B. pumilus and B. subtilis) were characterized by the ribotyping analysis and the API test 

by a master student. The ribotyping analysis is a method to identify and classify different 

Bacilli species based on the differences in their 16S rRNA. Comparing the sequence of the 

16S rRNA allows inferring the evolutionary relationships among organisms. The analytical 

profile index (API test) was used to confirm the species of Bacilli, based on their 

biochemical reactions.

After the characterization, different Bacilli strains were compared for their lignocellulosic 

material degradation ability. To do so, Bacilli fermentation was done in LB poor media 

supplemented with 1% wood powder for seven days and in the following term, media was 

analyzed by anthrone test to see the amount of the total carbohydrates released from the 

lignocellulosic substrate.

Anthrone test is a colorimetric method for qualitative and quantitative estimation of 

polysaccharides as well as monosaccharides. It is based on dehydration of carbohydrates to 

furfural derivatives by sulphuric acid. Furfurals react with anthrone to form green colour
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and amount of the carbohydrates in the samples are estimated via reading the 

absorbance of the resulting solution against a glucose standard curve.

In figure 3.1, anthrone test results for the total carbohydrate production by different Bacilli 

strains were shown. These results show the value difference between samples that were 

fermented with Bacilli and the controls that were fermented without Bacilli. Figure 3.2 

shows the standard curve of the glucose solutions for the estimation of carbohydrates in the 

samples.
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Figure 3.1: G raphic representation o f  the anthrone test for total carbohydrate estim ation. A xis labels 

represents different Bacilli strains that grew  in 1% w ood m edia and Y values are the spectrophotom eter 

m easurem ents at 620nm . The error bars indicate the Standard Error.
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Figure 3.2: G lucose standard curve for the anthrone test with different concentrations o f  glucose.

According to the anthrone test results, B. licheniformis and B. pumilus have the best 

lignocellulose degradation ability in lignocellulosic media. They degraded more 

lignocellulosic material and produce more carbohydrates compare to the other species, 

therefore we selected these two Bacilli to work with.

To find out the optimal concentration for the wood degradation, B. licheniformis and B. 

pumilus were inoculated into LB poor media supplemented with the concentration o f 1%, 

2.5%, 4% and 6% wood powder (Figure 3.3).
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Figure 3.3: Graphic representation o f  the anthrone test to see optim um  w ood concentration for 

the degradation. Axis labels represent different concentration o f  w ood pow der in LB poor m edia and Y line 

shows the delta absorbance value o f  the ferm entations w ith and w ithout Bacilli. The error bars indicate the 

Standard Error.

Medium with 4% wood powder showed the highest amount of total carbohydrates after 

seven days of Bacilli fermentation compared to other concentrations. When the 

concentration over exceeded 4%, it was seen that Bacilli strains stopped growing. After 

these results, wood degradation experiments were done with the 4% wood media.

Figure 3.4 shows fluorescence microphotography of#, licheniformis and B. pumilus. These 

Bacilli were grown in different concentration of wood media for seven days and then they 

were checked under the fluorescence microscope.
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Figure 3.4: Fluorescence m icrophotography o f  B. licheniformis and B. pumilus strains in different 

concentration o f  w ood m edia after 7 days (a; 4%  w ood m edia w ith Bacilli, b; 4%  w ood m edia w ithout 

Bacilli, c; LB poor m edia w ith Bacilli, d; 1% w ood m edia w ith Bacilli, e; 2,5%  wood m edia w ith Bacilli, f; 

6%  wood media with Bacilli). L ight m icroscopy o f  live cells w as perform ed w ith a Leica DM BL 

photom icroscope equipped with a CCD  com puter-driven cam era at lOOx m agnification.

It is showed also by fluorescence microphotography that of B. licheniformis and B. pumilus 

strains are not growing well when the wood concentration exceeded over 4% in the media.
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A.3.2 SUGAR CONTENT DETERMINATION

After the confirmation of carbohydrate presence in the media after Bacilli fermentation, 

further analyses were done to understand the sugar content of the media. GO test (Sigma 

GAGO-20) and HPLC-ELSD method were used to analyze the media (LB poor media 

supplemented with 4% wood powder) after Bacilli fermentation.

A.3.2.1 GLUCOSE ASSAY

After seven days Bacilli fermentation in LB poor media supplemented with different 

concentration of wood powder, mediums were filtered for the analysis. To check the 

cellobiose presence, mediums were firstly treated by commercial cellobiase (Biorad) in 

order to release the glucose molecules for GO test. Determination of the glucose amount in 

the media was done according to the GO test manual (Figure 3.5).
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Figure 3.5: G raphic representation o f  cellobiose evaluation by applying glucose test to the sam ples that w ere 

treated with cellobiases. A bsorbances o f  the sam ples are proportional to the glucose concentration. A xis 

labels represent different concentration o f  wood pow der in LB poor m edia and Y values are the 

spectrophotom eter value differences o f  Bacilli ferm ented wood m edium s from the w ood m edia w ithout 

Bacilli ferm entation. The error bars indicate the Standard Error.
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After the cellobiase treatment, glucose molecules in the media were determined 

according to the GO test manual. In the presence of the glucose molecules, glucose oxidase 

is producing gluconic acid and hydrogen peroxide. Afterwards hydrogen peroxide reacts 

with o-dianisidine to form a colored product that can be read at 540nm. GO test results in 

figure 3.5 show the absorbance of the samples at 540nm that is proportional to the original 

glucose concentration, which means that during the lignocellulosic material degradation, 

some cellobiose and glucose molecules were produced.

GO test results showed that compared to other concentrations of wood powder, media 

supplemented with 4% wood powder contains more cellobiose and glucose molecules after 

Bacilli fermentation. To confirm these results further analysis was done.

A.3.2.2 SUGAR ANALYSIS BY HPLC

After glucose determination by GO test, further analysis was done by HPLC-ELSD 

method for glucose and cellobiose quantification. HPLC-ELSD analysis was done by 

SPRIN Technologies Company, Trieste/Italy with the conditions given in Material and 

Method section.

After seven days Bacilli fermentation in LB poor media supplemented with 4% wood 

powder, media was filtered for the analysis. Glucose and cellobiose solutions were used as 

positive controls and LB poor media supplemented with 4% wood powder without Bacilli 

fermentation was used as a negative control.

Figure 3.6 shows the analysis of media after Bacilli fermentation and figure 3.7 shows the 

analysis of media without Bacilli fermentation as a control. HPLC-ELSD analyses 

confirmed the results that were obtained by glucose test and these results gave as 

quantifications of the glucose and cellobiose contents.
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Compound Rt (min) Area Concentration (mg/ml)
Glucose 7.050 967768 0.049
Unknown 8.558 11845197 nd
Cellobiose 10.308 2413784 0.183

j :

' •

2 I» 104 12 12 20
Masts

Figure 3.6: G raphic H PLC-ELSD  analysis for glucose and cellobiose quantification o f  LB poor m edia 

supplem ented with 4%  wood pow der after seven days o f  Bacilli ferm entation.
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Figure 3.7: H PLC-ELSD  analysis for glucose and cellobiose quantification as a control on a w ood m edia 

(LB poor m edia supplem ented with 4%  w ood pow der) w ithout Bacilli ferm entation.

HPLC-ELSD results showed that after seven days of Bacilli fermentation there are 

0,049mg/ml of glucose and 0 ,183mg/ml of cellobiose molecules in the media. In the 

control media, without Bacilli fermentation, no cellobiose and glucose molecules were 

found. Control media was also left in shaker for seven days to see whether or not shaking 

will release any sugars from wood powder.
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Separation of the fermentable carbohydrates from the lignocellulosic material is the 

biggest barrier for the bio-ethanol production and by these results the degradation of the 

wood powder to oligosaccharides by Bacilli was demonstrated.

A.3.3 RECOMBINANT YEAST

After the Bacilli fermentation in wood media, some fermentable sugars were found out. To 

use cellobiose and glucose content of this media for the yeast fermentation, a recombinant 

yeast strain was constructed in Yeast Molecular Biology Laboratory in ICGEB/Trieste by 

Dr. Valentina Tosato.

Since S. cerevisiae is not naturally able to degrade the cellobiose to glucose, a cellobiase 

had to be expressed in S. cerevisiae. For this purpose, p -glucosidase gene (BGL6) from P. 

stipitis was extracted and cloned into pBLAST vector to be expressed and secreted in S. 

cerevisiae. Beta-glucosidases are responsible to hydrolyze cellodextrins and cellobiose into 

glucose to provide a straightforward metabolisable carbon source for the microorganisms.

Recombinant yeast strain that has best degradation ability among the other transformants 

was called 19s. By using this recombinant strain, yeast fermentation was done in the 

supernatant of Bacilli wood fermentation. Next experiments show the results of 

recombinant yeast’s cellobiose degradation ability.

A.3.3.1 ENZYME ACTIVITY

The p-glucosidase activity was determined by using p-nitrophenyl-D-glucopyranoside 

substrate as it is described in Material and Method section. The unit definition of the P - 

glucosidase is the amount of enzyme that catalyzes the formation of 1 pmol of p- 

Nitrophenol per minute starting from PNPG (p-Nitrophenyl-D-glucopyranoside).
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The method of assay is based on the spectrophotometric determination at 405nm 

of p-Nitrophenol, which is formed during the reaction. As a positive control p-glucosidase 

(Sigma cat no: G4511) and as a negative control wild type yeast strain were used (Figure 

3.8).

0.025

Cbll-20 19s Beta-glucosidase
from almonds

F i g u r e  3.8: G raphic representation o f  B eta-glucosidase enzym e assay. Axis labels represent sam ples and Y 

line show s the am ount o f  the enzym e U/ml. B eta-glucosidase from alm onds was used as a positive control.

As it is shown in figure 3.8, there was no activity in the reference yeast strain harboring the 

empty plasmid pBLAST. Recombinant strain that is expressing Bgl6, is active 10-16 folds 

less than the pure p-glucosidase (Sigma cat no: G4511) that was used as a positive control.

This result proved that recombinant yeast strain is able to express and secrete the Bgl6 

protein and this protein is active for the efficient cellobiose degradation to glucose 

monomers.
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A.3.3.2 CELLOBIOSE FERMENTATION BY RECOMBINANT YEAST STRAIN

To prove the performances of the recombinant S. cerevisiae strains and demonstrate its 

functionality, cellobiose (Sigma, 99% cat no: 22150) was used as the sole carbon source.

The growth curve of CBL1-20 transformed with an empty vector and the recombinant 19s 

strains were checked in YPC media supplemented with 0.3% galactose for GallO promoter 

induction. 1x10s cells/ml of each strain were inoculated in YPC and followed their growth 

by counting the cells under the microscope. The introduced cells were washed twice before 

fermentation, suggesting that the growth in YPC could not be accomplished by the other 

sugars carried from previous cultures (Figure 3.9).
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F i g u r e  3 . 9 :  Growth curve o f  the 19s and CBL1-20 strains in YPC media. CBL1-20 is a w ild type strain that 

carries empty pBLA ST vector, 19s is a recom binant strain that carries pB LA ST vector w ith BGL6  gene. A xis 

labels show s the hours and Y values are the num ber o f  the cells counted at the tim e point.
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As shown in figure 3.9, 19s recombinant strain grew much better than the wild type 

yeast strain in YPC media. Starting from an inoculum (lx l0 5 cells/ml) of an exponentially 

growing culture in YPR, 19s reached a density of 5x108 almost in 72 hours, while the 

control reached a density of 2.8-3.0xl07. The growth up to 107 of the control is due both to 

the presence of 0.3% galactose in the medium (that can be utilized as nutrient) and to the 

impurities of the cellobiose that can be contaminated with glucose (Sigma, 99% cat no: 

22150).

After the confirmation of the recombinant S. cerevisiae strain’s cellobiose degradation 

ability, fermentation was done by using the media of Bacilli fermentation. After Bacilli 

fermentation for seven days in LB poor media supplemented with 4% wood powder, the 

culture was subjected to 0,22um filtration and the supernatant was mixed with YP and 

0.3% galactose for yeast fermentation.

lxlO5 cells/ml of 19s strain and CBL1-20 strain were inoculated. The growth curves of 

wild type and recombinant yeast strains were followed by counting cells under the 

microscope (Figure 3.10).
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F ig u re  3.10: G rowth curve o f  the 19s and C BL1-20 strains in the media, w hich is the supernatant o f  LB poor 

m edia supplem ented w ith 4%  wood pow der after seven days B acilli ferm entation. C BL1-20 is a w ild type 

strain that carries em pty pB LA ST vector, 19s is a recom binant strain that carries pB LA ST vector w ith BGL6  

gene. A xis labels show s the hours and Y values are the num ber o f  the cells counted at the tim e point.

Growth of the yeast strains in the supernatant of bacterial fermentation of lignocellulosic 

material showed that the 19s strain is growing faster and better compared to the wild type 

strain.

There was a huge growth difference between recombinant and wild type yeast strains. 

When the yeast fermentation was done in parallel in media supplemented with 

commercially available cellobiose, more or less the same growth curve of the recombinant 

yeast strain was seen in both media. By this experiment, it is proved that recombinant yeast 

strain is able to degrade the cellobiose in both media; Bacilli pre-treated wood media and 

YPC.
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This part of the research demonstrated that the sequential treatment of wood flour 

firstly by Bacilli and secondly by S. cerevisiae allows an efficient and economic 

conversion of biomass into glucose leading to foresee interesting perspectives in bio

ethanol production.

PART B: IMPLEMENTATION OF THE BRIDGE INDUCED 

CHROMOSOME TRANSLOCATION (BIT) TECHNOLOGY FOR 

STRAIN IMPROVEMENT

B.3.1 PEP4-3 MUTANT DIPLOID YEAST STRAIN

S. cerevisiae BAP4 strain was used as a host for the cellulose degradation experiments. 

BAP4 strain is a diploid pep4-3 mutant strain, it is produced by mating CBL1-20 strain: a, 

[cir°], ura3-52, leu2-3,112, trpl-289, pep4-3 (Ludwig & Bruschi, 1991) and PEP4 knock

out YPH4 strain: a, ura3-52, lys2-801, ade2-101 and his3-A200 (produced in this study).

The pep4-3 mutation was added to the strain’s background to potentially reduce the amount 

of proteolytic degradation of expressed recombinant protein. Vacuolar peptidases 

(proteinase-A, proteinase-B, and carboxypeptidase-Y) are the known proteases that are 

sensitive to the mutation (Zubenko, Park, & Jones, 1982).

To delete the PEP4 gene in YPH4 strain, the STIK approach (Waghmare et al., 2003) was 

applied by using pGFKG plasmid, in which kanamycin resistance genes is flanked by FRT 

sequences.

Deletion cassette were amplified and purified (Figure 3.11) by ethanol precipitation and 

subsequently used for the transformation of YPH4 strain as described in the Material and 

Methods section.
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Figure 3.11: A garose gel photograph o f  PEP4  locus deletion cassette. Band represents a purified PCR 

product, w hich is around 1.6kb.

Positive G418 clones for the PEP4 deletion were confirmed by colony PCR (Figure 3.12). 

Via FRT-FLP recombination system, selection marker was released by growing them 

under non-selective conditions. Almost 4000 colonies were checked for the kanamycin 

resistance loss (Figure 3.13). Non-resistant colonies were chosen after pop-out of the 

kanamycin and used for the mating experiment to obtain diploid pep4-3 mutant strain.
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Figure 3.12: V erification o f  the deletion cassette integration by colony PCR. C ontrol-, contains w ild type 

strain, where PEP4 gene is present. Lanes 1,2,3&5 contain positive clones carrying integration o f  knock-out 

cassette (around 2100bp band). Lane 4 does not contain correct integration, and it gives w ild type band 

(around 1540bp band).
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Figure 3.13: Pop-O ut o f  kanam ycin m arker by FRT-FLP recom bination in pep4-3  m utant cells (a: cells in 

YPD plate, b: cells in YPD+G 418 plate).

For the diploid pep4-3 mutant strain construction, patched upon one another the two 

haploid pep4-3 mutant strains were grown in YPD plate and replica plated on to dropout 

plates (SC -his -leu  -lys -trp) by taking advantage of auxotrophies to inhibit growth of 

starting haploid strains. Resulting strain was also checked for the pep4-3 mutation 

determination (Zubenko et al., 1982) by APE plate assay as described in the Material and 

Methods section. Those colonies derived from cells that are wild type PEP4, cleave the 

APE substrate, which reacts with the stain, and turns the colonies red. Those that are 

mutant, therefore remain white-yellow. Eventually, all colonies will become red, but the 

mutants can be readily distinguished after the initial staining period (Figure 3.14). By this 

test, engineered diploid strain was confirmed for the pep4-3 mutation. Resulting strain was 

called BAP4 and used for the cellulose degradation experiments.
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Figure 3.14: APE plate assay for pep4-3  m utation determ ination (a: PEP4 locus deleted diploid strain b: 

w ild type strain). It can be seen that PEP4 locus deleted strain stays w hite and w ild type strain becom es red.

B.3.2 PLASMID CONSTRUCTION

MFal secretion signal sequence was amplified from pBLAST plasmid and cloned into 

pVTlOO-U, pJL49 and pTEF plasmids just after their promoter sequences. MFal had been 

used effectively in previous reports to secrete a variety of heterologous gene products in 

yeast (Idiris et al., 2010; Romanos et al., 1992). As a component of the completed 

expression vectors, the MFal signal sequence directs the cellulase genes into the secretory 

pathway, where later on it would be processed and secreted as mature protein (Ludwig & 

Bruschi, 1991; Ludwig et al., 1993).

B.3.2.1 CLONING OF EGC1 GENE INTO pVTlOO-U PLASMID

To construct EGC1 expressing yeast strain, this gene was amplified in two-step from P. 

stipitis NBRC 10063 (CBS 6054). This was necessary because of the strong similarities 

among the three EGC genes of P. stipitis. Both plasmid and EGC1 gene were digested by 

the Xho\ and BamH\ restriction enzymes in order to be in the frame with MFal
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sequences. Fragments were mixed, ligated and afterward transformed into E. coli 

XL 10-Gold host. Positive transformants were confirmed by colony PCR, restriction 

enzyme analysis and sequences analysis.

B.3.2.2 CLONING OF BGL5 GENE INTO pJL49 PLASMID

BGL5 gene was amplified from Pichia stipitis NBRC 10063 (CBS 6054) strain and cloned 

it into pJL49 vector to express in S. cerevisiae. BGL5 was amplified in two-step by PCR 

because of the strong similarities among the seven BGL genes of P. stipitis. Both plasmid 

and BGL5 gene were digested by the EcoBA and Xho\ restriction enzymes in order to be in 

the frame with MFal sequences. Fragments were mixed, ligated and afterward transformed 

into E. coli XL 10-Gold host. Positive transformants were confirmed by colony PCR, 

restriction enzyme analysis and sequences analysis.

B.3.2.3 CLONING OF CBH2 GENE INTO pTEF PLASMID

CBH2 cDNA (from T. reesei QM9414 strain) was provided by Dr. Sezerman from 

Yeditepe University/Istanbul. Both plasmid and CBH2 cDNA were digested by the EcoBA 

and Cla\ restriction enzymes in order to be in the frame with MFal sequences. Fragments 

were mixed, ligated and afterward transformed into E. coli XL 10-Gold host. Positive 

transformants were confirmed by colony PCR, restriction enzyme analysis and sequences 

analysis.

B.3.2.4 CLONING OF ALL CELLULASES GENES INTO pYAC3 PLASMID

Purpose of cloning all three cellulases genes into different plasmids was to obtain a full 

construct with the secretion signals and different strong constitutive promoters and 

terminators.
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In order to linearize the circular YAC, it has to be cut by BamHl restriction enzyme to 

release the telomeres and for this reason BamHl sites has to be unique at the telomeres’ 

junction. After cloning cellulases into plasmids, BamHl sites were checked in the 

constructs to eliminate the problem of pYAC3 linearization. BamHl sites (they were not 

inside the genes) in the constructs were deleted by Klenow fragments treatment and 

constructs were subsequently amplified with given primers in Material and Methods 

section in order to clone them into pYAC3 (Figure 3.15). Amplified constructs contain 

Promoter + Secretion Signal + GENE + Terminator and each construct called with the 

name of the gene that they contain.

MFal EGC1 MFal CBH2 MFal BGL5Me: <

pTEF pJL49pVTlOO-U

YAC TRP1AMP Cellulase Genes CEN4 URA3

Figure 3.15: C loning o f  cellulase genes first into the plasm ids and then into the YAC.
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Since pYAC3 didn’t have enough option of restriction sites for cloning all three 

constructs, new restriction sites were added while cloning the constructs. Initially, EGC1 

construct was cloned between Aat2 and Pmll restriction sites of pYAC3 and reverse 

primer of EGC1 construct was designed in order to have the sequences of Asc 1 and Sac2 

restriction sites besides the Pmll site. Then BGL5 construct was cloned between new 

introduced restriction sites; Asc 1 and Sad . Later than CBH2 construct was cloned between 

Sac2 and Pme 1 sites to conclude the pYAC3 cloning.

During pYAC3 cloning Stbl2 bacterial strain was used to eliminate the recombination of 

the similar sequences in the constructs. Positive transformants were confirmed by colony 

PCR, restriction enzyme analysis and sequences analysis.

Circular YAC with the cellulases genes was linearized by releasing telomeres via BamHl 

digestion and in the following term, linear YAC was extracted from agarose gel to 

transform into host yeast strain that has pep4-3 mutation (Figure 3.16).

• l b

a. b.

Figure 3.16: a) A garose gel photograph o f  B am H l restriction enzym e digestion o f  recom binant pY A C 3. 

Lower band represents the HIS3 gene o f  pYAC3 and higher band represents the linear artificial chrom osom e, 

b) Agarose gel photograph o f  the gel extraction o f  linear recom binant YAC (around 18kb). Band represents 

the linear recom binant artificial chrom osom e.
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B.3.3 THE BRIDGE INDUCED TRANSLOCATION SYSTEM

Bridge Induced Translocation technology is allowing to obtain translocation between any 

desired points in yeast genome and it results in many different effects on cellular 

morphology, physiology and genome organization (Nikitin et al., 2008; Tosato et al., 

2005).

In this study BIT technology was used for the recombinant yeast strain improvement for 

the bio-ethanol production.

B.3.3.1 TRANSLOCATION CASSETTE AMPLIFICATION

Translocation cassette was amplified by using pFAkanMX4 plasmid as a template and it 

contains 80bp homology to the desired pair of loci at both ends with kanamycin resistance 

gene in the middle (Figure 3.17). This cassette was designed in a way that it lacks 

homology to the yeast genome except the chosen homology regions, therefore homologous 

recombination will not occur with the endogenous DNA.

Figure 3.17: A garose gel photograph o f  PCR based BIT cassettes ( 1.6kb).
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B.3.3.2 BRIDGE INDUCED TRANSLOCATION IN THE PEP4-3 MUTANT 

DIPLOID YEAST STRAIN

Exponentially growing pep4-3 mutant diploid yeast strain was transformed with a PCR- 

amplified linear DNA cassette harbouring the KAN11 selectable marker.

BIT cassette carried at its ends two nucleotide sequences homologous to two separate 

genomic locations each located on a different chromosome. In this way, when the cassette 

is integrated, the selectable linear DNA fragment creates a molecular bridge between two 

unique, pre-selected genomic points.

With BIT method, the non-reciprocal translocation was applied between recombinant YAC 

and chromosome IV and homology regions were chosen close to the target genes; 

cellulases genes on YAC and PAD1 gene on chromosome IV. Schematic representation of 

BIT method is described in Figure 3.18. The reason of choosing the break point in 

chromosome IV, close to PAD1 gene, is that PAD1 gene is known as Phenylacrylic acid 

decarboxylase that is responsible for resistance to some aromatic compounds and over 

expression of PAD1 gene results with high ethanol production, fast growth and high 

utilization of carbon sources (Larsson, Nilvebrant, & Jonsson, 2001). Because of this 

reason we wanted to use BIT as an advantage at this point to increase PAD1 gene 

expression level (Nikitin et al., 2008).

BIT allowed us to gain two advantages; one of them is to make recombinant YAC stabilize 

into the resident yeast genome and the other one is to have increased gene expression 

levels of the heterologous genes.
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Translocant Chromosome

PADlC E N 4 URA3 KANCellulase Genes

F ig u re  3.18: Schem atic diagram  illustrating BIT approach.

During the translocant cassette design, the most important thing was to pay attention to 

essential and haplo-insufficient genes for avoiding risk of creating unviable transformants. 

Since the expression level of genes around the translocation break point is increasing, 

neighbourhood of the break point should eliminate the genes encoding for polymerases, 

transcription factors, and other essential genes in order to prevent activating abnormal



situations for the cell. All chosen homology regions for translocation carry out these 

necessities.

After transformation of BIT cassette to the yeast cells, they were selected on YPD plates 

supplemented with G418 for further verification analysis.

B.3.3.3 BRIDGE-INDUCED TRANSLOCATION VERIFICATION 

B.3.3.3.1 Colony PCR Results

Colony PCR was used to check the correct integration of the cassette for the translocation 

bridge. For each side of the cassette three sets of primers were designed in a way that after 

the amplification, the wild type was giving only one band and cassette integrated colony 

was given two bands.

Figure 3.19 shows the agarose gel picture of the colony PCR for checking the BIT cassette 

integration on the side of recombinant YAC. Three sets of primers were used; a l, b l and 

k l. For the wild type cells, al and bl primers amplified the fragment of 240nt size where 

else al and kl primers amplified the fragment of 740nt size if there is an integration on the 

targeted side of YAC.
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Figure 3.19: A garose gel photograph o f  the colony PCR for checking the BIT cassette integration on the side 

o f  recom binant YAC. U pper bands (740bp) are the am plicon from the colonies that have the integration o f  

the BIT cassette and lower bands (240bp) are PCR control bands.

Figure 3.20 shows the agarose gel picture of the colony PCR for checking the BIT cassette 

integration on the side of chromosome IV. Three sets of primers were used; a2, b2 and k2. 

For the wild type cells, a2 and b2 primers amplified the fragment of 453nt size where else 

a2 and k2 primers amplified the fragment of 850nt size if there is an integration on the 

targeted side of chromosome IV.
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Figure 3.20: A garose gel photograph o f  colony PCR for checking the BIT cassette integration on the side o f  

chrom osom e IV. Upper bands (850bp) are the am plicon from the colonies that have the integration o f  the 

BIT cassette and lower bands (453bp) are PCR control bands.

As it is shown in the Figure 3.19 and Figure 3.20, colony 8 and colony 16 have the 

integration of the BIT cassette in both chromosome IV and YAC.

In total 98 colonies were obtained on G418 plates after the BIT transformation and all of 

them checked by colony PCR. From these results it is seen that BIT cassette integrated on 

the YAC side more than it integrated on the chromosome IV side (Figure 3.21).
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Translocant Ch. IV integration YAC integration

Figure 3.21: G raphic representation o f  the BIT cassette integration percentage. A xis labels represent 

different locations o f  integrations and Y line show s the percentage value o f  the integrations com pared to all 

transform ants.

After checking transformants by colony PCR to find out the colonies that have integration 

of cassette on both sides, bridge PCR was done for the further BIT confirmation. For the 

bridge PCR, primers al and a2 were used to amplify the bridge fragment between two 

genomic locations that were targeted on different chromosomes to create non-reciprocal 

translocation.

As it is shown in figure 3.22, colony number 8 and 16 were checked by bridge PCR and 

they had the amplification of translocation bridge fragment. After that these translocant 

strains were also confirmed by sequencing for the bridge part of the translocation.
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8 16

Figure 3.22: A garose gel photograph o f  the bridge PCR (around 1.6kb).

These results show that chromosomal translocations are successfully induced by linear 

DNA integration between chromosome IV and YAC.

B.3.3.3.2 CHEF Gel Results

In order to determine the location of the chromosomes in the translocant and control 

strains, we employed pulsed-field gel electrophoresis. Chromosomes were prepared in 

agarose, as described in Materials and Methods, and run on a 1% agarose gel for 22 hours. 

Afterwards, the gel was stained with EtBr (Ethidium bromide) and photographed on a 

302nm transilluminator.

Figure 3.23 shows the CHEF gel picture of translocant and control strains. Size of the 

translocant chromosome is very short, around 40kb. It contains around 19kb piece from 

recombinant YAC including YAC centromere and 21.5kb piece from chromosome IV.
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Figure 3.23: CHEF gel photograph o f  translocant and control strains. A rrow s indicate translocant 

chrom osom es. BAP4-bity and BAP4 strains w ere run in the gel. A yeast strain that contains kanam ycin w as 

used as a positive control for the KAN  probe.

Visualizing of the chromosome separation was done by CHEF gel. Wild type yeast strain 

and a translocant yeast strain from the Yeast Molecular Genetics Laboratory Collection 

were used as controls. Since the translocant chromosome is really short, CHEF was set up 

for the Lambda DNA separation programme. With Lambda DNA separation programme, 

big chromosomes cannot be separated well; it is for the visualizing of the short 

chromosomes, that is why not all the chromosomes were visible on the gel.
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Since there is a kanamycin resistance gene in the translocant chromosome, we did 

Southern Blot analysis by using kanamycin as a probe in order to visualize the location of 

translocant chromosome.

B.3.3.3.3 Southern Blot Results

After the separation of chromosomes by CHEF gel, the gel was transferred to nylon 

membrane utilizing the denaturing transfer system described in Materials and Methods. 

Afterwards, the nylon membrane was processed for DNA hybridization. The filter was 

allowed to hybridize with overnight, and was then washed, and processed for 

autoradiography (Figure 3.24).

Since BIT cassette contains a kanamycin resistant gene, we used kanamycin probe for the 

Southern blot analysis to visualize the location of translocation chromosome. By PCR, we 

confirmed two translocant strains and both of them used for the CHEF and Southern Blot 

analysis.

A translocant strain with the kanamycin marker was used as a positive control for the 

probe and the wild type strain (BAP4) was used as a negative control.

As it is shown in figure 3.24, there is no hybridization with the wild type chromosomes 

like it is expected and there are hybridizations with the positive control and translocant 

strains at the expected sizes.

85



WT Marker Positive Translocant Strains 
Control 8 16

F i g u r e  3 . 2 4 :  Southern Blot analysis o f  translocant and control strains. Bands represent the hybridization o f  

the kanam ycin m arker, w hich indicates the translocant chrom osom e in the line o f  translocant strain 8 and 16. 

A ppropriate controls were analyzed in parallel.

According to Southern blotting and PCR analysis, a new translocant chromosome, 

consisting of the left portion of chromosome YAC and the right portion o f chromosome 

IV, was generated. These results demonstrate that chromosomal translocation was 

successfully induced by linear DNA integration between YAC and chromosome IV.

After translocation as it is mentioned before, there are too many changes in the cells. The 

morphology of wild type and translocant strains was compared by light and fluorescence 

microscopy. More or less 10% of the population in the translocant strains had an abnormal 

phenotype. In figure 3.25 microphotography of translocant strains was shown.

8 6



F i g u r e  3 . 2 5 :  M icrophotography o f  the translocant strains that show s the differences o f  their phenotypes. 

Light microscopy o f  live cells w as perform ed w ith a  Leica D M BL photom icroscope equipped w ith a C CD  

com puter-driven cam era at lOOx m agnification.

B.3.4 EXPRESSION PROFILING OF GENES LOCATED AT THE  

TRANSLOCATION BREAK POINTS

It has been previously shown that single translocation event creates too many different 

effects on cellular morphology, physiology and genome organization level. One o f the 

important effect was that translocation results in different modifications o f the gene 

expression levels around the translocation break point (Nikitin et al., 2008). In this study, 

this pattern had an important role for the recombinant gene expressions for the strain 

improvement. For this reason translocation break point was chosen in a way that it was



close to the genes that we were interested to increase their expression level. Features of 

all the recombinant S. cerevisiae strains are listed in Table 3.1.

T able 3.1: F e a t u r e s  o f  r e c o m b i n a n t  y e a s t  s t r a i n s .

R e c o m b i n a n t  Y e a s t  S t r a i n s R e l e v a n t  f e a t u r e s

B A P 4
P a r e n t a l  s t r a i n ,  D i p l o i d ,  [cir°], pep4-3, ura3-52, leu2-3,112, trp1-289, lys2-801 

ade2-101, his3-A200.

B A P 4 - y 3
B A P 4  s t r a i n  c o n t a i n s  l i n e a r  Y A C 3  t h a t  c o n t a i n s  a l l  t h r e e  c o n s t r u c t s  ( p r o m o t e r -  

s e c r e t i o n  s i g n a l - g e n e - t e r m i n a t o r ) .

B A P 4 - c i i y 3
B A P 4  s t r a i n  c o n t a i n s  c i r c u l a r  Y A C 3  t h a t  c o n t a i n s  a l l  t h r e e  c e l l u l a s e s  c o n s t r u c t s  

( p r o m o t e r - s e c r e t i o n  s i g n a l - g e n e - t e r m i n a t o r ) .

B A P 4 - b i t y 3
B A P 4 - y 3  s t r a i n  t h a t  h a s  t h e  t r a n s l o c a t i o n  b e t w e e n  r e c o m b i n a n t  Y A C 3  a n d  

c h r o m o s o m e  4  b y  B I T  t e c h n o l o g y .

At first, the RNA was extracted, cDNA was produced by using AMV Reverse 

Transcriptase and quantitative PCR was run amplifying BGL5, EGC1, CBH2, PAD1 genes 

and housekeeping ACT1 gene was used for the normalization. BAP4, BAP4-y3, BAP4- 

y3cir and BAP4bity3 strains were used to compare the recombinant gene expression levels. 

The whole experiment was repeated three times. Fold change of gene expression levels are 

shown below (Figure 3.26). Student’s Mest was used to determine significant differences 

between groups, where a p-value < 0.05 was considered statistically significant.
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F ig u re  3.26: G raphic representation o f  the quantitative PCR gene expressions pattern for BGL5, EGC1, 

CBH2 and PAD1 genes on both sides o f  the translocations breakpoints. Fold change o f  their expression 

levels in BAP4bity3 and BAP4-y3 strains w ere com pared to BAP4-ciry3 strain. ACT1 gene expression level 

was used for norm alisation.

As a result of quantitative PCR, it is showed that recombinant genes have different 

expression profile in BAP4bity3 and BAP4-y3 strains comparing to BAP4-ciry3 strain, 

which was used as a reference strain for the fold change of targeted genes. Linear and 

circular recombinant YAC carrier strains showed more or less the same expression profile 

and as expected, translocant BAP4bity3 strain showed increased gene expression level 

compared to other recombinant strains.

B.3.5 CELLULASE ENZYME ACTIVITY

To make the complete hydrolysis of cellulose to glucose, three different yeast strains were 

engineered to secrete cellulases. After obtaining the recombinant yeast strains with 

cellulases genes, we checked their enzyme activity for the cellulose degradation.
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Complete hydrolysis of cellulose requires the synergistic reaction of EGC, CBH, and 

BGL (Lynd et al., 2002). Using the culture supernatant of each transformant strain, the 

enzyme activity was measured according to the standard assay procedure for cellulases by 

using EnzChek Cellulase Substrate from Invitrogen. If there were cellulases in media, it 

would react with the substrate and degradation outcome could be read at 360 nm 

spectrophotometrically.

With this method, we compared the linear BAP4-y3, BAP4-ciry3 and the BAP4bity3 

strains for the cellulase amount in the media. Controls were run in parallel and no activity 

was detected in the reference yeast strain harbouring the empty YAC. Taken all together, 

all three recombinant enzymes were shown to be active in recombinant strains (BAP4-y3, 

BAP4-ciry3 and BAP4bity3) at different levels. After BIT application, enzyme activity and 

enzyme production were found to be increased (Figure 3.27).
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Control -  BAP4-y3 BAP-ciry3 BAP4-bity3

F ig u re  3.27: G raphic representation o f  cellulase assay. A xis labels represent different strains and Y line 

shows the absorbance value o f  the reaction. Control + is the com m ercial cellulase enzym e m ixture ( lu l  from 

700 units/g).

Control + is the commercial cellulase enzyme mixture. Student’s f-test was used to 

determine significant differences between groups, where a p-value < 0.05 was considered 

statistically significant.

With these results, we saw that BIT technology can increase the heterologous enzyme 

activity. Since BIT increased the gene expression levels of recombinant genes, this assay 

also proved that expressed heterologous proteins were secreted and active in the media.
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B.3.6 CHROMOSOME STABILITY

YACs are linear chromosome like shuttle vectors that can be amplified in bacterial cells 

and used for the cloning and manipulation of large deoxyribonucleic acid (DNA) inserts 

(up to 3Mb pairs) in the S. cerevisiae. They contain a centromere, telomeres, and 

replication initiation sites suitable for use in the yeast (Amak, 2012).

YACs have large capacity for DNA fragments. This allows YACs to be used for 

engineering genetic determinants of new biochemical pathways for production of 

secondary metabolites and for heterologous protein expression. In yeast, YAC has to reach 

a certain size, which is more or less 150kb to be stable as a chromosome. The recombinant 

YAC that was produced in this study is more or less 21 kb and after BIT application it 

became 40kb, which is still much smaller than 150kb.

Since the recombinant YAC was so small, it was checked for its stability in the yeast cells 

as a chromosome. We compared the linear YAC carrier strain (BAP4-y3) and the BIT 

applied YAC carrier strain (BAP4bity3) for the loss of recombinant YAC. We let BAP4- 

y3 and BAP4bity3 strains grow in non-selective media, where there is no pressure on YAC 

to be presence in the cells. Later on, we replica plated them into selective media to 

calculate the colony loss, which is a verification for the recombinant YAC lost. In total, we 

checked 2500 colonies for each recombinant strains and as a result we saw that BAP4bity3 

strain had less chromosome loss than the BAP4-y3 strain (Figure 3.28).
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Together with this result, it was demonstrated that BIT could make

recombinant YAC stabilize into the resident yeast genome. Even though that translocant 

YAC was a bit larger than linear YAC, it was still far from 150kb size for being stable as a 

chromosome. Since the translocant chromosome is highly stable, this result proves that 

BIT is affecting the stability positively and size of the chromosome is not that important to 

be stable after BIT application.

■  C hrom osom e 
loss
percentage

BAP4-y3
BAP4bity3

F ig u re  3.28: G raphic representation o f  recom binant chrom osom e loss. A xis labels represent d ifferent strains 

and Y line shows the percentage o f  the chrom osom e loss am ong the 2500 colonies.
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B.3.7 DIRECT FERMENTATION OF THE CELLULOSIC 

SUBSTRATE

To prove the performances of the recombinant S. cerevisiae strains and demonstrate its 

functionality, CMC was used as the sole carbon source for cellulosic bio-ethanol 

production.

All recombinant strains were tested for their growth abilities in cellulosic medium. In 

parallel, a control was also run and insignificant growth was detected in the reference yeast 

strain harbouring the empty YAC. We inoculated lx l 05 cells/ml of each strain in YPCMC 

and followed their growth for a week by counting the cells under microscope. As shown in 

figure 3.29, both recombinant strains, BAP4-y3, BAP4-ciry3 and BAPbity3 grew better on 

cellulosic media compared to wild type yeast strain, with faster growth exhibited by 

BAP4bity3 strain as compared to BAP4-ciry3 and BAP4-y3 strains. Cellulose could not 

get through the cell wall, so it could not be hydrolyzed by intracellular cellulases. The 

introduced cells were washed twice before fermentation, suggesting that the growth in 

YPCMC could not be accomplished by the other sugars carried from previous cultures.
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This BIT-YAC system is potentially applicable to any host that can undergo homologous 

recombination. Our study has demonstrated a success in the development of this yeast 

strain as a new host for heterologous protein production for cellulose degradation. BIT 

positive effect on strain improvement for cellulose degradation was once more proved with 

this growth curve analysis.
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4. DISCUSSION

This chapter was divided in two parts; A and B. In Part A, discussion of “Wood Powder 

Degradation By Microbial Fermentation” and in Part B, discussion of “Implementation Of 

The Bridge Induced Chromosome Translocation (BIT) Technology For Strain 

Improvement” were shown.

Bioethanol is a renewable energy that can be produced from different biological sources 

and the production of bioethanol from cheap biomass, like waste plant biomass, is 

important for fuel industry. Around the world, there are a lot of studies about bioethanol 

production from different biological sources and lignocellulosic biomass is one of them, 

which has numerous environmental and social benefits for bioethanol production (Lange & 

Solutions, 2007; Lee, 1997; Wyman, 1994).

There has been an overwhelming interest in science to generate proteins by microbial 

organisms with the recombinant DNA technology. S. cerevisiae is one of the microbial 

organisms for the expression of heterologous genes. It gained considerable interest in 

recent years mainly due to its ability to correctly process and secrete proteins. M Fal signal 

sequence was used in this study for the secretion of foreign proteins. This sequence had 

been used in previous studies to secrete a wide range of heterologous proteins in yeast, like 

human interleukin-2 and murine granulocyte-macrophage colony stimulating factor (Idiris, 

Tohda, Kumagai, & Takegawa, 2010; Kazemi Seresht et al., 2012).

In this study, cellulosic material was used as a substrate for the bioethanol production. 

Since yeast cannot utilize the cellulosic materials, it has to express and secretes some set of 

recombinant enzymes. For this purpose, recombinant DNA technology was used to 

engineer the yeast cells to make them able to degrade the cellulosic sugars into the 

fermentable sugars.
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PART A: WOOD POWDER DEGRADATION BY MICROBIAL

FERMENTATION

The present research deals with the bioethanol production from the wood powder in two- 

step microbial fermentation. The first step is the utilization of lignocellulosic material by 

Bacilli to produce fermentable sugars and the second step is the conversion of fermentable 

sugars into glucose by recombinant enzyme expressing yeast strain to produce ethanol. 

Bacilli were able to produce cellobiose from wood powder and that’s why yeast strain was 

engineered to express P-glucosidase to degrade cellobiose molecules.

The major challenge for the bioconversion of raw lignocellulosic materials to ethanol is the 

low efficiency of the degradation and the high cost of the process. Biological degradation 

of the lignocellulosic substrates to fermentable carbohydrates is one of the key steps for 

process to be cost effective and environmentally friendly. Several studies have been done 

to convert lignocellulose to sugars, but sugar yields are still low and the costs are high 

(Elkins, Raman, & Keller, 2010; Kumar et al., 2009; Sun & Cheng, 2002).

As a lignocellulosic material, the wood powder was used, which is waste of the wood 

industry and it was obtained from Lasole Company. To investigate the possible use of 

microorganisms as a candidate for bioethanol production from wood powder, Bacilli 

strains were extracted from the ruminal fluid of the cow and S. cerevisiae was engineered 

for the cellobiose degradation. Different Bacilli strains were characterized after extraction 

from the cow by Yeast Molecular Genetics Laboratory/ICGEB and compared by their 

lignocellulosic degradation ability.

Lignocellulose has the main components of plant biomass and contains cellulose,

hemicellulose and lignin. Cellulose and hemicellulose parts contain sugar polymers that

are important and economic for fuel productions. Ethanol production from these sugars has

some restrictions to deal with. The most important difficulty to overcome is the structural
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features of the lignocellulosic material (Mosier et al., 2005). As a result of this 

barrier, there is a need to develop new methodologies, which can efficiently separate the 

fermentable sugars from the lignocellulosic biomass with sustainability and low cost. For 

this reason, pre-treatment of lignocellulose is an important step to make cellulosic and 

hemicellulosic parts more accessible for converting them into ethanol. There are different 

ways to degrade lignocellulosic materials; chemical, physical and biological (Kumar et al., 

2009; Lange & Solutions, 2007). They all not enough efficient for the pre-treatment but 

biological methods have advantage of being less expensive compare to other methods.

The lignocellulose degradation by microorganisms has great importance and significance 

for second-generation bio fuel technologies, the starting point of which is producing 

fermentable sugars (Lynd et al., 2002). Due to the complexity of lignocellulose structure, a 

wide range of enzymes is required for its degradation into monomer sugars. It has been 

shown previously that Bacilli species isolated from bovine ruminal fluid have the ability to 

degrade lignocellulosic material (Akin & Benner, 1988; Lee, 1997; Science & Russell, 

1988). Bacilli, which are the rumen bacteria, have been used for many important industrial 

applications. They are responsible of the catabolism of some aromatic compounds (ferulic 

acid and /7-coumaric acid), which are the most important phenolic compounds that bind the 

complex lignin polymer and keep lignin, hemicellulose and cellulose structures together 

(Degrassi, Polverino De Laureto, & Bruschi, 1995; Zago et al., 1995). In this study, we 

used different Bacilli strains for the degradation of the wood powder. Our laboratory 

isolated and characterized several new strains of Bacilli from bovine rumen, amongst 

which are, B. licheniformis and B. pumilus showed the highest level of activity for 

producing carbohydrates from lignocellulosic material, based on the results from the 

anthrone test. Furthermore, by using HPLC analysis and sugar assays, we detected 

cellobiose and glucose molecules in the fermentation broth, hereby allowing us to conclude 

that B. licheniformis and B. pumilus degraded the cellulose by separating it from the lignin 

in the wood powder.
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Microbial degradation of wood powder from industrial waste is a unique work because of 

not using any physical or chemical pre-treatment method to lignocellulosic material that 

would otherwise consume too much time and increases the cost of the ethanol production. 

Separation of cellulosic carbohydrates from wood powder by Bacilli fermentation, which 

is important for the lignocellulose pre-treatment studies, provided fermentable sugars for 

recombinant yeast strain and this process easily leads the ethanol production. But 

unfortunately efficiency of microbial pre-treatment is low and this is the biggest 

disadvantage of the method. Other non-biological pre-treatments can increase the 

efficiency on the contrary they also increase cost of the process.

Saccharomyces cerevisiae is an ideal model organism for foreign protein expressions. The 

development of a recombinant yeast strain that is able to produce ethanol by fermenting 

cellulosic substrates has got attention of the science world over recent years (Den Haan, 

Mcbride, Grange, Lynd, & Van Zyl, 2007; Tsai, Goyal, & Chen, 2010; van Rooyen, Hahn- 

Hagerdal, La Grange, & van Zyl, 2005; Wen, Sun, & Zhao, 2010; You et al., 2012). 

Cellulose chains require the endo-exo synergy of endoglucanases (EGC), 

cellobiohydrolases (CBH) and p-glucosidases (BGL) to produce glucose for the glycolytic 

pathway for the production of ethanol (Kricka et al., 2014). There are some 

microorganisms that have these cellulase enzymes naturally for the cellulose degradation 

(Mba Medie et al., 2012). One of them is Pichia stipitis that has seven BGL genes 

responsible for cellobiose degradation pathway (Jeffries & Van Vleet, 2009). Since p- 

glucosidase hydrolyzes cellodextrins and cellobiose to glucose, it provides a 

straightforward metabolisable carbon source for the microorganisms (Beguin, 1990).

Cellobiose and cello-oligosaccharides, which are hydrolysed from cellulose, are the key 

substrates for ethanol production. The cellobiase enzyme, beta-glucosidase, that converts 

the cellobiose and cello-oligosaccharides into glucose has been shown to belong to the 

critical step in the sacchararification of cellulosic material (Lynd et al., 2002). Pichia
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stipitis is generally used in hemicellulose and xylose degradation studies, and here we 

used it as a source of betaglucosidase for obtaining recombinant S. cerevisiae, which has 

several advantageous for heterologous protein expression due to its GRAS status. The 

BGL6 gene was cloned from P. stipitis and fused to the MFal signal sequence, which has 

been used previously to obtain secretion of heterologous gene products in yeast (Idiris, 

Tohda, Kumagai, & Takegawa, 2010; Romanos, Scorer, & Clare, 1992). As a component 

of the completed pBLAST expression vector, the MFal signal sequence directed the beta

glucosidase into the secretory pathway, where it was processed and secreted as mature 

protein. With an enzyme activity assay and a XGAL plate-visualizing test, we confirmed 

that Bgl6 was secreted from the recombinant yeast strain, called 19s, and degraded the 

cellobiose molecules efficiently.

Cellobiose saccharification activity of the engineered S. cerevisiae has been demonstrated 

in filtered wood powder media after Bacilli fermentation, where the significant production 

of cellobiose molecules was confirmed by HPLC and sugar assays. Growth rate was far 

higher by recombinant yeast strain compared to the parental strain. When we tried in 

parallel the yeast fermentation in a media supplemented with commercially available 

cellobiose, we saw more or less the same growth curve of recombinant yeast strain in both 

media. Therefore, the cellobiose degradation ability of recombinant yeast strain was alike 

in the both media, Bacilli pre-treated wood media and YPC.

We succeeded obtaining a high performance of lignocellulose degradation by using a

combination of Bacilli and recombinant budding yeast. As a lignocellulosic material wood

powder was used, which is a waste from the wood industry. Wood powder is a dangerous

product of wood milling for wood workers. Moreover, the only present utilization is

burning the wood powder, which does not produce important return of energy. In this way,

waste was used for the ethanol production and using Bacilli for the pre-treatment should

allow to decrease the costs and time for the process compare to the physical and chemical

pre-treatment methods (Chang et al., 2012; Matano, Hasunuma, & Kondo, 2012; You,
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Zhang, & Zhang, 2012). This study proposed a big step in the use of wood 

powder for the production of bio-ethanol. To our knowledge this is the first study that 

shows the efficient degradation of wood powder by microorganisms without any chemical 

or physical pre-treatment methods.

In summary, wood fermentation was achieved in two steps; the first step was performed by 

Bacilli in poor LB media supplemented with 4% wood powder and then, in the second 

step, filtered wood powder media after Bacilli fermentation was used for the recombinant 

yeast fermentation. In every step proper control experiments were done in parallel. We 

successfully demonstrate simultaneous saccharification and fermentation o f wood waste to 

glucose molecules by using Bacilli and recombinant yeast strain in combination. This 

study therefore provides the basis for efficient generation of bioethanol from waste wood 

powder products just in two microbial steps as an alternative to the usual wood based 

bioethanol production process that takes several time-consuming and labor-intensive 

rounds of techniques.

In conclusion, this work describes a successful microbial combination system that is able 

to efficiently utilize the lignocellulosic material as a carbon source under the same 

conditions and facilities in one bio-factory. These wood-fermenting recombinant 

microorganisms have great importance in strengthening bio-processing. The novelty of this 

study is to use directly an industrial waste as a substrate for the microbial fermentation, 

which is an indication for the environmental friendly process. These results will be 

beneficial in the process of bio-ethanol production by proper utilization of the waste and 

decreasing the ethanol cost.

101



PART B: IMPLEMENTATION OF THE BRIDGE INDUCED 

CHROMOSOME TRANSLOCATION (BIT) TECHNOLOGY FOR 

STRAIN IMPROVEMENT

The present research deals with implementation of the bridge-induced chromosome 

translocation (BIT) technology and yeast artificial chromosome (YAC) recombineering for 

strain improvement of bioethanol producing transgenic yeast. It is aimed to construct a 

YAC that carries cellulose degradation genes on it and then applying the BIT technology 

to stabilize the new genetic information into resident yeast genome and have increased 

expression levels of cellulases’ genes.

Cellulose, the most abundant renewable carbon source, is the main part of the plant cell 

wall and it can be hydrolyzed enzymatically for the ethanol production. The main 

restrictions for the cellulose-based ethanol are the cost of the process and the efficiency of 

degradation. Therefore, engineering a microorganism that can convert all the sugars of 

cellulosic substrate to ethanol is an attractive approach in bio-fuel production studies 

(Lynd, Weimer, van Zyl, & Pretorius, 2002). In this study, BIT technology and YAC 

recombineering were used to engineer S. cerevisiae strains and the results showed that the 

recombinant yeast strains were able to hydrolyze cellulose to glucose. Especially 

BAP4bity3 strain was showing much better desired features as compared to BAP4-ciry3 

and BAP4-y3 strains.

Three cellulase genes of fungal origins were successfully expressed in S. cerevisiae. All

three genes were fused to the MFal secretion signal sequence (Romanos, Scorer, & Clare,

1992) and expressed under constitutive promoters. To begin with, these three genes were

cloned into different plasmids that contain different constitutive promoters to eliminate the

recombination between the same promoters. Later the whole constructs were extracted

(promoter + secretion signal + GENE + terminator) from plasmids and cloned into pYAC3
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plasmid. This step is the first novel part of this research. Because recombinant YAC 

can be transformed to any other organisms and in this case it can be used as a carrier for 

cellulases.

Given the fact that S. cerevisiae has positive features like high ethanol productivity, high 

tolerance to ethanol and simplicity of genetic engineering, the development of a 

recombinant yeast strain that is able to produce ethanol by fermenting cellulosic substrates 

has drawn the attention of the scientific world over recent years (Chang et al., 2012; Fan et 

al., 2012). Since S. cerevisiae cannot degrade the cellulose molecules, at least three groups 

of enzymes had to be expressed, namely endoglucanases (EGC), cellobiohydrolases (CBH) 

and p-glucosidases (BGL), for cellulose conversion. Cellulose chains can be efficiently 

degraded to soluble cellobiose and cellooligosaccharides by the synergy of EGC and CBH. 

In the last step of the enzymatic cellulose degradation, cellobiose molecules get hydrolyzed 

to glucose by BGL (Kricka, Fitzpatrick, & Bond, 2014). There are bacteria and fungi 

strains that have some set of enzymes for cellulose degradation (Mba Medie, Davies, 

Drancourt, & Henrissat, 2012). In this study Pichia stipitis (for BGL and EGC) and 

Trichoderma reesei (for CBH) were used as a source for the cellulase genes.

Bioethanol production studies aim to achieve efficient degradation of biomass, to obtain 

high amount of ethanol, to simplify the process and to decrease the cost of the process 

(Elkins, Raman, & Keller, 2010). To improve the current bioethanol production processes, 

this research was designed to utilize two novel technologies (YAC recombineering and 

BIT) to introduce new, multi-factorial, complex genetic traits into yeast strains. In Yeast 

Molecular Laboratory/ICGEB, a new genomic system previously was developed, called 

bridge-induced translocation, BIT (Tosato et al., 2005), which induces the chromosomal 

translocation between any desired two genomic loci in S. cerevisiae, by integration of a 

selectable DNA cassette and it results many different effects on cellular morphology, 

physiology and genome organization. Once the translocant strain was generated, many
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differences were observed at both genomic and transcriptomic level compared to wild 

type strain (Nikitin et al., 2008). From this approach, the important result is that a single 

translocation event brings an accumulation of molecular events and these changes effects 

the genome instability (Nikitin et al., 2008; Rossi et al., 2010; Tosato et al., 2009). Some of 

the BIT effects have been demonstrated could also be important for the manipulation and 

stable maintenance of YACs, which can be used for production of secondary metabolites 

and for heterologous protein expression (Amak, 2012; Nikitin, Tosato, Zavec, & Bruschi, 

2008).

BIT technology was used for the strain improvement by the help of its effect on gene 

expression level. To do this, cloning of the yeast artificial chromosome was firstly done. 

YACs are linear chromosome-like shuttle vectors that can replicate in bacteria and 

employed for the cloning and manipulation of big DNA inserts in the S. cerevisiae (Amak, 

2012). After YAC engineering, BIT technology was used to improve the strain more. BIT 

system runs by the use of a PCR-derived DNA cassette that carries a selective marker and 

is flank by two homology region that is targeted to different locations in the genome 

(Tosato et al., 2005). YAC and chromosome IV were targeted for BIT event, and in the 

end a translocant chromosome was obtained, which contained YAC on the left side and 

chromosome IV on the right side.

In previous BIT studies, it was shown by the microarray analysis that most of the genes, 

which have different expression profile compare to wild type and are affected by the 

translocation events, are the ones that are responsible of metabolism and stress response 

(Nikitin et al., 2008). Therefore, translocant cells regain a new homeostasis by having 

many rearrangements on the level of gene expressions, which is different than the original 

wild type ones after induced BIT event. Therefore, application of appropriate selective 

pressure helped to choose the best cellulose utilization candidate from the other differently 

regulated translocants.
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As a result of BIT application, some advantages were gained for the strain 

improvement. One of them was to make YAC stabilize into the yeast genome. To be stable 

as a chromosome, size of the YAC has to reach at least to 150kb (Amak, 2012; Burke, 

Carle, & Olson, 1992). Recombinant YAC that was produced in this study as a carrier of 

cellulases genes was around 25kb and after BIT application it became 40kb. However, it 

was still really far from being 150kb for stability. When the stability of YAC was 

compared before and after BIT application, it was seen that BIT affected the stability of 

recombinant YAC positively and allowed it to gain more stability in the cells under non- 

selective conditions. Before the BIT application, almost 12% of the cells lost the 

recombinant YAC. Surprisingly, after the BIT application, this number decreased 

enormously and 0.6% of the cells lost the translocant recombinant YAC. This result 

showed that short chromosomes can be more steady by the BIT application and this 

novelty can help to recombinant DNA studies by increasing the stability of carrier artificial 

chromosomes.

The other advantage that was gained after BIT application was for the gene expression 

level. It was seen before that around the break point of translocation, gene expression level 

is increasing comparing to wild type (Nikitin et al., 2008). This effect was aimed to use as 

an advantage for the heterologous gene expression and the translocation break point was 

chosen close to the cellulase genes on YAC and PAD1 gene on chromosome IV. The 

reason why translocation break point was chosen in chromosome 4, close to PAD1 gene, is 

that PAD1 gene is known as Phenylacrylic acid decarboxylase and its gene expression 

level was desired to be increased by the help of the BIT application. As it is already shown 

that overexpression of PAD1 gene associates with the increased rate of carbon source 

utilization, increased rate of ethanol production and increased resistance to some aromatic 

compounds (Larsson, Nilvebrant, & Jonsson, 2001). Therefore, increased PAD1 

expression level could help to strain improvement of bioethanol producing yeast cells. 

After the BIT application, recombinant strains’ gene expression profiles were compared
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and it was seen that in BAP4bity3 strain, cellulases genes and PAD1 gene had 

increased expression level compared to BAP4-y3 and BAP4-ciry3 strains. This unclear 

mechanism of BIT technology on gene expression level is a very useful tool for the strain 

improvement studies.

In bio-ethanol production studies, traditional cloning and expressing recombinant proteins 

are the main focus that most of the researchers are following (Chang et al., 2012; Fan et al., 

2012). Moreover with traditional methods, strain cannot be improved more but in this 

study strain improvement was enhanced; two novel technologies (YAC recombineering 

and BIT) were utilized to introduce new functions into yeast strains to make it able to 

degrade the cellulosic substrate. Selection strategies were implemented to obtain novel 

genetic regulation that would achieve the final phenotype originally desired with the high 

cellulose degradation and high ethanol producing features. Therefore an efficient and 

economic conversion of cellulosic biomass into glucose is demonstrated in a GRAS 

microorganism, leading to interesting perspectives in bio-ethanol production.

This work describes the successful recombinant translocant yeast that is able to efficiently 

utilize cellulosic material as a carbon source with highly stable recombinant translocant 

chromosome and has high level of cellulases capacity. BIT-YAC system can also be used 

for the expression and production of other recombinant proteins for different purposes and 

for different kind of strain improvements.
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APPENDIX



MAPS OF THE PLASMIDS USED IN THIS THESIS

pBLAST

pBLAST plasmid contains GAL10 inducible promoter, alpha factor secretion signal and 

sequences from 2 micron plasmid.

FRJ 2uColEI

Sind

FRJ

IMS^i DWfal
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pFA-kanMX4

pFA6 plasmid with KanMX4 cassette conferring resistance to G418 drug. TEF promoter 

and terminator derived from filamentous fungus Ashbya gossypii.

TEF Promoter

AmpR KanR
pFA6 KanMX4

3941 bp

TEF Terminator
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pGFKG

pGFKG is a derivate pGKG. It is constructed by inserting the FLP gene in the plasmid 

shown below. The FLP gene was cloned into the BamHI site upstream of the kanMX4 gene 

and the URA3KI gene respectively. Kanamycin cassette flanked by two flip- recognition 

targets

FRT

AmpR TEF Promoter

KanR

TEF Terminator

On FRT

URA3
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pVTlOO-U

pVTlOO-U contains ADH promoter and terminator and sequences from 2 micron plasmid.

URA3 gene is used for the selection o f the plasmid in auxotrophic yeast cells.
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PJL49

pJL49 is a centromeric yeast plasmid that contains PGK promoter and CYC terminator.

URA3 gene is used for the selection o f plasmid in auxotrophic yeast cells.
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pTEF

pTEF plasmid contains TEF promoter, CYC terminator and sequences from 2 micron

plasmid. URA3 gene is used for the selection o f plasmid in auxotrophic yeast cells.

pBSori
TEF1

CYCt

AmpR pTEF
6608 bp

EcoRI (711) 
Hindlll (723) 
Clal (730) 

. / / Sail (738) 
' / / / X hol (744)

UR A3

2micron

130



PYAC3

pYAC3 is pYAC3 was constructed from pYAC2. It is an artificial chromosome and 

BamHl digestion produces linear chromosome with the telomeres and removes HIS3 

sequences. pYAC3 contains centromere 4 of budding yeast and allows cloning of big DNA 

inserts.

S n a B I
C E N 4

o n

U R A 3
pYAC3 

11446bp

TRP 1
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