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Abstract

Influenza A virus (IAV) poses a significant public health burden. Severe disease is 

characterised by infected lung airway epithelial cells (AECs), inflammation and 

tissue damage. However, disease severity differs between individuals and this 

cannot be entirely explained by inter-individual differences in pre-existing 

immunity or comorbidities. Host-specific, genetically determined factors must 

contribute to susceptibility. Type I interferon (IFNaP) is known to have antiviral 

function in vitro, but its role in restricting IAV infection in vivo is controversial. We 

demonstrate that responsiveness to IFNa(3 signalling is a host-specific determinant 

with protective or pathogenic potential which determines the severity of IAV- 

induced disease. IAV infected 129, CBA/J and DBA mouse strains showed 

dramatically increased mortality and lung damage, yet higher levels of pulmonary 

IFNap, compared to C57BL/6 or BALB/C mice. Ablation of IFNapR signalling in 

129 mice markedly reduced mortality, levels of proinflammatory cytokines, 

inflammatory cell recruitment and AEC apoptosis. Susceptibility to IAV-induced 

disease is influenced by the number of functional alleles for the IFNapR subunit, 

IFNAR1, within the genome. IFNAR1+/-[129) mice were less susceptible than wild 

type 129s yet more so than IFNapR-/-(129) mice. Conversely, triplication of a 

section of murine chromosome 16 that includes IFNAR1 in C57BL/6 mice 

enhanced IFNa response to IAV infection and downstream immunopathology. 

Finally, IFNa therapy of infected B6.A2G-Mxl mice reduced IAV titers, yet 

increased secretion of proinflammatory cytokines, innate cell recruitment and AEC 

apoptosis in the lung, due to the potent immunostimulatory capability to IFNa. In



contrast, treatm ent with IFNA, whose receptor is largely restricted to AECs, 

promoted IAV control without exacerbating IAV-induced inflammation. Thus, by 

manipulating the IFNap signal in various ways, we demonstrate that excessive 

IFNap in IAV infection can increase AEC death and enhance proinflammatory 

responses that ultimately increase disease severity. Our findings have im portant 

implications for prediction and treatm ent of severe influenza.
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The immune system is amazing. It is inherent to all living things, from the 

simplest single cell organisms to higher order mammals such as humans; all life 

forms on this planet have some version of an immune system. Host immunity is 

vital to an organism's survival and propagation as, aside from injury, infection is 

the primary cause of death prior to an organism reaching sexual maturity. This 

infinitely complex system has evolved over hundreds of millions of years to 

recognise and eliminate or control foreign or dangerous material from the body. 

The immune system is tasked with combating invading pathogens such as viruses, 

bacteria, fungi and parasites as well as removing aberrant or damaged host cells.

In mammals, the immune system can be divided into two parts: the innate 

and the adaptive. Adaptive immunity is characterised by the development or 

augmentation of host defence mechanisms to a specific stimulus. Cells of the 

adaptive immune system, specifically T and B cells, express antigen specific 

receptors that are generated through a random process known as somatic 

recombination, and specificities that recognise pathogens or aberrant self are 

enriched during an immune response by a process called clonal selection and 

expansion. Specific antigen recognition not only eliminates the invading pathogen 

and facilitates recovery from disease, but also leaves the host with immune 

memory, thereby allowing for faster resolution upon reinfection.

As important as the adaptive immune response is, it relies on innate 

immunity for activation and modulation and for holding pathogens in check until 

the rare pathogen specific T and B cells of the adaptive immune response have 

expanded enough to control and eliminate the pathogen. Inborn or innate 

immunity consists of physical, chemical and biological barriers (e.g.: skin, mucosal 

surfaces and gut microflora), the complement system which 'complements' cellular
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function, and a cornucopia of innate immune cell types. Cells of the innate immune 

system are vital to host defence. Not only do they limit the spread of an invading 

pathogen or aberrant cells (e.g.: cancer) through generic defence mechanisms such 

as macrophage or neutrophil phagocytosis or killing by natural killer (NK) cells, 

they also secrete cytokines which orchestrate both adaptive and innate immune 

cell recruitment and function, and they acquire and process antigen for 

presentation to the adaptive immune system. Furthermore, cytokines secreted 

during the innate immune response alert host cells to the presence of pathogens 

and thereby induce upregulation of intracellular defence mechanisms to prevent 

pathogen invasion.

It is difficult to communicate the immense complexity of mammalian 

immunity. To a varied extent both innate and adaptive immune responses are 

tailored to a specific threat, whether that be an invading pathogen, cancerous cells 

or sterile damage. It will take more than my lifetime to grasp all aspects of the host 

immune systems, so unsurprisingly, this thesis focuses on the host immune 

response to one pathogen, Influenza A virus (IAV), and how differences in the 

immune response due to host genetic background alters disease outcome. 

Particularly, how the antiviral cytokine families type I interferon (IFNap) and type 

III interferon (IFNA) and the innate inflammatory cell types plasmacytoid dendritic 

cells (pDCs) and inflammatory monocytes (IMcs) contribute to inflammation, 

resolution of infection or immunopathology.
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1.1 Influenza A Virus

IAV was first isolated by Smith, Andrews, and Laidlaw in 1933 (Smith, 

1933). IAV, along with influenza B and C virus (IBV and ICV), Isavirus, 

Thogotovirus and Quaranjavirus make up the Orthomyxoviriade family. All 

Influenza species have a common ancestry but are now too genetically divergent to 

exchange genetic material with one another. Within the family, IAV infection in 

humans is most common, although IBV has also been shown to cause seasonal 

outbreaks (Julkunen et al., 2000). IAV is a major cause of upper and lower 

respiratory tract infections in humans, indeed the World Health Organisation 

(WHO) estimates influenza epidemics cause three to five million cases of severe 

illness and about 250,000 to 500,000 deaths worldwide annually (Stohr, 2002).

IAV is further subtyped into strains based on expression of the surface 

glycoproteins hemagglutinin (HA) and neuraminidase (NA). To date, 16 HA and 9 

NA subtypes have been characterised, but seasonal influenza outbreaks are 

currently caused only by IAV strains H1N1 and H3N2 and IBV (Kreijtz et al., 2011). 

In addition to the public health burden caused by seasonal IAV epidemics, this 

virus also poses the threat of pandemics. 1918 saw the introduction of IAV strain 

H1N1 into the human population, and this resulted in the most dramatic IAV 

pandemic to date. Termed 'Spanish flu', this H1N1 strain infected 500 million 

people and caused up to 50 million fatalities, making it one of the deadliest natural 

disasters in human history (Kash et al., 2006). H1N1 IAV circulated in humans until 

1957, when the 'Asian Flu' outbreak occurred and H2N2 IAV completely replaced 

the H1N1 subtype as the circulating strain. Approximately a decade later, H3N2 

superseded H2N2 and caused the 1968 'Hong Kong’ pandemic. Around the mid 

1970s IAV H1N1 strains reappeared without causing a major pandemic (Kreijtz et
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al., 2011). That is, until swine-origin H1N1 (H1N1 S-OIV) emerged in 2009, 

triggering the first pandemic of the 21st century and resulting in over 200,000 

deaths. Fatalities associated with seasonal epidemics are normally restricted to the 

very old, very young or already immunocompromised (Poehling et al., 2006), yet 

the mortality burden of H1N1 S-OIV fell most heavily on otherwise healthy adults 

(Simonsen et al., 2013).

Although comparatively less effective at spreading through humans, other 

IAV subtypes also represent a serious threat to human health. H5N1, H7N7 and 

H9N2 are sporadically transmitted from animals to humans (de Wit et al., 2008). 

Avian H5N1 in particular, causes severe disease in humans with over 560 human 

cases being recorded since 2003, of which 60% proved to be fatal (Kreijtz et al.,

2011). Avian IAV infection is characterised by an exceptionally severe host 

inflammatory response (Peiris et al., 2004).

The IAV genome is comprised of eight negative sense single stranded 

ribonucleic acid (RNA, ssRNA) segments, which normally code for 11 viral gene 

products. These segments are coated with nucleoprotein (NP) and the trimeric 

viral RNA polymerase (consisting of PB1, PB2 and PA proteins), collectively 

forming ribonucleoprotein (RNP) complexes. Matrix protein 1 (Ml) encases the 

RNP complexes, which in turn is enveloped by a lipid layer containing HA and NA. 

Finally, the ion channel matrix protein 2 (M2) transverses the lipid envelope 

(Bouvier and Palese, 2008; Palese, 2004) (Figure 1A). Notably, IAV does not 

possess RNA proofreading enzymes, with the RNP making an error roughly every 

10 thousand nucleotides, approximately the length of IAV genome. Thus, many of 

the newly generated influenza virions are mutants. This poor genomic fidelity 

allows for what is known as antigenic drift, i.e: a gradual change in the viral
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Figure 1

*A0 cleavage into

Figure 1: Features o f IAV HA and IAV replication. (A) IAV virion, surface proteins 
Hemagglutinin (HA), Neuraminidase (NA) and Matrix protein 2 (M2) shown in red, yellow 
and green, respectively are drawn only once in IAV viral envelope (purple circle) for 
simplicity. The viral capsid is made up of Matrix protein 1 (Ml) (purple pentagon) and 
encases the IAV genome. IAV genome is made up of eight negative sense ssRNA segments 
(simplified to purple line) and is coated with nucleoprotein (NP) (not shown) and the 
trimeric viral RNA polymerase (VRP). (a-c) HA is found as a homotrimer, each HA is made 
up of a globular head that contains the receptor binding domain, a fusion peptide, a 
cleavage loop and a stalk domain. HAO is matured by host protease mediated cleavage of 
the cleavage loop resulting in two subunits: HA1 and HA2 which remain complexed 
together via a disulphide bond. (B) IAV virion attaches to host cell through binding of HA 
to silica acid. (C) IAV virion is endocytosed by host cell and enters the cytoplasm in an 
endosome. (D and d) Protons are pumped into the endosome and the drop in pH within 
the endosome triggers a conformational change in HA and exposes the HA2 fusion peptide. 
The M2 ion channel is opened and acidification of the viral core occurs. (E) Fusion of the 
viral and endosomal membranes. (F) Release of IAV genome and associated proteins into 
the host cell’s cytoplasm. (G) VRP initiates RNA synthesis on viral RNA, generating a 
positive sense copy which serves as a template for the IAV negative sense ssRNA and (H) 
produces capped mRNAs for viral protein production by the host cell ribosome. (I) New 
IAV virions are assembled at the cell surface and bud off, using the host cell membrane as 
a new viral envelope (orange circle). (J) NA cleaves HA and sialic acid binding to allow for 
virion detachment.
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antigens over time. Furthermore, as the IAV genome is segmented, IAV subtypes 

can reassort between one another. When two different viruses co-infect a single 

host, the reassortm ent of genetic segments within the host "mixing vessel" may 

occur, effectively resulting in massive alterations in IAV protein antigens, in 

particular surface glycoproteins, a phenomenon called antigenic shift. It is through 

antigenic drift and shift that new strains of IAV are able to circumvent recognition 

by host adaptive immunity in organisms that have been previously exposed to IAV. 

Effectively, antigenic shift has the capacity to generate entirely novel IAV strains 

which may have pandemic potential (Webster et al., 1992). Host immunity to a 

specific strain of IAV is easily acquired, however due to this capacity for rapid 

evolution, IAV is able to cause epidemics on almost a yearly basis. Cross protection 

between IAV strains by the adaptive immune system occurs, however this is 

directly dependent upon the similarity between virus subtypes. Indeed, it is 

hypothesised that the higher mortality rate of H1N1 S-OIV infected individuals 

aged less than 65 years was due to the novelty of H1N1 S-OIV compared to 

circulating IAV strains of the previous five decades (Hancock et al., 2009; 

Skountzou et al., 2010).

The IAV surface protein HA is vital to the establishment of IAV infection. 

Once inhaled into the human respiratory tract, IAV targets airway epithelial cells 

by viral recognition of sialic acid moieties on the host cell surface (Figure IB). 

Different HA molecules have different affinities for a-2,3 or a-3,6 linkages between 

the terminal sialic acid and galactose. Importantly, distribution of these linkages 

strongly impacts on IAV tropism and host specificity. As human respiratory 

epithelia primarily express a2,6-linked sialic acid, human IAV HAs have binding 

preference to this, whereas avian influenza viruses have a preference for a2,3-
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linked sialic acid (Bouvier and Palese, 2008; Julkunen et al., 2000; Leung et al., 

2012).

HA is a homotrimer that forms spikes on the viral lipid membrane (Figure 

la). The HA precursor HA0, matures by cleavage mediated by host-encoded 

proteases into two subunits which remain complexed together via a disulphide 

bond. Of the subunits HA1 contains the receptor binding domain and HA2 

comprises the fusion peptide (Wilson et al., 1981) (Figure lb-c). Upon HA spike 

binding to sialic acid, IAV virion endocytosis is mediated by clathrin-mediated and 

clathrin-independent mechanisms, and virus enters the host cell in an endosome 

(Figure 1C). The low pH within the endosome triggers a massive conformational 

change in HA and exposing the HA2 fusion peptide (Figure ID, Id). This fusion 

peptide consequently induces the fusion of the viral and endosomal membranes 

(Bouvier and Palese, 2008) (Figure IE). The acidic environment within the 

endosome also opens the M2 ion channels in the IAV envelope (Holsinger and 

Lamb, 1991; Pinto et al., 1992). Opening of this proton-selective ion channel 

pumps hydrogen ions into the viral core, and this acidification of the core releases 

IAV RNP from Ml into the host cell's cytoplasm (Pinto and Lamb, 2006) (Figure 

1D-F).

IAV RNP localises to the host cell nucleus through host proteins responding 

to the nuclear localization signals (NLSs) provided by the proteins that make up 

RNP (NP, PB1, PB2 and PA) (Samji, 2009) (Figure IF). Although IAV genome 

replication is not entirely understood, it is known that this occurs independent of a 

primer; instead, the IAV RNA polymerase complex initiates RNA synthesis 

internally on viral RNA, generating a positive sense (complementary) copy of the 

IAV genome which serves as a template for the influenza negative sense ssRNA and
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producing capped mRNAs for viral protein production (Figure 1G). Once 

generated, IAV positive sense ssRNA export from the nucleus is mediated by the 

association of Ml and IAV's nuclear export protein (NEP). Virus proteins are then 

synthesised in the cytoplasm and packaged into new IAV virions, which are 

assembled at the cell surface (Figure 1H-I). Finally, NA acts as a sialidase, cleaving 

the surface moieties on the host cell to allow for virion detachment and therefore 

infection propagation (Bouvier and Palese, 2008; Doherty et al., 2006; Julkunen et 

al., 2000).

Productive replication of IAV is generally restricted to airway epithelial 

cells (AECs). This is due to the requirem ent of HA0 to be cleaved by a host cell 

protease into the subunits HA1 and HA2 to gain its fusion capacity (Figure la-c). 

This is hypothesised to occur on the plasma membrane, either during attachment 

and entry into the cell or during assembly and budding of progeny virus. Low 

pathogenicity strains of IAV carry a HA cleavage site with a monobasic motif 

susceptible to trypsin-like proteases such as HAT (human airway trypsin-like 

protease) and TMPRSS2 (transmembrane protease serine SI member 2), and the 

tissue distribution of these proteases is restricted to AECs (Bottcher- 

Friebertshauser et al., 2010). However, highly pathogenic avian IAV strains have 

been shown to possess a polybasic HA cleavage site cleavable by furin (Stieneke- 

Grober et al., 1992), which is ubiquitous and therefore supports systemic viral 

replication. Some strains of highly pathogenic IAV may therefore achieve 

productive infection in immune cells such as macrophages.
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1.2 Natural and Experimental hosts of IAV

Along with humans, IAV has a broad range of host species, including pigs, 

horses, wild mammals, and birds. Wild waterfowl are considered the natural 

reservoir of IAVs, as the prevalence of IAV is high in this species and many 

combinations of HA and NA have been identified in wild waterfowl (Olsen et al., 

2006). As pigs are particularly susceptible to infection with both human and avian 

IAV strains, this animal can serve as a mixing vessel for IAV strain (Ma et al., 2009). 

This is of particular concern as transmission from swine to humans is not rare 

(Robinson et al., 2007), and therefore the emergence of a radically novel IAV strain 

of avian origin with the potential to easily infect and transm it between humans 

may occur.

A number of animal models a have been employed to study IAV infection in 

vivo. These include nonhuman primates, swine, domestic poultry, guinea pigs, cats, 

and dogs, however the most common experimental models are mice and to a lesser 

extent ferrets. As mentioned, human IAV strains bind to sialic acids attached to 

galactose in an a-2,6 configuration, and a distinct advantage of the ferret model is 

that ferrets have a similar distribution of a-2,6-linkage sialic acid receptors within 

their respiratory tract. This is consequently thought to be responsible for ferret 

susceptibility to human IAV strains (Jayaraman et al., 2012) and for virus 

transmission between ferrets. It has also been noted that both the avian H5N1 and 

human H3N2 influenza viruses exhibit similar patterns of virus attachment to 

tissues from both species (van Riel et al., 2006; van Riel et al., 2007). Ferrets 

recapitulate many of the clinical signs observed in human IAV infection, including 

fever, nasal congestion and discharge, anorexia, sneezing, and lethargy (Bouvier 

and Lowen, 2010). Sneezing is of particular importance as it promotes IAV
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transmission. Given the limited availability of reagents for detailed phenotyping, 

the lack of genetically modified strains and the ferret's exquisite sneeze reflex, this 

model is primarily used to study viral and host factors responsible for 

transmission of IAV and effectiveness of anti-IAV drugs, and historically for 

serological studies (Francis and Magill, 1935; Govorkova et al., 2007; Herlocher et 

al., 2001; Maines et al., 2006; Mendel et al., 1998). Yet, even though humans and 

ferrets share similar distribution of sialic acid receptors, IAV infection in ferrets 

rarely progresses to the lower respiratory tract to induce pneumonia, even with 

high pathogenic strains such as avian IAV or 1918 H1N1 (Maher and DeStefano, 

2004). This is of importance as a2,3-linkages (i.e.: sialic acid receptor 

configuration preferred for avian IAV strain binding) become more prevalent in 

the lower respiratory tract of humans (Bouvier and Palese, 2008; Julkunen et al., 

2000; Leung et al., 2012), and therefore the ferret may not be an appropriate 

model for IAV induced pneumonia and disease course of highly pathogenic avian 

IAV strains.

In contrast to ferrets, the mouse is the most commonly used experimental 

model of IAV infection. This is an incredibly convenient model, the multitude of 

genetically mutant murine strains greatly facilitates investigation into proteins and 

pathways involved in IAV protection or disease pathogenesis and to determine the 

mechanism of action of proposed therapies. Furthermore, whole genome analysis 

techniques coupled with the range of genetically distinct inbred strains has 

allowed for comparisons of the host immune response to IAV on different host 

genetic backgrounds. In particular the international Collaborative Cross (CC) 

project, which uses a multiparental recombinant inbred panel generated from 

eight founder inbred laboratory and wild-derived mouse strains, has allowed for
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identification of quantitative trait loci (QTL) that modulate in IAV disease course, 

however this is a relatively recent advancement (Ferris et al., 2013; Threadgill and 

Churchill, 2012).

Clinical symptoms of IAV induced disease in mice are characterised by 

huddling, ruffled fur, lethargy, anorexia, weight loss and laboured breathing, and in 

contrast to humans, mice develop hypothermia (Yang and Evans, 1961). IAV 

infection of mice does replicate many of the cardinal features of IAV induced 

disease in humans, including: proinflammatory cytokine secretion, interstitial 

inflammatory cell recruitment, lung edema, and haemorrhage (Kash et al., 2006; 

Radigan et al., 2012). However, the mouse is not a natural host for influenza 

viruses and many human IAV strains must be adapted by passage through murine 

tissue in order for them to replicate efficiently within the murine respiratory tract. 

An important contributor of murine resistance to human IAV strains is the sialic 

acid moieties of the murine respiratory tract are of the a-2,3 linkage to galactose 

(Radigan et al., 2015). Yet, this may be an advantage as a-2,3-linkage sialic acid 

receptors become more prevalent in the lower respiratory tract of humans and 

therefore mice may be an appropriate model for viral pneumonia. Indeed, IAV 

replication and tissue damage typically occur within the lower respiratory tract of 

the mouse. Although sialic acid moieties are important for IAV infectivity, other 

factors must play a role as some IAV strains have not required adaptation for 

infection in mice. Unsurprisingly, this includes many avian strains, but also human 

IAVs such as the 1918 H1N1 and the 2009 S-OIV strains (Radigan et al., 2015). 

Furthermore, there is evidence of transmission between mice of select IAV strains 

(Edenborough et al., 2012).
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The appropriately named orthomyxovirus resistance gene family (Mx 

family) is another factor which likely contributes to the mouse not being a natural 

host for IAV. Mx proteins are GTPases and induced by IFNa(3 and IFNA. Murine Mxl 

inhibits IAV replication by interrupting IAV PB2-NP interaction. Mxl is a potent 

restrictor of IAV both in vitro and in vivo and indeed, mice carrying a functional 

Mxl locus are exquisitely resistant to IAV infection. However, most inbred 

laboratory mouse strains have a deletion of three exons or a nonsense mutation in 

the Mxl locus making the protein non-functional, and therefore, inbred laboratory 

mice are significantly more susceptible to IAV infection (Horisberger et al., 1983; 

Lindenmann, 1962; Lindenmann et al., 1963; Salomon et al., 2007; Verhelst et al.,

2012). This is significant as natural IAV host species including humans, have a 

homologue of the Mxl gene (MxA in humans), and therefore, congenic mouse 

strains which express functional Mxl have been generated. Yet, w hether or not 

this is a better model for human infection of IAV is arguable, as Mx homologs in 

natural IAV hosts such as chickens or humans are comparatively less effective at 

specifically inhibiting IAV and do not restrict IAV replication in the same m anner 

(Pavlovic et al., 1992). It is not unreasonable to question the use of a system where 

the action of a single gene so entirely overpowers all others, to model a 

comparatively weaker effect in humans. Furthermore, some IAV strains have found 

ways to evade Mx antiviral action (Pavlovic et al., 1995; Pavlovic et al., 1992; 

Schusser et al., 2011).

No model can fully reproduce influenza infection, however the myriad of 

tools and the ease of use of murine studies make this animal model a vital 

component to IAV research. Indeed, all experiments in this thesis and the majority 

of the studies discussed and referenced in this thesis employ mouse models of IAV
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infection, in both an Mx function and Mx non-functional context, and use of 

primary murine cells in vitro.

1.3 Resolution of IAV infection

Once infection is established, clearance of IAV from a host is absolutely 

dependent upon adaptive immunity. The adaptive immune response can be 

separated into cellular (or T cell mediated) and humoral (B cell) immunity, both of 

which launch IAV specific responses to IAV. In an otherwise normal context, either 

B cell produced neutralizing antibodies or the cytotoxic CD8+ T cell response alone 

is sufficient to control and resolve primary IAV infection and later homologous 

challenge. Both responses also impart varying degrees of protection to secondary 

infection with heterologous IAV strains (Eichelberger et al., 1991a; Epstein et al., 

1998; Scherle et al., 1992; Topham et al., 1996).

The adaptive immune response to IAV is orchestrated by the innate. IAV 

peptides are presented to adaptive immune cells by antigen presenting cells 

(APCs) such as dendritic cells (DCs), macrophages and B cells themselves. 

Conventional DCs (cDCs) are considered to be the most effective cell type for IAV 

presentation and priming of naive T cells. cDCs reside between the airway 

epithelia and the basal membrane and extend dendrites through the tight junctions 

between epithelial cells to monitor the airway lumen. cDCs can acquire IAV protein 

via direct IAV infection or by phagocytosis of opsonised virions or apoptotic bodies 

from other infected cells. Upon APC infection, IAV antigens are digested by the 

proteasome into peptides, while IAV antigen taken up by the APC is processed into 

peptides in the endosomes by proteolysis. IAV peptides are subsequently bound to
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major histocompatibility complex (MHC) molecules in either the endoplasmatic 

reticulum (MHC class I) or endosomes or lysosomes (MHC class II) for 

presentation on the cell surface. cDCs migrate to the lung draining lymph nodes 

(mediastinal) and spleen within the first 36 hours post infection to present antigen 

to T cells in order to induce clonal expansion and maturation of antigen specific 

clones. B cells are also able to present antigen through capture of antigen via 

surface immunoglobulin (SIg). This process is highly selective as only B cells 

expressing the appropriate SIg will take up the IAV antigen (Hamilton-Easton and 

Eichelberger, 1995; Janeway, 1999).

Antibody (Ab) subtypes that make up the IAV humoral response are 

primarily immunoglobulin (Ig) M, IgA and IgG. IgM initiates complement-mediated 

neutralization of influenza virus, and presence of this isotype is a hallmark of 

primary infection (Fernandez Gonzalez et al., 2008; Jayasekera et al., 2007). IgA 

antibodies are produced locally at the epithelial layer and transported across 

epithelia and along the mucus to help protect epithelial cells from infection. IgA 

has also been shown to neutralize IAV intracellularly (Mazanec et al., 1995). 

Finally, long-lived Ab-mediated protection from IAV is achieved by the induction of 

IgG antibodies (Clements and Murphy, 1986; Koutsonanos et al., 2011; Onodera et 

al., 2012).

B cell-produced antibodies which correlate with protective immunity to IAV 

are commonly specific for the IAV surface glycoprotein HA (Gerhard, 2001). HA 

specific antibodies inhibit virus attachment and entry in host cells by binding to 

HA's trimeric globular head (Figure la-c). HA specific antibodies also facilitate 

phagocytosis of IAV particles by Fc receptor expressing cells and lysis of infected 

cells by NK cells, a process known as Ab-dependent cell-mediated cytotoxicity
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(ADCC) (Hashimoto et al., 1983). Although effective, HA specific antibodies 

generally do not provide cross protection between different strains of IAV, those 

that do are Abs specific to the HA stalk rather than head (Ekiert et al., 2009; Ekiert 

et al., 2011; Sui et al., 2009). Stalk reactive HA Abs do not neutralize IAV by 

inhibiting the interaction between HA and sialic acid residues, instead stalk- 

reactive Abs may protect through several mechanisms including retaining newly 

formed HAs on the cell surface and thereby inhibiting virus budding (Tan et al., 

2014). Additionally, Ab binding to HA stalks prevents the pH-triggered 

conformational change of IAV when the virus is taken up into the endosome by 

locking the HA trim er in a pre-fusion conformation, effectively trapping IAV within 

the endosome (Brandenburg et al., 2013; Ekiert et al., 2009; Tan et al., 2012) . 

Moreover, HA stalk Abs sterically obstruct access of proteases to the basic cleavage 

site between the HA1 and HA2 subunits of HA, which is located in the stalk domain, 

and thereby block necessary HA conformational changes for fusion (Brandenburg 

et al., 2013; Ekiert et al., 2009) (Figure la-c). Finally, ADCC has been shown to 

potentiate the protective efficacy of stalk-reactive antibodies in vivo (DiLillo et al., 

2014).

IAV infection also induces antibodies specific to other viral proteins. NA 

specific antibodies limit virus spread by binding to NA and blocking its enzymatic 

ability to cleave IAV virions from the cell surface. Furthermore, NA specific 

antibodies also contribute to clearance of virus-infected cells by ADCC 

(Mozdzanowska et al., 1999). Immunity against IAV M2 was first demonstrated in 

mice through the use of a therapeutic monoclonal Ab (mAb) raised against M2 

(Treanor et al., 1990; Zebedee and Lamb, 1988). Finally, NP-specific antibodies can 

also contribute to protection against influenza virus infection, however, the exact
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mechanism of protection remains to be elucidated. One study has suggested that 

NP specific antibodies can induce complement-mediated cell lysis of infected cells 

(Carragher et al., 2008; LaMere et al., 2011}.

IAV infection also induces the proliferation and recruitment of CD8+, CD4+ 

and regulatory T cells (T regs} to the lung. CD4+ T cells or T helper cells 

differentiate into several different subsets, which are distinguished by the 

cytokines they secrete. T hl cells produce IL-2 and type II IFN (IFNy} and T hl7  

cells secrete IL-6 during IAV infection to stimulate the inflammatory response to 

IAV and block the function of regulatory cells. Th2 cells predominantly promote B 

cell responses though the production of IL-4 and IL-13 (Campbell and Koch, 2011; 

Lamb et al., 1982; McKinlay, 2001; Roman et al., 2002}. T regs control both the T 

helper cell and the CD8+ T cell response through the secretion of IL-10 to protect 

the host from immune mediated damage (Sun et al., 2009}.

Virus-specific CD8+ T cells recognize and eliminate IAV infected cells by 

interaction of their T cell receptor with influenza-peptide-MHC class I complexes 

on infected cells, and subsequent release of perforin and granzymes or the 

expression of apoptosis inducing ligands including Fas ligand (FasL} and tumour 

necrosis factor related apoptosis inducing ligand (TRAIL} (Brincks et al., 2011; 

Brincks et al., 2008a; Topham et al., 1997}. Studies in humans have revealed IAV 

specific CD8+ T cells are primarily reactive to NP, Ml and PA proteins (Gotch et al., 

1987; Jameson et al., 1998; McMichael et al., 1983; Townsend et al., 1985; Wang et 

al., 2007; Yewdell et al., 1985}. These proteins are highly conserved, and therefore, 

the cellular arm of the adaptive immune response displays a higher degree of 

cross-reactivity between different IAV subtypes. However, viral epitopes that are 

recognised by cytotoxic T cells are under selective pressure, indeed many amino
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acid substitutions observed during the evolution of H3N2 IAV strain were 

associated with escape from recognition by virus-specific CD8+ T cells (Berkhoff et 

al., 2007; Boon et al., 2004; Rimmelzwaan et al., 2004; Voeten et al., 2000].

The adaptive immune response to IAV is well studied and is vital to 

infection resolution. However, comparably less is known about the contribution of 

the innate immune system to controlling IAV infection. This is significant as the 

innate response initially controls viral replication and directs the quality and 

magnitude of the adaptive immune response through release of cytokines and the 

action of APCs.

1.4 Innate Immunity and IAV

The innate immune response to IAV is activated within minutes to hours of 

infection. Upon recognition, IAV induces chemokine and cytokine production from 

infected epithelial cells and tissue resident immune cells, such as alveolar 

macrophages (AMs). Cytokines can have autocrine, paracrine, and/or endocrine 

activity and, through receptor binding, can elicit a variety of responses, depending 

upon the cytokine and the target cell type. Cytokines can be subdivided into 

interferons (IFNs), which mediate antiviral immunity and activation of cells; 

interleukins (IL) which are involved in growth and differentiation of cell types and 

modulation of inflammation and fever; chemokines which mediate chemotaxis; 

colony-stimulating factors (CSF) which stimulate hematopoietic progenitor cell 

proliferation and differentiation, and the tumour necrosis factor (TNF) family 

which has potent proinflammatory capacity. In vivo, the initial release of 

inflammatory mediators is likely from infected lung epithelium and AMs. This
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release results in the extravasation of pDCs, monocytes, NK cells and neutrophils 

from the peripheral blood across the endo-epithelial barrier into infected lung 

tissue (Ada and Jones, 1986). These cell types in turn produce additional cytokines, 

chemokines and other antiviral proteins. This arm of the immune response is vital 

to control IAV spread and to activate and direct the adaptive immune response. 

Due to the broad nature of the innate immune response, many features such as 

cytokines driving inflammation are redundant, however mice which have serious 

defects in their innate response, such as mice deficient for both IFNap and IFNA 

receptors or Signal Transducer and Activator of Transcription 1 (STAT1) deficient 

mice cannot control IAV replication and succumb to disease rapidly (Garcia-Sastre 

et al., 1998a; Mordstein et al., 2008).

1.4.1 Host recognition o f Influenza A Virus

Influenza viral nucleotide components are recognised as pathogen 

associated molecular patterns (PAMPs) by host pattern recognition receptors 

(PRRs), resulting in the initiation of the cellular immune response (Janeway, 

1999). IAV PAMPs triggers the activation of at least four distinct PRRs: two 

members of the toll-like receptor (TLR) family (TLR3 and 7); one member of the 

RIG-I-like receptor (RLR) family known as retinoic acid-inducible gene I (RIG-I); 

and NOD-LRR- and pyrin domain containing 3 (NLRP3). RIG-I and NLRP3 are 

situated in the cytosol and sense IAV infection here, while the TLRs sense IAV 

products in the endosome. NLRP3 forms a multiprotein complex with an adaptor 

protein known as ASC (Apoptosis-associated speck-like protein containing a 

CARD) and pro-caspase 1. This complex is known as an inflammasome and in its 

active form it induces the secretion of the proinflammatory cytokine, IL-1(3 and IL-
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18 and pyroptosis of infected cells (Franchi et al., 2009). The activation of the 

NLRP3 inflammasome and production of IL-lp usually requires two signals. The 

first signal is provided by PRR agonists and this priming signal results in 

transcriptional activation of the genes encoding pro-IL-ip, pro-IL-18 and NLRP3. 

The second signal is triggered by host damage, which induces the activation and 

cleavage of caspase 1 and the secretion of mature IL-ip and IL-18. Inflammasome 

activation and IL-lp secretion leads chemokine production which enhance the 

recruitm ent of inflammatory cells including neutrophils and monocytes and or 

their maintenance in the lung following IAV infection (Pang and Iwasaki, 2011). It 

does not appear that NLRP3 interacts directly with IAV PAMPs, instead the NLRP3 

is activated by common intracellular changes caused by IAV infection, at least 

three mechanisms have been described for IAV mediated activation of the NLRP3 

inflammasome: PRR recognition of IAV ssRNA and induction of lysosomal 

maturation and reactive oxygen species (Allen et al., 2009), disturbances in 

intracellular ionic concentrations due to hydrogen ion flux through IAV's M2 ion 

channel (Ichinohe et al., 2010) and the presence of high-molecular-weight 

aggregates of IAV's virulence protein: PB1-F2 in lysosomes (McAuley et al., 2013). 

Of the PPRs involved in IAV detection, only NLRP3 does not appear to play a role in 

establishing an antiviral state, indeed studies in NLRP3 deficient mice infected 

with IAV did not reveal a difference in early virus load compared to wild type 

controls, instead NLRP3 appears to promote leukocyte recruitment and tissue 

repair (Allen et al., 2009; Thomas et al., 2009).

Characterised agonists for TLR3 are double stranded RNA (dsRNA) 

molecules, however due to the cellular RNA helicase UAP56, IAV replication does 

not generate dsRNA, instead it is hypothesised that TLR3 detects unknown RNA
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structures found in IAV infected apoptotic cells which have been phagocytised 

(Schulz et al., 2005). TLR3 deficient mice have been shown to express decreased 

chemokine levels and leukocyte recruitment to the lungs during high dose IAV 

infection compared to wild type controls, however TLR3 deficiency does not 

impede secretion of IFNap by pDCs or the adaptive immune response to IAV. TLR3 

is therefore expendable for the control of primary IAV infection and the initiation 

of adaptive immune response during IAV infection (Diebold et al., 2004; Heer et al., 

2007). Imai et al. demonstrated that heat inactivated H5N1 stimulated acid- 

induced acute lung injury in a TLR4 dependent manner (Imai et al., 2008). While a 

recent study has reported that human TLR10 expression is upregulated in primary 

macrophages upon influenza H5N1 viral infection and this upregulation was 

observed to substantially enhance IAV-RNP-induced activation of IL-8 expression 

(Lee et al., 2014). However it remains to be seen how important these TLRs are in 

maintenance of the immune response to IAV.

In contrast to PRR already discussed, TLR7 and RIG-I and their downstream 

signalling molecules are necessary for the induction of the antiviral response to 

IAV. Experiments performed in vivo have revealed that TLR7 and RIG-I signalling 

pathways are able to compensate for one another and it is only when both 

pathways were blocked through the genetic ablation of their downstream adaptor 

proteins: Myeloid differentiation primary response gene 88 (MyD88) and 

Mitochondrial antiviral-signalling protein (MAVS) (TLR7 and Rig-I respectively) 

that control of IAV replication is lost (Koyama et al., 2007). RIG-I distinguishes 

viral RNA from host RNA by recognition of triphosphate or diphosphate moieties 

on the 5'-end of viral RNA. IAV replication generates 5' triphosphate bearing viral 

ssRNA which is detected by RIG-I in the cell cytosol (Baum et al., 2010; Goubau et
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al., 2014; Hornung et al., 2006; Pichlmair et al., 2006; Rehwinkel et al., 2010). Upon 

ligand binding, the helicase domain of RIG-I binds to adenosine triphosphate 

(ATP), which enables conformational changes that allows the Caspase Associated 

Recruitment Domains (CARDs) of RIG-I to be ubiquitinated by E3 ligases such as 

Tripartite Motif Containing 25 (TRIM25) (Gack et al., 2007) and RIPLET (Oshiumi 

et al., 2010). CARD ubiquitin promotes MAVS and RIG-I interaction and subsequent 

activation of interferon regulatory factor (IRF) -3 and nuclear factor kappa-light- 

chain-enhancer of activated B cells (NF-kB), leading to production of IFNctp and 

IFNA and other cytokines (Jiang et al., 2011; Kowalinski et al., 2011; Luo et al., 

2011). Until recently, it was unclear how this cytosolic receptor recognised viral 

RNA from a virus that replicates only in the nucleus, however one study has 

demonstrated that RIG-I localizes to antiviral stress granules which contain IAV 

RNA (Onomoto et al., 2012). In addition to RIG-I, another member of the RLR 

family: Melanoma Differentiation-Associated protein 5 (MDA-5) may also 

contribute to IAV PAMP induction of IFNs as small reductions in the IFNa(3 

response has been observed in infected MDA-5-deficient cells compared to control 

cells (Husser et al., 2011; Kato et al., 2006; Loo et al., 2008).

TLR7 binds to single-stranded guanine (G) uracil (U)-rich RNA, found 

commonly in viral genomes. Unlike RIG-I recognition, TLR7 sensing of IAV 

infection does not require replication of the virus, instead IAV ssRNA is detected by 

TLR7 when taken up into the endosome (Diebold et al., 2004; Lund et al., 2004). 

Binding of ssRNA to TLR7 results in the recruitment of MyD88 through the Toll/IL- 

1R homologous region (TIR) domain located in the TLR7 cytoplasmic tail (Kawai 

and Akira, 2011). Similar to RIG-I signalling, activation of TLR7/MyD88 in pDCs 

results in IRF7 and NF-kB activation and in secretion of high levels of IFNap and
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IFNA. Like TLR7, TLR8 is situated in the endosome and until recently it was 

thought to be nonfunctional in mice and redundant with TLR7 in humans. 

However in 2006 Gorden et al. demonstrated that HEK293 cells transfected with 

murine TLR8 would respond to combination stimulation with a synthetic TLR8 

agonist and poly T oligodeoxynucleotides and Martinez et al further demonstrated 

that TLR8-MyD88-dependent pDC activation played a critical role in innate 

immune control of vaccinia virus infection (Gorden et al., 2006; Martinez et al., 

2010). In both these studies, TLR8 signalling was dependent upon PAMPs rich in 

poly(A)/T sequences which the IAV genome is not, therefore w hether or not TLR8 

contribute to recognition of IAV and subsequent orchestration of the immune 

response appears unlikely.

Overall, it appears TLR7 and RIG-I are redundant in IAV recognition at the 

level of a whole organism, however these pathways are not redundant within 

specific cell types: TLR7 deficiency in pDCs entirely ablated induction of the 

antiviral cytokines IFNa and p in response to stimulation with IAV, yet TLR7 

deficiency did not affect secretion from cDCs, AMs, epithelial cells or mouse 

embryonic fibroblasts (MEFs). Instead, IFNap production in response to IAV by 

these cell types was entirely dependent on MAVS signalling. Whilst TLR7 and RIG-I 

activate different downstream signalling pathways, they both lead to the 

translocation of similar transcription factors such as NF-kB and AP-1. Of particular 

interest to this thesis, engagement of the TLR7 and RIG-I signalling cascades 

induces the phosphorylation of IRF7 and IRF3, which translocate from the cytosol 

to the nucleus and induce IFNap and IFNA expression (Diebold et al., 2004; Kato et 

al., 2005; Kawai and Akira, 2011; Koyama et al., 2007; Loo and Gale, 2011).
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1.4.2 IFNa/1 and IFNA response and IAV

IFNap are a family of secreted cytokines that comprised of 13 partially 

homologous IFNa genes in humans (11 in mice), one IFNp gene (also one in mice) 

and several other family members (IFN-co, -£, - 8  and - k )  (Pestka et al., 2004). IFNap 

is secreted by cells to inhibit replication and spread of a range of viruses both in 

vivo and in vitro (Muller et al., 1994; Schneider et al., 2014b). The first report of 

IFNap was made in 1954 by two Japanese virologists, Yasu-ichi Nagano and 

Yasuhiko Kojima, who observed that intradermal inoculation of rabbits with a UV 

treated tissue suspension of vaccinia virus-infected rabbit skin or testis would, 

within hours, protect cells at the site of inoculation from viral challenge (Nagano et 

al., 1954). Nagano and Kojima postulated the existence of some "facteur inhibiteur" 

(inhibitory factor) entirely independent of the virus itself that was protecting cells 

from vaccinia infection. However, Nagano and Kojima also observed that 

intraperitoneal (i.p.) injection of mice with their ultra-centrifuged supernatant 

elicited the production of virus-neutralizing Abs in mice, the authors could not 

reconcile the resistance of the rabbit skin cells to infection and this induction of 

virus specific Abs. They later found that Ab induction was due to viral 

contamination, however this initial ambiguity and publication of the article in 

French m eant that Nagano and Kojima's discovery was unappreciated at the time. 

3 years later, Isaacs and Lindenmann showed that addition of heat-inactivated IAV 

to chick chorioallantoic membrane fragments could induce the formation of an 

’interfering1 reagent that inhibited growth of live IAV when transferred to fresh 

membranes (Isaacs and Lindenmann, 1957). In their 1957 publication Isaacs and 

Lindenmann first coined the term  "interferon," and this interfering agent was later
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characterised as type I IFN or IFNap, although it is not inconceivable that Isaacs 

and Lindenmann could have been describing IFNA.

There are many type I IFN family members, however only IFNa subtypes 

and IFNp are broadly expressed and have been demonstrated to have a clear anti

viral role during IAV infection. All IFNap subtypes act through a common, 

ubiquitously expressed, heterodimeric receptor, IFNapR. IFNapR is composed of a 

low affinity subunit known as IFNAR1 and a high affinity subunit, designated 

IFNAR2. Each receptor subunit contains an extracellular ligand-binding domain 

and an intracellular kinase domain which is associated with a Janus activated 

kinase (JAK), with IFNAR1 being associated with a tyrosine kinase 2 (TYK2) and 

IFNAR2 with JAK1. IFNap subtypes bind first to IFNAR2 and this recruits IFNAR1, 

receptor heterodimerization then occurs and elicits activation of the JAKs and 

therefore tyrosine phosphorylation of STAT2 and STAT1 (Murray, 2007; Platanias, 

2005). JAK/STAT signalling induces the three molecules STAT1, STAT2 and IRF9 to 

form the trimeric transcription factor ISGF3 (Interferon-stimulated gene factor 3), 

and it is ISGF3 that triggers the transcription of a diverse set of genes known as 

IFN stimulated genes (ISGs) and thereby establishes an antiviral state in 

stimulated cells (Darnell et al., 1994; Ivashkiv and Donlin, 2014; Sadler and 

Williams, 2008; Schneider et al., 2014b).

ISGs counteract IAV spread by diverse mechanisms. For example, Protein 

kinase R (PKR) is required for antiviral stress granule formation and therefore 

RIG-I sensing of IAV. Radical S-Adenosyl Methionine Domain Containing 2 (RSAD2, 

also known as viperin) promotes TLR signalling by recruiting IL-1 receptor- 

associated kinase 1 (IRAKI) and TNF receptor- associated factor 6 (TRAF6) to lipid 

bodies and by inducing nuclear translocation of IRF7 and 2'-5'oligoadenylate
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(OAS) is activated by dsRNA to degrade ssRNA. The IFN-inducible transmembrane 

protein 3 (IFITM3) blocks the release of viral contents into the cytosol and as 

mentioned previously, murine Mxl interacts with IAV NP and polymerase complex 

PB2, leading to a blockade of viral replication. Furthermore, IFNap themselves also 

induce a positive feedback loop and trigger the expression of IFN-inducing 

proteins such as RIG-I, NF-kB and STATs as well as certain IFNa subtypes (Desai et 

al., 2014; Haller et al., 1979; Sadler and Williams, 2008; Schneider et al., 2014b; 

Trinchieri, 2010).

Discovered in 2003, Type III IFNs (IFNA1, 2 and 3) are induced during viral 

infection via the same pathways as IFNap and employ an almost identical 

signalling cascade to activate transcription of ISGs (Kotenko et al., 2003; Sheppard 

et al., 2003). However, IFNA utilizes a separate receptor complex with a limited 

tissue distribution, compared to the ubiquitously expressed IFNapR (Mordstein et 

al., 2008; Sheppard et al., 2003; Sommereyns et al., 2008). It is thought that IFNA is 

more im portant than IFNap for host protection during IAV infection as it is 

particularly secreted by epithelial cells, the main cell type used by IAV for viral 

replication. However, studies which infected both IFNapR-/- and IFNAR-/- mice 

with IAV found that only the absence of both receptors caused dramatic loss of 

virus control (Mordstein et al., 2008; Mordstein et al., 2010). Thus, IFNap and IFNA 

are able to redundantly induce antiviral signalling pathways to protect against IAV 

induced disease.

Arguably, the best indication of the potent anti-influenza effects of IFNap 

and IFNA is the fact that part of the viral non-structural (NS1) protein is dedicated 

to counteract their induction and signalling. NS1 is the common factor by which all 

IAVs antagonize host immune responses. It is a multifunctional protein which has
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been demonstrated to perform a wide range of functions (Egorov et al., 1998; 

Garcia-Sastre et al., 1998b; Kochs et al., 2007). NS1 facilitates efficient virus 

replication by contributing to the control of viral RNA synthesis, splicing and 

translation, regulation of virus particle morphogenesis and suppression of host 

apoptotic and immune response, in particular the IFN-mediated antiviral response 

to IAV infection (Hale et al., 2008). The mechanisms of NS1 antagonism of IFNap 

and IFNA varies between IAV strains; NS1 from the common lab adapted IAV strain 

A/Puerto Rico/8/34 (PR8) prevents virus-mediated activation of the IRF-3, NF-kB 

and other transcription factors, which are important for induction of IFNap and 

IFNA (Ludwig et al., 2002; Talon et al., 2000; Wang et al., 2000). NS1 also limits 

activation of RIG-I by sequestering dsRNA (Donelan et al., 2003; Pichlmair et al., 

2006; Steidle et al., 2010) and by specific inhibition of RIG-I ubiquitination by 

TRIM25 (Gack et al., 2007). Engineered IAV strains which do not express NS1 

(delNSl IAV) induce large amounts of IFN in infected cells and are consequently 

attenuated in IFN-competent systems. Indeed, both Diebold et al. and Kallfass et al. 

found that NS1 restricted IFN producing capabilities of AMs and cDCs (Diebold et 

al., 2003; Kallfass et al., 2013). Mordstein et al. demonstrated that while delNSl 

IAV strain hvPR8-delNSl was entirely non-pathogenic in wild type (Wt) mice it did 

cause disease in mice genetically deficient for both IFNapR and IFNAR (Mordstein 

et al., 2008). Due to the comparatively more recent discovery of IFNA, NS1 action 

has been characterised in the context of IFNap, however it is im portant to state 

that the mechanisms employed by NS1 to antagonise IFNap induction also 

antagonise IFNA production and secretion. Indeed, delNSl IAV strains only display 

high pathogenicity in mice lacking antiviral mediators involved in both IFNap and 

IFNA induction or downstream signalling, such as PKR (Bergmann et al., 2000;



Kochs et al., 2007) or STAT1 (Garcia-Sastre et al., 1998a). Furthermore, Mordstein 

et al. found that hvPR8-delNSl remained non-pathogenic in IFNapR-/- mice, 

demonstrating commonality between IFNap and IFNA not only in antagonism by 

NS1 but also in their redundancy for host protection in IAV infection (Mordstein et 

al., 2008).

The antiviral action of IFNap is well characterised; however IFNap 

signalling goes far beyond induction of an antiviral state, as these cytokines elicit 

and direct many features of both the innate and adaptive immune response, 

thereby enhancing the immune response for more effective resolution of infection. 

IFNap acts in both an autocrine and paracrine manner to signal almost every cell 

type in the body. By contrast, the effects of IFNA are largely limited to non- 

haematopoietic cells, owing to the restricted expression of IFNAR (Mordstein et al., 

2008; Sheppard et al., 2003; Sommereyns et al., 2008).

IFNap modulates the development of adaptive immunity by inducing cDC 

differentiation and maturation as well as enhancing cell-surface expression of MHC 

molecules and co-stimulatory molecules such as CD80 and CD86 and promoting 

cDC cross-presentation of antigens during viral infections (Lapenta et al., 2003; 

Montoya et al., 2002; Santini et al., 2000; Santodonato et al., 2003). IFNap 

enhances CD4+ T cell clonal expansion and survival in Lymphocytic 

choriomeningitis virus (LCMV) infection (Havenar-Daughton et al., 2006) and in a 

model for induction for Abs against soluble antigen, IFNapR signalling was 

im portant on both CD4+ T cells and on B cells for optimal Ab responses (Le Bon et 

al., 2006). Moreover, in IAV infection, early activation of respiratory tract B cells 

has been shown to be mediated by IFNapR, and this activation dictated the quality 

and quantity of the antibody response (Chang et al., 2007b; Coro et al., 2006).
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IFNap has also been reported to play a role in Ab class switching between IgG 

subtypes during IAV infection (Heer et al., 2007). With regard to CD8+ T cell 

function, cytotoxicity is positively regulated by IFNap (Curtsinger et al., 2005), and 

IFNap is also upstream of recruitment of monocyte precursor cells that 

differentiate into DCs which promote proliferation of IAV-specific CD8+ T cells in 

the IAV infected lung (Aldridge et al., 2009). Similarly, IFNap also directly induces 

activation and expression of cytolytic effector functions and type II IFN (IFNy) 

production by NK cells in IAV infection (Hwang et al., 2012). Generally, IFNap has 

been shown to enhance immune cell recruitment and activation both directly, and 

through the induction of other proinflammatory cytokines such as IL-6, IL-12, 

monocyte chemotactic protein (MCP)-l (also known as CC chemokine ligand (CCL) 

2), Interferon gamma-induced protein 10 (IP-10, also known as C-X-C motif 

chemokine 10 (CXCL10)) and IL-15 (Parlato et al., 2001; Seo et al., 2011; 

Trinchieri, 2010; Yamaji et al., 2006). However, IFNap can also acts as an 

immunosuppressant. IFNap signalling induces IL-1R antagonist (IL-IRa), which 

binds non-productively to IL-1R and in this way inhibits proinflammatory action of 

IL-lp (Novikov et al., 2011; Tilg et al., 1993). IFNap mediated upregulation of 

Programmed death-ligand 1 (PD-L1) and IL-10 in chronic LCMV infection impaired 

CD4+ T cell action and thereby supported viral persistence (Teijaro et al., 2013; 

Wilson et al., 2013). IFNap are therefore pluripotent cytokines with wide reaching 

effects on the immune system.

As all IFNap subtypes exclusively signal through the IFNapR, many studies 

designed to elucidate the role of type I IFNs in influenza infection have been 

conducted under conditions of IFNapR deficiency. In vitro studies using IFNap 

deficient cell lines have shown an increase in susceptibility to IAV infection and
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replication (Garcia-Sastre and Biron, 2006; Garcia-Sastre et al., 1998a; Isaacs and 

Lindenmann, 1957; Koerner et al., 2007; Matzinger et al., 2013). However, 

investigation of IFNapR deficiency in restricting IAV infection in vivo is less clear, 

and some studies report little to no increase in IAV induced morbidity and 

mortality of IFNapR-/- mice (Mordstein et al., 2008; Price et al., 2000). Increased 

susceptibility to influenza-induced disease in IFNapR-/- mice has been recorded, 

yet this has been in the context of high viral doses in mice expressing functional 

Mxl protein (Koerner et al., 2007) or in studies where influenza viruses used were 

capable of causing a systemic infection (Garcia-Sastre et al., 1998a; Szretter et al.,

2009). Differences in influenza strain or dose and use of either IFNapR-/- or 

STAT1-/- mice as models of IFN signalling deficiency on C57BL/6, 129, CD1 or 

mixed mouse backgrounds mean that comparison between (and even within) 

these studies is difficult. In particular, the use of STAT1-/- to specifically ablate 

type I IFN signalling is problematic. While it was reasonable in the early studies to 

assume that in STAT1-/- mice IFNapR signalling was specifically ablated, it is now 

known that STAT1 acts downstream of not only IFNapR but also downstream of 

the receptors for IFNy and IFNA as well as a number of other cytokines that have 

wide-ranging effects, such as IL-6, IL-10 and IL-27 (Casanova et al., 2012). Thus, 

the 'IFNap' mediated protection claimed to be lost in these studies which have 

used STATI-/- mice as a model for IFNap signalling is likely a result of a combined 

effect on a range of cytokines.

Collectively, IFNap and IFNA are vital for early control of IAV replication, 

and IFNap is an important stimulator of both the innate and adaptive immune 

response. In theory, all cell types can make IFN upon recognition of, or infection 

with appropriate pathogens. Primarily AMs but also AECs, pDCs, cDCs and
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monocytes produce IFNap and IFNA during IAV infection (Cheung et al., 2002; 

Crotta et al., 2013; Hogner et al., 2013; Ioannidis et al., 2013; Jewell et al., 2007; 

Kallfass et al., 2013; Kaminski et al., 2012). Production of IFNap and IFNA in 

response to IAV is not dependent upon productive infection in immune cells. 

Indeed productive infection results in the generation of the viral protein NS1 that 

can block signals required for IFN induction (Diebold et al., 2003; Kallfass et al., 

2013). Given their im portant role in host immunity to IAV it is unsurprising not 

only that IFNap and IFNA can be considered redundant with one another but also 

their induction is achieved through a variety of PRRs (as discussed) and that they 

are made by many cell types.

Human mortality to IAV infections, particularly highly pathogenic IAV 

strains, is associated with production of proinflammatory cytokines and tissue 

damage (de Jong et al., 2006; Louie et al., 2009; Peiris et al., 2004). As type I IFN is 

a potent immunomodulator, many studies have assessed the contribution of IFNap 

to inflammation during IAV infection and reported that IFNap levels in some cases 

correlates directly and in others inversely with host pathology. There are only a 

few studies on experimentally or clinically IAV infected humans that have assessed 

the levels of IFNap. Hayden et al. assessed the proinflammatory cytokine response 

to experimental infection of humans with IAV in nasal washings and found that 

IFNa levels positively correlated to symptom severity (Hayden et al., 1998). While 

studies that assessed IFNap concentrations in the serum often did not detect these 

cytokines, one study did detect IFNa in serum samples of patients clinically 

infected with SO-IV and found that levels were lower in patients with severe 

disease compared to patients with milder disease presentation (Agrati et al.,

2010). The difficulty of detecting IFNap in serum samples of even in the critically
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ill indicates that presence of this potent immunomodulating cytokine is tightly 

controlled.

Cheung et al found IFN(3 to be one of the first cytokines secreted by H5N1 

infected human macrophages, and this preceded induction of other 

proinflammatory cytokines and chemokines, such as MCP-1, Macrophage 

Inflammatory Protein-ip (Mip-ip also known as CCL4), and IL-12. Conversely, in 

the same study, lower pathogenicity influenza strains incited a lower IFN(3 

response, which correlated with diminished transcription of proinflammatory 

cytokines, however a causal relationship by blocking IFNap was not established 

(Cheung et al., 2002). Furthermore, avian IAV strains have also been shown to 

induce dramatic and sustained expression of IFNap in infected lung tissue of 

nonhuman primates and associated with severe necrotizing bronchiolitis and 

alveolitis (Baskin et al., 2009). In contrast, a study on the highly pathogenic 1918 

influenza strain found that higher susceptibility in infected cynomolgus macaques 

correlated with low IFNap induction when compared with a lower pathogenicity 

strain of IAV (Kobasa et al., 2007). H5N1 was also demonstrated to attenuate the 

IFNap response in a polarized human bronchial epithelial cell model (Zeng et al., 

2007).

Although informative, the above-mentioned studies are correlative. The 

role of type I IFNs during IAV infection, therefore, is highly controversial. It 

remains to be elucidated whether this cytokine drives not only an antiviral 

response, but also promotes pathogenicity during influenza infection. 

Furthermore, it is unknown whether IFNap contributes to inter-individual 

differences in influenza susceptibility.
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1.4.3 Proinflammatory cytokine response to IAV

Aside from IFNap, many other cytokines are secreted in response to IAV 

infection. As mentioned, these proteins are secreted by all pulmonary cell types to 

direct the host immune response to IAV. IFNy is secreted by NK and T cells and 

assists the immune response to IAV by promoting NK cell killing of IAV infected 

cells, Ab secretion from B cells, activation of and antigen presentation by 

macrophages, activation of inducible Nitric Oxide Synthase (iNOS) and induction 

its own suite of ISGs (Graham et al., 1993; Schroder et al., 2004). IL-1 family 

members such as IL-lp enhance IgM antibody responses and recruitm ent of CD4+ 

T cells to the site of infection, tissue repair and contribute to the inflammasome 

response (Schmitz et al., 2005; Thomas et al., 2009). IL-6 and its receptor (IL-6R) 

form a complex to achieve trans-signalling. This signalling is pro-inflammatory and 

modulates host fever, secretion of chemokines and T-cell proliferation (Scheller et 

al., 2011). TNFa has been shown to upregulate expression of molecules involved in 

recognition of IAV including RIG-I in in vitro experiments (Matikainen et al., 2006), 

and TNF receptor signalling has been shown to regulate the magnitude of the CD8+ 

T cell response during IAV infection (DeBerge et al., 2014). In contrast to 

proinflammatory cytokines, IL-10 is the canonical anti-inflammatory cytokine that 

acts on all cell types to dampen chemokine secretion and cellular activation 

(Couper et al., 2008), and IL-9 has been implicated in repair of the epithelial cell 

layer late in the infection (Monticelli et al., 2011).

Chemokines are released by a variety of cells in response to IAV infection in 

order to mediate the recruitment of immune cells to the lung. While cytokines 

generally exert pleiotropic effects, attraction of immune cells by many chemokines 

is selective for specific cell types. For example, MCP-1, CXCL8 (also known as IL-8),

49



and Eotaxin are major chemoattractant factors for monocytes, neutrophils and 

eosinophils, respectively (Dawson et al., 2000; Hammond et al., 1995; Rothenberg 

et al., 1996). In contrast, IP-10 binds to CXCR3 on cells and induces chemotaxis of a 

variety of cell types, particularly T cells and neutrophils (Dufour et al., 2002).

Through the recruitment, activation and maintenance of both innate and 

adaptive immune cell types, cytokines and chemokines control and clear IAV 

infection from the lung. However studies into human IAV infection, particularly 

into high severity cases of H5N1 infection, have demonstrated a clear direct 

correlation between disease severity and the magnitude of inflammatory response. 

Termed the cytokine storm, severe IAV infection in humans is characterised by 

aberrant cytokine and chemokine responses that associate with monocytic 

infiltration and destruction of the epithelial layer (Arankalle et al., 2010; de Jong et 

al., 2006; Hayden et al., 1998; Kaiser et al., 2001; Louie et al., 2009; Peiris et al., 

2004). In particular, strong correlations between IL-6, IFNa and TNFa levels and 

the severity of disease symptoms in humans have been observed, not only in 

clinical cases but also in experimental infection of humans with seasonal IAV. 

Interestingly, disease symptoms of patients in these studies did not always directly 

correlate to viral load (Agrati et al., 2010; Arankalle et al., 2010; Hayden et al., 

1998; Kaiser et al., 2001; Peiris et al., 2004). High serum levels of IL-6, TNFa and 

IFNy were recorded in patients during the H5N1 outbreaks in Hong Kong (1997), 

and individuals infected with H5N1 in the early 2000s had elevated serum 

concentrations IP-10, MCP-1, IL-8 and monokine induced by IFNy (MIG), compared 

to patients with seasonal IAV (Beigel et al., 2005; de Jong et al., 2006; Peiris et al., 

2004). Similarly, a study on serum samples collected from H1N1 infected 

individuals revealed that IP-10 and Regulated on Activation, Normal T Expressed
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and Secreted (RANTES or CCL5) were elevated, while another study found raised 

levels of IL-1RA, IL-2, IL-6, M ip-la (also known as CCL3), Mip-lp, and IL-10 in the 

plasma of patients exhibiting severe H1N1 IAV induced disease (Arankalle et al., 

2010; Lichtner et al., 2011). As previously mentioned, in vitro studies have also 

demonstrated superior induction of IFNp and TNFa by H5N1 viruses, compared to 

H3N2 and H1N1 AIV strains, in human macrophages (Cheung et al., 2002). In 

contrast to the aforementioned studies, Agrati et al demonstrated an inverse 

correlation between IFNa and MCP-1 concentrations in patient plasma and disease 

severity, correlating an impaired production of these cytokines in patients with a 

worse clinical outcome (Agrati et al., 2010).

Animal models have allowed for the investigation of IAV induced cytokine 

storm. Compared to infection with a low pathogenicity strain, 1918 IAV-infected 

macaques experienced an overly aggressive innate immune response 

characterised by strong upregulation of IL-6, IL-8, MCP-1, and RANTES gene 

expression in the lung and elevated levels of most of these cytokines in the sera 

(Kobasa et al., 2007). Similar results were also reported in murine infection with 

reverse mutant 1918 IAV: pulmonary concentrations of IFNy, TNFa, MCP-1, Mip- 

la ,  Mip-ip, Mip-2 (also known as CXCL2), Mip-3a (aka CCL20), IL-1, IL-6, IL-12, IL- 

18, and granulocyte colony-stimulating factor (G-CSF) were found to be elevated 

compared to levels found in infection with low pathogenicity IAV (Kash et al., 

2006; Kobasa et al., 2004; Tumpey et al., 2005a). H5N1 infection of macaques also 

led to prolonged expression of MCP-1 and IP-10 and other cytokine and chemokine 

genes, compared to infection with seasonal IAV (Baskin et al., 2009). Additionally, 

S0IV-H1N1 infected macaques exhibited an increase in IL-6, TNF, and IL-1(3 gene
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expression in the lungs and pronounced levels of IL-6 and MCP-1 in the plasma 

(Safronetz et al., 2011).

In experimental mouse models, genomic deletion of TNFR in mice infected 

with 1918 H1N1 demonstrated that signalling through this receptor was 

intimately linked to the massive inflammatory response, interestingly, increased 

survival of 1918 infected TNFR-/- mice associated with a decrease in IFN- 

signalling-related antiviral gene expression (Belisle et al., 2010). Similarly, in 

another study, TNFR deficiency significantly reduced morbidity compared to wild 

type controls in IAV infection with two strains of H5N1 that exhibit high and low 

pathogenicity in mice, yet deficiency did not affect viral replication and spread, or 

ultimate disease outcome. This same study also infected mice deficient in IL-6 and 

found that deficiency for these cytokines individually did not alter disease outcome 

in either high or low pathogenicity settings. This data also confirmed earlier work 

performed by Kozak et al. (Kozak et al., 1997; Szretter et al., 2007). Finally, the 

latter study also found that IL-1R deficient mice exhibited heightened morbidity 

and mortality in low pathogenicity IAV infection, yet this difference was not 

observed with the more virulent IAV strain (Szretter et al., 2007). Schmitz et al. 

also demonstrated higher mortality of mice deficient in IL-1R, interestingly 

ablation of IL-1R signalling protected mice from IAV induced granulocytic 

inflammation, yet associated with lower IgM and CD4+ T cell response to IAV, 

leading to host mortality (Schmitz et al., 2005).

IL-10 deficiency during IAV infection augmented T hl7  related 

proinflammatory cytokines and IL-17 producing CD4+ T cells. Therefore, IL-10 

mediated dampening of T hl7  responses increased host susceptibility to severe 

disease (McKinstry et al., 2009). In contrast to this, Sun et al. demonstrated that
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mAb blockade of IL-10R during IAV infection lead to lethal pulmonary 

inflammation and consequent host mortality (Sun et al., 2009). IL-10 action may 

impede clearance of a pathogen however this can be considered a trade off for 

protection from host immune cell mediated tissue damage.

Interruption of C-C chemokine receptor type 5 (CCR5) signalling was also 

shown to increase IAV susceptibility in mice. Dawson et al. found that CCR5 

deficient mice suffered increased accumulation of macrophages in the lung and 

higher pulmonary levels of the proinflammatory cytokines MCP-1, IP-10 and 

RANTES, and this associated with host mortality (Dawson et al., 2000). CCR5 

mediated protection from severe IAV induced disease is likely through RANTES- 

CCR5 interaction, as RANTES deficient mice were also susceptible to IAV induced 

disease, while mice deficient for Mip-la, another known ligand of CCR5, exhibited 

either comparable disease progression to wild type controls or lower levels of IAV 

induced inflammation (Cook et al., 1995; Szretter et al., 2007; Tyner et al., 2005). 

Wang et al. demonstrated IP-10 to be upstream of lung damage in severe H1N1 

infection and blockade of this cytokine by either genetic ablation or mAb 

neutralisation lowered IAV induced disease burden, significantly Wang et al. 

correlated their results with elevated concentrations of IP-10 in the sera of 

humans hospitalised due to SO-IV infection (Wang et al., 2013).

Clinical outcome of CCR2 deficiency in mice varies depending on 

experimental setting. In both IAV and RSV infection, AMs secrete IFNa(3, and this 

induces MCP-1 secretion mediating IMcs recruitment to the lung. IMcs have potent 

inflammatory and antiviral activity and in this way can promote the immune 

response to respiratory viruses (Aldridge et al., 2009; Dessing et al., 2007; Goritzka 

et al., 2015). However, overexpression of MCP-1 in the lung can lead to severe
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disease in IAV infected mice, characterised by monocyte influx, lung tissue damage 

and ultimately, host mortality (Lin et al., 2008). How MCP-1 mediated IMc 

recruitm ent modulates IAV induced disease outcome is discussed in later sections.

There does not appear to be a pivotal cytokine storm mediator, collectively 

these studies in animal models demonstrate that there is yet to be a setting where 

complete absence of a specific cytokine or its cognate receptor entirely ablates IAV 

induced cytokine storm. It is interesting to note that IFNap is known to induce 

proinflammatory cytokine secretion from many cell types and as discussed, IFNap 

in some studies correlates with high levels of other IAV induced proinflammatory 

cytokines and severity IAV induced disease. However, these observations are only 

correlative and do not always hold true, some studies find that there is a negative 

correlation between IFNap levels and IAV induced cytokine storm and consequent 

disease severity. Further study is required to ascertain whether or not there is a 

casual link between IFNap, proinflammatory cytokine secretion and disease 

severity in IAV infection.

1.4.4 AMs and IAV

AMs are long-lived, terminally differentiated tissue resident cells capable of 

limited cellular division. They occupy a unique environmental niche, positioned in 

direct contact with the external atmosphere and the lung epithelial cell layer. AMs 

are vital for the maintenance of surfactant homeostasis in the alveolar space as 

well as clearing particulate antigens and epithelial cells which have undergone 

apoptosis from the airways by phagocytosis (Trapnell and Whitsett, 2002). As they 

occupy a space within the tissue which is constantly and directly exposed to the 

external environment, AM inflammatory responses must be tightly regulated, and
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as such resting AMs produce only low levels of inflammatory cytokines and are 

less phagocytic than their counterparts in other tissues (Holt et al., 2008). One 

such regulatory mechanism is the expression of prostaglandin E2 (PGE2) 

(Coulombe et al., 2014). Yet, AMs are among the first cells in the respiratory tract 

to detect and respond to IAV and therefore play a pivotal role in mounting effective 

innate and adaptive responses (Kim et al., 2008; Tumpey et al., 2005b).

Upon activation by IAV, AMs convert into highly phagocytic cells, as aside 

from cytokine secretion AMs are also tasked with clearance of apoptotic host cells 

from the airways and this function is essential to limit host pathology (Hashimoto 

et al., 2007). Genetic deletion of the colony-stimulating factor Granulocyte- 

macrophage colony-stimulating factor (GM-CSF) results in mice that are deficient 

in AMs. Infection of GM-CSF deficient mice with IAV lead to obstruction of alveoli 

with aggregates of eosinophilic material. Moreover, the BAL fluid of these mice was 

highly enriched in dead cells and cellular debris, indicating impaired clearance of 

apoptotic cells (Schneider et al., 2014a). Schneider et al also found that genetic 

deletion of GM-CSF or AM depletion from Wt mice impaired gas exchange in the 

lung and resulted in fatal hypoxia associated with severe morbidity to IAV 

infection, yet viral clearance was only moderately affected (Schneider et al., 

2014a).

RIG-I mediated recognition of IAV elicits secretion of a wide range of 

proinflammatory cytokines by AMs. Significantly, this proinflammatory cytokine 

secretion is enhanced in highly pathogenic strains of IAV. In two independent 

studies Cheung et al. and Zhou et al. both showed that infection of human 

monocyte derived macrophages with H5N1 resulted in higher expressions of 

TNFa, IFN(3, RANTES, MIP-la, MIP-ip, MCP-1 and IP-10, than what was induced by
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infection with seasonal IAV strains (Cheung et al., 2002; Zhou et al., 2006). 

Macrophages derived from blood monocyte have a more inflammatory phenotype 

than tissue resident AMs (Holt et al., 2008), therefore these experiments may be 

more indicative of the response of IMcs recruited to the lung during IAV infection. 

Nevertheless, Perrone et al demonstrated that H5N1 virus consistently elicited 

significantly higher levels of pro-inflammatory cytokines in whole lungs and 

primary human macrophages compared to other IAV strains (Perrone et al., 2008). 

AMs secrete these cytokines in order to combat IAV infection. As discussed, IFNp 

induces the antiviral state in AECs, and chemokines such as MCP-1, RANTES and 

IP-10 drive the recruitment of other immune cell types to the lung. In particular, 

MCP-1 induces significant recruitment of IMcs via CCR2 (Dawson et al., 2000), 

which differentiate into monocyte-derived DCs and macrophages leading to the 

marked expansion of the macrophage pool (Geissmann et al., 2010).

AM action early in IAV infection has been shown to be vital for protection 

from severe IAV induced disease. Depletion of AMs in pigs prior to, and throughout 

IAV infection lead to elevated clinical score and weight loss compared to 

nontreated controls. AM depletion led to lower levels of TNFa secretion and a 

decreased percentage of CD8+ T cells expressing IFNy, culminating in higher virus 

loads and host pathology (Kim et al., 2008). Similarly, Tumpey et al. also 

demonstrated that depletion of AMs prior to, but not during, IAV infection of mice 

resulted in uncontrolled viral replication, blunted pulmonary levels of 

proinflammatory cytokines including IFNa, IFNy and TNFa and this associated 

with a significant increase in IAV-associated mortality (Tumpey et al., 2005b). 

Although AMs have also been shown to drive host immunity to IAV by antigen 

presentation to T cells (Coulombe et al., 2014; Kim et al., 2008; Wijburg et al.,
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1997), Schneider et al. attributed induction and maintenance of the CD8+ T cell 

response to IAV to CD103+ DCs rather than AMs (Schneider et al., 2014a). These 

studies demonstrate the integral role AMs play in the early control of virus 

infection, prior to the induction of adaptive responses. However, AM mediated 

immunostimulation is tightly regulated, as PGE2 is up regulated by this cell type 

during IAV infection. PGE2 action on AMs inhibits IFNap production from this cell 

type. Furthermore PGE2 expression decreased AM capability to present antigen to 

CD8+ T cells. Collectively, PGE2 mediated inhibition of AM proinflammatory 

function increased virus loads in the lung and host susceptibility to lethal IAV dose 

(Coulombe et al., 2014).

A conclusion that may be drawn from the above studies is that AM 

mediated induction of proinflammatory cytokines is protective for the host in IAV 

infection. However, induction of proinflammatory factors from AMs can have 

deleterious consequences in IAV infection. Nitric oxide synthase 2 (NOS2) and 

TNFa have both been shown to be secreted by AMs and also to associate with 

immunopathology in IAV. TNFa specific neutralizing Abs ameliorated lung lesions 

and increase survival time of CD1 mice infected with a lethal dose of IAV, however 

neutralisation of TNFa did not affect virus titers in the lung (Peper and Van 

Campen, 1995). Antioxidant treatm ent (which inhibits NOS2) of IAV-infected mice 

results in improved lung function and accelerated disease resolution, while genetic 

ablation of NOS2 in mice lowered IAV titres in the lung compared to Wt controls, 

and this associated with increased virus-specific IgG2a Abs (Jayasekera et al., 

2006; Snelgrove et al., 2006). Furthermore, AMs may be upstream  of these 

proinflammatory mediators as AM secreted MCP-1 mediates recruitm ent of IMcs 

which have also been demonstrated to produce the NOS2 and TNFa in response to
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IAV infection (Aldridge et al., 2009; Lin et al., 2008), discussed further in a later 

section.

Although respiratory epithelial cells are the primary site of IAV replication, 

many studies suggest that IAV also infects AMs; however whether or not this 

infection results in productive replication in these cells is controversial. Rodgers et 

al found that seasonal strains of IAV could infect human AMs obtained by 

fibreoptic bronchoscopy, and NP antigen expression in AMs was observed, 

however no virus release was detected (Rodgers and Mims, 1982). Similar results 

were also recorded by other groups (van Riel et al., 2011; Yu et al., 2011). Yu et al. 

and van Riel et al. also compared infectivity of seasonal IAV and highly pathogenic 

H5N1 IAV strains. Both observed that H5N1 replicated productively in AMs and, as 

previously observed by Cheung et al and Zhou et al., higher pathogenicity of IAV 

strain correlated with higher proinflammatory cytokine secretion (van Riel et al., 

2011; Yu et al., 2011). Similarly, infection of murine AMs with seasonal IAV was 

abortive (ie: no new virions were produced). It is thought that highly pathogenic 

avian IAV strains are able to generate productive infection in AMs, due to their 

expression of polybasic HA cleavage sites which are cleavable by ubiquitously 

expressed proteases (Stieneke-Grober et al., 1992). It is likely that high 

pathogenicity in H5N1 strains, characterised by an elevated inflammatory 

response, is intimately linked to the ability of this IAV strain to productively infect 

AMs, thereby augmenting activation of this cell type.

1.4.5 pDCs and IAV

Although most cell types produce both IFNa(3 and IFNA to varying degrees, 

pDCs are characterized as exquisite IFN producers. pDCs were first discovered in
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humans and were originally characterised in humans under a number of different 

pseudonyms: plasmacytoid monocytes (Facchetti et al., 1990; Facchetti et al., 

1988), pre-DC2 (Grouard et al., 1997), and natural IFN-producing cells (Chehimi et 

al., 1989; Feldman and Fitzgerald-Bocarsly, 1990; Ronnblom et al., 1983; Sandberg 

et al., 1991; Starr et al., 1993), until properly defined as pDCs in 1999 (Celia et al., 

1999; Siegal et al., 1999). 2 years later the existence of murine pDCs was confirmed 

(Asselin-Paturel et al., 2001; Bjorck, 2001; Nakano et al., 2001). Interestingly, these 

early definitions specify the key properties of pDCs: potent IFN production, 

secretory plasmacytoid morphology, and the ability to differentiate into cDCs.

pDCs sense IAV infection through TLR7 and are generally immune to IAV 

infection due to their strong propensity for IFN production (Diebold et al., 2004; 

Kato et al., 2005; Liu, 2005). Why pDCs are such potent IFN producers is still not 

entirely understood. IRF7 is required for IFN secretion from pDCs (Kumagai et al., 

2009), and pDCs express high levels of IRF7 in the steady state compared to other 

immune cells (Dai et al., 2004; Izaguirre et al., 2003; Kerkmann et al., 2003). 

Furthermore, pDCs are capable of retaining PAMPS in the early endocytic 

compartment, thereby propagating IFN induction (Honda et al., 2005). There are 

also several surface receptors on pDCs which can alter IFNap secretion, including 

SCARB2, DOCK2, Ly49Q and Siglec H (Gotoh et al., 2010; Guo et al., 2015; Puttur et 

al., 2013; Tai et al., 2008). Propensity of pDCs to generate such massive amounts of 

IFNs is therefore controlled on many levels.

In response to IAV, both human and mouse pDCs secrete massive amounts 

of IFNap and IFNA (Diebold et al., 2004; Koyama et al., 2007; Liu, 2005; 

Thitithanyanont et al., 2007). Diebold et al. demonstrated that IFNap secretion 

from pDCs in vitro does not depend on live IAV activity but does require
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endosomal recognition of IAV ssRNA by TLR7 (Diebold et al., 2004). This 

recognition of IAV both live and UV inactivated, by TLR7 in pDCs appears to be 

independent of pDC autophagy (Lee et al., 2007). pDC derived IFNap can assist in 

establishment of the expression of antiviral genes in cells vulnerable to IAV 

infection such as AECs. Aside from IFNs, pDCs also have also been shown to secrete 

proinflammatory cytokines such as TNFa and IP-10 that assist the immune 

response during infection. Whilst pDCs are not as effective at taking up soluble or 

cellular antigens as cDCs, immature pDCs have been demonstrated to endocytose 

cellular material from live influenza-exposed cells, subsequently mature, and 

cross-present viral antigens very efficiently to specific CD8+ T cells (Lui et al., 

2009). Furthermore, Langlois et al. demonstrate that pDCs eliminate virus-specific 

cytotoxic lymphocytes in the lung following pathogenic influenza virus infection, 

suggesting a pDC-mediated role in restoring immunologic homeostasis post

infection (Langlois and Legge, 2010). pDCs therefore affect many facets of the host 

immune response to IAV.

In some viral infections, pDCs and their secreted IFNap constitute a critical 

aspect of host immunity. pDC mediated control of virus load is critical for host 

protection during mouse hepatitis virus (MHV) infection, herpes simplex virus 2 

(HSV2) infection and early life infection with pneumovirus for mice (PVM) 

(Cervantes-Barragan et al., 2012; Cervantes-Barragan et al., 2007; Davidson et al.,

2011). However, pDCs have been demonstrated to be nonessential for control of 

IAV infection. GeurtsvanKessel et al found that mAb mediated depletion of pDCs 

during IAV infection did not affect immune response to IAV: virus was cleared by 

8dpi and surprisingly, IFNa concentrations in the lung were unaffected by 

depletion (GeurtsvanKessel et al., 2008). In another study using the same method
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of pDC depletion during IAV infection observed decreased pulmonary levels of 

IFNa, reduction in lung virus burden, enhancement of mononuclear phagocyte 

progenitor generation, recruitment of cDCs, AMs and exudate macrophages to the 

lung and increased production of TNF-a and IL-6 from these cell types compared 

to non depleted controls (Soloff et al., 2012}. However, on balance this did not alter 

disease outcome. Infection of IkarosL/L mice, which have no pDCs, with IAV 

demonstrated that pDCs were not required for generation of neutralizing Abs or 

IAV-specific effector and memory CD8+ T cells (Wolf et al., 2009}. In contrast, 

Kaminski et al. found a protective role for TLR7 and pDCs in the severe H7N7 IAV 

infection, genetic ablation of TLR7 signalling or depletion of pDCs decreased 

survival of mice infected with H7N7 infected (Kaminski et al., 2012}.

In vitro infection of human pDCs isolated from PBMCs with high and low 

pathogenicity IAV strains elicited secretion of IFNa and other proinflammatory 

cytokines including TNFa and IP-10. Similar to what was observed in AMs and 

monocyte derived macrophages, the IFN-a response induced by the high 

pathogenicity (H5N1} strains tested was several-fold higher than that which was 

induced by low-pathogenicity IAV strains. However, this did not follow for 

secretion of TNFa and IP-10, production of TNFa by pDCs was only slightly 

elevated in high pathogenicity IAV strains compared to low and IP-10 secretion 

was equivalent between all IAV strains tested (Sandbulte et al., 2008}.

1.4.6 Monocyte derived cell types and IAV

In order to establish or replenish DC and macrophage populations at the 

site of IAV infection, monocytes are recruited from the bone m arrow to the lung. 

Monocytes are a heterogeneous population of circulating hematopoietic cells that
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originate from a common myeloid progenitor. Monocytes are broadly categorised 

based on their expression of the marker lymphocyte antigen 6C (Ly6C) as resident 

(Ly6Cl0) and inflammatory (Ly6Chi). At baseline, resident monocytes circulate in 

the blood and act as sentinel cells, however upon infection, Ly6Chi IMcs are 

signalled to egress from the bone marrow. This process is entirely dependent upon 

engagement of CCR2, primarily (however not only) by MCP-1 (Kurihara et al., 

1997; Kuziel et al., 1997; Si et al., 2010).

Recruited monocytes and differentiated macrophages can be infected with 

IAV, however de novo synthesis of viral proteins has been shown to be interrupted 

before completion of the first replication cycle, and these cells die off by apoptosis 

within 48hrs of infection (Fesq et al., 1994). IAV is recognised by monocytic cell 

types through replication dependent and independent mechanisms (Hofmann et 

al., 1997; Kaufmann et al., 2001). Upon recognition, monocyte derived cell types, 

especially IMcs secrete proinflammatory cytokines such as IFNap, TNFa, IL-6 and 

IL-lp; chemokines including MCP-1, MIP-la, RANTES and IP-10; as well as reactive 

nitrogen intermediates through iNOS to combat IAV spread and promote host 

immunity (Gong et al., 1991; Hofmann et al., 1997; Julkunen et al., 2001; Kaufmann 

et al., 2001; Seo et al., 2011; Sprenger et al., 1996).

Depending on the virulence of the IAV strain used and the initial viral 

inoculate, IMcs can be protective or detrimental to the host. In a model for blocking 

monocytic recruitment by genomic ablation of the CCR2 gene, it was observed that 

CCR2-/- mice had a reduced T cell expansion in the draining lymph nodes and this 

associated with elevated IAV presence in the lung (Dawson et al., 2000). 

Furthermore, chemical blunting of IMc recruitment using the drug pioglitazone 

also revealed that IMcs were required for an efficient CD8+ T cell response
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(Aldridge et al., 2009). However, IMcs have also been shown to contribute to lung 

damage during severe IAV infection. CCR2-/- mice as well as those treated with 

pioglitazone or a small molecule inhibitor for CCR2 all exhibit less lung damage 

than their wild type counter parts (Aldridge et al., 2009; Dawson et al., 2000; 

Herold et al., 2008; Lin et al., 2008; Lin et al., 2011). Although IMc recruitm ent is 

entirely dependent on CCR2, MCP-1, the primary ligand of CCR2, is not essential, as 

mAb blockade of MCP-1 or MCP-1-/- mice results in a comparatively milder 

phenotype (Dessing et al., 2007; Narasaraju et al., 2010).

1.5 Epithelial cell death and clinical features of IAV infection

Modern histopathological analysis of autopsy samples from human 

influenza cases from 1918 revealed significant damage to the lungs with acute, 

focal bronchitis and alveolitis associated with massive pulmonary oedema, 

haemorrhage and rapid destruction of the respiratory epithelium (Taubenberger 

and Morens, 2006). Similar features have also been observed in modern samples 

taken from S-0 IV H1N1 and H5N1 infected individuals (Louie et al., 2009; Mauad 

et al., 2010; Peiris et al., 2004). Cell death is a way for the host to restrict virus 

replication and spread, and infected cells either upregulate death receptors such as 

DR5, or are stimulated by other cell types to induce apoptosis. Many features of the 

inflammatory response such as IFNy secretion can enhance this effect. However, 

excessive and prolonged inflammation may be detrimental to the host and 

contribute to the greater morbidity and mortality associated with influenza- 

induced inflammatory injury (Akaike et al., 1996; Monsalvo et al., 2011; Narasaraju 

et al., 2011). Kash et al found that IL-6, IFNap and TLR response genes were more
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strongly activated in severe IAV induced disease than mild and this associated with 

severe pulmonary pathology (Kash et al., 2006).

Apoptosis is one of the processes of programmed cell death that occurs in 

multicellular organisms. It is a highly regulated and controlled process that 

involves biochemical changes of the cell (including membrane blebbing, cell 

shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA 

fragmentation and global mRNA decay) resulting in cell death. Unlike necrosis, 

where cellular contents are indiscriminately released, apoptosis produces cell 

fragments called apoptotic bodies that phagocytic cells are able to engulf and 

quickly remove before the contents of the cell can spill out onto surrounding cells 

and cause damage. Death-inducing members of the TNF superfamily, such as 

TRAIL and Fas ligand (FasL) have been shown to induce apoptosis of cells during 

IAV infection (Elmore, 2007; Holoch and Griffith, 2009).

FasL is the specific ligand for a type-I trans-membrane protein known as 

Fas, which induces cell death, in particular FasL/Fas signalling was shown to be 

essential for elimination of activated peripheral lymphocytes to terminate 

inflammation (Strasser et al., 2009). However, this must be controlled as pDCs 

have been shown to eliminate CD8+ T cells during IAV infection and in this way 

exacerbate, rather than ameliorate disease (Langlois and Legge, 2010). Similarly, 

Fas-dependent apoptosis has been demonstrated as a mechanism employed by the 

host to eliminate IAV infected cells (Fujimoto et al., 1998), yet DNA microarray 

analysis performed by Kash et al. found that FasL/Fas signal related genes in the 

lung is associated with IAV induced mortality in mice (Kash et al., 2006). Moreover, 

administration of recombinant FasL protein or Fas agonists causes acute lung 

inflammation and AEC apoptosis, while inhibition of the Fas/FasL signal by
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treatm ent with a recombinant decoy receptor for FasL increases the survival rate 

of mice after lethal IAV infection (Fujikura et al., 2013; Matute-Bello et al., 2005; 

Matute-Bello et al., 2001a; Matute-Bello et al., 2001b]. Interestingly, IFNap 

signalling was demonstrated to be critical for induction of FasL, yet not Fas protein 

expression in the lung in immune cells as well as T -la + cell types (likely AECs and 

endothelial cells] (Fujikura et al., 2013].

IMcs and other cell types can cause tissue damage through the expression 

of the apoptosis inducing ligand TRAIL (Ellis et al., 2015; Herold et al., 2008; 

Hogner et al., 2013]. Also known as Apo2L, TRAIL is a member of the TNF 

superfamily (TNFSF10] of cytokines and was initially characterised in the context 

of cancer research where it was shown to induce apoptosis specifically in 

transformed cells but not in normal, untransformed tissues (Holoch and Griffith, 

2009]. TRAIL is a type II transmembrane protein in which the carboxyl terminus 

with the receptor-binding domain protrudes extracellularly. This protein forms 

trimers, and TRAIL activity is further regulated by a zinc ion bound to a cystein 

residue (Cys 230] at the trim er's interface (Bodmer et al., 2000]. The role TRAIL 

plays in infectious disease is beginning to be appreciated. TRAIL can be a secreted 

or membrane bound ligand, which interacts with any of five TRAIL receptors in 

humans or mice. However, it is only TRAIL-R1 and TRAIL-R2 in humans and only 

DR5 in mice that contain death domains and therefore induce cell death on TRAIL 

engagement, while the remaining TRAIL receptors are considered decoys 

(Benedict and Ware, 2012; Schaefer et al., 2007]. Ex vivo assessm ent of human 

macrophages has shown that TRAIL expression and secretion by this cell type is 

enhanced in severe disease and IAV infection of PBMCs induces TRAIL 

upregulation. Intriguingly, IFNap has also been shown to stimulate TRAIL
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upregulation on monocyte-derived macrophages in (Brincks et al., 2008b; Hogner 

et al., 2013; Santini et al., 2000). Furthermore, IAV infection of a human lung 

epithelial cell line increases cell susceptibility to TRAIL mediated apoptosis 

(Brincks et al., 2008b). Interestingly, in vivo interruption of TRAIL signalling, 

either by genomic deletion or mAb blockade during IAV infection, can be beneficial 

or detrimental to the host where TRAIL blockade can protect the host from 

immune mediated tissue damage however, in severe IAV infection TRAIL-/- mice 

are more susceptible to IAV induced disease due to accumulation of cytoktoxic 

CD8+ T cells in the lung (Brincks et al., 2008a; Brincks et al., 2008b; Herold et al., 

2008; Hogner et al., 2013).

DR5 in mice and TRAIL-R1 and TRAIL-R2 all have a death binding domain; 

ligand engagement of these receptors therefore transduces an apoptotic signal into 

the cell. TRAIL binding induces the recruitment of signalling molecules by 

homologous protein-protein interactions, forming the DISC (death-inducing 

signalling complex) (Walczak and Haas, 2008). Ligand binding also induces 

conformational changes in the receptor, which lead to the recruitment of the 

adaptor molecule FADD (Fas-associated death domain) via homologous death 

dom ain-death domain interactions. FADD, in turn, can recruit inactive caspase 8 

through so-called death effector domain interactions. Upon caspase 8 activation at 

the DISC, caspase 8 has two possible substrates: pro-caspase-3 and Bid. Cleavage 

and subsequent autocatalytic activation of caspase-3 directly triggers a caspase 

cascade, ultimately leading to apoptosis, whereas cleavage of the pro-apoptotic 

Bcl-2 family member Bid links TRAIL signalling to the intrinsic or mitochondrial 

apoptosis pathway (Youle and Strasser, 2008). As mentioned above, TRAIL 

mediated cell death has been observed in IAV infected mice and has been linked to
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both positive and negative disease outcome, depending on the severity of IAV 

induced disease.

1.6 IAV and Host genetics

IAV infection in humans manifests as a range of symptoms depending on 

the infected individual, from asymptomatic responses, nasal congestion, fever, 

myalgia and head ache to severe cases of acute respiratory distress syndrome 

(ARDS) and organ failure (Cate, 1987; de Jong et al., 2006; Mauad et al., 2010; 

Peiris et al., 2004; Taubenberger and Morens, 2006). There are three main 

determinants of this variability: the intrinsic virulence of the virus, acquired host 

factors (such as immunological memory and comorbidity) and intrinsic 

susceptibility of the host (Horby et al., 2013). Evolution of host-pathogen 

interactions results in variants in host genes that ultimately associate with good or 

bad prognosis following infection. With the advent of genome wide association 

studies (GWAS) this concept is becoming easier to investigate, and elements of the 

human genome are beginning to be correlated with the different severity levels of 

many diseases including IAV-induced disease.

A seminal study published in 2008 conducted by Albright et al. examined 

the genealogy of a population from Utah, USA, over a period of 100 years (1904- 

2004). By assessing medical and genealogy records, the authors observed that 

both close and distant relatives of individuals who died of influenza had a 

significantly increased risk of dying of influenza themselves, consistent with a 

combination of shared exposure and genetic effects (Albright et al., 2008). This 

study is particularly compelling given the huge cohort of 4855 deaths assessed,
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and as IAV induced mortality of genetically related individuals frequently did not 

occur close in time, it indicates that host genetics could be more important than 

host environment. This study gives strong evidence that susceptibility to severe 

IAV induced disease is heritable. In contrast, while Gottfredsson et al.'s study on 

victims of the 1918 IAV outbreak in Iceland over a 6-week period did find evidence 

of familial aggregation of IAV induced mortality, the authors concluded host 

genetics did not contribute to this IAV induced mortality (Gottfredsson et al., 

2008). However, the Icelandic study was comparatively limited, having a ten-fold 

lower number of subjects and restricted to a single time period where shared 

exposure would be a strong confounding factor. Therefore, Albright et al. provide 

evidence that IAV-induced disease severity has a heritable component while 

Gottfredsson et al.'s study is inconclusive.

More generally, this last decade has seen the spread of H5N1 which, 

although highly virulent in avian species, has a relatively low rate of infection in 

humans. It has been observed that among the clusters of human infections with 

H5N1, the majority of cases have occurred in genetically related family groups 

(Horby et al., 2010; Olsen et al., 2005; Pitzer et al., 2007). Arguably, H5N1 familial 

aggregation could be attributed to non-genetic variation in household risk of 

exposure to H5N1 rather than host-genetic factors (Pitzer et al., 2007), however it 

is striking that 50 out of the 54 H5N1 infection clusters reported by 2010 were 

comprised only of blood relatives (Horby et al., 2010). Another general 

observation is that during SO-IV H1N1 outbreak there was a high rate of 

hospitalisation of individuals with Down's syndrome (DS). DS suffers have a total 

or partial triplication of chromosome 21 and therefore represent a genetically 

defined population of individuals. During the 2009 SO-IV pandemic DS sufferers
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were more likely to be treated with antivirals and intubated, compared to non- 

trisomic hospitalised individuals (Perez-Padilla et al., 2010).

The most well characterised region of genetic variability in the human 

genome is that of the Human leucocyte antigen (HLA) locus. HLA hyper-variability 

is in fact the basic mechanism used by the host to ensure the recognition of PAMPs 

and antigen presentation to T cells (Blackwell et al., 2009). Cell-mediated lysis of 

IAV infected cells is dependent on HLA specificities (Biddison and Shaw, 1979; 

McMichael, 1978; McMichael et al., 1977; Shaw and Biddison, 1979), and the HLA 

haplotype influences the magnitude and specificity of the cytotoxic T lymphocyte 

(CTL) response to IAV infection (Belz et al., 2000; Boon et al., 2002; Hertz et al., 

2013). Currently, no genetic studies have been conducted to identify 

polymorphisms in HLA loci associated with susceptibility to IAV infection. Given 

the inherent diversity of HLA loci, the complex interaction of HLA in determining 

responses to infection and the linkage of HLA to other genes involved in innate 

immunity, such studies will be challenging (Horby et al., 2012).

More and more studies are emerging which demonstrate that severe IAV 

induced disease can result from single-gene inborn errors in immunity. In a study 

of one otherwise healthy child, who suffered life-threatening IAV induced illness 

during primary infection, Ciancanelli et al identified compound heterozygous null 

mutations in the gene coding for the IFN transcription factor IRF7. This loss of 

IRF7 function blunted the patient's IFNap and IFNA response to IAV and rendered 

stem cell-derived pulmonary epithelial cells from the patient highly permissive to 

IAV replication (Ciancanelli et al., 2015). Similar to Ciancanelli et al.'s study, Dupuis 

et al investigated two unrelated infants who both died of viral disease and found 

that this was associated with mutations in their alleles coding for the STAT1
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transcription factor. Cells taken from these individuals were unresponsive to both 

IFNap and IFNy; IFN stimulation did not activate STATl-containing transcription 

factors and therefore ISG expression (Dupuis et al., 2003). Additionally, Duncan et 

al. identified a homozygous mutation in the high-affinity chain of the IFNapR 

(IFNAR2) that rendered cells unresponsive to IFNap. The identified individual was 

highly susceptible to viral replication and succumbed to complications brought 

about by vaccination with attenuated virus (Duncan et al., 2015). Finally, Minegishi 

et al. identified a homozygous Tyk2 mutation in a patient that was acutely 

susceptible to microorganism invasion and this was attributed to defective 

signalling in the IFNap, IL-6, IL-10, IL-12, and IL-23 pathways (Minegishi et al., 

2006).

Esposito et al. identified two mutations in the human TLR3 gene: the 

missense mutation F303S and the single nucleotide polymorphism (SNP) 

rs5743313, which were linked to influenza-associated encephalopathy (IAE) and 

to IAV-associated pneumonia, respectively (Esposito et al., 2012). CD55 is a 

protein thought to protect against IAV induced tissue damage, as this gene codes 

for a protective decay-accelerating factor that prevents cell damage caused by 

complement molecules and is particularly expressed in the lung (Osuka et al., 

2006). A SNP (rs2564978) on the promoter region of CD55 associated with severe 

disease in S-0 IV H1N1 infected individuals of Chinese and Japanese origin (Zhou 

et al., 2012).

In terms of genomic variance of specific proinflammatory cytokines, 

polymorphisms of in the ILIA gene and the IL1B gene have been positively 

correlated to higher susceptibility H1N1 infection (Liu et al., 2013). A single SNP in 

the TNF gene was found to correlate with severe IAV induced disease in one study

70



(Antonopoulou et al., 2012), though not in another (Ferdinands et al., 2011). A 

study on a small cohort of critically ill H1N1 infected patients indicated an 

increased prevalence in a 32 base pair deletion in the CCR5 gene, however this was 

only in individuals of white ethnicity (Keynan et al., 2010). Finally, a hypothesis 

free study conducted by Zuniga et al. compared cases of S-OIV H1N1 with 

asymptomatic household contacts and identified four SNPs which associated with 

disease, three of which were within genes: an immunoglobulin Fc receptor 

(FCGR2A); a complement binding protein (C1QBP); and a protein that mediates 

the entry of replication protein A into the nucleus (RPAIN) (Zuniga et al., 2012).

Interestingly, in the context of hepatitis C virus (HCV) clearance in response 

to pegylated IFNa and ribavirin treatm ent or in spontaneous clearance, several 

SNP in the human IFNA locus has been identified. Particularly protective in terms 

of HCV is the SNP rs368234815, which disrupts the open reading frame of IFNL4, 

thereby ablating expression of the IFNA4 protein (Hamming et al., 2013; 

Prokunina-Olsson et al., 2013). Additionally, another SNP: rs ll7 6 4 8 4 4 4  results in 

a nonsynonymous change in the coding region of IFNL4, where a proline residue is 

replaced by serine, resulting in two versions of IFNA4: the fully active IFNA4-P70 

and a much less active IFNA4-S70 (Terczynska-Dyla, 2015). Thus, HCV patients 

can be clustered into 3 groups, those that do not have IFNA4, those that have the 

less active form (IFNA4-S70) and those that have the fully active IFNA4-P70, with 

the presence and activity of IFNA4 inversely correlating to IFNa based treatm ent 

effectiveness (Terczynska-Dyla, 2015). Intriguingly, the frameshift mutation in 

human IFNL4 was introduced approximately 55,000 years ago and was rapidly 

positively selected for, indicating that this gene may negatively impact the immune
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response (Key et al., 2014), yet whether or not IFNA4 affects IAV induced disease 

severity remains to be studied.

In terms of mouse models, it has long been known that susceptibility to IAV 

varies between inbred laboratory mouse strains. Srivastava et al. assessed seven 

different inbred laboratory mouse strains and found a spectrum of disease, where 

severity correlated with virus load, high pulmonary concentrations of cytokines 

and chemokines and tissue damage (Srivastava et al., 2009). Further analysis of a 

selected resistant stain: C57BL/6J and a susceptible strain: DBA/2J revealed innate 

immune response genes were up regulated in both strains, but to a greater extent 

in the susceptible strain. Furthermore, crossing the two strains increased 

resistance, albeit with slightly higher IAV induced morbidity than the parental 

C57BL/6J strain, suggesting that susceptibility to IAV induced disease in mice is a 

polygenic trait. Similar results were also observed in an earlier study performed by 

another group (Alberts et al., 2010; Boon et al., 2009)

In a large study of 21 inbred mouse strains infected with avian IAV, Boon et 

al. also demonstrated a range of host susceptibility that spanned several logs of 

H5N1 inoculate. Further comparison of select mouse strains: C57BL/6, BALB/C, 

SM, 129/SvIm, A/J and DBA/2J, revealed that the DBA/2J strain was most 

susceptible to IAV induced disease, and this correlated to higher virus loads and 

inflammatory response in the lung. Gene expression and pathway analysis of select 

strains again demonstrated that differential gene expression primarily consisted of 

up-regulation of proinflammatory pathways in susceptible mouse strains, 

indicating the immune response is quantitatively but not qualitatively different 

between strains. No distinctive set of genes controlling replication or disease was 

identified in resistant mice (Boon et al., 2011). Infection of C57BL/6J (resistant
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strain) and BALB/cByJ (susceptible strain) with a low pathogenicity IAV strain: 

H3N2 A/Hong Kong/X31/68 (X31) revealed a quantitative trait locus (QTL) on 

chromosome 6 that associated with influenza-induced slow-wave sleep patterns 

(Toth and Williams, 1999). Finally, use of recombinant inbred (RI) and select 

congenic strains of mice identified three loci that correlated with IAV induced 

disease severity. These genomic regions were: G-CSF on chromosome 5; IP-10 on 

chromosome 9, and IL-6 and Keratinocyte-Derived Chemokine (KC or CXCL1) on 

chromosome 18 (Trammell et al., 2012).

The earliest identification of a specific gene that affects IAV susceptibility in 

mice was the Mxl gene (Lindenmann, 1962). As previously mentioned, this gene 

was isolated from an outbred mouse strain and encodes for an IFN inducible 

protein that potently impedes IAV replication by inhibiting IAV PB2-NP interaction 

(Verhelst et al., 2012). Inbred laboratory mouse strains have deletions or a 

nonsense point mutation that results in a non-functional Mxl protein, and 

reconstitution of Mxl function in inbred strains of mice through breeding confers a 

significant increase in resistance to IAV infection (Salomon et al., 2007; Tumpey et 

al., 2007). The human homologue of this gene, MxA, has been identified and several 

polymorphisms in this gene have been described, however they have yet to be 

associated with severity of IAV induced disease (Horby et al., 2012).

In contrast to Mx, one gene that has been demonstrated to be im portant in 

both mice and humans for control of IAV replication is IFITM3. In an elegant study 

Everitt et al. were able to demonstrate that mice deficient for this gene developed 

severe viral pneumonia, which could be ameliorated if IFITM3 was reintroduced 

into the system. Furthermore, the authors were able to identify a SNP in the human 

IFITM3 gene (rsl2252-C allele) that truncates the protein, leading to reduced
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restriction of virus replication in vitro. This SNP conferred increased 

permissiveness to replication of a range of IAV strains in human lymphoblastoid 

cell lines and significantly, was found in higher prevalence in individuals 

hospitalised for H1N1 infection, strongly demonstrating that IFITM3 plays an 

important role in resistance to IAV (Everitt et al., 2012; Weidner et al., 2010). More 

recently, Zhang et al. have extended Everitt et al'.s study in Northern Europeans by 

assessing the frequency of the IFITM3 rsl2252-C allele SNP in a Han Chinese 

population hospitalised for SO-IV infection. The authors found the susceptibility 

conferring rsl2252-C allele in 69% of hospitalised patients with severe SO-IV 

induced disease, compared to only 25% in patients who were identified as having 

only mild infection (Zhang et al., 2013).

1.7 Study Rationale

Severe IAV induced disease is characterised by cytokine storm and tissue 

damage, and although this is intimately linked to IAV infection, it is intriguing to 

note that viral load in the lung sometimes correlates with symptom severity and in 

other settings it does not (Agrati et al., 2010; Arankalle et al., 2010; Hayden et al., 

1998; Kaiser et al., 2001; Peiris et al., 2004). Understanding what drives the 

cytokine storm and therefore damage to the respiratory epithelium is vital for 

future development of treatm ent for IAV induced disease. One of the challenging 

clinical questions about IAV induced disease is why disease severity can vary so 

much between individuals. As discussed, there is evidence that variations in host 

genetics play a significant role in determining the susceptibility of an individual to 

IAV infection and subsequent disease outcome.
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IFNap are the prototypical antiviral cytokines and thought to be purely 

protective in IAV infection. However, given their potent immunomodulator 

capabilities, this family of cytokines could also drive the cytokine storm observed 

in severe IAV infection. As inter-individual differences in IFNap secretion have 

been observed in humans (Schlaak et al.) it is within the realms of possibility that 

differences in an individual's type I IFN response could affect the outcome of IAV 

infection.

To investigate the contribution of IFNap and in control of IAV replication 

and orchestration of the innate immune response to IAV I employed a variety of 

inbred laboratory mouse strains, associating susceptibility to IAV induced disease 

with IFNap response. In order to ensure the phenomenon I am investigating is 

primarily dependent upon host response and not specific to aspects of the lab- 

adapted strain of IAV used, I used several strains of IAV, where appropriate, for 

broad profiling. Genetic modification, treatm ent of mice with mAb or exogenous 

administration of IFNa was used to modulate the level of IFNap signalling in a 

given inbred mouse strain and assess the downstream effects of IFNap. From these 

results we find that IAV induced disease severity positively correlates with 

pulmonary concentrations of IFNap, and this is dependent upon the host intrinsic 

response, not elevated IAV titres. Alterations in number of functional alleles for the 

low affinity subunit of IFNapR, IFNAR1, influenced IAV induced disease outcome. 

Significantly, triplication of a genomic region including IFNAR1 in resistant inbred 

mouse strain associated with increased IAV induced disease severity and higher 

pulmonary concentrations of IFNa.

Based upon the results attained in inbred mouse strains, I then w ent on to 

assess the viability of IFNa and IFNA as a treatm ent for IAV infection. Isolation and
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stimulation of specific immune cell types and epithelial cells allowed me to 

investigate cell type specific effects of IFNa and IFNA. Analysis of viral titres, 

proinflammatory cytokine levels and inflammatory cell infiltrate in the lungs of 

IFN treated IAV infected mice demonstrated that exogenous IFNa treatm ent 

recapitulated severe disease features observed in high IFNap producing strains. 

While the match of IFNAR expression and IAV tissue tropism allows IFNAs to target 

cell types at risk of infection, effectively inducing antiviral genes in these cells and 

therefore assisting in the control of IAV spread, without the risk of stimulating the 

immune system to enhance pathology.

76



Chapter 2. Materials and Methods
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129S7/SvEvBrd-Hprtb-m2 mice and IFN type I receptor a-chain-deficient 

(IFNa(3R-/-(129)) generated on the 129SvEv background (Muller et al., 1994)and 

their Wt control: 129SvEv (129) were purchased from B&K Universal. Identity of 

the genetic background between these strains was confirmed by SNP and 

microsatellite analysis (Charles River). IFNapR-/-(B6) mice, backcrossed for more 

than 10 generations to C57BL/6 mice were kindly provided by Dr. A. O'Garra 

(Francis Crick Institute) from Dr. M. Albert (Institut Pasteur, Paris). CBA/J mice 

were also kindly provided by Dr A. O'Garra. Recombination Activating Gene-2 

deficient (Rag-2-/-) (Shinkai et al., 1992) mice on the 129S6 background were 

kindly provided by Dr. F. Powrie (Univ. of Oxford). B6.A2G-Mxl congenic mice 

carrying functional Mxl alleles on the C57BL/6 background (Staeheli et al., 

1985)(kind gift from Dr P. Staeheli, Freiburg Univ.). C57BL/6J.129P2-Dp(16Ifnarl- 

Runxl)8TybEmcf/Nimr (Dp8Tyb) mice were kindly provided by Dr. Victor 

Tybulewicz (Francis Crick Institute). The above mice, 129S8, BALB/C, C57BL/6 

(B6), Rag-1-/- (B6) (Mombaerts et al., 1992), (129xB6)Fl, IFNAR1 129 and 

IFNAR1 B6 mice were bred at the Francis Crick Institute, Mill Hill Laboratory 

under specific pathogen-free conditions. DBA/1 and 129Xl/SvJ mice were 

purchased from Jackson Laboratory, DBA/2 mice from Harlan, 129S6/SvEv- 

S tatltm lR ds (S ta tl- /- ) , 129S5 and 129S6 from Taconic, and kept in specific 

pathogen-free isolators until use for experiments. Clinical symptoms during 

influenza infection were scored based upon presentation of piloerection, hunched 

posture, laboured breathing and reduced movement. All protocols for breeding 

and experiments with animals were approved by the Home Office, UK, Animals 

(Scientific Procedures) Act 1986.



Influenza Viruses

H3N2 A/Hong Kong/X31/68 (X31, a H3N2 reassortant with PR8 backbone), 

A /PR /8/34 (PR8, H1N1), and A/California/04/09 (Cal09, H1N1) (kind gifts from 

Dr. J. Skehel, Francis Crick Institute) were grown in the allantoic cavity of 10 day- 

embryonated hen's eggs and were free of bacterial, mycoplasma, and endotoxin 

contamination. Alternatively, virus was grown in Madin-Darby Canine Kidney 

(MDCK) cells. Egg allantoic cavity or MDCK cell supernant was collected and 

ultracentrifuged to purify virus then stored at -70°C and titrated on MDCK cells. 

Mice were anesthetised by inhalation with isofluorane and infected via the 

intranasal (i.n) route with 30pL of indicated influenza strain diluted in phosphate- 

buffered saline (PBS). Anaesthesia performed for experiments for Chapter 4 were 

done on animals kept on a heat mat to regulate body temperature. Virus was 

quantified in infected lungs by quantitative real-time PCR (qPCR) on 

complementary Deoxyribonucleic acid (cDNA) from whole lungs for the Matrix 

gene, as previously described (Ward et al., 2004).

5'-AAGACCA ATCCTGTCACCTCTGA-3' PR8_M 1 sense
5'-CAAAGCGTCTACGCTGCAGTCC»3'- PR8_M 1 antisense CR
FAM-5'TTTGTGTTCACGCTCACCGT-3'-TAMRA PRSJvIl probe

Alternatively, IAV load in infected lungs was titrated on MDCK cells. 

Aliquots of whole lung samples prepared using gentleMACS tubes (see flow 

cytometry) was taken, centrifuged at 1,300 r.p.m., 5min at 4°C and supernatant 

collected, stored at -70°C until analysed. For samples prepared in Chapter 4: Whole 

lungs from infected mice were collected on ice. Lungs were minced and pressed 

through a 70pM strainer using 1ml of PBS. Samples were then centrifuged at 1,300 

r.p.m., 5min at 4°C and supernatant collected, stored at -70°C until analysed. The
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50% tissue culture infective dose (TCID50) was determined by eight replicates of 

10-fold serial dilutions using the Spearman and Faerber fit.

Treatment o f Mice

To deplete 120G8+ cells, 129 mice were treated with aPDCA-1 (Cambridge 

Bioscience) or IgG2b isotype-matched control, 500 pg/200 pL i.p. on day 1 of 

infection with X31: 800 TCID50, and every 48 h thereafter. 129 mice were treated 

with the Gr-1 reactive RB6-8C5, Ly6G reactive 1A8 or Isotype control (IgG2b) 

(500 pg/200 pL i.p.) (all from BioXCell) (on day 1 of infection and repeated every 

48 h throughout X31 (800 TCID50) infection. To deplete NK cells, 129 mice were 

treated with rabbit aAsialo GM1 serum (200 pL) (eBioscience) on days 1, 3 and 7 

post X31 (800 TCID50) infection. To deplete CD8+ T cells, 129 mice were treated 

with mAb aCD8 (100pg/200pL) (eBioscience) one day prior to and at 5dpi with 

X31 (800 TCID50). All depletions were confirmed by flow cytometry. To block 

TRAIL action, 129 mice were treated i.p. with 150 pg/200 pL of aCD253 (N2B2) 

(Cambridge Bioscience) or isotype control (IgG2a) every 24 h on days 0-9 post 

infection with 800 TCID50 of X31. C57BL/6 mice were infected with X31 (8,000 

TCID5o/30pl) or inoculated with Vehicle control i.n., then treated with 

Recombinant Mouse IFNa4 (PBL Assay Science), 3.5xl04U/200 pi or Vehicle 

Control via the intraperitoneal (i.p.) route on days 1-6 post infection (Chapter 3). 

B6.A2G-Mx mice were treated with 2xl05U/50pL of IFNa4 or 2.6pg/50pL IFNA2 

either at -1dpi (pretreatm ent experiment) or days 2, 4 and 5 post infection 

(treatm ent during infection experiments).
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Recombinant IFNX protein

A kind gift from Dr. Rune Hartmann. A codon optimized cDNA encoding the mature 

form (without the signal peptide) of Mouse IFN-A2 was purchased (Eurofins) and 

expressed in E. Coli, purified under denaturizing condition and refolded in vitro as 

described previously (Dellgren et al., 2009)

Bone Marrow Chimera generation

8 week old female 129 and IFNa|3R-/-(129) mice were given a split dose of lethal 

irradiation (500 rads x2 with an 8hr interval) the left to rest for 4hrs. During this 

time bone marrow from 8 week old female 129 and IFNa(BR-/-(129) mice was 

isolated. Briefly, legs were dissected from mice and bone m arrow cells were 

obtained by crushing femurs and tibias with a m ortar and pestle in RPMI-1640 

(BioWhittaker). Red blood cells were lysed using ammonium chloride, and cells 

were washed x2 with MACS buffer (2% BSA, 2mM EDTA (PBS)). T and B cells were 

then depleted using QuadroMACS separator as per manufacture's instructions 

(Miltenyi Biotec). Briefly, CD8a+, CD4+ and CD19+ cells were magnetically labelled 

with MicroBeads (Miltenyi Biotec), for 10 minutes on ice. Binding was halted with 

the addition of excess MACS buffer and cells were centrifuged, 1300rpm, 4°C, 5 

minutes. Cells were then washed once and loaded on a MACS® Column which was

placed in the magnetic field of a MACS Separator (Miltenyi Biotec). Negatively
\

selected cells were collected and the positive fraction discarded. Cells were then 

counted and washed x2 with PBS and after dilution to the appropriate density 

delivered via tail vein injection to irradiated mice. Irradiated mice were closely 

monitored after bone marrow transplant and kept on antibiotic (Baytril, Bayer)
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supplemented drinking w ater for 4 weeks. Mice were left for a further 4 weeks 

before commencement of experiment.

RNA extraction

Whole lungs were collected in TRIzol (Invitrogen) and homogenized using 

Polytron PT 10-35 GT (Kinematica). AEC cultures were lysed directly in the 

transwells and immune cell cultures were lysed directly in wells using the Qiagen 

RNeasy mini kit, according to the manufacturer's instructions. Total RNA was 

prepared using phenol/chloroform extraction, and cDNA was generated from 

these samples using Thermoscipt RT-PCR system, following manufacturer's 

instructions (Invitrogen). The cDNA served as a template for the amplification of 

genes of interest and the housekeeping gene (H prtl) by real-time PCR, using 

TaqMan Gene Expression Assays (Applied Biosystems), universal PCR Master Mix 

(Applied Biosystems) and the ABI-PRISM 7900 sequence detection system 

(Applied Biosystems). The fold increase in mRNA expression was determined 

using the AACt method relatively to the values in mock-treated samples, after 

normalization to H prtl gene expression.

Microarray data analysis

Lungs were homogenized in TRI Reagent (RiboPure kit, Ambion), and total RNA 

isolated according to manufacturer's instruction. RNA was hybridized to 

Illumina.SingleColor.Mouse WG-6_V2_0_R0_1127 microarrays. Raw data were 

processed using GeneSpring GX version 11.5 (Agilent Technologies). After 

background subtraction, each probe was attributed a flag to denote its signal 

intensity detection P-value. Flags were used to filter out probe sets that did not
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result in a 'present' or 'marginal' call in at least 50% of the samples, in any one out 

of the experimental conditions. The signal intensity of each probe was first 

normalized on the median intensity of that probe across the control group and 

then represented as log2 fold change relative to the controls. For Figure 8: a two- 

way ANOVA (parameters: treatm ent and genotype) was performed to identify 

gene significantly differentially expressed relative to controls (>fourfold change; 

P<0.01, Benjamini-Hochberg multiple test correction). For Figure 30: a 1-way 

ANOVA was performed to identify gene significantly differentially expressed 

relative to controls (>1.5fold change; P<0.01, Benjamini-Hochberg multiple test 

correction) which were further analysed by K-means clustering. Microarray data 

has been deposited in Gene Expression Omnibus database under accession codes 

GSE55403 (Figure 8) or GSE70628 (Figure 30).

Protein Analysis

Bronchioalveolar lavage (BAL) fluid was recovered from naive and infected mice, 

centrifuged at l,300rpm, 5min at 4QC and supernatant collected. Stimulated pDC, 

cDC, macrophage and AEC supernatants were collected after 24hr stimulation. 

Concentrations of IFNa (all subtypes), (3 (PBL Biomedical Laboratories) and A 

(R&D) were measured by enzyme-linked immunosorbent assay (ELISA) as per the 

manufacturer's instructions. Concentrations of Eotaxin, G-CSF, IFNy, MCP-1, IP-10, 

Mip-la, Mip-ip and IL-4, IL-6, IL-9, IL-10, IL-12(p70), IL-12(p40) and IL-13 were 

assessed by Milliplex Map Kit (Millipore) as per manufacturer's instructions and 

read on a Luminex 100 (BioRad).
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Microneutralisation Assay

Neutralising antibodies in serum were assessed by a microneutralisation assay. 

Briefly, serum samples were heat inactivated for 30 min at 56°C, diluted 1:100 

then serially diluted 1:3 in duplicate in 96 well flat bottomed plates. Serum 

dilutions were preincubated with X31, 300TCID5o/well for lh r  at 37°C then added 

to MDCK cells and incubated for a further 22hrs at 37°C. After incubation cells 

were washed and fixed and neutralization capability was then assessed by staining 

for Fluorescein isothiocyanate (FITC)-conjugated influenza nucleoprotein (Oxoid) 

and detected with horseradish peroxidase-conjugated anti-FITC antibody (Roche). 

The reaction was then developed with tetramethylbenzidine substrate 

(eBioscience) for 15 min, stopped using H2SO4 and absorbance was read at 450 nm 

using Safire2 reader (Tecan).

Flow cytometry

Leukocytes from the lung were enumerated using flow cytometry. In brief, lungs 

were excised from naive, infected and /or treated mice, digested with 20pg/ml 

Liberase TL (Roche) and 50pg/ml DNAse 1 (30 minutes at 37°C) and homogenized 

using gentleMACS (Miltenyi), following the manufacturer's instructions. Lungs 

were then passed through a 70pM cell strainer and washed with FACS buffer (10% 

BSA in PBS Azide). In the case of lungs prepared for staining with TRAIL or IFNAR 

mAbs lungs were directly mashed through a 70 pM cell strainer and washed with 

FACS buffer. Red blood cells were lysed using ammonium chloride and cells were 

seeded into a 96-well U-bottom plate at lx l06 /w ell. Cells were preincubated with 

anti-FcyRIII/II (Fc block) in FACS buffer prior to a 30 min incubation with one or 

more fluorochrome-labelled antibodies (Appendix, Table 1). Cells were then
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washed with PBS x2 and stained with a secondary antibody and incubated for a 

further 20 minutes at 4°C (if appropriate). Cells were then washed with PBS x2 

counter stained with LIVE/DEAD® Fixable Dead Cell Stain (Life Technologies) and, 

or 7AAD (Life Technologies) to enumerate apoptotic and dead cells (respectively). 

For intracellular staining cells were incubated in Fixation/Permeabilization buffer 

(Affymetrix eBioscience) for 20 minutes at room temperature, washed once with 

Permeabilization Buffer (Affymetrix eBioscience) and incubated for 30 minutes, 

4°C with anti-NP/M-FITC antibody (Imagen Oxoid) in permeabilization buffer then 

washed twice. All samples were resuspended in PBS and analyzed using a LSRII or 

BD LSRFortessaX-20 (Becton Dickinson).

In-vitro stimulation ofpDCs (Chapters 3 and 5)

129, IFNa(3R-/-(129) and B6 bone marrow cells were obtained by flushing femurs 

and tibias with RPMI-1640 (BioWhittaker), using a 23 gauge needle. Red blood 

cells were lysed using ammonium chloride and cells were cultured in Flt3 

supplemented (lOOng/ml) (Pepro Tech) culture media (10% fetal calf serum 

(PAA), L-glutamine, penicillin, streptomycin, and (3-mercaptoethanol in RPMI- 

1640). Media was replenished at day 4 of culture and cells were harvested at day 7. 

Harvested cells were preincubated with Fc block and biotin-conjugated B220 in 

2% BSA (PBS) prior to 30 min incubation with anti-biotin conjugated magnetic 

beads. pDCs were then positively selected using an LS Columns and the 

QuadroMACS separator, as per manufactures instructions (Miltenyi Biotech) and 

found to be 90% pure based on FSC10, SSC10, PDCA-1+ and Siglec-H+ as analysed by 

flow cytometry. For macrophages, culture media was supplemented with L cell sup 

(10%, kind gift from Anne O'Garra, FCI-MH). Media was replenished at day 4 of
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cultures and harvested at day 7. Macrophages were isolated from culture by 

collection of the adherent cells. Culture was found to contain 95% macrophages, 

identified as FSChi, SSChi, F4/80+, C D llb+, by flow cytometry. pDCs were seeded at 

6 x l04cells/well and macrophages at 2x l0 5 cells/well then rested for 24hrs prior 

to stimulation with MDCK grown X31 (MOI of 1) or vehicle control for 24hrs. 

Supernatants were then collected and stored at -70°C until samples were analysed.

In-vitro stimulation ofpDCs, cDCs and Macrophages (Chapter 4)

B6 bone marrow cells were obtained by crushing femurs and tibias with a m ortar 

and pestle in RPMI-1640 (BioWhittaker). Red blood cells were lysed using 

ammonium chloride, and cells were cultured in culture media (10% fetal calf 

serum (PAA), L-glutamine, penicillin, streptomycin, and (3-mercaptoethanol in 

RPMI-1640) supplemented with Flt3L (100 ng/ml, Pepro Tech) for pDCs and cDCs 

or, for macrophages, supplemented with L cell sup (10%, kind gift from Anne 

O'Garra, FCI-MH) culture media. Media was replaced at day 4 of cultures and 

harvested at day 7. Macrophages were isolated from culture by collection of the 

adherent cells. Culture was found to contain 95% macrophages, identified as 

FSChi, SSChi, F4/80+, CDllb+ by flow cytometry. For pDCs and cDCs, non

adherent cells were collected and pre-incubated with Fc blocking mAbs and biotin- 

conjugated anti-B220 (Biolegend) in 2% FCS (PBS) before a 30-min incubation 

with anti-biotin conjugated magnetic beads. pDCs were then positively selected 

using an LS Columns and the QuadroMACS separator, following the manufacturer's 

instructions (Miltenyi Biotech), and found to be 95% pure based on FSClo, SSClo, 

PDCA-1+ and Siglec-H+ as analysed by flow cytometry. cDCs were collect from 

negative fraction and were found to be 90% pure based on FSCint, SSCint, CDllc+
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and CDllb+. All cell types were seeded at 2x105 cells per well, and rested for 24 h 

before stimulation with IFNa4 (lOOU/ml), IFNA2 (1.4ng/ml) or media controls for 

24hrs. Supernatants were then collected and stored at -70°C until samples were 

analysed.

In-vitro stimulation o f splenocytes

Spleens were excised from 129, IFNAR1+/-(129), IFNa(3R-/-(129) and B6 mice. 

Spleens were then were directly mashed through a 70 pM cell strainer and washed 

with FACS buffer. Red blood cells were lysed using ammonium chloride and cells 

were seeded into a 96-well U-bottom plate at l x l0 6/well. If stimulated whole 

splenocyte cultures were stimulated with IFNa4 (lOOU/ml), IFNA2 (1.4ng/ml) or 

left as media control for specified time points. After stimulation cells were 

collected for analysis by flow cytometry.

Primary mouse tracheal epithelial cell culture

Isolation and culture of primary mouse tracheal epithelial cell culture were 

performed as described (Crotta et al., 2013): in brief, cells were isolated from 

mouse trachea by enzymatic treatm ent and seeded onto a 0.4pm pore size clear 

polyester membrane (Corning) coated with a collagen solution. At confluence, 

medium was removed from the upper chamber to establish an air-liquid interface 

(ALI). Fully differentiated, 7- to 10-day-old post-ALI cultures were routinely used 

for experiments. For ISG and IFN induction AECs were infected MDCK grown X31 

(MOI of approx.. 1) (Chapter 3). For analysis of ISG induction and cytokine 

secretion, AEC cultures were stimulated with IFNa4 (lOOU/ml) (PBL Assay 

Science), IFNA2 (1.4ng/ml) or medium control (Chapter 4).
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Histology

Whole lungs were perfused with 10% neutral buffered formaldehyde (NBF) in situ. 

Tissue was then fixed overnight in 10% NBF, embedded in paraffin and sectioned. 

Each lung specimen was stained with hematoxylin and eosin (H&E) and then 

subjected to gross and microscopic pathologic analysis. For Terminal 

deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining, slides 

were deparaffinized and stained for apoptotic cells using ApopTag Fluorescein In 

Situ Apoptosis Detection Kit (Miltenyi) as per the manufacturer's instructions. 

Imaging of slides was performed on a VS120 slide scanner (Olympus) with a VC50 

camera, a UPLSAPO lens, at magnification of 2Ox and a numerical aperture of 0.75. 

Images were analysed using OlyVia Image Viewer 2.6 (Olympus) and Icy Spot 

Detector (ICY-R3M2Y2).

Statistical Analysis

Data shown as the means ±SEM. Sample sizes were designed to give statistical 

power, while minimizing animal use. Data sets were analysed by 2-way ANOVA 

with Bonferroni post tests (weight, cytokine concentration and cellular 

recruitm ent time courses), Log-rank (Mantel-Cox) Test (survival) and Student t 

Tests (cytokine or gene induction from cells) or 2-way ANOVA (human samples). 

GraphPad Prism 6 (GraphPad Software, San Diego, CA) was used for data analysis 

and preparation of all graphs. P-values less than 0.05 were considered to be 

statistically significant.
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Chapter 3. The pathogenic potential of IFNa.6 in 
IAV infection
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Much of the experimental results in this chapter have been published in 'Pathogenic 

potential o f interferon a f  in acute influenza infection' Sophia Davidson. Stefania 

Crotta, Teresa M McCabe & Andreas Wack. 2014. Nature Communications 5, Article 

number: 3864 doi:10.1038/ncomms4864.

3.1 Background

Host susceptibility to, or protection from influenza is traditionally 

attributed to differences in virus strain virulence or varying degrees of pre-existing 

or newly acquired adaptive immunity of the host. Host genetics also play a role in 

the outcome of infectious disease (Alcais et al., 2010]. A 2008 study conducted by 

Albright et al. examining the genealogy of a population from Utah, USA, linked to 

death certificates over a period of 100 years, observed that both close and distant 

relatives of individuals who died of influenza had a significantly increased risk of 

dying of influenza themselves, consistent with a combination of shared exposure 

and genetic effects (Albright et al., 2008]. This study is particularly compelling as 

there was correlation between genetically related family groups rather than non

blood related family members (e.g.: spouses] within the same generation, 

indicating that similar exposure history may be less relevant than intrinsic host 

response. More generally, this last decade has seen the spread of avian influenza 

that, although highly virulent in avian species, has a relatively low rate of infection 

in humans. It has been observed that among the clusters of human infections with 

avian influenza, over 90% of cases have occurred in genetically related family 

groups (Horby et al., 2010; Olsen et al., 2005; Pitzer et al., 2007]. Furthermore, 

several studies using outbred and inbred mice show a wide range of host-specific
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genetic susceptibility with many candidate genes proposed to contribute to 

susceptibility or resistance (Alberts et al., 2010; Boon et al., 2009; Boon et al., 

2011; Everitt et al., 2012; Haller et al., 1979; Srivastava et al., 2009}. There is 

therefore a strong indication that variations in host genetics play a significant role 

in determining the susceptibility of an individual to influenza infection and 

subsequent disease outcome.

Although IAV was first characterised in 1933 (Smith, 1933], interactions 

between IAV and the immune response are yet to be fully elucidated. Specific anti

viral immune mechanisms which are known to contribute to IAV clearance and 

occur late in infection, such as induction of cytotoxic T lymphocytes (CTLs} and 

IAV specific antibodies (Eichelberger et al., 1991a; Eichelberger et al., 1991b; 

Epstein et al., 1998; Scherle et al., 1992; Topham et al., 1996}, are well 

characterised, yet comparatively less is known about the early innate immune 

response. This is significant, as the innate response initially controls viral 

replication and directs the quality and magnitude of the adaptive immune 

response. In particular, some of the first cytokines to be released post influenza 

infection of airway epithelial cells are the type I IFNs (Crotta et al., 2013}.

As both IFNa subtypes and IFNp exclusively signal through IFNa(3R, many 

studies designed to elucidate the role of type I IFNs in influenza infection have 

been conducted under IFNa(3R deficiency. In vitro studies have dem onstrated 

IFNap to be potent a inhibitor of IAV replication (Garcia-Sastre and Biron, 2006; 

Garcia-Sastre et al., 1998a; Isaacs and Lindenmann, 1957; Koerner et al., 2007; 

Matzinger et al., 2013}. However, investigation of IFNapR deficiency in restricting 

influenza infection in vivo is less clear some studies suggesting a protective role for 

IFNap (Durbin et al., 2000; Garcia-Sastre et al., 1998a; Koerner et al., 2007;
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Szretter et al., 2009), others finding no effect (Mordstein et al., 2008; Price et al., 

2000). Differences in influenza strain or dose and use of either IFNapR-/- or 

STAT1-/- mice as models of IFN signalling deficiency on B6, 129, CD1 or mixed 

mouse backgrounds make comparison between (and even within) these studies 

difficult. In particular, the use of STAT1-/- to specifically ablate type I IFN 

signalling is problematic. While STAT1 does act downstream of IFNapR, it has also 

been demonstrated to act downstream of the receptors for types II and III IFNs as 

well as a number of other cytokines that have wide-ranging effects, such as IL-6, 

IL-10 and IL-27 (Casanova et al., 2012). Thus, the 'type I IFN' mediated protection 

claimed to be lost in studies that have used STAT1-/- mice as a model for type I IFN 

signalling is likely a result of a combined effect on a range of cytokines.

This discrepancy of the importance of IFNap in protection against 

influenza-induced disease is reflected in the human data. Hayden et al. found that 

IFNa concentration in nasal washings was proportional to symptom severity in 

humans experimentally infected with seasonal IAV (Hayden et al., 1998), however 

this also correlated to viral load and could therefore be secondary to the available 

stimulus. Human mortality to infections with the highly pathogenic 1918 'Spanish 

Flu' strain and the H5N1 avian strains has been attributed to immunopathology 

and is associated with hypercytokinemia (de Jong et al., 2006; Kash et al., 2006; 

Mauad et al., 2010). IFNap induce the secretion of other pro-inflammatory 

cytokines such as IP-10, IL-6 and IFNy, and these cytokines are commonly found in 

high levels in the serum of critically ill IAV infected humans (Agrati et al., 2010; 

Arankalle et al., 2010; Hayden et al., 1998; Kaiser et al., 2001; Peiris et al., 2004). 

Although in many of these studies IFNap levels in the serum was tested it was 

rarely detected. However, while accessible from severely ill patients, serum is not
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necessarily reflective of events occurring at the site of infection, and it is possible 

IFNap induced secretion of proinflammatory cytokines in the lung is upstream of 

this 'spill-over' which is observed in the blood. Cheung et al. have demonstrated 

that human macrophages secrete high levels of IFNp within hours of H5N1 

infection in vitro (Cheung et al., 2002), while other studies suggest that type I IFN 

levels are lower in H5N1 infection as compared to seasonal strains (Zeng et al., 

2007). Unlike H5N1, H1N1 S-OIV mortality in humans has not been associated with 

hypercytokinemia. The generally low pathogenicity of H1N1 S-OIV (California 

strain) correlates well with a moderate induction of IFNap (Woo et al., 2010). In 

contrast, severe disease due to the highly pathogenic 1918 strain of H1N1 in 

macaques is correlated with persisting low levels of IFNap (Kobasa et al., 2007). 

Studies conducted in mouse models have not yet identified any specific immune 

features that drives the cytokine storm in IAV. However, Teijero et al. did 

demonstrate that IFNap induced secretion of proinflammatory cytokines from 

endothelial cells and this contributed to host susceptibility to IAV (Teijaro et al., 

2011). In a backcrossing study between a resistant (C57BL/6) and a susceptible 

(DBA/1) mouse strain, Boon et al. observed that pulmonary concentrations of 

IFNap during IAV infection positively correlated with disease severity (Boon et al., 

2009), but no causal relationship was established.

The role of type I IFNs during IAV infection is therefore, highly 

controversial. It remains to be elucidated whether this cytokine drives not only an 

antiviral response but also promotes pathogenicity during IAV infection. 

Furthermore, it is unknown whether type I IFNs contribute to inter-individual 

differences in IAV susceptibility.
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3.2 Hypothesis and Aims

This project aimed to investigate the role of type I IFN in influenza-induced 

disease. Using different inbred laboratory mouse strains, we correlated type I IFN 

response with disease outcome. By comparing mouse strains with high IFN and 

low IFN responses and their congenic strains deficient for IFNapR, we were able to 

assess the importance of type I IFNs in induction of antiviral genes and 

immunomodulation during IAV infection.

I hypothesised:

• IFNap can have a positive and negative effect on IAV induced disease 

outcome, depending on signal strength.

• IFNap and IFNA are redundant for induction of antiviral genes in airway 

epithelial cells.

• pDCs can be a major source of type I IFN during IAV infection.

• High amounts of type I IFN signalling during IAV infection can lead to over 

activation of the immune response.
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3.3 Results

3.3.1 IFNap and A levels positively correlate with influenza-induced morbidity and 

mortality across different mouse strains

Comparison between the two inbred laboratory mouse strains C57BL/6 

(B6) and 129S7/SvEvBrd-Hprtb-m2 (129) mice led us to observe dramatic 

differences in morbidity and mortality during infection with the low pathogenicity 

H3N2 IAV strain, X31. B6 mice were highly resistant to X31 induced disease, over 

several logs of viral inoculate. In contrast, 129 mice developed pronounced clinical 

symptoms such as piloerection, reduced movement, laboured breathing and 

dramatic weight loss, ultimately resulting in host mortality (Figure 2A-B). 

Increased morbidity of the 129 mice associated with tissue damage and a robust 

pro-inflammatory response (Figures 5-7). All other 129 substrains tested, i.e. 129 

Xl/SvJ, S5, S6 and S8, also exhibited high susceptibility to X31 induced disease 

compared to B6 mice (Figure 2C). Furthermore, infection with the pandemic H1N1 

IAV strain Cal09 and the classical H1N1 strain PR8 also demonstrated increased 

susceptibility of 129 mice to influenza-induced disease (Figure 2D).

Intriguingly, concentrations of the antiviral cytokines IFNa, (B and A in the 

lungs of susceptible 129 mice were markedly higher than concentrations observed 

in B6 lungs at the majority of time points tested post X31 infection, as assessed in 

bronchoalveolar lavage (BAL) fluid (Figure 3A) and whole lung homogenates (not 

shown). As greater viral replication in 129 mice may stimulate higher expression 

of IFNap, we measured copy number of X31 matrix by qpCR between 1 and 48hrs 

post infection, a period where differences in IFNap expression between 129 and 

B6 mice is already established. Presence of X31 matrix in 129 and B6 lungs was not
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Figure 2: 129 m ice are m ore susceptib le than B6 m ice to IAV induced d isease across 
a range o f virus strains and doses. (A) B6 [circles] and 129 [triangles) mice were 
infected i.n with IAV strain: X31 at indicated viral doses and weight loss and mortality 
recorded. [B] 129 and B6 mice were infected with X31 [800 TCIDso) and scored based on 
presentation of clinical symptoms. [C] Indicated 129 substrains [triangles) and B6 mice 
were infected [i.n.) with X31 [800 TCIDso) and weight loss and mortality recorded. [D) 129 
and B6 mice were infected i.n by indicated influenza virus strains: Cal09 [1000 TCIDso) or 
PR8 [5 TCIDso), and weight loss and mortality recorded. Graphs show mean ± s.e.m and 
are representative of 2-5 independent experiments where n>6. ***p<0.0001, **p<0.001, 
*p<0.01 by 2-way ANOVA with Bonferroni post tests [weight loss or clinical score) or Log- 
rank [Mantel-Cox) Test [survival). Symbols on the right of graphs indicate statistical 
significance of the whole curve, as assessed by 2 way ANOVA, symbols above individual 
points indicate significance as assessed by Bonferroni post test.
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Figure 3
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Figure 3: Increased susceptib ility  o f 129 m ice to IAV-induced d isease  correlates  
with higher BAL concentrations of IFNa, p and X,  desp ite com parable viral load. B6
(circles) and 129 (triangles) mice were infected with X31 (800 TCIDso) i.n. and (A) IFNa, p 
and X levels in BAL fluid were measured by ELISA. X31 burden was quantitated by (B) 
qPCR for the X31 Matrix gene on cDNA from whole lungs and (C) by titration of whole 
lungs on MDCK cells for TCIDso determination. (D-E) 129 and B6 mice were infected with 
Cal09 (1,000 TCIDso), (D) concentration of IFNa, (3 and A in the BAL fluid was assessed by 
ELISA and (E) Cal09 TCIDsowas assessed by titration of whole lung homogenates. (F-G) 
129 and B6 mice were infected with PR8 (IOOTCID50). (F) concentration of IFNa, p and A 
in the BAL fluid was assessed by ELISA and (F) PR8 lung titre was assessed by titration. 
Graphs show mean ± s.e.m and are representative of 2-3 independent experiments where 
n=3-4. ***p<0.0001, **p<0.001, *p<0.01 by 2-way ANOVA with Bonferroni post tests 
(ELISA) or Mann Whitney test (viral quantification). Symbols on the right of graphs 
indicate statistical significance of the whole curve, as assessed by 2 way ANOVA, symbols 
above individual points indicate significance as assessed by Bonferroni post test.
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statistically different at any early time point measured (Figure 3B). However, copy 

number is not indicative of infectious particles, therefore we also confirmed this 

result by titrating infected lung homogenates from 129 and B6 mice on MDCK cells. 

Viral titres, as assessed by TCID50 in 129 and B6 lungs, were not significantly 

different at days 1 and 2 post infection (Figure 3C). Furthermore, assessment of 

IFN concentrations in the BAL and lung viral titres during Cal09 and PR8 infection 

confirmed higher IFNa, p and A concentrations in 129 lungs and this is not due to a 

higher viral load compared to B6 lungs specific to one IAV strain (Figure 3D-G). We 

therefore conclude that differences in expression of type I IFNs is host intrinsic.

To extend the study we infected four other inbred mouse strains, BALB/C, 

CBA/J, DBA/1 and DBA/2, with X31 and assessed IFNap and IFNA levels in the lung 

and susceptibility to X31. Using B6 and 129 parameters as reference, we observed 

that like the B6 strain, BALB/C mice were more resistant to X31 induced disease 

and had low concentrations of IFNa, p and A in their BAL at early time points of 

infection (Figure 4A, B). In contrast, CBA/J, DBA/1 and DBA/2 mice all exhibited 

marked weight loss and mortality during X31 infection (Figure 4C, E, G), and this 

associated with elevated concentrations of IFNa and p in BAL fluid (Figure 4D, F, 

H). As with 129 mice, overt type I IFN signalling in the pulmonary environment 

during X31 infection associated with increased host susceptibility. IFNA levels 

trended to be higher in the susceptible strains than non-susceptible strains, 

however this was generally not significant. We can conclude from this series of 

experiments that high pulmonary IFNap levels correlate directly, not inversely 

with influenza-induced morbidity and mortality across a wide range of mouse 

genetic backgrounds and virus strains.
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Figure 4

H3N2 (X31)H3N2 (X31)

O  BALB/C 
*  129 
O  B6

O  BALB/C O  BALB/CD  BALB/C 
*  A  129 

A  O  B6

O  BALB/C 12S
O  B6D  B6

Days post infection Days post infection Days post infection Days post infection

O  B6 
*  129 
-* CBA/J

■♦•DBA/1

H3N2 (X31)

O  B6 
A  129 
A  CBA/J

| A — • *

An 
A  A

H3N2 (X31) 
 :— rO

O  B6 
A  129 
♦ -  DBA/1

H3N2 (X31)

H3N2 (X31)

O  B6 
-A 129 
♦ -  DBA/1

O  B6 
•A 129 
♦ -  DBA/1

O  B6 
■A 129

O  B6 
■A 129 
-* CBA/J

Days post infection

IFNa

O  B6 
A  129 
*  CBA/J

H3N2 (X31)H3N2 (X31)

O  B6 
129 
DBA/2

O  B6

DBA/2

T ' t  1  O  B6
' JZ * 129 

■• DB/

IFNp

AI  A O  B6 
S Z  A  129

DBA/2

O  B6

Figure 4: High susceptib ility  to IAV induced d isease correlates with high pulm onary  
concentrations of IFNa, p and X across a range o f m ouse strains. (A-B) B6 (circles), 
129 (triangles) and BALB/C (open squares) mice were infected with X31 (8000 TCID50),
(A) weight loss and mortality recorded and (B) IFN concentrations in BAL were measured 
by ELISA. (C-H) 129, B6, CBA/J (black stars), DBA/1 (black diamonds) and DBA/2 (black 
ovals) mice were infected with X31 (800 TCID50), (C, E, G) weight loss and mortality 
recorded and (D, F, H) IFN levels in BAL were measured by ELISA. Graphs show mean ± 
s.e.m and are representative of 2-3 independent experiments where n=3-6. ***p<0.0001, 
**p<0.001, *p<0.01 by 2-way ANOVA with Bonferroni post tests (weight loss and ELISA) 
or Log-rank (Mantel-Cox) Test (survival) where 129:B6 is denoted by *, 129:BALB/C by °, 
B6:CBA/J by °, B6:DBA/1 by 0 and B6:DBA/2 by °. B6:BALB/C and 129:CBA/j, 120:DBA/1 
and 129:DBA/2 were not significant. Symbols on the right of graphs indicate statistical 
significance of the whole curve, as assessed by 2 way ANOVA, symbols above individual 
points indicate significance as assessed by Bonferroni post test.
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3.3.2 IFNap mediates influenza-induced host morbidity and mortality, pro- 

inflammatory cytokine secretion and cellular recruitment

Given the association between high levels of IFNap and high susceptibility 

of 129 mice, we decided to investigate the effect of IFNa and p signalling in these 

mice. Since all IFNa and P molecules exclusively signal through the IFNapR, we 

compared susceptibility of 129 mice deficient for this receptor to their wild type 

(Wt) controls. Surprisingly, ablation of IFNapR signalling resulted in an increase in 

resistance to IAV induced disease. We observed significantly less weight loss and 

mortality in IFNapR-/-(129) mice than Wt 129 mice during infection with X31, 

Cal09 or PR8 (Figure 5A). IFNap deficiency lowered pulmonary concentrations of 

IFNa, p and Xthroughout X31 infection, indeed levels of IFNs detected in IFNapR- 

/-(129) samples were comparable to those found in B6 rather than Wt 129 BAL 

(Figure 5B). This indicates that IFNapR signalling is required to maintain the high 

levels of both IFNap and IFNA that we observe in the 129 background.

Disease features observed in the 129 strain recapitulated cardinal markers 

of severe influenza induced disease in humans. Specifically, gross pathology 

analysis of whole lungs stained with hemolysin and eosin (H&E) revealed immense 

innate cell infiltrate and lung tissue damage in 129 lungs. Lower concentrations of 

IFNap, as in the B6 lung, or complete ablation of type I IFN signalling, as in 

IFNaPR-/-(129) lungs, lead to markedly less cellular infiltrate and better 

preservation of the alveolar structure during X31 infection (Figure 5C). 

Furthermore, 129 lungs exhibited increased concentrations of a number of pro- 

inflammatory cytokines including MCP-1, IL-6, IP-10, IFNy, Eotaxin, G-CSF, and 

Mip-ip, as compared to the resistant B6 strain. Secretion of these pro- 

inflammatory cytokines was also significantly reduced when IFNap signalling was
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Figure 5
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Figure 5: Genetic ablation of IFNap signalling protects 129 m ice from severe IAV 
induced disease. 129 (open triangles) or IFNa|3R-/-(129) (black triangles) mice were 
infected i.n. with X31 (800 TCIDS0), Cal09 (330 TCIDso) or PR8  (5TCID50). (A) Mortality and 
weight loss was recorded. (B) Concentration of IFNa, p and A in the BAL fluid of X31 
infected 129, IFNa|3R-/-(129) and B6  mice were assessed by ELISA. (C) Whole lung 
sections were taken from uninfected and at 8  days post X31 infection from 129, IFNa|3R-/- 
(129) and B6  mice and sections were stained with Haematoxylin & Eosin (H&E). Scale bar 
shows 50pm, arrows indicate leukocyte infiltrate and arrowheads indicate intact alveolar 
structure. Graphs show mean ± s.e.m and are representative of 2-4 independent 
experiments where n=3-6. *** p<0.0001, ** p<0.001, * p<0.01 by 2-way ANOVA with 
Bonferroni post tests (weight loss and IFN time courses) or Log-rank (Mantel-Cox) Test 
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graphs indicate statistical significance of the whole curve, as assessed by 2 way ANOVA, 
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Figure 6
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Figure 6: IFNap signaling in 129 m ice is upstream  of high pulm onary concentrations 
of proinflam m atory cytokines. 129 (open triangles), IFNapR-/-(129) (black triangles) 
and B6  (open circles) mice were infected with X31 (8 OOTCID50). Specified cytokine and 
chemokine concentrations were quantified by multiplex. Graphs show mean ± s.e.m and 
are representative of 2 independent experiments where n=3-4. *** p<0.0001, ** p<0.001, * 
p<0.01 by 2-way ANOVA with Bonferroni post tests where * indicates 129:IFNa[3R-/-(129) 
and 0 denotes 129:B6. Symbols on the right of graphs indicate statistical significance of the 
whole curve, as assessed by 2 way ANOVA, symbols above individual points indicate 
significance as assessed by Bonferroni post test.
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abolished in the 129 strain. Perhaps due to this massive inflammatory response, 

129 lungs also exhibited elevated levels of IL-10 and IL-9, which dampen the 

immune response and drive tissue repair (respectively) (Figure 6).

Total cell counts from lungs infected with X31 indicated that although cell 

number does increase throughout infection, this is comparable between all mouse 

strains tested (Figure 7A). However, flow cytometric analysis of different cell types 

recruited during infection revealed higher numbers of pDCs (120G8+, Siglec H+, 

CD llcint, CDllb-, FSC10, SSC10), IMcs (Ly6Chi, C D llb+, C D llc , FSCint, SSClo int) and 

NK cells (NKp46+, CD3', FSC10, SSC10) in 129 mice compared to both IFNapR-/-(129) 

and B6 mice (Figure 7B). Conversely, B cells (CD19+, CD3-, FSC10, SSC10) were found 

in higher numbers in B6 and IFNapR-/-(129) lungs late in infection, but not in 129 

lungs (Figure 7C). Recruitment of Neutrophils (Ly6G+, C D llb+, C D llc , FSCint, 

SSCint hi) was comparable between 129 and B6 lungs, but increased in IFNapR-/- 

(129) lungs (Figure 7D). mDC (MHCII+, C D llb+, C D llc+, FSCint, SSClo int), CD4+ T cell 

(CD4+, CD8-, CD3+, FSC10, SSC10) and CD8+ T cell (CD8+, CD4-, CD3+, FSC10, SSC10) 

numbers were similar across all strains tested (Figure 7E). Blunted B cell 

recruitment in 129 lungs associated with a trend for lower X31 specific antibodies 

in the sera at 9dpi, as assessed by microneutralisation (Figure 7F).

3.3.3 IFNap is dispensable for antiviral gene induction in IAV infected airway 

epithelia

Ablation of IFNap signalling results in a lowering of the levels of 

proinflammatory cytokines in the BAL and decreased inflammatory cell 

recruitment, which correlates with increased resistance to influenza-induced 

pathology. Given the well-characterised antiviral properties of IFNap it is
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Figure 7
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Figure 7: pDC, IMc and NK cells are preferentially recruited in X31 infected 129  
lungs. 129 (open triangles), IFNapR-/-(129) (black triangles) and B6  (open circles) mice 
were infected with X31 (8 OOTCID50) and (A) total cell count of whole lungs was assessed 
at specified time points. (B-E) Flow cytometric quantification of pDCs, NK cells, IMs, B 
cells, Neutrophils, mDCs, CD4+ T cell and CD8 + T cell was performed. (F) At 9dpi sera was 
taken and X31 neutralizing antibody titre was measured by microneutralisation assay. 
Graphs show mean ± s.e.m and are representative of 2 independent experiments where 
n=3-4. *** p<0.0001, ** p<0.001, * p<0.01 by 2-way ANOVA with Bonferroni post tests 
(recruitment) or by Mann Whitney test (antibody titre) where * 129:IFNa(3R-/-(129) and 0 

denotes 129:B6. Symbols on the right of graphs indicate statistical significance of the 
whole curve, as assessed by 2 way ANOVA, symbols above individual points indicate 
significance as assessed by Bonferroni post test.
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surprising that ablation of IFNap signalling is protective. Indeed IFNapR-/- (129) 

mice are able to control and clear X31 infection. Titration of whole lung 

homogenates from X31 infected 129 and IFNapR-/- (129) mice revealed that virus 

clearance was comparable between the two strains in fact, IFNapR-/- (129) 

controlled X31 viral load as well as, if not slightly better than their Wt 

counterparts, however this was not statistically significant (Figure 8A).

To investigate whether or not IFNapR deficiency negatively impacted 

induction of antiviral ISGs we performed a microarray on whole lung samples 

taken at 5 dpi. Induction of selected ISGs in infected lungs was comparable between 

B6, 129 and IFNapR-/-(129) lungs (Figure 8B). Infection of airway epithelial cell 

(AEC) cultures also confirmed IFNapR independent upregulation of common ISGs 

including IRF9, ifi203, 0asl2 and STAT2 (Figure 9A). Additionally, IFNapR 

deficiency did not enhance X31 replication in these cultures (Figure 9B). These 

results are consistent with studies suggesting redundancy between IFNap and 

IFNA in airway epithelia. Interestingly, unlike what was observed in the whole 

mouse, IFNapR deficiency does not alter IFNA expression in AECs (Figure 9C), 

indicating that decreased levels of IFNA recorded in the whole IFNapR-/-(129) 

lung during X31 infection is a phenomenon specific to immune cells.

STAT1 is a signalling molecule essential for signal transduction of many 

proinflammatory cytokines, including all types of IFN. In contrast to IFNapR-/- 

(129) AECs, STAT1-/-(129) AECs were unable to upregulate ISGs upon influenza 

infection (Figure 9A). Yet STAT1 deficiency did not affect expression of IFNA, which 

was comparable in 129, IFNapR-/-(129) and STAT1-/- (129) AECs (Figure 9C). 

The lack of ISG induction seen in STAT1-/-(129) AECs correlated with significantly

\ 105



Figure 8
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Figure 8: IFNapR deficiency does not im pede control X31 viral load or ISG induction.
129 (open triangles) and IFNa|3R-/-(129) (black triangles) mice were infected with X31 
(8 OOTCID50) and (A) Viral titers in lung homogenates taken at the indicated time points 
were measured by TCID50 determination on MDCK cells. (B) Heatmap displaying selected 
significantly regulated antiviral response genes. Total RNA from mock and X31-infected 
lung was analyzed using Affymetrix Mouse Genome 430 2.0 microarrays at 5 days post 
infection. Supervised analysis was performed using statistical filtering (>fourfold change 
relative to mock-infected C57BL/6; 2-way ANOVA, P<0.01, Benjamini-Hochberg multiple 
tes t  correction). X31 viral load significance was assessed by Mann Whitney test. Graphs 
show mean ±s.e.m. and are representative of two independent experiments where n.3-4.
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Figure 9
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higher X31 replication (Figure 9B). Furthermore, STAT1-/-(129) mice were 

exquisitely susceptible to X31 induced disease, compared to both Wt and IFNa(3R- 

/-  129 mice (Figure 10A). Yet, in contrast to Wt 129 mice we did not observe a 

massive inflammatory response in STAT1-/-(129) lungs. Indeed, with the 

exception of neutrophils, recruitment of all cell types assessed was largely 

dependent on STAT1 during X31 infection (Figure 10B). Additionally, STAT1-/- 

(129) mice also experienced higher viral loads compared to Wt controls (Figure 

IOC). As STAT1 is essential for both IFNap and IFNA signalling, this inability to 

induce ISGs with antiviral function upon IAV infection in vivo leading to a 

permissive environment for IAV replication may explain the high susceptibility of 

these mice. Furthermore, these results indicate that some STAT1 dependent 

signalling is required for inflammation, which if controlled may be protective.

3.3.4 IFNap mediated resistance to lAV-induced disease is a function o f concentration

Our results indicate that in IAV infection IFNap is upstream of 

inflammation, and depending on the magnitude of IFNap signalling this can be 

protective or detrimental to the host. To understand whether or not this is specific 

to the 129 strain, we sought to ablate or augment IFNap signalling in our resistant 

strain (B6 mice). Genetic ablation of the IFNapR in B6 mice lead to an increase in 

host morbidity during both X31 and Cal09 infection yet ultimately, did not 

significantly alter mortality (Figure 11A). As was observed in IFNapR-/-(129) 

mice, recruitment of pDCs and IMcs was blunted, while neutrophil infiltration was 

higher in IFNapR-/-(B6) lungs, compared to their Wt controls. Recruitment of
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Figure 10
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Figure 10: STAT1 is required for resistance to X31 induced d isease. (A] STAT1-/- 
(129, IFNapR-/-(129] and 129 mice were infected i.n. with 8 OOTCID50 (left panels] or 80 
TCID50 (right panels] of X31. Weight loss and survival were recorded throughout infection. 
(B-C] STAT1-/-(129] and 129 mice were infected with X31: 8 OTCID50 and flow cytometric 
quantification of pDCs, IMs, Neutrophils, AMs, NK cells, B cells, CD4+ T cells and CD8 + T 
cells was performed. (C] viral RNA present in infected lungs was quantitated by qPCR for 
the X31 Matrix gene on cDNA from whole lungs. Graphs show mean ± s.e.m. and are 
representative of two independent experiments where n=3-6. *** indicates P<0.0001, ** 
P<0.001 and * P<0.01 by 2-way ANOVA (weight loss and immune cell recruitment] or Log- 
rank (Mantel-Cox] Test (survival]. The symbols on the right of graphs indicate statistical 
significance of the whole curve, as tested by two-way ANOVA and symbols above specific 
points indicates significance between points as tested by Bonferrioni post tests, w here  * 
denotes 129:STAT1-/-(129] and 0 IFNa(3R-/-(129]:STATl-/-(129).
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Figure 11
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Figure 11: IFNapR deficiency on a B6 background alters pulm onary inflam m ation  
and increases m orbidity but not X31 induced m ortality. [A] B6 (open circles] or 
IFNapR-/-(B6] (black circles] mice were infected i.n. with X31: 8000 TCID50 or with 
Cal09: 1000 TCIDso- Weight loss and mortality were measured. (B] B6 and IFNapR-/-(B6] 
were infected with X31 and recruitment of pDCs, IMcs, Neutrophils, mDCs, NK cells, B 
cells, CD4+ T cells and CD8+ T cells was assessed by flow cytometry. (C] X31 neutralising 
antibody titre at 9dpi in serum was measured by microneutralisation assay. (D] Virus 
titers in lung homogenates taken at the indicated time points were measured by TCID50 

determination on MDCK cells. Graphs show mean ± s.e.m and are representative of 2 
independent experiments where n=3-6. *** p<0.0001, ** p<0.001, * p<0.01 by 2-way 
ANOVA (symbols to the right of graphs] with Bonferroni post tests (symbols above 
individual time points] (weight loss and cellular recruitment], Mann Whitney test (virus 
and antibody titre quantification], or Log-rank (Mantel-Cox] Test (survival].
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CD4+ and CD8+ T cells and, in contrast to what was observed on the 129 

background, NK cells was comparable between B6 and IFNapR-/-(B6) mice. B cell 

recruitment was depressed at later time points in IFNapR-/-(B6) mice in 

comparison to numbers observed in Wt lungs. However, lower numbers of B cells 

did not appear to impede induction of X31 specific antibodies, as sera tested for 

capacity to neutralise X31 from both genotypes at 9dpi was comparable (Figure 

11B-C). X31 viral load in IFNapR-/-(B6) lung was higher at 7dpi than what was 

observed in B6 lungs, however this was not significant (Figure 11D). Perhaps as a 

result of persisting viral load in IFNa(BR-/-(B6) lungs, this genotype exhibited 

higher concentrations of proinflammatory cytokines, specifically: Eotaxin, G-CSF, 

IFNy and IL-6 as well as elevated levels of IL-10, compared to what was observed 

in the Wt controls. There was no statistically significant difference between IL-9 

concentrations in IFNapR-/-(B6) and B6 lungs. Interestingly, IP-10, MCP-1 and 

M ip-la secretion was significantly depressed at early time points of infection in 

IFNa(BR-/-(B6) mice, concentrations of these cytokines only reaching Wt levels late 

in infection (Figure 12). Thus, while IFNapR deficiency on the B6 background 

blunts some aspects of innate immunity and this does correlate to increased 

morbidity of the host, ultimately this did not negatively impact on resolution of 

X31 infection or host survival.

In contrast, increasing type IIFN signalling during X31 infection in B6 mice 

by exogenous administration of recombinant IFNa4 markedly increased host 

morbidity and mortality, while IFNa4 treatm ent alone did not adversely affect B6 

mice (Figure 13A). Increased host morbidity of X31 infected, IFNa4 treated mice 

correlated with significantly higher numbers of IMcs and NK cells in the lung at
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Figure 12

IFNy

♦  IFNaf5R-/-(B6) 
o C57BL/6

G-CSF
♦  IFNapR-/-(B6)
O  B6

Eotaxin 
♦  IFNapR-/-(B6) 
O  B6

* * *

Days post infectionD ays post infectionDays post infection

IL-10
IFNabR-/-(B6) 

O  B6

IL-9
IFNapR-/-(B6) 

O  B6

IL-6
♦  IFNapR-/-(B6)
O  B6 -J

8 OOO-1

* * * * * *2 0 0 0 -

Days post infectionDays post infectionDays post infection

* *

10

IP-10
3500-1 

3000- 

2500- 

£  2000- 

q ] 1500- 

1000 -  

500-

♦  IFNabR-/-(B6) 
O  B6

Days post infection

MCP-1
soo-,^ IFNapR-/-(B6) 

O  B6

Days post infection

MIP-ip
IFNapR-/-(B6) 

O  B6

Days post infection

Figure 12: Comparison of X31 induced cytokine and chem okine secretion  in B6 and 
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indicate significance as assessed by Bonferroni post test.
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Figure 13
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6dpi, compared to infected mice treated with Veh Ctrl (Figure 13B). We also 

observed a slight increase in pDCs numbers recruited to the lungs of to infected, 

IFNa4 treated mice at this time point, however this was not statistically significant 

(Figure 13B). Collectively, these data demonstrate that while low-dose IFNap 

responses are beneficial, high-dose IFNap responses contribute to influenza- 

induced pathology.

3.3.5 Abundant hyper-reactive 129 pDCs produce excessive IFNap, but few  pro- 

inflammatory cytokines

pDCs are potent type I IFNs producing cells and are recruited in high 

numbers to the lung during infection in 129 mice. Baseline analysis revealed that 

129 mice have a higher frequency and number of pDCs in their lungs, spleen and 

mediastinal lymph node (LN) compared to B6 mice. Notably, genetic ablation of 

type IIFN signalling decreased pDC presence in all organs tested (Figure 14A).

We generated BM-derived Flt3L-pDCs from 129, B6 and IFNaPR-/-(129) 

mice and stimulated these cells for 24hrs with X31 (MOI of 1). We assessed 

response to stimulus by measuring IFNa, p and X secretion. Stimulation with live 

virus (X31) resulted in impressive amounts of IFNa, p and X secreted from both 

129 and B6 pDCs. Although response was robust from both strains, 129 pDCs 

consistently produced significantly more IFNa, p and X than B6 pDCs (Figure 14B). 

These results confirm and extend similar observations made by Asselin-Paturel et 

al. (Asselin-Paturel etal., 2003).

Interestingly, stimulation of IFNapR-/-(129) pDCs with live X31 did not 

elicit secretion of IFNa, p or X (Figure 13B). Furthermore, treatm ent of cells with 

an IFNapR specific blocking antibody (MAR-1) resulted in no detection of IFN
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Figure 14
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Figure 14: pDC frequency, num ber and capacity to secrete type I IFNs is e levated  in 
the 129 strain and dependent upon IFNapR. (A) pDC frequency and num ber in lung, 
spleen and mediastinal LN of 129 (open triangles), IFNa(3R-/-(129) (black triangles) and 
B6  (open circles) mice was assessed by flow cytometry. pDCs were defined as PDCA-1+, 
Siglec-H\ C D llc+, CDllb-, FSC10, SSC>°. (B) 129, IFNaf3R-/-(129) and B6  BM-derived Flt3L 
driven pDCs from mice were stimulated in vitro for 24hrs with X31 (MOI of 1) and IFNa, |3 
and A secretion was measure by ELISA. (C) IFNa, (3 and A response to X31 stimulation of 
Wt 129 and B6  pDCs the presence of MAR-1 (mAb for IFNAR1) was also assessed. (D) 
Secretion of stated cytokines by 129, B6  and IFNa(3R-/-(129) pDCs was assessed by 
mulitplex. Graphs show mean ± s.e.m and are pooled from 2-6 independent experiments, 
where n=2-4. Except for data in (C) which is representative of one experiment. *** 
indicates pcO.OOOl, ** p<0.001 and * p<0.01 as assessed by Mann Whitney test.

115



secretion from X31 stimulated B6 pDCs. In contrast, MAR-1 treatm ent of X31 

stimulated Wt 129 pDCs blunted, but did not entirely abolish IFNa and A 

production and IFNp secretion appeared to be unaffected (Figure 14C]. We also 

assessed whether or not pDCs make any other cytokines in response to IAV 

stimulation. We assayed for 32 common cytokines and chemokines, several of 

which were found in high concentrations in 129 lungs during infection, however 

with the exception of Mip-ip, pDCs did not produce any cytokines in response to 

IAV stimulation. Interestingly, Mip-ip secretion followed the same pattern as IFN 

production; highest from the 129 pDCs and lower in the B6, while IFNapR-/-(129) 

pDCs did not respond (Figure 14D). These results suggest that there is a role for 

IFNapR dependent feed-back in pDCs, not only IFNap secretion but also in IFNA 

and other cytokine production, furthermore as IFNapR-/- pDCs did not secrete any 

cytokine in response to X31 stimulation, IFNapR may be required for pDC 

maturation and/or function.

In light of increased responsiveness of pDCs in 129 mice and their presence 

in greater frequencies and numbers in 129 lungs at all time points examined after 

infection, we hypothesized that this cell type may be the prevailing source of 

IFNap and therefore host pathology. Significantly, efficient depletion of pDCs in 

129 mice using the mAb aPDCA-1 (Figure 15 and Figure 16F) markedly decreased 

host morbidity and mortality, which correlated with lower pulmonary 

concentrations of IFNa (Figure 16A-B), indicating that pDC-derived IFNa mediates 

host morbidity. IFNp levels were lower at 6dpi in aPDCA-1 treated lungs, however 

this was not statistically significant (Figure 16B). It is interesting to note that IFNA 

levels are unchanged upon pDC depletion (Figure 16C), indicating other cell types 

for example, airway epithelial cells or other DCs, must contribute to the induction
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Figure 15
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Figure 16
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Figure 16: IFNap derived from pDCs and other PDCA-1+ cells m ediates  
inflam m ation and m orbidity in infected 129 m ice. (A-F) 129 mice were treated with 
depleting mAb aPDCA-1 (black triangles) or isotype control: IgG2b (open triangles) 24hrs 
prior to infection with X31: 8 OOTCID50 i.n, treatm ent was continued every 48hrs thereafter 
until at 10dpi. (A) Weight loss and mortality were measured throughout infection. (B-C) 
IFNa, p and A protein in BAL fluid was quantified by ELISA, (D) viral titre in BAL fluid were 
determined, (E) presence of stated cytokines in BAL fluid was assessed by multiplex and
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of this cytokine during infection. Moreover, high concentrations of IFNA have been 

separated from high susceptibility to influenza-induced disease.

Depletion of PDCA-1+ cells and consequent reduction of IFNa in the 

pulmonary environment did not impede virus control. aPDCA-1 treated 129 mice 

cleared X31 at an equivalent rate to isotype controls, as assessed by titration of 

BAL fluid samples (Figure 16D). A reduction in IFNa early in X31 infection did 

however, correlate with decreased concentrations of proinflammatory cytokines in 

BAL fluid. Levels of Eotaxin, G-CSF, IP-10, IFNy, MCP-1, Mip-lp, IL-6 IL-10 and IL-9 

were all reduced in aPDCA-1 treated 129 mice to concentrations reminiscent of 

what was observed in IFNapR-/-(129) mice (Figure 16E). Moreover, aPDCA-1 

treatm ent significantly decreased the frequencies (not shown) and numbers of 

IMcs and NK cells recruited to the infected lungs. However, treatm ent did not affect 

Neutrophil, mDC, Alveolar Macrophage, B cell, CD4+ T cell and CD8+ T cell 

numbers in the pulmonary environment at any time point assessed during X31 

infection (Figure 16F).

Aside from constitutive expression on pDCs, PDCA-1 has also been shown to 

be upregulated on certain cell types upon IFNap stimulation, thus this decrease in

Figure 16 (cont): (F) cell recruitment of pDCs, IMcs, NK cells, Neutrophils, mDCs, AMs, B 
cells, CD4+ T cells and CD8+ T cells was assessed by flow cytometry. (G) 129 mice were 
treated with depleting mAbs RB6-8C5 (filled triangles), 1A8 (open diamonds) or isotype 
control (open triangles) then infected with X31, treatment was continued every 48hrs 
thereafter, weight loss and survival was recorded. Graphs show mean ± s.e.m and are 
representative of 2-3 independent experiments where n=2-6. *** p<0.0001, ** p<0.001, * 
p<0.01 by 2-way ANOVA with Bonferroni post tests (weight loss, cytokine concentrations 
and cellular recruitment), Mann Whitney test (viral titre quantification), or Log-rank 
(Mantel-Cox) Test (survival) where * denotes aPDCA-l:IgG2b or RB6-8C5:IgG2b and ° 
denotes RB6-8C5:1A8. Symbols on the right of graphs indicate statistical significance of 
the whole curve (2 way ANOVA) and symbols above individual points indicate significance 
as assessed by Bonferroni post test.
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numbers of IMcs and NK cells may not just be due to reduced cytokine levels but 

also due to direct depletion of monocytes and NK cells that upregulate PDCA-1 

upon stimulation with type I IFNs. We also employed the mAb: RB6-8C5, which is 

specific for the antigen Gr-1 that is composed of Ly6C (expressed on pDCs and 

IMcs} and of Ly6G (expressed on neutrophils). Treatment of 129 mice with this 

mAb-depleted pDCs, IMcs and Neutrophils and resulted in a drastic reduction in 

IAV-induced morbidity and mortality. Improved 129 resistance was not due to 

neutrophil depletion, as the neutrophil-specific mAb 1A8 did not change the 

course of disease (Figure 16G).

The decrease in inflammatory cell recruitment and proinflammatory 

cytokine secretion is highly reminiscent of cytokine and chemokine levels and 

cellular recruitment found in IFNapR-/-(129) mice during X31 infection. 

Collectively, these data indicates that 129 mice experience a more vigorous type I 

IFN response through the combined effect of more pDCs at base line, higher 

recruitm ent into the lung on infection and higher responsiveness on a per-cell 

basis of recruited pDCs and, potentially, other PDCA-1+ cells. We place pDC- 

derived IFNap upstream of the intense inflammatory response observed in the 129 

strain during IAV infection.

3.3.6 Strain-dependent differences in susceptibility are mediated by innate immunity

129 mice demonstrate higher susceptibility to influenza-induced disease, 

yet they are able to control X31 replication (Figure 8A) and recruitment of both 

CD4+ and CD8+ T cells to 129 lungs is comparable to the recruitment of these cell 

types observed in resistant B6 and IFNapR-/-(129) strains (Figure 7E). Although 

recruitm ent of influenza specific CD8+ T cells was comparable between strains,
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higher numbers of activated (CD69+) CD8+ T cells were observed in 129 lungs 

(Figure 17A). An over activation of the cytotoxic T cell response may explain 

increased 129 strain susceptibility. To ascertain whether the adaptive immune 

response contributes to differences in influenza resistance we compared Rag- 

deficient 129 and B6 mice, which are deficient for B and T cells. X31 infected Rag- 

/-(129) mice, like their Wt counterparts, lost weight more rapidly and reached 

clinical end point before 10dpi. In contrast, weight loss in Rag-/-(B6) mice 

progressed at a significantly slower rate, plateaued from 6 to 10dpi before 

plunging again until 14-15dpi where mice reached clinical end point (Figure 17B). 

Interestingly, virus quantification at 9dpi, when Rag-/-(129) mice are at clinical 

endpoint yet all Rag-/-(B6) mice are still alive, showed no differences in X31 

matrix copy number in the lung (Figure 17C). 129 susceptibility to IAV induced 

disease therefore appears independent of an over activated adaptive immune 

response and high virus load. Rag-/-(129) morbidity did however correlate with 

higher concentrations of IFNa, p and A in the BAL fluid (Figure 17D). Lastly, 

specific depletion of CD8+ T cells using an aCD8 mAb did not alter 129 disease 

course (Figure 17E). Thus, while type I IFN signalling leads to higher numbers of 

activated CD8+ T cells in 129 lung during X31 infection this phenomenon does not 

appear to significantly contribute to 129 IAV-induced pathology.

Unlike T cell recruitment, B cell numbers in 129 lungs during IAV infection 

were markedly lower than what was recorded in the resistant B6 and IFNapR-/- 

(129) strains (Figure 7C). In line with lower B cell recruitment, 129 sera had less 

influenza specific antibody titres than titres found in IFNaPR-/-(129) and B6 sera 

(Figure 7F), however this did not lead to increase sensitivity of 129 mice to 

homologous IAV challenge. 129, IFNaPR-/-(129) and B6 mice were all given a mild
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Figure 17
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Figure 17: Increased IAV susceptib ility  o f 129 m ice is independent o f adaptive  
im m unity. [A] 129 (open triangles], IFNa(3R-/-(129] (black triangles] and B6  (open 
circles] mice were infected with X31: 8 OOTCID50 i.n and at 8 dpi lung single cell 
suspensions were prepared and flow cytometric quantification of influenza specific 
(Tetram er+] and activated (CD69+] CD8 + T cells was performed. (B-D] Rag-/-(129] (black 
triangles] and R a g - /- ( E 5 6 ]  (open circles] mice were infected with X31 (8 OOTCID50], (B] 
weight loss and mortality recorded, (C] virus present in the lung at 9dpi was determined 
by qPCR on total lung RNA and (D] BAL levels of IFNa, (3 and X were assessed by ELISA. 
(E] 129 mice were treated with the mAb aCD8  (black triangles] or isotype control (open 
triangles] 24hrs prior to infection and again at 4dpi, mice were infected with X31: 
8 OOTCID50 and weight loss and survival was assessed. (F] 129 (open triangles], IFNapR-/- 
(129] (black triangles] and B6  (open circles] mice were infected with X31: 8 OTCID50 i.n 
and at 350dpi mice were challenged with X31: 1 .5xl06TCIDso i.n, survival and morbidity 
were recorded. Graphs show mean ± s.e.m and are representative of 2 independent
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dose of X31: 8 OTICD50 and left to recover, at 350dpi mice were challenged with 

X31: 1 .5 x1 0 6TCID5o and all mice survived, exhibiting very low morbidity. 

Surprisingly, IFNapR-/-(129) and B6  mice lost more weight than the 129 strain 

however this may be indicative of the comparatively lower severity of primary 

infection (Figure 17F).

To further confirm that exaggerated IFNap signalling was not driving 129 

pathology through effects on the adaptive immune system we generated mixed 

bone marrow chimeras. Host Rag-/-(129) mice were irradiated and their 

hematopoietic cells reconstituted with Rag-/-(129) bone m arrow supplemented 

with 10% of cells from either Wt 129 or IFNapR-/-(129) bone marrow. We 

performed flow cytometric assessment of the adaptive immune compartment eight 

weeks after reconstitution and observed comparable reconstitution of CD4+ and 

CD8 + T cells and mature B cells (B220+, CD19+, IgM+, IgD+, FSC10, SSC10) in the lung 

and spleen, as well as equivalent frequencies of immature B cells (B220+, CD19+, 

IgM+, IgD-, FSC10, SSC10), pre B cells (B220+, CD19+, IgM', FSC10, SSC10), Follicular B 

cells (B220+, CD93-, CD23+, IgM+, FSC10, SSC10), Marginal Zone B cells (B220+, CD93', 

CD23", IgM+, FSC10, SSC10) and Germinal Centre B cells (B220+, PNA+, GL7+, FSC10, 

SSC10) in the spleen in both sets of chimeras (Figure 18A). Upon X31 infection CD4+ 

T cells, CD8 + T cells and mature B cells were recruited to the lung in comparable 

numbers, irrespective of presence of IFNapR on these cell types (Figure 18B).

Figure 17 (cont): experiments where n=3-6. *** p<0.0001, ** p<0.001, * p<0.01 by 2-way 
ANOVA with Bonferroni post tests (weight loss and cytokine concentrations), Mann 
Whitney test (viral titre quantification), or Log-rank (Mantel-Cox) Test (survival). Symbols 
on the right of graphs indicate statistical significance of the whole curve (2 way ANOVA) 
and symbols above individual points indicate significance as assessed by Bonferroni post 
test.
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Figure 18
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Figure 18: IFNapR deficient adaptive im m une cells do not am eliorate X31 induced  
d isease  in 129 m ice. (A-D) Host Rag-/-(129) mice were irradiated and their 
hematopoietic cells reconstituted with Rag-/-(129) bone m arrow supplemented with 5% 
of cells from 129 (5% 129, open triangles) or IFNa(3R-/-(129) (5% IFNapR-/-(129), black 
triangles) bone marrow. (A) Reconstitution of adaptive immune cell types was assessed at 
6  weeks post irradiation, flow cytometry was used to determine frequency of CD4+ T cells, 
CD8 + T cells and Mature B cells in lungs and spleen as well as Follicular B cells, Marginal
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Furthermore, while frequencies of all adaptive immune cell types tested changed 

in the spleen due to infection, this was not affected by the presence of IFNa(BR 

(Figure 18C). Overall, an IFNapR-/- adaptive immune compartment did not 

ameliorate IAV-induced pathology in 129 mice as infection with X31 resulted in 

high morbidity and mortality of both chimera groups (Figure 18D).

Although we were confident that 129 susceptibility to IAV is not intimately 

linked to IFNaP effects on the adaptive immune system, we were interested in the 

reduced B cell response observed in Wt 129 mice. We wondered if IFNapR 

deficiency could improve B cell function or survival in a high IFNap environment. 

To assess whether or not IFNapR-/-(129) B cells had a competitive advantage over 

Wt 129 B cells we created mixed chimeras in Rag-/-(129) hosts reconstituted with 

90% Rag-/- bone marrow plus 5% CD45.1+ 129 bone marrow and 5% CD45.2+ 

IFNapR-/-(129) bone marrow. Using the congenic markers: CD45.1 and CD45.2, 

we were able to trace the origin of adaptive immune cells. Analysis by flow 

cytometry of the lung and spleen samples after reconstitution showed that CD45.1+ 

(Wt) cells had a slight competitive advantage over CD45.2+ IFNapR-/-(129) cell 

types in reconstitution of the adaptive immune cell compartment. CD4+ and CD8+ T 

cells and mature B cells in the lung and CD4+ and CD8+ T cells and mature, 

immature, pre, follicular, marginal zone and germinal centre B cells in the spleen,

Figure 18 (cont): Zone B cells and Germinal Centre B cells in the spleen. (B-D) Bone 
marrow chimeras were infected with X31 (8 OTCID50) and (B-C) frequencies of stated cell 
types was assessed by flow cytometry in the (B) lung and (C) spleen. (D) Weight loss and 
mortality was measured throughout infection. Graphs are representative of 1 experiment 
where n=2-6. Statistical significance was assessed by 2-way ANOVA with Bonferroni post 
tests (weight loss), Mann Whitney test (immune cell frequency), or Log-rank (Mantel-Cox) 
Test (survival). Symbols on the right of graphs indicate statistical significance of the whole 
curve (2 way ANOVA) and symbols above individual points indicate significance as 
assessed by Bonferroni post test.
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Figure 19
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Figure 19: IFNapR deficiency on cells of the adaptive im m une com partm ent does  
not confer a com petitive advantage for reconstitution or during X31 infection. (A-B) 
Rag-/-(129) mice were reconstituted with 90% Rag-/-(129) bone marrow, 5% CD45.1+ 
129 bone m arrow and 5% CD45.2+ IFNa(3R-/-(129) bone marrow. 8  weeks after chimera 
generation mice were infected with X31: 8 OTCID50 and samples were taken at 0  and 8  dpi. 
Flow cytometry was used to assess proportion of CD45.1+ (Wt) (open bar) and CD45.2+ 
(IFNaPR-/-(129) (black bar) cells within (A) CD4+ T cell, CD8 + T cell and mature B cell 
populations in the lung and (B) CD4+T cell, CD8 +T cell, mature B cell, immature B cell, Pre 
B cell, Follicular B cell, Marginal Zone B cell and Germinal Centre B cell populations in the 
spleen. Graphs are representative of 1 experiment where n=2. Statistical significance was 
assessed by Mann Whitney test.
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all trended to be of Wt origin, approximately 60-80% of all these cell types being 

CD45.1+. Furthermore, X31 infection did not appear to alter this ratio, as 

proportions of all tested cell types in both the lung and spleen did not change when 

assessed at 8dpi (Figure 19). Taken together these results strongly indicates that 

differences in 129, IFNapR-/-(129) and B6 susceptibility to influenza induced 

disease is not due to differences in their respective adaptive immune responses 

and does not correspond to viral control.

3.3.7 NK cell depletion does not protect 129 mice from severe lAV-induced disease

NK cell recruitment is augmented in 129 lungs during X31 infection. NK 

cells can become over activated and cause tissue damage in some settings 

(Okamoto et al., 2002). We therefore decided to test whether NK cells contribute 

downstream to 129 pathology. Using AsilaoGM, we efficiently depleted NK cells 

from the lung prior to infection of 129 mice with X31 (Figure 20A). NK cell 

depletion did not alter disease outcome, as AsilaoGM treated 129 mice succumbed 

to IAV-induced disease at a similar rate to the Vehicle Control (Veh Ctrl) group 

(Figure 20B).

3.3.8 Type I IFN mediated upregulation o f TRAIL and DR5 induces epithelial cell 

death and therefore host susceptibility

TNF related apoptosis-inducing ligand (TRAIL) has been dem onstrated to 

induce apoptosis of cells through the interaction with its receptor death receptor 5 

(DR5) (Schaefer et al., 2007). Furthermore, TRAIL has been shown to be 

upregulated by many cell types in response to type I IFN stimulation (Hogner et al., 

2013; Santini et al., 2000). We therefore hypothesised that immune cell expression
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Figure 20

NK cells

wnrinnm

B
Treatm ent
aA sialo

iiTk aAsialo ^ -------------^
A  Veh Ctrl

5 10 15

Days post infection

o.6-|
jo
75o
D) 0.4-
C
3

3
2  0.2-I

NK cells
* * *

Veh Ctrl

Treatm ent
a A s ia lo

5 10 15

days post infection

Figure 20: D epletion of NK cells does not protect 129 m ice from X31 induced  
pathology. 129 mice were treated with AsilaoGM or Veh Ctrl 24hrs prior to X31 
(8 OOTCID50) infection and again at 4dpi. (A) Flow cytometric analysis of NK cell depletion 
from the lung was performed prior to infection, NK cells were defined as NKp46+, CD3-, 
FSC'°, SSC'°. (B) X31 induced weight loss and survival was recorded. Graphs are 
representative of 2 independent experiment where n=2-6. Statistical significance was 
assessed by Mann Whitney test (NK cell frequency and number), 2-way ANOVA with 
Bonferroni post tests (weight loss), or Log-rank (Mantel-Cox) Test (survival).
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of TRAIL may be mediating lung tissue damage. We assessed TRAIL expression on 

a range of cell types recruited to the lung during IAV infection and found that 

TRAIL was not expressed by NK cells, CD8+ T cells, CD4+ T cells, B cells or pDCs at 

the time points assessed (data not shown). However, TRAIL expression on IMcs 

was highly up regulated in 129 mice and this is dependent upon IFNa(3R signalling. 

Genetic ablation of IFNap signalling abolished this upregulation of TRAIL on IMcs 

(Figure 21A).

129 epithelial cells (defined as Ecadherin+, CD45) increased their surface 

expression of the TRAIL receptor DR5, whereas epithelia insensitive to IFNap 

signalling did not (Figure 2IB). Concurrently, we observed a higher frequency of 

cell death in 129 epithelia, as compared to IFNapR-/-(129) epithelia (Figure 21C). 

TUNEL staining on histological sections from infected 129 and IFN apR -/- lungs at 

7dpi also confirmed a higher incidence of apoptotic epithelial cells in Wt 129 mice 

compared to IFNapR-/-(129) mice (Figure 21D).

To examine whether or not TRAIL/DR5 interaction contributes to epithelial 

cell death and morbidity of 129 mice, we treated X31 infected 129 mice with a 

blocking mAb for TRAIL (aTRAIL). Blockade of TRAIL interaction with DR5 

throughout IAV infection resulted in reduced weight loss and mortality (Figure 

22A). Consistent with this increased resistance to influenza-induced disease, 

aTRAIL-treated 129 mice had a significantly lower frequency of airway epithelial 

cell death at 7dpi. However, aTRAIL treatm ent did not alter DR5 expression on 

epithelial cells (Figure 22B). These results indicate that during IAV infection, 

IFNap induces expression of TRAIL on monocytes recruited into the lung and of 

DR5 on lung epithelia, and that the interaction of these molecules leads to
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Figure 21: IFNap is upstream  of TRAIL:DR5-expression in X31 infected 129 mice.
129 (open triangles] and IFNapR-/-(129) (black triangles) mice were infected with X31 
(8 OOTCID50). Flow cytometric analysis of expression levels of (A) TRAIL on pulmonary 
IMcs, (histograms show expression at 6 dpi) and (B) DR5 on airway epithelial cells 
throughout X31 infection. (C) At 7dpi epithelial cells were assessed for free amine staining 
as a measure of cell death. Dot plots show the correlation between free amine and DR5 
expression. (D) Lung sections from control and infected mice of the indicated genotypes 
were stained by TUNEL for apoptotic cells. Red arrowheads indicate TUNEL signal. Scale 
bar, 100 pm. Graphs show mean ± s.e.m and are representative of 2 independent 
experiments where n=3-4. *** p<0.0001, ** p<0.001, * p<0.01 by 2-way ANOVA with 
Bonferroni post tests (TRAIL or DR5 expression) or by Mann Whitney test (frequency of 
apoptotic epithelial cells). Symbols on the right of graphs indicate statistical significance of 
the whole curve (2 way ANOVA) and symbols above individual points indicate significance 
as assessed by Bonferroni post test.
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Figure 22
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Figure 22: Blockade of TRAIL-DR5 interaction protects 129 m ice from X31 induced  
disease. 129 mice were treated with aTRAIL (150[ig/200|il i.p.) (black triangles] or Veh 
Ctrl (open triangles] at 1  day prior to infection with X31: (8 OOTCID50] and every 24hrs 
thereafter until 10dpi. (A] Mortality and morbidity was recorded throughout infection. (B] 
At 7dpi DR5 expression on airway epithelial cells and frequency of epithelial cell death 
(cells positive for free amines] was measured by flow cytometry. Graphs show mean ± 
s.e.m and are representative of 2 independent experiments where n=3-6. *** p<0.0001, ** 
p<0.001, * p<0.01 by 2-way ANOVA with Bonferroni post tests (weight loss], by Mann 
Whitney test (frequency of apoptotic epithelial cells] or Log-rank (Mantel-Cox] Test 
(survival]. Symbols on the right of graphs indicate statistical significance of the whole 
curve (2 way ANOVA] and symbols above individual points indicate significance as 
assessed by Bonferroni post test.
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epithelial cell death. Blockade of this interaction protects from the severe disease 

observed in IAV-infected 129 mice.

To confirm that TRAIL and DR5 expression is dependent on IFNapR and not 

a result of severe disease, we also assessed expressions of TRAIL on IMcs and DR5 

on epithelial cells in STAT1-/-(129) mice. IFNap is unable to signal without STAT1 

and as shown in Figure 10 STAT1-/-(129) mice are exquisitely susceptible to IAV- 

induced disease. Both TRAIL expression on IMcs and DR5 expression on epithelial 

cells were not upregulated during X31 infection, as assessed by flow cytometry 

(Figure 23A). Furthermore, the low IFN-responding, IAV-resistant mouse strains; 

B6 and BALB/C did upregulate TRAIL on IMcs and DR5 on epithelia, albeit not to 

the extent of the 129 strain. The comparatively lower TRAIL and DR5 expression in 

the resistant strains correlated to a lower frequency of epithelial cell death (Figure 

23B). IFNapR-/-(B6) mice, which are slightly more susceptible to IAV-induced 

disease than the B6 parental strain, did not exhibit any upregulation of TRAIL on 

IMcs or DR5 on epithelial cells during X31 infection. Interestingly, in spite of a 

comparatively higher disease burden, frequency of epithelial cell death at days 6 

and 7 post infection was lower in IFNapR-/-(B6) lungs compared to Wt controls 

(Figure 23C). Finally, treatm ent of B6 mice with IFNa4 during X31 infection 

increased TRAIL expression on IMcs and DR5 expression on epithelial cells and 

this associated with increased frequency of airway epithelial cell death (Figure 

23D) and host morbidity (Figure 13A). Collectively, these results demonstrate that 

TRAIL and DR5 expression is IFNap dependent and not a function of severe 

disease burden.

We hypothesised that type I IFN induced expression of DR5 on epithelial 

cells allowed for substantial cell death in the lung epithelia layer and leads to host
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Figure 23
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Figure 23: Upregulation of TRAIL and DR5 is dependent upon IFNap signalling, not 
disease burden. (A-D) Single cell suspensions were extracted from whole lungs from 
specified mice at specified time points and flow cytomtric analysis of TRAIL expression on 
IMcs, DR5 expression on epithelial cells and quantification of apoptotic epithelial cells was 
performed. (A) 129 (open triangles) and STAT1-/-(129) (crossed circles) mice were 
infected with X31 (8 OOTCID50). (B) 129 (black triangles), B 6  (open circles) and BALB/C 
(open squares) were infected with X31: 8 OOOTCID50. (C) B 6  and I F N a ( 3 R - / - ( B 6 )  (black 
circles) mice were infected with X31: 8 OOOTCID50. (D) B 6  mice were infected with X31: 
8 OOOTCID50 and treated with exogenous IFNa4 or Veh Ctrl from day 1-5 post infection, at 
6 dpi lungs were assessed as stated above. Graphs show mean ± s.e.m and are 
representative of 2 independent experiments, where n=3-4, with the exception of (D), 
which is representative of one experiment, where n=3. *** p<0.0001, ** p<0.001, * p<0.01 
by 2-way ANOVA with Bonferroni post tests (TRAIL or DR5 expression) or by Mann 
Whitney test (frequency of apoptotic epithelial cells and (D)). For (B) * indicates 129:B6 
and 0 denotes 129:BALB/C. Symbols on the right of graphs indicate statistical significance 
of the whole curve (2 way ANOVA) and symbols above individual points indicate 
significance as assessed by Bonferroni post test.
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pathology. To test this, we generated bone marrow chimeras using IFNapR 

deficient mice as hosts, re-populated by IFNa(3R+/+ bone m arrow cells 

(129>IFNapR-/-(129)) and vice versa (IFNapR-/-(129)>129), plus appropriate 

controls (129>129 and IFNapR-/-(129)>IFNapR-/-(129)). Infection with X31 

revealed that susceptibility correlated with the ability of stromal cells such as the 

lung epithelia to respond to IFNap signalling. IFNapR-/->IFNapR-/- or 

129>IFNapR-/- chimeras were resistant to severe X31-induced disease and this 

correlated to no upregulation of DR5 expression in IFNapR-/- epithelia. 

Conversely, chimeras where epithelial cells could sense IFNap signalling (129>129 

and IFNapR-/-(129)>129) had higher epithelial expression of DR5 compared to 

epithelia from resistant chimeras and this associated with increased frequency of 

epithelial cell death and host susceptibility (Figure 24A-B).

Given the low levels of IFNap seen in BAL fluid from infected whole 

IFNapR-/-(129) mice and the lack of responsiveness of IFNaPR-/-(129) pDCs we 

were curious to understand where the IFNap signal was coming from in the 

IFNapR-/-(129)>129 chimera. To assess this, we measured IFN levels throughout 

infection and observed that IFNa, p and A levels in the lung during X31 infection of 

129>129 and IFNapR-/-(129)>IFNapR-/-(129) chimeras were comparable to the 

intact mice of the same genotype while both 129>IFNapR-/-(129) and IFNapR-/- 

(129)>129 chimeras had intermediate levels of IFNa, p and A (Figure 24C). As it 

was unclear which cells are the source of IFNap and of the TRAIL-mediated signal 

required for epithelial cell death in the IFNapR-/-(129)>129 chimeras, we decided 

to perform an in depth analysis using congenic Wt CD45.1+ 129 mice, to allow us 

to trace the origin of immune cells in the infected lung. In IFNaPR-/- 

(129)>CD45.1+ 129 chimeras, we identified a population of AMs or monocytic cells
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of host origin (CD45.1+). Similar residual populations were found in the other 

chimeras. Direct comparison between Wt and IFN apR-/- host origin macrophages 

and monocytes in these chimeras show that TRAIL levels are higher on the Wt than 

on the IFN apR -/- cells, confirming that TRAIL upregulation requires an IFNap 

signal (Figure 24D). Moreover, in vitro stimulation of 129 and IFN apR-/-(129) 

BM-derived macrophages (BMDMs) with live X31 virus revealed a high level of 

response from 129 BMDM. We found that, like pDCs, 129 BMDMs produce more 

IFN than IFN apR-/-(129) BMDMs (Figure 24E), implicating this residual 

monocyte population as the key contributor to the intermediate levels of type I 

IFNs recorded in IFNapR-/-(129)>129 chimeras. Therefore, radioresistant host 

monocytes or AMs are a possible source both of IFNap and of TRAIL in IFNapR-/- 

(129)>129 chimeras.

Taken together, these results delineate a pathway possibly designed to 

clear infected cells during IAV infection that, if over stimulated, can lead to 

destruction of the lung epithelial layer and therefore host pathology. We have 

shown both TRAIL and DR5 expression to be IFNap dependent, and our results 

strongly indicate that the high levels of pDC derived IFNap observed in 129 lungs 

throughout IAV infection lead to excessive TRAIL/DR5 interaction; indeed 

blockade of DR5 and TRAIL interaction protected 129 mice from severe IAV- 

induced disease. To extend this data and demonstrate that this cascade of events is 

not specific to 129 mice we performed in-depth analysis of the immune response 

in another high IFN responding mouse strain: DBA/1 mice.

Figure 4E-F shows that like the 129 strain, DBA/1 mice have high levels of 

IFNap in the BAL fluid during infection and this correlated to severe disease. To
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ascertain whether or not the DBA/1 strain recapitulated the 129 phenotype we 

assessed cellular recruitment and expression of TRAIL and DR5 throughout X31 

infection by flow cytometry. As was observed in the 129 strain pDCs, NK cells and 

IMcs are recruited in elevated numbers to DBA/1 lungs (Figure 25A]. Furthermore, 

TRAIL expression on IMcs and DR5 expression on epithelial cells in DBA/1 mice 

was comparable to what was observed in 129s and markedly higher than what 

was recorded from the B6 strain (Figure 25B). Finally, depletion of Gr-1+ cells 

(pDCs, IMc and neutrophils] or mAb blockade of TRAIL signalling resulted in an 

increase in resistance to X31-induced disease in DBA/1 mice, although this was not 

statistically significant (Figure 25C]. We therefore conclude that the IFNap-driven 

inflammation leading to immunopathology is a general phenomenon observable 

across a wide range of mouse models of IAV infection.

Figure 24: X31 induced DR5 expression  on 129 lung epithelia l cells and su bsequent  
host pathology is dependent upon IFNap signalling. (A-D] BM chimeras were 
generated: 129>129 (light blue], IFNapR-/-(129]>129 (red], 129>IFNapR-/-(129] 
(purple] and IFNapR-/-(129]>IFNapR-/-(129] (dark blue] and infected with X31 
(8 OOTCID50] and (A] weight loss and survival was recorded. (B] Expression of DR5 on 
epithelial cells and epithelial cell death was assessed at 7dpi. (C] IFN concentrations 
during X31 infection in BAL from bone marrow chimeric mice and 129 (open triangles] 
and IFNapR-/- (black triangles] was measured by ELISA. (D] At 6 dpi lung single cell 
suspensions were prepared, and expression of TRAIL on inflammatory monocytes was 
assessed by flow cytometry. Gating strategy depicted using Flow Jo Version 9.5, red 
histograms indicate CD45.1+ Wt 129 cells and blue indicate IFNapR-/-(129] CD45.2+ cells. 
(E] Bone Marrow derived macrophages from 129 and IFNapR-/-(129] mice were 
stimulated with X31, MOI of 1 for 24hrs, concentrations of IFNs in supernatants were then 
assessed by ELISA. Graphs show mean ts.e.m  and are representative of 2 independent 
experiments where n=3-6. *** p<0.0001, ** p<0.001, * p<0.01 by 2-way ANOVA with 
Bonferroni post tests (weight loss and IFN ELISAs], by Mann Whitney test (DR5 
expression and frequency of apoptotic epithelial cells] or Log-rank (Mantel-Cox] Test 
(survival], 2-way ANOVA with Bonferroni post tests where * denotes 129>129:IFNapR-/-> 
IFNapR-/-, + for 129>129:129 IFNapR-/-, and 0 represents IFNapR-/->IFNapR-/-: 
IFNapR-/->129. Symbols on the right of graphs indicate statistical significance of the 
whole curve (2 way ANOVA] and symbols above individual points indicate significance as 
assessed by Bonferroni post test.
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Figure 25
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Figure 25: DBA/1 strain susceptib ility  to influenza induced d isease follow s high 
type I IFN production, pDC and iMC recruitm ent and TRAIL/DR5 expression. 129
[open triangles], B6 [open circles], and DBA/1 [black diamonds] mice were infected i.n 
with X31 [8 OOTCID50]. [A-B] At specified time points, lung single cell suspensions were 
prepared, [A] recruitment of pDCs, NK cells and IMcs and [B] expression of TRAIL on IMcs 
and DR5 on epithelial cells was assessed by flow cytometry. DBA/1 mice were infected 
with X31 and treated  with [C] aGr-1 [open diamonds] or Veh Ctrl [black diamonds] or [D] 
aTRAIL [open diamonds] or Veh Ctrl 24hrs before infection with X31. aGr-1 treatm ent 
was continued every 48hrs thereafter and aTRAIL treatm ent every 24hrs, all treatments 
were ceased at 12dpi. Weight loss and mortality was recorded throughout infection. 
Graphs show mean ± s.e.m and are representative of 2 independent experiments where 
n=2-6, except for [C] where data is pooled from two experiments [n=15]. B6:129 *, and 
B6: DBA/1: °, where *** p<0.0001, **p<0.001, * p<0.01 by 2-way ANOVA with Bonferroni 
post tests [weight loss, cellular recruitment, and TRAIL and DR5 expression] or Log-rank 
[Mantel-Cox] Test [survival]. Symbols on the right of graphs indicate statistical 
significance of the whole curve [2 way ANOVA] and symbols above individual points 
indicate significance as assessed by Bonferroni post test.
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3.4 Discussion

Severe influenza induced disease is characterised by the rapid development 

of acute lung injury associated with a vigorous inflammatory response (Louie et al., 

2009; Mauad et al., 2010; Peiris et al., 2004). However, severity of disease 

significantly differs between individuals, and this variance has been hypothesised 

to be in part due to genetically determined host factors. Here, we demonstrate that 

host-intrinsic differences can determine the severity of influenza induced disease 

and that responsiveness to IFNap signalling is a host-specific determ inant with 

protective or detrimental potential. High susceptibility of the mouse strains 129, 

DBA/1, CBA/J and DBA/2 correlated to significantly higher levels of IFNap in the 

BAL fluid, as compared to more resistant B6 and BALB/C mice. Further 

comparison of 129 and B6 mice revealed higher resting numbers of potent IFN 

producing pDCs in 129 mice, which were more robustly recruited to the infected 

lungs. Excessive pDC presence in the infected lung and their subsequent secretion 

of IFNap was found to be upstream of a robust proinflammatory cytokine and 

chemokine response as well as recruitment of innate inflammatory cells such as 

IMcs in 129 lungs. Significantly, IFNap signalling induced the upregulation of

TRAIL on IMcs and the TRAIL receptor DR5 on lung epithelia, and this correlated
/

to higher numbers of apoptotic epithelial cells in 129 mice. Thus, excessive IFNap 

induced pronounced epithelial cell death and an exaggerated proinflammatory 

response that ultimately led to morbidity and mortality of the 129 strains (Figure 

26).

Historically, IFNap is thought to be exclusively protective during viral 

infections. However, data presented in this chapter argue that protection afforded 

by IFNap is a function of concentration. As exquisitely demonstrated in the B6
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Figure 26
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Figure 26: Graphic representation  of hypothesized m echanism  of 129 pathology, (a)
Influenza infection of 129 mice, (b) Highly responsive 129 pDCs are recruited to the 
infected lung where they secrete large amounts of type I IFNs. (c) IFNctP induces secretion 
of proinflammatory cytokines and chemokines and the recruitment of innate 
inflammatory cells such as IMcs. (d) IFNap signalling also induces upregulation of TRAIL 
on IMs and DR5 on epithelial cells, (e) Interaction between TRAIL on IMs and DR5 on 
epithelial cells leads to epithelial cell death, therefore severe lung damage and host 
pathology.
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strain, too much or too little IFNap signalling can lead to increased morbidity. 

Similar results were obtained by Beilharz et al., where moderate oral doses of IFNa 

were protective during influenza challenge, while animals given high doses of IFNa 

suffered higher morbidity than placebo controls, even though the treatm ent in this 

study lasted for 10 days and therefore, immediate effects of IFN treatm ent could 

not be distinguished from long-term effect (Beilharz et al., 2007). Furthermore, a 

backcrossing study using IAV resistant B6 mice and IAV susceptible DBA/1 mice 

demonstrated a host specific, positive correlation between IFNap and other 

proinflammatory cytokine expression with disease severity (Boon et al., 2009). A 

delicate balance must therefore be struck, where type I IFN signalling must be 

sufficient to induce an adequate immune response yet not so overreaching as to 

induce immunopathology.

To our knowledge this is the first study to demonstrate IFNap directly 

contributing to severe disease in IAV infection. However, IAV is not the only virus 

to have a complex relationship with IFNap. A recent study conducted by Wetzel 

and others (2014) demonstrated that elevated levels of IFNp in lungs of B6 mice 

infected with Sendai virus directly correlated with increased host morbidity and 

mortality. Notably, this pathogenic potential of IFNap was revealed only in the 

absence of the ISG Ifit2, a gene that codes for a potent restriction factor of Sendai 

virus replication (Wetzel et al., 2014). Analogously, the experiments presented in 

this chapter have been performed in inbred laboratory mouse strains whose 

genomes do not code for the functional IAV restricting ISG Mxl (Pavlovic et al., 

1995). W hether or not exaggerated IFNap signalling retains its pathogenic 

potential on an Mxl functional background will be addressed in a later chapter. It 

is however interesting to note that Wetzel et al.'s study was performed in B6 mice,
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a strain we identify as low IFNap producers, while in an earlier study using a 129 

mice, Lopez et al. recorded lower weight loss in IFNapR-/-(129) mice than their 

wild-type counterparts during Sendai virus infection (Lopez et al., 2006). 

Furthermore, Shin et al. recently showed that reconstituting Mxl protein 

functionality through congenic breeding on the DBA/2 background did not confer 

increased resistance to PR8 induced disease compared to Mxl non functional 

DBA/2 controls (Shin et al., 2015). In our own study we class the DBA/2 strain as a 

high IFN producing background and similar to what we observed in 129 mice, IAV 

induced pathology of DBA/2 mice that express functional Mxl associated with 

elevated levels of a myriad of proinflammatory cytokines including IP-10, IL-6 and 

MCP-1, as compared to Mx functional B6 mice. However, in contrast to our results, 

expression of IFNp mRNA at 3dpi in the lung was comparable between DBA/2 and 

B6 background and ultimately the authors attribute Mxl functional DBA/2 mice 

susceptibility to IAV replication out pacing production of Mxl protein in the 

DBA/2 but not the B6 background (Shin et al., 2015). Given that the assessment of 

IFNap production in the lung was limited to IFNp mRNA and at only one time 

point, it would be interesting to compare concentrations of IFNap over the entire 

time course of this study and to determine whether or not blockade of IFNap 

signalling could ameliorate disease, as seen in our results. Collectively, this data 

gives credence to the idea that even in the context of potent antiviral ISGs, high 

levels of type I IFNs can still drive immunopathology.

While IFNap has been shown to be protective by induction of antiviral 

factors early in Lymphocytic choriomeningitis virus (LCMV) infection (Muller et al., 

1994), blockade of type I IFN signalling late in infection has been shown to 

increase LCMV clearance. One study suggested that this disparity in IFNap action
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was due to IFNap blocking IFNy expression, while promoting IL-10 secretion. A 

parallel study indicated that type I IFN signalling drove expression of programmed 

cell death 1 ligand (PD-L1) on dendritic cells, antagonized expansion of T cells, B 

cells, NK cells, and macrophages, and was associated with splenic architecture 

disorganization. Ultimately, both studies concluded type I IFN-mediated 

dampening of the immune response impaired CD4+ T cell function and thereby 

supported viral persistence (Teijaro et al., 2013; Wilson et al., 2013). IFNy 

secretion and CD4+ T cell recruitment was not blunted in 129 mice, compared to 

IFNapR-/-(129) mice, however IL-10 was massively induced in 129 lungs. 

Concurrently, IFNap has been shown to induce IL-10 secretion in many disease 

settings (Chang et al., 2007a; McNab et al., 2014; Zhang et al., 2011). The high 

concentrations of IL-10 found in 129 lungs could be downstream of IFNap 

signalling. However, levels of IL-10 late in infection IFNapR-/-(B6) mice were 

elevated compared to levels found in Wt B6 mice, demonstrating that IL-10 is not 

only induced by IFNap. Indeed, as IL-10's primary function is to limit 

immunopathology it is also secreted in response to other proinflammatory 

cytokines and is downstream of TLR activation (Couper et al., 2008). 129 and 

IFNaR-/-(B6) mice both experience heavier disease burden than their IFNapR-/- 

or Wt counterpart (respectively) demonstrating that induction of IL-10 in this 

model is not driven by IFNap alone.

B cell recruitment to 129 lungs was markedly reduced, which correlated to 

a trend for lower induction of IAV specific antibodies. Price et al. have previously 

demonstrated that IFNapR deficiency on the 129 background allowed for better 

induction of IAV specific antibodies (Price et al.). Interestingly, this depression of B 

cells by IFNap seems to be 129 specific, as it was not observed on the B6
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background. Although we conclude IFNap mediated immunopathology in 129 mice 

occurs independent of adaptive immunity, it is interesting to note that titres of X31 

in 129 lungs persist longer than what was observed in IFNapR-/-(129) lungs. 

Perhaps this is linked to the lower antibody response. This is significant, as 

persistence of viral particles in the lung late in infection can continue to stimulate 

the immune system, facilitating prolonged IFNap signalling and in this way 

contribute to 129 pathology.

Excessive type I IFN signalling may not only associate with host pathology 

during acute virus infection but is also observed chronic viral infections. For 

example, chronic production of IFNa by human pDCs during Human 

Immunodeficiency Virus (HIV) infection has been proposed to contribute to 

persistent immune activation (O'Brien et al., 2013; Rajasuriar et al., 2013), while 

Stary et al. demonstrated that pDC derived IFNa led to expression of TRAIL on 

pDCs and CD4+ T cells and concomitant death receptors on CD4+ T cells; this 

interaction induced apoptosis of uninfected CD4+ T cells and consequently severe 

host pathology (Stary et al., 2009). An earlier in vitro study demonstrated that 

IFNa produced by pDCs after HIV-induced TLR7 stimulation was responsible for 

TRAIL expression (Hardy et al., 2007). Furthermore, ex vivo analysis of CD8+ T 

cells from HIV positive individuals found that those categorised with a 

nonprogressive disease phenotype (ie: resistant to severe virus induced disease) 

exhibited lower expression of interferon-stimulated genes (Herbeuval et al., 2006). 

However, like in our own study, the role of IFNap in HIV infection is a fine balance; 

host intrinsic defects in pDCs, particularly relating to decreased ability to produce 

type I IFN, have been associated with enhanced HIV replication (O'Brien et al., 

2013; Siegal et al., 1999; Soumelis et al., 2001). Furthermore, administration of an
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antagonist for IFNapR exacerbated disease in a pathogenic SIV rhesus macaque 

model, while treatm ent with pegylated-IFNa2a in the same model before and 

during viral challenge reduced the frequency of viral transmission (Sandler et al., 

2014). Additionally, 2 studies conducted in HIV infected humans treated with 

IFNa2b demonstrated that treatm ent led to a transient decrease in viral load 

(Asmuth et al., 2010; Lane et al., 1990). Further study on IFNa2b treated HIV 

infected individuals found that expression levels of a set of canonical ISGs, 

including a potent HIV restrictor: Mx2, correlated to reduction in viral load 

(Hubbard et al., 2012). Thus, similar to IAV infection, IFNap antiviral effects are 

vital for control of virus replication, many potent HIV restricting factors such as 

Mx2 and tetherin are ISGs and therefore IFNap is integral to host protection from 

HIV, however inflammation driven by IFNap has to potential to drive pathology, in 

this case through contribution to CD4+ T cell death.

In light of its well-established anti-viral role it is surprising that loss of type 

I IFN signalling in 129 mice does not increase host susceptibility to influenza 

induced disease. We hypothesise that IFNapR-/-(129) mice are able to control 

influenza replication through the presence of a second, entirely independent, yet 

redundant IFN system: the type III IFNs (Kotenko et al., 2003; Mordstein et al., 

2008; Sheppard et al., 2003). Concentrations of IFNA found in IFNapR-/-(129) BAL 

are analogous to those found in resistant B6 lungs during influenza infection. 

Furthermore, Crotta et al confirmed ISG induction and control of influenza 

replication in cultured IFNapR-/- and Wt AECs is equivalent (Crotta et al., 2013). 

Thus, the antiviral response elicited by IFNA is sufficient to protect IFNapR-/-(129) 

mice. By the same token, it is therefore surprising that IFNapR-/-(B6) mice are 

more susceptible than their Wt controls, as an intact IFNA pathway should be
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sufficient to protect mice from influenza induced disease. However, levels of IFNA 

in IFNapR-/-(B6) BAL are significantly lower than all other mouse strains tested. 

This indicates that without IFNap signalling, IFNA induction and or signalling may 

be in some way impaired.

IFNA has been demonstrated to act in an autocrine and paracrine manner to 

amplify its own production, independent of IFNap signalling (Ank et al., 2006b). 

However, mAb blockade or genetic deletion of IFNapR on pDCs in this study 

blunted their secretion of not only IFNa and but also IFNA in response to 

stimulation with X31. Furthermore, genetic deletion of type I IFN signalling in both 

129 and B6 mice decreased pulmonary levels of IFNA during X31 infection. In 

contrast to IFNa and IFNA, IFNp levels were not blunted by mAb blockade of 

IFNapR signalling on 129 pDCs, but whole lung levels of IFNp in IFNapR-/-(129) 

mice were reduced compared to levels observed in 129 lungs. It has been reported 

that IFNap production by pDCs does not depend on presence of a functional 

IFNapR (Barchet et al., 2002). We observe an essential requirement of IFNapR for 

not only IFNa but also IFNA production in 129 pDCs, only IFNp induction appears 

independent of IFNapR signalling. Additionally, this appears to be cell type 

intrinsic, as expression of IL-28A mRNA was comparable between Wt, IFNapR-/- 

(129) and STAT1-/-(129) AECs (Figure 9). Similarly, Crotta et al. also observed 

that IL-28A gene induction by IAV was not impeded by deficiency of both IFNapR 

and IFNAR in AECs (Crotta et al., 2013). Although pDCs are potent producers of 

IFNA invitro, depletion of this cell type and other PDCA-1+ cells from 129 mice 

revealed that, unlike most other cytokines assessed, concentrations of IFNA in the 

BAL remained high, indicating there are other potent cellular sources of IFNA. As 

AEC upregulation of IL-28A mRNA is not negatively impacted by IFNapR
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deficiency, in vivo secretion of IFNA by this cell type is unlikely to be affected by 

lowered pulmonary levels of IFNa. Alternatively, CD8a+ DCs have also been 

demonstrated to be potent IFNA producers and may therefore also contribute to 

pulmonary levels of IFNA in aPDCA-1 treated 129 mice (Crotta et al., 2013; 

Lauterbach et al., 2010). In addition, IFNp levels in aPDCA-1 treated 129 mice were 

relatively unaffected and therefore IFNp may contribute to the propagation of IFNA 

induction. Yet, the question remains why IFNapR deficiency negatively impacts on 

IFNA response so markedly in IFNapR-/- mice. It is possible that a downstream 

signalling molecule, common to both IFNap and IFNA, requires a tonic type I IFN 

signal to maintain adequate expression levels. Previous studies have demonstrated 

that members of the STAT and IRF families require low-level IFNp signalling to 

maintain basal levels (Fleetwood et al., 2009; Gough et al., 2010). Thus, while 

depletion of PDCA-1+ cells only decreases type I IFN signalling during influenza 

infection, complete life time ablation of IFNap signalling (as in IFNapR-/- mice) 

may result in diminished basal expression of this specific factor and therefore may 

compromise downstream biological responses such as amplification of IFNA. It is 

also conceivable that this molecule is more abundant, or more readily activated in 

the 129 background, therefore explaining why loss of a tonic IFNap signal in 

IFNapR-/-(129) mice leads to a less dramatic reduction of IFNA than that seen in 

the IFNapR-/-(B6) BAL.

Although IFNA induces the same downstream effects as IFNap, it is of 

significant interest that the tissue distribution of IFNapR and IFNAR are not 

equivalent. While IFNapR is ubiquitously expressed, IFNAR expression tends to be 

restricted to epithelial cell surfaces (Mordstein et al., 2008; Sheppard et al., 2003; 

Sommereyns et al., 2008). Type I IFNs therefore may play a nonredundant role in
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activating immune cells, which is sufficient to induce protection on the B6 

background, yet exaggerated in Wt 129s leading to host immunopathology. Loss of 

IFNap immune cell activation is countered by sufficient concentrations IFNA to 

protect the lung epithelia in IFNapR-/-(129) mice, however lower IFNA levels seen 

in IFNapR-/-(B6) lungs are less effective. This would also explain the difference 

between the data presented in this chapter and a previous study by Garcia-Sastre 

et al. that also employed IFNapR-/- mice on the 129 background. In contrast to the 

results presented here, Garcia-Sastre et al. reported an increased susceptibility to 

IAV in IFNapR-/-(129) compared to their Wt counterparts. The key difference 

between Garcia-Sastre et al.'s study and our own is the IAV strain used. Unlike our 

own study which used 3 archetypal IAV strains, Garcia-Sastre et al. employed 

A/WSN/33 IAV strain, that unlike other strains of IAV can also infect neurons 

(Garcia-Sastre et al., 1998a). Neurons are insensitive to IFNA (Sheppard et al.) and 

thus in this setting, IFNapR is crucial for ISG induction, consequent control of IAV 

replication and ultimately, host protection.

Higher pDC frequencies observed in naive 129 mice are not seen in IFNapR 

deficient mice of the same strain. The reduction of IFNap and IFNA recorded in the 

pulmonary environment of IFNapR-/- mice during X31 infection may be a result of 

lower pDC numbers and an ablation in their functionality. In some settings IFNa 

has been demonstrated to be an autocrine survival factor for the normally labile 

pDCs (Ito et al., 2001; Kadowaki et al., 2000), while in other situations IFNapR 

induces caspase 1 mediated pDC death (Swiecki et al., 2011). Although not 

investigated in depth, persistent higher numbers of pDCs in 129 lungs suggests 

that high IFNap signalling does not promote apoptosis of this cell type in IAV 

infection or, alternatively it is possible that IFNapR signalling preferentially drives
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pDC recruitment and proliferation in addition to apoptosis, thereby maintaining 

high numbers of this cell type. Chen et al. demonstrated that generation of pDCs 

from common lymphoid progenitors (CLPs) involves positive feedback between 

IFNapR and Fms-like tyrosine kinase 3 (Flt3). Flt3 ligand (Flt3L) induces secretion 

of IFNap from CLPs that in turn, induces Flt3 up-regulation, thereby facilitating 

survival and proliferation of CLPs, as well as differentiation into pDCs (Chen et al., 

2013). IFNapR deficiency may therefore explain lower basal frequencies of 

IFNapR-/-(129) pDCs and their abolished responsiveness to viral stimulus. 

Furthermore, this data is again suggestive of an increased presence of a tonic type I 

IFN signal in 129 mice that could maintain higher basal numbers of pDCs.

Highly responsive pDCs in 129 lungs are likely to be the primary cellular 

source of IFNa induced by IAV. Depletion of PDCA-1+ cells effectively depleted 

pDCs in 129 mice and drastically lowered IFNa pulmonary concentrations. 

However, as PDCA-1 is upregulated by other cell types in response to IFNap 

stimulation and IFNapR engagement induces further secretion IFNa subtypes, it is 

probable that other cell types contribute to the high levels of IFNap observed in 

129 mice. Evolutionarily, pDCs are likely designed as a secondary defence 

mechanism to viral infection. Using an IFNa6 GFP reporter mouse to determine the 

cellular source of IFNa in NDV Kumagai et al. found that pDCs did not make IFNa in 

response to pulmonary NDV infection, instead AMs and cDCs were the primary 

source of IFNa and it was only when AMs were depleted that pDCs secreted IFNa 

(Kumagai et al., 2009). This would explain why in many viral infections, including 

IAV, pDCs are dispensable for induction of an IFNap response and ultimate 

resolution of infection. In the case of IAV, AMs appear to be the primary source of 

IFNap and are sufficient to induce an antiviral state in the lung, thereby impeding

149



IAV spread (GeurtsvanKessel et al., 2008; Soloff et al., 2012). Although dispensable, 

pDC secretion of IFNap can be useful if the first defence line is evaded, for example 

Kallfass et al found that in infection of IFN(3 GFP reporter mice with a delNSl strain 

of IAV, epithelial cells and lung macrophages were the primary expressers of IFNp 

GFP protein. However, upon infection with the parental NS1 functional strain of 

IAV, expression of IFN(3 was blocked in epithelial cells and to a lesser extent in 

macrophages and instead, other undefined cell types, including CDllc+ cells made 

up the majority of IFNP+ cells (Kallfass et al., 2013). Further characterization of 

these cell types was not performed in this study, however pDCs are known to be 

CDllc+. It is therefore possible that in IAV infection, while the primary source of 

IFNap is AMs, pDCs may offer a supplemental source of IFNap which is unimpeded 

by NS1 action. Importantly, the above studies were performed in mice of the B6  

background it is therefore possible that in 129 mice, pDCs may subvert their role 

as secondary responders and respond immediately to IAV recognition, and this 

leads to exaggerated IFNap levels and host pathology.

IFNa levels in the lung during infection were intermediate in the IFNapR-/- 

>129 and 129>IFNapR-/- chimeras, compared to the higher concentrations found 

in 129>129 and significantly lower levels in I F N a p R - / - > I F N a p R - / -  chimeras. This 

is in contrast to data collected from whole IFNapR-/- (129) where pulmonary 

concentrations of IFNa were almost never detected at the time points assessed. 

Taken with the results gleaned from in vitro stimulation of Wt pDCs (both 129 and 

B6 ), we hypothesise that the cellular source of IFNa during IAV infection is 

dependent on IFNapR positive feedback loop. IFNp levels were decreased in both 

IFNaR-/-(129) and to a lesser extent aPDCA-1 treated mice so the comparable 

levels of this cytokine in all chimeras is in line with previous data presented in this
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chapter. Thus the intermediate levels in the IFNa(3R-/->129 chimera are 

surprising, however the presence of a radiation resistant monocyte population 

provides an immune source of IFNa that may compensate for the lack of positive 

feedback in the rest of the immune compartment. These radioresistant cells may 

upregulate PDCA-1 upon stimulation with IFNap and therefore would have been 

depleted in aPDCA-1 treated mice.

It is interesting to note that IFNa levels in the lung during IAV infection 

clearly correlated with disease severity, yet the link between pathplogy and 

pulmonary concentration of IFNp was less convincing. Differences in IFNp levels in 

the lung between susceptible 129 and resistant B6  strain were consistently less 

impressive than what was observed in concentrations of IFNa and depletion of 

PDCA-1+ cell types did not massively impact on IFNp concentrations in the lung 

during IAV, yet did protect 129 mice from severe disease. This may be a reflection 

of IFNp expression being tightly controlled and only achieved through direct PRR 

engagement, while expression of IFNa subtypes (which are indiscriminately read 

out in the IFNa ELISA used in this study) are induced in some cell types such as 

pDCs directly downstream of pathogen recognition and further amplified by ligand 

binding to IFNapR. It would be interesting to disentangle IFNp and IFNa mediated 

effects on host immunity to IAV and it is possible that it is only the downstream 

amplification of IFNa, which is so pronounced in 129 mice, that drives pathology 

and genetic ablation of all IFNa subtypes could be sufficient to protect the 129 

strain from immunopathology.

High proinflammatory cytokine production during influenza infection is 

commonly associated with IAV disease severity. PDCA-1+ cell depletion or genetic 

ablation of IFNapR signalling in 129 mice renders proinflammatory cytokine
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concentrations equivalent to levels seen in the resistant B6  strain. However, in 

vitro stimulation of 129 pDCs revealed that, with the exception of Mip-lp, the pro- 

inflammatory cytokines that are increased in influenza-infected 129 lungs are not 

produced by pDCs, suggesting that the augmented pro-inflammatory cytokine 

milieu found in infected 129 mice is indirectly induced by upstream, host intrinsic 

IFNap responsiveness. Further investigation is required to identify which cell 

types IFNap stimulates to induce the release of MCP-1, IL-6 , IP-10, IFNy, Eotaxin, 

G-CSF, and perhaps Mip-ip. AMs and IMcs are known to secrete many 

proinflammatory mediators in response to IAV making them likely sources 

(Cheung et al., 2002; Seo et al., 2011; Woo et al., 2010). Additionally, Teijaro et al. 

reported that lung endothelial cells secrete similar proinflammatory cytokines 

during IAV infection in a partially IFNap dependent manner, making them 

interesting candidates for future research (Teijaro et al.). It is important to note 

that although levels of proinflammatory cytokines recorded in 129 lungs were 

monumentally higher than concentrations observed in IFNapR-/-(129), B6  and 

IFNapR-/-(B6 ) lungs, these cytokines were still induced above baseline in 

response to IAV infection in the more resistant mouse strains. Indeed in some 

cases (Eotaxin, G-CSF, IFNy and IL-6 ) levels of proinflammatory cytokines were 

higher in IFNaPR-/-(B6 ) lungs than concentrations observed in B6  Wt lungs, 

demonstrating that proinflammatory cytokine induction is not just dependent 

upon IFNapR signalling but is also a function of viral replication and disease 

burden.

IFNap-promoted MCP-1 secretion in the lung induces recruitment of IMcs. 

IMc escape from the bone marrow is entirely dependent upon CCR2 engagement, 

MCP-1 being a primary ligand for CCR2 (Kuziel et al., 1997; Serbina and Pamer,
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2006). AECs secrete MCP-1 upon IAV infection to initially recruit monocytic cell 

types (Herold et al., 2008), furthermore IFNap action on IMcs themselves has been 

shown to further propagate IMc recruitment during IAV infection by preferentially 

inducing secretion of MCP-1 from this cell type (Skountzou et al.). This cascade of 

IFNap signalling, MCP-1 secretion, IMc recruitment and their subsequent IFNap 

mediated upregulation of TRAIL further demonstrates IFNap pathogenic potential. 

However, advances in delineating monocyte subtypes have revealed a myriad of 

myeloid populations that are not only dependent upon CCR2 recruitment, but can 

express TRAIL during IAV infection (Ellis et al., 2015; Langlet et al., 2012; Misharin 

et al., 2013). It is therefore likely that beyond our stringently defined Ly6 Chi, 

C D llb+, CD l i e ,  FSCint, SSCint IMcs, other monocyte-derived populations contribute 

to TRAIL mediated tissue destruction in this model. Indeed, Herold et al. identified 

a CCR2 dependent F4/80+ G r-lint, C D llcint population that they termed exudate 

macrophages. Like IMcs in this study, exudate macrophages upregulated TRAIL 

during severe IAV infection and thereby induced AEC apoptosis (Herold et al., 

2008). However Herold et al. only observed TRAIL expression on exudate 

macrophages in the context of PR8  and not X31 infection, which is in contrast to 

the TRAIL+ IMc population we observed in X31 infected B6  mice in Figure 23. This 

could be due to differences in experimental models: Virus dose and route and 

volume of inoculum were different between studies and as X31 induced weight 

loss was not reported, it is difficult to understand whether or not our infection of 

B6  mice with X31 is comparable. These differences notwithstanding, this study 

focused on TRAIL expressing Gr-lint cells, which potentially excludes Ly6 Chi IMcs 

reported in this study and given the comparatively lower frequency of AEC 

apoptosis observed by us in X31 infected B6  mice it is possible that TRAIL induced



apoptosis of AECs was indistinguishable from other forms of cell death that occurs 

during IAV infection in Herold et al.'s study. In a follow up study this group 

demonstrated both exudate macrophages and AMs express TRAIL in IAV infection 

and this was dependent upon autocrine IFNap signalling. Generation of bone 

marrow chimeras where the hematopoietic system was deficient for IFNapR or 

TRAIL lowered AEC apoptosis in B6  mice infected with PR8  and chimeras with a 

TRAIL-/- hematopoietic system were protected from IAV induced morbidity 

(Hogner et al., 2013). These studies are largely in agreement with what we have 

reported in this chapter: monocyte and AM populations express TRAIL in response 

to IFNap signalling during IAV infection and thereby induce AEC apoptosis. Yet 

AMs are radioresistant (Kennedy and Abkowitz, 1997), as we observed in our 

IFNapR-/-(129)>129 chimeras, where the IFNap dependent TRAIL signal to 

induce AEC death and therefore host mortality was supplied by the residual host 

monocyte or AM population (Figure 24). In contrast, Hogner et al observed AM 

expression of TRAIL was entirely ablated in chimeras made with IFNapR-/- or 

TRAIL-/- bone marrow and this correlated to reduced frequencies of apoptotic 

AECs. This discrepancy between Hogner et al.'s and our own study may be due to 

the levels of IFNap during infection in each mouse strain used. Hogner et al. 

employed B6  mice and as observed in our study, this strain has a comparatively 

lower propensity to make IFNap than the 129 strain used in our bone marrow 

chimera experiments. Furthermore, IFNap secretion is markedly impeded by 

IFNapR deficiency, therefore amplification of IFNap signalling in B6  AMs may be 

more severely affected than in 129 AMs. Coupled with this, prolonged IFNapR 

engagement is required for induction of TRAIL (Kalie et al., 2008). Thus apoptosis 

of AECs by TRAIL+ residual host AMs may not have been observed by Hogner et al.



as the IFNap signal was insufficient. Differences in these results may also be due to 

other strain intrinsic features of 129 and B6  mice, beyond IFNap induction of 

TRAIL.

TRAIL expression by pDCs in response to both IFNap stimulation and IAV 

recognition has also been observed. In a pDC cell line (GEN2.2) and pDCs isolated 

from PBMCs, live IAV, TLR7 and 9 agonists all elicited TRAIL upregulation 

(Chaperot et al., 2006). Balzarolo et al further demonstrated that TLR and IFNap 

signalling were both required in human pDCs for full TRAIL expression (Balzarolo 

et al., 2012). Additionally, TRAIL expression was also detected on NK cells as well 

as CD4+ and CD8 + T cells in IAV infection (Hamada et al., 2013; Ishikawa et al.,

2005). However, we did not observe TRAIL on any of these cell types in this study. 

This may be due to the limited number of time points assessed: NK cell expression 

of TRAIL was generally found as early as 5dpi, while TRAIL expression on T cells 

was observed as late as 8 dpi. Differences in experimental models such as mouse or 

IAV strain or disease burden may also contribute to the differing results between 

these studies and ours.

Modern histopathological analysis of autopsy samples from human H1N1 

1918 influenza infection revealed massive lung damage involving significant 

destruction of the respiratory epithelium (Kash et al., 2006; Taubenberger and 

Morens, 2006). Significantly, analysis patients hospitalized due to SO-IV H1N1 

infection found that expression levels of TRAIL were markedly increased in 

infected patients over healthy controls (Hogner et al., 2013; Li et al., 2010). X31 

induced pathology in 129 mice is characterised by prolonged inflammation and 

upregulation of TRAIL on IMcs and its receptor DR5 on epithelial cells. Previous 

studies have demonstrated that DR5 can be upregulated in response to IFNap
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stimulation (Bernardo et al., 2013), indeed during influenza infection we observed 

Wt, both 129 and B6  epithelial cells expressed higher levels of DR5, compared to 

their IFNapR deficient counterparts, strongly indicating DR5 upregulation is 

downstream of IFNapR signalling and not a function of disease severity. IFNap 

mediated upregulation of DR5 is associated with higher frequencies of apoptotic 

epithelial cells late in infection. Generation of bone marrow chimeras confirmed 

that susceptibility to influenza-induced disease was dependent upon 

nonhaematopoietic cells such as epithelial cells receiving a type IIFN signal. Mice 

with IFNapR+/+ stroma upregulated DR5 expression on epithelial cells and again 

this associated with increased frequency of epithelial cell death.

Crotta et.al. demonstrate that induction of ISGs in IFNapR-/-, IFNAR-/- and 

Wt tracheal epithelial cell cultures is identical meaning that, in this cell type no 

subset of ISGs is specifically regulated by IFNap or IFNA. Additionally, we did not 

observe a change in expression of DR5 in in vitro AEC cultures during influenza 

infection (data not shown), and Hogner et al. found that direct stimulation of AEC 

cultures with IFNp did not induce DR5 expression (Hogner et al., 2013). These data 

appear contrary to our own in vivo data where DR5 expression on epithelial cells 

is specifically modulated by IFNap signalling. IFNap may therefore act in concert 

with another factor (e.g.: IAV infection itself or another proinflammatory cytokine) 

to induce DR5 upregulation and in an in vitro culture system this factor may not be 

present. Alternatively, lung endothelial cells have been shown to vigorously 

respond to type I IFN signalling (Teijaro et al.). Herold etal. claimed lung epithelial 

cells increase DR5 expression during influenza infection and this resulted in 

epithelial cell death and severe disease (Herold et al., 2008). However, the antigen 

used to define epithelial cells, T -la, is not specific to epithelial cells, as it is also
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highly expressed on endothelial cells. As lung endothelial cells exclusively respond 

to IFNap signalling, it is possible that type I IFN can induce DR5 expression and 

subsequent apoptosis of this cell type, which leads to severe influenza induced 

disease. Since endothelial cells have also been shown to produce proinflammatory 

cytokines in response to IAV infection, it is possible that this cell type is providing 

the, as yet unknown, additional signal that induced DR5 upregulation on airway 

epithelial cells.

We have demonstrated that high frequency of hyper responsive pDCs leads 

to excessive pulmonary levels of IFNap during X31 influenza infection and 

consequently epithelial damage-associated mortality of 129 mice. Superficially, it 

appears that increased susceptibility is due to the quantitative IFN difference seen 

between 129 and B6  mice. However, as the bone m arrow chimera data 

demonstrates, even with reduced pulmonary IFNap concentrations (as seen in 129 

mice reconstituted with IFNapR-/-(129) bone marrow) 129 mice remain 

susceptible in influenza-induced disease. Our data indicates that this is due to 

IFNapR dependent upregulation of DR5 on epithelial cells and resultant cell death. 

Furthermore, it can be argued that due to self-amplification loop of IFNap, the 

excessive levels of IFNap secreted by 129 pDCs are another read out of hyper 

responsiveness to the IFNapR. Strain specific differences in pDC frequency may be 

a downstream effect of strain specific differences in responsiveness to IFNap. 

Thus, it may not be a quantitative levels of IFNap that cause 129 pathology but 

instead a qualitative difference in response to binding of the IFNapR that causes 

129 mice to become high responders, resulting in features such as increased IFNap 

secretion by pDCs or importantly, a lower threshold for DR5 induction. Host 

specific differences in the IFNapR itself or downstream signalling molecules may
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lead to greater responsiveness to the IFNap signal, and possibly may result in an 

environment where cells are more primed to respond to IFNap. We therefore 

hypothesise that the 129 strain is intrinsically more sensitive to type I IFN 

signalling. In addition, it must be remembered that the difference between 129 and 

B6  strains is not limited to an inequality in IFNap responsiveness, undoubtedly 

other differences between the two strains could contribute to the phenotypes 

assessed here. Indeed, the 129 strain as a whole appears to be more sensitive to 

IAV infection and genetic deletion of the IFNapR from 129 mice doesn't bring 

resistance to IAV induced disease to a comparable level of resistance observed in 

B6  or IFNapR-/-(B6 ) mice. Mice from the 129 strain are slower to clear IAV 

infection than strains tested on the B6  background and trend to have lower levels 

of IAV specific antibodies produced after IAV infection. Furthermore, assessment 

of H & E sections of IAV infected lungs revealed that 129 lungs had markedly lower 

indicative signs of regeneration compared to B6  lungs (data not shown). Host 

intrinsic factors in the 129 strain, independent of the IFNap driven pathway 

delineated in this chapter, must contribute to overall susceptibility of this 

particular inbred mouse strain, however this is beyond the scope of this thesis.

Collectively, we demonstrate that in response to infection by identical 

influenza virus, which results in the same viral titres detected in the lung 

throughout the early phase of infection, IFN levels rapidly diverge, depending on 

the mouse strain background. Host-intrinsic factors are therefore important to 

determine the magnitude of the IFN response and this response, as we show here 

through both genetic and cell ablation experiments, can be protective or 

pathogenic. Induction of a proinflammatory response and epithelial cell death 

mediated by pDC-derived IFNap may restrict influenza replication; however if
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unchecked causes host morbidity and mortality. In the human population, the at- 

risk group for severe influenza may contain individuals with high frequencies of 

pDCs or a propensity to strong IFN responses. Thus, this research has important 

implications for prediction of susceptibility to severe influenza and subsequent 

treatm ent of disease induced by this infection.
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Chapter 4. Therapeutic potential of IFNa and 
IFNA in IAV infection

160



Work in this Chapter was done in a jo in t project with Miss Teresa McCabe. Where 

indicated, experiments were carried out co-operatively. All microarray analysis 

performed in this chapter was performed out under close supervision by Dr Stefania 

Crotta.

4.1 Background

IAV causes three to five million cases of severe illness and up to 500,000 

deaths world wide, annually (Organization, 2015). IAV is also capable of causing 

devastating pandemics, as typified by the 1918 'Spanish Flu' outbreak that resulted 

in an estimated 40 million deaths (Kash et al., 2006). The more recent spread of 

H1N1, S-OIV resulted in up to 203,000 deaths worldwide, 62% -85%  of which were 

people under the age of 65 years (Simonsen et al., 2013). It is hypothesised that the 

higher mortality rate in individuals aged less than 65 years elicited by H1N1 S-OIV 

was due to the antigenic novelty of H1N1 S-OIV compared to circulating IAV 

strains of the previous five decades (Hancock et al., 2009; Skountzou et al., 2010).

Immunization with inactivated or live vaccines is the best prophylactic 

option for protection from IAV. However, IAV vaccines must be matched to the 

current circulating strain, as existing vaccines do not induce broadly neutralizing 

antibodies and therefore are unable to induce heterotypic and heterosubtypic 

immunity against the divergent IAV strains (Krammer et al., 2015). Broadly 

neutralising antibodies to IAV have been isolated in nature. HA stalk-reactive 

antibodies are able to neutralise multiple HA subtypes by binding to epitopes on 

the membrane proximal of HA molecule. This region of HA is comparatively well 

conserved between families of HA subtypes, and therefore, stalk-reactive
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antibodies are able to bind to divergent HAs (DiLillo et al., 2014; Ekiert et al., 2011; 

Tan et al., 2012; Tan et al., 2014). Additionally, antibodies to NA, NP and M2 have 

also been shown to have broad IAV strain neutralising capacity (Carragher et al., 

2008; Zebedee and Lamb, 1988) (Mozdzanowska et al., 1999). However, 

antibodies which target HA-stem, NP, NA and M2 are immune-subdominant to 

antibodies reactive to the globular head of HA and therefore are only induced in 

very low titres in natural infection. Although much effort is being put into 

developing IAV vaccines that induce heterosubtypic immunity a universal IAV 

vaccine is still a long way off. Current influenza antivirals include ion channel 

blockers and NA inhibitors, which act directly on viral proteins (Jefferson et al.,

2006). Targeting IAV directly drives the emergence of drug resistant strains due to 

the high natural mutation rate of IAV. In order to bridge the gap between emerging 

strains that we do not have vaccines for, without driving pathogen drug resistance, 

host-directed therapies which stimulate features of the immune response, such as 

IFNs, should be developed. Induction of pleiotropic cytokines such as IFNap or 

IFNA during IAV infection may be less likely to induce IAV mutations. As IAV has 

already evolved mechanisms to antagonise the induction and action of IFNap and 

IFNA and given the multiplicity of antiviral effectors that are induced by IFNs, 

addition of more of these cytokines to an infected system may serve to circumvent 

virus mediated block of IFNs while also making it difficult for IAV to evolve 

mutants to escape such a multifaceted antiviral response.

As already discussed (Chapters 1 and 3), Type I IFNs are a family of 

antiviral cytokines. All type I IFN subtypes act through a common, ubiquitously 

expressed, heterodimeric receptor (IFNapR) to induce the transcription of a 

diverse set of genes known as ISGs (Randall and Goodbourn, 2008). More recently
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discovered, type III IFNs (IFNA1, 2, 3 and 4) are also induced during viral infection 

and utilise the same JAK/STAT signalling pathway as type I IFN to activate the 

same ISGs (Kotenko et al., 2003; Sheppard et al., 2003). IFNAs bind to an 

independent receptor complex consisting of IL-10R2 and IFNLR1. Unlike the 

ubiquitously expressed IFNapR, IFNAR is restricted primarily to mucosal surfaces 

such as the lung epithelial layer (Mordstein et al., 2008; Sheppard et al., 2003; 

Sommereyns et al., 2008). Infection of IFNapR/IFNAR double deficient mice with a 

panel of respiratory pathogens including IAV, revealed that the lungs of these mice 

were highly permissive to viral replication. IFNapR-/-IFNAR-/- mice had 

significantly higher titres of IAV, IBV, RSV, HMPV and SARS coronavirus compared 

not only to Wt mice, but also mice deficient for only IFNapR or IFNAR. Increased 

virus load in IFNapR-/-IFNAR-/- mice correlated to higher disease burden and host 

mortality (Mordstein et al., 2008). A further study confirmed that IFNapR and 

IFNAR signalling is entirely redundant in AECs and only genetic ablation of both 

IFNapR and IFNAR in AECs in vivo resulted in high IAV loads and host morbidity 

and mortality, in spite of a Wt immune system (Crotta et al., 2013). Induction of 

antiviral ISGs in AECs is therefore of critical importance to control of influenza. Of 

particular relevance to IAV, the ISG: interferon-inducible transm em brane protein 3 

(IFITM3) has been demonstrated to assist in restriction of virus replication in mice 

and in some human populations and mutation in the ifitm3 gene leads to increased 

IAV induced disease burden (Everitt et al., 2012; Zhang et al., 2013). Additionally, 

the appropriately named orthomyxovirus resistance gene family (Mx family) also 

exhibits potent IAV restriction capabilities. Murine Mxl accumulates in the nucleus 

of infected cells and interferes with primary IAV transcription by truncating 

transcripts encoding IAV polymerase proteins. In contrast, the human homologue,



MxA has been shown in vitro to restrict IAV replication by interfering with viral 

protein transport, synthesis or translocation (Pavlovic et al., 1992).

Induction of antiviral genes by IFNs has been extensively demonstrated to 

restrict IAV replication in vitro. Pretreatm ent of mice which can express a 

functional Mxl protein with IFNa has been shown to markedly impede 1918 H1N1 

IAV replication in the lung as well as curbing cytokine and chemokine gene 

expression, compared to non IFNa treated IAV infected controls. Lower viral load 

and inflammatory response correlated with decreased necrotizing bronchiolitis 

and associated peribronchiolar lymphocytic inflammation (Cilloniz et al.). 

Pretreatm ent with IFNa also protected functional Mxl mice from high virus load in 

the lung and mortality in H5N1 infection (Tumpey et al.). Treatment of ferrets with 

IFNa prior to infection with a seasonal IAV strain did assist in virus control and 

resulted in lower clinical scores compared with mock-treated controls; continuing 

IFNa treatm ent to days 1 and 2 postinfection increased the positive treatm ent 

outcome. However, protection was not conferred when ferrets were challenged 

with avian IAV (Kugel et al.). Finally, pretreatm ent with IFNa protected guinea pigs 

from both seasonal and highly pathogenic strains of IAV (Van Hoeven et al.).

As the human population expands, the interface between the animal 

reservoir of IAV and the human population grows. Increased contact increases the 

likelihood of a novel IAV strain to cross the species barrier. Coupled with the 

difficulty of developing an IAV vaccine that will induce broad protection, the time 

lag between vaccination and host protection, and IAV's exceptional ability to 

escape host adaptive immunity through antigenic shift and drift, development of a 

treatm ent that will stimulate protective aspects of the host immune response to 

IAV is highly desirable. In this context, type I IFN has been periodically discussed
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as a possible treatm ent for IAV during infection (Finter et al., 1991; McKinlay, 

2001; Wang et al., 2014). Yet, results presented in Chapter 3 strongly argue that 

there are limits to this. We demonstrated that prolonged or exaggerated type I IFN 

signalling during IAV infection can exacerbate, not ameliorate disease (Davidson et 

al.). However, it is im portant to note that all studies performed in Chapter 3 were 

done in mouse strains whose Mxl gene codes for a non-functional product. Given 

the potent IAV restriction abilities of functional Mxl protein it is therefore possible 

that the pathogenic potential of IFNap we see in 129 mice may only be observable 

in an Mxl null background. This is particularly important as the human homologue 

of Mxl (MxA) has also been demonstrated to restrict IAV in vitro (Pavlovic et al.). 

To clarify this issue and assess whether or not IFNap has therapeutic potential for 

IAV, we decided to assess the effect of administration of exogenous IFNa4 during 

IAV infection. However, being aware of the potent immunomodulatory effects of 

IFNap signalling we also decided to include IFNA2 treatm ent in our study. IFNAR is 

largely restricted to mucosal surfaces in the lung and as such IFNa4 and IFNA2 

treatm ent during IAV infection may stimulate different cell types and therefore 

may lead to divergent outcomes.
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4.2 Hypothesis and Aims

I aimed to determine whether or not either (or both) IFNa4 and IFNA2 are 

viable treatm ent options for IAV-induced disease. We define a viable treatm ent

option as one that protects host tissue from damage and lowers overall disease 

burden experienced by the host.

I hypothesised:

• Both IFNa4 and IFNA2 treatm ent during IAV infection will inhibit viral 

replication.

• Due to different tissue distribution of the IFNap and IFNA receptors, IFNa4

will stimulate the immune system leading to pathology, while IFNA.2 will

not.
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4.3 Results

4.3.1 Pretreatment with IFNa4 or IFNX2 blocks IAVinfectivity

To determine comparable doses of antiviral effect in infected cells for IFNa4 

and IFNA2 we assessed induction of the antiviral ISGs: Mxl, Rsad2, 0asl2 and 

ifi203 in B6  derived AEC cultures. IFNa4 and IFNA2 were titrated on AEC cultures 

from above ISG induction saturation over 9 points down to non-induction. These 

results were used to generate dose response curves for IFNa4 and IFNA2 

treatment, for each ISG assessed. For each response curve, ECso values were 

obtained and used to generate a conversion ratio for equipotency between IFNct4 

and IFNA2 (Data from this analysis will not be presented here as they are to be 

included in the thesis of the collaborating student, Teresa McCabe). Using this 

conversion factor we were able to treat mice and various cell types with doses of 

IFNa4 and IFNA2 that we defined to induce equivalent ISG induction throughout 

our study.

As has been previously shown in other studies (Cilloniz et al., 2012; 

Mordstein et al., 2008; Tumpey et al., 2007), intranasal IFN treatm ent of mice prior 

to infection with IAV protected Mxl functional mice (B6.A2G-Mxl) from IAV strain 

PR8  induced morbidity and mortality. This protection correlated with 

undetectable viral loads at 4 dpi in IFN treated groups, as compared to control 

group mice (Veh Ctrl), which did exhibit higher viral loads, weight loss and 50% 

mortality (Figure 27).
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Figure 27
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Figure 27: Pretreatm ent w ith IFNct4 or IFNA2 ablates d isease burden and facilitates 
virus control. (A) B6.A2G-Mxl mice were pretreated with equivalent doses of IFNa4 
(circles] or IFNA2 [triangles], or Veh Ctrl (open squares] 24hrs prior to infection with PR8 ; 
weight loss and survival was assessed throughout infection and (B] viral load assessed at 
4dpi. Significance assessed by Log-rank (Mantel-Cox] test (survival], 2-way ANOVA 
Bonferroni post tests (weight loss] and Unpaired t tests (viral load]. *, P < 0.05; **, P < 
0.01; ***, P < 0.001, where * indicates IFNa4:Veh Ctrl and ° indicates IFNA2:Veh Ctrl, 
IFNa4:IFNA2; was not significant. Symbols on the right of graphs indicate statistical 
significance of the whole curve and symbols above individual points indicate significance 
as assessed by Bonferrioni post test. Graphs show mean ± SEM and unless otherwise 
stated are representative of 2 independent experiments where n=3-6.
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4.3.2 Overlapping and nonredundant effects ofIFNa4 and IFNX2

To understand why pretreatm ent was so effective at protecting mice from 

IAV induced morbidity and mortality, we assessed the response of specific cell 

types present in the lung during IAV infection to IFN stimulation. As they are the 

primary infection targets of IAV, we first evaluated the response to IFN treatm ent 

in AEC cultures generated from B6  mice. Both IFNa4 and IFNA2 induced 

expression of ISGs in AECs, however neither IFN treatm ent induced cytokine 

secretion from these cultures (Figure 28A, B). In contrast, macrophages, pDCs and 

cDCs derived from B6  bone marrow only responded to IFNa4 stimulation, IFNA2 

treatm ent of these cell types did not elicit expression of tested ISGs (Figure 28C). 

Furthermore, as assessed at 24hrs post stimulation macrophages, pDCs and cDCs 

all secreted proinflammatory cytokines in response to IFNa4 treatm ent and again, 

did not respond to IFNA2 (Figure 28D). Similarly, ex vivo stimulation of whole 

splenocyte cultures with IFNa4 and not IFNA2 led to the upregulation of activation 

markers; Sca-1 and CD69, on T cells, B cells and NK cells (Figure 29). Collectively 

these results indicate that AEC upregulation of antiviral ISGs upon stimulation 

with either IFNa4 or IFNA2 may be sufficient to inhibit IAV establishing an 

infection in vivo. Induction of proinflammatory cytokines by IFNa4 treatm ent in 

immune cells appears unnecessary for pretreatm ent mediated protection.

Yet, culture of specific cell types alone does not allow for observation of 

cross talk between cell types. As such, we assessed the global transcriptional 

response in whole lungs treated with IFNa4, IFNA2 or Veh Ctrl. Mice were treated 

with IFNa4, IFNA2 or Veh Ctrl, and 18hrs later whole lungs were collected and 

processed for microarray analysis. Samples were normalised to the average of the 

Veh Ctrl group and filtered for a fold change of 1.5, giving 553 genes differently
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Figure 28
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Figure 28: AECs upregulate ISGs in response to IFNa4 or IFNA2 stim ulation w hile  
only IFNct4 stim ulation elicits ISG expression  and cytokine secretion from BM 
derived im m une cells. ISG expression in (A) B6  derived AEC cultures or (C] B6  BM 
derived Macrophage, pDC and cDC cultures stimulated with IFNa4 or IFNA2 for 4 hrs. IL-6 , 
IP-10 and MCP-1 concentrations were measured by multiplex in (B) AEC culture 
supernatants  collected from both apical and basal sides of culture transwells and (D) 
Macrophage, pDC and cDC culture supernatants at 24hrs post stimulation with IFNa4 or 
IFNA. Significance assessed by Unpaired t tests where *, P < 0.05; **, P < 0.01; ***, P < 
0.001. Data are representative of 2 independent experiments where n=3-6. AEC Samples 
collects and processed with Miss Teresa McCabe.
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Figure 29
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Figure 29: Splenic T, B and NK cells upregulate Sca-1 and CD69 upon IFNa4, but not 
IFNX2 stim ulation. Whole splenocytes isolated from B6  mice were stimulated with IFNa4 
(red line) or IFNA2 (blue line) and along with Veh Ctrl (filled grey) expression of Sca-1 and 
CD69 at 24hrs assessed on CD4+ T cells, CD8 + T cells, B cells and NK cells by flow 
cytometry. Significance assessed by Unpaired t  tests where *, P < 0.05; **, P < 0.01; ***, P < 
0.001. Data are representative of 2 independent experiments where n=3.
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regulated between treatments. Genes upregulated by IFNa4 or IFNA2 treatm ent 

were subjected to K means clustering (Figure 30). Of the 6  clusters we defined, 5 

contained genes modulated by both IFNa4 and IFNA2 to varying magnitudes 

(Figure 30A). Overall, lungs treated with IFNa4 exhibited gene upregulation of 

greater magnitude than IFNA2 treated lungs, however this is likely a reflection of 

the difference in cell types that could potentially respond to each IFN treatment. 

IFNAR expression is restricted to AECs in the lungs while IFNapR is ubiquitously 

expressed (Mordstein et al., 2008; Sommereyns et al., 2008). In contrast to the 

other clusters, cluster 6  revealed genes almost exclusively induced by IFNa4 

(Figure 30B). Ingenuity pathway analysis (IPA) of the combined clusters 1-5 

revealed genes in this group were strongly related to IFN signalling pathways and 

communication between immune cells, while cluster 6  genes were annotated as 

genes involved in cellular recruitment pathways and inflammation, and 

interestingly, 'Role of hypercytokinemia/ hyperchemokinemia in the pathogenesis 

of influenza' (Figure 30C, D and Gene lists in Appendix Tables 2 and 3).

IPA analysis of genes specifically regulated by IFNa4 treatm ent and the in 

vitro response of immune cells we tested strongly suggested that IFNa4 but not 

IFNA2 treatm ent would induce secretion of proinflammatory cytokines in the lung. 

To confirm this we assessed levels of example proinflammatory cytokines: IL-6 , IP- 

10 and MCP-1 in BAL fluid taken at 10,18 and 48hrs post IFN treatment. Detection 

of significant IL-6 , IP-10 and MCP-1 concentrations demonstrated that indeed, 

proinflammatory cytokine secretion was induced in lungs treated with IFNa4, yet 

not by IFNA2 or Veh Ctrl treatm ent (Figure 31). Taken together, our results 

indicate that both IFNa4 and IFNA2 induce antiviral gene expression in whole 

lungs and this induction prior to IAV infection protects the host from severe
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Figure 30
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Figure 30: Inflam m atory-related gene clusters are specifically induced by IFNa4, not 
by IFNA2 treatm ent in w hole lung sam ples. B6  mice were treated  with IFNa4, IFNA2 or 
Veh Ctrl and whole lungs were taken at 18hrs post treatm ent for global analysis by 
Illumina.SingleColor.Mouse WG-6_V2_0_R0_1127 microarrays. Samples were normalised 
to the median of the vehicle control group and filtered for a fold change of 1.5, yielding 
553 genes differently regulated between treatm ents (One way ANOVA, P<0.01, Benjamini- 
Hochberg multiple test correction), of which 429 genes are upregulated. K means 
clustering of upregulated genes revealed two patterns of expression: (A) genes 
upregulated by both IFNa4 and IFNA2 trea tm ent (common) and (B) genes primarily 
induced by IFNa4. (C, D) Clusters 1-5 were grouped together and Common and IFNa 
specific groups were analysed by Ingenuity Pathway Analysis (IPA). Samples collects and 
processed with Miss Teresa McCabe and analysis perform ed under supervision o f  Dr. Stefania 
Crotta.
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Figure 31
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Figure 31: IFNa4, but not IFNA2 treatm ent induces cytokine secretion  in the  
pulm onary environm ent. BAL samples taken from B6  mice treated with IFNci4, IFNA2 or 
Veh Ctrl at specified time points. Significance assessed by Unpaired t tests where *, P < 
0.05; **, P < 0.01; ***, P < 0.001. Data are representative of 2 independent experiments 
where n=3-6.
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disease burden. Stimulation of immune cells and induction of proinflammatory 

cytokine secretion is a function specific to IFNa4 treatment. As was demonstrated 

in Chapter 3, IFNafJ induced inflammation must be carefully controlled as too little 

(as seen in IFNa(3R-/-(B6) mice) or too much (Wt 129 mice) can increase host 

morbidity. IFNa4 specific induction of genes associated with inflammation 

therefore has the potential to be protective or detrimental.

4.3.3 IFNa4 and IFNX2 treatm ent during IAV infection results in divergent disease 

outcomes

Induction of antiviral ISGs in the lung prior to infection markedly impedes 

IAV infectivity. However, it is not a realistic option to 'pretreat' an entire human 

population. Therefore, we next assessed the effectiveness of IFNa4 and IFNA2 

treatments at ameliorating disease during IAV infection. B6.A2G-Mxl mice were 

infected with PR8  and treated intranasally with IFNa4, IFNA2 or vehicle control at 

days 2, 4 and 5 post infection (Figure 32A). IFNA2 treated mice were protected 

against severe IAV-induced disease, exhibiting significantly lower mortality and 

morbidity compared to the Veh Ctrl group. In striking contrast, IFNa4 treated mice 

were not protected, instead IFNa4 treatm ent exacerbated disease. We observed 

significantly higher morbidity and mortality in IFNa4 treated mice than that 

observed in the control or IFNA2 groups (Figure 32B). Interestingly, while disease 

outcome was entirely divergent between the IFN treatm ent groups, viral load in 

the lung was comparable. IFNa4 and IFNA2 treated lungs exhibited significantly 

lower viral loads compared to lungs treated with Veh Ctrl (Figure 32C).

Given that control of viral replication was comparable between IFNa4 and 

IFNA2 we hypothesised that similar to results detailed in Chapter 3, treatm ent with
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Figure 32
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Figure 32: IFNa4 treatm ent exacerbates PR8  induced d isease w hile IFNA2 treatm ent 
protects. (A) Treatment regime: B6.A2G-Mxl mice were infected with PR8  (red arrow) 
and treated with equivalent doses of IFNa4 or IFNA2 or Veh Ctrl at days 2, 4 and 5 post 
infection (purple arrows); (B) survival and weight loss was monitored (data is pooled 
from 4 independent experiments where n=6-9 per experiment) and (C) viral load assessed 
at 4dpi. Significance assessed by Log-rank (Mantel-Cox) test (survival), 2-way ANOVA 
(weight loss) and Unpaired t tests (viral load). *, P < 0.05; **, P < 0.01; ***, P < 0.001, where 
* indicates IFNa4:Veh Ctrl and ° indicates IFNa4:IFNA2; IFNA.2:Veh Ctrl was not significant. 
Symbols on the right of graphs indicate statistical significance of the whole curve.
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Figure 33
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Figure 33: IFNa4 treatm ent causes with increased proinflam m atory cytokine  
secretion during IAV infection. B6.A2G-Mxl mice were infected with PR8  and treated  
with IFNa4 (circles), IFNA2 (triangles) or Veh Ctrl (open squares) as per Figure 32 A. (A, B) 
Concentrations of stated proinflammatory cytokines in BAL fluid was m easured by 
multiplex. (C) Concentrations of IFNa, p and A were assessed by ELISA. Significance 
assessed by 2-way AN0VA with Bonferroni post tests (where * denotes IFNa4:Veh Ctrl 
and ° indicates IFNa4:IFNA2. IFNA2:Veh Ctrl was not significant). Symbols on the right of 
graphs indicate statistical significance of the whole curve (2 way AN0VA) while those 
above indicate significance of individual time points (Bonferrioni post test). *, P < 0.05; **, 
P < 0.01, ***, P < 0.001 graphs show mean ± SEM and are representative of 2 independent 
experiments where n=3.
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exogenous IFNa4 during IAV infection was over stimulating the immune system 

leading to immunopathology. We therefore assessed pulmonary levels of 

proinflammatory cytokines, cellular recruitment and epithelial cell death during 

infection. IFNa4 treatm ent augmented concentrations of IL-6 , IP-10, MCP-1, 

Eotaxin and M ip-la in BAL from infected mice. In contrast, proinflammatory 

cytokine levels in Veh Ctrl and IFNA2 treated mice were comparable throughout 

PR8  infection (Figure 33A). IFN treatm ent did not alter concentrations canonical 

T hl (IFNy, IL-12(p40) and IL-12(p70)) or Th2 (IL-4 and IL-13) cytokines in IAV 

infected lungs (Figure 33B). IFNa4 treated mice had higher levels of IFNa, as 

assessed by ELISA at 5dpi, yet not IFN(B and IFNA (Figure 33C). This may be due to 

the IFNap driven positive feedback loop or, more likely, detection of exogenous 

IFNa4 administered on 4dpi. Similarly, pulmonary levels of IFNA as assessed by 

ELISA were elevated in IFNA2 treated mice at days 3 and 5 post infection.

Recruitment of CD4+ T cells, CD8 + T cells and NK cells was comparable 

between all treatm ent groups, while recruitment of Neutrophils and B cells was 

somewhat blunted in the IFNa4 treatm ent group, however this was not

Figure 34: IFNa4 but n ot IFNA2 treatm ent enhances activation and recruitm ent o f  
im m une cell subsets and AEC death in PR8 infection. (A-C) B6.A2G-Mxl mice were 
infected with PR8 and treated with IFNct4 (circles), IFNA2 (triangles) or Veh Ctrl (open 
squares) as per Figure 32A. (A) pDC, IMc, Neutrophil, CD4+ T cell, CD8+ T cell, NK cell and 
B cell recruitment was assessed by flow cytometry. (B) Activation of T, NK and B cells was 
also assessed by CD69 expression at 5dpi. (C) Lung sections from control and infected 
mice treated as indicated, were stained by TUNEL for apoptotic cells at 6dpi. Red 
arrowheads indicate TUNEL signal. Scale bar, 200 pM. (D) Quantification of TUNEL+ cells 
in whole lung slides by Icy Spot Detector (ICY-R3M2Y2). Significance assessed by 2-way 
ANOVA with Bonferroni post tests (where * denotes IFNa4:Veh Ctrl and ° indicates 
IFNa4:IFNA2. IFNA2:Veh Ctrl was not significant) (time course) or Student’s t test (CD69 
expression and TUNEL quantification). Symbols on the right of graphs indicate statistical 
significance of the whole curve (2 way ANOVA) and those above indicate significance of 
individual time points (Bonferrioni post test). * P < 0.05; **, P < 0.01, ***, P < 0.001, graphs 
show mean ± SEM and are representative of 2 independent experiments where n=3.
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significant (Figure 34A). T cells, B cells and NK cells all had high expression of the 

activation marker CD69 at 5dpi in IFNa4 treated mice, while CD69 expression was 

significantly lower on these cell types in control and IFNA2 treated mice (Figure 

34B). Interestingly, higher frequencies of pDCs and IMcs were observed in IFNa4 

treated lungs at 5dpi (Figure 34A). Increased numbers of IMcs associated with 

higher numbers of apoptotic airway epithelial cells, as assessed by TUNEL staining 

of lung sections. In contrast, treatm ent with IFNA2 resulted in a lower frequency of 

apoptosis in airway epithelial cells, compared to both IFNa4 and Veh Ctrl 

treatm ent (Figure 34C). Thus, IFNA2 treatm ent controls viral replication efficiently 

and without the extensive inflammation and apoptosis of airway epithelial cells 

associated with IFNa4 treatment. It appears, in the context of a functional immune 

response, further stimulation by IFNa4 leads to over activation of the immune 

response and tissue damage rather than protection.

4.3.4 IAV tissue tropism and IFNLR expression overlap

Crotta et al. demonstrated that IFNa(3 and IFNA induce identical ISG suites 

(Crotta et al.). We therefore must ask why treating with IFNa4 and IFNA2 leads to 

such divergent disease outcomes. Productive IAV replication is restricted to AECs, 

which we confirmed by intracellular staining for PR8 nucleoprotein (NP) in 

hematopoietic (CD45+) and non-hematopoietic (CD45-) pulmonary cells (Figure 

35A). Auspiciously, IFNLR1 expression is also restricted to non-hematopoietic cells 

of the lung, while, as implied by the results presented in this chapter, IFNAR1 is 

ubiquitously expressed (Figure 35B). Thus, due to its restricted receptor 

distribution that matches cell type infectivity of IAV IFNA2 treatm ent delivers IFN
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Figure 35
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Figure 35: IAV replication and IFNLR1 expression  are restricted to CD45- cells in the  
lung. (A) Flow cytrometric analysis of pulmonary cells for PR8  nucleoprotein (NP) was 
performed on B6  mice at 3dpi. Cells were gated into hematopoietic (CD45+) and non- 
hematopoietic (CD45) populations then visualized by histograms (green) against Veh Ctrl 
treated lungs (grey). (B) Hematopoietic (CD45+, red) and non-hematopoietic (CD45-, blue) 
populations from untreated mouse lungs were assed for expression of IFNAR1 and IFNLR. 
Data is representative of 2 independent experiments where n=2-3.
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signalling where required without needlessly stimulating an already activated 

immune response.
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4.4 Discussion

An ideal pan-IAV treatment, designed to be given to an immunocompetent 

population, should stimulate induction of antiviral genes in AECs, without driving 

immunopathology. Both IFNa4 and IFNA2 treatments effectively controlled IAV 

replication, yet only the IFNA2 treated group was protected against severe IAV 

disease. Unlike IFNa4 treatment, which drove disease features associated with 

severe IAV, administration IFNA2 during IAV infection did not increase 

proinflammatory cytokine concentrations, recruitment of innate inflammatory 

cells or frequency of apoptotic AECs in the lung. Further investigation revealed 

that IFNAR expression in the lung was restricted to nonhematopoietic cells, which 

allowed IFNA2 treatm ent to target cells at risk of IAV infection to induce ISG 

upregulation while not over exciting the immune response. Collectively, this data 

suggests IFNA is a strong candidate for a nonstrain specific IAV treatm ent in 

humans.

We conclude from the IFN mediated induction of ISGs in AECs (Figure 28A) 

and the decreased presence of IAV infectious particles in lungs of IFN treated mice 

at 4dpi, in both pre and post treatm ent regimes (Figure 27 and 32), that both 

IFNa4 and IFNA2 effectively inhibit IAV replication. In the case of the B6 

background, both IFNocfJ and IFNA concentrations in the lung post IAV infection are 

low. This is likely due to not only the mouse strain background, which we 

demonstrated in Chapter 3 to be a low IFN responder but also due to IAV itself. The 

NS1 protein of IAV antagonises induction of IFNs by interfering with upstream  

pathways such as inhibition of RIG-I ubiquitination or activation of IRF-3 (Gack et 

al., 2007; Hale et al., 2008). Exogenous IFN treatm ent therefore may control IAV 

spread through the lung by potentiating ISG expression in uninfected cells or
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bypassing the block in IFN induction due to IAV NS1 action (Ehrhardt et al.). 

Additionally, while control of IAV replication itself to protect against viremia is 

important, IFNA2 treatm ent may also ameliorate severe disease by minimising 

inflammation induced by continued virus presence in the pulmonary environment 

Prolonged virus occupancy, even at low levels, can perpetuate immune signalling 

and contribute to tissue damage (Bhattacharya et al., 2014; Napoli et al., 1996). 

MCP-1 and M ip-la as well as IMc recruitment trend to be lower in IFNA2 treated 

mice compared to Veh Ctrl group, and this correlates to a significantly lower 

frequency of apoptotic AECs, as assessed by TUNEL staining. However to confirm 

this hypothesis, assessment of these inflammatory parameters should be 

performed at later time points.

As demonstrated by the results presented in this chapter, virus control is 

not the only factor that determines host mortality or survival. Generally, severe 

IAV disease in humans is characterised by cytokine storm and pulmonary tissue 

destruction that can be virus- or immune-mediated (Beigel et al., 2005; de Jong et 

al., 2006; Louie et al., 2009; Peiris et al., 2004). Similar to results presented in 

Chapter 3 with IAV infected 129 mice, exogenous IFNa4 treatm ent is upstream of 

secretion of proinflammatory cytokines, as IFNa4 treated mice had markedly 

augmented pulmonary levels of IL-6, IP-10, MCP-1 etc. Enhancement of 

proinflammatory secretion during IAV infection by IFNa4 on lung resident cells 

such as macrophages drives recruitment of pDCs and IMcs to the lung. 

Concomitantly, these cell types have been demonstrated to secrete 

proinflammatory cytokines and chemokines such as MCP-1 and IFNap themselves, 

which will amplify the immune response by induction of more inflammatory 

mediators and inflammatory cell recruitment, continued inflammation leading to
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AEC apoptosis and ultimately, host pathology. However, it should be noted that 

this amplification only occurs in the context of IAV infection. Treatment with 

IFNa4 of uninfected mice did result in proinflammatory cytokine secretion at 10 

and 18hrs post infection yet these cytokines were no longer detected at 48hrs post 

treatm ent and as demonstrated in Figure 13 of Chapter 3, repeated treatm ent with 

IFNa4 over a short time period does not induce morbidity or mortality in the host. 

Moreover, IFNa4 induced inflammation was associated with protection in the 

context of pretreatment. Thus, our results demonstrate that IFNa4 drives 

immunopathology when added to an immune system that is already responding to 

a replicating pathogen, however IFNa4 treatm ent alone is insufficient to bring 

about immunopathology in this experimental context.

Importantly, IFNa4 induced inflammation is designed to be protective, and 

recruitment of immune cells and apoptosis of potentially infected cells facilitate 

viral clearance. It is only when over activated, by addition of exogenous IFNa4 to 

the system, that tissue damage occurs, leading to serious consequences for the host. 

As shown in Figure 30, by clustering the response to IFN into genes specifically 

induced only by IFNa4 and genes commonly induced by both IFNa4 and IFNA2, we 

identify a set of genes, specific to IFNa4, that drive pathogenicity in IAV infection. 

These genes are primarily proinflammatory cytokines and as observed in human 

studies high disease burden associates with hypercytokinema (Arankalle et al., 

2010; Beigel et al., 2005; de Jong et al., 2006; Hayden et al., 1998; Peiris et al., 

2004), indeed this group of genes scored highly for 'Role of hypercytokinemia/ 

hyperchemokinemia in the pathogenesis of influenza' in IPA, a reasonable 

conclusion we can make from this data is that immune stimulation by IFNa4 

during IAV infection can be harmful to the host. Restricted IFNLR expression
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allows IFNA2 to target cells at risk of IAV infection with minimal perturbation of 

immune cell recruitm ent and cytokine response. If taken together with the results 

from Chapter 3, it is conceivable that in addition to treating IAV infection in 

humans with IFNA it may also be advantageous to block type I IFN signalling late in 

infection (discussed in Chapter 6).

For many respiratory viruses, IFNap and IFNA have been shown to be 

redundant for host protection. Replication of IAV, RSV and HMPV were similar in 

infected wild type, IFNapR-/- and IFNAR-/- mice. In contrast, dramatic loss of virus 

control occurred only in the absence of both IFNapR and IFNAR receptors (Crotta 

et al.; Mordstein et al.; Mordstein et al.). From the findings presented in this 

chapter one could suggest IFNA to be a viable treatm ent option for many 

respiratory viruses, not just IAV. However, IFNA is not the ideal treatm ent for all 

viral infections. When compared directly, pretreatm ent with IFNa was more 

effective against Encephalomyocarditis virus (ECMV) and LCMV, while IFNA 

pretreatm ent was shown to be more protective against herpes simplex virus type 

2 (HSV-2) infection (Ank et al., 2006a). Furthermore, pretreatm ent of mice with 

IFNA did not alter hepatotropic virus induced disease progression (Mordstein et 

al.). Differences in effectiveness of IFN treatm ent to ameliorate virally induced 

disease is intimately linked to virus tissue tropism. What makes IFNA2 treatm ent 

effective in IAV infection is that it does not stimulate immune cells, however by the 

same token this is what makes it ineffective at controlling viruses which can 

replicate in immune cells. To rephrase, what is nonessential and potentially 

dangerous IFNap stimulation of the immune system in one virus setting, may be 

protective through induction of ISG and possibly inflammation in other viral 

infections. Importantly, we have investigated the use of IFNa and IFNA as
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treatments for severe IAV in a setting where there is a complete and healthy 

immune system, perhaps immunocompromised individuals would benefit from 

immune cell stimulation, and in this setting IFNap could be an appropriate 

treatment.

Although IAV replication is commonly restricted to AECs, some studies have 

suggested that specific IAV strains can productively replicate in immune or other 

cell types. Seasonal IAV strains have been demonstrated to be able to infect AMs 

and DCs in vitro, however this is either nonproductive or abortive (Perrone et al., 

2008; Rodgers and Mims, 1982; van Riel et al., 2011; Yu et al., 2011). There is some 

evidence for productive infection of human monocyte derived macrophages or DCs 

with highly pathogenic H5N1 avian flu or 1918 Spanish flu IAV strains (Perrone et 

al., 2008; Sakabe et al., 2011; Thitithanyanont et al., 2007; van Riel et al., 2011; Yu 

et al., 2011), however whether this occurs in more relevant cell types, specifically 

AMs and lung or blood derived DCs remains controversial (Smed-Sorensen et al., 

2012; van Riel et al., 2011; Yu et al., 2011). pDCs in particular have been 

demonstrated to be exquisitely immune to productive IAV infection, which is 

attributed to their potent IFN producing abilities (Thitithanyanont et al., 2007). If 

immune cell types do allow for productive IAV infection this may limit the 

effectiveness of IFNA treatment. Our results indicate that it is likely that AECs are 

the primary reservoir for IAV replication, hence IFNA2 treatm ent was able to 

control virus load as well as IFNa4 (Figures 27 and 32). The majority of IAV NP 

staining was observed in CD45' cells (Figure 35), although a small proportion of 

IAV-NP positive immune cells (CD45+) was observed. As we are only 

supplementing the immune response, rather than replacing it entirely with IFN 

treatment, it is possible that endogenous type I IFN and other antiviral
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mechanisms are sufficient to assist in the clearance of IAV from immune cells or 

indeed, protect them from IAV infection. Furthermore, in certain settings DCs and 

macrophages have been shown to respond to IFNA stimulation (de Groen et al., 

2015; Liu et al., 2011). Further study is required using different strains of IAV, 

particularly highly pathogenic H5N1 IAV strains, which have most convincingly 

been shown to be able to infect immune cells, to ascertain if IFNA is still protective 

in these settings.

Results from this section strongly indicate that all immune cells are 

insensitive to IFNA treatment, yet there are studies that suggest some immune cell 

types directly respond to IFNA. In contrast to the data presented here, Ank et al 

showed that pDCs directly isolated from mouse spleens express ISGs in response 

to IFNA stimulation (Ank et al., 2008). It is possible that Flt3L driven culture used 

in this study to generate pDCs does not support the expression of IFNAR on pDCs. 

Human macrophages, neutrophils, T cells and B cells have all been shown to 

respond to IFNA invitro, although in the case of B cells and macrophages this 

response is not identical to stimulation with IFNap and is often only seen when 

IFNA acts in concert with another cytokine or immune stimulus such as TLR 

agonists (Blazek et al., 2015; Dai et al., 2009; de Groen et al., 2015; Egli et al., 

2014a; Jordan et al., 2007; Liu et al., 2011). Given the results of these studies we 

cannot definitively say that IFNA does not stimulate immune cells, however the 

data presented in this chapter does clearly demonstrate that IFNA2 treatm ent 

alone does not induce secretion of proinflammatory cytokines in vivo or in vitro, 

nor does it enhance cytokine secretion during IAV infection in the pulmonary 

environment. It is possible that specific immune cells types only express very low 

levels of IFNAR and in this way limit their response to IFNA. As with IFNapR, the
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extent of IFNAR engagement and ligand affinity and half-life directly modulate 

outcome of ligand binding (Egli et al., 2014b; Kalie et al., 2008), immune cells may 

only express low levels of IFNAR and therefore only be able to respond to IFNA to a 

certain extent, w hether it be induction of antiviral ISGs or secretion of cytokines 

which would not be elicited otherwise from IFNap signalling. However we found 

no evidence of this in the results we attained under from our in vitro studies of 

immune cells.

Consideration must be given to the long-term effects on the host of IFN 

treatment. As discussed in Chapter 3, type I IFNs are potent immunomodulators 

that affect many aspects of both the innate and adaptive immune response. For 

example, in acute viral infections, IFNap can inhibit DC development (Ito et al.), 

and IFNap can also drive T cell death or sequestration of lymphocytes in lymphoid 

organs (Bahl et al., 2010; Shiow et al., 2006). Our own results from Chapter 3 and a 

study conducted by Price et al. demonstrated that Wt 129 mice had lower 

induction of IAV specific antibodies compared to IFNapR-/-(129) mice post IAV 

infection (Price et al.). Lower numbers of B cells were recruited to the lung of 

IFNa4 treated mice, as compared to Veh Ctrl group. In contrast, IFNA2 treatm ent 

did not impede B cell recruitment, however human studies found that IFNA 

treatm ent of anti-CD40 or IL-4 stimulated B cells in vitro modestly downregulated 

IgG4 production and children with a natural mutation in the IFNA locus had 

significantly higher antibody titres post measles vaccine (Hummelshoj et al., 2006). 

It would be interesting to see if treatm ent with either IFNa4 or IFNA2 translates 

into lower induction of IAV specific antibodies in this model.

IFNs have also been reported to affect DC and macrophage function. 

Myeloid DCs matured in the presence of IFNA1 elicited lower IL-13 levels from
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naive T cells (Dai et al., 2009) and IFNA3 treatm ent of lung DCs enhanced Thl 

cytokine secretion over Th2 cytokines in a mouse model for asthma (Koltsida et 

al.). IFNA1 treatm ent can also enhance human macrophage secretion of IL-12p40 

sensitivity to IFNy, which, interestingly, IFNa negatively impacts (Ling et al., 1985; 

Liu et al., 2011; Yoshida et al., 1988). Neither IFNa4 or IFNA2 affected IL-12p40, 

p70 or IFNy levels in the BAL during IAV infection, however we did not investigate 

the cellular source of these cytokines, which may be different in different 

treatm ent settings. Additionally, the canonical Th2 cytokines IL-13 and IL-4 were 

found in comparable levels across all treatm ent groups, however it must be noted 

that these cytokines are induced in very low levels in IAV infection and therefore 

effects of IFN treatm ent on these cytokines may not be detectable, or indeed 

relevant.

IFNa4 treated lungs tended to have lower numbers of neutrophils recruited 

during IAV infection, which likely stems from IFNap skewing of monocyte cytokine 

secretion to monocyte recruiting factors such as MCP-1 rather than neutrophil 

recruiting chemokines such as CXCL1 and CXCL2 (Seo et al.). While neutrophils are 

superfluous for a robust immune response to IAV (Chapter 3), IAV-IFNap mediated 

blockade of neutrophils leads to a permissive environment for secondary bacterial 

infection (Schliehe et al., 2015; Shahangian et al., 2009). A recent study conducted 

by Blazek et al. also found that both murine and human neutrophils expressed 

IFNAR and responded to IFNA stimulation. Importantly, IFNA treatm ent blocked 

neutrophil production of IL-lp and recruitment via limiting leukotriene B4 

receptor 1 (LTB4R1) expression in experimentally induced inflammation models 

(Blazek et al.). Analysis of cellular recruitment to the lung during IAV infection in 

our study revealed that IFNa4, but not IFNA2 treatm ent lowered pulmonary
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infiltration of neutrophils, compared to Veh Ctrl. Neutrophil recruitm ent to a site 

of inflammation may be stimulus specific and in the case of IAV infection may not 

rely exclusively on LTB4R1, hence the inconsistency in results between Blazek et 

al.'s and our own study. Significantly, a recent study from our lab demonstrates 

that TRAIL mediated epithelial cell death also allows for bacterial colonisation post 

IAV infection (Ellis et al.). Treatment with IFNa4 therefore may also increase the 

risk of bacterial superinfection, which is particularly significant as IAV-bacterial 

co-infection is often fatal to the host, indeed evidence of bacterial pneumonia was 

found in the majority of post mortem reports and samples from the 1918 H1N1 

pandemic (Morens et al., 2008). As IFNa4 treatm ent but not IFNA2 blunted 

neutrophil recruitm ent during IAV infection and perhaps more importantly, IFNA2 

treatm ent lowered frequency of apoptotic AECs, in the context of bacterial 

superinfections IFNA remains a more appropriate treatm ent for IAV. However, 

both IFNa and IFNA treatments have the potential to facilitate bacterial 

superinfection through blocking IL-ip. We did not observe an effect on pulmonary 

concentrations of IL-1(3 by either IFN treatment, however IL-ip was only observed 

at low concentrations in our model (data not shown). Infection with different 

strains or IAV or alterations in initial IAV inoculate may reveal an effect of IFN 

treatm ent on IL-lp function in the lung which may alter disease outcome or indeed 

permissiveness to secondary bacterial infection, further study is required.

Timing and magnitude of IFNap response can directly impact the outcome 

of IAV induced disease. Previous studies have demonstrated that pretreatm ent 

with recombinant IFNap prior to infection with a range of IAV strains was 

protective in inbred mice (Beilharz et al., 2007; Cilloniz et al., 2012; Tumpey et al., 

2007), guinea pigs (Van Hoeven et al.) and ferrets (Kugel et al.). From these studies
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and the results presented in Figure 27 we can conclude pretreatm ent of animals 

with type I IFN stimulates the antiviral response in host cells, minimizing the 

ability of the virus to actually infect host cells and therefore decreasing virus 

burden from the start. Studies conducted by Van Hoeven et al. and Kugel et al. 

extended IFNap treatm ent into administration during infection and while these 

studies did record reduction in viral titres they did not report on increased 

sensitivity to seasonal IAV, however these as studies primarily focused control of 

virus replication and param eters such as inflammation and tissue destruction were 

not assessed. It is interesting to note however, that in infection with a highly 

pathogenic H5N1 strain of IAV, IFNa treatm ent of ferrets both prior to infection 

and at days 1 and 2 post infection did not confer protection, yet in spite of lower 

viral load in nasal washings of IFNa treated ferrets this group was as susceptible, if 

not more so, than their vehicle-treated counterparts (Kugel et al.). Furthermore in 

Beilharz et al.'s study, where mice were treated with varying doses of IFNa 

throughout IAV infection, moderate oral doses of IFNa were somewhat protective, 

while animals given high doses of IFNa suffered higher morbidity than placebo 

controls. Taken together, our own data and these studies demonstrate that IFNap 

can be protective, if given at the correct time and in the right amount. In contrast, 

IFNA2 treatm ent protects against severe IAV disease when given as either a 

pretreatm ent (Figure 27) or as a treatm ent given during infection (Figure 32).

Careful consideration was given to the design of our treatm ent regime: 

Treatment commences at 2dpi, with the onset of weight loss and repeated at day 4 

and 5 post infection. This regime is easily translatable into a human setting: 

treatm ent commencing upon presentation of clinical signs of illness such as fever 

or coughing and is continued if symptoms persist. Treating at an earlier time point,
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e.g.: 12 or 24hrs post infection may increase the effectiveness of both IFN 

treatments, however like attempting to treat prior to infection, without knowing 

exactly when infection will occur this is impossible to translate into the clinic. 

Decreasing the number of doses given or lowering the amount of IFNa4 given per 

dose did not result in protection (data not shown). Indeed, decreasing the number 

of doses of IFNA2 also decreased protection (data not shown). Moreover, we 

specifically selected the IFN subtypes IFNa4 and IFNA2 for their comparatively 

weaker binding properties (Dellgren et al., 2009; Lavoie et al., 2011). Studies have 

demonstrated that low IFN binding affinity leads to induction of antiviral ISGs, 

while high affinity also results in induction of inflammation and associated ISGs 

(Jaitin et al., 2006; Kalie et al., 2008; Lavoie et al., 2011). We therefore decided it 

would be safer to select low rather than high affinity IFN subtypes such as IFNp, 

which may more easily induce inflammation and cell death. Although we have 

attempted to define a comparable dosing system between IFNa4 and IFNA2, we 

cannot account for the differing kinetics in downstream signalling. Some studies 

report that IFNA signalling elicits a more sustained ISG response than IFNa (Maher 

and DeStefano), however this may disappear in the context of a viral infection (Jilg 

et al., 2014). Potentially, a regime could be designed where type I IFN treatm ent is 

protective against severe IAV induced disease, in a dose window below pathogenic 

concentration but above the threshold for ISG induction. However this seems 

superfluous, as evolution has provided a targeted system which may not have the 

potential to elicit dangerous side effects. We conclude that the regime we have 

designed offers the least pathogenic impact for maximal antiviral benefit.

How well this study will translate into clinical application remains to be 

seen. A caveat of mouse models is that unlike humans, which spend a lifetime
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being infected with a menagerie of pathogens, experimental animals are naive to 

most infectious agents. The immune system is dynamic and is constantly changing 

to combat or accommodate new stimulus. An obvious example is adaptive 

immunity: for IAV, weak cross protection between strains has been recorded for 

both the IAV specific B cell response and the cytotoxic T cell response 

(Brandenburg et al., 2013; Ekiert et al., 2009; Lee et al., 2008; Tan et al., 2012) 

(DiLillo et al., 2014) (Mozdzanowska et al., 1999) (Boon et al., 2004; Carragher et 

al., 2008; LaMere et al., 2011). As discussed, IFNa and to a lesser extent IFNA have 

immunomodulatory abilities that can positively or negatively affect adaptive 

immune responses. Treatment with exogenous IFNs could block or enhance pre

existing immunity to IAV in humans. Indeed with its superior ability to stimulate 

the adaptive immune system, IFNa could be a better treatm ent option, although a 

stronger adaptive immune response may still not be enough to negate IFNa 

mediated tissue damage. Natural mutations in genes that are connected to IFN 

signalling, for example IRF7 and IFITM3 (Ciancanelli et al., 2015; Everitt et al., 

2012; Zhang et al., 2013), could hamper IFNA treatm ent effectiveness, while 

natural mutations that enhance STAT1 activity (Yamazaki et al., 2014) could over 

activate IFN signalling, regardless of IFN type. In addition, studies in HCV patients 

have revealed that humans can be segregated into specific genotypes based upon 

SNPs in their IFNL locus. HCV infected individuals with genotypes that code for 

IFNA4 protein have a comparatively poor response to IFNa based treatm ent and 

lower rates of spontaneous clearance of HCV (Prokunina-Olsson et al., 2013), yet 

higher baseline ISGs compared to HCV infected individuals who do not code for 

IFNA4. The mechanism behind IFNA4 antagonism of other IFNs is currently 

unknown, however it has been hypothesised that IFNA4 may induce a negative



feedback mechanism through prolonged signalling and in particular, induction of 

USP18 (Egli et al.). It is estimated that 40% of Caucasians express IFNA4, therefore 

it is of interest to see if this SNP alters effectiveness of IFNA treatm ent in IAV 

infection. Careful clinical studies must be carried out to ascertain whether the 

results presented here are translatable into a human system. Data collected in my 

lab assessing human PBMC response to IFNA alone or with IAV indicate that this 

cytokine does not elicit secretion of proinflammatory cytokines such as IL-6, IP-1, 

MCP-1 etc., as IFNa does (Data not presented here as it is to be included in Teresa 

McCabe's thesis). Furthermore, clinical trials of IFNA in hepatitis C positive 

patients indicate pegalyted IFNA is as effective as pegalyted IFNa, however does 

not induce as severe side effects (Muir et al., 2014).

In conclusion, the data presented in this chapter strongly indicate IFNA as a 

preferential IAV treatm ent option and suggests that the use of IFNa must be 

considered with caution. IFNa acts on all cell types and is therefore capable of 

driving host immunopathology. In contrast, the match of IFNAR expression and IAV 

tissue tropism allows IFNAs to target cell types at risk of infection, effectively 

inducing antiviral genes in these cells and therefore assisting in the control of IAV 

spread, without the risk of stimulating the immune system to enhance 

immunopathology.
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Chapter 5. Contribution of IFNAR 1 to the type I 
IFN response
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5.1 Background

There is strong evidence for a role for host genetic determinants in the 

outcome of IAV induced disease in humans. As mentioned in previous chapters, 

SNPs in genes involved in IFN signalling such as STAT1 and IRF7 can markedly 

affect IAV disease outcome and IAV severity can be clustered into family groups 

within a population (Albright et al.; Horby et al., 2010; Olsen et al., 2005). Severity 

of 129 mouse strain IAV induced disease was dependent upon a host intrinsic 

excessive type I IFN response (Davidson et al., 2014)(Chapter 3). Intriguingly, 

inter-individual differences in response to type I IFN stimulation in human PBMCs 

has been recorded (Schlaak et al., 2002).

Although type I IFN subtypes exhibit differential activities and broad range 

of potencies (Lavoie et al.), they all initiate signalling by binding to the same 

receptor (IFNapR) that is composed of two subunits known as IFNAR1 and 

IFNAR2. Each receptor subunit contains an extracellular ligand binding domain 

and an intracellular kinase domain, and dimerization of IFNAR1 and 2 elicits a 

phosphorylation cascade, primarily mediated by STAT molecules, to induce ISG 

expression (Darnell et al., 1994). The quality of antiviral, antiproliferative and 

immunomodulatory effects of type I IFNs are a function of ligand affinity and 

density of receptor engagement, however this is a complex relationship which 

researchers are only beginning to appreciate. Certain type I IFN subtypes can be 

ISGs themselves, the IFNapR thereby providing a positive feedback loop (Marie et 

al., 1998). Sensitivity of cells to type I IFNs can be negatively regulated at the 

receptor level by ubiquitination, endocytosis and degradation of IFNAR1 (Kumar 

et al., 2007; Kumar et al., 2003; Zheng et al., 2011). Downregulation of IFNapR 

leads to a refractory period during which cells are nonresponsive to type I IFN
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(Huangfu et al., 2012; Qian et al., 2011; Zheng et al., 2011). Importantly, if IFNapR 

is not downregulated, IFNap signalling can persist and lead to tissue damage 

(Bhattacharya, 2014 #449).

Individuals with Down's syndrome (DS) have a total or partial triplication 

of chromosome 21. Of particular interest, IFNAR1 and IFNAR2 are among many 

genes encoded by chromosome 21. In 1980, Epstein et al. reported increased 

sensitivity of Trisomy 21 monocytes to IFNa stimulation in vitro (Epstein et al., 

1980), and more recently, stimulation of whole blood from DS patients revealed a 

higher type I IFN response to influenza virus, as compared to sibling controls 

(Broers et al., 2012). This in vitro data is complemented by epidemiological studies 

that show that Down Syndrome sufferers exhibit a higher risk of severe influenza 

induced disease (Perez-Padilla et al., 2010).

As suggested by the results present in Chapter 3, there may be subsets of 

humans with genetically determined propensities for an exaggerated IFNap 

response. Inter individual differences in the IFNap response could be genetically 

coded for in a myriad of ways, variations in availability, activity or affinity of IFNap 

subtypes, signalling molecules or transcription factors which initially induce IFNap 

expression (e.g.: IRF7) or those that are downstream of IFNapR engagement (e.g.: 

STAT1, TYK2, etc.), reactivity or frequency of IFNap-producing cells such as pDCs 

or responsiveness of the IFNapR itself could all result in a predisposition for 

increased IFNap responsiveness, as seen in 129 and DBA mouse strains. We 

hypothesise that patients with DS represent a genetically defined population 

whose immune cells have been shown to make increased amounts of IFNap in 

response to IAV (Broers et al., 2012; Epstein et al., 1980). In this population 

heightened IFN levels and responsiveness may be causally linked to higher IAV
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severity. Identification of genetic markers for susceptibility to IAV would allow for 

better assessment of 'at risk' individuals within the population. Given the 

intriguing link between DS, IFNap and IAV severity and our previous data from 

129 mice we decided to focus our investigation into one particular gene: IFNAR1.
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5.2 Hypothesis and Aims

In this chapter I aimed to build upon the results of my previous work on 

129 and B6 mouse strains and their divergent IFNap response to IAV infection. We 

decided to investigate whether strain specific differences in the gene coding for 

one of the IFNapR subunits, namely IFNAR1, or the number of IFNAR1 alleles 

could affect type I IFN levels during IAV infection and consequentially, disease 

severity.

I hypothesised:

• Decreasing IFNAR1 allele copy number in 129 mice through heterozygous 

breeding would decrease IFNap levels induced by IAV infection and 

therefore host morbidity and mortality.

• IFNAR1 activity and or cell surface expression is different between 129 and 

B6 strains.

• Triplication of the IFNAR1 allele will increase IFNap pulmonary 

concentrations induced by IAV infection and this will lead to downstream 

pathology.
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5.3 Results

5.3.1 Decrease in IFNAR1 allele number decreases type IIFN response in 129 mice.

In order to assess whether or not IFNAR1 copy number affected IFNap 

response and IAV disease outcome in 129 mice, we crossed wild type 129 and 

IFNa(3R-/-(129) mice. The resulting IFNAR1+/-(129) mice were phenotypically 

normal and exhibited no gross abnormalities in vital organs. IFNAR1 

heterozygosity slightly reduced the level of IFNAR1 staining on splenocytes, as 

compared to wild type controls (Figure 36A). Interestingly, reducing the number of 

functional IFNAR1 alleles decreased the number of pDCs in the lung at baseline, yet 

did not affect presence of any other cell types (Figure 36B). IFNAR1+/-(129) mice 

showed 50% mortality when infected with X31, as compared to the 100% survival 

ofIFNaPR-/-(129) mice and 0% of 129 mice (Figure 37A). Intermediate morbidity 

and mortality correlated to intermediate frequencies of pDCs being recruited to 

IFNAR1+/-(129) lungs, during X31 infection. Surprisingly, IFNAR1+/-(129) mice 

had an equivalent frequency of IMc recruitment as their wild type counterparts. 

Neutrophil recruitment was comparable between 129 and IFNAR1+/-(129) lungs 

whereas neutrophil recruitment was higher in IFNapR-/-(129) mice, as previously 

reported (Chapter 3). Unexpectedly, NK cell recruitment in IFNAR1+/-(129) lungs 

mimicked frequencies observed in IFNapR-/-(129), not wild type lungs. B cell 

frequencies were equivalent throughout infection between all three genotypes, 

with the exception of a trend for more B cells in IFNapR-/-(129) lungs 7dpi. This is 

in contrast to data reported in Chapter 3, however may be a reflection of the 

comparatively fewer number of time points taken. Presence of AMs and T cells 

were comparable between the three genotypes (Figure 37B). IFNAR1+/-(129)
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Figure 36
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Figure 36: Imm une cell subtype frequencies and expression  of IFNAR1 in IFNAR1+/- 
(129) m ice. Naive 129, IFNa(3R+/- and IFNa(3R-/- mice were sacrificed and (A) Whole 
splenocytes were analysed for IFNAR1 expression by flow cytometry. Column graph 
shows Mean Fluorescence Intensity (MFI) of IFNAR1 on 129 (open triangles), IFNAR1+/- 
(grey half filled triangles) and IFNapR-/-(129) (black triangles) splenocytes. Histogram 
shows 129 mice shown in light blue, IFNapR+/- in red, IFNoc|3R-/- in dark blue and 
unstained control in grey (filled histogram). (B) Assessment of frequency of stated 
immune cell types in the lung were characterised by flow cytometry. Graphs are 
representative of 2 independent experiments where n=2-3. Significance was assessed by 
or Student's t test where *** denotes P < 0.001.
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Figure 37
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Figure 37: IFNAR1 heterozygosity  decreases d isease severity  of the 129 strain in 
X31 infection. 129 (open triangles), IFNa(3R+/- (grey half filled triangles), IFNapR-/- 
(black triangles) were infected with X31 (8 OOTCID50). (A) Weight loss and survival was 
assessed throughout infection and (B) immune cell recruitment to the lung was assessed 
by flow cytometry. (C) Levels of IFNa P and X in BAL of infected mice were assessed by 
ELISA. Significance assessed by Log-rank (Mantel-Cox) test (survival) and 2-way ANOVA 
(weight loss and time courses). *, P < 0.05; **, P < 0.01; ***, P < 0.001 where * dented 
129:IFNAR1+/-(129) and 0 indicates IFNARl+/-(129):IFNa(3R-/-(129) Symbols on the 
right of graphs indicate statistical significance of the whole curve) and those above 
indicate significance of individual time points (Bonferrioni post test). Graphs show m ean ± 
SEM and are representative of 2 independent experiments where n=2-6.
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mice had higher concentrations of IFNa, (3 and X in their BAL fluid than IFNapR-/- 

(129) mice throughout infection. Interestingly, the concentrations of IFNa, (3 and A 

observed in IFNAR1+/-(129) lungs were equivalent to, if not higher than what was 

observed in 129 lungs at days 4 and 5 post infection (Figure 37C). These results 

indicate that decreasing IFNAR1 allele copy number reduces IAV induced 

pathology in the 129 strain. However, this may be an effect of a de novo mutation 

within one either the 129 or IFNapR-/-(129) parental strains and completely 

unrelated to IFNAR1. An intercross between IFNAR1+/-(129) mice should be 

performed to determine w hether or not degrees of susceptibility to IAV induced 

disease segregate based upon the IFNAR1 locus. Although, genetic overlap 

between parental strains has been previously confirmed by microsatellite analysis 

(Charles River, data not shown).

5.3.2 Strain differences in IFNAR

Having observed that IFNAR1 allele number can alter disease outcome, we 

then went on to assess if there was a strain specific difference in IFNAR1 between 

129 and B6 mice. A myriad of factors could be at work upstream or downstream of 

IFNAR1 that could contribute to 129 augmented responsiveness to IFNap. 

Differences in IFNAR1 or IFNAR2 affinity to IFNap subtypes or indeed strain 

specific differences in the IFNap subtypes secreted in response to IAV infection or 

the affinity of these subtypes themselves could all contribute to 129 susceptibility 

and in turn be blunted by a decrease in IFNAR1 allele frequency. Additionally, 

signalling downstream of IFNapR such as receptor subunit affinity to Tyk2 and 

Jakl, availability of signalling molecules or readiness of any of these components 

to be phosphorylated could also alter IFNap signalling. Finally, level of IFNapR
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expression on the cell surface and down regulation upon ligand engagement could 

also lead to differences between B6 and 129 in IFNap signalling magnitude and or 

duration. We hypothesised that IFNAR1 has different cell surface expression levels 

and downregulation/re-expression kinetics that may alter IFNap signalling. To 

study this, we first compared the coding sequence between 129 and B6 IFNAR1. 

Sequencing of 129 and B6 IFNAR1 coding region did not reveal any difference 

between strains (data not shown), confirming indications in the Sanger database. 

However, IFNAR1 expression could be modulated by external factors such as 

availability of tonic IFNap signal or strain specific differences in the IFNAR1 

promoter locus. We therefore decided to compare IFNAR1 expression, 

downregulation and reappearance on the cell surface between 129 and B6 strains.

In vitro stimulation of whole splenocytes with IFNa4 over 24hrs was 

performed and IFNAR1 expression on immune cells was assessed. As reported in 

the literature, IFNAR1 expression was down regulated upon stimulation in both 

129 and B6 splenocytes. At resting, there was a slight trend for higher expression 

of IFNAR1 on 129 cells (Figure 38A), however down regulation post ligand 

engagement and later reappearance of IFNAR1 molecules was comparable 

between 129 and B6 whole splenocytes cultures (Figure 38B). Interestingly, when 

splenocytes were loosely divided into 'lymphoid' (cells expressing CD3+ or CD 19+) 

and 'myeloid1 (cells expressing CDllc+ and /o r CDllb+) cell types, it appeared 129 

myeloid cells had a significantly higher expression of IFNAR1 which was down 

regulated in a shorter time period and expression returned to baseline at a more 

rapid rate, compared to B6 myeloid splenocytes. No difference in kinetics was 

observed for the lymphoid population (Figure 38C).
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Figure 38
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Figure 38: IFNAR1 is down regulated post stim ulation w ith IF N a4.129 and B6  whole 
splenocytes were stimulated with IFNa4 (lOOOU/ml) and analysed for IFNAR1 expression 
by flow cytometry at specified time points. (A) Baseline expression of IFNAR1 on 129 
(triangles) and B6  (circles) on whole splenocytes, as assessed by MFI. Histogram shows 
129 mice shown in blue and B6  in pink IFNAR1 baseline expression. (B) IFNAR1 MFI on 
129 and B6  whole spleoncyte cultures post IFNa4 treatment, (C) splenocytes were also 
separated into myeloid (CDllb+ and or CDllc+) and lymphoid (CD19+ or CD3+) 
populations and IFNAR1 MFI was graphed. Significance assessed by student's T test 
(unstimulated) or 2-way ANOVA (time courses). *, P < 0.01; ***, P < 0.001 where symbols 
on the right of graphs indicate statistical significance of the whole curve and those above 
indicate significance of individual time points (Bonferrioni post test). Graphs are 
representative of 1 experiments where n=2-4.
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This data indicates there could be strain specific differences in IFNAR1 

between 129 and B6 mice that may alter the type I IFN response. To investigate 

further, we bred (129xB6)Fl mice and infected them with X31. Similar to what 

was observed in Figure 37 with IFNAR+/-(129) mice, (129xB6)Fl mice were 

intermediately susceptible to IAV induced disease, in the context of 100% survival 

of B6 mice and the 0% survival of the 129 strain (Figure 39A). (129xB6)Fl lungs 

exhibited intermediate levels of IFNa and IFNA (compared to the high responding 

129 and low responding B6 strains) early in infection. However at 5dpi 

concentrations of IFNa and IFNA in (129xB6)Fl lungs were comparable to what 

was observed in 129 mice. In contrast, concentration of IFNp in the (129xB6)Fl 

lung was comparable to B6 levels (Figure 39B).

We wanted to probe whether or not the intermediate phenotype observed 

in (129xB6)Fl mice was related to number of IFNAR1 alleles from the 129 

background, similar to was what observed in IFNAR1+/-(129) mice. FI breeding 

generates offspring which are 50% 129 and 50% B6 which means, similar to 

inbred laboratory mouse strains, FI mice are genetic copies of one another. We 

therefore decided to take advantage of this to specifically look at differences 

between IFNAR1 from the 129 and the B6 background. As shown in Figure 40 we 

bred Wt 129 mice with IFNa(3R-/-(B6) mice to generate FI mice where the only 

functional allele for IFNAR1 was of 129 origin (IFNAR1129 FI mice). Similarly, we 

bred wild type B6 mice with IFNa(3R-/-(129) mice to yield mice where the only 

functional copy of IFNAR1 was from the B6 strain (IFNAR B6 FI mice). 

Comparison of immune cells in naive lungs revealed comparable frequencies of all 

cell types tested between IFNAR1 129 FI, IFNAR1 B6 FI and (129xB6)Fl strains. 

Differences in pDC frequency in 129 and B6 lungs at resting, as was as previously
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Figure 39
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Figure 39: Interm ediate concentrations o f IFNa in (129xB 6)F l lungs early in X31 
correlate to interm ediate m orbidity and m ortality to X31 induced d isease. 129
(triangles), B6  (open circles) and (129xB6)Fl (half filled diamonds) mice were infected 
with X31 (8 OOTCID50). (A) Weight loss and survival were recorded through out infection. 
(B) At specified time points BAL fluid concentrations of IFNa, p and A were assessed by 
ELISA. Graphs show mean ± s.e.m and are representative of 2 independent experiments 
where n=2-6. *** p<0.0001, ** p<0.001, * p<0.01 by 2-way ANOVA with Bonferroni post 
tests (weight loss and IFN concentration) or Log-rank (Mantel-Cox) Test (survival) where 
* denotes 129:B6, 0 129:(129xB6)Fl, B6:(129xB6)Fl was not significant. Symbols on the 
right of graphs indicate statistical significance of the whole curve and those above indicate 
significance of individual time points (Bonferrioni post test).
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Figure 40
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Figure 40: Breeding schem e for carriage o f IFNAR1 from either 129 or B6 parental 
strain in (129xB 6)F l m ice. Wild type 129 female mice were bred with male IFNapR-/- 
(B6 ] mice to generate an FI generation where only the 1FNAR1 alleles from the 129 
parental strain is functional, called IFNAR1 129. Similarly, IFNa(3R-/-(129] female mice 
were bred with wild type B6  males, resulting in progeny that have only a B6  IFNAR1 
functional allele: IFNAR1 B6  mice. For control mice, wild type 129 females were bred with 
wild type B6  males: (129xB6)Fl mice.
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Figure 41
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reported (Chapter 3), was observed, while copy number or strain origin of IFNAR1 

allele did not appear to affect pDC frequency in mice on the FI background (Figure 

41 A).

Infection with X31 (8 OOTCID50) of IFNAR1 129 FI and IFNAR1 B6 FI 

strains along with control (129xB6)Fl, 129 and B6 strains with X31 revealed that 

IFNAR1 129 FI and IFNAR1 B6 FI mice were equally susceptible to IAV induced 

disease. IFNAR1129 FI and IFNAR1 B6 FI mice exhibited increased morbidity and 

mortality compared to B6 and interestingly, (129xB6)Fl mice. As expected, 129 

mice were most susceptible to IAV induced disease (Figure 41B). Closer 

investigation revealed that strain origin of IFNAR1 did not alter IFNa or (3 

concentrations within the BAL at any time point assessed, with IFNAR 129 FI, 

IFNAR B6 FI and (129xB6)Fl lungs all having comparable concentrations of IFNa 

and (3. IFNap levels in 129 lungs were not significantly higher than those observed 

in FI strains in this experiment, however as expected, concentrations of IFNa and 

P in B6 lungs were comparatively low (Figure 41C). IFNAR1 strain origin did not 

alter pDC or IMc recruitment to the lung during infection, nor did it augment 

TRAIL expression on IMcs, epithelial cell expression of DR5 or frequency of

Figure 41  (cont): (129xB6)Fl (grey bars) mice were characterised by flow cytometry. (B- 
F) 129 (black triangles), B6  (open circles), IFNAR1 129 FI (blue triangles), IFNAR1 B6  FI 
(pink circles) and (129xB6)Fl (half filled diamonds) mice were infected with X31 
(8 OOTCID50) and (B) survival and weight loss was assessed throughout infection. (C) 
Levels of IFNa and p in BAL of infected mice were assessed by ELISA and (D) flow  
cytometry was used to assess pDC and IMc recruitment to the lung, (E) IMc TRAIL 
expression and (F) epithelial cell expression of DR5 and death. (G) Flt3 derived pDCs from 
stated mouse strains were stimulated with X31 (MOI: 1) for 24hrs and supernatants were 
analysed by ELISA for IFNa and p. Significance was assessed between IFNAR1 129 FI and 
IFNAR1 B6  FI as well as compared to control (129xB6)Fl strain, however no statistically 
significant differences were found.
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epithelial cell death in the lung (Figure 41D-F). Finally, BM derived pDCs generated 

from IFNAR1 129 FI, IFNAR1 B6 FI and (129xB6)Fl mice responded with 

identical levels of IFNa, p and X post stimulation with live X31 (Figure 41G).

This data clearly demonstrates that restricting the origin of IFNAR1 to one strain 

(either 129 or B6) in (129xB6)Fl mice does not alter the disease course during 

X31 infection, however in the context of an (129xB6)Fl background having only 

one functional IFNAR1 allele can increase disease sensitivity (although this was 

not statistically significant).

5.3.3 Triplication oflFNARl and IAV infection

Genes encoding for human IFNapR subunits are located on chromosome 21, 

PMBCs from DS patients make more IFNap when stimulated with IAV than sibling 

controls and DS monocytes are more sensitive to IFNap signalling (Broers et al., 

2012; Epstein et al., 1980). Intriguingly, individuals with DS exhibit a higher risk of 

severe IAV induced disease (Perez-Padilla et al.). There is clear correlation, yet no 

causal link established between influenza susceptibility and the IFN-related 

hyperresponsiveness in DS individuals. Although triplication of chromosome 21 

leads to triplication of a hundreds of genes present on this chromosome genes 

coding for the IFNapR are excellent candidates to explain this increased IFNap 

responsiveness. Genes on human chromosome 21 have murine homologues spread 

across mouse chromosomes 10,16 and 17, with IFNAR1 and IFNAR2 being coded 

for on murine chromosome 16 (Cox et al., 1984; Sheppard et al., 2012). We 

hypothesise that trisomy of the IFNAR locus in DS suffers leads to increased IFNap 

responsiveness and this responsiveness leads to IFNap mediated 

immunopathology in IAV infection. To assess this we employed
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Figure 42
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Dp(16Ifnarl-Runxl)8TybEmcf/B6 mice, hereby called Dp8Tyb mice which carry 

duplication of a section of mouse chromosome 16 between the genes IFNAR1 and 

Runxl(16:91436064 to 16:93062456), a region of approximately 21. These mice 

were generated in the laboratory of Dr. Victor Tybulewicz (Francis Crick Institute, 

Mill Hill) and are currently unpublished. Duplication of this region in Dp8Tyb mice 

leads to these 21 genes being present in one extra copy, ergo Dp8Tyb mice have 3 

copies of these 21 genes (Figure 42A). Dp8Tyb mice are bred on the B6 

background, are phenotypically normal and exhibit no gross abnormalities in vital 

organs. In particular, no abnormalities were observed in thymic or cardiac tissue 

(data not shown).

Upon X31 infection Dp8Tyb mice trended to experience increased 

morbidity and mortality (Figure 42B). Excitingly, the increase in mortality 

correlated to higher concentrations of IFNa in the BAL at 3dpi in Dp8Tyb mice, as 

compared to IFNa concentration observed in littermate controls (Figure 42C). 

Additionally, higher frequencies of pDCs and IMcs were recruited to the lungs of 

Dp8Tyb mice throughout infection, as compared to Dp8Tyb littermate controls. NK 

cell frequency was also elevated in Dp8Tyb mice at 7dpi. All other cell types 

assessed were found in comparable frequencies in the lungs of Dp8Tyb and litter 

mate control mice at the time points assessed, with the exception of B cells which 

were recruited in lower numbers to the lung in mutant mice late in infection 

(Figure 42C). Collectively this data suggests that triplication of IFNAR1 can lead to 

increased sensitivity of IFNa(3 signalling which can negatively impact IAV disease 

outcome.
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5.4 Discussion

The contribution of host genetics to the outcome of human disease is 

increasingly being appreciated. Susceptibility to severe seasonal or pandemic IAV 

in humans is likely to be polygenic and co-determined by pathogen characteristics, 

immunological memory, co-morbidities and environmental factors. It would be 

naive to assume a single gene is the cause of the massive difference observed 

between 129 and B6 inbred mouse strains. However, results in this chapter do 

indicate that while the coding sequence of the IFNAR1 gene itself does not differ 

between 129 and B6 genomes, IFNAR1 may be regulated differently between these 

strains and importantly, increasing or decreasing the number of IFNAR1 alleles 

can alter IAV disease outcome.

Not unlike what was observed in Chapter 3 with genomic ablation of 

IFNAR1 in 129 and B6 strains IFNAR1, heterozygosity conferred increased or 

decreased resistance to IAV disease severity, depending on host background. 

(129xB6)Fl mice with only one functional copy of IFNAR1 (IFNAR1 129 FI and 

IFNAR1 B6 FI mice) exhibited higher mortality than their (129xB6)Fl controls. In 

contrast, IFNAR1+/- mice on the pure 129 background were less susceptible to IAV 

induced disease than their wild type counterparts. We hypothesise that decreasing 

IFNAR1 allele number decreases responsiveness to IFNap and on a pure 129 

background and this is protective, however on a (129xB6)Fl mixed background 

lowering IFNap responsiveness may be suboptimal for induction of the antiviral 

state. Expression of TRAIL on IMcs and DR5 on AECs in FI mice with only one 

IFNAR1 allele is lower, implying that IFNAR1 129 FI and IFNAR1 B6 FI mice may 

be less responsive to IFNap signalling. Therefore, IFNAR1 129 FI and IFNAR1 B6 

FI mice may have elevated IAV loads in their lungs compared to the (129xB6)Fl
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strain and this could increase IAV induced disease burden, however as we did not 

assess viral loads in the experiments presented in Figure 41 this hypothesis 

requires further analysis. Indeed, to extend this study IFNAR1+/- mice on the B6 

background should also be generated, it would be interesting to determine if 

IFNAR1+/-(B6) mice also exhibited an intermediate phenotype as IFNAR1+/-(129) 

mice do. Furthermore for better clarity of virus control this hypothesis could be 

tested in the presence of an intact Mxl gene by using mice which code for a 

functional Mxl protein for the generation of FI mice. This hypothesis aside, it is 

unlikely that the effects we observe in strains derived from FI breedings are 

entirely mediated by a single gene, it is likely many genomic factors contribute to 

differences in cell type frequency, responsiveness to IFNap and indeed, outcome of 

IAV infection, in any setting including, a mixed genetic background such as 

(129xB6)Fl mice.

Interestingly, increased resistance of IFNAR1+/-(129) mice associated with 

decreased frequencies of pDCs in their lung at baseline and a trend for blunted pDC 

recruitm ent to the lung compared to Wt mice during X31 infection. As discussed in 

Chapter 3, pDC development from CLPs is severely impeded without IFNapR 

signalling (Chen et al., 2013) and IFNap can be a survival factor for mature pDCs 

(Kadowaki et al., 2000). A reduction in the number of IFNAR1 alleles could 

negatively impact IFNapR signalling and therefore pDC development and survival 

on the 129 background, ultimately leading to better resistance to IAV induced 

immunopathology. In contrast, pDC frequency in naive IFNAR1+/- FI (IFNAR1129 

FI, and IFNAR1 B6 FI) mice was equivalent to baseline frequency of pDCs in 

(129xB6)Fl lungs. By crossing low pDC frequency B6 mice with a high pDC 

frequency strain: NOD2 mice, Pelletier et al. found regulation of the pDC
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compartment size is multigenic: primarily regulated by a locus on mouse 

chromosome 7 (named: Pdccl) and modified by loci on chromosomes 9 and 11. In 

this study the IFNAR locus was not identified to contribute to pDC compartment 

size and propensity of pDCs to make IFNap in response to stimulus was not linked 

to any genetic loci (Pelletier et al., 2012). IFNAR1 allele copy number may affect 

pDC compartment size in a pure 129 background however, in the context of a 

genome that is 50% B6, loss of one functional allele does not alter pDC frequency 

in the lung. Interestingly, the Flt3L gene is encoded within the Pdccl region (Gene, 

2015). Sequence alignment of available 129 strains to the reference C57BL/6 

(Jackson) strain in the Sanger database found several SNPs in the 129 strains, yet 

none were within Flt3L coding region (data not shown). However this does not 

exclude differences in expression regulation of the locus between strains. It is 

possible that Flt3L encoded in the 129 genome may act synergistically with the 

increased sensitivity to IFNapR signalling observed in the 129 strain to increase 

pDC frequency in this strain. Genetic deletion of one IFNAR1 allele may lower 

sensitivity to IFNap and thereby lower pDC frequency in IFNAR1+/- (129) mice. 

However, in the context of (129xB6)Fl mice where the B6 Flt3L allele (or indeed 

the entire Pdccl locus) may be dominant, modification of pDC compartment size 

does not occur.

While IFNAR1 heterozygosity in 129 mice decreases the frequency of pDCs 

in the lung during IAV infection, it did not negatively impact IFN, p and A 

concentration in the BAL, particularly late in infection. Indeed, at 5dpi, IFNAR1+/- 

(129) lungs contained higher levels of IFNap and IFNA compared to their 129 

controls. Previous data presented in this thesis strongly dem onstrates high 

concentrations of IFNap can lead to tissue damage and therefore host mortality.
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Yet, in spite of higher IFNap pulmonary concentrations IFNAR1+/-(129) mice are 

more resistant to IAV induced disease than their wild type counterparts. Reduction 

of IFNAR1 expression on cell surface may decrease receptor availability, thereby 

lowering IFNap signal transduction. So although IFNap concentrations in the BAL 

fluid of IFNAR1+/-C129) mice are equivalent to what is observed in Wt 129 mice, 

the actual amount of downstream signalling in IFNAR1+/-(129) cells is lower due 

to a reduced number of IFNapR complexes able to transduce the signal. 

Furthermore, a lower frequency of IFNapR being available for ligand engagement 

may change the quality of IFNap signalling. Low levels of IFNapR ligand 

engagement on human carcinoma cells has been shown to result in induction of 

ISGs associated with antiviral genes, while increased receptor engagement results 

in expression of immunomodulatory and apoptotic ISGs such as MCP-1 or TRAIL 

(Kalie et al., 2008; Lavoie et al., 2011). In conclusion, although there are higher 

concentrations of IFNap in the IFNAR1+/- pulmonary environment, decreasing 

IFNAR1 expression may act as a bottleneck, where IFNap signal is decreased as a 

whole, or receptor engagement is only sufficient to induce expression of antiviral 

ISGs. Further investigation into proinflammatory cytokine levels and TRAIL 

expression in IFNAR1+/-(129) lungs during IAV infection is required.

In the context of a comparatively more resistant background, specifically 

the (129xB6)Fl background, reduction of IFNAR1 alleles to one increased host 

susceptibility to IAV induced disease. This increase in susceptibility occurred 

regardless of IFNAR1 strain origin (129 or B6). Coupled with confirmation that the 

coding sequence of IFNAR1 from the 129 and B6 genomes are identical, we can 

conclude that there is unlikely to be a biological difference in influenza resistance 

associated with the 129 versus B6 IFNAR1 locus. Even so, the increase in
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susceptibility exhibited by both IFNAR1 129 FI, and IFNAR1 B6 FI is of interest. 

Similar to what we found in the IFNAR1+/-(129) mice, decreasing the number of 

IFNAR1 alleles did not affect X31 induced levels of IFNap in the BAL fluid, as 

compared to the (129xB6)Fl controls. In contrast to IFNAR1+/-(129) mice, pDC 

numbers and recruitment were not affected by the decrease in IFNAR1 alleles. 

Furthermore, bone marrow derived IFNAR 129 FI and IFNAR B6 FI pDCs secreted 

IFNa, p and A in amounts comparable to (129xB6)Fl pDCs. Thus, in line with what 

was observed in IAV infection in vivo, having only one functional IFNAR1 allele 

does not impede IFN production by pDCs on the (129xB6)Fl background. Finally, 

TRAIL expression on IMcs and DR5 expression on AECs were lower in the IFNAR1 

129 FI and IFNAR1 B6 FI strains, this is suggestive of decreased IFNapR 

availability lowering the magnitude or quality of IFNap signalling (as discussed 

above). What is therefore causing increased host pathology in these strains 

compared to the (129xB6)Fl strain is unknown. It is possible that less IFNAR1 

availability is resulting in decreased induction of antiviral genes, however this is 

unlikely given studies conducted by the Schreiber group (Kalie et al., 2008; Lavoie 

et al., 2011), further investigation is required.

Triplication of the IFNAR1 gene may increase IAV sensitivity in an IFNap 

dependent manner. Dp8Tyb mice, trisomic for a portion of chromosome 16 which 

contains the gene coding for IFNAR1, are less resistant to IAV induced disease than 

their littermate controls and exhibit elevated IFNa levels and increased pDC and 

IMcs numbers in the lung during IAV infection, thus IAV infection of Dp8Tyb mice 

parallels disease hallmarks seen in 129 mice (Chapter 3). Early experiments 

conducted by Epstein et al. demonstrated that trisomy 21 cells bind more 

interferon ligand in fact in accordance with gene dosage, approximately 50% more
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(Epstein et al., 1982). As a consequence of increased binding capacity human 

trisomy 21 monocytes and fibroblasts have increased sensitivity to IFNa 

stimulation in vitro (Epstein and Epstein, 1976; Epstein et al., 1980). More 

recently, Broers et al demonstrated that whole blood samples from DS patients 

make more type I IFNs when stimulated with IAV as compared to their sibling 

controls, importantly viral titres in these cultures were equivalent (Broers et al.,

2012). These studies and the higher concentration of IFNa recorded in Dp8Tyb 

lungs at 3dpi strongly indicate that DS patients may have an exaggerated type IIFN 

response to IAV.

Intriguingly, epidemiological data collected during the recent swine flu 

pandemic indicated likelihood of hospitalization, intubation, and death were 16- 

fold, 8-fold, and 335-fold greater respectively, for patients with DS than non DS 

patients (Perez-Padilla et al., 2010). Additionally, DS children have a high 

frequency of IAV, RSV and other respiratory tract infections, independent of co

morbidity diagnoses of congenital heart disease and asthma (Bloemers et al., 2007; 

Selikowitz, 1992; Turner et al., 1990). Moreover, DS patients have a higher 

incidence of acute lung injury secondary to pneumonia, compared to normal 

control children (Bruijn et al., 2007; Hilton et al., 1999). Thus, severe disease 

caused by IAV and other respiratory pathogens associates with comparatively 

strong IFNap reactivity in DS patients and similarly, this is what we observe in 

Dp8Tyb mice.

It has also been reported that DS individuals are acutely sensitive to sepsis, 

having a 30% higher risk of fatality, when compared to other patients hospitalized 

for sepsis, after controlling for confounding factors (Garrison et al., 2005; Hill et al., 

2003). The early phase of sepsis is characterized by excessive inflammation and in
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some cases cytokine storm (Shukla et al., 2014). IFNap signalling has been 

intimately linked to LPS induced sepsis (Mahieu et al., 2006), IFNAR1-/- mice 

being protected from LPS induced septic shock (de Weerd et al., 2013). Recently, 

de Weerd et al. demonstrated a novel IFNARl-IFNp (and IFNAR2 independent) 

signalling pathway that induces a select set of ISGs, including MCP-1 and Mipl-a, 

which mediated mortality in a model for LPS induced sepsis (de Weerd et al.,

2013). Induction of proinflammatory cytokines by this IFNARl-IFNp signalling is 

hinted at by the increased recruitment of IMcs in Dp8Tyb mice. It is possible that 

the triplication of IFNAR1 allows for increased opportunity for IFNAR2 

independent IFNARl-IFNp signalling and thereby increasing induction of 

proinflammatory cytokines and therefore IAV induced pathology in Dp8Tyb mice.

Although we attribute Dp8Tyb mouse and DS patient susceptibility to IAV 

to an elevated IFNap response many studies associate DS patient sensitivity to 

respiratory infections with depressed cellular and /or humoral immunity. Defective 

T-cell maturation is an early integral feature of DS (Burgio et al., 1978), normal 

expansion of naive helper and cytotoxic T lymphocytes is lacking in the first years 

of life, although T cell populations gradually reach comparable levels with healthy 

controls (de Hingh et al., 2005; Kusters et al., 2010). Reduced T cell numbers in DS 

children is attributed to abnormal thymus development and reduced thymic 

output (Bloemers et al., 2011). Similarly, primary expansion of B cells seen in 

healthy children early in life was severely abrogated in DS sufferers yet unlike T 

cells, B cell numbers remain severely decreased, all stages of peripheral B-cell 

development being altered in DS, with more severe defects seen during the later 

stages of B-cell development (Carsetti et al., 2015; de Hingh et al., 2005). In 

addition, analysis of serum pre and post vaccination with IAV or Streptococcal
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pneumonia vaccines of DS patients demonstrated that while antibody induction 

did occur, it was comparatively lower than healthy controls (Costa-Carvalho et al., 

2006; Kusters et al., 2012). Whether B cell defects are linked to decreased T cell 

help, is intrinsic to B cells themselves or is the result of other external factors 

remains unknown (Verstegen et al., 2010). In contrast to human data, the T cell 

response in IAV infected Dp8Tyb mice was shown to be equivalent to littermate 

controls. CD4+ and CD8+ T cells were recruited in comparable frequencies, 

however assessment of an IAV specific cytotoxic T cell response, or indeed control 

of IAV replication was not performed so we cannot comment on whether these 

aspects contributed to IAV susceptibility.

B cell recruitment was blunted in Dp8Tyb lungs, whether or not this is 

linked to trisomy of IFNAR1 or another gene in the triplicated region or if this 

reduced recruitment results in diminished induction of IAV specific antibodies 

requires further investigation, however it is remarkably reminiscent of the 

decreased B cell recruitment observed in 129 mice. Additionally, we did not assess 

baseline differences in B cell subtype frequencies so we cannot comment on 

whether or not these are affected by triplication in this model. However, early 

recruitm ent of B cells at days 2 and 3 post infection in Dp8Tyb mice are 

comparable to litter mate controls. This hints at events induced by infection, such 

as IFNap secretion triggering in some way a reduction of the B cell population in 

the lung, this may be through blockade of B cell recruitment to the lung, apoptosis 

of B cells present in the lung or perhaps modulation of B cells in other organs such 

as the spleen or bone marrow. In contrast to experimental mice, humans are 

constantly exposed to immune stimulus and this may provide a tonic signal for 

IFNap expression, individuals with DS with their increased propensity to respond
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to IFNap (Broers et al., 2012; Epstein et al., 1980) may therefore be more sensitive 

to this tonic signal and thus suppression in B cells numbers may be a result of 

constant elevated IFNap levels. This may not be observed in mice kept in specific 

pathogen free conditions, as exposure to varied immune stimulus does not occur in 

this setting and therefore our hypothesised negative effects of IFNap on B cells 

may only manifest in the context of infection.

Given that the Dp8Tyb triplication is only of a small section of mouse 

chromosome 16 we do not expect to recapitulate all aspects of DS pathology, 

indeed defects in adaptive immunity seen in DS patients are largely not observed 

in these mice. Defects in trisomic T and B cells may contribute to severity of IAV 

induced disease in DS patients, however as observed in 129 mice, IFNap mediated 

pulmonary tissue death and therefore pathology occurred in spite of a intact 

adaptive response, therefore making study of IFNAR1 and the type IIFN response 

in DS patients during IAV infection important. Undoubtedly, there is the distinct 

possibility that other genes triplicated in Dp8Tyb mice contribute to disease 

severity, within this region there are several genes for proteins involved in ion 

channel flux: CLIC6, KCNE1 and KCNE2, several genes coding for structural and 

chaperone proteins: DNAJC28, ATP50, ITSN1 and SMIM11, as well as SON which 

regulates cell cycle and pre-messenger RNA splicing, RUNX1 which is involved in 

the development of normal hematopoiesis and in particular, appears to support 

mature CD4+ and CD8+ T cells in the spleen and finally, IFNGR2 which is the high 

affinity subunit of the type II IFN receptor(Barro-Soria et al., 2014; Chen et al., 

1995; Dergai et al., 2010; Friedli et al., 2003; Gardiner et al., 2002; Khan et al., 

1994; North et al., 2004; Tinel et al., 2000; Zhang et al., 2008). In addition, genes 

coding for IFNAR2 (the high affinity subunit of IFNa(3R) and IL10RB (the low
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affinity receptor chain for not only IL-10R but also IFNAR) are coded for in close 

proximity to the Dp8Tyb region and may also be affected by the triplication, 

indeed there may be as yet undefined interactions between genes within the area. 

Moreover, these genes are found in analogously on human chromosome 21 and 

therefore, particularly IFNAR2 could contribute the elevated IFNap 

responsiveness observed in DS suffers. Investigation into the Dp(16Misl8a- 

Runxl)2TybEmcf/B6 (triplication: 16:90719312 to 16:92826066) and

Dp(16Misl8a-I110rb)7TybEmcf/B6 (triplication: 16:90719312 to 16:91425834) 

mouse strains which have triplications that encompass both the genes coding for 

IFNAR1 and IFNAR2 and only for IFNAR2 (respectively) would allow us to 

understand if this increase in IFNap signalling is specific to IFNAR1 triplication or 

is achieved by either IFNAR1 or IFNAR2 and whether or not triplication of the 

whole receptor complex enhances this phenomenon.

Potentially, all genes triplicated in Dp8Tyb mice and those surround this 

region could contribute to the increase in severity of IAV infection in Dp8Tyb mice. 

Alterations in genes coding for ion channel flux may lead to cardiac defects, 

however susceptibility to virus induced pathology in DS patients has been shown 

to occur independent of congenital heart disease (Bloemers et al., 2007; Selikowitz, 

1992; Turner et al., 1990). It is also conceivable that triplication of IFNGR2, as we 

hypothesise for IFNAR1 could increase IFNy signalling and thereby over activate 

NK cells or macrophages leading to tissue damage (Okamoto et al., 2002). In 

addition, genes involved in hematopoiesis and cell cycle regulation could 

contribute to an immune response that is inappropriate to combat IAV infection, 

leading to host pathology.
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Symptoms of DS are multifactorial and dependent not only on the level of 

chromosome triplication but, like all human disease, genetics of the entire genome, 

environment, immune history and co-morbidities, how these factors affect the 

outcome of IAV infection requires in-depth study. While Dp8Tyb mice cannot 

encompass the entirety of DS, these mice do allow us to focus on IAV induced 

immunopathology potentially mediated by an augmented IFNap response. Data 

presented in this chapter strongly indicate changes in IFNAR1 copy number can 

alter IAV induced disease severity. Future study into Dp8Tyb mice as a model of 

severe IAV induced disease in DS patients should be directed towards blocking 

IFNap signalling through antibody blockade of IFNAR1, antibody mediated pDC 

and/or IMc depletion and breeding of Dp8Tyb mice with IFNapR-/-(B6) mice to 

ascertain whether decreasing IFNAR1 copy number in Dp8Tyb mice does in fact 

ameliorate IAV induced disease severity.
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Chapter 6. Concluding Remarks and Future 
Directions
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Collectively, the data in this thesis demonstrate that the relationship 

between IFNap response and IAV resistance can be characterised by a bell shaped 

curve with highest resistance at intermediate IFNap responses and reduced 

resistance at very high or very low IFNap responses (Figure 43). Although 

superficially this may be counterintuitive, it is a common feature of many 

biological processes. The induction of ISGs through stimulation of cells by IFNap is 

vital for protection in systemic viral infections (Muller et al., 1994). However, as 

productive replication of IAV is generally restricted to AECs, a cell type in which 

IFNA and IFNap are redundant for induction of the antiviral state, IAV infection is a 

model in which we can dissect the immunomodulatory action of IFNap 

independently of its antiviral role. Although IFNap has been implicated in immune 

mediated pathology in systemic viral infection, particularly chronic infections such 

as LCMV and HIV, the pathogenic component of IFNap signalling is substantially 

more difficult to disentangle from protective IFNap antiviral action in initial 

infection. Indeed, the key finding of this thesis: IFNap pathogenicity in IAV 

infection, could only be resolved in the context of IFNA redundancy in AECs.

In Chapter 3 we show by genetic, cell ablation and mAb-blocking 

experiments that in IAV-infected hosts, excessive amounts of IFNap produced by 

PDCA-1+ cells is upstream of induction of cytokine storm, recruitm ent of TRAIL+ 

IMcs and upregulation of DR5 on AECs, culminating in high host morbidity and 

mortality. However, it is important to remember that these events are designed to 

be protective for the host; secretion of proinflammatory cytokines and chemokines 

recruit immune cells to control initial virus spread, take up and present antigen, 

kill and clear away infected cells and eventually resolve viral infection. Although 

exaggerated IFNap signalling in 129 mice lead to tissue damage, the effects of
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Figure 43

IFNa|3 response
| ''optimal" p ro tec t iv e  

IFNcxp e ffe c ts
im m u n o p a th o lo g ic a l  

IFNap e ffe c ts

Figure 43: The relationship  betw een  IFNap resp onse and resistance to IAV induced  
pathology is a bell shaped curve. Graphical representation of conclusions drawn and 
hypothesises made from the data presented in this thesis. Highly IFNap responsive mouse 
strains: 129 (agouti oval], DBA (grey oval] and CBA/J (brown oval] are acutely susceptible 
to IAV induced disease, while BALB/C (white oval] and B6  (black oval] strains which 
produce comparably lower amounts of IFNap in response to IAV infection are resistant. 
Therefore, moderate IFNap responses to IAV are protective, while excessive IFNap 
amounts contribute to immunopathology. (1] Complete genetic ablation of IFNapR 
signalling in 129 mice markedly increases strain increases resistance. (2] Conversely, 
exogenous addition of IFNa to resistant, low IFNap-expressing mouse strains B6  (or 
B6.A2G-Mxl strains] or increasing this strain’s responsiveness to IFNap ligands by 
triplication of IFNAR1 gene (black and pink ovals] drives IAV associated 
immunopathology in this strain. (3] However, if the moderate IFNap responses in B6  mice 
are genetically removed, influenza resistance is reduced. (4] Linking these data points 
generates a dose-response curve where in IAV infection moderate IFNap responses 
protect and high IFNap responses are detrimental.
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IFNap at lower concentrations in B6 mice were protective. Indeed, the mild 

increase in disease burden in IAV infected IFNapR-/-(B6) mice may be due to lack 

of IFNap mediated induction of appropriate proinflammatory cytokines leading to 

preferential recruitment neutrophils over IMcs during IAV (Seo et al., 2011; 

Sprenger et al., 1996). It is interesting to note that both CCR2 dependent 

monocytes (including IMcs defined in this study) and TRAIL action in IAV infection 

have both been described to have both protective and pathogenic roles (Aldridge 

et al., 2009; Brincks et al., 2011; Brincks et al., 2008a; Dawson et al., 2000; Herold 

et al., 2008; Hogner et al., 2013; Lin et al., 2008). Given that we delineate a pathway 

where IMc recruitment and subsequent expression of TRAIL is modulated by 

IFNap, it is unsurprising that we again return to the concept of a bell-shaped curve, 

where there is an optimal magnitude of CCR2 monocyte recruitm ent or TRAIL 

expression and exceeding or falling short of this optimal level of response can lead 

to host pathology.

Mouse strain comparison in Chapter 3 allowed for the characterisation of 

immunopathology brought about by host intrinsic high pulmonary concentrations 

of IFNap induced by IAV infection. The high disease severity experienced by 129 

mice during IAV infection associates with significantly elevated concentrations of 

IFNap in the lung that persist late into infection, compared to the more resistant 

B6 strain where comparatively lower levels of IFNap are induced by IAV infection 

and these are only observed during the early phase of infection. While genetic 

ablation of IFNap signalling did protect 129 mice from severe disease, the question 

remains is it the peak levels, the overall concentrations or the persistence of IFNap 

in the lung, or a combination of these, that drives immunopathology? We m ust ask: 

Are high levels of IFNap early in infection actually contributing to the downstream
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TRAIL/DR5 mediated epithelial cell tissue destruction? Or is this purely the effect 

of IFNaP on the immune environment late in IAV infection? Or is persistent IFNap 

signalling throughout infection amplifying inflammation and consequently 

immunopathology? As TRAIL and DR5 expression only appear to be upregulated 

late in IAV infection it is tempting to assume that persisting concentrations of 

IFNap are to blame. Indeed IFNap mediated induction of inflammation, regulation 

of apoptosis and cell cycle arrest require a prolonged period of IFNap signalling 

(Kalie et al., 2008; Piehler et al., 2000; Roisman et al., 2005). We have 

demonstrated that repeated exogenous treatm ent with IFNa of IAV infected B6 

mice increases disease burden. Using this model we could directly test the 

contribution of IFNa concentration and kinetics to IAV induced pathology by 

comparing large single doses of IFNa at specific time points of infection with 

prolonged treatment. Concomitantly, could blockade of IFNap signalling late in IAV 

infection ameliorate severe disease? However, this idea must be approached with 

caution, as it is likely that within any human population there will be a spectrum of 

IFNap response profiles (Schlaak et al., 2002) and as observed in IFNapR-/-(B6) 

mice, blockade of IFNap signalling can also exacerbate disease through increasing 

host permissiveness to IAV replication.

Based upon our findings in 129 mice and the wider literature we can 

suggest molecular targets that will lower IFNap levels in an IAV infected host. A 

key feature of the immune system is redundancy. This is exquisitely demonstrated 

between RIG-I and TLR7, these signalling pathways offering entirely independent 

means of IAV recognition and subsequent IFNap induction (Koyama et al., 2007; 

Pang et al., 2013). RIG-I appears to be the dominant PRR for IAV, it is ubiquitously 

expressed and most cell types are unable to recognise IAV without it (Kallfass et
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al., 2013; Koyama et al., 2007). pDC expression of TLR7 is therefore likely to be an 

evolutionary fail safe, a second line of defence for when viruses manage to subvert 

RIG-I recognition, as IAV attempts to do through action of NS1 or when viral 

infections become systemic. For example, pulmonary infection of IFNa6 reporter 

mice with NDV revealed that AMs were the primary producers of IFNa6 and pDCs 

did not contribute to this response, however upon systemic NDV infection pDCs 

were the primary producers of IFNap (Kumagai et al., 2009). Both pDCs and TLR7 

have been demonstrated to be unnecessary for effective resolution of primary IAV 

infection, as genetic ablation of TLR7 signalling in B6 mice does not alter disease 

outcome or decrease levels of IFNap induced in the lung at 24hrs post IAV 

infection (Jeisy-Scott et al., 2012; Koyama et al., 2007). Two studies have 

demonstrated that mAb PDCA-1 mediated depletion of pDCs did not alter host 

mortality during IAV infection (GeurtsvanKessel et al., 2008; Soloff et al., 2012). 

These studies did however report contradictory results for pulmonary levels of 

IFNa post pDC depletion; GeurtsvanKessel et al. found no difference while Soloff et 

al. described lowered IFNa concentrations in the lungs of aPDCA-1 treated mice. 

The discrepancy between these two studies is likely due to the fact that 

GeurtsvanKessel et al. focussed on one early time point, while Soloff et al. assessed 

IFNa level at several time points during infection. Intriguingly Soloff et al. also 

observed decreased IAV induced weight loss in pDC depleted mice. Importantly, 

both of these studies were performed in B6 mice, a strain which we have defined in 

this thesis to be an optimal IFNap responder. Soloff et al.'s study on pDC depleted 

B6 mice parallels the results we observe using the same method of pDC depletion 

in IAV 129 mice. Significantly, depletion of pDCs in both these studies lowered IAV 

induced pulmonary levels of IFNa and host morbidity, in the context of the low



IFNap producing strain this is only a mild change in disease burden however in the 

context of the high IFNap responding 129 strain this significantly ameliorates IAV 

induced disease. Therefore, targeting pDCs and their IAV recognition pathway 

could allow for the development of a treatm ent which could be given to an entire 

population, regardless on an individual's level of IFNap responsiveness. An 

obvious choice would be to deplete pDCs during IAV infection, however mAbs are 

an expensive treatm ent option and as such not desirable for treatm ent of a large 

human population.

Alternatively, TLR7 antagonism may blunt IFNa secretion from pDCs and 

thereby lower pulmonary concentrations of IFNa in individuals with a propensity 

to make high levels of IFNap, consequently protecting these individuals from 

IFNap mediated tissue damage; yet due to TLR7's redundancy with RIG-I this 

antagonism should not impede IAV clearance from the lung in any individual, 

regardless of genotype. However, TLR7 antagonism would only interrupt IFNap 

secretion directly down stream of pattern recognition but will not affect the 

IFNaP/IFNapR positive feedback loop and therefore this strategy will not control 

pDC production of IFNap induced by other stimuli, including IFNapR engagement. 

As AMs, AECs and other DCs are all known to secrete IFNap in IAV infection it is 

unlikely that TLR7 antagonism would block IFNp secretion from these cell types 

and therefore no blockade of IFNp-IFNapR feedback would occur on pDCs present 

in the lung. Another confounding factor which may preclude TLR7 antagonism as a 

treatm ent for IAV is that TLR7 has been shown to be indispensible for induction of 

IAV specific CD4+ T cell, B cell and Ab responses (Jeisy-Scott et al., 2012; Koyama et 

al., 2007). Thus, TLR7 antagonism may lower IFNap mediated tissue damage yet 

cause pathology through blockade of an appropriate IAV specific adaptive
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response. Again, a more appropriate treatm ent for IAV in humans may be to 

deplete pDCs.

Although convincing, the data discussed above is based purely in inbred 

laboratory mouse strains in a limited number of IAV infection settings. Therefore 

these studies may not account for circumstances where pDCs and TLR7 are vital as 

a fail-safe mechanism. This could be in individuals whose IFNap responsiveness is 

significantly below what is optimal or in cases where the cellular tropism of IAV 

infection is not restricted to AECs. Significantly, as IAV NS1 can block signals 

required for IFN induction (Diebold et al., 2003; Kallfass et al., 2013), infection of 

immune cells could significantly decrease cell types able to secrete IFNap and a 

rapid response from pDCs may be essential for host survival. Furthermore, 

Kaminski et al. demonstrated that comprising TLR7 signalling or depleting pDCs in 

a highly pathogenic H7N7 infection of Mx-1 functional mice partially increased 

disease severity (Kaminski et al., 2012). In conclusion, host-directed therapies that 

stimulate antiviral activity against IAV in order to resolve the infection more 

rapidly may be preferential to blockade features of the immune system.

As demonstrated in Chapter 4, IFNA may be a viable option for broad- 

spectrum treatm ent of IAV in immunocompetent humans, although further 

research is required. As mentioned in the discussion of Chapter 4, expanding the 

strains of IAV tested is vital to ascertain whether or not IFNA is a suitable 

treatm ent for all IAV strains, even strains which have the potential to infect 

immune cells. Translation of this model into ferrets would be an im portant step 

since these animals are considered a more clinically relevant model for IAV due to 

their sialic acid moieties on their AECs (Jayaraman et al., 2012). Additionally, as 

ferrets are a well-established model for monitoring IAV transmission between
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hosts, the effectiveness of IFNA to block transmission in these animals could also 

be assessed (Herlocher et al., 2001). Excitingly, IFNA as a therapy in humans has 

already passed early safety trials and has been assessed in clinical trials as a 

treatm ent for HCV and hepatitis B virus (HBV) infection in humans. Reminiscent of 

our own results, this trial reported lower side effects from IFNA treatm ent 

compared to IFNa treatm ent (Muir et al., 2014). Of course further study on the 

human immune cell response to IFNA and clinical testing to determine whether or 

not IFNA is effective at lowering IAV induced disease burden, particularly with 

respect to not eliciting a cytokine storm in humans, is required. Yet tantalising 

preliminary results attained in my lab with human PMBCs stimulated with IFNA do 

show that IFNA alone does not elicit ISG expression or proinflammatory cytokine 

secretion and importantly, IFNA does not augment cytokine secretion from these 

immune cells when given with IAV.

The translational capacity of these results notwithstanding, further 

investigation using the mouse model is warranted. It would be of interest to 

employ a similar method to Mahlakoiv et al. who stained for Mxl protein in the 

guts of IFNa or IFNA treated mice. Using this technique the authors were able to 

elegantly show that unlike the lung, the gut has a compartmentalized IFN system, 

in which epithelial cells primarily respond to IFNA, while other cell types in the gut 

rely on IFNa(3 for antiviral defence (Mahlakoiv et al., 2015). Staining of lung 

histology slides for Mxl protein in IFNa4 and IFNA2 mice may allow us to identify 

pulmonary immune cells that respond to IFNA. Another interesting experiment is 

to generate bone m arrow chimeras made from B6.A2G-Mxl mice reconstituted 

with either an IFNapR sufficient or an IFNapR deficient hematopoietic system and 

to treat these mice with IFNa4 during IAV infection. If the conclusions we draw
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from the data presented in chapter 4 are correct and it is only the action of IFNa4 

on immune cells which drives cytokine storm, innate cell recruitm ent and immune 

mediated tissue damage, then chimeras generated with an IFNapR-/- immune 

system should be protected, while chimeras generated with a Wt hematopoietic 

system that can respond to IFNa4 would suffer severe disease (as observed in 

whole Wt mice treated with IFNa4 during IAV infection). By restricting the cell 

types able to respond to IFNa4 treatm ent to nonhematopoietic cells it is possible 

that we recapitulate the targeted effect of IFNA treatm ent in whole mice. However, 

there are two major foreseeable caveats in this experiment: Firstly, as was 

observed in chimeras generated in 129 mice, radioresistant myeloid cells may still 

cause epithelial cell apoptosis, however as previously mentioned, the B6 strain 

appears more robust than the 129 strain in terms of tissue repair or resistance to 

damage. Indeed, similar chimeras generated by Hogner et al., specifically Wt B6 

mice reconstituted with either an IFNapR-/- or a TRAIL-/- hematopoietic system, 

were protected from IFNap-TRAIL mediated epithelial cell death (discussed in 

depth in Chapter 3) (Hogner et al., 2013), so the hardiness of the B6 strain may 

compensate for IFNa4 stimulated damage by radioresistant immune cells. The 

second caveat, which may not be so easily overcome, is that nonhematopoietic cell 

types which do not express IFNAR, such as pulmonary endothelial cells, could be a 

potent source of proinflammatory cytokines (Sommereyns et al., 2008). Teijaro et 

al. have proposed that endothelial cells are an potent source of IFNap-driven 

proinflammatory cytokines in IAV infection (Teijaro et al., 2011). If this scenario is 

true, then IFNa4 treatm ent could still augment pulmonary inflammation through 

stimulation of endothelial cells and thereby induce pathology. It will be of great 

interest to see the outcome of this experiment.



Although we characterised IFNA treatm ent as protective during IAV 

infection, this was demonstrated in low IFNap responding hosts. We therefore 

have no indication if this will translate into a genetic background with a 

predisposition for high IFNap responsiveness. In a high IFNap setting, IFNA 

mediated control of IAV replication may not be sufficient to protect the host from 

IFNap mediated tissue damage and therefore, severe disease. AEC death was 

particularly observable late in infection, in spite of viral loads being very low in 

129 mice and undetectable in B6 mice. Therefore, complementing IFNA treatm ent 

with blockade of IFNap signalling late in IAV infection may ensure control of IAV 

replication and protection from lung tissue damage. Of course this would have to 

be investigated intensively to ensure blockade of IFNapR did not promote disease 

by hindering the IAV specific adaptive immune response or alveolar macrophage 

clearance of cellular debris. Moreover, IFNapR antagonism late in infection would 

only be protective if IFNap induction of AEC apoptosis is a result of IFNap acting 

on specific cell types present in the lung late in infection and not a consequence of 

the overall duration of IFNap signalling in the lung. If duration of IFNap signal or 

high concentrations of IFNap early in infection are upstream of AEC apoptosis then 

the timing or frequency of IFNapR blockade would have to be adjusted. 

Alternatively, perhaps lowering IFNa concentrations, through pDC depletion, 

rather than entirely ablating IFNapR signalling, would be a better complement to 

IFNA treatm ent in high responders.

As discussed in Chapter 4, the redundancy between IFNap and IFNA in viral 

infection is directly dependent upon virus tissue tropism and as mentioned, this 

concept was nicely demonstrated by comparison of IFNapR-/- and IFNAR-/- mice 

infected with human reovirus type 3 and assessment of virally infected cells in the
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gut. In the gut, IFNapR and IFNAR expression on different cell types is mutually 

exclusive and therefore, the pattern of viral infection was contingent on cell types 

being unable to respond to IFN signalling due to receptor deficiency (Mahlakoiv et 

al., 2015). In contrast, lung AECs can respond to both IFNap and IFNA and 

productive replication to IAV is generally restricted to AECs. However, some 

strains of IAV, particularly highly pathogenic avian strains, have been shown to 

possess polybasic cleavage sites on their HA molecules and thus are not dependent 

upon proteases only expressed by AECs for maturation of the virion (Stieneke- 

Grober et al., 1992). Significantly, under these conditions, exogenous IFNA 

treatm ent may not elicit protective effects. Instead it may even increase 

immunopathology by driving IAV to replicate in immune cells and thereby 

increasing the availability of viral PAMPs in cell types programmed to generate 

large quantities of proinflammatory cytokines. In sharp contrast to possible 

treatm ent regimes already discussed in this section, exogenous IFNA treatm ent 

supplemented with exogenous IFNap may be beneficial under these 

circumstances.

We utilise the restricted expression of IFNAR to induce an antiviral state in 

cells vulnerable to IAV infection without perturbing the immune response, 

however one can assume that we were merely capitalising on evolution's design. 

An IFN that specifically acts on cells that have an elevated risk of pathogen 

exposure allows for these cells to autonomously protect themselves from invading 

pathogens. It is therefore likely that many of the pathogens humans are exposed to 

in daily life are dealt with by local low-grade IFNA responses with little to no 

recruitment of immune cells. IFNA can be thought of as an autonomous virus 

defence system of epithelial barriers that may have evolved to avoid unnecessarily
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frequent triggering of the IFNap system which can lead to exacerbated 

inflammation. Over half a century has past since the discovery of IFNap and in this 

time much research has demonstrated a vital role for this IFN in defence against 

many viruses. However, to study the effects of IFNap in viral infection, a model 

must be used where infection can be established. For instance, to study systemic 

viral infection, a virus must be injected, thereby bypassing protective innate host 

defence mechanisms such as mucus or IFNA on epithelial cell surfaces. Systemic 

viral infection involves viruses that can infect and replicate in multiple cell types, 

particularly in immune cells and in these cells IFNA has limited or no ability to 

induce ISG expression, consequently IFNap has unique roles and is absolutely 

required for protection. However, one must wonder how often viruses overcome 

innate immunity on mucosal surfaces and achieve systemic infection in nature? 

SNPs that decrease or ablate the shared signalling cascade downstream of IFNapR 

and IFNAR result in acute sensitivity to viral infections and this is often attributed 

to loss of protection mediated by IFNap, while IFNA is overlooked. However, 

Duncan et al. recently identified an individual with a homozygous mutation in the 

high-affinity chain of the IFNapR (IFNAR2) that rendered cells unresponsive to 

IFNap. This individual came to notice after succumbing to encephalitis induced by 

inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. 

However, until vaccination this individual had not shown any indication of 

heightened susceptibility to viral pathogens (Duncan et al., 2015). It appears that 

IFNA and other host defence mechanisms at surfaces exposed to pathogens were 

sufficient to ensure host protection from viral induced disease, and it could be 

argued that the defect in IFNapR signalling may not have been detected if the 

individual had not been directly challenged with live, albeit attenuated virus by a



route which circumvented these surface defences. To date, the protective role of 

IFNap in clinical disease may therefore be over estimated and the importance of 

IFNA under appreciated.

It is of interest to assess the clinical importance of host intrinsic elevated 

IFNap responsiveness. Unlike experimental mice that live in specific pathogen-free 

conditions, humans are under constant polymicrobial exposure. Could this IFNap 

elevated response phenotype still exist in the context of the constant 

immunostimulation and if so, would it still manifest as pathogenic? It is possible 

that propensity to make high concentrations of IFNap (or IFNA, as they appear to 

go hand in hand as evidenced in 129 mice) in response to low levels of stimulus 

may in fact make high IFNap responsive hosts more resistant to infection, by 

inducing a heightened or prolonged antiviral state before novel exposure to a 

subsequent virus, much like in the pretreatm ent regimen in Chapter 4. Indeed, two 

studies have demonstrated that commensal bacteria provide tonic immune 

stimulation that establishes a basal level of activation in the innate immune system 

and this is required for optimal antiviral immunity. Treatment of mice with broad- 

spectrum antibiotic regimes prior to IAV infection lowers this tonic signal and 

thereby impaired induction of IFNap consequently increasing IAV titres in the lung 

and disease burden (Abt et al., 2012; Ichinohe et al., 2011). Increased 

immunostimulation in humans could intensify this IFNap responsiveness and this 

could be positive or negative for the host. A high IFNap responsive phenotype may 

result in higher baseline expression of ISG therefore providing a better guard 

against virus invasion or a stronger IFNap response early in infection may shut 

down viral replication before it is established. Of course this does not preclude 

high IFNap responding phenotype from presenting with severe disease if an IAV
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infection is established, as was observed in 129 mice and possibly individuals with 

DS.

Dp8Tyb mice are trisomic for a short section of murine chromosome 16 

containing the IFNAR1 gene, we employed this strain of mouse to test whether or 

not increasing gene dosage of IFNAR1 could increase IFNap mediated 

immunopathology in IAV infection. Although preliminary, results attained in 

Dp8Tyb mice remarkably parallel disease features observed in 129 mice. Of course 

further characterisation of this phenotype is required in particular, assessment of 

the proinflammatory cytokine milieu and frequency of AEC death induced by IAV 

infection in this strain compared to their littermate controls. Moreover, a better 

understanding of viral control and induction of IAV specific adaptive immune 

responses by Dp8Tyb mice would allow us to firstly, understand if the trisomy 

possessed by Dp8Tyb mice affects these aspects of the immune response to IAV 

and if so is this more important than immune mediated tissue damage in driving 

disease severity. If, as we hypothesise IFNAR1 triplication is augmenting IFNapR 

signalling in Dp8Tyb mouse many of the treatments discussed in this chapter such 

as depletion of pDCs or blockade of TLR7 or IFNapR signalling could be applied to 

this model. Most interesting, would be to demonstrate a proof of principle by 

breeding Dp8Tyb mice with IFNapR+/-(B6) mice, thereby generating offspring 

which are trisomic for the entire duplicated region of Dp8Tyb with the exception 

of IFNAR1 (along with appropriate littermate controls). Finally, correlation of 

severe disease markers identified in this model with IAV infected DS patients 

would demonstrate the relevance of this model and as this is a genetically defined 

population, may lead to the design of IFNap dampening therapies to treat severe 

IAV in DS.
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Data presented in this thesis have shed light on the pathogenic potential of 

IFNap in IAV infection. We have identified IFNap to be a candidate factor upstream 

of the cytokine storm in humans and also delineated an IFNap dependent pathway 

that leads to AEC death during IAV infection. This work also allows us to recognise 

the somewhat opposing actions of IFNap in IAV infection: the cell intrinsic 

antiviral response and the cell extrinsic immunomodulatory effects. Comparison 

with IFNA allowed for the disentanglement of these effects and has revealed IFNA 

as a potential treatm ent for IAV induced disease. Finally, the definition of features 

specific to the IFNap driven pathogenic response to IAV will allow for future 

investigation of upstream genetic elements that lead to this elevated IFNap 

responsive phenotype, with hopes for translation into human studies.
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Appendix

Table 1: FACS Antibodies.

Antigen Fluorochrom 
e Conjugate

Company

120G8 FITC Biolegend
B220 PerCP Cy5.5 Biolegend
B220 APC Cy7 Biolegend
CD llb PE Cy7 Biolegend
C D llb BV711 Biolegend
CD llc Pacific Blue Biolegend
CD llc PerCP Cy5.5 Biolegend
CD llc BV605 Biolegend
CD138 PE Biolegend
CD18 PE Cy7 Biolegend
CD19 BV650 Biolegend
CD23 PE Biolegend
CD38 PE Cy5 Biolegend
CD38 PE Cy7 Biolegend
CD3e APC Cy7 Biolegend
CD3e AF700 Biolegend
CD3e APC Biolegend
CD4 APC Biolegend
CD4 PE Cy7 Biolegend
CD4 BV605 Biolegend
CD44 PE Biolegend
CD45 APC Biolegend

CD45.1 APC Cy7 Biolegend
CD45.2 Pacific Blue Biolegend
CD45.2 BV650 Biolegend
CD69 FITC Biolegend
CD69 PE Cy7 Biolegend

CD8a PerCP Cy5.5 Biolegend

Antigen Fluorochro
me
Conjugate

Company

CD8a BV785 Biolegend
CD86 FITC Biolegend
CD93 APC Biolegend
DR5 PE Biolegend
DX5 Pacific Blue Biolegend
Ecadtherin FITC Biolegend
Ep CAM APC Cy7 Biolegend
F4/80 APC Biolegend
Fas PE Biolegend
GL7 eF660 Biolegend
IFNAR1 PE Biolegend
IgD Pacific Blue Biolegend
IgM FITC Biolegend
Ly6C PerCP Cy5.5 Biolegend
Ly6C FITC Biolegend
Ly6G APC-CY7 Biolegend
Ly6G AF700 Biolegend
Ly6G FITC Biolegend
MHCII APC-CY7 Biolegend
NK1.1 PE-Cy7 Biolegend
NKp46 FITC Biolegend
NKp46 PE Biolegend

PNA FITC

Vector
Laboratorie
s

Sca-1 Pacific Blue Biolegend
Siglec F — - Miltenyi
Siglec H PE Biolegend
TRAIL PE Biolegend
Streptavidi
n PE Dazzle Biolegend
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Table 2: Gene List, Figure 30, Genes upregulated by both IFNX2 and IFNa4

treatment.

Symbol Fold 
changeQIFNL] vs 

[mock])

Fold 
change([IFNa4] 

vs [mock])

1200013B22Rik 1.3181694 1.5204556
1500012F01Rik 1.1593927 1.5565454
2010005H15Rik 1.5644674 1.4659208

A130072J07 1.4594407 1.5547892
AI481105 1.2891465 1.5229447

Akp2 1.0820922 1.5346539
Apobecl 1.0573468 1.5541328

Atf3 1.3182873 1.5506775
AtplOa 1.1806552 1.5575788
Axudl 1.2855201 1.522764
Azi2 1.1990424 1.5377803
B2m 1.4298825 1.5584313

B630009I04Rik 1.16654 1.5465243
BC013672 1.2780781 1.5458938
BC024561 1.1399192 1.5717908
BC049354 1.1393989 1.548339

C4 1.0964634 1.5194741
C430002D13Rik 1.5289665 1.3244027

Cdl80 1.0180258 1.5485319
Clecsfl2 1.2993085 1.54169

Ctps 1.3228042 1.5746181
Ctps 1.261551 1.5738385
Ctsb 1.2983029 1.5082626
Ctsz 1.1812767 1.5360832

Cxcll4 1.0903791 1.5670463
Cyr61 1.659218 1.1214038
Cyr61 1.5165956 1.1201091
Ddx24 1.2157705 1.5293789
Duspl 1.8283868 1.0965629
Enpp4 1.2865506 1.5081517

F630107D10Rik 1.0873708 1.5366734
Fos 2.5179932 1.4653891

Gadd45g 1.1974773 1.5161738
Gsdmdcl 1.1996303 1.5237099

H2-Q5 1.2226307 1.5184234
Hspb6 1.0921898 1.5537612
Ifi203 1.048598 1.5026933
Irfl 1.0727218 1.5019846
Irf5 -1.0438304 1.5022235

251



Table 2 cont: Gene List, Figure 30, Genes upregulated by both IFNA2 and

IFNa4 treatment.

Symbol Fold
change ([IFNL] 
vs [mock])

Fold
change([IFNa4] 
vs [mock])

Irgm 1.1785004 1.5476046
Itih4 1.3737946 1.5188125
Klra7 1.0613177 1.508586
Klrel 1.0261391 1.5026431
LOC381010 1.2453744 1.5319322
Mill2 1.2839385 1.5445967
Mthfd2 1.1744696 1.5579389
Pbefl 1.3799819 1.5217743
Plala 1.1087766 1.5226134
Plod3 1.2406632 1.5209503
P p p lrl4 d 1.4666433 1.5208132
Prkcdbp 1.1568284 1.5361063
Rarres2 1.1477493 1.5292376
Rhoc 1.0478281 1.5307486
scl0002116.1_6 1.2034056 1.5256225
Tacstd2 1.6001923 1.3650656
Tgfbi 1.3123162 1.5621724
Tgfbi 1.2293031 1.5578811
Thbsl 1.3436913 1.5134673
Tinagl 1.0367861 1.570407
Tinagl -1.0254425 1.5228773
Tlr7 1.0034118 1.5203454
Tm em l76a 1.0172911 1.506547
TmsblO -1.0172322 1.5313413
Uppl 1.0511423 1.5409486
Xcll -1.0007374 1.5644635
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Table 3: Gene List, Figure 30, IFNa4 specific genes.

Symbol Fold 
change([IFNL] 

vs [mock])

Fold 
change([IFNa4] 

vs [mock])

2210415K03Rik 3.1301882 1.0827683
A630077B13Rik 2.3969235 1.0720068

Aifl 2.2063124 1.1540902
BC049975 3.3051805 1.2625252

C2 3.360701 1.1232857
Ccll2 2.309329 1.205247
Ccll2 2.7600749 1.3374633
Ccl4 3.5691519 1.0817877
Ccl4 2.6236436 1.0771163
Ccl7 3.2992876 1.1421381
Ccl8 3.0029647 1.2521714
Ccr5 2.2546341 1.1044458
Ccr5 2.258544 1.1143029
Cxcll 2.3235338 1.282936

Cxcll3 3.7380526 1.2582576
Daxx 2.6530592 1.3208724
Fcgrl 2.4304502 1.1923883
Fcrl3 2.3719475 1.0939442
Gbp2 3.9855018 1.2847389
Gbp2 3.6796377 1.2362367
Gvinl 2.667871 1.1066488
Ifi205 2.655555 1.1526281
Ifi205 3.6843872 1.3771138
IL1RA 2.1915321 1.1259896
Irgl 2.4912689 1.2694376

LOC226690 3.2811322 1.1577247
LOC226691 3.490336 1.3775985
LOC381276 2.4568229 1.2585015
LOC626578 3.1149218 1.2755919

Ms4a6d 3.8090258 1.3229121
Nrap 2.496111 1.2824109
Orml 2.3607984 1.2848341
Orm2 2.1883066 1.0642031
Plala 2.583456 1.17412
Plac8 2.8865275 1.1678452

scl000868.1_2 2.5899966 1.1220796
Sfrpl 2.6343455 1.094101

Sn 2.4187682 -1.0040914
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