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Abstract

The main aim of (Q)SAR is to build models to evaluate and predict properties 

of molecules, such as biological and environmental effects, and physico­

chemical properties. These models are built using available experimental 

data, whose quality and quantity heavily affect their capability of obtaining 

reliable predictions for new chemicals. A dataset can be viewed as a 

"sampling" of the whole chemical space, if a sample is too small and /  or too 

homogeneous, the model will inevitably have limitations in the type of 

chemicals it can predict.

From the point of view of protecting the human health and the 

environment, it is preferable that a model is able to predict even a small 

number of chemicals, but with the highest possible reliability. The "coverage" 

issue can be overcome by integrating results from different models. In this 

perspective the importance of clearly defining the model's applicability 

domain is crucial to identify which model is most suitable for each chemical 

to assess.
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The definition of the applicability domain (AD) of (Q)SAR models is still an 

open research field. Several approaches have been proposed and 

implemented through years, including the use of structural features such as 

functional groups and atom-centered fragments. These features have also 

proven to be useful for an a priori definition of AD, making it independent 

from the specific algorithm chosen to develop the model.

Within this study, the definition of (Q)SAR models' applicability domain 

has been investigated using structural features of different complexity: 

thresholds for chemical composition and molecular weight, chemical classes 

related to commonly well and badly predicted molecules, and statistically- 

extracted structural fragments to model the error in prediction. In the case 

studies considered, these approaches improved the AD definition provided by 

the model developers, supporting their integration within the definition of the 

models' applicability domain.
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"Don't get set into one form, adapt it and build your own, 

and let it grow, be like water. Empty your mind, be 

formless, shapeless — like water. Now you put water in a 

cup, it becomes the cup; You put water into a bottle it 

becomes the bottle; You put it  in a teapot it becomes the 

teapot. Now water can flow  or it  can crash.

Be water, my friend."

- Bruce Lee

"...Faith drives me to carry on, and take the road less travelled on..."

- Robb Flynn



Chapter A.

Introduction

1. Background and motivation
Since their introduction in the 19th century, (quantitative) structure-activity 

relationships ((Q)SAR) models have drawn increasing attention from the scientific 

community. The underlying idea of this modelling approach is that biological effects and 

properties of chemicals should be related to their structural properties. Therefore, it 

should be possible to model this relation using a set of molecules with known structures 

and experimentally-determined biological effect. Moreover, being based on 

mathematical and statistical approaches, (Q)SAR models are relatively easy to 

implement within automated computational tools. This gives the possibility to screen 

thousands of molecules in a short time and with lower costs, increasing the interest of 

both industries and regulators, directly or indirectly involved in chemical safety.

As for in vivo and in vitro models (and every model in general), the results obtained 

by (Q)SARs are affected by uncertainty. Two main sources of "errors" can be identified: 

the quality of the data used to build the models, and the use of "wrong model for the 

wrong molecules". This thesis focuses on the second aspect, which relates to the 

commonly known difficulty of models to extrapolate reliable results for elements too 

different from those used to train them. To solve the problem of defining which
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molecules can be reliably predicted by a (Q)SAR model is commonly known as the 

definition of the applicability domain of a model.

In a recent study, the LIFE+ project ANTARES has identified and evaluated 50 models 

(including commercial and freely-available software) for eight biological properties 

[56,57,58,59,60]. The method adopted for this study consisted in predicting large 

dataset of chemicals with known experimental values and evaluate the predictive 

performance using statistical analysis, such as the "coefficient of determination" (R2) for 

models providing continuous numerical results, and the accuracy, sensitivity and 

specificity for classification models. The most interesting outcomes were obtained while 

considering the applicability domain information provided with each model, and the 

training sets used to build these models. (Q)SAR models can generally obtain more 

reliable results for molecules used to build them compared to "new" chemicals (this was 

confirmed by ANTARES). The use of applicability domain information proved to give the 

possibility to improve the identification of chemicals predicted with higher reliability 

also for the new chemicals.

2. Problem description
As introduced above, (Q)SAR models are built using mathematical and statistical 

approaches. Initially, linear modelling approaches were used, making it relatively easy 

to define their applicability domain. For example, range-based methods describe the 

applicability domain using the ranges of the variables used by the model, and that of the 

experimental responses for the molecules of the training set. If the variables calculated
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for the a new molecule or the prediction obtained are out of the ranges defined by the 

training set, the molecule can be excluded by the applicability domain.

More complex modelling approaches are used nowadays to build (Q)SAR models 

(e.g. Multiple Linear Regression, Partial Least Squares, Neural Networks, etc.). Range- 

based approaches can still be applied, however they have been joined by other methods 

(e.g. geometric, distance-based, probabilistic, etc.). The ANTARES evaluation has 

demonstrated their usefulness, showing however that we are still far from the perfect 

discrimination between reliable and unreliable predictions.

As described in the next chapters, most of the available methods are based on the 

evaluation of the molecular descriptors used to build the (Q)SAR model, or evaluate the 

structural similarity between the target chemical and the model's training set. Some
r

successful attempts to "join" these two aspects have been described, by defining the 

applicability domain using atom-centered fragments or considering chemical classes 

(defined by the presence of functional groups).

3. Thesis aims
The main aim of the research activities reported in this thesis was to study the use of 

the above mentioned structural features, for the definition of (Q)SAR models' 

applicability domain. In particular, three research directions were investigated:

• The influence of simple properties distribution on the reliability of model's 

predictions,

3
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• The capability of models to predict different chemical classes with different 

accuracies, and

• The possibility to model the error in prediction using the same techniques used 

to build (Q)SAR model, considering it as an endpoint.

Moreover, an ambitious goal was also set: using these approaches to study the 

applicability domain a priori, making its definition endpoint-dependent rather than 

model-dependent.

4. Methodology
To investigate the possibilities described above, considering that several types of (Q)SAR 

models can be built, depending on the type of endpoint and approach used, three 

endpoints were considered as case studies: bioconcentration factor (BCF), mutagenicity, 

and oral rat acute toxicity. For each endpoint a dataset of molecules provided with 

experimental values was available thanks to the ANTARES project: 860 molecules were 

available for BCF, 7420 for acute toxicity, and 6065 for mutagenicity. Nine (Q)SAR 

models, developed using different types of data and approaches, were also selected to 

assess how the proposed solutions could affect different type of models.

Several statistical methodologies were adopted to achieve the research aims, 

including also the visualisation of graphical plots of the data and results:

• Histograms were applied for the visualisation of the distribution of the predictive 

capabilities among classes of molecules, defined using thresholds on simple

4
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properties (e.g. the molecular weight). These histograms were then used to set 

thresholds for the definition of the applicability domain;

• The occurrences of several predefined functional groups were analysed using a 

freely-available tool (istChemFeat). This software also calculates the distribution 

of a target property among the identified chemical classes (e.g. the percentage 

of mutagenic chemicals within a chemical class);

• The possibility to model the error in prediction was investigated using another 

freely-available software (SARpy) which builds a library of molecular fragments 

starting from a training set, and extracts those more relevant for the target 

endpoint (using the likelihood calculation).

The applicability domain definitions were used with predictions from different (Q)SAR 

models, to assess their ability to discriminate between reliable and unreliable ones. The 

datasets used for the study were split to discriminate between the model performance 

for molecules belonging to its training set, and those (more interesting) for "new" 

chemicals.

5. Thesis structure
The thesis is arranged in eight chapters (grouped in three main parts), and two annexes 

for the supplementary data:

Part I: is the introductory part, containing the theoretical introductions and the 

literature review. It is organized in three chapters:

5
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• Chapter B -  contains the introduction to (Q)SAR models, including the theoretical 

basis, the available modelling approaches and an introduction to their 

evaluation;

• Chapter C -  introduces the concept of applicability domain of (Q)SAR models and 

gives an overview of the approaches currently used for its definition;

• Chapter D -  contains examples of successful use of structural features for the 

definition of the applicability domain.

Part II: is the complete explanation of the work done and the report of the results 

obtained. It is organized in two chapters:

• Chapter E -  is the explanation of the methods used and the framework of the 

research activities. This chapter contains the explanation of all the data, 

endpoint, models and software used as case studies;

• Chapter F -  presents all the results obtained and is organized by the research 

directions investigated.

Part of the results and methods presented in these chapters have been published in: 

Gonella Diaza R, Manganelli S, Esposito A, Roncaglioni A, Manganaro A, Benfenati E. 

Comparison of in silico tools for evaluating rat oral acute toxicity. SAR QSAR Environ Res. 

2015 Jan;26(l):l-27.

Moreover, an oral presentation entitled "Applicability domain for mutagenicity models: 

an a priori approach, based on chemical classes" was given at the 16th International 

Workshop on Quantitative Structure-Activity Relationships in Environmental and Health 

Sciences (QSAR2014), June 17th 2014, Milan, Italy

6
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Part III: is the conclusive part of the thesis, organized in two chapters:

• Chapter G -  is the complete discussion and comparison of the results obtained 

from the three main research activities;

• Chapter H -  contains the conclusive notes and future perspective.

7





Part I - Background: 
Applicability domain of (Q)SAR

models





Chapter B.

(Quantitative) Structure-Activity 
Relationship models

6. Determination of chemical properties:
methods for the assessment of chemical safety

In the contemporary society, a huge number of chemicals are widely used in a variety of 

human activities, including food colouring and preservatives, drugs, pesticides and many 

others. According to what was reported by the American Chemical Society's Chemical 

Abstract Service (CAS), more than ninety million organic chemicals have been registered 

so far [1]. Chemicals present in the environment and the food may interact with 

biological systems, posing a high risk to the environment itself and to humans. For this 

reason, the determination of the toxic activity of chemicals has become more and more 

a primary objective in our society.

The interaction of a chemical with a biological organism may lead to a visible effect 

(e.g. a specific disease) but the biological mechanisms underlying this effect are often 

unknown or only partially described. This poor knowledge makes it nearly impossible to 

have a clear idea of the possible effects of a chemical; thus toxicity must be studied 

experimentally.

It is obviously not possible to obtain all the experimental information from tests on 

humans. In drug discovery, for example, human testing (called clinical trials) is the very

11
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last step of the development. Three types of approaches can be used to study the 

biological activity (including toxicity) of chemicals: in vivo (involving animal 

experiments), in vitro (e.g. using tissue culture cells), and in silico (also referred as non­

testing methods, involving computer-based screening).

In silico approaches have drawn more and more attention of chemical and 

pharmaceutical industries, academia and regulatory bodies, due to their lower costs 

both in terms of time and money. Moreover, animal testing is becoming unacceptable 

among a growing number of people. For these reasons, the scientific community and 

the industrial world have started to use and develop in silico models. Virtual screening, 

for example, is currently widely used in the first steps of drug design. In the last few 

years, computer-based models have become acceptable also from the regulatory point 

of view. For example, the Regulation (EC) No 1907/2006 of the European Parliament and 

of the Council of 18 December 2006 concerning the Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH) clearly states that results obtained 

from in silico models can be used for the registration of chemicals and provides general 

guidelines for the acceptability of values obtained with these methods [2]. The 

requirements established by REACH (and other regulations) will be described in Chapter 

C.
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7. Computer-based models to predict biological 
activity

7.1 Biological effects depend on the chemical structure

The biological activity of molecules depends on the possible physico-chemical 

interactions they can establish with a large number of enzymes, receptors and other 

macro molecules at the cellular level. These interactions trigger specific mechanisms, 

which finally lead to a biological response.

Three-dimensional conformation and size play a key role in the possibility for a 

molecule to interact with the correct target. From this perspective, the molecular 

structure seems to be strictly related to the biological effect of chemicals. Moreover, 

structurally similar molecules should activate the same biological pathways, leading to 

the same effects.

7.2 Similar molecules share similar effects

Johnson and Maggiora in the early nineties introduced the similarity property principle 

(SPP) [3], which stated that similar compounds should have similar properties, clearly 

referring to biological activities. Higher similarity between molecules seems also to lead 

to an increased similarity of their effect [4]. From another point of view, a strong 

relationship between molecular similarity and biological effects has been demonstrated 

using common substructures to group similar molecules [5].

The introduction of the SPP and the subsequent confirmation of the relation 

between structure and activity [3,4,5], have led to the development of a number of
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similarity-based methods to determine biological properties. These approaches have 

become popular for example in pharmaceutical industry and medicinal chemistry 

[5,6,7,8]. The drug discovery process implies the design and testing of large libraries of 

molecules and can take advantage of a fast method to obtain a priori information on the 

activity and toxicity of drug candidates. If the similarity between molecules can be 

parametrized and modelled using mathematical relationships, such models can then be 

implemented as computer programs, considerably speeding the screening of large 

libraries of chemicals.

7.3 Using computational tools to relate structure 
similarity and effects

To build mathematical relationships between chemical structure and a particular 

biological effect, it is necessary to represent the structure using numerical variables 

(either discrete or continuous). The underlying idea is that, if it is possible to find a 

relation between structure similarity and a particular biological effect, this similarity will 

be also codified in the numerical variables, which than could be used to obtain predictive 

equations. These variables are generally called "molecular descriptors". A number of 

methods have been developed in the last decades to calculate molecular descriptors, 

ranging from simple calculation (such as the molecular weight) to complex molecular 

fingerprints [19,20,21]. Using these descriptors can help in transforming the study of the 

biological effect of a chemical in a data mining problem, which can be automated and 

implemented in computer-based programs.
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The data mining algorithms search for a mathematical relationship between a set of 

relevant molecular descriptors and the so called "endpoint of interest", which is the 

biological effect to model. This means that, to develop mathematical predictive models 

for a certain endpoint, it is necessary to have a set of molecules with known structures 

and experimentally determined values of the property to model. Moreover, the 

reliability of the model obtained will depend on the number of molecules available and 

the quality of the experimental data. The mathematical relationship obtained using this 

approach can be usually implemented in software, which can be used to evaluate the 

endpoint for new molecules, for which experimental values are not available.

8. The Structure-Activity Relationship approach 
to build computer-based models

Structure-Activity Relationship (SAR) and Quantitative Structure-Activity Relationship 

(QSAR) approaches represent families of mathematical and statistical methods to 

computationally find the relation between the structure of similar molecules 

(represented using the molecular descriptors) and the endpoint of interest. As the name 

suggests, the main difference between SAR and QSAR is related to the modelled 

property: SAR models are developed for biological activities usually represented by 

categories (e.g. toxic or non-toxic); on the other hand QSAR deal with properties 

represented by continuous values (e.g. the bioconcentration factor). The term (Q)SAR is 

commonly used to generally refer to both families.

Historically, the first application of a (Q)SAR model dates back in the 19th century. 

Early studies highlighted correlation between toxicity of organic chemicals and their
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water solubility [9] and lipophilicity [9,10]. After these initial results, the (Q)SAR 

approach drew some attention across the scientific community, however these methods 

started to be accepted and used mainly thanks to the pioneer work of Corwin Hansch 

[11,12], considered nowadays the founder of modern (Q)SAR modelling.

(Q)SAR models find applications among scientific communities involved in different 

matters (e.g. toxicology, environmental effects and pharmaceutical research). 

Depending on their applications, (Q)SAR models are built based on different approaches. 

Models built for environmental related endpoints (e.g. ecotoxicity) are commonly based 

on the partition coefficient between octanol and water (LogP), as well as constitutional 

descriptors (e.g. the molecular weight) and electronic features (e.g. "eHOMO, the 

Highest Occupied Molecular Orbital") [13].

Another approach for building predictive models consists in the implementation of 

rules, based on the presence of structural fragments (usually called structural alerts) 

correlated to the effect to model. In 2008, for example, the European Joint Research 

Centre (JRC) published a Scientific and Technical report, presenting a predictive software 

(ToxTree) which included models for predicting mutagenicity and carcinogenicity, based 

on the structural alerts included in the Benigni-Bossa ruleset for mutagenicity and 

carcinogenicity [14]. The main differences between the two approaches is that in the 

first case, the descriptors are chosen using statistical methods, whereas the Benigni- 

Bossa rules derived from experimental evidence. In this case predictive models are 

called "knowledge based". Another important difference between these two examples, 

is the type of endpoint modelled. Environmental toxicity is usually measured with
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continuous values, such as the Median Lethal Concentration (LC50), which is the 

chemical concentration that is expected to kill 50% of a group o f organisms. This 

concentration can be correlated with molecular descriptors (such as the LogP) using 

mathematical equations. On the other hand, mutagenicity and carcinogenicity are 

usually expressed as a binary concept: toxic or not. In this case, the hypothesis is that 

the presence of a single toxic-related molecular fragments, could be enough to make 

the chemical toxic. In the first case the endpoint is quantitative, we can therefore speak 

of QSAR models. On the other hand, mutagenicity and carcinogenicity models based on 

structural alerts are "qualitative" and we can speak of SAR models.

8.1 The importance of experimental data

To build a (Q)SAR model for predicting the biological effects of chemicals, it is necessary 

to have experimental data of the effect produced by a set of molecules. Animal and in 

vitro tests are the main sources of experimental values. It is however fundamental to 

understand that both animals and micro-organisms used to test the effects of chemicals 

are models. This means that all the experimental values are associated with an uncertain 

value. For example, in the case of environmental-related effects and toxicity, the 

reported experimental uncertain for the bioconcentration factor can be up to 0.75 in 

Log unit [15]. Also in the case of the evaluation of human toxicity, a certain degree of 

uncertainty is accepted. The reproducibility of the Ames mutagenicity test, which is a 

quite simple model using bacteria, is about 85% [16].
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The importance of uncertainty information related to the experimental data to use 

is crucial. Let's consider for instance the LC50 parameter used in ecotoxicology: this 

parameter indicates the dose able to kill half of the animals of the test population. Why 

this happens and the underlying mechanism(s) are often largely unknown. This kind of 

probabilistic information is perfectly useful within, for example, the risk assessment 

framework. When experimental data are used to build (Q)SAR models, the uncertainty 

should be clearly defined, as it will also affect the uncertainty of the model. The 

uncertainty of the final model cannot be inferior to that of the input data, and it is 

suspicious to obtain values predicted with a precision superior to that of the 

experimental laboratory model.

While building (Q)SAR models, the most important sources of experimental data are 

on line databases of chemicals, and peer-reviewed publications. It has to be considered 

that errors and values with high uncertainty can be found both in databases and the 

literature [17,18]. For this reason it is important, when possible, to use multiple sources 

of data, in order to compare and integrate experimental values obtained by different 

research groups and laboratories.

8.2 Structural information for models: descriptors and 
fragments

Many algorithms have been used and implemented to calculate molecular descriptors 

from the structural information of molecules [19,20,21]. Some of them also include 

libraries of pre-codified structural fragments, like functional groups and atom-centered 

fragments. Besides these pre-codified fragments, other approaches have been
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developed to analyse a dataset of molecules and build new fragments which correlate 

with the endpoint to model [22].

8.2.1 Different descriptors to codify for different structural 
aspects

A large number of molecular descriptors have been developed in the last decades, 

describing different aspects of the structural information of molecules [23]. 

Constitutional descriptors include simple properties like molecular weight, number of 

atoms present in a molecule (for instance number of chlorine atoms), number of double 

bonds, etc. Topological descriptors contain information about the number and type of 

bonds between atoms, and can be used to represent the ramification of the molecules. 

Certain descriptors consider the electronic charge and polarity of the atoms in the 

molecules. Even more complex descriptors are able to represent the molecular orbitals. 

For example eHOMO and eLUMO refers to the energy of the highest occupied and 

lowest unoccupied molecular orbitals. Physico-chemical descriptors include parameters 

such as the partition coefficient between octanol and water (LogP) and lipophilicity.

8.2.2 Chemical structure codification to calculate descriptors

Molecular descriptors are usually calculated using specific software. This means that the 

chemical structure has to be represented in a suitable way. Currently the most common 

formats are InChl [24], SMILES [25] and MDL molformat [26]. Commonly, the last two 

formats are used by software for either descriptor calculation and fragments 

comparison or extraction. SMILES is probably the easiest and most simplified way to
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represent molecules. Each molecule, in fact, can be codified in a single string of 

characters. The main problem with this formalism is that different algorithms can 

generate different SMILES for the same molecule. This must be taken into account while 

creating and using models, making sure to use always the same formalism for all the 

molecules.

8.3 The modelling algorithms: classifiers and regression 
models

Beside the development of new molecular descriptors, also more and more advanced 

and powerful modelling algorithms have been introduced. While the first (Q)SAR models 

were developed as simple linear combination of molecular descriptors, the last decades 

have seen the development of algorithms such as neural network, fuzzy logic and data 

mining. These methods are also referred as "pattern recognition methods" because 

their aim is to devise algorithms that could learn to distinguish patterns in a data set. 

Using these advanced mathematical and statistical approaches, predictive models based 

on non-linear correlation have been generated [27,28].

The algorithms used to develop (Q)SAR models can be classified on the basis of the 

type of endpoint modelled. Regression methods are used to develop QSAR models, 

which provide a quantitative evaluation of the biological effect. On the other hand, 

classification approaches are used to develop SAR models which are useful to categorize 

chemicals. Regression approaches can also be used indirectly to classify molecules. The 

acute toxicity effect, for example, is usually represented using the median lethal dose 

(LD50), which is a continuous value. However, the predicted LD50 values can be used to
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categorize the chemicals, on the basis of the Acute Toxicity Estimate (ATE) thresholds, 

defined within the European CLP regulation.

Another important distinction among the large variety of mathematical and 

statistical algorithms, used in the (Q)SAR development, consists in how the experimental 

values of the endpoint are used. The so-called "supervised" methods (e.g. Multiple 

Linear Regression, Discriminant Analysis, Partial Least Squares, Classification and 

Regression Trees, Neural Networks, etc.) utilize the biological effect information to 

select the molecular descriptors and build the relationships between them and the 

effect. On the other hand, the "unsupervised" methods (e.g. Principal Component 

Analysis, Cluster Analysis, k-Nearest Neighbours, Nonlinear Mapping, etc.) do not use 

the experimental data, and only search for patterns in the descriptor data. The 

advantage of unsupervised learning is the lower likelihood of chance effects, due to the 

fact that the algorithm does not try to fit a model.

8A  How to build a (Q)SAR model

As explained above, the entire development of a reliable (Q)SAR model depends on the 

quality and adequacy of the available experimental data. It is therefore very important 

to check the chemicals of the dataset to use [29]. This initial step is called "data curation" 

and includes several steps, such as:

• deleting inorganic and organometallic compounds, counterions, salts and 

mixtures;
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• deleting duplicate chemicals, paying attention to the experimental data 

associated to them;

• checking the validity of the structures and the correct ring aromatization;

• normalizing specific chemotypes;

• checking the consistency of tautomeric forms.

If the structural and experimental data have been taken from multiple sources, it is also 

crucial to compare the different datasets in order to find and resolve possible overlaps. 

As already mentioned, it is common that the same chemical will be associated with 

different experimental values in different datasets. The decision on how to integrate 

different data for the same chemical should not be underestimated and the simple use 

of statistical methods, such as the mean or median calculation, may not be appropriate 

or sufficient.

Once the dataset has been selected and checked, the next step is translating the 

structural information into algorithm-readable molecular descriptors, using one or more 

software available. Conceptually, a table of all the molecules is built up. Each chemical 

is associated with the molecular descriptors and the experimental value for the property 

to model. From the mathematical point of view, the molecular descriptors represent the 

independent variables x (the input) of the model, and the experimental values are the 

dependent variable y (the output).

Since thousands of molecular descriptors can be generated, it is necessary to select 

only those necessary to best explain the structure-activity correlation. Models with an 

unnecessary high degree of complexity may be affected by the so-called "over fitting"
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problem [30,31]- An uncritical use of the powerful mathematical modelling tools may in 

fact lead to a model that is "too trained" in evaluating the molecules of its training set 

and it's not able to reliably predict new chemicals.

The Principal Component Analysis (PCA) is a method usually applied to reduce the 

number of variables to consider. This approach performs a linear combination of the 

original variables to create a smaller set of new ones, which explain most of the 

variability of the dataset. Variable elimination is another family of techniques by which 

unhelpful or unnecessary variables are removed from a data set [32,33]. Both PCA and 

variable elimination are usually applied to the whole set of molecular descriptors 

calculated, before the very model building step. Even after eliminating unnecessary 

variables, there may still be many variables to choose from. In this case variable 

selection is used, which can choose descriptors that will be useful for mathematical 

modelling and will lead to a model able to predict new compounds. There are many 

diverse procedures for variable selection and some are built in to the process of model 

building, such as forward stepping multiple regression [34].

The selection of the correct molecular descriptors to be used in a predictive model 

can be also made on the basis of expert knowledge. This is the case of SAR models, based 

on structural alerts. For example, the genotoxicity effects of nitroaromatic compounds 

and aromatic amines are well known [35,36]; thus, the presence of these structural 

groups can be used to classify a molecule as genotoxic [14].
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8.5 The validation of a (Q)SAR model

The major problem with (Q)SAR models, and predictive models in general, is the 

reliability of predictions obtained on "new chemicals", which were not included in the 

training set. Therefore, models have to be validated. Although it may seems obvious, 

this concept is clearly stated within regulations. Indeed, as will be described later, the 

statistical validation of (Q)SAR models is one of the five requirements described within 

the OECD principles for (Q)SAR [37].

While goodness-of-fit and robustness refer to the performance on the molecules of 

the training set (internal performance), the predictivity has been introduced to precisely 

assure that the model can obtain reliable predictions on new chemicals (external 

validation).

Many statistical tools have been introduced for internal validation [38], and they can 

be classified in three main groups:

• Cross validation approaches leave one or more molecules out of the training set, 

build the model, and evaluate its performance on the left out molecules. In the 

first case we speak of Leave One Out Cross Validation (LOO CV), whereas in case 

of many molecules left out (usually the 10 or 20% of the dataset) we speak of 

Leave More Out Cross Validation (LMO CV).

• Bootstrapping simulates what happens by randomly re-sampling the data set 

with n objects. Multiple n-dimensional groups are generated by eliminating some 

of the compounds. Each group is then used to build the model, which will be then
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evaluated on the excluded chemicals. The estimation of the model predictivity is 

then obtained by the average of all the evaluations.

• Y-scrambling is used to evaluate the probability that the model predictions have 

been obtained only by chance. While keeping the molecular descriptors in the 

correct order, the experimental data are randomly reassigned and the model 

performance are evaluated at each iteration.

The evaluation of the internal performance is important and useful while building the 

model, but it has been clearly stressed that it is not enough to consider a (Q)SAR model 

as reliable [39]. The main problem is that even the left out molecules (in cross validation 

and bootstrapping) cannot be considered external, since they are used to build the best 

correlation. An external dataset entirely composed of new molecules is therefore 

necessary to evaluate the predictivity of a model.

8.5.1 Evaluation of a classifier

As already described, SAR models evaluate biological properties qualitatively. The 

molecules are simply classified by their probability of showing or not a certain biological 

effect. The typical approach to evaluate these models is using the Cooper statistic. In the 

case of binary classification of toxic (positive) and non-toxic (negative) molecules, the 

predictions obtained can be grouped in four classes:

• True positive (TP): toxic molecules predicted as toxic;

• True negative (TN): non-toxic molecules predicted as non-toxic;

• False positive (FP): non-toxic molecules predicted as toxic;
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• False negative (FN): toxic molecules predicted as non-toxic.

These classes are used to calculate three main statistical parameters for model

evaluation:

• Accuracy (A) is the measure of the correctness of prediction. This parameter

gives a general evaluation of the errors made and is defined as the ratio between

the compounds correctly predicted and the total number of compounds.

,  (7 T  +  7W ) M1
A =  —  ----- —  l l j

Total

• Sensitivity (S) is the measure of the positive compounds correctly predicted and 

is defined as the ratio between TP and the total number of positive (TP + FN).

TP
S = --7------------- r  [2]

(TP  +  F N )  L

• Specificity (SP) is the measure of the negative compounds correctly predicted 

and is calculated as the ratio between TN and the total number of negative (TN 

+ FP).

TN

SP ~  (T N  +  FP)

In the ideal case, a model should have high values for all these three parameters. 

However, while performing the predictivity evaluation, FP and FN could have a different 

importance depending on the scope of the prediction. For example, the regulatory point 

of view is usually "conservative", a model affected by a high ratio of FN (low sensitivity) 

is not well accepted since it would classify hazardous chemicals as safe.
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8.5.2 Evaluation of a regression model

Regression approaches are used to develop QSAR models for the evaluation of biological 

effects associated with a numerical values (e.g. LogP, bioconcentration factor, etc.). The 

most used parameter for the evaluation of a regression model is the coefficient of 

determination (R2), which measures how well data fit a statistical model.

L (y .-y )2 
Z i(v . - f i ) 2

Where yt is the experimental value of the molecule i, y  is the mean value of the 

experimental values of all the molecules considered, and f t is the predicted value of the 

molecule I. R2 values ranges from 0 (bad correlation) to 1 (perfect correlation).

R2 is usually calculated for both internal validation and external validation. In the first 

case the correlation is calculated between experimental and predicted values of the 

training set molecules, and gives important information about the goodness-of-fit and 

the robustness of the model. R2 is also used within LOO, LMO, bootstrapping and y- 

scrambling methods, both to validate and to select the best model, during the 

development steps. Finally, R2 is used for the external validation of the QSAR model, to 

evaluate the predictivity. In this case, R2 is calculated on the predictions obtained for 

new molecules, comprising the validation (or test) set.
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Applicability domain of (Q)SAR 
models

9. When the similarity principle fails
As described in the previous chapter, (Q)SAR modelling is historically based on the 

similarity property principle (SPP), which states that similar chemicals should share 

similar effects. The core problem of this assumption is a clear and consistent definition 

of similarity between molecules [40]. Small modifications in the chemical structures may 

lead to completely different effects, creating "discontinuity" in (Q)SAR models. These 

so-called "activity cliffs" effect represents a major limitation of the SPP assumption 

[41,42,43]. The definition of similarity, especially if based on individual perspective, can 

therefore highly influence the predictivity of (Q)SAR models.

Several aspects and definitions of similarity between molecules further complicate 

the basis of (Q)SAR modelling. Chemical and molecular similarity are often used with the 

same meaning, however they are based on different criteria. Chemical similarity is 

primarily a physico-chemical comparison, based on parameters such as molecular 

weight, solubility, LogP, electron densities, etc. On the other hand, molecular similarity 

is based on structural features (functional groups, ring systems, substructures, etc.). 

Another important difference resides in the molecular representation. Properties and 

effects of chemicals result from the interaction they can make with others, which
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depend on their three-dimensional conformation. However, given the uncertainties 

associated with identifying the "correct" 3D conformation that molecules assume during 

the chemical and biological interactions, the application of bi-dimensional parameters 

is often preferred while calculating similarity. However some important bioactive- 

related information are almost inevitably lost with the 3D to 2D approximation, bi- 

dimensional approaches have proven to be more robust in (Q)SAR modelling [44,45].

Starting from an opposite point of view, the biological similarity can be introduced 

for the comparison of chemicals. The usual molecular descriptors are replaced by the 

activities of chemicals against several biological targets (usually proteins), and the 

chemicals are compared using specific pairwise similarity approaches, which do not 

account for structural features [46,47].

The concepts of similarity described so far are all based on the comparison of the 

chemicals as a whole (global similarity); the structure, property or biological effect refer 

to the entire structure of the molecule considered. In contrast to these definitions, the 

local similarity between two or more compounds can be evaluated on the basis of a 

small subset of atoms. This approach is often used for example in drug design, to search 

for a pharmacophore [48]. In this case the similarity algorithm only focuses on the subset 

of atoms of interest (the pharmacophore), whereas the rest of the molecule is not 

considered. The base assumption of this approach is that if two molecules share similar 

pharmacophore elements, they will very probably share also the same activity [49].

The computational pharmacophore model built using local similarity approach 

resemble the structural fragments-based SAR models, in terms of how they determine
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the activity of a molecule. Both models base their assessment on the presence of a 

particular structural moiety in the molecule. However, as aforementioned, chemicals 

may show similar biological effect even if they do not "seem" similar. This means that 

the absence of target substructure does not mean that the chemical does not share the 

same biological effect. Thus, if a chemical does not have the pharmacophore (or the 

structural alert), this does not mean that it will not share the same biological effect, it 

only means that the model is not able to predict its activity.

10. What is the applicability domain?

10.1 Domain of a predictive model

As stated by Brooks at al. in 1988 [50]:

"A primary application of regression analysis is prediction. We call the region in which 

prediction is valid the domain of the model. The definition of the domain is important 

because predictions made outside the domain may be unacceptably different from the 

true responses".

When predicting a new point, which was not used during the regression calculation, it is 

important to understand if the prediction results from an interpolation or is an 

extrapolation. In this second case the point is outside the domain and may be 

misleading. Considering the very simple case of a regression model depending on only 

one predictor variable, the domain can be defined as the range of this variable for the 

set of experimental data used.
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10.2 Applicability domain of (Q)SAR models

The concept of applicability domain (AD) of a model applies also to both quantitative 

and qualitative (Q)SAR models. QSAR models are usually composed by many molecular 

descriptors, making the determination of the AD more difficult than those mentioned in 

the previous paragraph [50]. The case of SAR models is different; since they mostly base 

their prediction on the presence of particular molecular fragments, the AD is 

theoretically intrinsic in the model itself. Molecules which do not have any of the 

fragments included in the model cannot be predicted. Thus, they should be outside the 

model's applicability domain.

A good definition of the applicability domain of (Q)SAR models has been given in 

2005 by Netzeva et al. in the report of the 52nd ECVAM Workshop [51]:

"The applicability domain of a (Q)SAR model is the response and chemical structure space 

in which the model makes predictions with a given reliability"

The chemical structure could be represented by physico-chemical and/or fragmental 

information whereas the response could be any physico-chemical, biological or 

environmental effect predicted by the (Q)SAR model.

10.3 The importance of a defined Applicability Domain

The importance of a clear definition of the domain of application of predictive models is 

clearly stated within the definitions given both by Brooks et al. and Netzeva et al. [50,51]. 

When a cause-effect relationship is modelled, the values predicted are not useful and 

enough perse. The reliability of these values must be evaluated in order to provide the
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end-users with the means to decide if they can trust the results, and to what extent. 

Therefore, for (Q)SAR models to be used as predictive tools, their applicability domain 

must be defined [52].

Considering the current applications of (Q)SAR models as instruments for evaluating 

biological and environmental effects, such as the toxicity, the clear definition of their AD 

has become even more important and has been also stressed within regulatory 

frameworks. On February 2003, with the so-called seventh-amendment to the Council 

Directive 76/768/EEC (which was aimed at regulating cosmetics products in Europe), the 

European Community (EC) has imposed an animal testing ban for cosmetic products in 

favour of alternative methods, including (Q)SAR models. Within the 2006's REACH 

regulation (Registration, Evaluation, Authorisation and restriction of Chemical 

substances), EC has introduced the duty of compiling dossiers with complete physico­

chemical and (eco)toxicological information for chemical substances circulating in 

Europe, depending on their tonnage. In order to avoid a high usage of animal testing, 

REACH also states that these tests have to be replaced by alternative tests, if available. 

Foreseeing the usage of (Q)SAR methods for the evaluation of possible threats to human 

health and environment, the REACH regulation has been provided with a series of 

requirements that must be met for the acceptance of results from (Q)SAR models. As 

outlined in the annex XI of the legislation:

Results obtained from valid qualitative or quantitative structure-activity relationship 

models ((Q)SARs) may indicate the presence or absence of a certain dangerous property. 

Results of (Q)SARs may be used instead of testing when the following conditions are met:
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1. results are derived from a (Q)SAR model whose scientific validity has been 

established,

2. the substance falls within the applicability domain of the (Q)SAR model,

3. results are adequate for the purpose of classification and labelling and/or risk 

assessment, and

4. adequate and reliable documentation of the applied method is provided.

As already reported in the previous chapter, also the Organization for Economic Co­

operation and Development (OECD) has developed the "OECD principles for the 

validation, for regulatory purposes, of (quantitative) structure-activity relationship 

model". With these principles, OECD states that:

To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be

associated with the following information:

1. a defined endpoint,

2. an unambiguous algorithm,

3. a defined domain of applicability,

4. appropriate measures of goodness-of-fit, robustness and predictivity,

5. a mechanistic interpretation, if  possible.

The definition of a model's AD is also important in the earlier steps of model building 

and validation. Since the interpolated estimates, in case of continuous properties, are 

considered statistically more reliable than extrapolated ones, it results that the 

applicability domain is strictly related to the information present in the dataset used 

during the model building step [53]. This concept is also clearly stated within the report
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of the Setubal Workshop organized by the European Chemical Industry Council (CEFIC) 

in 2002 [54]:

"The AD of a (Q)SAR is the physico-chemical, structural, or biological space, knowledge or 

information on which the training set of the model has been developed, and for which it is 

applicable to make predictions for new compounds. The AD of a (Q)SAR should be 

described in terms of the most relevant parameters i.e. usually those that are descriptors 

of the model. Ideally, the (Q)SAR should only be used to make predictions within that 

domain by interpolation not extrapolation."

The importance and usefulness of a clearly defined AD has been also highlighted 

within recent evaluations of (Q)SAR models available for REACH-related relevant 

endpoints, performed within the LIFE+ project ANTARES [55,56,57,58,59,60]. Within 

these studies, the performance of (Q)SAR models have been evaluated using available 

datasets. The predictivity of each model has been tested in different conditions: 

considering the whole dataset, comparing the performance for the molecule present or 

absent in the dataset used to build the model, and considering the AD available 

information. The built-in applicability domain tools have proven to be useful to increase 

the models' performance.

10A How to define the Applicability Domain of a model

The definition of the applicability domain of a model could be viewed as an answer to 

"given a training set, what are the other molecules for which the trained models can be 

used to obtain a reliable prediction of their properties of interest?"
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Several methods have been proposed for the (Q)SARs Applicability Domain 

assessment over the years. Each method is based on different hypothesis and has its 

own limitations. Moreover, the AD of a model depends on the model itself and on the 

algorithm on which is based.

For (Q)SAR models developed applying mathematical and statistical approaches to a 

training set of chemicals with known experimental information, the applicability domain 

assessment can be mainly based on the comparison between the values of molecular 

descriptors of chemicals used as test (or validation) set and the range of the same 

descriptors calculated for the compounds used during the model building phase. This 

comparison could be performed using different methods, based on descriptor ranges, 

new chemical /  training set chemicals distance, etc. [51]. Most of these methods, for 

example, have been implemented within the AMBIT software for chemoinformatic data 

management [61,62].

Another class of proposed methods for the assessment of AD for statistically 

developed (Q)SARs is generally related to the structure similarities. The structure of 

chemicals used to build the model could be split in small atom-centered fragments in 

order to compile a list of all the fragments present on the training set. In order to verify 

if a new molecule is part of the AD of the model developed, it will also be split in atom- 

centered fragments, and the resulting list will be compared to that compiled for the 

training set [63].

Knowledge-based systems represent a completely different approach in modelling 

biological effects, which are based on the knowledge of expert toxicologists. As
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described in the previous chapter, these approaches are mainly based on the 

identification of structural features associated with the biological effect. These sets of 

structural alerts can then be implemented into computer software, which are called 

expert systems [14,64]. The AD of these SAR models, as already said, can be easily based 

on the same fragments that define the model itself. However, this could not be enough, 

for example because of other structural properties (e.g. other substructures) which 

could act as modulators of the structural alerts. For example, in their rulebase for 

mutagenicity and carcinogenicity, Benigni et al. not only listed structural alerts related 

to toxicity, in some cases exceptions have been introduced (e.g. the presence of a 

sulfonic acid group on the same ring of the nitro group seems to decrease the well- 

known nitroaromatic-related toxicity) [14].

10.4.1 Range-based approaches

Descriptor ranges

The easiest way to describe the applicability domain of a model is to consider the n- 

dimensional hyper-rectangle defined by the n descriptors composing the model. In this 

case, a new chemical is considered as being within the AD if all its n descriptor values 

are comprised in their correspondent descriptor ranges. A major weakness in this 

approach is that it does not consider areas of the hyper-rectangle, which were poorly 

described by the model training set.

Principal components ranges

This method is quite similar to the previous one; the main difference is that in this case 

the ranges considered are not that of the descriptors. The first step is the Principal
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Component Analysis (PCA) of the descriptors, which consists of centering the data about 

the standard mean and then extracting the so-called eigenvalues and eigenvectors of 

the covariance matrix of the transformed data. The new vectors are characterized by 

being aligned with the directions of greatest variations in the data set. Principal 

components ranges utilize these vectors instead of the original descriptor to define the 

hyper-rectangle identifying the applicability domain; empty spaces are also present but 

the volume enclosed will be less empty than the original descriptor range.

TOPKAT Optimal Prediction Space

The Optimal Prediction Space (OPS) included in the TOPKAT software use a variation of 

the standard PCA analysis [65]. The data is centred on the average of each parameter 

range. The new OPS coordinates are then obtained in same way as eigenvectors and 

eigenvalues. The boundaries of the hyper-rectangle are here defined by the minimum 

and maximum values of the OPS vectors. In order to try to face the problem of poorly 

described areas in the hyper-rectangle, the Property Sensitive object Similarity (PSS) 

between the test molecule and the training set can be calculated and used to assess the 

confidence of the prediction.

10.4.2 Geometric methods

The coverage of n-dimensional set can be empirically determined by calculating the 

convex hull, which is the smallest convex area that contains the original dataset. As for 

range-based methods, the convex hull is also characterized by regions with a high
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density of data points and region where the data are sparse [51]. More sophisticated 

methods have been developed to face this problem.

Calculation of the Convex Hull is a geometry problem [66]. Efficient algorithms for 

this calculation can be found for two and three dimensions. The complexity of the 

problem increases both increasing the number of dimensions and data points 

(descriptors and chemical substances). This approach, unlike those belonging to the 

ranged-based one, does not consider the distribution of the data but only analyses the 

boundary of the data set.

10.4.3 Distance based methods

Distance-based approaches are generally based on the calculation of the distance 

between the test molecule and the training set of the model. This distance can be 

calculated between the query molecule and the training set mean, as the average or 

maximum distance between the query and all the molecules in TS, etc. The threshold to 

utilize for deciding whether a chemical is out or in the AD has to be chosen by the user.

Several algorithms for distance calculation exist, but three have proven to be more 

efficient in (Q)SAR: Euclidean, Mahalanobis and city-block distance methods [67]. Each 

of these three approaches are based on the concept of Distance Matrix (D), which is a 

square NxN matrix, where N is the number of data points. The general dij element of the 

matrix is the distance between the points i and j; this distance can be calculated using 

one of the three above mentioned methods. Giving a dataset composed by a number p
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of molecules each represented by m molecular descriptors, the distance between two 

molecules (djj) can be calculated, using the Euclidean approach, in the following way:

Where XiP and xJP are the values of the pth molecular descriptor calculated for molecules 

i and j respectively.

The Mahalanobis distance is a weighted version of Euclidean distance [68]; this 

means that each difference XjP -  xJP is multiplied by a factor which considers the 

importance of the descriptor in the model.

d ( i , j )  =  -  xn ) 2 +  w2(x i2 -  xj2 ) 2 +  -  +  wp(x ip -  xj p ) 2

Where wp is the weight assigned based on the importance of the pth descriptor. This 

weight-based approach seems to provide a better definition of AD [68,69,70].

The city-block distance is calculated as the sum of absolute differences between the 

corresponding descriptors of different molecules:

10.4.4 Hotelling T2 and leverage methods

Hotelling T2 test and leverage [71,72] are particular cases of distance-based 

methods, which assume a normal distribution of the data [73]. Hotelling T2 is a 

multivariate Student's t-test method, whereas leverage is based on the hat matrix H = 

(X(X,X)‘1X')/ whose diagonal element (h[ii]) represents the distance between the X value

d ( i , j )  =  JOii -  xn ) 2 +  (x i2 -  xj2 ) 2 +  -  +  Oip -  % ) 2

v

771=1
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for the ith observation and the means of all X values, indicating if X values may be outliers 

[74,75]. Both methods use a covariance matrix to correct for colinear descriptors.

Hotelling T2 and leverage measure the distance between each observed value and 

the centre of all the observations. The decision of considering an observation as outlier 

is then taken using cut-off thresholds. In general, higher values mean that the 

observations are distant from the centre and have to be considered outliers. However, 

if a high leverage point fits the model, it is called "good high leverage points" or good 

influence point and acts to stabilise the model and makes it more precise.

10.4.5 Probability based methods

In order to estimate the probability density of a data set, two types of methods can be 

utilised: parametric and non-parametric approaches. The difference between these two 

types of methods is that those belonging to the first group assume that the probability 

function has a standard shape (e.g., Gaussian) whereas the others do not make any 

initial assumption and estimate the function from the dataset. Due to differences 

existent in the type of molecular descriptors on which a model can be based, non- 

parametric approaches are preferable. Moreover, probability-based methods are able 

to solve the problem of a region comprised in the convex hull but poorly described by 

the training set.

The mathematical complexity of the probability density function and distribution 

depends on the number of molecular descriptors of the (Q)SAR model. This complexity 

increases too much if the dimensionality is above 3, however some assumptions can be
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made to overcome this limit [76] and algorithms have been developed in recent years 

to handle multivariate density estimation [77,78]. Furthermore, the "joint applicability 

domain" concept has been developed to consider the joint distribution of model's 

molecular descriptors and responses; this allows including the comparison between 

predicted and experimental values in the AD definition.

10.4.6 Structural Descriptors and Mechanism of Action: AD in 
local models for (bio)chemical activities

Molecules' potential (bio)chemical activities (such as toxicity) are usually determined by 

a particular part of the molecule itself rather than the entire structure. This complicates 

the definition of the model AD, since it is difficult to ensure that the needed structural 

features are present both in the training and the test sets. Considering the fact that the 

training set can only sample a small fraction of the reality, it is highly possible that the 

model would have to predict chemicals with unknown structural features; the prediction 

for this type of molecules is generally less reliable, this means that the model has to 

advise the user that an unknown fragment has been found in the tested molecule (the 

molecule is out of AD).

It is also possible that different sub structural fragments (also called biophores) are 

responsible for the same (bio)chemical activity. This structure-dependent AD definition 

can be used to group chemicals with similar biophores and these groups can then be 

used to build local (Q)SAR models. This type of approach results in a hybrid model which:

• addresses molecules to the appropriate model on the basis of the biophore 

found;
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• warns user if an unknown fragment is present in the molecule.

Other parameters can be used to test if a molecule is inside or outside the AD, for

example using structure similarity index such as the Tanimoto score [79], which is a

widely used method to evaluate the similarity between chemicals. This score is defined

by Rogers and Tanimoto as a "similarity ratio" given over bitmaps, where each bit

represents the presence or absence of a characteristic. Considering for example two

molecules (samples), the score is calculated dividing the number of common bits by the

total number of non-zero bits in either samples.

Schultz et al. applied these kinds of approaches to classify chemicals for possible

aquatic toxicity in six "modes" of toxic action (MOA): non-polar narcosis, polar narcosis,

ester narcosis, soft-electrophilicity, pro-electrophilicity and respiratory uncoupling [80].

Test molecules have been predicted by different QSAR models depending on their MOA

increasing the global performances of the model.

10.4.7 A classification model for Applicability Domain: the AD 
Metric

In 2009 Dragos at al. introduced the concept of "...too/ trying to find attributes that 

discriminate between compounds were well predicted and respectively mispredicted by 

a model..." [81]. In this work, they treated the problem of assessing if a molecule is inside 

or outside the model AD as a classification model, introducing two elements:

• an AD metric, or "mistrust score", which is a function of the descriptors of 

the test molecule and of those of the training set molecules defining the AD;

• an unpredictability threshold denoting the highest acceptable mistrust score 

at which the misprediction risk is still acceptable.
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The mistrust score has been defined as a sum of different contributors which will be 

introduced in the following paragraphs; most of these contributions can be calculated 

for the entire set of calculated molecular descriptors, in this case they are defined as 

model-independent contributors (I) or only considering descriptors which are part of the 

model (model-dependent contributors, D).

The Correlation Breakdown Count

When creating a (Q)SAR model, one of the first steps is the reduction of the number of 

molecular descriptors, in order to remove those with constant or near-constant value 

through the training set and to reduce correlated descriptor by keeping only one of 

them. Regarding the correlated descriptors, it is possible that this correlation only exists 

in the training set. The correlation breakdown count is a parameter which counts the 

number of correlations which are no more valid for a test molecule; in fact, it is expected 

that the probability of correctly predicting a novel chemical decreases with the number 

of descriptor pairs that fail to respect the correlation observed in the training set. This 

parameter can be calculated both as model dependent or independent.

The SOS Consensus Prediction Variance

As already observed for the previous parameter, correlated descriptors are reduced 

during classical (Q)SAR modelling. The Stochastic (Q)SAR Samples (SQS), on the contrary, 

is aimed at enumerating and building the maximum of possible (Q)SAR equations, 

alternatively using the other excluded correlated descriptors. Since the correlation 

between the descriptors could be no more valid for chemicals very different from those 

composing the training set, the predictions of a test molecule obtained by the models
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generated by SQS may be different. The variance of the prediction may therefore give 

an indication about the chemical being inside or outside the AD. This parameter is 

obviously model dependent.

The out-of-Bound Descriptor Value Count

This parameter is based on a classical assumption for (Q)SAR AD definition: the reliability 

of the prediction decreases if the value of one or more descriptors calculated for the 

novel chemical to predict, lay outside the box defined by the training set compounds. 

The upper and lower limits for each descriptor have to be defined. The upper limit can 

be the maximum value of the descriptor in the training set, or a new value calculated as 

the sum of the mean value plus twice the variance value (if this is lower than the 

maximum value). For the lower limit the definition is quite similar, the highest between 

the minimum value of the descriptor in the training set and a new value obtained 

subtracting the variance from the mean is taken. The out-of-Bound Descriptor Value 

Count can be calculated both as model dependent and independent.

Dissimilaritv-Related AD Metrics

Another classical assumption used for the definition of the AD metrics is that the

prediction reliability decreases for molecules which are very dissimilar from those

composing the training set. Three type of dissimilarity measures can be used:

• the average of Dice dissimilarities between the test molecules and all the 

molecules composing the training set; this approach uses z-normalized 

(average/variance-rescaled) descriptor values;
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• the biased version of the previous approach uses weighted distance, 

assigning higher weight when the molecule in the training set is more similar 

to the tested one, these molecules are called nearest neighbours;

• an even stronger bias in favour of near neighbours can be introduced by 

considering only the nearest neighbours to the tested molecule in the 

distance calculation.

Dissimilarity-related approaches can be used both in model dependent and independent 

forms.

Combining different approaches: consensus AD Metrics

The most intuitive way to combine different approaches is to label chemicals as inside 

the AD of a model, only if their mistrust score is under the unpredictability threshold for 

all the calculated AD Metrics.

Dragos at al. however suggested a "fuzzy" AD definition which can be used not for 

an absolute inside/outside classification, but for the creation of a relative prioritization 

in terms of prediction trustworthiness. Since different AD Metric potentially cover 

different value ranges, it is important, prior to creating the consensus, to normalize the 

values (e.g., between 0 and 1). The mistrust score is replaced by the fraction of 

molecules with mistrust score higher than that calculated for the training set. These 

fractions, calculated for each AD Metric, are then summed to obtain the combined 

unpredictability value.
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10.4.8 The VEGA approach for the applicability domain 
determination

VEGA [82] is a software platform developed as a "container" for (Q)SAR models, 

specifically focusing on those relevant within the REACH regulation. To produce reports 

that could be accepted as part of the dossier for REACH registration, a standardized 

applicability domain module has been implemented. The VEGA approach is mainly 

based on a comparison between the target chemicals and the most similar ones present 

in the dataset of the model. The similarity [83] is calculated combining a fingerprints- 

based distance calculation [84] with the distance calculated using molecular descriptors 

related to constitutional features, with the aim of integrating the information brought 

by the fingerprint with other structural information that is not encoded by the 

fingerprint itself, in order to obtain a more precise measurement of similarity. Three 

classes of molecular descriptors are calculated besides the fingerprints:

• basic constitutional features (number and type of atoms, number and type of 

bonds),

• ring features (number and size of rings, number of aromatic rings),

• functional groups (number of a set of functional groups, like esters, amines, etc.).

The Tanimoto [79] index is then used to calculate the distance between fingerprints

whereas the cosine distance is used for the molecular descriptors. Finally, these four 

contributions are combined with a utility function: the four values are multiplied by a 

fixed weight then summed. The final similarity index has values in the range between 0 

and 1, the latter meaning maximum similarity.
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Once the similar compounds are identified, VEGA computes the so-called 

"applicability domain index" (ADI), which is calculated from the contribution of several 

parameters. Even if developed as an unified approach, the definition of AD of different 

type of models can be based on different parameters, for example depending on the 

type of descriptors on which the model is based on (fragments, physicochemical 

properties, topological information, etc.) or on the type of model (classification or 

regression). Considering for example the CAESAR model for Bioconcentration Factor 

(BCF), the ADI calculation considers the following parameters:

• Similar molecules with known experimental values: VEGA calculates an average 

similarity between the target molecules and the most similar ones found in the 

model's training set;

• Accuracy (average error) of prediction for similar molecules: is an evaluation of 

the model performance of the most similar compounds;

• Concordance with similar molecules: is the average difference between the 

target compound prediction and the experimental values of the similar 

compounds;

•  Maximum error of prediction among similar molecules: is the maximum error 

among the most similar molecules;

• Atom-centered Fragments (ACF) similarity check: VEGA checks how the ACFs in 

the target molecule differ from those present in the training set;

• Descriptor noise sensitivity analysis: is an evaluation of the stability of the 

predictions with respect to small random changes of the descriptor values;
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• Model descriptors range check: VEGA checks if the values of the molecular 

descriptors calculated for the target molecule are within their range calculated 

from the chemicals in the training set.

The AD approach integrated within VEGA is of particular interest. Besides considering 

the contribution of the structural information of the target molecule, in comparison with 

those of the model's training set, it also estimates how the endpoint and the chosen 

algorithm can influence the AD. As described above, by calculating the accuracy of 

prediction, the concordance and the maximum error of prediction, VEGA considers the 

model's capability to predict the specific endpoint, on molecules similar to the target 

one. On the other hand, the influence of the algorithm on the AD is considered by the 

analysis of the descriptor noise sensitivity.

11. Local models: when the AD is intrinsic in the 
data used to build the model

Depending on the composition of the training set, it is possible to distinguish between 

two types of (Q)SAR models: global and local. Global models are built from 

heterogeneous datasets and should in principle be able to predict any type of chemicals. 

On the other hand, local models are built using a subset of molecules, which share a 

specific set of features or properties that are related to the endpoint to predict [85].

The concept of local models is related to molecular similarity which, as already 

explained in the previous chapter, could be tricky do determine. However positive 

results in this direction have been obtained [4,86]. Another possibility is to build a
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dataset of molecules that share features selected by human experts as relating to the 

biological effect.

To build a local (Q)SAR model, part of the available experimental data is discarded, 

this means that also part of the information about the structure-activity relationship is 

lost. This leads to model with a narrower predictivity of the chemical space. However, 

these local models should in theory be more sensitive to small structural differences, 

and show a higher accuracy with respect to global models. Several comparisons 

between local and global models have been made through years, each authors claiming 

the superiority of one approach or the other [4,85-93].

An interesting point while considering local (Q)SAR models is that their applicability 

domain is partially defined a priori, since the model should be used only with molecules 

that share the selected features with those in the training set. Moreover, as explained 

in the previous chapter, the applicability domain of models based on structural alerts 

(being either knowledge-based or statistically-derived) is also partially defined a priori. 

Considering for example the models for mutagenicity and carcinogenicity developed by 

Benigni et al. and implemented within the Toxtree software [14], each structural alert 

has been translated into a specific rule, which sometimes also includes exceptions. In 

this case the ruleset can be viewed as a set of local models, each model is applied only 

when its structural alert is present in the structure of the analysed compound. Therefore 

each structural fragment defines the prediction and provides a priori information of the 

applicability domain of the rule.
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Using structural features to 
improve the applicability domain 

definition: case studies

12. Applicability domain of knowledge-based 
models: a case study of Derek for Windows

In research published in 2011, Ellison et al. compared several methods to define the 

applicability domain of SAR models based on structural alerts [94]. One of the main aims 

of this study was related to how to consider the compounds which do not have any of 

the structural alerts defined within a knowledge-based model.

The authors started from the assumption that, if enough knowledge was available 

about a particular biological effect, the molecules which did not include any known 

structural alert could be predicted as inactive [95,96]. In this perspective, all the 

molecules not presenting any of the rules, should be inside the AD of the model.

The model selected for this study was Derek for Windows (DfW), a knowledge-based 

commercial system that includes SAR models for several endpoints. Five approaches for 

the determination of the applicability domain were compared: two types of fragment 

based approaches [97,98], the evaluation of the descriptor ranges, a structural similarity 

approach [99], and a fingerprint-based comparison [61]. The dataset chosen was the
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publically available list of 4337 compounds and experimental Ames test results, collated 

by Kazius et al. in 2005 [100].

DfW evaluates the molecules on the basis of a set of rules, which includes both 

structural alerts and some molecular descriptors, and classifies the toxicity as certain, 

probable, plausible, doubted, improbable and impossible. If a molecules does not meet 

any of the rules, DfW's output is "nothing to report". To evaluate the impact of the AD 

methods, Ellison et al. decided to binarize the predictions, considering certain, probable 

and plausible outputs as positive (mutagenic). The other outputs (including "nothing to 

report") were considered negative (non-mutagenic). As for building (Q)SAR models, the 

determination of the AD of a model needs a training and a test phase. The original 

dataset was split in 10 combinations of training and test sets. For each combination, the 

test set included all the wrong predictions (false positives and false negatives) and a 

randomly chosen 10% of the correct predictions. Therefore, each AD method were 

trained and tested ten times, and the mean values were used to compare their capacity 

to improve the predictivity of the model.

The results of this study suggested that the approaches based on structural 

fragments could improve the AD definition of knowledge-based models. On the other 

hand, the results did not support the assumption that all the molecules for which the 

software could not make a prediction (labelled as "nothing to report") should fall within 

the AD, and be safely classified as non-toxic.
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13. Atom-centered fragments to determine the 
applicability domain of (Q)SAR models

In 2009, Kiihne et al. studied the possibility to use an approach based on the comparison 

of atom-centered fragments (ACF), to determine if a molecule falls within the 

applicability domain of a (Q)SAR model [101]. ACF are built starting from each atom of 

the molecule (in this study hydrogens were excluded), which is considered as the central 

atom. Each ACF is then defined through the atom-type and the number and type of 

bonding neighbours and associated bond types. Starting from the same central atom, 

several type of ACF can be built, depending on the number of atoms considered in each 

bonding direction. This particular type of approach, as stated by the authors, should be 

able to determine the AD a priori, making it model-independent. The authors based their 

approach on important evidences of the usefulness of ACF in improving the AD 

definition and (Q)SAR models' performance [95,96,102,103,104,105].

To study the ACF approach, the authors used three models as case studies (including 

both regression and classification models): a structural fragments-based model for the 

estimation of the logarithmic molar water solubility [106], a classical molecular 

descriptor-based model for the prediction of the logarithmic air/water partition 

coefficient [107], and a structural alert-based model to predictively discriminate 

between narcosis-level and excess-toxic compounds with respect to Daphnia [108]. For 

each model, the training set was available, and the authors also found considerably 

larger external dataset, to use as test set. Finally, four types of ACF were defined, with 

increasing complexity and also three types of matching mode were defined, with
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increasing strictness. As expected, all the models performed worse on the external 

dataset then on their training set. Considering the four types of ACF and applying the 

matching modes to the external dataset, the performance of the three models 

improved. Obviously, the more specific an ACF is, the less number of external molecules 

are expected to fall within the AD. Similarly, the strictest matching mode, would exclude 

more molecules from the AD. The results of this study confirmed that atom-centered 

fragments can help to improve the definition of the applicability domain of both QSAR 

and SAR models. However, using very specific fragments and/or strict matching modes 

may lead to high predictivity, but on very small subset of molecules. For example, 

applying the strictest matching modes to compare the most complex ACFs, lead to R2 

values very close to those obtained on the training sets, but with an applicability domain 

reduced to a 1 to 3% of the original dataset. The most promising ACF-based method to 

improve the AD definition resulted that based on moderate complex ACF and using the 

less strict matching mode. Also in this case, the performance on the subset defined by 

the AD are very high and close enough to those on the training set. Anyhow, the number 

of compounds which fell within these ADs was also low, spanning from 11 to 13% of the 

original external datasets.

14. A chemical classes-based evaluation of the AD 
of (Q)SAR models: a case study from the 
ANTARES project

ANTARES [55] was a LIFE+ funded project aimed at reducing the gap of knowledge on 

which in silico methods were available, and could be used, to evaluate properties
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ANTARES project

relevant within the REACH regulation [109]. Among the main outcomes, the ANTARES 

project produced an on line list of commercial and freely available models for several 

endpoints. The predictive performance of these models were evaluated using external 

datasets, in order to provide a broad view of which software are able to give the most 

reliable predictions and under which conditions.

Within ANTARES, "Action 6" specifically aimed at identifying "...boundaries for best 

use of models (applicability domain) and of the assessment factors". The results of this 

action are reported in the project's official document "Report with the discussion and 

identification o f the applicability domain fo r each validated model" (deliverable 26), 

which is available upon request. Two approaches have been reported, one is based on 

the study of the relationships between effectiveness of prediction and chemical classes, 

whereas the other relates the same effectiveness with mode of action.

To study the relationship between AD and chemical classes, the predictions obtained 

were clustered into two groups: molecules correctly predicted and molecules wrongly 

predicted. For endpoints characterized by continuous values (e.g. BCF, LD50, etc.), the 

experimental variability of bioconcentration factor, determined by Dimitrov et al. [15] 

was used as threshold. Molecules whose predicted activity differed more than 0.7 log 

unit from the experimental value were clustered as wrongly predicted. The occurrence 

of different functional groups (FGs) within each dataset was calculated using the 

ISSFUNC module included in the Toxtree software [14]. The distribution of functional 

groups was compared between the two clusters of molecules and, using a frequency 

threshold, the chemical classes were included or excluded from the applicability domain.
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Finally, using a Canonical Discriminant Analysis (CDA) the results from (Q)SAR 

predictivity and ISSFUNC were combined, obtaining correlation coefficients for each 

classes. Higher values of this coefficient means that the molecules belonging to that class 

are predicted very differently (better or worse) than the whole dataset.

The results showed that using chemical classes can improve the definition of 

(Q)SARs' AD. However, this is not always true. Indeed, the method used seems not able 

to improve the AD definition of models whose performance are good on the whole 

dataset used for the study. More interesting results were obtained on less reliable 

models.
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Chapter E.

Materials and methods

15. Research framework: the LIFE+ project 
ANTARES

15.1 The main aim of ANTARES: assessing the 
performances of available (Q)SAR models

The LIFE Programme is the European instrument which aims at supporting 

environmental and nature conservation projects throughout the EU. In particular, within 

the LIFE+ Environment Policy and Governance component, a particular attention is paid 

on projects that offer significant environmental benefits, for example process or 

efficiency improvements. In the period from 2007 to 2013, LIFE+ also funded projects 

that improve the implementation of EU environmental legislation, that build the 

environmental policy knowledge base, and that develop environmental information 

sources through monitoring. On January 1st 2010, LIFE+ started to fund a three years 

project called ANTARES [55], which dealt with the assessment of non-testing methods 

(NTM), including (Q)SAR models, for their possible use within the REACH regulation 

framework [109].

The main aim of the ANTARES project was to collect information about in silico 

predictive models developed so far, which could be useful to obtain the 

(eco)toxicological information required by REACH. In particular the objective were:
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• to verify the possible use and performance of the non-testing methods for 

REACH;

• to identify requirements and constraints originating from the REACH legislation 

which may affect the non-testing methods;

• to identify safety assessment factors for the non-testing methods;

• to identify the best applicability criteria for a safer use of the non-testing 

methods;

• to integrate different non-testing methods, achieving superior performance;

• to disseminate the results;

• to promote non-testing methods for legislative purposes.

Within ANTARES, the activities not only regard a simple compilation of what's available. 

The so-called "Action 5" and "Action 6" dealt with the validation of non-testing methods 

and the identification of their applicability domain. Moreover, "Action 7" dealt with the 

integration of different models for the same endpoint, to improve the overall 

performance and coverage of applicability. For each endpoint described within the 

REACH legislation, a list of available models were built. ANTARES also searched for 

available experimental data, which were necessary for the models' assessment. Eight 

endpoints were selected on the basis of the availability of models and experimental 

information, leading to the assessment of more than 50 (Q)SAR models 

[56,57,58,59,60].
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15.2 The method used within ANTARES

15.2.1 Performance of regression and classification models

Using experimental data from reliable sources, a dataset was built for each endpoint. In 

case of multiple values for the same chemical, the arithmetic mean was calculated. Each 

structure present was double-checked using online databases such as ChemSpider 

[110,111] and ChemIDplus [112,113], verifying the correct match of chemical names, 

CAS registry numbers and SMILES. The inorganic compounds, mixtures of either 

compounds or isomers, and molecules with insufficient information were removed. 

Finally, the salts were converted to their acidic forms (by removing the counterions).

The datasets were predicted using the available (Q)SAR models and their 

performance was evaluated. For regression models two statistical parameters were 

considered:

• The coefficient of determination (R2), which determines how closely a linear 

function fits a set of data.

• The root-mean-square error (RMSE), which is a measure of the accuracy 

based on the differences between values predicted by a model and the values 

actually observed.

Classification models were evaluated using the confusion matrix, a 2x2 matrix containing 

the four possible outcomes of a classifier:

Predicted Value

Toxic Non-toxic

Experimental
Value

Toxic TP FN

Non-toxic FP TN
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Where:

• The True Positive (TP) class includes the compounds correctly predicted as toxic;

• The True Negative (TN) class includes the compounds correctly predicted as non­

toxic;

• The False Positive (FP) class includes non-toxic compounds predicted as toxic;

• The False Negative (FN) class includes toxic compounds predicted as non-toxic. 

From the confusion matrix, three parameters were calculated to compare the models' 

performance:

• Accuracy ((TP+TN)/Total): the capacity of the model to correctly predict a 
molecule

• Sensitivity (TP/(TP+FN)): the capacity of the model to correctly predict a toxic 
molecule

• Specificity ((TN/(TN+FP)): the capacity of the model to correctly predict a non­
toxic molecule

Within several regulatory frameworks, thresholds of concern have been introduced 

for continuous endpoints. These thresholds were adopted within ANTARES to evaluate 

the capacity of QSAR models to correctly "classify" the molecules for regulatory 

purposes. More details about specific endpoint-related thresholds will be given in the 

next sections. For endpoints such as BCF and acute toxicity, multiple thresholds have 

been defined, leading to the formation of more than two classes. In this case it was not 

possible to define a prediction as TP, TN, FP or FN, therefore the confusion matrix were 

adapted and simplified.

62



Chapter E
15. Research framework: the LIFE+ project ANTARES

Predicted

Cl C2 C3 C4 Cn

Cl

C2
OVER

ESTIMATED
C3

C4
UNDER

ESTIMATED
Cn " “ " l

In the example above, Cl to Cn are the classes defined by the thresholds adopted within 

a specific regulation. All the molecules laying on the main diagonal of the matrix were 

correctly predicted by the model. The meaning of the Accuracy parameter was therefore 

extended to include all these molecules, and calculated as the ratio between the number 

of correct predictions and the total number of molecules predicted.

15.2.2 Considering the applicability domain and the models' 
training set

Considering the whole dataset for the assessment of (Q)SAR models only gave partial 

information about the performance. As explained in Part I -  Chapter A, predictive 

models are generally better while evaluating molecules used to train them. The 

assessment could be biased by a high overlap of the dataset used to evaluate the model 

and that used to build it, leading to an over-estimation of the performance. To consider 

this and therefore to assess how the models behave on "new chemicals", for each model 

the dataset were split in two classes: molecules present in the model training set and 

those not present in it. The performance on these two classes was then evaluated.

63



Chapter E
16. Case studies considered

Whereas the presence of known chemicals could lead to an over-estimation of the 

performance, molecules outside the applicability domain could decrease it. The 

applicability domain information provided with the models' prediction was used to 

classify the molecules as "within the AD" and "outside the AD". Again, the models were 

evaluated on these two classes separately.

Ideally, to evaluate molecules whose experimental values are not available, more 

than one (Q)SAR model should be used. Moreover, these models should be provided 

with information about their applicability domain, so that users can check if the 

molecule to predict falls within it. Within this perspective, the classifications described 

above were merged to assess the models performance on new chemicals which fall 

within their AD, further checking the usefulness of AD on chemicals for which the models 

do not have any information.

16. Case studies considered

16.1 The endpoints

Three endpoints were chosen among those considered within ANTARES: the 

bioconcentration factor (BCF), mutagenicity and rat oral acute toxicity. In order to get 

the most comprehensive view of the application of AD to (Q)SARs, the selected 

endpoints were characterized by different types of values (e.g. continuous or discrete) 

and different algorithms used to build (Q)SAR models. Moreover, depending on how 

chemicals interact with the organisms and target the biological effects, certain 

endpoints (such as BCF) are usually easier to model. On the other hand, modelling
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endpoints such as the acute toxicity could be more difficult, because chemicals may 

target different types of biological processes, which lead to the same effect. In this case 

models could be more strictly related to their dataset.

16.1.1 Bioconcentration factor

Bioconcentration is a process that results in an organism having a higher concentration 

of a substance than is in its surround media (e.g. stream water). The bioconcentration 

of a substance is related to its octanol/water partition coefficient (Kow). 

Bioconcentration factor (BCF) is the concentration of a particular chemical in a tissue per 

concentration of chemical in water, and is expressed as L/kg. This property characterizes 

the accumulation of pollutants through chemical partitioning from the aqueous phase 

into an organic phase. Aquatic organisms may accumulate chemical substances either 

directly from the environment, or through the food chain. Toxic chemicals with a high 

bioaccumulation potential may represent a dangerous threat both for animals and 

humans. BCF is commonly used as a first indicator for bioaccumulation. The most 

common experimental method to estimate the BCF is the "flow-through fish test" [114] 

whose guidelines have been defined within the Organisation for Economic Co-operation 

and Development (OECD) test guidelines 305 [115]. These kinds of tests for BCF are time- 

consuming and expensive, and are also characterized by a great variability [116]. For 

these reasons, (Q)SAR models have become more and more important in the evaluation 

of the bioconcentration factor.
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Since BCF is expressed using continuous values, it is modelled using regression 

approaches. The octanol/water partition coefficient can be commonly found among the 

molecular descriptors of QSAR models for BCF. However, several physicochemical 

properties have been identified, which influences the relationship between Kow and BCF 

[114]. For example, the molecular weight seems to play a key negative role in the 

bioaccumulation of chemicals. Above a certain dimension, it seems that the steric 

hindrance prevent the molecules to pass through the membranes. A cut-off limit of 700 

for the molecular weight has been generally accepted [117]. Other parameters which 

may affect the bioconcentration, are the lipid solubility, biodegradability, volatility and 

the metabolism of the organism.

BCF is expressed as a continuous value and therefore modelled using regression 

approaches. However, BCF is considered within several regulatory frameworks. For each 

regulation one or more thresholds have been set:

• LogBCF > 2 as established for the Chemical Safety Assessment (CSA)

• LogBCF > 2.7 as established for the Classification and Labelling (C&L)

• LogBCF > 3.3 as established for the Persistent /  Bioaccumulative /  Toxic 

classification (PBT)

• LogBCF > 3.7 as established for the very Persistent /  very Bioaccumulative 

classification (vPvB)

Considering these thresholds, (Q)SAR models can be also evaluated as classifiers.
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16.1.2 Oral rat acute toxicity

As defined within Annex I of the REACH regulation:

Acute toxicity means those adverse effects occurring following oral or dermal 

administration of a single dose of a substance or a mixture, or multiple doses given within 

24 hours, or an inhalation exposure of 4 hours.

Acute toxicity used to be assessed with the "median lethal dose" (LD50) approach, which 

indicates the dose that kills 50% of animals tested within 24 hours [118]. For a classical 

LD50 study, laboratory mice and rats (of both sexes) are species typically selected. In 

1987, OECD adopted the Test Guideline 401 for acute oral toxicity testing, using LD50. 

This guideline was subsequently removed and the LD50 test requirement was abolished. 

Nevertheless, the available experimental LD50 values can still be used to develop (Q)SAR 

models.

From the point of view of QSAR modelling, the situation is analogous to that 

described for BCF. LD50 is represented by continuous values and the models can be 

evaluated using the coefficient of determination (R2). Within the Annex I, Part 3.1.3, of 

the CLP European regulation, four toxicity categories have been defined using LD50 

thresholds, called "Acute Toxicity Estimate" (ATE). These categories (Table 1) were used 

to evaluate the models in classification, as for bioconcentration factor.
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Table 1. Categories of Acute Toxicity Estimate (ATE) identified by the CLP European regulation

Categories ATE limits (mg/kg)

Category 1 (Cl) ATE <5

Category 2 (C2) 5 < ATE < 50

Category 3 (C3) 50 < ATE < 300

Category 4 (C4) 300 < ATE < 2000

Not classified (NC) ATE > 2000

16.1.3 Mutagenicity

Mutagenicity can be defined as "the ability to cause permanent mutation in DNA 

sequence" and is a critical component of carcinogenesis.

A common and accepted method to obtain experimental values for mutagenicity is 

an in vitro approach called Ames test [119,120]. This test uses several strains of the 

bacterium Salmoneila typhimurium that carry mutations in genes involved in histidine 

synthesis. The method tests the capability of a chemical in altering the DNA in a way that 

the mutated genes are reverted to their functional form, therefore restoring the 

possibility for the cell to survive and grow in a histidine free medium.

Typically, the Ames test is used to classify the substance, which is labelled as 

mutagen or not mutagen. Therefore, in silico models for the prediction of this endpoint 

are classifiers and their performance can be evaluated using parameters such as 

accuracy, sensitivity and specificity.
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16.2 Dataset used

16.2.1 Bioconcentration factor

To test the available models, a dataset of compounds with known structure and high 

quality data on experimental BCF has been used. This dataset has been assembled using 

five datasets:

• Dimitrov et al., 2005 [15] (511 compounds),

• Fu et al., 2009 [121] (138 compounds),

• Footprint PPDB [122] (159 compounds),

•  CEFIC LRI [123] (551 compounds),

• Arnot & Gobas, 2006 [124] (759 compounds).

The final dataset was composed of 860 compounds. For compounds present in more 

than one dataset and/or with more than one experimental BCF value, the mean were 

calculated and used.

16.2.2 Oral rat acute toxicity

The dataset used for acute toxicity was composed of 7417 organic compounds. 

Structures and experimental values were obtained from the dataset used by US 

Environmental Protection Agency (EPA) to develop the (Q)SAR model for acute toxicity 

integrated within the T.E.S.T. [125] software. EPA's dataset originally contained 7420 

molecules, however three were removed due to problems of compatibility with the 

software used. The acute toxicity values in this dataset were derived from LD50 tests on 

rats via oral administration, and were expressed as -Log(mol/kgbW), where mol is the

69



Chapter E
16. Case studies considered

dose administered expressed in mols, and kgbw is the weight of the rat. As described 

within the results obtained by the ANTARES project on acute toxicity [60], all the (Q)SAR 

models tested uses LD50 expressed in mmol/kg, so the experimental values were 

converted accordingly. Moreover, the CLP regulation requires LD50 expressed as mg/kg, 

so the experimental values were also converted to meet this requirement. Both values 

were used within ANTARES to assess the models, showing that the performance 

obtained using the values in mmol/kg were better than those obtained with mg/kg.

16.2.3 Mutagenicity

The dataset used for mutagenicity was composed of 6065 molecules, and included both 

structural information and experimental values from Ames test. The data was obtained 

from a dataset compiled by Hansen et al. in 2009 [126], which contains 6512 chemicals 

obtained from different sources:

• Chemical Carcinogenesis Research Information (CCRIS) [127] (2539 

compounds)

• Kazius et al. 2005 [100] (2224 compounds)

• Helma et al. 2004 [128] (138 compounds)

• Feng et al. 2003 [129] (391 compounds)

• Virtual International Toxicology Information Centre (VITIC) [130] (1194 

compounds)

• Genetic Toxicology Data Bank (GENE-TOX) [131] (26 compounds)
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The dataset compiled by Hansen et al. contains the canonical SMILES representation of 

the structures, the Ames test results (mutagen or non-mutagen), and the references. 

The dataset were checked and cleaned for the presence of duplicates, salts, mixtures, 

and ambiguous compounds, resulting in the final set of 6065 molecules.

16.3 (Q)SAR models selected

Several type of modelling algorithm can be used to develop SAR and QSAR models 

for different endpoints, for example on the basis of the type of values used to represent 

them (continuous or discrete). Besides considering the endpoint-related difference of 

(Q)SAR models, as introduced in the previous paragraphs, this study also aimed at 

assessing how a chemical classes-based approach for the AD definition, could improve 

the performance of different type of (Q)SAR models. In particular, this study covered 

commercial and freely available software, regression and classification models, as well 

as models based on molecular descriptors and structural features (e.g. structural alerts). 

Table 2 shows all the software assessed. In order to maximize the exploitation of the 

results obtained from this study, the models considered should be easy to integrate with 

the AD information obtained. An even better possibility would be to automate this 

integration.
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The VEGA platform [82] is a free and open source software developed within our 

research group, with the aim of providing (Q)SAR models that can be used within current 

regulatory frameworks (e.g. REACH). The idea was to use models present within the 

VEGA platform as case studies, giving the possibility to integrate the applicability domain 

tools already present, with the findings obtained. Two models were initially available for 

the endpoints chosen: the CAESAR models for bioconcentration factor [136] and 

mutagenicity [137]. Both these models were interesting since they were based on 

different approaches. The BCF model was a classical molecular descriptor-based QSAR, 

whereas that for mutagenicity was a three-step hybrid model (a descriptor-based SAR 

module, followed by two consecutive structural alerts modules). Subsequently, two 

more models for mutagenicity were included within VEGA, and were considered for this 

study because their approaches differed from the CAESAR one, providing additional 

points of view for the AD study. The VEGA model developed using the SARpy software 

[22,59], which will be described later, was considered because it was based on 

statistically-derived structural fragments. The Benigni-Bossa rulebase for mutagenicity 

[14] was also integrated within VEGA, and considered for this study as a case study for 

knowledge-based models.

No models for acute toxicity were present within VEGA, and none have been 

integrated so far. However, this endpoint was considered interesting due to its 

complexity and to the availability of (Q)SAR models and experimental data. The results 

of the ANTARES assessment on five software for oral rat LD50 prediction were used as 

starting point in this study. T.E.S.T. [134] is the only freely available software considered,

73



Chapter E
16. Case studies considered

and provide also the training and test sets the developers used to build and validate it. 

This software combines the predictions of four QSAR models developed using different 

approaches, considering also their AD, to obtain a consensus prediction.

The other software do not provide information about the training set used. The 

developers of ACD and TerraQSAR provided us the training set and we compared them 

with ours using two software: PerkinElmer ChemFinder [138] and Chemaxon 

InstantJChem [139]. TerraQSAR's developers provided us with the list of chemicals in 

common between our dataset and the training set. TOPKAT gives the possibility to 

export a list of the most similar compounds in the model dataset for each chemical 

evaluated (up to five). Each molecule is provided with the experimental value and a 

similarity measure; molecules with similarity index of 1 (100%) were manually checked 

to verify which of them were in common between the model's training set and our 

dataset.

The intrinsic complexity of acute toxicity is reflected by that of the available models. 

Both ADMET predictor and TerraQSAR were based on neural network, whereas the 

other software were built using multiple models (19 different models in the case of 

TOPKAT).

16.3.1 Applicability Domain determination approaches 
integrated in the selected models

All the software considered in this study, with the exception of TerraQSAR, provide 

information about the reliability of the prediction. Table 3 gives an overview of which 

methods have been included by the developers. The most common approach found in
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the software considered in this study is the check of the descriptor range. TOPKAT 

includes two types of this approach: the commonly used and simple comparison of the 

molecular descriptor values between predicted molecule and the training set, and the 

Optimal Prediction Space check (both methods are explained in Chapter A). The 

comparison between structural fragments of the target molecule and those obtained 

from the training set (or a subset, for example the most similar compounds) is the 

second most common approach adopted. Similarity is also a parameter considered by 

three out of five software, both VEGA and ACD calculate the structure similarity, 

whereas T.E.S.T. utilized the molecular descriptor values.
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The endpoint and the ability of a model to obtain reliable prediction are also considered 

by most of the models, even if in different ways. VEGA includes three parameters for 

keeping into account these aspects; the concordance between the predicted value 

obtained for the target molecule and the experimental values for the most similar 

compounds present in its dataset; the accuracy and maximum error obtained while 

predicting the similar compounds. Also T.E.S.T. and ACD compare the prediction for the 

target molecules with the experimental values of molecules in their dataset. 

Furthermore, ACD also considers if the endpoint has similar values for molecules similar 

to the target one. Finally, the algorithm strength is also considered by VEGA: introducing 

small changes in the molecular descriptors, the software checks how the prediction is 

affected.

The software also differ on how these approaches are applied and the output. VEGA 

combines all the obtained values to calculate an "Applicability Domain Index" (ADI), 

which spans from 0 to 1. ADI is then used to label the prediction as reliable or not. ACD 

also uses the parameters to compute a Reliability Index (Rl), again spanning from 0 to 1, 

which is provided with the prediction. The user has to decide a Rl threshold to use to 

consider a prediction as reliable. Generally, during validation by the developers, 

predictions providing a Rl less than 0.3 were considered unreliable. TOPKAT adopts a 

three-stage analysis, at each step the molecules that do not match the constraints are 

excluded and labelled as out of the applicability domain. T.E.S.T., as already explained, 

predicts the molecules using multiple models, for each of them perform an applicability 

domain check, and the molecules falling out of it, are not predicted.
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16.4 Software used

16.4.1 Standardization of the molecular representation

As introduced in chapter A, many (Q)SAR modes and chemoinformatic tools utilize the 

Simplified Molecular-Input Line-Entry System (SMILES) [25] formalization to read the 

molecules in input. SMILES are usually computed using specific software, which however 

produce different formalization for the same structure, depending on the algorithm 

implemented. Two SMILES type were used in this study, the VEGA formalization and the 

canonical SMILES [25].

With the aim of providing useful tools for (Q)SARs users and developers, several 

freely-available chemoinformatics tools have been developed in the last years in 

collaboration with Kode S.r.l. [140]. These software are based on the same libraries 

developed for VEGA, using the Chemistry Development Kit (CDK) [141] as infrastructure. 

The istMolBase software is an easy-to-use tool for dataset visualization and 

management; molecules can be imported in both SMILES formats and Molecular Design 

Limited (MDL) sdf files [26], and exported as standardized SMILES. istMolBase also 

includes two interesting features: it is able to neutralize the molecules and it can 

perform the SMARTS [142] matching. This tool were used to convert all the dataset used 

in the VEGA SMILES format.

Open Babel [143] is an open source toolbox including several tools useful in 

chemoinformatic. Among its feature, Open Babel is able to convert between most of 

commonly used formats for molecular representation, including the so-called "canonical 

SMILES". As suggested by the name, this formalization aims at providing an unequivocal
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way to convert the molecular structure (including properties such as the 

stereochemistry) in SMILES format [144]. Open Babel was used to obtain the Canonical 

SMILES representation of the dataset used within this study.

There are two main reasons behind the use of two type of standardized SMILES 

formats: comparing how much the formalization could influence the results obtained 

and using a formalization that could be easily implemented within our tools. This second 

reason applies to the VEGA format.

16.4.2 Structural feature extraction and validation

istChemFeat is another software included within the aforementioned In-Silico Tools. It 

was developed for dataset analysis, with the aim of searching for relevant chemical 

features. The software includes a list of more than 300 functional groups and atom- 

centered fragments. istChemFeat requires a dataset where each molecule is assigned to 

a class. The application in turn produces a list of the main chemical features with their 

number and percentage in each class.

istChemFeat leave the analysis of the results to the user. A more advanced tool, 

called istRex, were developed on the basis of the approaches used within this work. 

istRex, which is still in beta version, takes in input a list of SMILES associated with the 

binary property and derives rules from the extracted structural feature. As for 

istChemFeat, the molecules are checked against an internal library of structural features 

(including functional groups, atom-centered fragments, relative position of different 

atom-types in a ring, etc.), and for each feature the software statistically analyses
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whether its presence is able to improve the discrimination between the two classes 

defined by the target property. istRex utilizes the p-value to select which features are 

significant for the classification. Furthermore, using the same approach, istRex can 

analyse each subset of molecules to extract secondary rules. For example, if the aim is 

to extract structural features related to a particular toxic event, istRex analyses all the 

features present in the dataset and extracts only those whose ratio of toxic molecules is 

significantly higher than that calculated on the entire dataset. Each primary feature is 

then used to extract subset of molecules and the software extract secondary rules which 

either significantly increase or decrease the ratio with respect to the primary rule. The 

user can also decide how many level of sub-rules istRex should try to reach.

While both istRex and istChemFeat are based on a library of predefined structural 

features, the freely available software SARpy [22] builds the library from the provided 

dataset and identifies structural fragments statistically related to the chosen property. 

The current version of the software only works with discrete binary classes (e.g. toxic /  

non-toxic). Several parameters can be set which can influence the fragments extracted, 

such as the minimum and maximum number of atom in the fragment and the minimum 

number of its occurrence. Moreover, SARpy gives the possibility to evaluate the two 

classes together or separately and lets user decide how to optimize the results 

(maximize predicted rate, minimize errors, etc.).

Could SARpy be used to identify fragments, either scaffolds or small groups, related 

to the model's ability to obtain reliable predictions? In other words, the idea was to try 

to identify structural features which can be used to warn the user if a molecule is outside
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the AD of a model or, on the other hand, to identify fragments which can be used to 

label a prediction as reliable.

17. Approaches to study the applicability domain 
of (Q)SAR models

Starting from the promising results obtained so far, while studying the applicability 

domain of (Q)SAR models as a function of sub-structural features such as atom-centered 

fragments (ACF) and structural alerts (SA), three different statistical approaches based 

on structural fragments have been investigated. A simplified and general approach 

considered the chemical composition and size of molecules, to identify outliers on the 

basis of uncommon characteristics. Starting from the concepts of statistically-derived 

atom-centered fragments [101] and of "modelling the error" [81], the correct and wrong 

predictions of models have been correlated with structural sub-features. In one 

approach, these features were statistically built and extracted from a dataset used as a 

training set. In a second approach, the dataset has been compared with a library of 

functional groups and ACFs, extracting the features which seem to be statistically related 

with the discrimination between wrong and correct predictions. To study the possibility 

of an a priori determination of (Q)SARs AD based on structural features, these 

approaches have been also applied on the endpoint values, studying whether the 

balance of these properties can affect the prediction capabilities of particular chemical 

classes.
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17.1 Atomic composition and molecular size: studying a 
simplified and general approach to determine the AD

To interact with the biological macromolecules (DNA, proteins, etc.), chemicals have to 

be of the correct size and composition. Both ACF and SA include information about the 

atomic composition of molecules or a portion of them. The molecular weight is 

commonly found among the molecular descriptors calculated by chemoinformatic 

software, and it provides general indications about the molecular size. Atomic 

composition and molecular weight has been used as a simplified and general approach 

to study the AD of (Q)SAR models. The main idea was to identify outliers on the basis of 

both their chemical complexity, and their "borderline" characteristics. As explained in 

Part I, (Q)SAR models depends on the chemical similarity, therefore molecules with an 

uncommon composition or size could represent a problem for (Q)SAR models.

The method used to study the relationship between models' prediction performance 

and the selected properties (molecular weight and composition) was rather simple and 

was aimed at studying the AD of "simple" models, such as those developed for BCF.

The commercial software Discovery Studio 3.0 (DS3) by Accelrys Software Inc. [145] 

has been used to calculate the molecular weight and composition of the molecules. In 

particular, the software calculates both the empirical formula and the percentage (in 

weight) of each atom-type present in a molecule; this last parameter was used to classify 

the molecules of the dataset.
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Figure 1. Accelrys Discovery Studio automatically calculates basic properties such as molecular 

weight, formula and composition.

The o u tp u t generated by DS3 was im ported  in M ic roso ft Excel and th e  co lum n 

conta in ing  the  percentage com position  was sp lit in o rd e r to  have each a to m -typ e  in a 

d iffe re n t co lum n. For each row , the  a tom -types w ere  aligned to  have a consistent 

co lum n-type  association. Using these co lum ns as w ell as th a t con ta in ing  the  m olecu la r 

mass in fo rm a tion , the  dataset could be ordered  by each a tom -type . M oreove r, the  

co lum ns w ere  com bined to  obta in  the  to ta l percentage o f a certa in  class o f a tom s (e.g. 

halogen atom s).

The main aim  was to  ob ta in  thresho lds fo r  the  selected properties , to  be used fo r 

the  de te rm ina tion  o f th e  app licab ility  dom ain . These th resho lds needed to  be tes ted  on 

an externa l set o f molecules. For th is  reason the  dataset was sp lit in a tra in in g  and a test
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set. The molecules were sorted by their experimental LogBCF values in ascending order, 

one out of every four were assigned to the test set and the other to the training set. This 

approach was used to obtain a homogeneous sample of all the molecules in the dataset, 

based on their activity. Furthermore, a 10% manual leave-more-out approach was used 

to analyse the obtained training set. A random number was assigned to each molecule 

using the Excel function RAND(), the training set was sorted using these values and one 

in every 10 molecules was removed and assigned to a prediction set. This procedure was 

repeated five times.

A histogram-based approach was chosen to classify and represent the dataset. The 

training set was ordered by each chosen parameter and classified by applying 

thresholds. Three parameters were obtained for each class:

• the average error, calculated as the mean of the absolute difference 

between predicted and experimental values;

• the coefficient of determination (R2) calculated between predicted and 

experimental values;

• the number of molecules.

These parameters were then graphically represented using a combinations of 

histograms. R2 and average error had the same scale and were plotted together. Classes 

with higher R2 were expected to have low average error, leading to opposite trends (if a 

trend between the analysed property and the model's performance existed). Another 

histogram was plotted, using a different scale, to show the distribution of the number 

of molecules. The distributions of the training set were analysed, searching for
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significant correspondences between the increase or decrease of the chosen parameter 

(e.g. molecular weight) and the model's prediction performance. The results obtained 

with the five iterations of the leave-more-out approach were compared and the 

thresholds were then tested on the test set. Moreover, applying the ANTARES approach, 

these thresholds were also tested considering separately the molecules present in the 

model's training set (in-model-training) and the "new molecules" (out-model-training).

17.2 Generating structural fragments statistically-related 
to the models' predictivity: SARpy

The VEGA software classifies molecules as mutagen, non-mutagen or suspect mutagen. 

Since a conservative approach is generally preferable when predicting toxicity for 

regulatory purposes, the suspect mutagen molecules were considered as mutagens. The 

results of the comparison between experimental values and the two obtained classes 

predicted by VEGA were organised in the classic confusion matrix composed by TP, FP, 

TN and FN. The two type of errors were considered separately. This seemed reasonable, 

since the causes that lead a model to predict a toxic compound as non-toxic (FN) could 

be different from those related to the opposite error (FP).

The dataset was initially divided into a training and a prediction set. In order to have 

representative of the four type of predictions in both sets, 2/3 of the molecules for each 

class were used for training set and the remaining 1/3 were used for the prediction set.

To develop the SARpy models for TP/FP and TN/FN molecules, both training and 

prediction sets were split to have each subset containing only the molecules associated 

with the target labels. The training sets were then used with SARpy to extract the
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structural features. The obtained rulesets were used to predict the reliability of the 

predictions obtained by the (Q)SAR model. Molecules predicted as TP or TN were 

considered as within the model applicability domain, whereas FP and FN were 

considered out of it. The performance of the (Q)SAR models were than analysed using 

an approach similar to those used within the ANTARES project. Molecules part of the 

SARpy training set were considered separately to those in the prediction set to test the 

reliability of the ruleset on "new" chemicals, which were not used for its development. 

For the same reason, the dataset was also split in two groups, one containing the 

molecules present within the (Q)SAR model training set and the other containing new 

molecules.

The reliability of the applicability domain defined using SARpy rules was compared 

to that included within VEGA. The performance of the (Q)SAR models were evaluated 

for molecules within and outside both applicability domain, also considering molecules 

in/out the training sets of both the SARpy ruleset and the(Q)SAR model.

17.3 Using a library of predefined structural features to 
compare the applicability domain of(Q)SAR models 
for the same endpoint

In: Gonella Diaza R et al. Comparison o f in silico tools fo r evaluating rat oral acute 

toxicity. SAR QSAR Environ Res. 2015 Jan;26(l):l-27 

Part of the studies of the relation between predictive performance of (Q)SAR models for

oral rat acute toxicity, and the structural features composing chemicals has been

published in the peer-reviewed journal "SAR and QSAR in Environmental Research" in
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January 2015 [60]. This paper reports the result of the evaluation of six (Q)SAR models 

for oral rat acute toxicity made within the ANTARES project.

In this part of the study of structural features to define the (Q)SAR AD, the LD50 

values were considered as continuous and not classified using the ATE categorization. 

The dataset containing experimental LD50 values were converted in SMILES format and 

submitted to istChemFeat, which associated the molecules with the chemical classes 

defined using the functional groups. The software created a matrix reporting, for each 

molecule, the occurrences of each functional group and atom-centered fragment. For 

each of the chemical class (defined by the presence of a structural feature) the R2 

between the predictions given by the models and the experimental values were 

calculated. To identify the main chemical classes, they were ordered on the basis of their 

R2 and for each model the ten-best (higher R2) and ten-worst (lower R2) were considered 

and compared among the five models.

17A Applicability domain for mutagenicity models: an a 
priori approach, based on chemical classes

Oral presentation by Gonella Diaza R. at 16th International Workshop on QSAR in 

Environmental and Health Science (QSAR2014), Milan, June 17th 2014 

The possibility of defining the applicability domain of (Q)SAR models a priori, on the

basis of experimental toxicity of "similar" molecules, was studied using a chemical

classes-based approach, similar to that described for oral acute toxicity. The main idea

was that chemical classes with an experimental predominant presence of a certain
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effect, should be easier to predict, compared to those with a more homogeneous 

distribution.

As described previously, the models considered are all present within the VEGA 

platform, for this reason the VEGA SMILES format was chosen as the standard 

formalization for this part of the study. The dataset of molecules with experimental 

Ames test results developed within ANTARES was converted to SMILES using istMolBase. 

Each SMILES was associated with the mutagen /  non-mutagen experimental value and 

the obtained dataset was submitted to istChemFeat.

The chemical classes constituted by few molecules (a threshold of ten was adopted) 

were not considered, whereas the other were sorted and plotted in a histogram, on the 

basis of their mutagens /  non-mutagens distribution (evaluated by istChemFeat). In this 

way it was possible to identify "mutagenic" and "non-mutagenic" classes, as well as 

those composed by both type of chemicals. As described in the Benigni-Bossa rulebase 

for mutagenicity and carcinogenicity, the contemporary presence of a secondary 

structural alert, can inactivate the mutagenic effect of the primary one [14]. Starting 

from these evidences, the dataset was divided in subsets for each relevant primary 

chemical classes. These subsets were again classified on the basis of the presence of 

secondary classes, which could either enhance or quench the effect of the primary one. 

The same approach was than used to classify the dataset on the basis of the prediction 

correctness, using the outputs of the three (Q)SAR models selected as case study 

(CAESAR, ToxTree and SARpy).

88



Chapter E
17. Approaches to study the applicability domain of (Q)SAR models

The possibility of a chemical classes-based a priori definition of the applicability 

domain, was then studied from the comparison between the distribution of the 

experimental values among primary and secondary classes and the distribution of the 

prediction correctness.
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Results

18. Simple structural properties to define the 
applicability domain of a QSAR model for 
bioconcentration factor

The dataset of 860 molecules with experimentally determined values for 

bioconcentration factor (BCF) was predicted using the CAESAR model for BCF included 

in the VEGA software. No structural issues were found by VEGA in the dataset, and the 

results for all the molecules were saved in a text file. For each compound VEGA 

computed and reported the SMILES (in VEGA format), the logarithm of the 

bioconcentration factor (LogBCF) obtained by the two neural networks1 composing the 

model and their combined value, the octanol /  water partition coefficient (LogP), and 

the applicability domain information, showing both the global "reliability index" and all 

the parameters used to compute it. The same dataset was then analysed with Accelrys 

Discovery Studio 3.0 (DS3), which calculated the composition and molecular weight of 

the molecules.

The output of both software were imported and combined in Microsoft Excel to 

obtain a list of molecules, represented using the VEGA SMILES. Each molecule was

1 An Artificial Neural Network (ANN) is a computational model based on the structure and functions 
of biological neural networks. The structure of the ANN is affected by the information that flows through 
it, during the initial learning stage. The results is a network composed by nodes that are associated to 
functions that evaluate the information provided to the network.
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provided with the experimental and predicted BCF values (both expressed as LogBCF), 

its molecular weight and its composition, expressed as the percentage (in weight) of 

each atom-type. Table 4 shows an excerpt of the obtained list.

Three parameters were chosen to be assessed for the definition of the applicability 

domain:

• The molecular weight, since it provides a basic indication of the molecular size;

• The percentage of heteroatoms (calculated as the sum of the percentages of all 

atoms but carbons and hydrogens) as a representation of the "complexity";

• The percentage of halogens (calculated as the sum of Cl, Br, I and F), oxygen and 

nitrogen, since their electronegativity could influence the reactivity of the 

chemicals, and they are commonly present among organic molecules.

Table 5 reports an overview of the performance of the CAESAR BCF model on the 

selected dataset. As shown, the applicability domain built-in tool seems able to improve 

the performance of the model, even for new chemicals (not present in its training set). 

Regarding the molecules used to build the model, 45 of them were classified as out of 

the model's AD. The main reason relates to how (Q)SAR models are built. For example, 

while interpolating the data of the training set, the model learns the "average" 

behaviour of a dataset. This means that borderline molecules present in the training set, 

will probably not be able to give enough information, and will be outside the AD. These 

results will be used in the next paragraphs to compare the AD definitions obtained using 

the chosen properties.
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18. Simple structural properties to define the applicability domain of a QSAR model for
bioconcentration factor

Table 5. Statistics of the predictions obtained by the CAESAR BCF model on the dataset of 860 

molecules. The model was evaluated on the whole dataset (global) on the molecules in common 

with the model's training set (in-model-training) and on the new ones (out-model-training). For 

each case are reported the statistics for the molecules which fall within or outside the model's 

applicability domain.

Whole dataset 
Global In AD Out AD

in-model-training 
Global In AD Out AD

out-model-training 
Global In AD Out AD

Count
R2
Av. Error

860 485 375 
0.63 0.79 0.46 
0.63 0.46 0.85

366 321 45 
0.82 0.84 0.63 
0.45 0.42 0.61

494 164 330 
0.47 0.69 0.39 
0.76 0.53 0.88

18.1 Molecular weight

As explained in the previous chapter, the list of molecules was sorted and classified by 

their molecular weight using Microsoft Excel. A constant increment of 50 Dalton was 

used for the classification, with the exception of the first and last classes, which included 

all the molecules with MM lower than 100 Dalton and higher than 550 Dalton, 

respectively. Three parameters were calculated for each class:

• Number of molecules;

• Coefficient of determination (R2) between experimental and predicted 

LogBCF;

• Average error, calculated as the mean of the absolute error between the 

experimental and predicted LogBCF values of each molecule.

Figure 2 shows the R2 calculated for each class of molecular weight generated using the 

chosen thresholds. Five values of R2 are reported for each class, which were calculated 

using five 10% leave-more-out iterations. These values refers to the sub-training sets. 

The histogram present in the upper section of the image represents the average number
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bioconcentration factor

o f m olecules (be tw een  the  five  sub-tra in ing  sets) present in each class, in o rder to  

consider how  represen ta tive  each class was.
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Figure 2. R2 calculated and number of molecules present in each molecular weight class. The

columns in the bottom part represent the R2 calculated for the sub-training set of each leave- 

more-out iteration (#1 to #5). The columns in the upper part o f the chart represents the average 

number of molecules of the five sub-training sets.

Analysing the  obta ined results, it seems possible to  id e n tify  th re e  "a reas" in the  chart 

(th ree  m olecu lar mass ranges) in w hich  the  m odel obta in  p red ic tions w ith  d iffe re n t 

re liab ility :

•  M olecules w ith  M M  sm aller than  200 Dalton seems pred ic ted  w ith  h igher 

re liab ility  (R2 around 0.7-0.8);

•  M olecules w ith  M M  betw een 200 and 400 Da seems pred ic ted  w ith  low e r 

re liab ility  (R2 around 0.5);

•  M olecules w ith  M M  greate r than  400 Da seems p red ic ted  w ith  ve ry  poor 

re liab ility  (R2 around 0.2-0.4).
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The identified thresholds were used to try to define the AD of the CAESAR BCF model:

• MM lower than 200 Da, the molecule is in the AD;

• MM between 200 and 400 Da, prediction could be wrong;

• MM higher than 400 Da, the molecule is out of the AD.

The rules were then tested using a prediction set and considering the model's training 

set (Table 6).

In all the five leave-more-out iterations the thresholds selected seems able to 

provide useful information for the AD definition. Molecules labelled as within the AD are 

consistently predicted with higher R2 compared to "doubt" and "Out AD" ones. Using 

the thresholds on an external test set seems to support even more the results obtained. 

Considering the performance calculated on the test set, 33% of the molecules can be 

considered within the AD with an R2 of 0.84. The training/test split was performed 

considering the whole dataset, both subsets could contain molecules which were used 

to build the CAESAR model, introducing a bias in the results. The dataset was therefore 

split using the information on the model's training set and the thresholds were applied 

on both subsets. As expected, the performance on new molecules (out-model-training) 

are lower than those on the molecules which were part of the model's training set (in­

model-training). However, even in this case the MM thresholds seemed useful in the 

definition of the AD: 25% of the "new molecules" could be considered within the AD, 

and the model predicted their BCF values with a good reliability (R2 0.7).
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Table 6. Performance of the CAESAR BCF model using molecular mass thresholds to define the 

applicability domain (MM<=200Da, In Ad; 200Da<MM<=400Da, Doubt; MM>400Da, Out AD).

The table reports the results obtained in the five iterations of the 10% leave-more-out (R2 

calculated for LMO sub-training set are also reported in Figure 2), the comparison between the 

training and test set, the comparison between molcules present in the model's training set and

new molcules, and the performance calculated on the whole dataset.

10% leave-more-out results
LMO sub-training set LMO prediction set

In AD Doubt Out AD In AD Doubt Out AD
Count 222 303 56 26 33 5

LMO-10% #1 R2 0.79 0.55 0.33 0.81 0.62 0.48
Average Error 0.41 0.73 1.17 0.45 0.72 1.01
Count 219 307 55 29 29 6

LMO-10% #2 R2 0.78 0.53 0.33 0.84 0.76 0.74
Average Error 0.42 0.74 1.17 0.39 0.57 1.00
Count 224 300 57 24 36 4

LMO-10% #3 R2 0.79 0.55 0.35 0.82 0.59 0.69
Average Error 0.41 0.73 1.13 0.50 0.75 1.45
Count 227 299 55 21 37 6

LMO-10% #4 R2 0.78 0.52 0.37 0.91 0.74 0.04
Average Error 0.42 0.73 1.13 0.35 0.69 1.38
Count 220 304 57 28 32 4

LMO-10% #5 R2 0.78 0.55 0.30 0.83 0.57 0.09
Average Error 0.42 0.72 1.18 0.40 0.79 0.80

Validation of the thresholds on the test set
Training Set Test Set

In AD Doubt Out AD In AD Doubt Out AD
Count 248 336 61 72 121 22
R2 0.79 0.55 0.34 0.84 0.64 0.50
Average Error 0.42 0.73 1.15 0.35 0.64 0.83

thresholds applied on molecules in model's training set and on new molecules
in-model-training out-model-training

In AD Doubt Out AD In AD Doubt Out AD
Count 146 109 12 121 312 61
R2 0.85 0.77 0.66 0.70 0.44 0.33
Average Error 0.37 0.55 0.61 0.48 0.78 1.23

thresholds applied on the whole dataset
In AD Doubt Out AD

Count 320 457 83
R2 0.80 0.58 0.36
Average Error 0.40 0.71 1.07
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18.2 Percentage of heteroatoms

The software Discovery Studio 3.0 (DS3) by Accelrys, Inc. was used to determine the 

composition of each molecule of the dataset. DS3 calculates the percentage (in mass) of 

each atom-type present in a molecule, as exemplified below.

SMILES Formula Atom-
type

n. Atom-
type
weight

Total
weight

Molecular
Mass

% mass

clcc(cccl
C(c2ccc(cc
2)CI)C(CI)(
CI)CI)CI

C14H9CI5

C 14 12.011 168.154

354.476

47%

H 9 1.008 9.072 3%

Cl 5 35.45 177.25 50%

The percentages of all atoms except carbons and hydrogens were summed to obtain the 

percentage of heteroatoms in the molecules. This parameter was used to sort the 

dataset in descending order. A constant 10% decrease (from 100% to 0%) was then used 

to classify the molecules. The number of molecules, R2 and average error were 

calculated for each class. Eleven classes were obtained, since that with the lower 

percentage of heteroatoms (0% to 10%) was split to consider molecules composed only 

by carbons and hydrogens separately from those with near 0% of heteroatoms.

Figure 3 shows the R2 calculated on the sub-training set of the five 10% leave-more- 

out iterations for each class obtained. For each class, the average number of molecules 

between the five sub-training sets is also reported.
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Figure 3. R2 calculated and num ber o f m olecules present in each % h eteroatom s class. The

columns in the bottom part represent the R2 calculated for the sub-training set o f each leave- 

more-out iteration (#1 to #5). The columns in the upper part of the chart represents the average 

number of molecules of the five sub-training sets. The values on the x-axis are the lower limits 

of each % heteroatoms class.

Two ''areas" w ere  iden tified  in the  chart (tw o  % o f he te roa tom s ranges) in w hich  the  

m odel seemed to  obta in  p red ictions w ith  d iffe re n t re liab ility :

•  M olecules com posed by m ore than 30% (in mass) he te roa tom s seemed to  be 

pred icted  w ith  a h igher re liab ility ;

•  M olecules com posed by less than 30% (in mass) he te roa tom s seem ed to  be 

pred icted  w ith  a low e r re liab ility .

The 30% w ere  than  used as th resho ld  to  define  the  app licab ility  dom ain o f the  m odel. 

M olecules whose mass was constitu ted  by m ore than  30% o f he te roa tom s w ere  

considered w ith in  the  AD. This th resho ld  was tested  using a p red ic tion  set and 

considering the  m odel's tra in ing  set (Table 7).
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The results do not support the use of this (probably too general) parameter as a 

discriminant for the definition of the applicability domain. Applying the 30% threshold 

to the five sub-training sets used in the leave-more-out, resulted in relatively low R2 

(0.63 to 0.67) which does not differ very much for the molecules out AD (0.50 to 0.53). 

Moreover, the results on the LMO prediction sets were not consistent, in one case the 

R2 was even greater than that calculated on the training set. While testing this threshold 

on an external test set, the difference between the R2 calculated for in AD and out AD 

molecules did not seem relevant (0.71 and 0.66 respectively). Furthermore, both were 

greater than those calculated on the training set. Finally, the R2 did not substantially 

improve for molecules within AD for both molecules within the CAESAR model's training 

set and the "new" ones. To conclude, the 30% threshold did not seem able to provide a 

clear separation between reliable (in AD) and unreliable (out AD) predictions.
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Table 7. Performance of the CAESAR BCF model using the 30% heteroatom threshold to define 

the applicability domain. The table reports the results obtained in the five iterations of the 10% 

leave-more-out (R2 calculated for LMO sub-training set are also reported in Figure 3), the 

comparison between the training and test set, the comparison between molecules present in 

the model's training set and new molecules, and the performance calculated on the whole

dataset.

10% leave-more-out results
LMO sub-training set 
In AD Out AD

LMO prediction set 
In AD Out AD

Count 367 214 36 28
LMO-10% #1 R2 0.63 0.53 0.77 0.29

Average Error 0.68 0.60 0.64 0.66
Count 365 216 38 26

LMO-10% #2 R2 0.67 0.50 0.42 0.55
Average Error 0.65 0.61 0.87 0.64
Count 362 219 41 23

LMO-10% #3 R2 0.67 0.51 0.42 0.40
Average Error 0.65 0.61 0.88 0.66
Count 359 222 44 20

LMO-10% #4 R2 0.66 0.50 0.51 0.55
Average Error 0.66 0.61 0.77 0.60
Count 359 222 44 20

LMO-10% #5 R2 0.66 0.50 0.51 0.55
Average Error 0.66 0.61 0.77 0.60

Validation of the thresholds on the test set
Training Set Test Set

In AD Out AD In AD Out AD
Count 403 242 144 71
R2 0.64 0.50 0.71 0.66
Average Error 0.67 0.61 0.60 0.49

thresholds applied on molecules in model's training set and on new molecules
in-model-training out-model-training

In AD Out AD In AD Out AD
Count 211 155 336 158
R2 0.87 0.73 0.51 0.37
Average Error 0.43 0.47 0.80 0.70

thresholds a jplied on the whole dataset
In AD Out AD

Count 547 313
R2 0.66 0.53
Average Error 0.65 0.58
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18.3 Percentage of halogens

Using the  same procedure described in the  previous paragraphs, the  dataset w ere 

sorted and classified by the  percentage (in mass) o f the  halogens. In th is case, m olecules 

no t con ta in ing  halogen atom s w ere excluded since they  w ere  a large subset (475 ou t o f 

860) characterized by a R2 very close to  th a t calculated on the  w ho le  dataset (0.60 and 

0.63 respective ly). Figure 4 shows the  R2 calculated fo r each class ob ta ined, on the  sub­

tra in in g  set o f the  five  10% leave-m ore-ou t ite ra tions. For each class, the  average 

num ber o f m olecules betw een the  five  sub-tra in ing  sets is also reported.
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Figure 4. R2 calculated and number of molecules present in each % halogens class. The columns 

in the bottom  part represent the R2 calculated fo r the sub-training set of each leave-more-out 

iteration (#1 to  #5). The columns in the upper part o f the chart represents the average number 

o f molecules of the five sub-training sets. The values on the x-axis are the lower limits of each % 

halogens class, molecules w ithout halogen atoms were excluded from the analysis.

The results suggested th a t, generally, the  m odel seems to  be able to  p rovide m ore 

re liab le  p red ic tions fo r m olecules w ith  a h igher percentage o f halogen atom s. A part 

fro m  th e  90% class, w hich how ever is composed by on ly fo u r molecules and could not
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be considered reliable, molecules with percentage of halogens greater than 40% were 

generally better predicted. This value was chosen as a threshold for the applicability 

domain, however also molecules with % halogens between 30% and 20% seemed to be 

well predicted. The choice was made to adopt a conservative approach, excluding in this 

way the 30% class which seemed poorly predicted. The selected threshold was tested 

on an external test set and considering the molecules present in the model's training set 

(Table 8).

The results of five LMO runs supported the decision made. R2s of in AD molecules of 

the sub-training sets were always considerably greater than those calculated for out AD 

ones. This was confirmed also for the prediction sets, the R2s in this case were more 

variable and sometimes even greater than their respective values in the sub-training set. 

This was probably due to the small number of molecules considered, however the 10% 

sub-training/prediction split was not changed to keep this analysis consistent with those 

on molecular mass, heteroatoms etc. In all the cases, however, the R2s calculated for 

molecules in AD were greater than those calculated for those out of AD. The selected 

threshold also gave good results using an external test set. The R2 calculated for in AD 

molecules was probably not enthusiastic (0.65) but significantly higher than that 

calculated for molecules out of AD (0.25), supporting that the percentage of halogens 

could help in identifying poorly predicted molecules. Considering the molecules present 

in the model's training set separately from the "new" ones, the results were quite 

consistent. R2s differed significantly between in AD and out AD molecules for both 

"known" and "new" molecules. The R2 for out AD /  in-model-training molecules was
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0.69, which could lead to the conclusion that this method excluded a significant number 

of reliable predictions. As shown in Table 5 the CAESAR model performs very well on 

compounds within its training set (R2 0.82), therefore even molecules predicted with a 

lower reliability were still well predicted. On the other hand, the performance on "new” 

molecules considered within the model's AD were not particularly good (R2 0.64). 

However, comparing it with the results obtained on both the whole out-model-training 

(R2 0.47) set and the out AD sub set (0.31), suggested that the chosen parameter could 

help in excluding poorly predicted molecules. Finally the results obtained on in AD and 

out AD subsets, defined by the AD method included in VEGA and the percentage of 

halogens approach, showed similar performance on both in- and out-model-training 

molecules.
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Table 8. Performance of the CAESAR BCF model using the 40% halogens threshold to define 

the applicability domain. The table reports the results obtained in the five iterations of the 10% 

leave-more-out (R2 calculated for LMO sub-training set are also reported in Figure 4), the 

comparison between the training and test set, the comparison between molecules present in 

the model's training set and new molecules, and the performance calculated on the whole

dataset.

10% leave-more-out results
LMO sub-training set 
In AD Out AD

LMO prediction set 
In AD Out AD

Count 121 140 15 13
LMO-10% #1 R2 0.79 0.48 0.67 0.03

Average Error 0.54 0.68 0.76 0.95
Count 120 141 16 12

LMO-10% #2 R2 0.81 0.45 0.57 0.50
Average Error 0.54 0.70 0.80 0.76
Count 122 139 14 14

LMO-10% #3 R2 0.79 0.43 0.73 0.59
Average Error 0.57 0.72 0.56 0.57
Count 120 141 16 12

LMO-10% #4 R2 0.77 0.44 0.90 0.38
Average Error 0.58 0.71 0.45 0.68
Count 121 140 15 13

LMO-10% #5 R2 0.77 0.44 0.89 0.56
Average Error 0.58 0.71 0.44 0.66

Validation of the thresholds on the test set
Training Set Test Set

In AD Out AD In AD Out AD
Count 136 153 45 51
R2 0.78 0.44 0.65 0.25
Average Error 0.57 0.71 0.65 0.80

thresholds applied on molecules in model's training set and on new molecules
in-model-training out-model-training

In AD Out AD In AD Out AD
Count 96 54 85 150
R2 0.87 0.69 0.64 0.31
Average Error 0.41 0.50 0.80 0.81

thresholds applied on the whole dataset
In AD Out AD

Count 181 204
R2 0.75 0.39
Average Error 0.59 0.73

105



Chapter F
18. Simple structural properties to define the applicability domain of a QSAR model for
bioconcentration factor

18.4 Percentage of oxygen and nitrogen

The last cases considered in this simple properties based approach for the determination 

of (Q)SAR applicability domain, considered (using the same methods described in the 

previous cases) the percentage of oxygen and that of nitrogen. The results obtained 

from the LMO showed a similar profile between oxygen and nitrogen (Figure 5). Even if 

there were few molecules composed by more than 40% (in mass) of both atom-types, 

the classes were reported to keep the representation consistent with the other case 

studies.

In both cases the CAESAR model seemed to obtain more reliable results in molecules 

devoid of either oxygen or nitrogen. The relatively high R2 values (0.6) shown in 40% 

oxygen class were not considered as reliable, since related to only five molecules. For 

the same reason the 60% and 30% nitrogen classes were not considered. For both atom- 

types, the 0% threshold were used to define the model's AD, and was tested on an 

external test set and considering the molecules present in the model's training set (Table 

9 and Table 10).

The performance evaluated in LMO supported the use of 0% oxygen as discriminant 

for reliable vs. unreliable prediction. Predictions for both sub-training and prediction set 

gave a R2 of about 0.80 for in AD molecules and 0.40 for out AD ones, supporting the 

use of 0% threshold. Similar results were obtained on an external test, with R2s even 

greater than those calculated for the training set, both for in and out AD molecules. On 

the other hand, the performance obtained using the 0% threshold for nitrogen, did not 

support the use of this threshold, neither in LMO nor on the external test set.
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Figure 5. R2 calculated and num ber o f m olecules present in each % oxygen (a) and nitrogen  

(b) class. The columns in the bottom part represent the R2 calculated fo r the sub-training set o f 

each leave-more-out iteration (#1 to #5). The columns in the upper part o f the chart represents 

the average number of molecules of the five sub-training sets. The values on the x-axis are the 

lower limits o f each % oxygen (a) and nitrogen (b) class.

Com paring the  use o f the  oxygen th resho ld  betw een m olecules in and o u t CAESAR 

m odel's tra in ing  set, the  results w ere  s im ilar to  w ha t observed using the  halogens
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threshold. Even in this case, for in-mode-training subset the R2 was higher for molecules 

in AD (0.90) than for those out AD (0.70). In the second case, however, the R2 was still 

high. Again, this was probably due to the high performance of the CAESAR model on 

"known" molecules. Considering the out-model-training molecules, the use of the 

oxygen threshold gave interesting results, with R2s calculated for in AD and out AD 

molecules differing significantly (0.69 vs. 0.37).

Even if not supported by the LMO and external test set analysis, the 0% nitrogen 

threshold was also applied on in- and out-model-training molecules. The results 

suggested that this parameter was able to discriminate between reliable and unreliable 

predictions obtained on known molecules, whereas did not seem to pass the most 

important test of recognizing good and poor predictions for "new" chemicals.

108



Chapter F
18. Simple structural properties to define the applicability domain of a QSAR model for

bioconcentration factor

Table 9. Performance of the CAESAR BCF model using the 0% oxygen threshold to define the 

applicability domain. The table reports the results obtained in the five iterations of the 10% 

leave-more-out (R2 calculated for LMO sub-training set are also reported in Figure 5a), the 

comparison between the training and test set, the comparison between molecules present in 

the model's training set and new molecules, and the performance calculated on the whole

dataset.

10% leave-more-out results
LMO sub-training set 
In AD Out AD

LMO prediction 
In AD Out AD

Count LMO-10% r2
(mean)

Average Error

201 380 
0.79 0.46 
0.45 0.75

24 40 
0.82 0.40 
0.45 0.82

Validation of the thresholds on the test set
Training Set 

In AD Out AD In AD
Test Set

Out AD
Count 225 420 79 136
R2 0.79 0.46 0.88 0.53
Average Error 0.45 0.76 0.37 0.68

thresholds applied on molecules in model's training set and on new molecules
in-model-training 

In AD Out AD
out-model-training 
In AD Out AD

Count 180 186 124 370
R2 0.90 0.70 0.69 0.37
Average Error 0.34 0.55 0.55 0.84

thresholds applied on the whole dataset
In AD Out AD

Count 304 556
R2 0.82 0.47
Average Error 0.43 0.74
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Table 10. Performance of the CAESAR BCF model using the 0% nitrogen threshold to define 

the applicability domain. The table reports the results obtained in the five iterations of the 10% 

leave-more-out (R2 calculated for LMO sub-training set are also reported in Figure 5b), the 

comparison between the training and test set, the comparison between molecules present in 

the model's training set and new molecules, and the performance calculated on the whole

dataset.

10% leave-more-out results
LMO sub-training set 
In AD Out AD

LMO prediction set 
In AD Out AD

LMO-10%
(mean)

Count 300 281 36 28
R2 0.66 0.38 0.66 0.37
Average Error 0.59 0.72 0.58 0.79

Validation of the thresholds on the test set
Training Set 

In AD Out AD In AD
Test Set

Out AD
Count 336 309 111 104
R2 0.66 0.38 0.72 0.55
Average Error 0.58 0.72 0.56 0.56

thresholds applied on molecules in model's training set and on new molecules
in-model-training 

In AD Out AD
out-model-training 

In AD Out AD
Count
R2
Average Error

248 118 
0.81 0.52 
0.45 0.44

199 295 
0.53 0.36 
0.74 0.78

thresholds applied on the whole dat
In AD Out AD

aset

Count
R2
Average Error

447 413 
0.68 0.41 
0.58 0.68
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19. Statistical extraction of fragments related to 
correct or wrong predictions

The data generation for mutagenicity was performed in collaboration with the EC 

project ANTARES. This phase included the selection and check of the dataset to use, the 

selection of the (Q)SAR models to use, and the evaluation of their performance on the 

selected dataset. The selection of the model for mutagenicity was mainly driven by the 

possibility of an easy implementation of the results obtained. As already explained, the 

VEGA platform was developed within our research group and this would allow the 

exploitation of the obtained AD rules. VEGA was provided with a built-in tool for the AD 

check and provided predictions for both in and out AD molecules, allowing a comparison 

with the results obtained from this study. Moreover, the CAESAR model (implemented 

within VEGA) resulted as one of the best models from the ANTARES assessment [59].

The predictions obtained by the CAESAR model were used to classify the dataset for 

the SARpy analysis. The molecules were labelled as TP, FP, TN or FN, by comparing the 

predictions with the experimental Ames test values present in the dataset. The results 

are reported in the confusion matrix below, with the Accuracy, Sensitivity and Specificity 

parameters:

Predicted
Mutagen Non-Mutagen

Experimental
Mutagen 3010 (TP) 295 (FN)
Non-Mutagen 813 (FP) 1946 (TN)

Accuracy 0.82 
Sensitivity 0.91 
Specificity 0.71
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The two type of errors (FP and FN) were considered and modelled separately, focusing 

on the predicted values. The dataset of 6065 molecules was split in two subsets: the TP- 

FP subset, composed by 3823 molecules, and the TN-FN subset, composed of 2241 

molecules. Since the SARpy tools works with the SMILES representation of molecules, 

they were converted to the canonical SMILES format using the OpenBabel open source 

software. Moreover, SARpy was designed to build SAR models; the standard procedure 

(as explained before) is to build a model using a training set of molecules, and testing its 

predictive capabilities using an external test set of new chemicals. In this case SARpy 

was used to model the error instead of the endpoint itself, but an external test set was 

needed. For this reason both TP-FP and TN-FN subsets were split in training and test 

sets, as explained in chapter 17. The subsets obtained are summarized in Table 11.

Table 11. Composition of the TP-FP and TN-FN subsets, and the obtained training (2/3) and 

test (1/3) subsets.

Total TP FP TN FN

TP-FP Train 2549 2007 542 0 0
Test 1274 1003 271 0 0

TN-FN Train 1494 0 0 1297 197
Test 747 0 0 649 98

As explained in chapter 16, SARpy builds molecular fragments starting from the 

composition of the training set provided. In this phase, the user can decide the minimum 

and maximum number of atoms composing the fragments, the default values were used 

(minimum 3 and maximum 18). Once the library of fragments is built, SARpy extracts 

only statistically relevant ones. A simple parameter considered is the minimum number 

of occurrences of the fragment in the training set, the default value (minimum 3 

occurrences) was used. Moreover, the statistical extraction could be performed
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considering both classes of the target property (e.g. TP and FP) or focusing on only one 

of them. The first approach (both classes) was chosen. Again, SARpy decides if a 

fragment is relevant on the basis of the likelihood ratio (LR) parameter, which is usually 

calculated as follow:

sens itiv ity  [4]
1 — sp e c ific ity

However, SARpy fragments are only able to "predict" molecules containing them, 

providing only "positive" results (e.g. mutagen), including both true and false positive. 

If a molecule does not contain a fragment, SARpy does not predict it as negative. It is 

obviously possible to consider all molecules with observed negative property (e.g. non­

mutagen) and that do not contain the fragment, as true negative, and observed positive 

molecules without the fragment, as false negative. This classification, however, would 

not make sense from a theoretical point of view, and would imply more calculations. 

The LR formulation above described, can be written in a more simple and usable way 

(for SARpy):

TP negative  [51
LR =  —  x  —  1 J

FP positive

Where "positive" is the total number of molecules with positive observed property (e.g. 

molecules experimentally mutagen) and "negative" is the total number of molecules 

with negative observed property (e.g. experimentally non-mutagen).

Users can leave the selection of the LR threshold to SARpy, by setting if the software 

must maximize the coverage, minimize the error or find an optimal value. For this study,
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the latter case was adopted, giving the possibility to manually analyse the impact of 

different LR thresholds on the model performance.

19.1 Fragments related to true positive and false positive 
predictions

The fragmentation of the TP molecules present in the training set, produced a total of 

B5422 fragments composed by three to 18 atoms. The three minimum occurrences 

threshold, reduced them to 6775 potential alerts. For FP molecules, SARpy produced 

16845 fragments, which were reduced to 2627 potential alerts. The software compared 

the presence of the potential alerts between TP and FP molecules and assigned a 

likelihood value to each fragment. The optimisation of these values led to the final 

extraction of 125 fragments related to TP and 40 fragments related to FP. The complete 

ruleset extracted is reported in Table A - Annex A.I.

As for SAR models, these rules were used to "predict" the training set, to obtain the 

accuracy of prediction. In this case, however, three types of output were produced by 

the model: TP, FP and "none". The latter case included molecules which did not contain 

any of the 165 fragments. The comparison of these three classes with the two observed 

produced a sort of "extended" confusion matrix:
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Table 12. The "extended" confusion matrix for the TP-FP training set, obtained using the TP- 

FP fragments extracted by SARpy.

SARpy predictions

Observed

TP FP none
TP 1589 (T-TP) 218 (F-FP) 200
FP 126 (F-TP) 294 (T-FP) 122

Where T-TP was the number of true positive molecules (mutagens correctly predicted 

by CAESAR) correctly identified as TP by SARpy, F-FP was the number of true positive 

molecules wrongly identified as FP by SARpy, F-TP was the number of false positive 

molecules (non-mutagens predicted as mutagens by CAESAR) wrongly identified as TP 

by SARpy, and T-FP was the number of false positive molecules correctly identified as FP 

by SARpy. Using these four classes an accuracy of 0.85 was calculated, suggesting that 

the fragments extracted by SARpy could help in identifying correct predictions. 

Moreover, this high accuracy was reached without leaving out too many molecules. The 

rules were able to cover the 87% of the training set.

To assess the performance of the ruleset on new chemicals, the test set was loaded 

in SARpy, which used the fragments to predict the new molecules. The results are 

summarized in the confusion matrix below:

Table 13. The "extended" confusion matrix for the TP-FP prediction set, obtained using the TP- 

FP fragments extracted by SARpy.

SARpy predictions

Observed

TP FP none
TP 716 (T-TP) 161 (F-FP) 126
FP 124 (F-TP) 88 (T-FP) 59

Again, using the number of T-TP, T-FP, F-TP and F-FP an accuracy of 0.74 was calculated. 

As expected the performance on new chemicals decreased with respect to the training
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set. However, considering that this accuracy was referred to 85% of the molecules, it 

was considered a good result.

19.2 Fragments related to true negative and false 
negative predictions

SARpy produced 39248 and 7100 substructures from the fragmentation of TN and FN 

molecules, respectively. They were then reduced to 7384 and 911 potential alerts and 

finally the software extracted 78 fragments related to TN CAESAR model predictions, 

and 18 for FN ones. The complete ruleset extracted is reported in Table B - Annex A.I.

As previously for the TP-FP ruleset, the performance of these fragments were 

evaluated, generating the following extended confusion matrix:

Table 14. The "extended" confusion matrix for the TN-FN training set, obtained using the TN- 

FN fragments extracted by SARpy.

SARpy predictions
TN FN none

TN 865 (T-TN) 124 (F-FN) 308
FN 21 (F-TN) 118 (T-FN) 58

Where T-TN was the number of true negative molecules (non-mutagens correctly 

predicted by CAESAR) correctly identified as TN by SARpy, F-FN was the number of true 

negative molecules wrongly identified as FN by SARpy, F-TP was the number of false 

negative molecules (mutagens predicted as non-mutagens by CAESAR) wrongly 

identified as TN by SARpy, and T-FN was the number of false negative molecules 

correctly identified as FN by SARpy. From these results, an accuracy of 0.87 was 

calculated, covering the 76% of the training set, suggesting a possible use of these
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fragments for the identification of correct and wrong predictions obtained by the 

CAESAR model.

The ruleset was used on to predict a prediction set of new molecules, obtaining the 

following results:

Table 15. The "extended" confusion matrix for the TN-FN prediction set, obtained using the 

TN-FN fragments extracted by SARpy.

SARpy predictions
TN FN none

TN 356 (T-TN) 90 (F-FN) 203
FN 43 (F-TN) 29 (T-FN) 26

The ruleset was able to predict the external set of molecules with an accuracy of 0.74, 

covering the 69% of the prediction set. Again, as expected the performance decreases 

in comparison with the training set. The coverage also decreased, in this case more 

significantly compared to the TP-FP case. However, thinking about using this method in 

combination with other AD definition, made this approach a promising one.

19.3 Analysis and application of the rules

The predictions obtained using the SARpy rulesets were analysed, counting the total 

number of occurrences, the number and percentage of correct predictions, and the 

number of wrong ones. The complete lists are reported as supplementary materials in 

Annex A.II. Some discrepancies between the percentage of correct assignment and the 

SARpy LR were observed. This was due to the software not providing all the fragments 

present in each molecule, but only that with the highest likelihood ratio. In fact, SARpy
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uses only the "best" fragment to predict a molecule. The likelihood ratio, however, is 

calculated including all the molecules in which the fragment is present.

The number of occurrences of a fragment, compared to the total number of 

molecules in a dataset, could be of interest to decide if a fragment was relevant, and 

was something not considered in the calculation of the likelihood ratio. To obtain the 

complete list of occurrences of all the 261 structural fragments, each one was 

considered as a ruleset and used to predict both training and prediction set. The global 

results are reported as supplementary material in Annex A.II.

To use the ruleset extracted by SARpy for the definition of the applicability domain 

of the CAESAR model, the results shown in tables 12 -15 were considered as follow:

• The molecule is within the AD if is predicted as TP or TN by SARpy;

• The molecules is outside of the AD it is predicted as FP or FN by SARpy;

• If a molecule does not contain any of the fragments identified by SARpy, it is not 

possible to determine if it can be reliably predicted or not, and another method 

should be used.

The accuracy, sensitivity and specificity parameters were calculated for the three classes 

above described. The comparison of these parameters should give an overview of the 

capacity of the rulesets to discriminate between reliable and unreliable CAESAR 

predictions. The three statistical parameters were expected to be significantly higher for 

molecules classified as in AD compared to those classified out AD. Table 16 reports the 

results of the analysis. Using the ANTARES approach, the statistical parameters were 

calculated considering different splits of the whole dataset:
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• The SARpy training set (2/3 of the whole dataset) containing the molecules used 

by SARpy to obtain the ruleset;

• The SARpy prediction set, used to test the rules on "new" molecules;

•  The "in model training" set, composed by the molecules in common between the 

whole dataset and the training set used to develop the CAESAR model;

• The "out model training" set, containing molecules "new" to the CAESAR model;

•  "New" molecules for both SARpy and CAESAR model.

The latter class is the most interesting one, since it represents the "ideal" case study of 

a predictive model, estimating how it deals with new molecules, which were not used 

to build it or determine its AD.

The performance of the CAESAR model evaluated on the molecules considered as 

within the AD, was very high in both the whole dataset and in all of its subsets. 

Comparing the molecules used to build the SARpy rules (TP-FP and TN-FN training sets) 

with those used to validate them (TP-FP and TN-FN prediction sets), showed only a small 

decrease in the performance for the prediction set. The comparison of the performance 

between molecules in and out of the AD, suggested that the SARpy rulesets were able 

to discriminate between reliable and unreliable prediction. Considering the sensitivity 

calculated for the molecules of the SARpy prediction set, the value remains quite high 

(0.85) even for molecules considered as out of the applicability domain, however this 

was in some way expected. In fact, the analysis performed by the ANTARES project 

showed high performance of the CAESAR model, even for molecules not present in its 

training set (results reported in Table 16 -  column "All molecules"). Moreover, the
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ANTARES analysis suggested that the CAESAR models produces more false positives than 

false negatives, with a specificity value, calculated on "new molecules" of 0.60. The 

SARpy-based AD approach gave the best discrimination between reliable (In AD) and 

unreliable (Out AD) prediction exactly while considering the FP predictions. Considering 

again the prediction set, the specificity calculated for the molecules in the AD was 

significantly higher than that calculated for AD ones (0.74 vs. 0.51).

The differences between the performance obtained by CAESAR on molecules which 

were part of its training set and the new ones were analysed, considering the AD 

information. For molecules within CAESAR training set, SARpy did not seem able to 

identify false negative predictions. The difference in the sensitivity between in AD and 

out AD molecules was little (0.99 vs 0.90). Comparing the results obtained using the 

built-in VEGA AD tool (Table 17), suggested that the novel fragments-based AD 

definition was not really able to improve the VEGA tool. Regarding FP predictions, the 

new AD definition behaved better than on FN, with a specificity of 0.92 for in AD 

molecules and of 0.51 for out AD ones. Again, the VEGA AD was far more able to 

discriminate between reliable and unreliable predictions (0.99 vs 0.01).

Considering the molecules out of CAESAR training set, the performance obtained 

using the SARpy AD were slightly better than those obtained using VEGA, however the 

second had a greater coverage. Interestingly, the performance of the CAESAR model for 

molecules out of VEGA AD showed that its ability to discriminate between reliable and 

unreliable predictions diminish with respect to molecules within training set. The SARpy
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AD showed a much more different profile between in AD and out AD molecules. 

However, again, the coverage in VEGA was higher.

Finally, with the aim of improving the VEGA AD built in definition, one last 

comparison was performed, considering molecules not used for model building nor for 

the definition of the applicability domain. VEGA utilizes its entire dataset to determine 

the AD, not just the CAESAR training set. A new subset was obtained by deleting, from 

the SARpy prediction set, all the molecules for which VEGA provided an experimental 

data. The comparison of the results obtained using the two AD approaches suggested 

that VEGA better discriminates between FN, whereas SARpy was more slightly more 

successful in eliminating FP from the in AD subset.
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Table 16. Statistical analysis of the CAESAR model performance, using the SARpy rulesets for 

the definition of the applicability domain. For the whole dataset and each subset, the number 

of molecules (N.), accuracy (Acc), sensitivity (Sens) and specificity (Spec) are reported. These 

values have been calculated for molecules within and outside of the AD determined using the 

SARpy rulesets, as well as for those not containing any rules. The global values (considering In 

AD, Out AD and No Info together) are also reported. To provide a clear overview of the coverage 

of the CAESAR model, while using the AD info), the percentage of the molecules for each AD

class is reported.

All
molecules In AD Out AD No Info

N. 6064 3840 (63%) 1122 (19%) 1102 (18%)

Whole Dataset Acc 0.82 0.92 0.53 0.76
0.80Sens 0.91 0.97 0.72

Spec 0.71 0.83 0.36 0.74
N. 4043 2601 (64%) 754 (19%) 688 (17%)

SARpy Acc 0.82 0.94 0.45 0.74
training set Sens 0.91 0.99 0.65 0.78

Spec 0.71 0.87 0.30 0.72
N. 2021 1239 (61%) 368 (18%) 414 (20%)

SARpy Acc 0.82 0.87 0.68 0.79
prediction set Sens 0.91 0.94 0.85 0.83

Spec 0.71 0.74 0.51 0.77
N. 3038 1970 (65%) 478 (16%) 590 (19%)

In model Acc 0.90 0.97 0.70 0.85
training set Sens 0.97 0.99 0.90 0.89

Spec 0.82 0.92 0.51 0.83
N. 3026 1870 (62%) 644 (21%) 512 (17%)

out model Acc 0.73 0.87 0.40 0.65
training set Sens 0.85 0.95 0.58 0.68

Spec 0.60 0.75 0.25 0.64

SARpy prediction set
N. 762 478 (63%) 147 (19%) 137 (18%)
Acc 0.70 0.75 0.53 0.69

AND
Sens 0.84 0.89 0.74 0.72Not in VEGA dataset
Spec 0.55 0.57 0.34 0.68
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Table 17. Statistical analysis of the CAESAR model performance, using the applicability domain

implemented within the VEGA platform.

All molecules In VEGA AD Out VEGA AD
N. 6064 4902 (81%) 1162 (19%)

Whole Dataset
Acc 0.82 0.92 0.38
Sens 0.91 0.97 0.54
Spec 0.71 0.86 0.28
N. 3038 2752 (91%) 286 (9%)

In model Acc 0.90 0.99 0.04
training set Sens 0.97 1.00 0.13

Spec 0.82 0.99 0.01
N. 3026 2150 (71%) 876 (29%)

out model Acc 0.73 0.83 0.49
training set Sens 0.85 0.93 0.61

Spec 0.60 0.71 0.40

SARpy prediction set 
AND

N. 762 524 (69%) 238 (31%)
Acc 0.70 0.76 0.56
Sens 0.84 0.91 0.67Not in VEGA dataset
Spec 0.55 0.59 0.47

19 A  Fine tuning of the SARpy ruleset using different 
likelihood ratio thresholds

With the aim of improving the fragment-based SARpy AD's ability to discriminate 

between reliable and unreliable predictions, it is possible to increase the likelihood ratio 

thresholds, considering only more precise fragments. By doing this, the coverage is 

obviously destined to diminish, leaving more molecules without a decision regarding 

their belonging to the model's AD. The performance of different ruleset, obtained using 

different LR thresholds were evaluated on the training set used to extract the rules. The 

results are reported in Table 18.

As expected, while increasing the minimum likelihood ratio value used to consider a 

rule as part of the AD ruleset, the performance of the CAESAR models increased for in 

AD molecules and decreased for out AD ones. The separation between reliable and
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unreliable predictions reached its best using rules with an infinite LR. However, in this 

case, for 66% of the molecules no AD info could be provided. A LR threshold of 2 helped 

in improving the discrimination of FP predictions between in AD and out AD molecules. 

The sensitivity, on the other hand did not decrease substantially for out AD molecules, 

with respect of the use of the whole ruleset. To obtain good results in this sense, a LR 

threshold of 5 could be applied. By doing this, however, a large number of molecules 

were unnecessarily excluded from the in AD subset.

Table 18. Performance evaluated on the SARpy training set, using different LR thresholds for

selecting the relevant rules.

All
molecules In AD Out AD No Info

N. 4043 2601 (64%) 754 (19%) 688 (17%)

All Rules
Acc 0.82 0.94 0.45 0.74
Sens 0.91 0.99 0.65 0.78
Spec 0.71 0.87 0.30 0.72
N. 4043 2107 (52%) 422 (10%) 1514 (37%)
Acc 0.82 0.96 0.36 0.74

LR >=2 0.85Sens 0.91 0.99 0.63
Spec 0.71 0.93 0.15 0.63
N. 4043 1554 (38%) 179 (4%) 2310 (57%)

LR >=5
Acc 0.82 0.99 0.21 0.75

0.88Sens 0.91 1.00 0.38
Spec 0.71 0.99 0.09 0.59
N. 4043 1385 (34%) 98 (2%) 2560 (63%)
Acc 0.82 1.00 0.14 0.74

LR >= 10 0.89Sens 0.91 1.00 0.17
Spec 0.71 1.00 0.12 0.57
N. 4043 1326 (33%) 30 (1%) 2687 (66%)

LR = inf
Acc 0.82 1.00 0.00 0.74
Sens 0.91 1.00 0.00 0.88
Spec 0.71 1.00 0.00 0.56

To avoid the exclusion of reliable predictions, a "two threshold" approach was applied. 

Since a molecule primarily associated with a TP or TN fragments were considered as in
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AD, the LR threshold for these fragments was set to 2 (which gave high performance 

keeping a good coverage). On the other hand, to diminish the number of correct 

predictions in the out AD set, a threshold of 5 was set for the LR of FP and FN fragments. 

This reduced version of the ruleset was tested on the prediction set and the 

performance of the CAESAR model were also calculated considering its training set. The 

results are reported in Table 19.

The comparison of the performance obtained with the two rulesets, showed that 

using the reduced version substantially increased the discrimination between reliable 

and unreliable predictions. However, this improvement cost a lot in terms of coverage. 

For more than 40% of the molecules no information about the AD could be provided. 

This was not seen as a major limitation, since the idea was to integrate this approach to 

those already available.

Table 19. Performance of the CAESAR model evaluated using the reduced version of the SARpy

ruleset.

All molecules In AD Out AD No Info
N. 4043 2107 (52%) 179 (4%) 1757 (43%)

SARpy Acc 0.82 0.96 0.21 0.70
training set Sens 0.91 0.99 0.38 0.84

Spec 0.71 0.93 0.09 0.57
N. 2021 1020 (50%) 80 (4%) 921 (46%)

SARpy Acc 0.82 0.88 0.51 0.78
prediction set Sens 0.91 0.94 0.77 0.89

Spec 0.71 0.79 0.15 0.67
N. 3038 1589 (52%) 101 (3%) 1348 (44%)

In model Acc 0.90 0.98 0.44 0.84
training set Sens 0.97 0.99 0.86 0.93

Spec 0.82 0.96 0.14 0.75
N. 3026 1538 (51%) 158 (5%) 1330 (44%)

out model Acc 0.73 0.89 0.22 0.61
training set Sens 0.85 0.95 0.36 0.77

Spec 0.60 0.81 0.09 0.47
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19.5 Using the VEGA built-in AD tool to integrate the SARpy 
ruleset

A possibility to cover the remaining 40% of the dataset for which the SARpy ruleset is 

not able to provide applicability domain information, was to use those provided by VEGA 

itself. The performance of the CAESAR model was evaluated on the "No info" subset 

(2678 molecules) using the applicability domain information provided by VEGA. The 

results are reported in Table 20.

Comparing the results with the evaluation performed using the VEGA tools for the 

whole dataset (Table 17), the performance obtained was similar; the tool's ability to 

discriminate reliable prediction was great for molecules within the model training set, 

and diminished for new chemicals. Focusing on new chemicals, the ability of the VEGA 

tool to discriminate reliable (in AD) and unreliable (out of AD) predictions, was 

compared between the "no info" and the whole subset. Table 21 reports the difference 

calculated between the in AD and out AD values of accuracy, sensitivity and specificity.

The differences calculated for the subset of chemicals not handled by the SARpy AD 

ruleset were slightly higher than those calculated considering all the "new chemicals". 

This suggested that SARpy ruleset took care of part of the molecules for which the VEGA 

AD tool was less able to deal with, supporting the suggested VEGA-SARpy simple 

integration.
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Table 20. Evaluation of the VEGA built-in AD tool on the molecules for which the SARpy 

reduced ruleset was not able to provide applicability domain information. The performance of 

the CAESAR model was evaluated on the 2678 molecules for which SARpy gave "no info" output, 

the applicability domain information provided by VEGA were used to determine the reliability

of the predictions.

All molecules In AD Out AD
N. 2678 2049 (77%) 629 (23%)

Whole "No Info" Acc 0.73 0.87 0.25
dataset Sens 0.86 0.95 0.39

Spec 0.60 0.79 0.18
N. 1348 1146 (85%) 202 (15%)

In model Acc 0.84 0.99 0.03
training set Sens 0.93 0.99 0.09

Spec 0.75 0.98 0.02
N. 1330 903 (68%) 427 (32%)

out model Acc 0.61 0.73 0.35
training set Sens 0.77 0.88 0.48

Spec 0.47 0.59 0.27

SARpy prediction set 
AND

Not in VEGA dataset

N. 321 216 (67%) 105 (33%)
Acc 0.62 0.69 0.46
Sens 0.80 0.88 0.58
Spec 0.49 0.55 0.39

Table 21. The VEGA AD tool's ability to discriminate between reliable and unreliable 

predictions for new chemicals. Comparison between the whole dataset and the molecules for 

which SARpy gave no AD information. The table reports the difference between in AD and out

AD molecules (e.g. Accuracy for in AD -  Accuracy for out AD).

SARpy "no Info" Whole dataset
N. 1330 3026

out model Acc diff 0.38 0.34
training set Sens diff 0.39 0.32

Spec diff 0.31 0.31
N. 321 762

SARpy prediction set 
AND

Not in VEGA dataset

Acc diff 0.24 0.20
Sens diff 0.29 0.24
Spec diff 0.15 0.12

127



Chapter F
19. Statistical extraction of fragments related to correct or wrong predictions

The final step consisted in the "integration" of the SARpy and VEGA tools. A 

preliminary and simple approach was tested in this study: molecules containing TP- or 

TN-related fragments with a likelihood ratio of at least 2 were considered as within the 

applicability domain; molecules containing FP- or FN- fragments with a likelihood ratio 

were considered as out of the applicability domain; for molecules not associated to any 

fragments identified by SARpy, or containing fragments with a likelihood ratio below the 

selected thresholds, the applicability domain information provided by VEGA were used. 

The results of the performance assessment of the CAESAR mutagenicity model, using 

this combined AD approach, are reported in Table 22.

The results obtained were compared with the use of the VEGA AD tool alone (Table 

17). Considering the whole dataset of 6064 molecules, the combined AD tool seemed 

able to include more correct predictions within the model AD (from 81% to 84%) without 

losing in accuracy (0.92 vs 0.91), sensitivity (0.97 vs 0.96), and specificity (0.86 vs 0.84). 

On the other hand, the smallest group of molecules excluded from the model's AD, gave 

lower values for all the three parameters: the accuracy decreased from 0.38 to 0.26, the 

sensitivity from 0.54 to 0.44, and the specificity from 0.28 to 0.16.

Molecules within the CAESAR model training set gave comparable statistical 

parameter for molecules included in the two ADs. The combined approach, however, 

seemed to exclude more good predictions from the AD: accuracy, sensitivity and 

specificity were higher with respect to the use of the VEGA AD alone (0.17 vs 0.04, 0.45 

vs 0.13 and 0.05 vs 0.01, respectively). Finally, considering the two cases of molecules 

outside the model training set, and of molecules not used to build the SARpy ruleset and
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not present in the VEGA dataset, the performance were comparable for those 

considered within the two ADs. The combined AD approach, however, seemed slightly 

better in excluding from the AD the wrong predictions. In this case only 18% of the 

molecules were excluded (VEGA excluded 31%), moreover, this smaller subset showed 

also decreased accuracy (0.45 vs 0.56), sensitivity (0.58 vs 0.67) and specificity (0.36 vs 

0.47).

Table 22. Performance of the CAESAR model evaluated using a combination of the reduced

version of the SARpy ruleset and the VEGA AD tool.

All molecules In AD Out AD
N. 6064 5176 (85%) 888 (15%)

Whole Dataset Acc 0.82 0.91 0.26
Sens 0.91 0.96 0.44
Spec 0.71 0.84 0.16
N. 3038 2735 (90%) 303 (10%)

In model Acc 0.90 0.98 0.17
training set Sens 0.97 0.99 0.45

Spec 0.82 0.97 0.05
N. 3026 2441 (81%) 585 (19%)

out model Acc 0.73 0.83 0.31
training set Sens 0.85 0.92 0.44

Spec 0.60 0.72 0.23

SARpy prediction set 
AND

N. 762 624 (82%) 138 (18%)
Acc 0.70 0.75 0.45
Sens 0.84 0.89 0.58Not in VEGA dataset
Spec 0.55 0.60 0.36

In conclusion, the results obtained suggests that modelling the errors in prediction,

using a statistical method able to extract structural features related either to "good 

predictions" (considered within the AD) or "bad predictions" (out of the AD), could 

improve the definition of the (Q)SAR models applicability domain. The integration 

performed within this study was simple; it is likely that even better results could be 

obtained by integrating the structural fragments within the calculation of the VEGA
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applicability domain index. Within this perspective, the likelihood ratio could play a 

more important role, acting for example to weight the relation "fragment present -  

In/Out applicability domain".

20. Using chemical classes to improve the 
definition of the applicability domain: a 
preliminary study

In: Gonella Diaza R et al. Comparison of in silico tools fo r evaluating rat oral acute 

toxicity. SAR QSAR Environ Res. 2015 Jan;26(l):l-27 

A preliminary study of the possible use of chemical classes to improve the definition of

(Q)SAR models' applicability domain was done for oral acute toxicity models within the

ANTARES project [60]. The performance of five models were studied using a dataset of

7417 molecules, the results showed that only two of them seemed able to obtain

reliable predictions (Table 23).

Table 23: Regression performance of the five models analyzed within the ANTARES project.

The number and R2 are reported for the whole dataset. T.E.S.T. provide predictions only for 

molecules within its AD, whereas ADMET was not able to predict one molecule. The 

performance obtained using the AD information (where available) are also reported.

In model AD Out model AD
Model Predicted compounds R2 N. R2 N. R2
ACD 7417 0.77 7299 0.78 118 0.34
T.E.S.T. 7413 0.68 7413 0.68 n/a n/a
TerraQSAR 7417 0.64 n/a n/a n/a n/a
ADMET Predictor 7416 0.54 7293 0.54 123 0.17
TOPKAT 7417 0.40 6610 0.41 807 0.28

The dataset of 7417 molecules with experimental LD50 values was analysed using 

istChemFeat, which identified a total of 274 chemical classes (defined by the presence
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of either a functional group or an atom-centered fragment). Classes containing less than 

20 molecules were removed since statistically irrelevant. The atom-centered fragments 

were also removed since in some cases they overlapped with the functional groups, 

whereas in other cases their definition was too generic. The result was a list of 105 

chemical classes. For each chemical class the R2 between the predictions given by the 

models and the experimental values were calculated. To identify the most relevant 

chemical classes, they were sorted on the basis of R2 and for each model the ten-best 

(higher R2) and ten-worst (lower R2) were considered. Some chemical classes were 

present in both the ten-best and ten-worst lists of different models whereas for others 

the R2 were always higher (or lower) than that calculated on the entire dataset.

20.1 Chemical classes predicted differently

Table 24 reports the four chemical classes, identified with the ten-best /  ten-worst 

analysis, which were badly predicted by some models and well predicted by others.

The tertiary alcohols class was present among the ten-best lists of both TerraQSAR 

and T.E.S.T. This class also had a higher R2 in ACD (compared to the R2 calculated on the 

entire dataset), whereas the performance of ADMET Predictor did not improve. TOPKAT 

predicted this class with a much lower R2 than that calculated on the entire dataset.

Sulfonates (thio-/dithio-) molecules were present in the ten-best list of TerraQSAR, 

whereas, as for the previous class, they were in the ten-worst class of TOPKAT. The other 

three software showed lower R2 (ACD and T.E.S.T.) or, at most R2 comparable with that 

calculated on the entire dataset (ADMET Predictor).
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Table 24: Chemical classes present in both the ten-best and ten-worst lists of the models. The

column "Identified" indicates in which lists the class was present. "Fill Gap" means that the class 

was not present in either ten-best or ten-worst of a model, and has been reported simply for 

comparison. The last column (Compare with global) indicates whether the R2 for the class is 

higher (increase), lower (decrease) or nearly the same (no effect) as that calculated on the entire 

dataset.

Chemical Class Identified Model Occurrence R2 Compare with global
Fill Gap ACD 154 0.81 Increase
Fill Gap ADMET Predictor 154 0.54 No effect

Tertiary
alcohols 10 Best TerraQSAR 154 0.85 Increase

10 Best T.E.S.T. 153 0.72 Increase
10 Worst TOPKAT 154 0.00 Decrease
Fill Gap ACD 25 0.71 Decrease

Sulfonates
Fill Gap ADMET Predictor 25 0.56 No Effect
10 Best TerraQSAR 25 0.78 Increase

(thio-/dithio-)
Fill Gap T.E.S.T. 25 0.36 Decrease

10 Worst TOPKAT 25 0.04 Decrease
Fill Gap ACD 43 0.66 Decrease
Fill Gap ADMET Predictor 43 0.30 Decrease

GiianiHinp
10 Best TerraQSAR 43 0.76 Increase

derivatives
10 Worst T.E.S.T. 43 0.02 Decrease
10 Worst TOPKAT 43 0.03 Decrease
10 Worst ACD 34 0.37 Decrease
10 Worst ADMET Predictor 34 0.09 Decrease

Anhydrides 10 Best TerraQSAR 34 0.76 Increase
i-thio)

10 Worst T.E.S.T. 34 0.32 Decrease
10 Worst TOPKAT 34 0.04 Decrease
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Guanidine derivatives were again present in the ten-best list of TerraQSAR and in the 

ten-worst list of TOPKAT. This class was also listed among T.E.S.T.'s ten-worst and gave 

lower R2 for ACD and ADMET Predictor.

Finally, the anhydrides (-thio) were present in the ten-worst list of four of the five 

models: ACD, ADMET Predictor, T.E.S.T. and TOPKAT. TerraQSAR seemed to give good 

predictions even on these molecules, which were again listed among its ten-best classes.

20.2 Chemical classes common in ten-best lists

Table 25 reports the performance of the five models, on five chemical classes which 

were present in the ten-best lists of at least three models but not in any ten-worst lists:

• Hydrazones showed a substantial increase of the R2 for all the five models. This 

class was not listed among the ten-best classes for TerraQSAR but even in this 

case, the performance was considerably better compared to the global dataset.

•  Sulfides showed a slight improvement of performance for the three software 

that list them among their ten-best classes (ADMET Predictor, T.E.S.T. and 

TOPKAT). ACD and TerraQSAR did not list this class among their ten-best, and the 

performance was comparable to the global dataset.

• Sulfoxide molecules were present in the ten-best lists of all the models, but only 

three show substantially better performance: ACD, TerraQSAR and T.E.S.T.

• Molecules containing trihalogenated carbons (CRX3) were predicted 

substantially better and were present in the ten-best lists of four models (ACD,
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ADMET Predictor, T.E.S.T. and TOPKAT). Also TerraQSAR performed better 

compared to the whole dataset, however the difference was small.

• Imidazoles behaved similarly to previous class, but with a larger increase in the 

performance of TerraQSAR.

Table 25. Chemical classes present only among the ten-best lists of the models. This five classes 

were listed among the ten-best lists of at least three out of five models and were not present 

among the ten-worst list of any model. Values reported in italic were not present in the ten-best 

list and are reported for comparison.

ACD ADMET Predictor TerraQSAR T.E S.T. TOPKAT
no. R2 no. R2 no. R2 no. R2 no. R2

hydrazones 146 0.87 146 0.71 146 0.71 146 0.83 146 0.50
sulfides 441 0.77 441 0.63 441 0.63 441 0.76 441 0.50
sulfoxides 43 0.82 43 0.67 43 0.89 43 0.82 43 0.55
CRX3 349 0.83 349 0.70 349 0.70 349 0.78 349 0.54
imidazoles 252 0.85 252 0.74 252 0.74 252 0.78 252 0.55

20.3 Chemical classes common in ten-worst lists

Table 26 reports the performance of the five models on seven chemical classes present 

in the ten-worst lists of at least three models but not in any ten-best lists:

• Aromatic aldehydes and pyrroles were present among the ten-worst classes of 

ACD, ADMET Predictor, TerraQSAR and T.E.S.T. Also TOPKAT gave a very low R2 

for this class.

• Molecules containing dihalogenated carbons (CR2X2) were in the ten-worst 

classes of four models (ACD, ADMET Predictor, TerraQSAR and TOPKAT). 

Moreover, even the fifth one (T.E.S.T.) gave a very low R2 compared to that 

calculated on the global dataset.
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• The aromatic imines class was present in three models' ten-worst lists: ADMET 

Predictor, TerraQSAR and T.E.S.T. The performance of both ACD and TOPKAT 

models were also lower compared to the global dataset.

• Molecules containing the oxazole functional group were present in the ten-worst 

lists of all five models.

• Aromatic secondary amines were present in the ten-worst lists of ACD, 

TerraQSAR and T.E.S.T. Moreover, both ADMET Predictor and TOPKAT predicted 

these classes with very low R2.

• The anhydrides (-thio) was the only class for which one model showed a R2 value

higher than that calculated for the entire dataset. The TerraQSAR model

predicted this class with an R2 of 0.76, which seemed substantially higher than

for the global dataset (0.64).

Table 26. Chemical classes present only among ten-worst lists of the models. The seven classes 

are listed among the ten-worst lists of at least three out of five models and are not present 

among the ten-best list of any model. Values reported in italics and grey color, were not present 

in the ten-worst list and were added manually.

ACD ADMET Predictor TerraQSAR T.E.S.T. TOPKAT
No. R2 No. R 2 No. R2 No. R2 No. R2

aldehydes
(aromatic) 36 0.40 36 0.00 36 0.16 36 0.04 36 0.07

anhydrides (-thio) 34 0.37 34 0.09 34 0.76 34 0.32 34 0.04
CR2X2 28 0.52 28 0.10 28 0.12 28 0.34 28 0.01
imines (aromatic) 44 0.55 44 0.00 44 0.34 44 0.06 44 0.08
oxazoles 23 0.39 23 0.02 23 0.25 23 0.01 23 0.02
pyrroles 81 0.48 81 0.04 81 0.31 81 0.26 81 0.12
secondary amines 
(aromatic) 174 0.48 174 0.28 174 0.21 174 0.22 174 0.09
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21. A priori study of the applicability domain of 
(Q)SAR models using chemical classes

21.1 Identification of chemical classes related to 
mutagenic and “non-mutagenic" effects

The dataset of 6065 molecules with experimental Ames test values was analysed using 

the istChemFeat software. The software identified 133 functional groups and 107 atom- 

centered fragments (ACF) within the dataset. Both functional groups and ACFs were 

initially used as chemical classes. The complete list is reported in Table G - Annex B.lll. 

The number of matches ranged from a single occurrence to nearly the whole dataset 

(for very common groups, related often to carbons or hydrogens). It was clear that 

groups with too few or too many occurrences were not relevant for the study. In the 

first case, the small number of molecules made the class statistically irrelevant, whereas 

in the second case the structural features were commonly present among both 

mutagenic and non-mutagenic molecules, as shown in Figure 6. Considering the whole 

dataset, the distribution of mutagens and non-mutagens was quite homogeneous, with 

a percentage of mutagenic molecules of 54%.
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Figure 6. Distribution of the chemical classes within the mutagenicity dataset. The number of 

matches of each class (X axis) is reported with the % of mutagenic molecules (Y axis) present 

within it.

Generally, the graph showed an expected trend: very unbalanced classes were in fact 

not expected to cover a large part of the dataset. Classes with at least 70% of mutagenic 

or non-mutagenic molecules were not composed by more than 600 molecules, covering 

the 10% of the dataset.

Figure 6 highlighted three "anomalies". Three groups were present in about 900 

molecules, and more than 80% were mutagenic (Table 27). Actually, the classes were 

defined by one functional groups and two ACFs, whose definitions greatly overlapped. 

Moreover, the functional group was the nitroaromatic one, which is also present as a 

structural alert in the Benigni-Bossa ruleset for mutagenicity and carcinogenicity. For 

these reasons only the functional group was considered for further analysis. This 

decision was then extended to all ACFs, since their definitions overlapped with 

functional groups and/or seemed too general.
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Table 27. Three chemical classes showing a percentage of mutagenic molecules higher 

compared to others with the same coverage.

Figure 7 shows chemical classes considered as possibly relevant for further analysis. As 

already explained ACFs were not considered; functional groups present in less than 10 

or more than 1000 molecules were also excluded as well as those whose mutagenicity 

did not substantially differ from that of the entire dataset (a threshold of +/-20% was 

adopted). A total of 32 chemical classes resulted from this selection, which could 

possibly be used for the study of the applicability domain of (Q)SAR models for 

mutagenicity.

Group
(group no. 79) nitro groups (aromatic) 
(0-061) O-
(N-076) Ar-N02 /  R~N(~R)~0 /  RO-NO

Tot Matches
898
958
907

Tot(muta) % (muta)
763 85%
799 83%
770 85%
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Figure 7. Chemical classes defined by functional groups present in at least 10 molecules and 

which showed a substantial increase or decrease of mutagenicity. The functional groups are 

reported below, with the total number of molecules matched, and the number and percentage 

of mutagenic molecules found.
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Group Tot Matches Tot(muta) % (muta)
(group no. 126) Aziridines 50 48 96%
(group no. 38) acyl halogenides (aliphatic) 16 15 94%
(group no. 39) acyl halogenides (aromatic) 16 15 94%
(group no. 137) Pyrazoles 14 13 93%
(group no. 74) N-nitroso groups (aliphatic) 190 171 90%
(group no. 77) nitroso groups (aromatic) 46 41 89%
(group no. 79) nitro groups (aromatic) 898 763 85%
(group no. 72) hydroxylamines (aliphatic) 65 53 82%
(group no. 140) Thiophenes 54 43 80%
(group no. 104) sulfonates (thio-/dithio-) 31 24 77%
(group no. 138) Imidazoles 205 157 77%
(group no. 73) hydroxylamines (aromatic) 94 70 74%
(group no. 116) R=CRX 47 35 74%
(group no. 17) non-terminal C(sp) 18 6 33%
(group no. 49) aldehydes (aromatic) 39 13 33%
(group no. 101) sulfonic (thio-/dithio-) acids 53 17 32%
(group no. 71) quaternary N 22 7 32%
(group no. 108) phosphates/thiophosphates 88 27 31%
(group no. 26) carboxylic acids (aliphatic) 370 112 30%
(group no. 59) oximes (aromatic) 14 4 29%
(group no. 56) imines (aliphatic) 11 3 27%
(group no. 133) Pyrrolidines 42 11 26%
(group no. 29) esters (aromatic) 141 36 26%
(group no. 4) total quaternary C(sp3) 292 73 25%
(group no. 57) imines (aromatic) 12 3 25%
(group no. 150) 1-3-5-Triazines 12 3 25%
(group no. 34) tertiary amides (aliphatic) 81 20 25%
(group no. 7) ring quaternary C(sp3) 199 49 25%
(group no. 145) Triazoles 18 4 22%
(group no. 141) Oxazoles 10 1 10%
(group no. 114) CR3X 11 1 9%
(group no. 91) anhydrides (-thio) 12 1 8%
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21.2 Preliminary use of the identified classes for the 
applicability domain definition

To obtain preliminary information about the possible a priori use of chemical classes for 

the determination of (Q)SAR models' applicability domain, considering the distribution 

of the experimental data among them, a scatter plot-based analysis was performed. For 

each chemical classes, the percentage of experimentally mutagens and the prediction 

accuracy were calculated and used as X and Y values for the graph. Predictions obtained 

by the three models included in VEGA were considered as case studies (CAESAR, SARpy 

and Benigni-Bossa ruleset). The results of this analysis are reported in Figure 8. The 

possibly relevant chemical classes have been highlighted to get a clear overview of their 

predictive accuracy. Classes with less than 10 members were considered statistically not 

relevant and excluded from the plots.
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Figure 8. Preliminary analysis of the relationship between the percentage of mutagens within 

each chemical classes, and the accuracy of (Q)SAR models. Each point represent a chemical 

class and the possibly relevant classes, as previously identified, have been highlighted in blue.

To m eet the  hypothesis th a t classes w ith  h igher (or low er) ra tio  o f m utagen ic 

m olecules should be b e tte r p redicted than  those w ith  m ore  hom ogeneous values, a p lo t 

w ith  a "U " shape (typica l o f quadratic  equations) was expected, w ith  m ore  "re lia b le  

classes" clustered at the  tw o  extrem es o f the  X axis. The th ree  p lo ts reported  in Figure 

8 showed trends w hich seemed to  support the  hypothesis. However, some ou tlie rs  w ere  

c learly visible, even am ong the  classes selected as "possib ly  re levant fo r  AD".
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21.2.1 The CAESAR model

The plot obtained using the CAESAR's prediction accuracies showed the best

distribution. This result was in line with the global performance calculated on the whole

dataset (accuracy 0.82). Moreover, only four of the relevant classes were predicted with

an accuracy below 0.7, and even in this case the accuracy did not decreased under 0.5

(Table 28). Three classes were composed by very few molecules (just a little above the

selected threshold), the low accuracy could be therefore due to chance or to the fact

that CAESAR model did not learn how to correctly predict less common molecules. The

results obtained for aliphatic hydroxylamines, on the other hand, did not seem to be

due to chance: 53 out of the 65 molecules in which the functional group was present,

were experimentally mutagens, however CAESAR was not able to reliably predict this

class. This class was further analysed and the results are reported hereinafter.

Table 28. Chemical classes identified as relevant for the definition of the applicability domain, 

but predicted with low accuracy by CAESAR.

Group Tot Matches % Mutagens Accuracy
(group no. 72) hydroxylamines (aliphatic) 65 82% 0.55
(group no. 59) oximes (aromatic) 14 29% 0.64
(group no. 56) imines (aliphatic) 11 27% 0.64
(group no. 114) CR3X 11 9% 0.55

The possible use of the 32 chemical classes for the definition of the AD was tested 

and compared with the definition provided by VEGA. The performances of the CAESAR 

model were evaluated on the whole dataset and considering molecules within and 

outside the model training set, separately (Table 29). The results showed that the simple 

approach adopted was not really able to discriminate between reliable and unreliable 

predictions obtained by the CAESAR model.

142



Chapter F
21. A priori study of the applicability domain of (Q)SAR models using chemical classes

Table 29. Comparison of the chemical classes-based and VEGA built-in applicability domain

definitions for the CAESAR mutagenicity model.

All molecules In AD Out AD
N. 6064 2544 (42%) 3520 (58%)

Whole Dataset
Acc
Sens

0.82
0.91

0.84
0.92

0.80
0.90

Spec 0.71 0.72 0.70
N. 3038 1245 (41%) 1793 (59%)

Chemical In model Acc 0.90 0.92 0.89
Classes AD dataset set Sens 0.97 0.97 0.96

Spec 0.82 0.83 0.81
N. 3026 1299 (43%) 1727 (57%)

out model Acc 0.73 0.77 0.71
dataset set Sens 0.85 0.87 0.83

Spec 0.60 0.62 0.59
N. 6064 4902 (81%) 1162 (19%)

Whole Dataset
Acc
Sens

0.82
0.91

0.92
0.97

0.38
0.54

Spec 0.71 0.86 0.28
N. 3038 2752 (91%) 286 (9%)

VEGA AD In model 
dataset set

Acc
Sens

0.90
0.97

0.99
1.00

0.04
0.13

Spec 0.82 0.99 0.01
N. 3026 2150 (71%) 876 (29%)

out model Acc 0.73 0.83 0.49
dataset set Sens 0.85 0.93 0.61

Spec 0.60 0.71 0.40

21.2.2 The SARpy model

The performance of the SARpy model on the whole dataset was lower compared to 

CAESAR, with a global accuracy of 0.77, and the scatter plot obtained was in line with 

these lower performance. The distribution of the classes was less "compact" and a 

higher number of them were predicted with low accuracy. Seven of the 32 relevant 

chemical classes were predicted with an accuracy below 0.7 (Table 30), four of these 

were also badly predicted by CAESAR. Two of these "commonly" badly predicted classes
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(Aliphatic amines and CR3X) were predicted by SARpy with a very low accuracy (0.18 and 

0.09). Since SARpy and CAESAR were built starting from the same dataset, these results 

support the idea that these classes were not common within their dataset and the 

models did not learn how to predict them.

Table 30. Chemical classes identified as relevant for the definition of the applicability domain, 

but predicted with low accuracy by SARpy

Group Occurrence TOT % Muta SARpy Accuracy
(group no. 72) hydroxylamines (aliphatic) 65 82% 0.40
(group no. 101) sulfonic (thio-/dithio-) acids 53 32% 0.68
(group no. 108) phosphates/thiophosphates 88 31% 0.63
(group no. 59) oximes (aromatic) 14 29% 0.64
(group no. 56) imines (aliphatic) 11 27% 0.18
(group no. 34) tertiary amides (aliphatic) 81 25% 0.69
(group no. 114) CR3X 11 9% 0.09

This hypothesis was checked using istChemFeat, resulting that only 9 aliphatic amines 

were present in CAESAR/SARpy dataset (7 in the training set and 2 in the test set) and 

the experimental mutagenicity values were also heterogeneous (5 mutagens and 4 non­

mutagens). The CR2X was present only in 2 molecules (both in the training set), both of 

them were mutagens.

The simple AD definition using the 32 chemical classes was used to test the 

performance of the SARpy model, and compared to the AD definition provided by VEGA. 

The results obtained showed that, as for the CAESAR model, this simple approach was 

not able to discriminate between reliable and unreliable predictions.
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Table 31. Comparison of the chemical classes-based and VEGA built-in applicability domain

definitions for the SARpy mutagenicity model.

All molecules In AD Out AD
N. 6064 2544 (42%) 3520 (58%)

Whole Dataset
Acc
Sens

0.77
0.82

0.79
0.85

0.76
0.79

Spec 0.71 0.70 0.72
N. 3038 1245 (41%) 1793 (59%)

Chemical in model Acc 0.82 0.84 0.81
Classes AD training set Sens 0.85 0.88 0.83

Spec 0.79 0.78 0.79
N. 3026 1299 (43%) 1727 (57%)

out model Acc 0.72 0.74 0.70
training set Sens 0.79 0.82 0.75

Spec 0.64 0.63 0.65
N. 6064 4666 (77%) 1398 (23%)

Whole Dataset
Acc
Sens

0.77
0.82

0.92
0.96

0.27
0.26

Spec 0.71 0.87 0.29
N, 3038 2506 (82%) 532 (18%)

VEGA AD in model 
training set

Acc
Sens

0.82
0.85

1.00
1.00

0.01
0.02

Spec 0.79 1.00 0.00
N. 3026 2160 (71%) 866 (29%)

out model Acc 0.72 0.83 0.44
training set Sens 0.79 0.92 0.41

Spec 0.64 0.73 0.46

21.2.3 The Benigni-Bossa ruleset

The model based on the Benigni-Bossa (B-B) ruleset for mutagenicity gave the lowest 

performance on the dataset used within ANTARES, with an accuracy of 0.74. The scatter 

plot showed that even more of the possible relevant classes were predicted with very 

low accuracy. As reported in Table 32, the B-B predicted 13 of the 32 possibly relevant 

classes, with an accuracy below 0.70. Moreover, 5 out of the 7 relevant classes badly 

predicted by SARpy were also among this list (including the four badly predicted by 

CAESAR). As for CAESAR and SARpy, the presence of worst predicted classes were
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verified within the B-B training set: only one experimentally non-mutagen aliphatic 

imine was present, and the same was observed for the CR3X class. 1-3-5 triazines were 

also badly predicted by B-B, and since only 12 molecules containing this group, their 

presence was also checked within the model training set, resulting in 8 molecules 

containing this functional group, 2 of which were mutagens and 6 non-mutagens.

Table 32. Chemical classes identified as relevant for the definition of the applicability domain,

but predicted with low accuracy by the Benigni-Bossa ruleset.

Group Occurrence TOT % Muta B-B Accuracy
(group no. 72) hydroxylamines (aliphatic) 65 82% 0.32
(group no. 104) sulfonates (thio-/dithio-) 31 77% 0.39
(group no. 17) non-terminal C(sp) 18 33% 0.67
(group no. 49) aldehydes (aromatic) 39 33% 0.33
(group no. 108) phosphates/thiophosphates 88 31% 0.69
(group no. 59) oximes (aromatic) 14 29% 0.57
(group no. 56) imines (aliphatic) 11 27% 0.18
(group no. 29) esters (aromatic) 141 26% 0.68
(group no. 4) total quaternary C(sp3) 292 25% 0.64
(group no. 150) 1-3-5-Triazines 12 25% 0.33
(group no. 7) ring quaternary C(sp3) 199 25% 0.64
(group no. 145) Triazoles 18 22% 0.67
(group no. 114) CR3X 11 9% 0.36

Even if the results obtained were not promising, the 32 rules were used for the 

definition of the applicability domain, and the B-B ruleset was evaluated on the dataset, 

again considering molecules within and outside its training set. The performance was 

compared with those obtained using the applicability domain evaluation provided by 

VEGA. As expected, also in this case the chemical classes-based AD simple definition was 

not able to provide an a priori definition of the applicability domain.
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21.3 Considerations about the simple application of the 
identified classes and possible improvements

The underlying idea behind the study presented so far, was the possibility to describe 

an endpoint-based applicability domain, rather than a model-based one, starting from 

the distribution of the endpoint (mutagenicity in this case) values among chemical 

classes. The main advantage of this description should have been the possibility to 

obtain a priori information about chemicals which could have been difficult to predict 

by virtually any (Q)SAR model built for that endpoint.

Table 33. Comparison of the chemical classes-based and VEGA built-in applicability domain

definitions for the Benigni-Bossa ruleset for mutagenicity.

All molecules In AD Out AD
N. 6064 2544 (42%) 3520 (58%)

Whole Dataset
Acc
Sens

0.74
0.83

0.76
0.86

0.73
0.81

Spec 0.63 0.60 0.64
N. 615 245 (40%) 370 (60%)

Chemical in model Acc 0.77 0.76 0.78
Classes AD training set Sens 0.80 0.81 0.80

Spec 0.73 0.69 0.76
N. 5449 2299 (42%) 3150 (58%)

out model Acc 0.74 0.76 0.72
training set Sens 0.84 0.87 0.81

Spec 0.61 0.59 0.63
N. 6064 3177 (52%) 2887 (48%)

Whole Dataset
Acc
Sens

0.74
0.83

0.85
0.91

0.62
0.74

Spec 0.63 0.77 0.49
N. 615 472 (77%) 143 (23%)

VEGA AD in model 
training set

Acc
Sens

0.77
0.80

0.98
0.97

0.08
0.16

Spec 0.73 0.99 0.01
N. 5449 2705 (50%) 2744 (50%)

out model Acc 0.74 0.83 0.65
training set Sens 0.84 0.90 0.77

Spec 0.61 0.73 0.52
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The possible use of chemical classes was based on two main and somehow 

overlapping ideas: integrate simple mechanistic information in the AD definition, and 

consider the global (Q)SAR models as composed by several local models. In this study 

the chemical classes were defined by the presence of functional groups, some of them 

being experimentally related to mutagenic effect; for example, as reported within the 

Benigni-Bossa ruleset, nitroaromatic compounds generally shows a mutagenic effect. 

Moreover, as described in Chapter B, (Q)SAR models can be built for particular classes 

of molecules, rather than using large and heterogeneous datasets. The possibility to 

relate the AD definition to chemical classes could be a solution to integrate these two 

approaches, with the aim of improving the predictivity of (Q)SAR models.

A dataset of 6064 molecules was analysed, using the istChemFeat tool, to extract 

information about the chemical classes present and their possible relation to a 

mutagenic effect. As already described, the hypothesis was that if molecules sharing the 

same functional group had different activities, a chemical classes defined by this group 

could be more difficult to predict. 32 chemical classes with high percentage of mutagenic 

or non-mutagenic molecules were selected and highlighted in a scatter plot analysis, 

performed by comparing the percentage of mutagens within each classes and the 

accuracy of predictions of three (Q)SAR models, developed using different techniques. 

This analysis partially confirmed, for CAESAR and SARpy, a relation between endpoint 

distribution and accuracy in prediction. On the other hand, one-third of the classes 

selected as possibly relevant were badly predicted by the Benigni-Bossa ruleset. All the 

32 classes were however used for a preliminary definition of the applicability domain of
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the three models: only the molecules containing the identified functional groups were 

considered within the AD. The analysis of the models' performance, however, did not 

support this AD definition.

As described, a functional group was considered as relevant if present in at least 10 

molecules and its mutagenic distribution was higher than 70%. Considering classes 

composed by few dozens of molecules while analysing a dataset composed by 

thousands of molecules could seem statistically irrelevant. However, the threshold on 

the distribution was thought to be able to identify less common functional groups 

related to mutagenic or non-mutagenic effect. Two main reasons were hypothesized for 

the low accuracy in predicting these less common classes: on one hand, their 

unbalanced distribution could be due to chance, and related only to the dataset used. 

On the other hand, these classes might be also uncommon within the training sets, and 

the model could not learn how to predict them. The three less common classes were 

effectively poorly represented within the models' datasets.

Another reason was thought to be related to the techniques used to build the (Q)SAR 

models analysed. The scatter plot analysis showed that the CAESAR model seemed more 

"adherent" to the hypothesis than SARpy and the Benigni-Bossa ruleset. Interestingly, 

CAESAR was the only model including chemical descriptors, whereas the other two were 

based only on structural alerts. Structural alerts-based SAR models classify molecules 

only on the basis of the presence or absence of certain structural fragments. It was 

therefore hypothesized that if a chemical class was not represented within the structural 

alerts, the model could be not able to correctly predict it. This could affect also CAESAR
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since it was a hybrid model, composed by three models, one descriptor-based two 

structural alerts-based. Moreover, the structural alerts utilized were derived from the 

Benigni-Bossa ruleset.

Finally, a possible improvement was considered, starting from the Benigni-Bossa 

ruleset. In some cases, the main rules described as related to mutagenic effect, are 

affected by the presence of other functional group. For example, nitroaromatic 

compounds are generally described as mutagenic, however the contemporary presence 

of a sulfonic acid or a carboxylic group decreases the mutagenic effect of the primary 

group. It was therefore hypothesized that considering the effect of a secondary group 

could improve the definition of the models' applicability domain.

21.4 Considering modulating effect of secondary 
functional groups

Oral presentation by Gonella Diaza R. at 16th International Workshop on QSAR in 

Environmental and Health Science (QSAR2014), Milan, June 17th 2014 

To study the influences of the presence of a secondary functional group, three case

studies were selected among the chemical classes identified by istChemFeat: nitro

aromatic, aliphatic hydroxylamines and aliphatic tertiary amides. Nitro aromatic

compounds were thought to be interesting due to their deviation from the global

"number of matches/percentage of mutagens" trend (as shown in Figure 6). The other

two classes were chosen because of their opposite possible mutagenic effect (Figure 9).

As reported in Figure 7, these three classes were also identified among the 32 potentially

relevant classes.
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Figure 9. M utagenicity of the three chem ical classes se lected  as case stud ies for th e secondary  

classes analysis. The histogram give a global representation o f the mutagenicity of the chemical 

classes identified in the dataset. Nitro aromatic molecules and aliphatic hydroxylamines are 

highlighted in red, aliphatic te rtia ry amides in green.

% of mutagenic molecules in the identified classes 
Whole dataset: 6065 molecules; 3305 mutagens and 2760 non mutagens

100%

80%

60%

40%

20%

0%

The in fluence o f secondary classes on the  m utagenic po ten tia l o f the  selected groups 

w ere processed w ith  istChemFeat (com ple te  o u tpu ts  reported  in Annex B.IV) and 

in itia lly  analysed using a sca tte r-p lo t based approach, com paring the  num ber o f 

m olecules w ith  the  percentage o f m utagens, fo r  each secondary class (Figure 10).

The same approach used to  ide n tify  the  32 p rim ary  classes was adopted  also to  

search fo r secondary classes w hich could have a sensible in fluence on m u tagen ic ity  o f 

the  th ree  classes: a tom -cen tered  fragm ents  w ere  excluded, a th resho ld  o f at least ten  

occurrences w ere used to  exclude sta tis tica lly  irre levan t classes, and on ly  secondary 

classes w hich m utagen ic ity  d iffe red  by at least 15% com pared to  p rim ary  classes w ere  

considered (Figure 10 and Table 34).

Group
(group no. 79) nitro groups (aromatic) 
(group no. 72) hydroxylamines (aliphatic) 
(group no. 34) tertiary amides (aliphatic)

Tot M atches
898
65
81

Tot(muta) % (muta)
763 85%
53 82%
20 25%
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Figure 10. Distribution of th e secondary chem ical classes within the primary classes se lected  

as case studies (nitro arom atic, aliphatic hydroxylamines and aliphatic tertiary am ides). The

number of matches of each secondary class (X axis) is reported w ith the % of mutagenic 

molecules (Y axis) present w ithin it. Secondary classes which possibly mainly influence the 

mutagenicity are highlighted in red.
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Table 34. Relevant secondary classes identified with istChemFeat.

Chemical Feature____________________________ Matches Mutagens Mutagens (%)
Nitroaromatic molecules

(group no. 139) Furanes 84 84 100%
(group no. 140) Thiophenes 37 37 100%
(group no. 65) tertiary amines (aromatic) 29 29 100%
(group no. 33) secondary amides (aromatic) 27 27 100%
(group no. 144) Isothiazoles 19 19 100%
(group no. 64) tertiary amines (aliphatic) 14 14 100%
(group no. 148) Pyrimidines 13 13 100%
(group no. 81) hydrazones 12 12 100%
(group no. 85) secondary alcohols 33 23 70%
(group no. 26) carboxylic acids (aliphatic) 13 9 69%
(group no. 83) aromatic hydroxyls 79 50 63%
(group no. 4) total quaternary C(sp3) 14 3 21%

Aliphatic hydroxylamines
(group no. 11) non-aromatic conjugated C(sp2) 41 40 98%
(group no. 82) hydroxyl groups 25 16 64%
(group no. 52) urea (-thio) derivatives 11 7 64%
(group no. 152) donor atoms for H-bonds (N and 0) 33 21 64%

Aliphatic tertiary amides
(C-035) R-CX..X 10 5 50%
(group no. 112) CH2RX 11 5 45%
(C-011) CR3X 10 1 10%
(group no. 95) sulfides 14 1 7%
(C-009) CHRX2 14 1 7%
(group no. 82) hydroxyl groups 31 2 6%
(group no. 26) carboxylic acids (aliphatic) 16 1 6%
(group no. 32) secondary amides (aliphatic) 17 1 6%
(0-056) alcohol 14 0 0%

The performance of the CAESAR and SARpy models, and the Benigni-Bossa ruleset were 

evaluated on all the secondary classes identified and compared to their mutagenicity 

using again a scatter plot analysis.

21.4.1 Secondary classes analysis for nitroaromatic molecules

898 nitro aromatic molecules were identified within the dataset, 85% of them were 

mutagens. The three models were able to obtain generally reliable predictions within
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th is  class: the  accuracy calculated fo r CAESAR and Benigni-Bossa was 0.86, and th a t 

ca lcu lated fo r  SARpy was 0.83.

The sca tte r p lo t generated from  the  com parison betw een the  m utagenic 

com position  and accuracy in p red ic tion  o f the  secondary classes iden tified  w ith in  the  

n itroa rom a tics  subset showed a particu la r trend  (Figure 11).
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Figure 11. Scatter plot analysis o f th e secondary classes for nitroarom atic m olecules. The

classes identified as possibly relevant (Table 34) have been highlighted in red. Some classes 

overlaps (e.g. both Benigni-Bossa and CAESAR predicted 8 classes composed by 100% mutagens 

w ith an accuracy of 1.00). The Benigni-Bossa and CAESAR models predicted four classes with an 

accuracy which substantially deviated from the identified trend (circled in black). The classes 

w ith less than 5 matches are not included.
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A nearly linear correlation was highlighted between the composition of the classes 

and the accuracy. This trend was clearer for the CAESAR model and the Benigni-Bossa 

ruleset, which showed a nearly identical behaviour, and was probably related to the fact 

the nitroaromatic functional group is described as an alert for mutagenicity within the 

Benigni-Bossa ruleset, and was also included in CAESAR. This means that classes with a 

high number of non-mutagenic nitroaromatic molecules would suffer of a high number 

of false positives predictions.

Four deviations from the global CAESAR/Benigni-Bossa trend were identified (Table 

35). About one-third of the sulfonic acids were non-mutagens, however they were 

predicted by both CAESAR and Benigni-Bossa with a high accuracy (0.71 and 0.78). 

Similar results were obtained for a related atom-centered fragment (R-S02-R). 

Carboxylic acids, on the other hand, seemed to suffer of a lower accuracy, compared to 

other classes with similar percentage of mutagens. These functional groups are 

described by Benigni-Bossa as exceptions to the nitroaromatic rule. The small number 

of sulfonic acids (9 molecules identified) did not allow draw significant conclusions, 

considering also that the two molecules badly predicted did not show the same 

experimental mutagenicity. The errors performed for the R-S02-R class were also 

observed. Nitroaromatic compounds bearing this ACF did not show an experimental 

clear behavior, however they were mainly predicted as mutagens (4 errors out of 5 were 

false positives). Similar results were obtained from the analysis of the carboxylic acids 

class. In this case, 6 molecules were badly predicted by the Benigni-Bossa ruleset (5 of 

them also badly predicted by CAESAR). Also in this case the errors were equally

155



Chapter F
21. A priori study of the applicability domain of (Q)SAR models using chemical classes

distributed among experimentally mutagens and non-mutagens (3 were false positive 

and 3 false negative). These results suggested that the applicability of the main 

nitroaromatic rule in combination with the either sulfonic acid or the carboxylic 

exceptions would need more investigations (not possible within this study due to lack of 

data).

Table 35. Secondary classes present within the nitroaromatic subset, which deviated 

substantially from the global Benigni-Bossa (B-B)/CAESAR trends

CAESAR
group Occurrence % Mutagens B-B Accuracy Accuracy

88% 0.75 0.79

33% 0.78 0.71

47% 0.71 0.78

21% 0.43 0.43

The SARpy model is also based on structural alerts, however these rules were derived 

statistically from its training set. The results suggested that the nitroaromatic functional 

group was present among the model's rules, however probably as part of one or more 

"bigger" fragments. For this reason the correlation between the classes' mutagenic 

propensity and the accuracy in prediction presented more "outliers". The isothiazoles 

was the only "deviated" class which was previously listed among the possibly relevant 

ones. The 19 molecules composed by both a nitroaromatic and an isothiazolic group 

were mutagens, however half of them were predicted as non-mutagens by SARpy. Also 

in this case the number of molecules seemed not sufficient to establish a clear 

applicability domain rule, however the contemporary presence of these two groups 

could be a potential target for future investigations.

(group no. 27) carboxylic 
acids (aromatic)
(group no. 101) sulfonic 
(thio-/dithio-) acids 
(S-110) R-S02-R 17
(group no. 4) total 
quaternary C(sp3)
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21.4.2 Secondary classes analysis for aliphatic hydroxylamines

The aliphatic hydroxylamines functional group matched for 65 molecules within the 

dataset used for this study, the 82% of them were experimentally mutagens. None of 

the analysed models seemed able to obtain reliable predictions: the accuracy calculated 

were 0.54 (CAESAR), 0.40 (SARpy) and 0.32 (Benigni-Bossa).

The scatter plot analysis performed by comparing the mutagenicity composition of 

the secondary classes with the prediction accuracy of the three models, showed a clear 

trend (Figure 12). Secondary classes characterized by a high percentage of mutagens 

were generally predicted with a low accuracy, whereas better results were obtained for 

classes with the opposite composition. This trend was clearer for the Benigni-Bossa 

ruleset than for both SARpy and CAESAR, which showed some deviations (Table 36).

The Benigni-Bossa ruleset did not list aliphatic hydroxylamines among its alerts for 

mutagenicity, this could explain the identified trend. Molecules belonging to this class 

were generally predicted as non-mutagens, therefore secondary classes richer in 

mutagenic molecules were badly predicted, producing a high number of false negatives.

The CAESAR model, as explained, is a hybrid model. Apart from including some of 

the Benigni-Bossa structural alerts, CAESAR includes a molecular descriptor-based 

model. The scatter plot obtained from the CAESAR prediction showed that the 

secondary classes are generally better predicted compared to Benigni-Bossa, suggesting 

that the CESAR model could have partially learned how to predict aliphatic 

hydroxylamines, through its molecular descriptors.
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The analysis of the results obtained with SARpy seemed to support the idea that 

even this model was not able to correctly predict mutagenic hydroxylamines. 

Interestingly, the secondary classes with a percentage of mutagenic molecules between 

60% and 80% were predicted with an accuracy similar to that obtained with CAESAR. On 

the other hand, the accuracy for secondary classes composed by more than 80% of 

mutagens were predicted with an accuracy closer to that obtained by Benigni-Bossa. 

Since SARpy and the descriptor-based model included in CAESAR have been developed 

using the same dataset, SARpy could have also learn, this time through its structural 

alert, how to partially better predict aliphatic hydroxylamines.
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Figure 12. Scatter plot analysis o f the secondary classes for aliphatic hydroxylam ines. The

classes identified as possibly relevant (Table 34) have been highlighted in red, whereas those 

deviating from the global trend are circled in black. The classes with less than 5 matches are not 

included.

Table 36. Secondary classes present within the aliphatic hydroxylam ines su bset, which  

deviated substantially from the global prediction trends.

Group M atches EXP CAESAR Accuracy

(C-008) CHR2X
CAESAR

5 100% 1.00

(group no. 5) ring secondary C(sp3)
SARpy

9 44% 0.67
(0-057) phenol /  enol /  carboxyl OH 5 40% 0.60
(group no. 3) tota l tertiary C(sp3) 7 29% 0.71
(group no. 6) ring tertiary C(sp3) 7 29% 0.71
(C-011) CR3X 7 29% 0.71
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21.4.3 Secondary classes analysis for aliphatic tertiary amides

The aliphatic tertiary amides group matched for 81 molecules within the dataset used 

for this study, 25% of them were experimentally mutagens. CAESAR and Benigni-Bossa 

predicted this class with very good accuracy (0.81 and 0.78), whereas SARpy performed 

worse (0.69).

The scatter plot analysis highlighted a trend between the percentage of mutagens 

within the secondary classes and the accuracy in prediction of the Benigni-Bossa ruleset 

(Figure 13). The model predicted secondary classes with a low presence of mutagenic 

molecules with a higher reliability compared to those with increasing number of 

mutagens. Also the CAESAR model seemed to be characterized by a similar trend, 

highlighted by the position of the more relevant classes (previously reported in Table 

34). The SARpy model, which displayed the worst accuracy for the aliphatic tertiary 

amides class, did not seem to follow any particular trend, predicting the secondary 

classes with an accuracy independent from their mutagenic composition.
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Figure 13. Scatter plot analysis of the secondary classes for aliphatic tertiary amides. The

classes identified as possibly relevant (Table 34) have been highlighted in red.

Considering again the  m odels' a lgorithm s, ne ithe r Benigni-Bossa nor CAESAR w ere  

provided w ith  func tiona l groups p o te n tia lly  re lated to  non-m utagen ic  e ffec t o f a lipha tic  

te rt ia ry  am ides. On the  o th e r hand, Benigni-Bossa include a s truc tu ra l a le rt fo r 

a, (5 unsaturated carbonyls (SA10) w hich could in some cases overlap w ith  the  a lipha tic  

te rt ia ry  am ides d e fin ition  (Figure 14). SA10 was described by Benigni-Bossa as an a le rt 

w ith  com m on carc inogen ic ity  e ffect. In th e ir  study, 29 o u t o f 38 m olecules m atched 

w ere experim enta l carcinogens. This re la tion  was less strong w hen app lied  to  

m utagen ic ity , on ly 8 ou t o f the  26 m olecules th a t m atched th is s truc tu ra l a le rt w ere  

m utagens. The num ber o f a lipha tic  te rt ia ry  am ides th a t fired  SA10 w ith in  th e  dataset
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used in this study was 10, all of them therefore predicted as mutagens, however only 

half of them were experimentally mutagens.

a, p  unsaturated carbonyls (SA10) aliphatic tertiary amides

R i /

Y — N
/  \ \

r 2 ) = o c  0

/ /
R Al

Figure 14. Representation of the Benigni-Bossa SA10 and of the aliphatic tertiary amides class.

R1 and R2 can be any atom/group, except alkyl chains with more than carbons or aromatic rings. 

R can be any atom/group, except OH and 0-. Y can be any aliphatic or aromatic atom, except 

hydrogen or C=0. Al can be hydrogen or aliphatic group linked through carbon.

The results obtained suggested that for chemical classes defined by the presence of 

a functional group not identified as a structural alert by SAR models, the mutagenicity 

of secondary classes could provide information about the prediction accuracy of 

structural alerts-based models. This results also supported the initial hypothesis of a 

possible relation between the mutagenic composition of chemical classes and the 

performance of models. Coming back to the global scatter plot obtained for the primary 

classes (Figure 8), a trend was expected and partially confirmed: classes with very 

unbalanced distribution of the mutagenic effect could be better predicted by models. 

The scatter plot obtained for aliphatic tertiary amides seemed to represent "half" of the 

expected trend. This was due to this class mainly composed by non-mutagenic 

molecules, therefore no secondary classes with a very high presence of mutagens were 

identified.
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22. Development of a novel tool for the automatic 
extraction of primary and secondary classes

The approach afore described has been further studied within our research group, with 

the aim of identifying rules for mutagenicity. The results obtained from the study 

presented within this thesis and those obtained from the identification of mutagenicity- 

related rules, led to the development of a novel tool able to automatically identify 

relevant primary and secondary classes. This novel tool, called istRex, is still under 

development and beta testing. The list of chemical classes integrated within istRex has 

been improved compared to that included within istChemFeat. The number of atom- 

centered fragments have been reduced, keeping only those most relevant and that do 

not overlap with functional groups. The manual analysis performed within our group 

showed that two functional groups present on the same aromatic ring seemed to 

influence the mutagenicity of the molecule depending on their relative position (ortho, 

meta or para). For this reason a new set of classes were included, which described the 

relative position of atoms such as oxygen, nitrogen, etc. A further improvement 

compared to istChemFeat consists in the adoption of the p-value to extract only relevant 

classes. IstRex requires the user to choose a target value (e.g. mutagen or non-mutagen) 

and extract only classes with a composition that substantially differs from that of the 

entire dataset. The p-value is used to determine if this difference can be related to 

chance or is relevant. Once the primary classes are identified, istRex performs the same 

analysis on each subset, to identify secondary rules. Unlike istChemFeat, the new tool 

consider also the occurrence of the functional group within the molecule.
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The novel tool developed was used for a preliminary automated analysis of the 

mutagenicity dataset. Primary and secondary classes relevant to experimental 

mutagenicity and accuracy in prediction of CAESAR, Benigni-Bossa ruleset and SARpy 

were extracted and compared. To identify classes predicted with a substantially 

different accuracy, the molecules were submitted to istRex, using correct/wrong as 

property, and targeting the correct predictions. The results were analyzed using the 

same scatter plot approach afore described (Figure 15).

The scatter plot analysis of the CAESAR accuracy, performed considering only the 

primary classes, showed that most of those identified as relevant for their particularly 

high accuracy were in common with those identified to increase or decrease 

mutagenicity (green dots in Figure 15). Only two classes were characterized by both a 

low accuracy and an unbalanced mutagenicity composition (red dots): aliphatic 

hydroxylamines (65 molecules, 82% mutagens, accuracy 0.54) and CR3X (11 molecules, 

9% mutagens, accuracy 0.36). These two functional groups were also identified in the 

previous manual analysis. The accuracy analysis also identified 4 classes which were not 

identified on the basis of the mutagenic composition (green and red triangles). Two of 

these classes showed a particularly low accuracy: aliphatic imines (11 molecules, 27% 

mutagens, accuracy 0.27) and molecules containing selenium (3 molecules, 100% 

mutagens, accuracy 0.00).
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Figure 15. Scatter p lot analysis o f the prim ary classes identified by istRex. The grey dots 

represent classes which were identified as relevant on the basis of the ir experimental 

mutagenicity, but were not identified on the basis of prediction correctness. Bigger dots 

represent chemical classes identified both as relevant fo r mutagenicity and prediction 

correctness, whereas the triangles represent those identified only for accuracy. The color green 

means that the accuracy for the classes was greater compared to the global dataset, whereas 

the meaning of the red color is the opposite.

Both the  Benigni-Bossa ru leset and the  SARpy m odel p red icted, com pared to  

CAESAR, a h igher num ber o f classes characterized by high or low  presence o f m utagen ic  

m olecules. These results con firm ed  w ha t a lready obta ined from  the  m anual analysis 

a fore  described, and led to  idea th a t the  chem ical classes-based approach fo r  the  

de te rm ina tion  o f th e  app licab ility  dom ain  seems to  perfo rm  b e tte r fo r  m odels w h ich

165



Chapter F
22. Development of a novel tool for the automatic extraction of primary and secondary
classes

include molecular descriptors. The applicability domain of models including only 

structural alerts seemed less suitable to be defined using this approach due to the 

possible lack of information about the chemical classes within the structural alerts.

Chemical classes with unbalanced mutagenic composition which were predicted 

with an accuracy substantially lower compared to that calculated on the whole dataset 

were further analyzed (Table 37). The aliphatic hydroxylaminic group, as afore 

described, seemed to be related to mutagenic effect. Neither of the three models used 

were however able to predict this class with an acceptable accuracy. The analysis of the 

secondary classes showed, for the CAESAR model, a possible relation between the 

presence of aromatic rings and the low accuracy. Four secondary classes were identified 

to substantially decrease (NON-TARGET direction) the accuracy of aliphatic 

hydroxylamines, all of them related to the presence of aromatic rings. Considering 

aliphatic hydroxylamines that did not matched the secondary rules, 41 molecules 

remained, predicted by CAESAR with an accuracy of 0.71. IstRex extracted a secondary 

rule for aliphatic hydroxylamines also for the SARpy model. In this case, molecules 

composed by less than 1 nitrogen atom were predicted with an accuracy of 0.15. 

Considering hydroxylamines composed by more than 1 nitrogen atom resulted in 26 

molecules, predicted with an accuracy of 0.77.
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Part III - Discussion, conclusion 
and future perspective



Chapter G.

Structural properties, functional 
groups and molecular fragments: 

are they able to define (Q)SAR 
models' applicability domain?

The applicability domain of the CAESAR model for bioconcentration factor was chosen 

as a case study to analyse the possible use of simple properties to determine its 

applicability domain. Bioconcentration factor is a relatively simple endpoint to model, 

which usually depends for example on molecular size and the octanol/water partition 

coefficient. Such an endpoint was thought to benefit from the use of simple properties 

to determine the AD. Three main aspects were considered for the determination of the 

AD of the CAESAR model: the molecular size, complexity and the electronegativity. 

These aspects were represented, within this study, using three simple properties: 

molecular weight, atomic composition, and presence of polar atoms (halogens, oxygen 

and nitrogen were considered).

Molecular weight and halogens' presence gave the best results. The R2s calculated 

for molecules included in the model AD substantially differed from those calculated on 

the excluded ones, suggesting that both the parameters adopted provided important 

information about the reliability of the model's predictions. Two molecular weight 

thresholds were adopted to define the AD: 200 Da and 400 Da. Molecules with a MW
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lower than 200 were included in the AD, whereas those with a MW higher than 400 were 

excluded. No applicability domain information could be obtained for molecules with 

MW between these thresholds. The comparison of this definition with the applicability 

domain information provided with the CAESAR predictions showed that the molecular 

weight approach discriminated slightly better between reliable and unreliable 

predictions. Considering only the molecules not present within the training set used to 

build the CAESAR model, the R2 calculated for molecules within the MW-based AD was 

comparable to that calculated using the CAESAR AD (0.70 and 0.69). Unreliable 

predictions were however better identified by the MW approach (R2 0.33), the R2 for 

molecules out of the CAESAR AD was in fact higher (0.39).

The presence of halogens seemed also to affect the CAESAR predictions' reliability. 

Molecules whose mass was composed by more than 40% of halogen atoms were 

generally better predicted by CAESAR. This value was therefore used to define the 

model's AD. Indeed, a second threshold was also applied since a high number of non- 

halogenated molecules were present and the R2 calculated in preliminary analysis did 

not differ from that calculated on the whole dataset. Therefore, non-halogens were not 

considered and another AD approach should be used for their characterization. 

Considering the case of "new chemicals" (not included in CAESAR training set), the 

adopted threshold provided good information for the AD definition: the R2s calculated 

for in AD and out AD molecules were 0.64 and 0.31. These results were also comparable 

with those obtained using the AD information provided by the model.
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Among the other parameters analysed, only the presence of oxygen seemed to affect 

the CAESAR performance. In the preliminary analysis it was observed that molecules not 

containing oxygen were generally better predicted by CAESAR, therefore a threshold of 

0% was tested. The performance evaluated for in AD and out AD molecules, considering 

only molecules not present in the CAESAR training set, gave results comparable to those 

obtained with the halogens-based approach. Molecules which did not include any 

oxygen (in AD) were predicted with a R2 of 0.69 whereas a R2 of 0.37 was obtained for 

molecules outside the applicability domain.

The results suggested that the CAESAR model could benefit from the selected 

thresholds. It is important to underline that the aim was not to find the best method but 

to study approaches able to improve the current AD definition. The CAESAR model is 

implemented within the open source VEGA platform developed by our research group, 

and the applicability domain information are currently provided by a built-in tool. This 

will simplify the study of the possible integration of the identified threshold.

A preliminary study of the described approach was performed for a more complex 

endpoint: rat oral acute toxicity. However, the results obtained (not reported within this 

thesis) did not support the use of simple properties for the characterization of the 

applicability domain of the models studied. It was hypothesized that such simple 

properties were too general to be applied on such a complex endpoint. Therefore, rather 

than considering the presence of single atoms, a chemical classes-based approach was 

studied.
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Using the freely available istChemFeat software, the molecules were classified on 

the basis of their functional groups, obtaining 105 chemical classes. The evaluation of 

the predicting performance of (Q)SAR models for the identified classes was performed 

in collaboration with the ANTARES project. The performance of five models for oral rat 

acute toxicity were being analysed within this project, using a dataset of more than 7000 

molecules with experimental LD50 values. These models were implemented within four 

commercial software: ACD/Labs ToxSuite, Simulation Plus ADMET Predictor, TerraBase 

Inc. TerraQSAR and Accelrys TOPKAT. Only one model was freely available, as 

implemented within the U.S. EPA Toxicity Estimation Software Tool (T.E.S.T.).

The main aim of the chemical classes-based study was to obtain applicability domain 

information related to the endpoint rather than on each single models. Ten classes 

predicted with the highest R2 were considered for each model. The comparison of these 

classes resulted in the identification of five classes predicted with a R2 higher than that 

calculated on the whole dataset (Table 25 - Chapter F), suggesting their possible 

application as rules for an endpoint-based applicability domain. Moreover, the analysis 

performed within the ANTARES project suggested that the applicability domain 

information provided by the models were probably able to identify only a small portion 

of the unreliable predictions.

The ACD software, which showed the best overall performance, identified 118 

molecules as out of its AD. The R2 calculated on these molecules was 0.34, whereas that 

calculated for molecules within the AD was 0.80, which obviously did not differ from 

that calculated in the whole dataset (0.79) since the vast majority of the molecules were
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included in the AD. Four of the five identified classes were predicted with a R2 greater 

than that calculated for in AD molecules: hydrazones (146 molecules, R2 0.87), sulfoxides 

(43 molecules, R2 0.82), CRX3 (349 molecules, R2 0.83) and imidazoles (252 molecules, 

R2 0.85).

The T.E.S.T. software, which resulted as the second best model from the ANTARES 

evaluation (R2 0.68), evaluated only molecules which fell within its AD. The R2s calculated 

for the five identified classes were always higher than the global one: 0.83 for 

hydrazones, 0.76 for sulphides, 0.82 for sulfoxides, 0.78 for CRX3, and 0.78 for 

imidazoles. The performance for these classes were lower compared to ACD, however 

the increment with respect to the global R2s were higher. T.E.S.T. seemed therefore to 

benefit more than ACD of the possible use these classes for the AD definition.

The TerraQSAR software did not include an AD evaluation tool. Four of the identified 

chemical classes were predicted with a R2 higher than the global one (0.64): 0.71 for 

hydrazones, 0.89 for sulfoxides, 0.70 for CRX3, and 0.74 for imidazoles. Generally, the 

improvement of the predictive performance were comparable to those obtained for 

ACD. Sulfoxide molecules, however, gave the greatest improvement and also the 

greatest R2 with respect to the other models. This class was however probably the less 

significant due to its low presence within the dataset (43 molecules out of 7417).

The global performance of the ADMET Predictor software were rather poor: 7293 

molecules within its AD were predicted with a R2 of 0.54, whereas the very few 

molecules excluded from the AD (123) were predicted with a R2 of 0.17. The evaluation 

of the five identified classes resulted in a R2 always greater than that calculated for
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molecules within the AD: 0.71 for hydrazones, 0.63 for sulphides, 0.67 for sulfoxides, 

0.70 for CRX3, and 0.74 for imidazoles.

Finally, TOPKAT gave very low performance for the dataset used, and the built-in 

reliability index (used for the AD definition) did not improved the situation: 6610 

molecules within its AD were predicted with a R2 of 0.41, whereas the other 807 

molecules gave a R2 of 0.28. The performance evaluated on the five classes, even if not 

very high (R2 between 0.50 and 0.55), suggested that even in this case the chemical 

classes approach could improve the model AD definition.

With the aim of identifying common potentially problematic molecules, ten classes 

predicted with the lowest R2 were also considered for each model. Seven classes were 

always predicted with a R2 substantially lower compared to the whole dataset, 

suggesting their possible implementation as AD rules (Table 26 - Chapter F). The 

occurrences of these classes were however rather low, giving potentially the possibility 

to exclude only a small number of molecules from the models' applicability domain, and 

behaving, in fact similarly to the built-in AD evaluation tool.

ACD predicted the identified classes with the highest R2, which ranges from 0.37 to 

0.55, compared to the other models, confirming the global results obtained within the 

ANTARES project. Oxazoles (23 molecules - R2 0.39), thioanhydrides (34 molecules - R2 

0.37) and aromatic aldehydes (36 molecules - R2 0.40) were the worst predicted classes. 

However, their occurrence were too low to possibly provide a significant improvement 

to the model's AD. The class with the high number of occurrence was aromatic 

secondary amines: 174 molecules were predicted with a R2 of 0.48. However more than
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the molecules excluded using the model's built-in AD evaluation, the R2 was also higher, 

suggesting that its application would not affect the model performance.

The R2 values obtained for the T.E.S.T. software showed an opposite scenario. All the 

classes were predicted with a very low R2, which ranges from 0.01 to 0.34. From the 

applicability domain point of view, these results were significant, especially considering 

that T.E.S.T. included all of them within its AD. Moreover, pyrroles and aromatic 

secondary amines, which were the classes with the highest occurrence (174 and 81 

molecules), were predicted with very low R2 (0.22 and 0.26), suggesting a possible 

impact for the AD definition.

The results for TerraQSAR were similar, apart from thioanhydrides that were 

predicted with a R2 of 0.76 (greater compared to the global dataset). The R2 calculated 

for the other classes ranged from 0.12 to 0.34. Also in this case pyrroles and aromatic 

secondary amines were predicted with very low R2 (0.31 and 0.21). The results obtained 

suggested a possible use of the identified chemical classes also for this model.

ADMET predictor and TOPKAT resulted as the model potentially more affected by 

the use of the selected classes for the AD definition. The R2 values ranged from 0.00 to 

0.28 for ADMET and from 0.01 to 0.09 for TOKAT. This reflected the poor predictivity of 

these models, which were also highlighted within the ANTARES analysis. For both 

models the classes gave performance worse compared to the molecules excluded by the 

model's AD. TOPKAT gave a R2 of 0.28 for the 807 molecules excluded from its AD, 

whereas ADMET Predictor gave a R2 of 0.17 for 123 molecules. Also in this case, the 

results supported the chemical classes-based approach.
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To conclude, the results suggested that the identified rules could improve the 

applicability domain definition for all the models considered. These classes, however, 

cannot be used perse, since they are potentially able to define the applicability domain 

only for molecules belonging to them. The integration of these rules within the available 

AD definitions would be the most preferable solution.

The good results obtained using the chemical classes-based approach, led to a more 

ambitious aim: an a priori definition of (Q)SAR models' applicability domain. The idea 

was to hypothesize which chemical classes could be better predicted for a certain 

endpoint, starting from end endpoint distribution among each class. A new endpoint 

was chosen as case study: mutagenicity. Also in this case, a large dataset (6064 

molecules) of experimental Ames test values was available through the ANTARES 

project. The working hypothesis was that (Q)SAR models should be able to predict 

chemical classes whose molecules showed the same effect (e.g. near all mutagens) with 

a higher accuracy compared to more heterogeneous ones (e.g. classes composed by 50% 

mutagens and 50% non-mutagens). The preliminary analysis identified 32 chemical 

classes whose mutagenicity (defined in this case as the percentage of mutagenic 

molecules) substantially deviated from the global dataset (Figure 7 - Chapter F). The 

dataset used for mutagenicity was really balanced with regards of mutagenic and non- 

mutagenic molecules (54% were mutagens), a variation of +/-20% was used to 

considered chemical classes as relevant for the AD definition. A simple approach was 

initially used, considering the molecules of these chemical classes as within the a priori 

applicability domain. This resulted in considering the 58% of the dataset as not reliably
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predictable by (Q)SAR models. This simple and preliminary definition was used to define 

the applicability domain of the three (Q)SAR models included in the freely available 

VEGA software: CAESAR, SARpy, and the Benigni-Bossa ruleset for mutagenicity. The 

reasons for this choice were related to several aspects: the modelling approaches used 

to build them were different, CAESAR was a hybrid model composed on a molecular 

descriptor-based model and two lists of structural alerts (derived from the Benigni-Bossa 

ruleset), SARpy was composed by structural fragments statistically related to the 

mutagenicity effect (developed using the SARpy software), and the Benigni-Bossa was a 

knowledge-based model, composed by structural alerts experimentally related to 

mutagenicity effects (this ruleset has been also used to develop the commercial 

software ToxTree). Moreover, all the models and the VEGA platform have been 

developed within our research group, therefore the exploitation of the results obtained 

should be easier.

The use of the chemical classes-based applicability domain definition was evaluated 

considering information about the training sets used to build the models. Generally, 

(Q)SAR models predict the molecules used to build them with higher accuracy compared 

to "new" chemicals. The presence of such molecules within the dataset used for the 

study could therefore introduce a bias in the analysis. VEGA automatically evaluates the 

applicability domain and identifies molecules that fall within it, the evaluation 

performed by VEGA was therefore compared to that obtained using the chemical 

classes. Considering the subset of molecules not in common with the model's training 

sets (3026 molecules), the models performance slightly improved.
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The CAESAR model predicted the external molecules with high accuracy (0.73) and 

sensitivity (0.85). Using the chemical classes both these parameters slightly increased 

for molecules within the AD (1299 molecules, accuracy 0.77 and sensitivity 0.87) and 

decreased for the other molecules (1727 molecules, accuracy 0.71 and sensitivity 0.83), 

however the difference between in AD and out AD was too small, showing that chemical 

classes were not able to correctly discriminate between reliable and unreliable 

predictions. The specificity parameters were also characterized by similar variations 

(global 0.60, in AD 0.62 and out AD 0.59). The VEGA built-in AD tool, on the contrary, 

substantially improved the performance for new molecules, predicting those within the 

AD with an accuracy of 0.83, a sensitivity of 0.93, and a specificity of 0.71. Moreover, 

about one thousand more molecules were included within the AD, compared to the 

chemical classes approach. The performance also differed substantially compared to 

molecules outside the AD (accuracy 0.49, sensitivity 0.61, and specificity 0.40). The 

analysis of both SARpy and the Benigni-Bossa ruleset showed more or less the same 

scenario: chemical classes only slight improved the performance for new molecules 

which fell within the AD, but left a high number of reliable predictions outside the 

applicability domain.

All the models predicted a number of the selected chemical classes with low 

accuracy. In the cases of CAESAR and SARpy, only a few classes were badly predicted, 

and were also generally composed of few molecules. Benigni-Bossa predicted a higher 

number of classes with low accuracy, including also classes composed of hundreds of 

molecules. The impact of these classes on the AD definition could be a target for future
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analysis. On the other hand, among the selected classes, nitroaromatic compounds 

could have had a high impact on the definition of the AD. This functional group is well- 

known related to mutagenic effect, indeed is included among the Benigni-Bossa ruleset, 

as a structural alert for mutagenicity. This class was one of the most common among the 

whole dataset, and was also the most numerous among the selected classes. The models 

were generally able to correctly predict these molecules, therefore the presence of this 

class could have played a prominent role in the AD definition. This could be another 

possible target for future studies.

To conclude, considering especially the CAESAR and SARpy model, the possible 

integration of the identified chemical classes within the built-in VEGA AD tool could still 

improve the model performance. As already explained, VEGA uses several parameters 

to calculate the so-called Applicability Domain Index (ADI), which ranges from 0 

(unreliable prediction) to 1 (reliable prediction). The presence of the functional groups 

used to define the identified chemical classes could be used as a further parameter for 

the ADI calculation. In particular, since the performance increased for molecules 

composed by these groups, their presence could be used to increase the value of the 

ADI.

Coming back to the subset of classes badly predicted by the model, a possible reason 

was thought to be related to the techniques used to build the (Q)SAR models analysed. 

If the hypothesized relation between "purest" classes and models' predictability was 

correct, a trend should have been identified by plotting the percentage of mutagens 

against the prediction accuracy. In particular, the chemical classes should have formed
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a "U" or a "V" shape. The CAESAR models seemed more "adherent" to the hypothesis 

than SARpy and the Benigni-Bossa ruleset (Figure 6 - Chapter F). Interestingly, while the 

three models were based on structural alerts, only CAESAR included also chemical 

descriptors. The further analysis of three chemical classes chosen as case studies 

supported this explanation.

The nitroaromatic functional group was found in 898 molecules, and 85% of them 

were mutagens. Moreover, the three models gave high accuracy for this class: 0.86 for 

both CAESAR and Benigni-Bossa, and 0.83 for SARpy. As already explained, the 

nitroaromatic functional group is well-known to be related to mutagenic effect, and is a 

structural alert present in both Benigni-Bossa and CAESAR. Its presence is sufficient, for 

these two models, to predict a molecule as mutagen. However, some exceptions were 

described by Benigni-Bossa. This is the case of carboxylic acid and a sulfonic acid group. 

Nitroaromatic molecules bearing one of these two groups are predicted as non­

mutagens. The influence of secondary classes of the prediction accuracy was therefore 

investigated, resulting in a nearly linear correlation between the mutagenicity of these 

classes (again expressed as the percentage of mutagens) and the prediction accuracy of 

both CAESAR and Benigni-Bossa. Only four outliers were identified, two of them were 

the sulfonic and the carboxylic acids. The number molecules of molecules within these 

secondary classes were too few to be further investigated. Also SARpy showed a 

correlation, however less strong and with more outliers. This model is not based on 

functional groups but on structural fragments. The analysis of the presence of the
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nitroaromatic functional group (and its exceptions) within its fragments could help in 

better understand this, even less clear, correlation.

The same analysis was performed for another highly mutagenic chemical class: 

aliphatic hydroxylamines. In this case the Benigni-Bossa ruleset and the CAESAR model 

do not list the functional group as a structural alert. The scatter plot analysis showed 

again a linear trend between the mutagenicity of the secondary classes and the accuracy 

in prediction. In this case the accuracy values were less aligned compared to 

nitroaromatic molecules. However the trend was clear also for SARpy: the accuracy 

decreased for classes richer in mutagens. The comparison of the scatter plots showed 

that the trend for CAESAR model was "shifted" towards better accuracy, compared to 

Benigni-Bossa. Since no structural alert is present for aliphatic hydroxylamines, both 

models failed to predict secondary classes mainly composed of mutagenic molecules. 

The trend showed by the SARpy model supported this idea. For most of the secondary 

classes, the trend was quite similar (in terms of accuracy) to that showed by Benigni- 

Bossa. Instead, all the classes composed by 60 to 80% of mutagens gave accuracy 

comparable to CAESAR. Both the CAESAR molecular descriptor module and the SARpy 

model were built starting from the same training set. Most probably, both these models 

were able to partially learn how to predict this chemical class during their training. A 

further analysis should be to check the composition of the CAESAR/SARpy training set 

to verify this hypothesis.

The last class considered as case study was aliphatic tertiary amides. This class was 

identified as one of the possibly less mutagen (only 25% of the molecules were

183



Chapter G
Structural properties, functional groups and molecular fragments: are they able to define
(Q)SAR models' applicability domain?

mutagens). The Benigni-Bossa ruleset and VEGA do not include rules for non-mutagens, 

apart from the exceptions to the structural alert, however this the aliphatic tertiary 

amides functional group was not listed as exception to any rule. The scatter plot analysis 

of the secondary classes showed a trend also for these molecules. In this case both 

CAESAR and Benigni-Bossa seemed able to better predict less mutagenic secondary 

classes. The SARpy model, on the other hand, did not show a particular trend.

In conclusion, the secondary classes approach seems to be able to provide 

interesting a priori information for the definition of SAR models' applicability domain. 

Better results should be obtained for secondary classes mainly composed of mutagenic 

molecules, if the functional group that defines the primary class is also a structural alert 

for the model. This simple observation could be helpful in the improvement of the 

applicability domain of each structural alert present in a ruleset. On the other hand, if 

the primary class is not defined by a functional group present among the model's 

structural alerts, and is mainly composed by mutagens, better performance should be 

expected for less mutagenic secondary classes. Finally, the opposite behaviour is 

expected for primary classes not present among the model's rules and composed mainly 

by non-mutagenic molecules. Interestingly, if we consider the scatter plot obtained in 

this case together with that obtained in the first case, the expected "U" shape can be 

observed.

Starting from the results obtained from analysis if the "secondary classes" approach, 

a tool is currently being developed within our group, able to identify primary and 

secondary rules, automatically. The best version of this software was used for a

184



Chapter G
Structural properties, functional groups and molecular fragments: are they able to define

(Q)SAR models' applicability domain?

preliminary analysis. Primary and secondary classes which showed a substantial 

difference (in terms of either mutagenicity or accuracy) were extracted using this 

software. Also this tool identified the aliphatic hydroxylamines class as potentially 

relevant, since its mutagenicity was substantially higher compared to the global dataset. 

This class was also identified as related to a decrease in performance for the three 

models considered. Interestingly, secondary classes which furtherly substantially 

decreased the accuracy were identified for the CAESAR and SARpy models. In the first 

case the classes were all related to the presence of aromatic rings, whereas in the 

second case the number of nitrogen atoms seemed to negatively affect the SARpy 

performance for aliphatic hydroxylamines. The analysis performed was simple and 

preliminary, however the results supported the secondary classes-based approach for 

the determination of the (Q)SAR models applicability domain and showed the potential 

of the automation of this approach.

The SARpy software is a freely available tool able to identify structural fragments 

related to a binary property chosen by the user. It has been used for example to develop 

the SARpy model for mutagenicity, included in the VEGA platform. Compared to the 

functional groups and atom-centered used by istChemFeat, these structural fragments 

are generally more complex and therefore potentially more specific. The idea was to use 

this software to model the errors in prediction of (Q)SAR models, by extracting structural 

features related to correct or wrong predictions. The CAESAR model for mutagenicity 

was chosen as case study. This software can classify molecules as "Mutagen", "Suspect 

Mutagen" or "Non Mutagen", however a binary classification was adopted within the
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ANTARES project, by considering the "Suspect Mutagen" as "Mutagen", accordingly to 

the conservative approach foreseen within regulatory contexts. Therefore, two type of 

errors can be identified: mutagenic molecules predicted as non-mutagens (false 

negative prediction, FN), or non-mutagenic molecules predicted as mutagens (false 

positive prediction, FP). Molecules correctly predicted are referred as true positive (TP) 

if mutagens, and true negative (TN) if non-mutagens. Two rulesets were extracted with 

SARpy, to consider the two type of errors separately. The first ruleset included 

fragments related to TP and FP CAESAR's predictions, whereas the second one included 

fragments related to TN and FN. This resulted in the identification of 125 fragments 

related to TP predictions, 40 for FP, 78 for TN, and 18 for FN. The number of fragments 

related to correct predictions were higher because CAESAR produced a relatively small 

number of errors (813 FP and 295 FN) compared to the whole dataset (6065 molecules), 

therefore SARpy had only few molecules to study. The prediction accuracy of these 

rulesets were evaluated using test sets composed by new molecules (not used for their 

extraction), and the results supported the use of these fragments for the estimation of 

correct and wrong CAESAR's predictions (Table 13 and Table 15 - Chapter F). Both TP-FP 

and TN-FN rulesets predicted wrong and correct predictions with an accuracy of 0.74. 

Being based on structural fragments, these rulesets could predict only molecules 

containing them. Therefore, TP-FP and TN-FN could not predict 15% and 31% of their 

test sets.

What we obtained was substantially a four-rulesets-based model for the prediction 

of correct (TP and TN) and wrong (FP and FN) CAESAR's predictions. These rulesets were

186



Chapter G
Structural properties, functional groups and molecular fragments: are they able to define

(Q)SAR models' applicability domain?

used to define the applicability domain of the CAESAR model, by considering molecules 

predicted as TP and TN as within the AD, and those predicted as FP and FN as outside 

the AD. Molecules not predicted by the SARpy rulesets were left to be assessed by the 

built-in VEGA AD tool.

The rulesets-based and VEGA AD definitions were compared on the basis of the 

improvement they provide to the CAESAR performance. This comparison followed a 

four-step process: definition of the AD using the complete lists of fragments, study of 

the possible performance improvement by considering only the most "accurate" ones, 

analysis of the performance of the VEGA AD considering only the molecules for which 

the SARpy fragments could not provide AD info, and integration of the two AD definition. 

Moreover, the "worst" possible situation was considered, by analysing the CAESAR 

performance on completely new chemicals. This subset was obtained excluding 

molecules in common with the whole CAESAR dataset, not just its training set. Indeed, 

VEGA evaluates the AD using all the data available for the model, and compares the 

target molecule with those most similar present within the whole dataset. Therefore the 

presence of the target chemical within the dataset could simplify its evaluation. For the 

same reason, the molecules used as training set to identify the SARpy rules were also 

removed. The external validation set was finally composed of 762 molecules (10% of the 

original dataset). Considering the prediction accuracy, the two AD approaches gave 

comparable results: 0.75 and 0.76 for molecules within the ruleset-based AD and VEGA 

AD (Chapter F.19 - Table 16 and Table 17), and 0.53 and 0.56 for molecules without the 

ADs. The detailed analysis of FP and FN, however, highlighted some differences. Both
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approaches were able to discriminate between mutagens correctly and wrongly 

predicted (TP and FN), indeed the models' sensitivity (0.89 for ruleset AD and 0.91 for 

VEGA AD) slightly increased compared to the whole external set (0.84). However, a lot 

of true positive predictions were excluded from the model's AD, especially by the 

rulesets: CAESAR's sensitivity for out AD molecules was 0.74. The VEGA AD performed 

better, with a sensitivity for out AD of 0.67, which was however still high. Considering 

the FP errors, the ruleset performed better in discriminating unreliable predictions. Both 

methods slightly increased the CAESAR specificity for in AD molecules (0.57 using the 

ruleset and 0.59 using VEGA) compared to the whole external set (0.55), suggesting that 

a lot of FP predictions were considered as reliable. The most interesting results were 

obtained, however, for molecules excluded from the applicability domain. Using the 

ruleset approach resulted in a specificity of 0.34, suggesting a subset mainly composed 

of FP predictions. The VEGA AD performed worse, providing a specificity of 0.47. These 

results opened the possibility of an integration of these two methods.

Before trying the VEGA-ruleset integration, however, a possible improvement of the 

ruleset's performance was studied. For each rule SARpy provides a score (called the 

likelihood ratio index, LRI) that substantially describes their prediction ability. Different 

LRI thresholds were used to verify the improvement of the CAESAR performance on the 

training set used to build ruleset (Chapter F.19 - Table 18). A reduced version of the 

original ruleset was obtained and evaluated on the SARpy test set (Chapter F.19 - Table 

19). The reduced ruleset was not able to provide information for a higher number of 

molecules (921) compared to the original one (414). However, its ability to correctly
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identify FP greatly increased: the specificity for out AD molecules decreased from 0.51 

(obtained using the complete ruleset) to 0.15. A slight improvement was also observed 

for in AD molecules (the specificity increased from 0.74 to 0.79) and for sensitivity for 

out AD molecules (the sensitivity decreased from 0.85 to 0.77).

Another analysis was important before integrating the two approaches: checking the 

ability of VEGA to discriminate reliable and unreliable predictions for the molecules not 

considered by the SARpy ruleset (Chapter F.19 - Table 20 and Table 21). The differences 

between accuracy, sensitivity and specificity calculated for in AD and out AD molecules 

were used for the comparison. Considering again the new molecules, VEGA was more 

able to discriminate between reliable and unreliable predictions for those not 

considered by SARpy (accuracy, sensitivity and specificity differences between in AD and 

out AD were 0.24, 0.29 and 0.15), than on the whole subset (0.20,0.24 and 0.12).

The final step of the study was the integration of the two methods. A very simple 

approach was used: the SARpy reduced ruleset was used to determine the AD 

information for the molecules containing its fragments, and VEGA was used for the other 

molecules (Chapter F.19 - Table 22). Even this simple approach produced interesting and 

promising results. The performance for in AD molecules were comparable to that 

obtained using VEGA. However, a far greater number of molecules were included within 

the AD (624, 82% of the external subset), compared to VEGA (524 -  69%). Even more 

important results were obtained considering molecules outside the applicability 

domain: accuracy, sensitivity and specificity resulted lower for the combined approach 

(0.45, 0.58 and 0.36) compared to VEGA (0.56, 0.67 and 0.47). Considering that the
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number of molecules excluded from the combined approach (138) were substantially 

lower than those excluded by VEGA (238), it is possible to conclude that the introduction 

of the structural fragments information improved the definition of the CAESAR model 

applicability domain.
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Conclusions and future perspective

In the last years, the European Community funded several international research project 

with the aim of improving the knowledge and the use of computer-based predictive 

models. (Quantitative) Structure-Activity Relationship ((Q)SAR) represents a family of 

approaches commonly used to develop such models. These methods are based on the 

assumption that biological properties (such as toxicity) are strictly related to the 

structural conformation of chemicals. Therefore, using datasets of chemicals with 

known structure and experimental values of the property to analyse, it is possible to 

study the structure-activity relationship, and to also apply the "rules" extracted on new 

chemicals, to predict their properties. (Q)SAR methods are based on mathematical and 

statistical modelling approaches, which learn from a training set of experimental 

observations and can be then used to obtain predictions. Depending on the similarity of 

the new element compared to the training set, the estimation could be considered as 

an interpolation or an extrapolation. In the first case the results are usually more 

reliable. The problem of prediction reliability, therefore, affects also (Q)SAR models, 

making it indispensable to correctly identify the so-called "applicability domain" (AD) of 

the models.

As reported in Chapter C, several methods for the determination of the AD have been 

developed through years, including approaches based on chemical classes and atom-
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centered fragments. In a recent study, the LIFE+ ANTARES project evaluated more than 

50 (Q)SAR models for eight endpoints relevant for the REACH regulation. The 

performance of these models were assessed using large and verified dataset and 

considering, when available, the information about the AD of models, provided by their 

developers. The results obtained showed that the use of AD information generally 

improved the model's predictive performance and could be helpful in the discrimination 

of reliable and unreliable predictions.

The main aim of the research activities described in this thesis, was the study of the 

possibility to use structural parameters to improve the definition of (Q)SAR models' AD. 

The leading idea was to use structural properties and features of different complexity, 

from simple properties (e.g. molecular weight) to statistically extract molecular 

fragments. Different type of endpoints and models were also considered to obtain an 

overview of the possible application of the methods studied.

The first and simplest approach studied was based on the hypothesis that simple 

properties (e.g. molecular weight and chemical composition) could affect the reliability 

of model's prediction. The idea was to identify thresholds for these properties, able to 

discriminate between molecules within or outside the applicability domain of (Q)SAR 

models. This approach was studied using the CAESAR model for bioconcentration factor, 

which was a rather simple neural network, based on eight molecular descriptors. The 

results showed that threshold selected using a training set were also able to improve 

the definition of the applicability domain of the CAESAR model while applied on new 

molecules.
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These results opened the way for more complex analysis that involved the use of 

functional groups and structural fragments. Functional groups were used to define 

chemical classes, whose possible relation with model's reliability was then investigated. 

The leading hypothesis was to identify chemical classes either commonly correctly or 

wrongly predicted by different models for the same endpoint. A preliminary study of 

five models for oral rat acute toxicity confirmed this hypothesis, leading to the 

identification of five chemical classes predicted with high R2 values and seven with low 

R2s by all the models considered. These results seemed to support the idea of using 

chemical classes for an a priori definition of (Q)SAR models' applicability domain. This 

possibility was investigated using three models for mutagenicity. The change in the 

endpoint was mainly due to the possibility of integrating the results obtained, within the 

VEGA platform (developed within our research group), which did not include models for 

acute toxicity. To define the AD a priori, it was hypothesized that chemical classes 

commonly composed of either mutagens or non-mutagens, should by easier to predict 

by models. The results initially obtained only partially supported this hypothesis. 

Starting from the experimental evidences, included within the Benigni-Bossa ruleset for 

mutagenicity, that the contemporary presence of a secondary functional group could 

decrease the mutagenicity of a primary one, the influence of secondary classes on the 

accuracy in prediction was also investigated. The results suggested that the use of 

secondary classes could help in improving the applicability domain definition, however 

more studies are necessary to confirm generalize this hypothesis.
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Finally, the possibility of modelling the errors in predictions using a structural alerts- 

based approach was studied. Structural alerts can be generally used to build SAR models 

(e.g. for mutagenicity), and can be derived by experimental evidences or using statistical 

methods. In this case, the prediction correctness of the CAESAR model for mutagenicity 

was used as an endpoint to identify statistically relevant fragments. Fragments related 

to correct predictions were used to identify molecules within CAESAR's AD, whereas 

those related to wrong predictions were used to exclude molecules from the AD. The 

obtained ruleset was compared and integrated with the AD definition provided by 

CAESAR, proving its ability to improve this definition.

All the approaches presented in this study are of course open for further analysis. 

New chemicals and endpoints, as well as other available models could be used to study 

the reliability of the methods developed. The possible overlap between the approaches 

presented in this thesis and those provided by the models' developers should also be 

studied more in detail. In order to further confirm the improvements obtained within 

this work, the molecules classified as within the model AD (as well as those excluded 

from it) by different approaches should be compared. Moreover, the integration of the 

approaches presented could help in improving even more the definition of the 

applicability domain of (Q)SAR models. Since the methods developed are all based on 

structural features (atom, functional groups and structural fragments), possible overlaps 

could be identified while applying them to the same endpoint and models. For example, 

the functional groups used for the definition of chemical classes, could be also present 

within the structural alerts statistically identified. Such results would confirm the
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importance of certain features for the AD definition, and the possibility to identify 

chemicals easily predicted, for a particular endpoint, by virtually every model developed. 

The opposite situation would be an even more important goal: identifying classes of 

molecules difficult to be reliably predicted could on one hand stimulate the research of 

new modelling approaches, and other hand could suggest the end-users to use other 

methods to obtain the data needed. More realistically, an improved definition of (Q)SAR 

models' AD is of key importance for the integration of the results obtained by different 

models, for example in the case of risk assessment.
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Annex A.

SARpy fragments

I. List of fragments extracted by SARpy
In this annex are reported the complete lists of fragments extracted by SARpy. The

fragments have been sorted primarily by the target property, then by their likelihood

ratio (LR), in decreasing order. The "inf" LR value means that the fragment correctly

predicted all the molecules targeted in the training set. For example, a fragment

associated with true positive (TP) molecules, which was found only in TP molecules.

Table A. Fragments extracted by SARpy and related to the true positive (TP) and false positive 

(FP) predictions obtained by the CAESAR model for mutagenicity. These fragments were 

obtained using a training set composed only by TP and FP molecules. The SMARTS column 

contain the SMILES representation of the fragments, Target is the property statistically

associated to the fragment and Training LR is the likelihood ratio calculated by SARpy.

SMARTS Target Training LR
clccc(ol)[N](=0)0 TP inf
N#N TP . inf
clcsc(cl) TP inf
0=NN(C(=0))C TP inf
NlC(Clclcccccl) TP inf
CCC(Nclccnc2clccc(c2)) TP inf
C0S(=0)(=0) TP inf
C(COC(C))CN TP inf
Cl=Cc2c3clcccc3ccc2 TP inf
clccc2c(clC)ncc(n2) TP inf
Cclcn(c2clcccc2) TP inf
clsnc2clcc(cc2)[N](=0)0 TP inf
0=C(clccc(ccl)[N](=0)0) TP inf
CCCN(CCC)N=0 TP inf
C(Cnlcnccl) TP inf
[N] (=0)clcc2ccccc2c2clcccc2 TP inf
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SMARTS Target Training LR
C=Cclccc(ccl)[N]0 TP inf
N(clccc(ccl)0)C TP inf
clcccc2clccclc2cccnl TP inf
clcc2ccccc2c2clcc(cc2)[N] TP inf
CIC=C(S) TP inf
0[N]clccc2c(cl)cc[nH]2 TP inf
C0clccc(ccl)N=0 TP inf
COCCBr TP inf
C(clccc2c3clccclc3c(cc2)cccl)0 TP inf
Nclccc(c(cl)N)N=Nclcccccl TP inf
clcccc2cloclccccclc2=0 TP inf
Cclccc2c(cl)cclc(n2)ccccl TP inf
Sclccc(ccl)[N]0 TP inf
CIC(C(=0))CI TP inf
CN([N](=0)0) TP inf
0clccc(c2clC(=0)clccccclC2=0)0 TP inf
[N]clcc(ccclclcccccl)[N] TP inf
Nclccc2c(cl)nccc2 TP inf
[N](c2cc(cc(c2C)[N])[N]) TP inf
Nclncnc(cl) TP inf
C(=0)0CC1C01 TP inf
CCOCNN TP inf
COCC(=CCI) TP inf
N(CNC)CC TP inf
OC=CC=C TP inf
clcc(nnl) TP inf
clccc(ccl)clccc(ccl)OC TP inf
clccc2c(cl)clccccclC2C TP inf
Clclccc(c(cl))[N](=0)0 TP inf
clccc(nnl)NN TP inf
BrC(=C) TP inf
CC(0N(C(=0)clcccccl)0C(=0)C) TP inf
clnccc2cl[nH]clc2ccccl TP inf
Nclscc(nl)clccc(ccl) TP inf
C(=0)clccccclCI TP inf
0=Nclccc(ccl)clcccccl TP 13.23
0(Cclcccc2clcccc2)C TP 9.45
[N]clccc(ccl)clccc(ccl)[N] TP 8.64
Cclccc2c(cl)cclc(c2)ccccl TP 7.29
C=Cclccc(ccl)[N] TP 7.29
[N]clccc(ccl)Oclcccccl TP 6.21
clccc2c(cl)cclc(n2)ccccl TP 6.21
CCN(C)N=0 TP 5.47
0=Cclcccc(cl)[N]0 TP 5.4
0=Nclcccc2clcccc2 TP 4.66
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SMARTS Target Training LR
clcccc2clsnc2 TP 4.59
CICCNCC TP 4.32
CCN(N=0)CC TP 4.14
[N]clccc2c(cl)clccccclcc2 TP 4.14
NCclccc(c(cl)0) TP 4.05
clcc(0)cc2clnccc2 TP 4.05
Cclccc(c(cl)[N])C TP 3.78
nlcnc(clclcccccl) TP 3.78
clnc2cc(cc(c2ncl))[N] TP 3.78
C(clcccccl)OCclcccc(cl) TP 3.51
0[N]clccc2c(cl)cccc2 TP 3.46
ClC=Cc2c(Cl)ccclc2ccccl TP 3.24
clcc(0)c(ccl0) TP 3.24
[N] (=0)clcc(cccl)clcccccl TP 3.2
[N]clcc(cccl)clcccccl TP 3.14
BrCBr TP 2.97
0=CCCCN TP 2.84
[N]clccc(ccl)clcccccl TP 2.76
C(clcc2ccc3c4c2c(cl)ccc4ccc3)0 TP 2.7
Fclccc(ccl) TP 2.5
clccc(ccl)N=Nclccc(ccl)[N](=0)0 TP 2.43
CC(=CC1C(C1)) TP 2.43
COP(Oclccc(ccl)) TP 2.16
[N]clccc(c(cl)[N](=0)0)N TP 2.16
0=Cclcccc(cl)[N] TP 2.16
[N]clnc2c(nlC)cccc2 TP 2.16
OOC TP 2.16
nlc2ccccc2c2clcccc2 TP 2.09
clccc2c3clccclc3c(cc2)cccl TP 2.04
CIC(CI)CI TP 2.03
clccc(ccl)0CClOCl TP 2.03
clc2ccccc2cc2clcccc2 TP 1.82
CICC=C TP 1.8
0[N](=0)C TP 1.62
CN(C)C TP 1.59
CN(C(C)C)C TP 1.57
clcc2cccc3c2c(cl)clccccc31 TP 1.49
CCNCCfN] TP 1.47
clccc(cclC(C))clcccccl TP 1.41
[N](clccc(c(cl))C) TP 1.4
clccc(ccl)N=Nclccc(ccl)[N] TP 1.38
clccc2c3clccclc3c(cc2)c(ccl)0 TP 1.35
CCCCclccc(ccl) TP 1.33
N(clc(cc(ccl)))[N] TP 1.28
clnsc(cl) TP 1.28
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SMARTS Target Training LR
OCCclccc(ccl) TP 1.27
clccc(ccl)C(=0)clcc(0)c(c(cl)) TP 1.24
C(0)0 TP 1.24
C[N](C) TP 1.24
clcc2ccccc2c2clclccccclcc2 TP 1.22
NCCC TP 1.2
Nclccc(ccl)Cclccc(ccl) TP 1.15
[N](=0)clccc(ccl)[N] TP 1.14
Nc2ccccn2 TP 1.08
COclccc(ccl)C(C)C TP 1.08
0[N](=0)clcccc(cl)[N] TP 1.08
clnc2c(sl)cccc2 TP 1.08
BrCCC TP 1.08
[N]clcccc(cl)[N] TP 1.07
C(=0)clccccclC TP 1.07
clc(0)ccc2clcccc2 TP 1.06
0(Cclcccccl)C TP 1.04
OCCCI TP 1.01
C0C(=0)C TP 1.01
nlncc(c(cl=0)CI)CI FP inf
CCCCCCCC1C01 FP 24.07
0=C1C=CCC=C1 FP 13.58
CCCCCC1C01 FP 13.58
OclccccclNC(=0)C FP 11.11
C(F)(F)F FP 9.87
CNNC FP 9.87
CCCCCI FP 8.02
N(CSCC) FP 7.41
N(clcccccl)clcccccl FP 6.48
N=[N]0 FP 5.55
CCCCCCCC FP 4.23
[N](=0)clccccclO FP 4.14
CCCCCC=C FP 3.09
CCclccc(c(cl)OC) FP 2.96
[N](clcccc(clC)[N]0) FP 2.88
NCC(C(C(C0))0) FP 2.88
CCOCCOCC FP 2.69
CCN(clccc(ccl)N=N)CC FP 2.59
clccc(ccl)Br FP 2.56
[N]clccccclO FP 2.36
OCclcccc(cl)[N] FP 2.28
Clclccc(c(cl)[N]) FP 2.18
0clccc(c(cl)0)C(=0) FP 2.18
CCclcccc(cl)[N] FP 2.08
C(=0)C0CC FP 1.85
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SMARTS Target Training LR
C(C(=0)0)CI FP 1.85
clccc2c(cl)oc(=0)cc2 FP 1.85
clccc(ccl)C10ClC FP 1.79
0=C(clcccccl)0 FP 1.67
C(=0)Nclcccccl FP 1.48
CC(=0)N FP 1.47
Cclcccncl FP 1.44
CCOCCN FP 1.4
clccc(c(cl)0)C FP 1.34
C(=0)C[N] FP 1.26
OCclcccccl FP 1.15
S(=0)(=0)0 FP 1.09
clccc(c(cl))C(=0)clcccccl FP 1.09
N(Cclcccccl)C FP 1.04
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Table B. Fragments extracted by SARpy and related to the true negative (TN) and false 

negative (FN) predictions obtained by the CAESAR model for mutagenicity. These fragments 

were obtained using a training set composed only of TN and FN molecules. The SMARTS column 

contain the SMILES representation of the fragments, Target is the property statistically

associated to the fragment and Training LR is the likelihood ratio calculated by SARpy.

SMARTS Target Training LR
cccc=ccccc TN inf
C(=0)NC(C)C TN inf
CCCOC(clcccccl) TN inf
CCCC(CC0)0 TN inf
C(=0)COclcccccl TN inf
Oclccc(ccl)C=C TN inf
CN=C TN inf
clcc(ccclS(=0)(=0))[N] TN inf
clcc(CI)c(c(cl)CI)CI TN inf
clccc(ccl)C(clcccccl)(C) TN inf
NC(=0)Nclcccccl TN inf
Brclcc(Br)c(c(cl)) TN inf
0=CCCC(=0)0 TN inf
C(=C)CCC=C(C) TN inf
C0P(=S)(0) TN inf
Nclccccnl TN inf
nlscccl TN inf
Cclcc(c(c(cl)C(C)(C)C)) TN inf
clccc2c(cl)cc(n2)C TN inf
CCCC(=0)NC TN inf
C(clcccccl)C(N)C TN inf
FCC(F)(F) TN inf
CCCCS TN inf
S(=0)(=0)clcccc2clnccc2 TN inf
CC(C0C(=0)CC)C TN inf
CN1CCNCC1 TN inf
0CC10C(CC10)nlccc(ncl=0) TN inf
CCCCCCCCOC(=0)C TN inf
clcoc2c(cl)c(0)cc(c2) TN inf
0CC0C(=0)C=C TN inf
CSclccc(ccl) TN inf
C1C2CCC(C1)C2 TN inf
clncnc(nl) TN inf
clccc(ccl)CCCCCCCC TN inf
CCCCCCCCCCCN TN inf
CCCC0P(0)0 TN inf
Cclccnccl TN inf
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SMARTS Target Training LR
clscncl TN inf
CC(=C)C#N TN inf
clcccc2clnc(o2)clcccccl TN inf
clcnccnl TN inf
C[Si] TN inf
0=C(clcccc2clnccc2)0 TN inf
clnncc2clcncc2 TN inf
clcnn(c(=0)cl) TN inf
0C(=0)CC(=0) TN inf
clccc(ccl)0P(0clcccccl)0 TN inf
clccc(ccl)C(=0)clccc(ccl) TN inf
C0C(=0)clccc(ccl)C TN inf
CNS(=0)(=0)clccc(ccl) TN inf
Oclccc2c(cl)cc(n2) TN inf
ccc=cc=cc=o TN inf
CC(C0S(=0)(=0)) TN inf
clcccsl TN inf
C(=0)0C(=0) TN inf
clccc(cclCI)CI TN 10.18
CCSC TN 5.77
COC(C)(C)C TN 4.1
Oclccc(c(cl)CI) TN 3.95
OCCOCCOC TN 3.8
OCCN(CC)C TN 3.11
C(=0)0CCC TN 2.99
clccc(cclC)CI TN 2.89
Oclccc(ccl)C(=0) TN 2.35
Clclccc(ccl) TN 2.29
CCCCOclccc(ccl) TN 2.28
0C(=0)C0 TN 2.18
CC(CCC=C(C))C TN 2.05
COclcccc(cl)C TN 1.63
NCCCN TN 1.59
COclcccc(cl)C(=0) TN 1.52
C(=0)clcccc(cl[N]) TN 1.44
Cclccc(ccl)CI TN 1.4
C(=0)Nclcccccl TN 1.39
OCclccc(ccl)CI TN 1.22
N#Cclccc(ccl) TN 1.22
CNCCCO TN 1.09
N#C TN 1.04
ONC(=0)clcccccl FN inf
clnc(c([nH]l)clcccccl)clcccccl FN inf
CC1200Clclc(02)ccccl FN 52.67
COO FN 16.46
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SMARTS Target Training LR
CC(=0)N0 FN 9.88
[N] (=0) FN 3.66
CC(=CC)clccc(ccl) FN 3.29
CICCI FN 2.71
CCCI FN 2.44
C0CC0C(=0) FN 1.98
NCN FN 1.86
Cclccc(ccl)[N] FN 1.76
CC(CCC(0)(C)C) FN 1.54
CCICCC(OI) FN 1.32
clccc(ccl)OC FN 1.23
C(Cclcccccl)C FN 1.21
clccc(ccl)[N] FN 1.21
CCOCC(CO) FN 1.1
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II. Statistical analysis of the fragments
The ruleset generated by SARpy were used to predict the molecules of both training and 

prediction sets. The occurrences of each fragment were calculated, as well as the 

number of correct assignment (e.g. a fragment related to true positive predictions, 

found in molecule whose CAESAR prediction was a TP), wrong assignment, and the 

percentage of correctness. The results are reported in the following tables, grouped by 

the fragment's target property. The fragments are sorted by their LR values in 

decreasing order.
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Annex B.

Chemical classes

III. Chemical classes identified within the 
mutagenicity dataset

Here is reported the complete output of the istChemFeat software, relative to the 6065 

molecules with experimental Ames test values used for the study. Using the SMILES 

representation of the molecules, the tool compared the dataset with a library of 

functional groups and atom-centered fragments. For each chemical classes, 

istChemFeat calculate the total number of matches within the dataset, and the 

distribution of the property. In this case, the number and percentage of mutagenic and 

non-mutagenic chemicals within each classes were calculated.

Table G. Chemical classes identified within the mutagenicity dataset. Within this study the 

chemical classes were defined by the presence of either a functional group (group no. N) or an 

atom-centered fragment (ACF). For each class are reported the total number of matches 

(molecules containing the group or ACF), the number and percentage of mutagens.

Group Matches Mutagens Mutagens (%)
(group no. 1) terminal primary C(sp3) 3192 1569 49%
(group no. 2) total secondary C(sp3) 2435 1137 47%
(group no. 3) total tertiary C(sp3) 798 273 34%
(group no. 4) total quaternary C(sp3) 292 73 25%
(group no. 5) ring secondary C(sp3) 1282 680 53%
(group no. 6) ring tertiary C(sp3) 513 202 39%
(group no. 7) ring quaternary C(sp3) 199 49 25%
(group no. 8) aromatic C(sp2) 4350 2566 59%
(group no. 9) unsubstituted benzene C(sp2) 3973 2378 60%
(group no. 10) substituted benzene C(sp2) 4021 2387 59%
(group no. 11) non-aromatic conjugated C(sp2) 1789 965 54%
(group no. 12) terminal primary C(sp2) 280 109 39%
(group no. 13) aliphatic secondary C(sp2) 990 496 50%
(group no. 14) aliphatic tertiary C(sp2) 458 184 40%
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Group
(group no. 16) terminal C(sp)
(group no. 17) non-terminal C(sp)
(group no. 20) isocyanates (aliphatic)
(group no. 21) isocyanates (aromatic)
(group no. 22) thiocyanates (aliphatic) 
(group no. 23) thiocyanates (aromatic) 
(group no. 24) isothiocyanates (aliphatic) 
(group no. 25) isothiocyanates (aromatic) 
(group no. 26) carboxylic acids (aliphatic) 
(group no. 27) carboxylic acids (aromatic) 
(group no. 28) esters (aliphatic)
(group no. 29) esters (aromatic)
(group no. 30) primary amides (aliphatic) 
(group no. 31) primary amides (aromatic) 
(group no. 32) secondary amides (aliphatic) 
(group no. 33) secondary amides (aromatic) 
(group no. 34) tertiary amides (aliphatic) 
(group no. 35) tertiary amides (aromatic) 
(group no. 36) (thio-) carbamates (aliphatic) 
(group no. 37) (thio-) carbamates (aromatic) 
(group no. 38) acyl halogenides (aliphatic) 
(group no. 39) acyl halogenides (aromatic) 
(group no. 45) thioesters (aromatic)
(group no. 48) aldehydes (aliphatic)
(group no. 49) aldehydes (aromatic)
(group no. 50) ketones (aliphatic)
(group no. 51) ketones (aromatic)
(group no. 52) urea (-thio) derivatives 
(group no. 53) carbonate (-thio) derivatives 
(group no. 54) amidine derivatives 
(group no. 55) guanidine derivatives 
(group no. 56) imines (aliphatic)
(group no. 57) imines (aromatic)
(group no. 58) oximes (aliphatic)
(group no. 59) oximes (aromatic)
(group no. 60) primary amines (aliphatic) 
(group no. 61) primary amines (aromatic) 
(group no. 62) secondary amines (aliphatic) 
(group no. 63) secondary amines (aromatic) 
(group no. 64) tertiary amines (aliphatic) 
(group no. 65) tertiary amines (aromatic) 
(group no. 66) N hydrazines 
(group no. 67) N azo-derivatives 
(group no. 68) nitriles (aliphatic)
(group no. 69) nitriles (aromatic)
(group no. 70) positively charged N 
(group no. 71) quaternary N 
(group no. 72) hydroxylamines (aliphatic) 
(group no. 73) hydroxylamines (aromatic) 
(group no. 74) N-nitroso groups (aliphatic) 
(group no. 75) N-nitroso groups (aromatic)

Matches Mutagens Mutagens (%)
13 5 38%
18 6 33%
3 0 0%
5 3 60%
2 0 0%
1 1 100%
2 1 50%
3 2 67%

370 112 30%
109 41 38%
514 217 42%
141 36 26%
30 14 47%
16 6 38%

321 153 48%
82 55 67%
81 20 25%
15 6 40%
57 40 70%
23 10 43%
16 15 94%
16 15 94%
1 0 0%

107 67 63%
39 13 33%

248 98 40%
421 260 62%
153 71 46%
8 0 0%

36 15 42%
15 11 73%
11 3 27%
12 3 25%
13 6 46%
14 4 29%
196 78 40%
604 442 73%
158 62 39%
179 111 62%
264 128 48%
197 114 58%
66 42 64%
123 83 67%
76 27 36%
32 16 50%
174 123 71%
22 7 32%
65 53 82%
94 70 74%
190 171 90%
15 9 60%
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Group Matches Mutagens Mutagens
(group no. 76) nitroso groups (aliphatic) 2 2 100%
(group no. 77) nitroso groups (aromatic) 46 41 89%
(group no. 78) nitro groups (aliphatic) 43 26 60%
(group no. 79) nitro groups (aromatic) 898 763 85%
(group no. 80) imides (-thio) 74 34 46%
(group no. 81) hydrazones 28 16 57%
(group no. 82) hydroxyl groups 1493 677 45%
(group no. 83) aromatic hydroxyls 596 287 48%
(group no. 84) primary alcohols 368 172 47%
(group no. 85) secondary alcohols 513 245 48%
(group no. 86) tertiary alcohols 115 53 46%
(group no. 87) ethers (aliphatic) 663 374 56%
(group no. 88) ethers (aromatic) 674 367 54%
(group no. 91) anhydrides (-thio) 12 1 8%
(group no. 93) thiols 20 7 35%
(group no. 95) sulfides 155 72 46%
(group no. 96) disulfides 21 8 38%
(group no. 97) sulfoxides 7 2 29%
(group no. 98) sulfones 71 47 66%
(group no. 100) sulfinic (thio-/dithio-) acids 2 0 0%
(group no. 101) sulfonic (thio-/dithio-) acids 53 17 32%
(group no. 102) sulfuric (thio-/dithio-) acids 13 6 46%
(group no. 103) sulfites (thio-/dithio-) 1 0 0%
(group no. 104) sulfonates (thio-/dithio-) 31 24 77%
(group no. 105) sulfates (thio-/dithio-) 4 4 100%
(group no. 106) sulfonamides (thio-/dithio-) 106 42 40%
(group no. 107) phosphites/thiophosphites 5 1 20%
(group no. 108) phosphates/thiophosphates 88 27 31%
(group no. 110) phosphonates (thio-) 12 5 42%
(group no. 112) CH2RX 307 223 73%
(group no. 113) CHR2X 60 41 68%
(group no. 114) CR3X 11 1 9%
(group no. 115) R=CHX 26 17 65%
(group no. 116) R=CRX 47 35 74%
(group no. 118) CHRX2 60 35 58%
(group no. 119) CR2X2 9 0 0%
(group no. 120) R=CX2 30 22 73%
(group no. 121) CRX3 84 29 35%
(group no. 122) X on aromatic ring 655 266 41%
(group no. 123) X on ring C(sp3) 38 14 37%
(group no. 124) X on ring C(sp2) 60 27 45%
(group no. 125) X on exo-conjugated C 104 60 58%
(group no. 126) Aziridines 50 48 96%
(group no. 127) Oxiranes 300 219 73%
(group no. 128) Thiranes 3 1 33%
(group no. 129) Azetidines 1 1 100%
(group no. 130) Oxetanes 6 4 67%
(group no. 132) Beta-Lactams 8 0 0%
(group no. 133) Pyrrolidines 42 11 26%
(group no. 134) Oxolanes 90 42 47%
(group no. 135) tetrahydro-thiophenes 2 0 0%
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Group Matches Mutagens Mutagens (%)
(group no. 136) Pyrroles 152 93 61%
(group no. 137) Pyrazoles 14 13 93%
(group no. 138) Imidazoles 205 157 77%
(group no. 139) Furanes 155 109 70%
(group no. 140) Thiophenes 54 43 80%
(group no. 141) Oxazoles 10 1 10%
(group no. 142) Isoxazoles 4 0 0%
(group no. 143) Thiazoles 81 58 72%
(group no. 144) Isothiazoles 84 52 62%
(group no. 145) Triazoles 18 4 22%
(group no. 146) Pyridines 508 308 61%
(group no. 147) Pyridazines 26 10 38%
(group no. 148) Pyrimidines 67 42 63%
(group no. 149) Pyrazines 84 61 73%
(group no. 150) 1-3-5-Triazines 12 3 25%
(group no. 152) donor atoms for H-bonds (N and 0) 3244 1725 53%
(group no. 153) acceptor atoms for H-bonds (N,0,F) 5608 3073 55%
(C-001) CH3R/CH4 2602 1232 47%
(C-002) CH2R2 1700 694 41%
(C-003) CHR3 556 165 30%
(C-004) CR4 292 73 25%
(C-005) CH3X 1121 629 56%
(C-006) CH2RX 2175 1121 52%
(C-007) CH2X2 129 72 56%
(C-008) CHR2X 1300 674 52%
(C-009) CHRX2 280 155 55%
(C-010) CHX3 7 3 43%
(C-011) CR3X 378 155 41%
(C-012) CR2X2 89 36 40%
(C-013) CRX3 96 33 34%
(C-014) CX4 13 9 69%
(C-015) =CH2 227 72 32%
(C-016) =CHR 840 420 50%
(C-017) =CR2 459 184 40%
(C-018) =CHX 140 89 64%
(C-019) =CRX 220 108 49%
(C-020) =CX2 55 40 73%
(C-021) #CH 13 5 38%
(C-022) #CR /  R=C=R 18 6 33%
(C-024) R-CH-R 4199 2497 59%
(C-025) R-CR-R 3442 2082 60%
(C-026) R-CX-R 2914 1712 59%
(C-027) R-CH-X 438 226 52%
(C-028) R-CR-X 755 503 67%
(C-029) R-CX-X 166 100 60%
(C-030) X-CH-X 33 26 79%
(C-031) X-CR-X 36 20 56%
(C-032) X-CX-X 30 9 30%
(C-033) R-CH..X 211 129 61%
(C-034) R-CR..X 507 341 67%
(C-035) R-CX..X 213 169 79%
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Group Matches Mutagens Mutagens (%)
(C-036 Al-CH=X 135 77 57%
(C-037 Ar-CH=X 81 43 53%
(C-038 Al-C(=X)-Al 273 111 41%
(C-039 Ar-C(=X)-R 230 111 48%
(C-040 R-C(=X)-X /  R-C#X /  X=C=X 1878 832 44%
(C-041 X-C(=X)-X 275 140 51%
(C-042 X-CH..X 89 56 63%
(C-043 X—CR..X 128 88 69%
(C-044 X—CX..X 140 107 76%
(H-046 H attached to C0(sp3) no X attached to next C 1984 904 46%
(H-047 H attached to Cl(sp3)/C0(sp2) 5728 3199 56%
(H-048 H attached to C2(sp3)/Cl(sp2)/C0(sp) 702 406 58%
(H-049 H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) 770 422 55%
(H-050 H attached to heteroatom 3254 1727 53%
(H-051 H attached to alpha-C 1025 456 44%
(H-052 H attached to C0(sp3) with IX attached to next C 1527 632 41%
(H-053 H attached to C0(sp3) with 2X attached to next C 298 168 56%
(H-054 H attached to C0(sp3) with 3X attached to next C 59 36 61%
(H-055 H attached to C0(sp3) with 4X attached to next C 1 1 100%
(0-056 alcohol 1069 530 50%
(0-057 phenol /  enol /  carboxyl OH 1042 432 41%
(0-058 #NOME? 2894 1426 49%
(0-059 Al-O-Al 870 492 57%
(0-060 Al-O-Ar /  Ar-O-Ar /  R..O..R /  R-0-C=X 1447 731 51%
(0-061 0 - 958 799 83%
(0-062 0- (negatively charged) 54 27 50%
(0-063 R-O-O-R 41 31 76%
(Se-064) Any-Se-Any 3 3 100%
(N-066 AI-NH2 172 72 42%
(N-067 AI2-NH 150 56 37%
(N-068 AI3-N 260 128 49%
(N-069 Ar-NH2 /  X-NH2 649 468 72%
(N-071 Ar-NAI2 183 110 60%
(N-072 RCO-N< /  >N-X=X 1108 628 57%
(N-073 Ar2NH /  Ar3N /  Ar2N-Al /  R..N..R 457 300 66%
(N-074 R#N /  R=N- 235 110 47%
(N-075 R -N -R / R-N-X 988 615 62%
(N-076 Ar-N02 /  R—N(—R)—0 /  RO-NO 907 770 85%
(N-077 AI-N02 75 58 77%
(N-078 Ar-N=X /  X-N=X 397 326 82%
(N-079 N+ (positively charged) 146 109 75%
(F-081) F attached to Cl(sp3) 7 2 29%
(F-082) F attached to C2(sp3) 13 0 0%
(F-083) F attached to C3(sp3) 63 12 19%
(F-084) F attached to Cl(sp2) 101 65 64%
(F-085) F attached to C2(sp2)-C4(sp2)/Cl(sp)/C4(sp3)/X 15 6 40%
(CI-086) Cl attached to Cl(sp3) 243 168 69%
(CI-087) Cl attached to C2(sp3) 82 41 50%
(CI-088) Cl attached to C3(sp3) 36 20 56%
(CI-089) Cl attached to Cl(sp2) 546 222 41%
(CI-090) Cl attached to C2(sp2)-C4(sp2)/Cl(sp)/C4(sp3)/X 126 80 63%



Group Matches Mutagens Mutagens
(Br-091) Br attached to Cl(sp3) 128 88 69%
(Br-092) Br attached to C2(sp3) 19 14 74%
(Br-093) Br attached to C3(sp3) 5 3 60%
(Br-094) Br attached to Cl(sp2) 96 39 41%
(Br-095) Br attached to C2(sp2)-C4(sp2)/Cl(sp)/C4(sp3)/X 7 4 57%
(1-096) 1 attached to Cl(sp3) 8 6 75%
(1-097) 1 attached to C2(sp3) 1 0 0%
(1-098) 1 attached to C3(sp3) 2 1 50%
(1-099) 1 attached to Cl(sp2) 10 2 20%
(1-100) 1 attached to C2(sp2)-C4(sp2)/Cl(sp)/C4(sp3)/X 1 1 100%
(S-106) R-SH 25 10 40%
(S-107) R2S /  RS-SR 468 273 58%
(S-108) R=S 72 25 35%
(S-109) R-SO-R 7 2 29%
(S-110) R-S02-R 196 75 38%
(Si-111) >Si< 14 4 29%
(B-112) >B- as in boranes 2 1 50%
(P-115) P ylids 1 0 0%
(P-117) X3-P=X (phosphate) 109 41 38%
(P-118) PX3 (phosphite) 5 1 20%
(P-119) PR3 (phosphine) 1 0 0%
(P-120) C-P(X)2=X (phosphonate) 14 4 29%
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IV. Secondary chemical classes identified
The three tables below report the complete outputs of the istChemFeat software, 

relative to the three primary chemical classes used as case studies: nitro aromatics (898 

molecules), aliphatic hydroxylamines (65 molecules) and aliphatic tertiary amides (81 

molecules). Using the SMILES representation of the molecules, the tool compared the 

dataset with a library of functional groups and atom-centered fragments. For each 

chemical class, istChemFeat calculates the total number of matches within the dataset, 

and the distribution of the property. In this case, the number and percentage of 

mutagenic and non-mutagenic chemicals within each class were calculated.

Table H. Secondary chemical classes identified for nitro aromatic molecules.

Chemical Feature Matches Mutagens Mutagens
(group no. 1) terminal primary C(sp3) 287 222 77%
(group no. 2) total secondary C(sp3) 156 129 83%
(group no. 3) total tertiary C(sp3) 17 13 76%
(group no. 4) total quaternary C(sp3) 14 3 21%
(group no. 5) ring secondary C(sp3) 81 72 89%
(group no. 6) ring tertiary C(sp3) 5 3 60%
(group no. 7) ring quaternary C(sp3) 1 0 0%
(group no. 8) aromatic C(sp2) 898 763 85%
(group no. 9) unsubstituted benzene C(sp2) 799 669 84%
(group no. 10) substituted benzene C(sp2) 804 669 83%
(group no. 11) non-aromatic conjugated C(sp2) 261 238 91%
(group no. 12) terminal primary C(sp2) 6 6 100%
(group no. 13) aliphatic secondary C(sp2) 91 84 92%
(group no. 14) aliphatic tertiary C(sp2) 9 7 78%
(group no. 23) thiocyanates (aromatic) 1 1 100%
(group no. 25) isothiocyanates (aromatic) 2 1 50%
(group no. 26) carboxylic acids (aliphatic) 13 9 69%
(group no. 27) carboxylic acids (aromatic) 24 21 88%
(group no. 28) esters (aliphatic) 33 25 76%
(group no. 29) esters (aromatic) 18 16 89%
(group no. 30) primary amides (aliphatic) 2 2 100%
(group no. 31) primary amides (aromatic) 5 5 100%
(group no. 32) secondary amides (aliphatic) 39 34 87%
(group no. 33) secondary amides (aromatic) 27 27 100%
(group no. 34) tertiary amides (aliphatic) 3 3 100%
(group no. 35) tertiary amides (aromatic) 1 1 100%
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Chemical Feature
(group no. 36) (thio-) carbamates (aliphatic) 
(group no. 38) acyl halogenides (aliphatic) 
(group no. 39) acyl halogenides (aromatic) 
(group no. 48) aldehydes (aliphatic)
(group no. 49) aldehydes (aromatic)
(group no. 50) ketones (aliphatic)
(group no. 51) ketones (aromatic)
(group no. 52) urea (-thio) derivatives 
(group no. 54) amidine derivatives 
(group no. 56) imines (aliphatic)
(group no. 57) imines (aromatic)
(group no. 59) oximes (aromatic)
(group no. 60) primary amines (aliphatic) 
(group no. 61) primary amines (aromatic) 
(group no. 62) secondary amines (aliphatic) 
(group no. 63) secondary amines (aromatic) 
(group no. 64) tertiary amines (aliphatic) 
(group no. 65) tertiary amines (aromatic) 
(group no. 66) N hydrazines 
(group no. 67) N azo-derivatives 
(group no. 68) nitriles (aliphatic)
(group no. 69) nitriles (aromatic)
(group no. 70) positively charged N 
(group no. 71) quaternary N 
(group no. 72) hydroxylamines (aliphatic) 
(group no. 73) hydroxylamines (aromatic) 
(group no. 74) N-nitroso groups (aliphatic) 
(group no. 75) N-nitroso groups (aromatic) 
(group no. 77) nitroso groups (aromatic) 
(group no. 78) nitro groups (aliphatic)
(group no. 80) imides (-thio)
(group no. 81) hydrazones 
(group no. 82) hydroxyl groups 
(group no. 83) aromatic hydroxyls 
(group no. 84) primary alcohols 
(group no. 85) secondary alcohols 
(group no. 87) ethers (aliphatic)
(group no. 88) ethers (aromatic)
(group no. 91) anhydrides (-thio)
(group no. 95) sulfides
(group no. 96) disulfides
(group no. 98) sulfones
(group no. 101) sulfonic (thio-/dithio-) acids
(group no. 104) sulfonates (thio-/dithio-)
(group no. 106) sulfonamides (thio-/dithio-)
(group no. 108) phosphates/thiophosphates
(group no. 110) phosphonates (thio-)
(group no. 112) CH2RX 
(group no. 116) R=CRX 
(group no. 118) CHRX2 
(group no. 120) R=CX2

Matches Mutagens Mutagens (%)
2 2 100%
4 4 100%
4 4 100%
4 4 100%
6 6 100%
5 1 20%
38 32 84%
12 11 92%
1 1 100%
2 0 0%
2 1 50%
8 4 50%
4 2 50%
98 87 89%
2 2 100%

36 31 86%
14 14 100%
29 29 100%
7 7 100%

21 18 86%
9 9 100%
10 7 70%
13 10 77%
1 1 100%
4 4 100%
7 5 71%
4 4 100%
2 2 100%
6 5 83%
3 3 100%
5 5 100%
12 12 100%
114 82 72%
79 50 63%
31 25 81%
33 23 70%
24 20 83%
66 57 86%
1 1 100%
9 8 89%
5 5 100%
2 2 100%
9 3 33%
2 2 100%
23 20 87%
5 4 80%
1 1 100%
19 17 89%
2 2 100%
2 1 50%
3 3 100%
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Chemical Feature Matches Mutagens Mutagens (%)
(group no. 121) CRX3 8 3 38%
(group no. 122) X on aromatic ring 96 74 77%
(group no. 125) X on exo-conjugated C 1 1 100%
(group no. 126) Aziridines 2 2 100%
(group no. 127) Oxiranes 10 9 90%
(group no. 134) Oxolanes 4 4 100%
(group no. 136) Pyrroles 39 36 92%
(group no. 137) Pyrazoles 5 5 100%
(group no. 138) Imidazoles 51 44 86%
(group no. 139) Furanes 84 84 100%
(group no. 140) Thiophenes 37 37 100%
(group no. 143) Thiazoles 32 31 97%
(group no. 144) Isothiazoles 19 19 100%
(group no. 146) Pyridines 36 34 94%
(group no. 148) Pyrimidines 13 13 100%
(group no. 149) Pyrazines 8 7 88%
(group no. 150) 1-3-5-Triazines 2 2 100%
(group no. 152) donor atoms for H-bonds (N and 0) 395 326 83%
(group no. 153) acceptor atoms for H-bonds (N,0,F) 898 763 85%
(C-001) CH3R /  CH4 231 179 77%
(C-002) CH2R2 112 93 83%
(C-003) CHR3 12 8 67%
(C-004) CR4 14 3 21%
(C-005) CH3X 105 91 87%
(C-006) CH2RX 168 140 83%
(C-007) CH2X2 7 5 71%
(C-008) CHR2X 58 43 74%
(C-009) CHRX2 14 12 86%
(C-011) CR3X 5 5 100%
(C-013) CRX3 8 3 38%
(C-015) =CH2 3 3 100%
(C-016) =CHR 87 81 93%
(C-017) =CR2 9 7 78%
(C-018) =CHX 2 2 100%
(C-019) =CRX 7 5 71%
(C-020) =CX2 6 4 67%
(C-024) R-CH-R 871 741 85%
(C-025) R-CR-R 629 532 85%
(C-026) R-CX-R 794 660 83%
(C-027) R-CH-X 44 38 86%
(C-028) R-CR-X 107 101 94%
(C-029) R-CX-X 24 23 96%
(C-030) X-CH-X 6 6 100%
(C-031) X-CR-X 11 11 100%
(C-032) X-CX-X 2 2 100%
(C-033) R-CH..X 66 66 100%
(C-034) R-CR..X 161 154 96%
(C-035) R-CX..X 146 142 97%
(C-036) AI-CH=X 5 5 100%
(C-037) Ar-CH=X 30 26 87%
(C-038) AI-C(=X)-AI 6 1 17%
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Chemical Feature Matches Mutagens Mutagens (%)
(C-039) Ar-C(=X)-R 24 19 79%
(C-040) R-C(=X)-X /  R-C#X /  X=C=X -213 187 88%
(C-041) X-C(=X)-X 14 13 93%
(C-042) X-CH..X 17 15 88%
(C-043) X-CR..X 31 26 84%
(C-044) X-CX..X 38 37 97%
(H-046) H attached to C0(sp3) no X attached to next C 193 148 77%
(H-047) H attached to Cl(sp3)/C0(sp2) 892 761 85%
(H-048) H attached to C2(sp3)/Cl(sp2)/C0(sp) 89 85 96%
(H-049) H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) 101 89 88%
(H-050) H attached to heteroatom 396 327 83%
(H-051) H attached to alpha-C 78 60 77%
(H-052) H attached to C0(sp3) with IX attached to next C 66 56 85%
(H-053) H attached to C0(sp3) with 2X attached to next C 18 18 100%
(H-054) H attached to C0(sp3) with 3X attached to next C 1 1 100%
(0-056) alcohol 75 52 69%
(0-057) phenol /  enol /  carboxyl OH 115 79 69%
(0-058) =0 288 248 86%
(0-059) Al-O-Al 45 35 78%
(0-060) Al-O-Ar /  Ar-O-Ar /  R..O..R /  R-0-C=X 183 164 90%
(0-061) 0 - 898 763 85%
(0-062) 0- (negatively charged) 10 7 70%
(N-066) AI-NH2 4 2 50%
(N-067) AI2-NH 2 2 100%
(N-068) AI3-N 14 14 100%
(N-069) Ar-NH2 /  X-NH2 102 91 89%
(N-071) Ar-NAI2 29 29 100%
(N-072) RCO-N< /  >N-X=X 126 119 94%
(N-073) Ar2NH /  Ar3N /  Ar2N-Al /  R..N..R 105 92 88%
(N-074) R#N /  R=N- 51 44 86%
(N-075) R-N-R /  R--N--X 150 139 93%
(N-076) Ar-N02 /  R -N (-R )-0 /  RO-NO 898 763 85%
(N-077) AI-N02 7 7 100%
(N-078) Ar-N=X /  X-N=X 38 31 82%
(N-079) N+ (positively charged) 10 7 70%
(F-083) F attached to C3(sp3) 8 3 38%
(F-084) F attached to Cl(sp2) 11 10 91%
(F-085) F attached to C2(sp2)-C4(sp2)/Cl(sp)/C4(sp3)/X 1 1 100%
(CI-086) Cl attached to Cl(sp3) 13 13 100%
(CI-087) Cl attached to C2(sp3) 3 2 67%
(CI-089) Cl attached to Cl(sp2) 68 50 74%
(CI-090) Cl attached to C2(sp2)-C4(sp2)/Cl(sp)/C4(sp3)/X 13 13 100%
(Br-091) Br attached to Cl(sp3) 6 4 67%
(Br-094) Br attached to Cl(sp2) 11 11 100%
(1-099) 1 attached to Cl(sp2) 4 1 25%
(5-106) R-SH 1 1 100%
(S-107) R2S /  RS-SR 121 119 98%
(S-108) R=S 5 3 60%
(S-110) R-S02-R 17 8 47%
(P-117) X3-P=X (phosphate) 6 4 67%
(P-120) C-P(X)2=X (phosphonate) 1 1 100%
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Table I. Secondary chemical classes identified for aliphatic hydroxylamines.

Chemical Feature Matches Mutagens Mutagens
(group no. 1) terminal primary C(sp3) 38 33 87%
(group no. 2) total secondary C(sp3) 24 19 79%
(group no. 3) total tertiary C(sp3) 7 2 29%
(group no. 4) total quaternary C(sp3) 3 3 100%
(group no. 5) ring secondary C(sp3) 9 4 44%
(group no. 6) ring tertiary C(sp3) 7 2 29%
(group no. 8) aromatic C(sp2) 44 42 95%
(group no. 9) unsubstituted benzene C(sp2) 43 41 95%
(group no. 10) substituted benzene C(sp2) 43 41 95%
(group no. 11) non-aromatic conjugated C(sp2) 41 40 98%
(group no. 13) aliphatic secondary C(sp2) 4 3 75%
(group no. 14) aliphatic tertiary C(sp2) 1 0 0%
(group no. 26) carboxylic acids (aliphatic) 3 0 0%
(group no. 30) primary amides (aliphatic) 1 0 0%
(group no. 32) secondary amides (aliphatic) 1 0 0%
(group no. 33) secondary amides (aromatic) 1 1 100%
(group no. 36) (thio-) carbamates (aliphatic) 5 4 80%
(group no. 49) aldehydes (aromatic) 1 1 100%
(group no. 52) urea (-thio) derivatives 11 7 64%
(group no. 54) amidine derivatives 1 1 100%
(group no. 60) primary amines (aliphatic) 2 2 100%
(group no. 62) secondary amines (aliphatic) 2 2 100%
(group no. 64) tertiary amines (aliphatic) 1 1 100%
(group no. 65) tertiary amines (aromatic) 2 2 100%
(group no. 69) nitriles (aromatic) 1 1 100%
(group no. 77) nitroso groups (aromatic) 1 1 100%
(group no. 79) nitro groups (aromatic) 4 4 100%
(group no. 82) hydroxyl groups 25 16 64%
(group no. 83) aromatic hydroxyls 2 2 100%
(group no. 85) secondary alcohols 1 1 100%
(group no. 88) ethers (aromatic) 6 6 100%
(group no. 106) sulfonamides (thio-/dithio-) 1 0 0%
(group no. 122) X on aromatic ring 9 8 89%
(group no. 133) Pyrrolidines 3 0 0%
(group no. 138) Imidazoles 1 1 100%
(group no. 146) Pyridines 2 1 50%
(group no. 152) donor atoms for H-bonds (N and 0) 33 21 64%
(group no. 153) acceptor atoms for H-bonds (N,0,F) 65 53 82%
(C-001) CH3R/CH4 37 32 86%
(C-002) CH2R2 23 18 78%
(C-003) CHR3 3 0 0%
(C-004) CR4 3 3 100%
(C-005) CH3X 16 11 69%
(C-006) CH2RX 36 35 97%
(C-008) CHR2X 5 5 100%
(C-011) CR3X 7 2 29%
(C-016) =CHR 3 2 67%
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Chemical Feature Matches Mutagens Mutagens
(C-017) =CR2 1 0 0%
(C-019) =CRX 1 1 100%
(C-020) =CX2 3 3 100%
(C-024) R-CH-R 43 41 95%
(C-025) R-CR-R 40 39 98%
(C-026) R-CX-R 22 20 91%
(C-027) R-CH-X 1 0 0%
(C-028) R-CR-X 3 2 67%
(C-033) R-CH..X 1 1 100%
(C-037) Ar-CH=X 1 1 100%
(C-040) R-C(=X)-X /  R-C#X /  X=C=X 51 46 90%
(C-041) X-C(=X)-X 13 9 69%
(C-042) X--CH..X 1 1 100%
(H-046) H attached to C0(sp3) no X attached to next C 18 16 89%
(H-047) H attached to Cl(sp3)/C0(sp2) 57 49 86%
(H-048) H attached to C2(sp3)/Cl(sp2)/C0(sp) 1 1 100%
(H-049) H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) 4 3 75%
(H-050) H attached to heteroatom 33 21 64%
(H-051) H attached to alpha-C 33 29 88%
(H-052) H attached to C0(sp3) with IX attached to next C 24 19 79%
(H-053) H attached to C0(sp3) with 2X attached to next C 3 3 100%
(0-056) alcohol 25 16 64%
(0-057) phenol /  enol /  carboxyl OH 5 2 40%
(0-058) =0 60 50 83%
(0-059) Al-O-AI 35 33 94%
(0-060) Al-O-Ar /  Ar-O-Ar /  R..O..R /  R-0-C=X 38 37 97%
(0-061) 0 - 4 4 100%
(N-066) AI-NH2 2 2 100%
(N-067) AI2-NH 1 1 100%
(N-068) AI3-N 1 1 100%
(N-069) Ar-NH2 /  X-NH2 2 1 50%
(N-071) Ar-NAI2 2 2 100%
(N-072) RCO-N< /  >N-X=X 26 19 73%
(N-073) Ar2NH /  Ar3N /  Ar2N-AI /  R..N..R 1 1 100%
(N-074) R#N /  R=N- 2 2 100%
(N-075) R-N--R /  R-N--X 3 2 67%
(N-076) Ar-N02 /  R-N(~R)-0 /  RO-NO 4 4 100%
(N-077) AI-N02 32 32 100%
(N-078) Ar-N=X /  X-N=X 2 2 100%
(F-084) F attached to Cl(sp2) 2 2 100%
(CI-089) Cl attached to Cl(sp2) 4 4 100%
(Br-094) Br attached to Cl(sp2) 3 2 67%
(S-110) R-S02-R 1 0 0%

Table J. Secondary chemical classes identified for aliphatic tertiary amides.

Chemical Feature Matches Mutagens Mutagens (%)
(group no. 1) terminal primary C(sp3) 54 12 22%
(group no. 2) total secondary C(sp3) 65 14 22%
(group no. 3) total tertiary C(sp3) 22 3 14%
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Chemical Feature Matches Mutagens Mutagens
(group no. 5) ring secondary C(sp3) 47 9 19%
(group no. 6) ring tertiary C(sp3) 15 3 20%
(group no. 8) aromatic C(sp2) 65 15 23%
(group no. 9) unsubstituted benzene C(sp2) 55 13 24%
(group no. 10) substituted benzene C(sp2) 57 13 23%
(group no. 11) non-aromatic conjugated C(sp2) 24 8 33%
(group no. 13) aliphatic secondary C(sp2) 18 5 28%
(group no. 26) carboxylic acids (aliphatic) 16 1 6%
(group no. 32) secondary amides (aliphatic) 17 1 6%
(group no. 64) tertiary amines (aliphatic) 8 0 0%
(group no. 82) hydroxyl groups 31 2 6%
(group no. 85) secondary alcohols 8 0 0%
(group no. 87) ethers (aliphatic) 10 2 20%
(group no. 88) ethers (aromatic) 9 3 33%
(group no. 95) sulfides 14 1 7%
(group no. 112) CH2RX 11 5 45%
(group no. 122) X on aromatic ring 9 1 11%
(group no. 132) Beta-Lactams 8 0 0%
(group no. 144) Isothiazoles 8 3 38%
(group no. 152) donor atoms for H-bonds (N and 0) 41 5 12%
(group no. 153) acceptor atoms for H-bonds (N,0,F) 81 20 25%
(C-001) CH3R/CH4 46 10 22%
(C-002) CH2R2 54 11 20%
(C-003) CHR3 14 3 21%
(C-005) CH3X 43 9 21%
(C-006) CH2RX 63 15 24%
(C-007) CH2X2 8 2 25%
(C-008) CHR2X 42 6 14%
(C-009) CHRX2 14 1 7%
(C-011) CR3X 10 1 10%
(C-016) =CHR 12 2 17%
(C-019) =CRX 8 3 38%
(C-024) R-CH-R 59 14 24%
(C-025) R-CR-R 54 11 20%
(C-026) R-CX-R 32 9 28%
(C-027) R-CH-X 8 1 13%
(C-028) R-CR-X 9 3 33%
(C-035) R-CX..X 10 5 50%
(C-040) R-C(=X)-X /  R-C#X /  X=C=X 79 19 24%
(H-046) H attached to C0(sp3) no X attached to next C 24 4 17%
(H-047) H attached to Cl(sp3)/C0(sp2) 81 20 25%
(H-048) H attached to C2(sp3)/Cl(sp2)/C0(sp) 26 4 15%
(H-049) H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) 13 3 23%
(H-050) H attached to heteroatom 41 5 12%
(H-051) H attached to alpha-C 47 12 26%
(H-052) H attached to C0(sp3) with IX attached to next C 47 10 21%
(H-053) H attached to C0(sp3) with 2X attached to next C 9 1 11%
(0-056) alcohol 14 0 0%
(0-057) phenol /  enol /  carboxyl OH 18 3 17%
(0-058) =0 81 20 25%
(0-059) Al-O-Al 13 4 31%
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Chemical Feature Matches Mutagens Mutagens (%)
(0-060) Al-O-Ar /  Ar-O-Ar /  R..O..R /  R-0-C=X 16 6 38%
(N-068) AI3-N 8 0 0%
(N-072) RCO-N< /  >N-X=X 81 20 25%
(N-075) R -N -R /R -N -X 18 4 22%
(CI-086) Cl attached to Cl(sp3) 9 4 44%
(CI-089) Cl attached to Cl(sp2) 8 2 25%
(S-107) R2S /  RS-SR 27 5 19%
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