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Abstract

Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMPl) is an 

important group of cytoadhesive multi-domain Plasmodium falciparum 

surface antigens that are inserted onto the surface of infected erythro­

cytes and are encoded by the var multi-gene family. PfEMPl antigens are 

thought to be important targets of naturally acquired immunity to mal­

aria. This thesis describes nucleotide variation in DBLa sequence tags, a 

semi-conserved region within the DBLa domain that can be PCR amplified 

using universal primers. PfEMPl can be classified using a number of ap­

proaches some of which are associated with particular expression patterns 

in severe, non-severe and asymptomatic malaria. This work compared 

the classification approaches with an aim of understanding the extent of 

overlap or discordance between them. To explore non-random distribu­

tion of variation in respect to var’s functional specialization, a clustering 

approach was developed and applied in exploring patterns of nucleotide 

variation among var subsets from different geographical locations in ad­

dition to distribution of predicted B and T-cell epitopes among the var 

subsets. In summary the sequences showed distinct patterns of nucleotide 

substitution that suggests that var sequences are under both diversifying 

and purifying selection.
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Chapter 1 
Introduction

1.1 Background

Malaria is a major public health and social-economic burden in resource poor settings 

(Sachs and Malaney 2002). An approximate 1.3% reduction in economic growth in 

countries with the highest burden of disease is attributed to malaria (Greenwood 

et al. 2005). Despite a 42% decline in mortality rate in the last decade (World Health 

Organization 2013), the incidence of malaria in most parts of Africa remains high 

(Noor et al. 2014). In 2012, the World Health Organization (WHO) reported nearly 

207 million cases of malaria, of which an estimated 627 thousand resulted in death 

(World Health Organization 2013).

Global efforts in eradication and control of malaria indicate a decline in malaria 

cases in Africa (O’Meara et al. 2008; Okiro et al. 2009a; WHO 2010). Reports of 

pockets of high malaria prevalence in several regions (Noor et al. 2014) highlight the 

challenges in malaria eradication efforts.

Malaria is caused by plasmodium parasites. Species of parasites in this genus infect 

a wide array of vertebrates including humans, reptiles, birds, rodents and monkeys. 

There are five species of Plasmodium that infect humans; P. falciparum, P. vivax, 

P. ovale, P. malariae and P. knowlesi. P. knowlesi was recently described to infect

1



humans (Cox-Singh et al. 2008). The focus of this thesis is Plasmodium falciparum the 

causative agent of the most lethal form of human malaria. P. falciparum is transmitted 

by infected female Anopheles mosquitoes.

1.2 Geographic distribution and life-cycle of malaria parasites

The malaria parasite life-cycle involves asexual reproduction in the vertebrate host 

and sexual reproduction in the insect vector. The life-cycle is characterized by several 

morphological stages as illustrated in figure 1.1.

The Plasmodium species that infect humans are remotely related to each other 

which suggests that adaptation to humans may have occurred independently. The 

true origin of these species is a subject of debate (Ollomo et al. 2009; Prugnolle 

et al. 2010). Duval and colleagues study showed that the great apes are reservoirs for 

several Plasmodium species (Duval et al. 2010) that are closely related to P. falciparum. 

However, there is still little agreement on which of these closely related plasmodium 

species is a progenitor to P. falciparum. Liu and colleagues suggested a reassessment 

of the origin of P. falciparum based on the available sequence data obtained from 

plasmodium parasites infecting the great apes (Liu et al. 2010).

P. falciparum is more prevalent in Africa than in other parts of the world (World 

Health Organization 2013). P. malariae is prevalent in sub-saharan Africa, south­

east Asia, Indonesia, the Pacific islands and the Amazon basin. P. ovale is prevalent 

in sub-saharan Africa and Asia (Collins and Jeffery 2005). An accurate diagnosis 

for P. ovale is difficult because it presents with non-specific symptoms, for example, 

digestive and respiratory symptoms which are also characteristic of viral infections.
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Most rapid diagnostic and detection kits are not sensitive enough for diagnosis. Unlike 

in P. falciparum infections, P. ovale infections are rarely characterized with anaemia.

Plasmodium vivax is predominant in Asia partly because of the wide-spread pre­

valence of the duffy antigen in the population. The duffy antigen is the receptor for P. 

vivax malaria parasites (Mason et al. 1977; Miller et al. 1976). A case of P. vivax like 

infection has been reported in duffy negative individuals in Kenya (Ryan et al. 2006). 

Occasionally, a patient may harbour another Plasmodium infection in addition to P. 

falciparum (Genton et al. 2008; Douglas et al. 2011). P. vivax diagnosis is a challenge 

because of the low number of parasites in peripheral circulation. Most P. vivax infec­

ted patients often harbour a dormant liver stage infection (see section 1.2.1) that is 

only detectable upon relapse (Mueller et al. 2009).
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Erythrocyte
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Figure 1.1: The life-cycle o f the malaria parasite Plasmodium falciparum. Sporozoites are in­
jected in to the human host by a female anopheles mosquito during a blood meal. Sporozoites 
migrate to the liver and invade the liver cells where they mature and form  merozoites which are 
released into the bloodstream. Merozoites invade red blood cells and initiate an asexual multi­
plication cycle. Some merozoites develop into gametocytes which are the transmissible parasite 
forms. Gametocytes are ingested by a mosquito during a blood meal where they develop through 
a sexual cycle and into sporozoites.

1.2.1 Liver stage infection

An infected female Anopheles mosquito can inject between 1 and 100 Plasmodium 

falciparum  sporozoites with a median of 15 sporozoites as observed on mineral oil 

from restrained Anopheles stephensi mosquitoes (Rosenberg et al. 1990), and a median 

of 22 sporozoites from another study that involved mice (Ponnudurai et al. 1991).
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The studies also showed that the number of sporozoites on the skin correlated with 

the size of the innoculum but not with the number of sporozoites in the salivary glads.

Upon successful invasion, the sporozoites lounge in the hepatocytes and within 

2-10 days, depending on the parasite species, they asexually replicate during exo- 

erythrocytic schizogony culminating in the production of merozoites. P. vivax and P. 

ovale parasites can remain dormant in the liver for a period of time (Krotoski et al. 

1980; Markus 2011b) and reactivate weeks to months after the primary infection. 

This phenomena is attributed to relapses that are observed in vivax and ovale malaria 

infections although some reports have refuted the idea that relapse emanate from the 

so called "hypnozoite" dormant stages (Markus 2015; Markus 2011a).

1.2.2 Blood stage infection

After maturation, merozoites exit the liver cells and invade the red blood cells. This 

marks the beginning of the disease development stage and the associated symptoms 

are usually observed at this stage. Inside the red blood cells, they divide asexually 

for a period of 1-3 days during which time the parasite goes through a 48-hour 

morphological transformation; from a ring form, to a trophozoite and a schizont form. 

P. malariae exhibits a 72-hour cycle unlike the other Plasmodium species.

In Plasmodium falciparum, red blood cells containing rings circulate within the 

peripheral blood, whereas red blood cells containing trophozoite and schizont para­

site forms, may adhere to andothelial cells (Gitau et al. 2012a; Miller 1969). This 

phenomenon is called sequestration and is involved in pathogenesis and parasite 

survival. These stages are key to the special pathology observed in P. falciparum com­
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pared to other parasites. Sequestration is aided by variant surface molecules that 

also mediate antigenic switching. Sequestration assists the parasite in escaping from 

splenic clearance (Wyler et al. 1979). Additionally antigenic switching helps Plas­

modium falciparum in establishing a chronic blood stage infection in humans. The 

exact mechanisms of establishing chronic infections have not been fully elucidated.

During a chronic infection, parasites invade and cause the lysis of red blood cells. 

Parasite-derived molecules produced by the parasite lead to overproduction of serum- 

bound factors some of which result in inflammatory responses by host-derived cy­

tokines and subsequently lead to the observed intermittent fever episodes given the 

synchronous lysis of red blood cells. Severe red blood cell lysis leads to anaemia. Fur­

thermore, sequestration and adhering to vascular endothelial surfaces is associated 

with development of malaria pathogenesis.

In general symptomatic malaria is often defined based on presence of fever and 

clinical manifestations observed at the time of presentation. Since clinical manifest­

ations and parameters vary with age and geographical location and are often very 

similar to those observed in other diseases, it is difficult to accurately define severe 

and non-severe malaria, therefore, severe malaria has been defined using a para­

sitemia cutoff and in terms of symptoms that are most strongly associated with death. 

In 1994, Marsh and colleagues, showed that severe malaria is composed of different 

overlapping clinical syndromes (figure 1.2), i.e. severe anaemia, respiratory distress, 

and impaired consciousness (Marsh et al. 1995; Berkley et al. 2009).
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Figure 1 .2 : A venn diagram showing the overlap in clinical malaria syndromes. The associated 
prevalence and mortality are also shown. (Marsh et al. 1995)

1.2.3 Sexual stage in the mosquito

A few of the merozoites differentiate into gametocytes which are the transmissible 

forms of the parasite. The gametocytes are picked by a mosquito during a blood meal 

and form male and female gametes within the mosquito. They fuse and form a diploid 

zygote within the intestinal wall and ultimately differentiate into oocysts. Inside the 

oocysts, repeated mitotic divisions form thousands of active sporozoites. Eventually 

the oocysts burst and release the sporozoites into the body cavity and they migrate 

to the mosquito’s salivary glands where they are injected into a human host during a 

blood meal.
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1.3 Immunity to malaria

The risk and burden of severe malaria in children under five years of age is not well 

understood and little is known about malaria in infancy (children < 6 months). It 

is thought that passive transfer of maternal antibodies (Snow et al. 1998; Kitua et 

al. 1999; Hviid and Staalsoe 2004) and fetal hemoglobin (Amaratunga et al. 2011) 

could play a role in conferring resistance to severe malaria among these very young 

children.

In malaria endemic regions, susceptibility to severe life-threatening malaria in­

creases in the first year of life but after the age of five years susceptibility to life 

threatening disease decreases but sterile immunity to severe malaria is often never 

achieved. Immunity to non-severe malaria is established slowly in individuals from 

malaria endemic regions (Gupta et al. 1999). Clinical attacks are rarely encountered 

in adults although adults often carry asymptomatic infections as reviewed by Marsh 

and Kinyanjui (2006) and Baird et al. (1998).

Some studies have suggested that immunity to severe non-cerebral malaria is ac­

quired after only a few infections (Gupta et al. 1999) and that protection is often lost 

if individuals migrate to areas of low transmission (Jelinek et al. 2002) which could 

suggest that intense and sustained transmission is necessary in order to maintain 

naturally acquired immunity. In a recent study from Tanzania, Gobcalves and col­

leagues observed that resistance to severe malaria was not acquired after one or two 

infections (Gongalves et al. 2014) as has been proposed by earlier studies. It is likely 

that lack of exposure and thereby failure to develop naturally acquired immunity may
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lead to large-scale epidemics if interventions are not put in place. An instance of this 

phenomenon was described in areas where malaria was re-introduced after successful 

eradication measures (Mouchet et al. 1997).

Evidence that antibodies are important in control of malaria parasites came from 

work by Cohen and colleagues who successfully treated children with y-globulin pur­

ified from adult individuals who were exposed to malaria in the Gambia. Cohen 

showed that treatment with purified y-globulin from individuals in malaria endemic 

region in the Gambia, cleared parasites and resolved malaria symptoms in young 

children (Cohen et al. 1961). This experiment was built upon work by Coggeshall and 

Kumm who in 1937 demonstrated passive transfer of malaria immunity to normal 

rhesus monkeys from rhesus monkeys with chronic P. knowlesi and P. inui parasites, 

which suggested the presence of protective antibodies to malaria parasites (Cogge­

shall and Kumm 1937). In addition McGregor found that Gambian children who used 

weekly doses of chloroquine had significantly lower levels of y-globulin than children 

that did not take the weekly dose, suggesting that parasites were important in genera­

tion of antibodies (McGregor et al. 1956). These studies did not establish whether the 

antibodies were protective. Edozien attempted to establish the relationship between 

serum y-globulin in protected and unprotected children (Edozien et al. 1960). Their 

observations were reproduced by later studies using y-globulin from adults in Cote 

d’Ivoire which showed reduction in parasite density in Thai patients (Sabchareon et al. 

1991). From these studies it was evident that antibodies are important in control of 

malaria parasites. To link antibodies and protective immunity, it was important to 

establish the antigenic source that elicited the antibodies.
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In 1938, Eaton demonstrated that the serum of eight repeatedly infected mon­

keys agglutinated parasites more readily and better at lower dilutions than that 

of two chronically infected monkeys (Eaton 1938). Building on Eaton’s agglutin­

ation experiments, Brown used P. knowlesi parasite in agglutination experiments 

to demonstrate antigenic variation in Rhesus macaques (Brown and Brown 1965). 

Later studies that explored agglutination of malaria parasites used homologous and 

non-homologous serum from children and adults and with human malaria parasites 

(Marsh and Howard 1986). They proposed that P. falciparum protein antigens that are 

present on the surface of the infected erythrocyte are important targets of protective 

immunity (Marsh: 1989uy; Bull et al. 1998).

Of the several parasite proteins on the surface of infected red blood cells, Plas­

modium falciparum erythrocyte membrane protein 1 (PfEMPl) are the most studied. 

Evidence that PfEMPl are important targets from protective immunity comes in­

directly from observations that antibody levels are correlated with protection from 

clinical malaria in individuals from West Africa (Ofori et al. 2002) and East Africa 

(Kinyanjui et al. 2004). Furthermore serological experiments have showed that chil­

dren are more likely to be recognized by pre-existing homologous antibodies (anti­

bodies elicited by the infecting parasite) more than the heterologous antibodies (Bull 

et al. 1998) and that agglutination by diverse plasma is associated with severe disease 

(Bull et al. 2000). Evidence that PfEMPl are targets of protective antibodies came 

from gene knockout studies by Chan and colleagues in an experiment where they 

used gene knockout to modify P. falciparum parasite lines to silence the expression of 

PfEMPl molecules by using a drug selectable marker under the control of a promoter
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from a gene encoding native PfEMPl that was transfected into the parasites. The 

parasites were grown under drug pressure and expression of the marker allowed the 

transfectants to grow and silence endogenous PfEMPl transcription. A significant 

reduction in the recognition of PfEMPl-silenced infected red blood cells by sera from 

immune adults was observed. The PfEMPl-silenced parasites were characterized by 

a decline in opsonic phagocytosis and in-vitro binding to host receptors (Chan et 

al. 2012). This experiment confirmed that in laboratory isolates, PfEMPl are major 

targets of antibodies.

This experiment, together with evidence that PfEMPl are the targets of antibodies 

(Leech et al. 1984) as inferred from serological studies (Bull et al. 1998; Piper et al. 

1999) support a role of PfEMPl as targets of naturally acquired immunity.

1.4 The molecular structure of var genes

Var genes are 6-13kb two exon molecules (Gardner et al. 2002; Su et al. 1995) 

that encode the PfEMPl molecule. Exon 1 encodes an extra-cellular region which 

has a modular structure and exon 2 encodes an intra-cellular region that anchors 

the molecule on the surface of the infected erythrocyte (Gardner et al. 2002). P. 

falciparum’s haploid genome contains approximately 60 var genes (ibid.). A schematic 

diagram of a var gene is shown in figure 1.3.
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Figure 1.3: Var gene architectures are very diverse. This diagram depicts one o f the many 
typical domain architectures. The molecule comprises of an semi-conserved intr a-cellular exon that 
codes for the acidic terminal segment and an extra-cellular exon that codes for the polymorphic 
cytoadhesive domain. Exon 1 and 2 are interspersed by a conserved intron. The semi-conserved 5 ’ 
flanking promoter region has functional relevance and is used for grouping var gene sequences 
into ups-types. Specifically ups-A and ups-B are associated with parasites that are expressed in 
severe malaria cases, whereas ups-C are generally expressed in asymptomatic cases.

The var genes encode the high molecular weight PfEMPl molecules which are 

made of a combination of two to nine domains organized in a m odular architec­

ture comprising an N-terminal segment (NTS), Duffy Binding-like (DBL) which are 

homologous to adhesive domains in P. falciparum  EBA-175 and the Duffy-binding pro­

teins of Plasmodium vivax and Plasmodium knowlesi (Peterson et al., 1995), cysteine 

rich inter-domain region (CIDR) and the cytoplasmic acidic terminal segment (ATS) 

(Smith et al. 2000b; Gardner et al. 2002; Lavstsen et al. 2003).

Based on sequence homology, the DBL domains are divided into six sub-groups (a , 

(5, y, 5, e and Q, and the CIDR domains are divided into four sub-groups (a , (5, 5 and

12



y) (Su et al. 1995; Lavstsen et al. 2003; Kraemer et al. 2007; Smith et al. 2000a). The 

DBL domains are further divided into homology blocks A-J that are interspersed by 

hyper-variable regions (Smith et al. 2000a) and also by three structural sub-domains 

S I-S3 (Higgins 2008). A study by Rask and colleagues has suggested further divisions 

of the DBL and CIDR domains based on full length sequence data of 7 laboratory 

parasite lines (Rask et al. 2010) (Discussed in section 1.7.)

Var genes are found in all fourteen chromosomes of the parasite genome. In 

the 3D7 genome, the majority are encoded in the subtelomeric and the rest in the 

centromeric regions (Gardner et al. 2002). Telomeric genes are transcribed in a tail- 

tail, head-to-tail or head-to-head orientation in respect to each other. Occasionally a 

member of the repetitive interspersed families of polypeptides (rifin) is found between 

the var genes. Centromeric var genes are found in tandem in a head to tail orientation 

of 3-7 genes (Kyes et al. 2007).

The var gene orientation is often associated with the ups type of the 5’-flanking re­

gions (Gardner et al. 2002; Lavstsen et al. 2003). UpsA genes are transcribed towards 

the telomere while upsB are often transcribed towards the centromere. upsC var genes 

are located at the centromeres. The structural arrangement of var genes is depicted 

on figure 1.4. This structural arrangement is thought to be functionally important 

and to influence recombination patterns (Kraemer et al. 2007) and regulation of gene 

expression (Ralph et al. 2005; Howitt et al. 2009).
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Figure 1.4: Chromosomal arrangement o f var genes. The upstream promoter classification is 
denoted by letters A-C. Group A genes are transcribed towards the telomere and group B are tran­
scribed away from the telomere. The internal var clusters are found on chromosome 4,6,7,8, and 
12 wheres the subteromeric vars are on most chromosomes. Preferential recombination occurs 
among the group A genes and similarly among the group B var genes.

Unusually conserved var genes across most isolates include the varl, the var2csa 

and the type 3 var genes. Varl and var2csa have distinct upstream  promoters re­

gions that were described as ups-D and ups-E respectively by Lavstsen and colleagues 

(Lavstsen et al. 2003).

1.5 Expression of var genes

Regulation of expression in var genes is controlled at the transcription initiation, 

translation and epigenetic levels for example through nuclear localization. Var genes 

are expressed in a mutually exclusive m anner (Scherf et al. 1998; Kyes et al. 2007) 

16-18 hours post invasion. Transcription control involves interaction of the 5’ var 

promoter situated upstream of the first exon and the var intron promoter. Epigenetic 

control of var gene expression involves histone acytylation and methylation (Lopez- 

Rubio et al. 2007; Freitas-Junior et al. 2005).
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Silenced var genes tend to localize within regions of the nucleus that contain 

condensed heterochromatin whereas active transcription occurs in regions where 

chromatin is open for transcription. It has been shown that var genes localize mostly 

at the nuclear periphery regardless of chromosomal location or their activation state 

they appear to move upon changes in transcription activity (Duraisingh et al. 2005). 

Telomeric clusters are located within heterochromatin region of the nuclear periphery 

whereas upon activation it moves to another location of the nuclear periphery where 

the chromatin is open for transcription. This suggests that sub-nuclear organization 

also plays a role in regulation of var gene expression.

1.6 The role of PfEMPl in sequestration

While the early stages of the blood stage malaria parasite can be observed under the 

microscope in a peripheral blood smear, the trophozoite and schizont stages are found 

in parasites that are sequestered in endothelial tissues. Sequestration is mediated by 

an interaction between the host endothelial receptors mainly through cytoadhesive 

domains of the PfEMPl surface proteins. Parasite infected erythrocytes are able to 

bind to a wide range of endothelial receptors that include ICAM-1 (Berendt et al. 

1989) PECAM, CD36 (Barnwell et al. 1989; Newbold et al. 1997), ELAM-1, VCAM-1, 

chondroitin sulfate (CSA) (Rogerson et al. 1995; Reeder et al. 1999) and endothelial 

protein-C (EPCR) (Turner et al. 2013). Infected erythrocytes can bind to uninfected 

erythrocytes to form rosettes (Udomsangpetch et al. 1989). Interactions between 

infected erythrocytes and platelets in-vitro result in platelet mediated clumping (Pain 

et al. 2001).
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Several studies have shown that sequestration of infected erythrocytes to the 

endothelial receptors contributes to development of malaria pathology using different 

host ligands such as CD36, ICAM-1, CSA, CRl,and EPCR as outlined below.

1.6.1 CD36

CD36 is expressed by several types of cells that include endothelial and epithelial cells, 

macrophages, monocytes, platelets, erythrocyte precursors and adipocytes (Udom- 

sangpetch et al. 1997). Most parasite infected erythrocytes bind to CD36 (Newbold et 

al. 1997). Most CD36 studies are small and related to a single functional investigation 

nonetheless most studies have shown that the CIDR domain of PfEMPl mediate bind­

ing to CD36 (Baruch et al. 1997; Smith et al. 1998). Recombinant PfEMPl fragments 

can bind to CD36 and antibodies raised against these fragments can block adherence 

of infected erythrocytes from different isolates to CD36 (Baruch et al. 1997). Parasites 

that express var group B and C, are important in CD36 binding (Robinson et al. 2003).

1.6.2 ICAM-1

Inter-cellular adhesion molecule 1 also known as CD56 is 90-115kDA transmembrane 

glyco-protein and a member of the immunoglobulin super family that is expressed on 

a variety of cell types. It is involved in signal transduction and is a receptor for several 

ligands. Binding to ICAM-1 by infected erythrocytes may play a role in development 

of cerebral malaria syndrome pathogenesis (Ochola et al. 2011). Ochola et al. (ibid.) 

analyzed the role of ICAM-1 binding variants under static and flow adhesion assays 

to show that parasites from children with cerebral malaria bound more to ICAM-1
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under flow conditions. A subset of PfEMPl molecules with the DBLp» domain pair 

bind to ICAM1. ICAM1-binding molecules are encoded mainly by group B and group 

C PfEMPl proteins (Howell et al. 2008), although some group A PfEMPl have been 

shown to encode ICAM-1 binders (Oleinikov et al. 2009). The strength and the level 

of binding varies. One study reported that infected erythrocytes from children with 

cerebral malaria tend to bind more to ICAM-1 than from children with asymptomatic 

malaria (Newbold et al. 1997). In another study there was no difference in binding 

in children with severe malaria compared to those with non-severe cases (Rogerson 

et al. 1999). A frequent polymorphism in the ICAM-1 gene in African populations 

is not associated with protection against severe malaria (Craig et al. 2000) but is 

reported to be protective against febrile illness in infants (Jenkins et al. 2005). It has 

been suggested that ICAM-1 could work in a synergistic way with CD36 to enhance 

static adhesion (McCormick et al. 1997; Yipp et al. 2007).

1.6.3 Chondroitin sulfate-A

P. falciparum parasites adhere to CSA (Rogerson et al. 1995) and a distinct PfEMPl 

variant protein, var2csa, binds to chondroitin sulphate-A (Salanti et al. 2004) which 

results in parasite sequestration in the placenta of pregnant and infected women 

(Fried: 1996ws). Pregnancy associated malaria is a major cause of poor birth out­

comes that include abortion, still-birth and low-birth weight mostly in first-time moth­

ers in malaria endemic regions. Most women develop antibodies that inhibit binding 

of parasites to the placenta and are less affected in the second, third and later preg­

nancies (Fried et al. 1998). This observation forms a basis for developing protective
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PfEMPl based vaccine and serves as a model for PfEMPl based immunity to malaria.

1.6.4 EPCR

Endothelial protein-C receptor (EPCR) is a receptor for activated protein-C, a serine 

protease involved in the blood coagulation pathway. In 2013 Turner and colleagues 

reported that parasites causing severe malaria in a group of children expressed EPCR- 

binding PfEMPl. They showed that EPCR binding was associated with PfEMPl mo­

lecules carrying domain cassette 8 (DC8) and 13 (DC13) (Turner et al. 2013). Domain 

cassettes are discussed in section 1.7. Importantly they showed that parasite bind­

ing to human brain micro-vascular endothelial cells through EPCR was significantly 

higher in isolates from patients with severe malaria than in children with non-severe 

malaria.

1.6.5 Complement receptor 1

The complement receptor 1 (CR1) is a complement regulatory protein that is ex­

pressed by erythrocytes, leukocytes and dendritic cells. CR1 is implicated in roset- 

ting (Rowe et al. 1997), a parasite phenotype that is associated with severe malaria 

(Carlson: 1990fq; Warimwe et al. 2012).

1.7 Functional classification of var genes

Var genes exhibit extreme molecular diversity. Only a limited set of functional phen­

otypes are associated with parasites. Var classification is important to distinguish 

var types that may be associated with particular virulent phenotypes. Methods used
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to classify var genes are based on homology in coding, non-coding and upstream 

sequence regions (Voss et al. 2003; Voss et al. 2000; Vazquez-Macfas et al. 2002; 

Gardner et al. 2002) as well as conservation of domain architecture across multiple 

isolates. On the other hand, the Cys/PoLV DBLa classification method is based on 

sequence properties of a short PCR amplified region of the DBLla (see figure 1.3) 

domain rather than sequence homology.

Based on the conservation of the 5’-flanking region var genes were classified into 

three major groups, upsA, upsB and upsC (Gardner et al. 2002). A number of studies 

have associated upsA var sequence expression with severe and life-threatening disease 

outcomes. First, Rottmann et al. (2006) using real time PCR primers showed that var 

group A and B transcripts were more abundant in severe malaria patients than in pa­

tients with uncomplicated malaria. A study from Kenya associated group A genes with 

rosetting (Warimwe et al. 2012), a phenotype that has been associated with disease 

severity in African children (Doumbo et al. 2009). Studies by Warimwe et al. (2009) 

and Kyriacou et al. (2006) provided indirect association using var DBLa sequence 

tags. Both studies provided evidence to support that a subset of tag sequences with 2 

cysteines tend to be associated with group A var genes.

Expression of upsB sequences is associated with severe and mild malaria (Rottmann 

et al. 2006; Kaestli et al. 2006) while a large proportion of upsC sequences are associ­

ated with expression in asymptomatic cases (Rottmann et al. 2006; Falk et al. 2009). 

However, significant expression of upsC sequences in severe malaria cases has been 

reported (Kalmbach et al. 2010)

These observations suggest that the ups classification is very broad and does not al­
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ways discriminate between disease phenotypes. Although there are clear associations 

between function and features associated with upsA, lack of a distinct sequence signa­

ture within var genes means that the relationship between sequence and functional 

role or phenotype cannot be direct.

In 2010, Rask and colleagues described twenty-three non-random domain arrange­

ments that were commonly found in full-length sequences of seven parasite genomes 

(Rask et al. 2010). These non-random domain arrangements were designated as do­

main cassettes (DC). Var gene segments can be classified based on conservation of 

these domain structures or cassettes.

A couple of studies have shown that var sequences that are characterized with 

DC8 and DC 13 domain cassettes are associated with expression in severe malaria 

(Lavstsen et al. 2012; Bertin et al. 2013). DC8 and DC13 are important in binding 

to the endothelial protein-C receptor (EPCR) (Turner et al. 2013). DC8 var-encoded 

genes from the IT4 line were shown to bind to endothelial cells from various organs 

and notably from the brain endothelial cells (Avril et al. 2012; Claessens et al. 2012). 

The major drawback with this approach is that the domains were defined based on 

homology and most variation is not in the parts of the sequences that are directly 

linked with adhesive function, and the nature of molecular sequence diversity is not 

correlated with the extent of functional diversity. Therefore, sequencing large numbers 

of clinical parasites coupled with functional assays is important in order to establish 

the relationship between sequence conservation and cytoadhesive properties.
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1.7.1 Working w ith DBLa sequence tags

Given the challenges of sequencing full-length var genes and classification, a lot of 

clinical studies have sequenced the DBLa region of in the DBL1 domain because it 

can be amplified using universal primers.

The DBLa sequence tag is a short 300-500 nucleotide segment found in the DBLla 

domain of the var gene. DBLla domains are found in nearly all var genes. While the 

DBL1 domain is not very conserved in sequence, it is characterized by the presence 

of semi-conserved homology blocks that can be targeted by universal primers (Taylor 

et al. 2000a). It is likely that the tag region is in linkage disequilibrium with genetic 

or structural features upstream or downstream of the molecule. Figure 1.5 shows a 

schematic diagram of the DBLa sequence tag highlighting the major characteristic 

features. The MFK and REY motifs are not present at the same time in a given tag 

(Bull et al. 2007).
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Figure 1.5: A diagram depicting the size o f the DBLa sequence tag relative to the full length var 
gene and the features that are characteristic of the tag regions. Relatively conserved regions within 
the tag are shown and they are interspersed with polymorphic regions. The relatively location of 
two important motifs MFK and REY is shown (Bull et al. 2007)

DBLa sequence tags are characterized by relatively conserved N-terminal and C- 

terminal regions, distinct number of cysteine residues, two mutually exclusive motifs 

and a distinct length distribution (Bull et al. 2005). DBLa sequence tags can be 

classified into six groups depending on the combination of the its features. The six 

groups are CPI (cys2-MFK+ve), CP2 (cys2-REY+ve), CP3 (cys2 REY~ve MFK_VC), CP4 

(cys4-REY-ue MFK-ve), CP5 (Cys4-REY+ue) and CP6. CP6 is the default group for 

sequences that do not fall into any of the previous five groups. Figure 1.6 shows a 

summary of Cys/PoLV classification system.
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Figure 1.6: DBLa sequence tags can be classified into six sequence groups. Group 1 (CPI) 
sequences contain 2 cysteines and an MFK m otif group 2 (CP2) contain 2 cysteines and an REY 
m otif Group 3 (CP3) contain 2 cysteines without any o f the motifs. Group 4 (CP4) contain 4 
cysteines and Group 5 (CP5) contain 4 cysteines and an REY motif. Sequences that do not fall into 
any o f the previous groups are classified as group 6 (CP6). Some sequences share short sequences 
blocks with each other such that they form  a network o f block sharing sequences. The largest 
components o f this network were termed as Block-Sharing group 1 and Block-sharing group 2. 
The group-A sequences contain 2 cysteines and tend to fall on block-sharing group 1.

A study by Bull et al. (2008) showed that sequences that shared 14 amino-acid 

sequence blocks with each other formed an unbroken network of sequences that 

comprised of a major and a minor component. Sequences that were connected in 

the major component were termed as the block-sharing group 2 and those that fell 

on the minor component were termed as block-sharing group 1. The majority of the 

sequences did not fall in these components. Sequences in the block-sharing group 1 

corresponded well with group A sequences (ibid.).

Not all sequences fitted into these networks and therefore a few sequences were 

connected to both bsl and bs2 networks. Figure 1.7 shows a layout of sequences on
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a block sharing network.
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Figure 1.7: A layout of block sharing networks from a collection of DBLa sequences samples from  
around the world. DBLa sequences from Kilifi mapped on the block-sharing network. Each point 
represents a sequence. Sequence belonging to block-sharing group 1 are shown on the network 
coloured by the respective cys/PoLV group. The majority of these DBLa sequence tags contain two 
cysteines. (Courtesy of (Bull et al. 2008)).

1.8 Diversity in var genes

In malaria endemic regions an individual can suffer from multiple P. falciparum  

infection and re-infections which suggests that sterilizing immunity against malaria is 

difficult to establish. Through antigenic variation, the parasite is able to avoid immune 

clearance and therefore perpetuate a persistent infection by exploiting ’holes’ in the
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immunity of the host as reviewed by Bull and Marsh (Bull and Marsh 2002).

Several studies (Falk et al. 2009; Freitas-Junior et al. 2000; Kraemer et al. 2007; 

Taylor et al. 2000a) suggest that var recombination occurs in coding sequences; and 

that it generates rapid variation in the encoded proteins (Taylor et al. 2000a; Ward 

et al. 1999).

1.8.1 Role of recombination in generation of var diversity

Recombination in var genes is generated during meiosis (Taylor et al. 2000b; Freitas- 

Junior et al. 2000) and mitosis (Claessens et al. 2014; Bopp et al. 2013). Deitsch 

and colleagues showed evidence for intra-cluster recombination of var genes in chro­

mosome 12 that was characterized with spontaneous switches in the transcription of 

genes (Deitsch et al. 1999). Using a HB3xDd2 genetic cross in hybridization study, 

Freitas-Junior showed that parasites from genetically diverse backgrounds can share 

sequenced blocks with other var genes (Freitas-Junior et al. 2000). Zilversmit and 

colleagues defined large and continuous blocks of homologous sequences among P. 

falciparum and P. reichenowi DBLa domains (Zilversmit et al. 2013). This suggests 

that recombination accounts for diversity within and between species.

Variation in the level of recombination between different var gene subsets appears 

to play a role in structuring var genes in the populations. For example group A var 

genes tend to recombine with fellow group A and less with non-group A (Kraemer and 

Smith 2003; Kraemer et al. 2007). This could be important in maintaining overall var 

function. Despite this, the architectures of var genes are poorly maintained between 

different parasite genomes (Kraemer et al. 2007).
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Few studies have looked at sequence diversity in var genes due to lack of epi­

demiological sampling frameworks given the challenges of obtaining, sequencing and 

classifying var genes from clinical isolates. In a study by Barry and colleagues, DBLa 

sequences were grouped into "sequence types". By sampling from global population 

of sequences, a "type" plateau was never arrived at because of the immense number of 

sequence "types" suggesting extreme diversity within the DBLa region of the PfEMPl 

(Barry et al. 2007).

1.8.2 The role of point mutations in generation of var diversity

The role of point mutations and nucleotide substitution in generation of sequence 

diversity in var genes is still poorly understood. While it is known that point mutation 

occurs in DNA sequences it is difficult to ascertain to what extent point mutation is 

important in generation of diversity in var sequences especially with the long history 

of recombination. It is important to distinguish the biological processes that generate 

specific types of point mutations. Relating mutation to specific selective pressure could 

provide insight on processes maintaining diversity but the challenge is on approaches 

to quantify and separate diversity that is generated through recombination from 

diversity occurring through random mutation processes.

1.9 Evidence for immunological specialization

Building on the idea of functional specialization discussed in section 1.7, several stud­

ies suggest that distinct var groups tend to associate with particular adhesive proper­

ties provides evidence for functional specialization. The idea of functional specializa­
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tion is that if the cost of optimal adhesive properties was conserved antigenic types, 

then, antigenic types would be rapidly eliminated leading to selection of variants 

with novel antigenic types (Bull et al. 1999). Evidence in support of immunological 

specialization comes from an experiment with parasites from different geographical 

regions. Bull and colleagues observed that parasites associated with severe malaria 

in non-immune individuals express a subset of variant surface antigens that was com­

monly recognized by immune serum compared to those that were associated with 

uncomplicated malaria (Bull et al. 2000). This experiment was confirmed from the 

observation that antigens expressed by parasites from young Ghanaian children with 

malaria were commonly and strongly recognized by plasma from healthy children in 

the same locality, whereas recognition of antigens expressed by parasites from older 

children was less frequent (Nielsen et al. 2002).

Furthermore the observation that expression of commonly recognised variants 

was accompanied by up-regulation of group A var genes (Jensen et al. 2004) in 3D7 

isolates suggests that different subsets of PfEMPl have different levels of antigenic 

conservation. Jensen and colleagues showed that group A var genes were up-regulated 

in 3D7 parasites that were commonly recognised. The commonly recognized variants 

were selected on the basis of the observation that they are recognized by plasma IgG 

of semi-immune children as previously described by Bull and colleagues.

The above observations have been corroborated by studies using the DBLa tags 

where clinical expression studies on var have shown that CPI, CP2 and CP3 sequences 

are often expressed in children with severe malaria while CP4 are often expressed 

in children with non-severe malaria (Kyriacou et al. 2006; Warimwe et al. 2009;
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Kirchgatter and Portillo 2002). Additional evidence comes from studies which show 

that group A var genes are often expressed in samples collected from young individual 

that are less immune (Kyriacou et al. 2006; Warimwe et al. 2009).

Using data from full length var genes, Buckee and Recker reported an association 

between the number of domains in a var gene and sequence conservation (Buckee and 

Recker 2012). From the same group of sequences, they also showed that upsA genes 

were more conserved relative to upsB and upsC, suggesting some level of structural 

specialization that is consistent with known recombination patterns (Kraemer et al. 

2007) and correlates with functional specialization as discussed in section 1.7.

Taken together, these studies suggest that var gene subsets have distinct antigenic 

properties and that some subsets are more antigenically conserved than others.

1.10 Thesis overview

This thesis work explores molecular and predicted epitope diversity in var sequences 

by analyzing the DBLa sequence tags. The DBLa sequence tags used in this study 

were largely from samples collected in Kilifi during two study periods 2003-2007 and 

2008-2010 and also from published sequences from laboratory parasites and clinical 

isolates from Papua New Guinea and South America. The sequences from Kilifi were 

sequenced from samples that were collected from sick children who presented at the 

County hospital. One of the advantages of using the DBLa sequence tags is that they 

can be PCR amplified from most var genes that contain a DBLla domain. The thesis 

work focused on the molecular and immunological diversity of DBLa sequences as 

explained in the next two sections.
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1.10.1 Molecular diversity of var genes

The first and the second research questions were investigated by exploring the nature 

of molecular diversity in the DBLa sequences. The molecular diversity of var genes 

is poorly described given the extensive diversity and recombination that is present 

in var sequences. Recombination presents a challenge in describing the nature of 

variation and the role of variation in shaping immunological differentiation and influ­

ences sensitivity and specificity in methods that are used to measuring var expression. 

Chapter 3 of this thesis explores this aspect of diversity. Chapter 4 explores the nature 

of diversity in DBLa nucleotide sequences of known similarity with an aim of under­

standing and describing the extent to which processes other than recombination are 

involved in generation of diversity.

1.10.2 Immunological diversity in var genes

Majority of var genes contain a DBLa domain but raising cross-reactive and protective 

antibodies against the DBLa domain is difficult. In a recent study, Blomqvist and col­

leagues reported success in ability to raise cross-reactive antibodies against conserved 

peptides in the DBLa domain (Blomqvist et al. 2013). In their experiment antibodies 

were raised against conserved motifs that were identified in sequences associated with 

severe malaria from a study in Uganda (Normark et al. 2007). In another study 15-20 

mer-long peptides with high binding activity and therefore referred to as high activity 

binding peptides (HABPs) were used to create highly immunogenic and protection 

inducing modified HAPBs (Patarroyo et al. 2014).
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In chapter 5 of the thesis putative novel epitopes are described based on B-cell and 

T-cell epitope predictions using the DBLa sequences. The epitopes are analyzed in the 

context of the expression profile of the respective var sequences and the corresponding 

relationship with age of the host and data on their molecular diversity. Part of the 

aim of this work was to test the feasibility of raising cross-reactive antibodies against 

short linear immunodominant epitopes.

1.11 Summary of research questions

1. How does the var classification approaches used to measure expression in clin­

ical isolates compare?

2. Is there evidence for non-random distribution of variation in different subsets of 

var sequences given that PfEMPl functional and antigenic properties potentially 

impose different selection pressures?

3. Are predicted linear epitopes associated with sequences expressed in severe mal­

aria and in young individuals? How do they differ between previously defined 

var sequence groups?
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Chapter 2 
Materials and methods

This chapter provides an overview of the study site, the demography and general 

methods that were used to process and analyze data.

2.1 Study location

This work was carried out using sequence data that was generated from two immun­

ology studies (Warimwe 2010; Andisi 2014) at the KEMRI-Wellcome Trust Research 

Programme in Kilifi County, published sequences collected from a studies in Brazil 

(Albrecht et al. 2010) and Papua New Guinea (Barry et al. 2007) and sequences that 

were generated from sequenced laboratory isolates (Rask et al. 2010).

The KEMRI-Wellcome Trust Research Programme is located at the Kilifi County 

Hospital (KCH) situated along the Kenyan coast, 56 kilometers northeast of Mombasa 

by road and lies on the Kilifi creek as shown in figure 2.1 (Scott et al. 2012). Kilifi 

county has a population of more than 122,889 people based on data from the 2009 

National Demographic Survey and Census.

Kilifi region experiences two rainy seasons in a year; the long rains (April-July) 

and the short rains (October-November). Most malaria transmission and infection 

occur during these wet seasons. The estimated entomological inoculation rate is
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about 21.7 bites per person per year (Midega et al. 2012). The northern part of the

Kilifi County has a relatively lower transmission rate compared to the south (Snow

et al. 1997). The region has observed a decline in malaria transmission over the last

20 years (Okiro et al. 2009b; O’Meara et al. 2008; Hay et al. 2010). Malaria decline

has been attributed to multiple interventions that include widespread use of bed-nets,

a change in weather patterns, vector densities and a shift in the feeding patterns of

the vectors (Mwangangi et al. 2013) among other social-economic factors.

Kilifi D istrict

Annual paediatric 
adm ission rate per 
10,000 total

□  0-4
□  5-24
□  25-49
□  50-74 
H  75-99 ■ >100

0 10 20 40
Kilometres

Figure 2.1: A map of Kilifi district now the Kilifi county. The map on the left shows the location 
of the county in relation to the rest o f the country and the one on the right shows the study 
area. The rate o f pediatric admissions to Kilifi County Hospital by administrative sub-location 
are colored based on the legend. The dark bold line represents the boundary o f the Kilifi Health 
and Demographic Surveillance System (KHDSS). Courtesy o f Scott et al. (2012)

2.2 Sample collection and processing

The study samples were collected at the Kilifi County Hospital during 2003-2007 and

2008-2010 periods. The period between 2003 and 2007 was a period of rapid decline

in malaria admissions in relation to previous years. Malaria admissions w ere at the

population

Hospital ©  

Major ro a d .........

E th io p ia

Kilifi District
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lowest during the 2008 to 2010 period as shown in figure 2.2.

An informed consent was obtained at the time of admission. Consent from minors 

was obtained from the parent or guardian. Parasite samples were classified as severe 

or non-severe based on clinical information at the time of admission. Severe malaria 

cases were defined based on Marsh and colleagues case definitions (Marsh et al.

1995).
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Figure 2.2: A plot showing the sample collection periods in the background of malaria admission 
at the Kilifi County Hospital Sequence data were obtained during the 2003-07period and 2008- 
10 period. The 2003-2007 was a period o f rapid decline in malaria admissions and during the 
2008-10 period malaria admissions were at the lowest. There was a trend towards increasing 
age for patients who were admitted at the hospital as depicted by the black line (data not shown). 
Adapted from Andisi (2014)

The collection and processing of parasites was done prior to sequence analysis 

using standard and published methods as described in Bull et al. (2005), Warimwe 

(2010) and Andisi (2014). Sample preparation and parasite culture constituted a 

separate piece of work which is not included this thesis.
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2.3 Sequence data from Kilifi

A total of 8,118 sequences from Kilifi was generated from 450 isolates that were col­

lected in Kilifi in the period 2003-2007. Another dataset was generated from isolates 

collected in 2008-2010. These sequences were generated using the methods described 

by Andisi (2014).

2.4 Sequence data from laboratory isolates

Full-length PfEMPl sequences from seven laboratory isolates were downloaded from 

sources as described by Rask and colleagues (Rask et al. 2010). These isolates were 

Dd2 (n=47), 3D7 (n=60), HB3 (n=43), IT4 (n=55), PFCLIN (n=58), R ajll6  (n=37) 

and Preich (n=16) (Otto et al. 2014). DBLa sequence tags were extracted from the 

full length sequences using the DBLa-finder program.

2.5 The global data set

A total of 354 sequences from 10 geographical regions were downloaded from Gen- 

bank and constituted the global dataset as shown in table 2.1.

India Sudan Kenya Cape Verde Solomon Isl Phillipines Vanuaitu PNG Thailand Brazil Africa

25 22 47 8 90 55 7 22 22 33 23

Table 2.1: This table shows the number of additional sequences from different geographical 
regions around the world that were collected and used in the study.

Data from Papua New Guinea comprised of 460 sequences from Amele and Ma-
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dange regions that was downloaded from Genbank based on the accession numbers 

provided by Barry and colleagues (Barry et al. 2007).

An extra dataset of 980 var2CSA sequences were also downloaded from Genbank. 

Only 68 sequence tags met the tag extraction criteria as set out in the DBL-alpha-finder 

program (A.1). This is not surprising because var2CSA sequences cannot be amplified 

using the DBLa (section A.1) primer target regions which also form definition of the 

tag.

2.6 DNA amplification

Samples that were collected before 2008 were amplified using Amplitaq Gold poly­

merase and those that were collected between 2007-2010 were amplified using the 

Bio-X-ACT DNA polymerase, a high fidelity polymerase with proof-reading activity. 

Low fidelity enzymes can result in PCR errors that are difficult to account for and 

bias the distribution of mutations. The effect of PCR errors were minimized using 

the sequence clustering and selection methods described in later sections. The tag 

region was amplified in both directions on an ABI Gene Amp PCR system 9700 

thermocycler using the DBLa-AF GCACG(A/C)AGTTT(CVT)GC and DBLa-BR GC- 

CCATTC(G/C)TCGAACCA degenerate primers (Bull et al. 2005).

2.7 Scripting and code management

This thesis was prepared and typeset using Latex and Knitr. Coding and file manage­

ment was done using the git revision control ( h t tp s  : / / g i t - s c m . c o m / ) .  Source 

code was committed to Github repository under a 5 year generous private repository
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student plan provided by Github team. All source code is provided and released under 

the open source public plan.

2.8 Scripting languages and statistical tools

Perl, Ruby, Python, Awk and R were used to in the data processing, management and 

analysis. Notable programs and scripts are listed in appendix A and they are also 

available from the Github repository (http: / /github. com/biorelated).

Statistical analysis was done using RStudio (http: //rstudio. org) and the R 

statistical language (https : / /www. r-pro ject. org/). Majority of the plots were 

created based on the grammar of graphics as implemented in the ggplot2 package 

(Wickham 2009). The dplyr package was used to manage data transformation and 

cleaning. The phylosim and Ape packages were used work with alignment and phylo­

genetic trees. Layouts were prepared with the gridExtra and Cowplot packages. The 

Seqinr package and Bioconductor were used in analysis of nucleotide and protein se­

quences. The Ape package was used for reading and manipulating multiple sequence 

alignments. Xtable and stargazer packages were used to format tabular data into 

presentable tables. The work-flows were written using multiple programs written in 

any of the languages mentioned earlier and they were "glued" together using the Bash 

programming language and interpreter.
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Chapter 3 
Development of a sequence clustering and epitope prediction 

framework

3.1 Background

This chapter describes the methods and approaches that were developed to support 

the work described in chapter 5 and 6. It describes approaches and tools that were de­

veloped to identify high quality DBLa sequence tags, a sequence clustering approach 

for identifying nucleotide substitutions in groups of similar sequences and methods 

and tools for predicting both B-cell and T-cell epitopes in DBLa sequences.

Following from chapter 2, there were two main sources of data in this study; 

immunological studies that were carried out between 2003 and 2007 (Warimwe 2010) 

and between 2008 and 2010 (Andisi 2014) in Kilifi and sequences that were collected 

from published sources (Barry et al. 2007; Albrecht et al. 2010; Rask et al. 2010). The 

sequences from Kilifi formed the bulk of sequences used in the analysis. Data from 

2003 - 2007 was downloaded as compressed archives of trace files while the data 

from 2008 - 2010 was downloaded from the Beijing Genomics Insitute as compressed 

archive of ABI files and as described in chapter 2. The computer programs described 

in section 3.7 were developed to unpack the compressed files, process and assemble 

the raw reads into contigs and then to identify "high quality DBLa sequences" (see
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section 3.4). The high quality sequences were then clustered, classified using the 

tag analysis approach described in chapter 1 section 1.7.1 and as described in later 

sections of this chapter.

3.2 Generating random substitutions

Random substitutions were generated for comparison with substitutions that were 

observed from clinical sequences. Two approaches were used to generate random 

substitutions in DBLa sequences. The first approach inserted random substitutions 

at random nucleotide positions in a randomly selected DBLa reference sequence. 

A total of 5001 sequences were generated at each identity threshold. An identity 

threshold was a percent global similarity value that was used to group sequences such 

that sequences within a cluster were similar at greater than or equal to a specified 

threshold (see section 3.5). DBLa sequences without stop codons were extracted 

from the simulated sequences using DBLFinder and clustered at 98%-92% identity 

using Vsearch. Table 5.1 shows a summary of the DBLa tags at each identity threshold. 

Lower identities resulted in more substitutions and fewer DBLa sequence tags without 

stop codons.

In the second approach, substitutions were generated based on a random model 

and the number of sample sequence alignments was equivalent to the number of 

clusters at each percent identity. A seed sequence was randomly selected from each 

actual cluster that contained two or more members to generate random substitutions 

using the phylosim R package. A neighbour-joining tree from the actual tag sequence 

data was used as input to the simulation method. The tree from actual sequences
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ensured that an equivalent number of substitutions were generated in respect to 

each actual cluster and that the tree topology was maintained. This approach is 

summarized in figure 3.1.

The main differences in the two approaches was that the first approach used 

information derived from a single sequence whereas the second approach utilised 

information from a wide range of sequences and therefore accounted for differences 

in nucleotide proportions. Therefore the second model was preferred and used in 

later analysis.

3.3 General approach for computer programs

The computer programs developed in this thesis can be grouped into 1) utility pro­

grams, 2) specific programs and 3) work-flows. Utility programs provided funda­

mental functions such as DNA translation, classification of DBLa sequence tags, sli­

cing and extraction of homology and hyper-variable blocks. Specific programs were 

developed to provide features that were not available from existing tools or involved 

novel ways of interacting with the tools for example parsing clustering results, as­

sembling DBLa tags, building networks, mutation analysis as well as plotting results. 

Work-flows automated repetitive tasks that involved two or more programs to accom­

plish a task.

Specific programs were packaged for local installation and also released as open 

source tools to the wider bioinformatics community. The source code for core pro­

grams is outlined in the appendix A section and also is available online under open 

source licenses.
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3.4 Assembling high quality DBLa sequences

A total of 96 colonies per sample were sequenced from data collected between 2003 

and 2007 and a total of 32 colonies per sample was sequenced from samples that were 

collected between 2008 and 2010. Each colony was sequenced in both forward and 

reverse directions. Two assembly programs were used to assemble the reads, phrap 

and CAP3.

3.4.1 Assembling DBLa sequences with phrap

Phrap is a program for assembling shot-gun DNA sequences. It was adapted by Bull 

and colleagues to assemble DBLa sequences based on Sanger capillary sequencing 

(Bull et al. 2007; Warimwe et al. 2009) and also by other research groups (Blomqvist 

et al. 2010; Normark et al. 2007) to assemble DBLa sequences in experiments aimed 

at quantifying the expression of var sequences. The assembly process included base 

quality trimming, vector and primer sequences removal and generation of consensus 

sequences from reads in each isolate.

A fasta file containing forward and reverse reads with the respective base quality 

information in a separate file is provided as phrap input. The reads are aligned to 

produce a collection of high scoring local alignments (Altschul et al. 1990) between 

pairs of reads, based on a filter for determining which pairs of reads are likely to 

yield high scoring alignments. Finding every single high scoring alignment is not 

guaranteed. If two reads have a high-scoring alignment with a region of identity but 

one read’s quality scores are low over this region while in the other they are high,
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quality scores in the first read are boosted, while in a region of the alignment where 

there is disagreement, the quality scores of one or both reads are reduced. The reads 

are then assembled into contigs.

A contig was defined as a set of reads that appear to form an uninterrupted stretch 

of contiguous bases. First each read is assigned to a contig by itself. Then they are 

aligned and the alignments are considered from the highest to the lowest scoring one. 

The contigs containing two aligned reads are merged into a single contig unless the 

algorithm fails to meet the requirements imposed by the set parameters. The lists of 

reads and alignments assigned to each contig are used to construct a sequence with 

quality annotations. After grouping together positions on the individual reads that 

the alignments suggest have a common origin on the target, a dynamic programming 

method is used to find the best sequence for each group.

Phrap utilizes local alignment to align and group sequence reads. A possible short­

coming with local alignment is that it can assign tags from the same isolate into a 

consensus if they share substantial local identities and create contigs from sequences 

that are globally different. One study showed that phrap produces more errors in 

consensus sequences compared to CAP3 (Huang and Madan 1999). The phrap-based 

pipeline as was implemented by Bull and Keane, was more suitable for expression ana­

lysis and yielded the protein sequences. It was important to assemble tag sequences 

based on global similarities and to yield nucleotide sequences as output.
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3.4.2 CAP3 approach

CAP3 was used to assemble 192 reads per isolate from the dataset that was collected 

in 2003-2007 period and 64 reads per isolate for the 2008-2010 dataset. Data from 

each read was in the form of an Abl chromatogram file. The reads were screened to 

remove read-pairs that did not have a corresponding forward or reverse mate. Each 

chromatogram was converted into a fastq file which was later split into a fasta file 

and a phred formatted quality files. The respective fasta and quality file were then 

provided as CAP3 input files.

CAP3 assembled each read-pair into a consensus contig. For each CAP3 read-pair 

assembly an ace, contig and a quality file were generated. The particulars of each 

successive CAP3 execution were saved to a log file. The contig file was then renamed 

for consistency with the assigned colony and isolate name as was provided in each 

plate. The respective contig and base quality files were converted into fastq format. 

All the contigs belonging to each isolate were saved in a file. The DBLa sequence tags 

were extracted using the DBLa-finder (3.7.1).

The final output was a DBLa sequence tag for each sequenced colony per isol­

ate. All the tag sequences in each isolate were clustered at 96% identity using the 

Vsearch version vl.l.l_osx_x86_64 clustering program (https : / /github. com/ 

torognes/vsearch). Vsearch is an open source 64-bit drop-in replacement for 

Usearch. Figure 3.2 shows a summary of this work-flow.
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Figure 3.2: A flow diagram showing the DBLa sequence assembly workflow. The chromatogram 
data files were converted to raw fastq reads. The reads fl'om each colony were collapsed into "con­
tigs'' using CAP3. DBLa sequence tags were extracted from the contigs using the DBL-Finder utility 
and sequences from each isolate were clustered at 96% identity using Vsearch. Representative 
sequences from each isolate were written to file for further processing.

Given that an isolate refers to a lab adapted clinical sample collected from an 

individual patient at particular time point and 1) individuals can be infected by more 

than one parasite genotype and 2) each genotype can express more than one variant 

at any one time because of antigenic variation, a clinical sample can contain RNA 

from multiple distinct var gene variants.

Initially all the reads from a given isolate were provided as input. CAP3 generates 

consensus sequences from the input reads based on an alignment whose accuracy 

is dependent on the performance of the multiple alignment method. If the bases
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of overlapping reads are improperly aligned, conflicting bases may occur in some 

columns and an inaccurate consensus sequence is generated (Huang and Madan 

1999).

Figure 3.3 shows an alignment of high quality reads from isolate 13H. Read- 

pair Ha03 contained two consecutive cytosine residues that are not reflected on the 

consensus contig. In this case, majority of the reads contain thiamine residues at the 

respective column and the sum of quality scores in the majority of the reads is much 

higher than from the two colonies. In this case, providing all the reads from an isolate 

in a single step as input to CAP3 could mask actual variants because the reads from a 

sample may contain multiple variants as explained earlier.

To resolve this, CAP3 was used to generate consensus sequences from each read- 

pair and the corresponding consensus sequences from each isolate were pooled to­

gether and clustered using an arbitrary 96% identity cutoff to remove errors as de­

scribed in section 3.5.

VARPBl3W51.Qlk- 
VARPB13Ha02.qlk- 
VARPB13Ha09.qlk- 
VARPB13l!l!EE-plk+ 
VARPB13Hh06.qlk- 
VARPB13Ha02.plk+ 
VARPB13Ha09.plk+ 
VARPB13He06.plk+ 
VARPB13Hh06.plk+

consensus

Figure 3.3: Errors in CAP3 consensus sequences. In this figure, the consensus region containing 
the T homo-polymer is assigned a T at the 5th and 6th position despite the fact that the reverse 
and forward reads in colony Ha03 contains a C at these positions. To mitigate against such errors, 
read-pairs from each isolate were provided as input to CAP3. The output contigs were clustered 
at within isolate level using a 96% global similarity cutoff.
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An assembly of reads from isolate 14G, generated two long contigs, contig 3 and 

contig 6. Both contigs contained more than one DBLa tag as shown in figure 3.4.

»
M  II I I III I II I I  III I lllll I HIM II I III I I I Mil II I 111 I I 
III I II INI m m sm m  m i l  II I III II I III I III I i >CDS CDS

III II I llli III II 11 il I III r   t || 11 i i  i> I ill lCDS CDS
.. t> 1 & 1 & tContigl Contifl Coatig3 coatig4 contigs contig6
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Figure 3.4: An example of contigs containing multiple DBLa tags. Contig3 contained two DBLa 
tags in opposite orientation and contig 6 contained two DBLa tags in the same orientation.

Most of the reads were assembled into contigs and high quality DBLa sequences 

were extracted as shown in figure 3.5. The black bars represent the consensus se­

quences and the red bars represent the number of high quality sequence tags from 

the respective contigs in each sample. High quality sequence tags were defined as 

sequence tags that did not contain stop codons, had a length of between 300 and 500 

bases long, and passed the conservative quality trimming criteria that discarded any 

read if a nucleotide had a base quality less than 20.
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3.5 Defining clusters of similar high quality sequences

CAP3 only provided an approach for merging forward and reverse reads and taking 

the base quality information into consideration. It provided a robust approach for 

defining DBLa sequence contigs per colony per isolate. It did not however take care 

of PCR errors or minimize their effect. The next sections describe the approaches 

that were adopted to define high quality tag sequences and to minimize the effect of 

sequencing and PCR errors in the final batch of tags.

3.5.1 Reducing noise due to potential PCR errors

Base mis-incorporation during PCR leads to substitution bias (Acinas et al. 2005). PCR 

amplifications in the 2007-2010 dataset used the Bio-X-ACT high fidelity polymerase 

for amplifications. To reduce the number of unspecific substitutions that could have 

arisen due to PCR errors, all the sequences were clustered using a global identity cut­

off of 96% within each isolate. Only the representative sequences from each cluster 

in each isolate were considered in between isolate comparisons.

Sequence identity depends largely on how gaps are treated given a local or global 

alignment. Having established a set of high quality assembled sequences, sequence 

identity was defined as the proportion of matching residues for a given set of se­

quences based on global pairwise comparison. Letters were identical if they matched 

at the same position in an alignment. The two widely used clustering tools CD-HIT 

(Li and Godzik 2006; Fu et al. 2012) and Usearch (Edgar 2010) as implemented in 

Vsearch were evaluated.
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3.5.2 CD-HIT clustering

CD-HIT is a greedy incremental fast sequence clustering algorithm using global pair­

wise comparisons. It uses a word filtering algorithm that reduces the number of 

comparisons in each character along a pair of sequences.

The sequences are first sorted based on decreasing length. The longest sequence is 

considered as the representative sequence in the first cluster, each remaining sequence 

is compared to the representative sequence in the existing clusters. If similarity with 

any representative sequence is above a given threshold, that sequence is grouped 

into that cluster, otherwise a new cluster is created and the particular sequence is 

designated as the representative sequence.

The word filtering approach is based on the idea that two sequences with a certain 

sequence identity must have at least a specific number of identical di-peptides and 

tri-peptides. For example, for two sequences to have 85% identity over a 100-residue 

window they have to have at least 70 identical di-peptides, 55 identical tri-peptides, 

and 25 identical penta-peptides. Based on the short word requirement, CD-HIT skips 

most pairwise alignments because it assumes that the similarity of two sequences is 

below certain threshold based on the simple word counts.

Unfortunately, short word filtering is limited to specific cluster identity thresholds. 

If the mismatches are evenly distributed along an alignment, the numbers of common 

short words are minimal which results in poor clusters.

The greedy incremental algorithm has a known issue. This can be summarized 

as follows: if there are two clusters, say the first cluster has 3 sequences A, X and
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Y where A is the representative sequence, and the second cluster has 2 sequences B 

and Z where B is the representative, if sequence Y is more similar to sequence B than 

to A, it is placed in the first cluster, simply because Y found A first during clustering 

process.

Occasionally, CD-HIT gives lower rather than higher identities due to misalignment 

caused by banding errors. The banding errors occur if the difference in length in a 

segment between two conserved regions exceeds the band width (as defined by CD- 

HIT) and therefore one or both of the conserved regions are misaligned. Furthermore, 

CD-HIT gap open penalty is lower than that of BLAST or Usearch. Therefore, CD-HIT 

alignments are more unreliable because they contain more gaps than BLAST and 

Usearch.

CD-hit defines the percent identity based on equation 3.1

number o f  matches ^
length o f  shorter sequence

With CD-HIT gaps in the longer sequence can result in bias in percent identity but 

gaps in the shorter sequence do not. The percent identity as defined by CD-HIT does 

not correspond with evolutionary distance of the sequences. CD-HIT clustering was 

used to cluster sequences in the earlier stages of this work.

3.5.3 Vsearch clustering

The bulk of sequence clustering was performed using Vsearch, an open source imple­

mentation of the Usearch algorithm and tool. Usearch is a fast and sensitive sequence
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clustering tool (Edgar 2010) that can cluster sequences at low percent identity. Given 

a percent identity threshold t, Usearch attempts to find sequence clusters that fulfill 

these two criteria,

i. All centroids have similarity < t to each other and

ii. All member sequences have similarity > = t to a centroid.

Most clusters satisfy the two criteria but the first criteria is not always guaranteed. 

If a sequence matches two different centroids with identity > t, it is assigned to 

the closest centroid. But if there are two or more centroids at the same distance,an 

arbitrary cluster assignment choice is made for the particular sequence.

The DBLa tag sequences were sorted by length and saved into a separate file. The 

sorted file was provided as input to the Vsearch program and thereafter sequences 

were processed in the order they appear in the input file using the cluster-smallmem 

command. Sorting sequences by length ensured that appropriate centroids were des­

ignated to the longer sequences. If the next sequence in the file matched an existing 

centroid, it was assigned to that cluster, otherwise it became the centroid for a new 

cluster. Clustering was done at using 98 - 88% identity cutoffs.

Sequence identity was defined as the number of matching residues in a sequence 

divided by the number of columns. This definition is based on the BLAST definition

of sequence identity and is calculated as shown equation 3.2.

A T C G A A A A  

1 * * * 1  I I I 
A C T A A A A A

For example, the two sequences shown above have a total of 8 bases of which 5 

are identical. From equation 3.2 the percent identity is 62.5%.
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Identity is defined as shown in equation 3.2

. 7 number o f matches   ^identity = ------------ —  --------- (3.2)
number oj columns

Figure 3.6 shows a summary of the clustering work-flow. The input was a set of 

reads and the output was a set of clusters at each identity threshold. Each cluster 

comprised of an alignment from reads that were similar at the respective identity. 

These alignments were used to determine the location and frequency of mismatches.

3.6 Aligning and finding mismatches

Sequences in each cluster were aligned using PRANK (Loytynoja and Goldman 2005), 

a sequence alignment tool that aims to produce correct and accurate alignments rel­

ative to other alignment tools. The number and location of mismatches was obtained 

from PRANK alignments using the DBLMutationFinder (https://github.com/ 

biorelated/find-dbla-mutations) described in section 3.7.5.

A mismatch was defined as a base inconsistency between a sequence and the most 

common residue in a particular position in an alignment of sequences. The mismatch 

finding script produced a tab delimited file that contained, the mismatch position, 

the type of mismatch, the codon position and the context of the mismatch which on 

a linear sequence was defined as 5 bases in the 5’ direction and 5 bases in the 3’ 

direction relative to the mismatch position. All mismatches at each identity threshold 

were pooled together into a single file.
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Figure 3.6: Sequences from  different isolates were clustered at different percent identities. Se­
quences from each cluster were aligned using PRANK and mismatches identified in each alignment 
using the polymorphisms finder script. The tree output files were later used to generate random  
sequences using phylosim package. Mismatches were tabulated based on the frequency at different 
codon positions.

3.7 Computer programs

The computer programs described in this section were developed to support the 

analysis work discussed in the previous sections and also in chapter 4, 5 and 6. The 

full source code is listed in appendix (A) under their respective subsections. The 

source code was also released online at Github (www. github. com/biorelated).

53



3.7.1 DBLa finder

Online: https://github.com/georgeG/bioruby-dbla-finder

The DBLa-finder (see listing A.1) was developed as a Bioruby plugin (Bonnal et al. 

2012) that extends the Bio: : Sequence: :NA class and takes advantage of existing 

sequence manipulation methods available in the Bioruby sequence class. The main 

aim of this program is to extract DBLa-like sequences from DBLa assembled contigs 

sequences. It can also extract the tags from full-length var sequences.

The program takes sequences in fasta and fastq formats as input. The input se­

quence is translated in all reading frames. The frames containing the least number of 

stop codons are flagged. For each open-reading-frame, the program searches for the 

DIGDI two amino-acid degenerate motif at the N-terminal and the PQYLR degenerate 

motif at the C-terminal. This step uses a hamming distance metric to generate the 

degenerate motifs. The hamming distance was preferred because it measures the min­

imum number substitutions required to change one string into the other and therefore 

it captures majority of permutations of these motifs. In the strict mode no stop codons 

in the tag sequences are allowed and the relaxed mode can allow a specified number 

of stop codons. The extracted sequence tags is orientated in the first reading frame.

The program uses a brute force approach and evaluates all the reading-frames 

even when they do not contain DBLa sequences. This has impact on the run-time and 

memory particularly when working with long contigs. For the purpose of this work 

this was not an issue since the var contigs under consideration were relatively short.
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3.7.2 DBLa-Classifier

Availability: https ://github.com/georgeG/bioruby-dbla-classifier

DBLa-classifier is a Cys/POLV classification program that was developed based on 

a Perl classification script by Bull et al. (2007). The program took advantage of existing 

sequence manipulation methods in Bioruby to add DBLa specific functionality to 

the Bio: : Sequence : : NA and Bio: : Sequence : : AA classes. It implements more 

features than the Perl script some of which includes,

• Classify DBLa sequence tags

• Identify the position specific polymorphic blocks (PSPB)

• Identify and print positions of limited variability (POLV) regions

• Identify varl and sig2 like sequences based on sequence motifs that define these 

sequences.

• Identify group A-like sequence tags

• Identify homology blocks D, F and H given the location of PSPBs, PoLVs, WW 

and VW motifs.

3.7.3 Bio-CD-HIT-Report

Availability: https://github.com/georgeG/bioruby-cd-hit-report

Bio-CD-HIT-Report was developed to parse CD-Hit cluster files using a convenient 

and consistent interface. It was developed as a library with a standard interface to call
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methods for processing clusters and to plug in to the sequence clustering workflow. 

Given an input cluster file, Bio-CD-HIT-Report can generate a report containing the 

following information,

• The number of sequences in each cluster.

• A list of sequence names in each cluster.

• A list of representative sequences in each cluster.

Bio-CD-HIT-Report made it easier to process multiple cluster files by embedding 

its method calls in existing scripts.

3.7.4 Block-sharing networks

Availability: https ://github. com/georgeG/block-sharing-networks 

This is a command-line application that depends on the DBLa-classifier to generate 

group-sharing networks for DBLa sequences. It returns a list of nodes if sequences 

share PSPB blocks. The source code is available on listing A.24 of the appendix.

3.7.5 Find-DBLa-mutations

Availability: https : //github. com/biorelated/f ind-dbla-mutations 

This library was developed to explore polymorphisms in the DBL tag sequences. 

It contains two main classes, the Mutation class and the Selection class. The 

mutation class provides methods for locating and describing polymorphisms given 

a fasta formatted file of DNA sequences. The selection class provides methods for 

working with multiple sequence alignments in fasta format. This class is dependent
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on the Bio-alignment library . Bio-alignment implements a functional approach in 

parsing alignment files.

3.7.6 DBLa-assembly

DBLa-assembly was initially developed to assemble DBL sequence tags. It implemen­

ted functions to 1) read and parse DBL sequences from CAF files and 2) to extract 

and cluster sequences based on sequence length and sequence identity.

It groups the sequences by length, then it creates an identity matrix from pairwise 

comparisons. Sequences are clustered based on the pairwise comparisons. The clus­

tering does not account for insertions or deletions and therefore it is only suitable for 

clustering uniform length sequences.

Given that there are more optimized and published tools for performing sequence 

clustering, the clustering module was deprecated in favour of CD-HIT and Vsearch 

clustering approaches.

3.7.7 DBLa CAF Parser

Availability: https : //github. com/biorelated/dbla-caf-parser

DBLa CAF Parser is a library that was written to provide a functionality for extract­

ing DBLa sequences and sequencing information stored as CAF files.

3.8 Epitope prediction

B-cell and MHC class-II T cell epitopes prediction methods were used as described 

in section 3.8.1 and section 3.8.4. A total of 100 randomly selected sequences from
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Kenya, Papua New Guinea, Brazil were used in B-cell epitope prediction using Bepi- 

pred and a total of 365 non-redundant sequences were used for MHC-class II epitope 

predictions using NetMHCII-pan and the predivac server.

3.8.1 B-cell epitope prediction

Bepipred (Larsen et al. 2006), a B-cell epitope prediction method was used to explore 

potential B-cell epitopes in DBLa sequences. Bepipred is a combination of Parker 

propensity scale (Parker et al. 1986) and a hidden markov model that was trained 

using the Pellequer (Pellequer et al. 1993) and AntiJen (McSparron et al. 2003) 

epitope data set. It predicts linear B-cell epitopes from amino acid sequences.

A propensity scale method assigns a score to each amino acid in a poly-peptide 

and applies a running window average to the raw scores. Other notable propensity 

scale methods other than Parker’s scale are Chou and Fasman, Levitt’s secondary 

structure scale (Levitt 1978) and Emini, an accessibility scale (Emini et al. 1985). 

Many propensity scale methods have poor prediction and only marginally better than 

a random model according to a study by Blythe (Blythe and Flower 2005). Although 

bepipred has a low sensitivity, it is more accurate than the propensity methods and it 

is an improvement to the random model.

Bepipred assigned a prediction score to each amino acid in each input sequence. 

The default cutoff score was 0.35 which corresponded to a sensitivity of 0.49 and a 

specificity of 0.75. A mean of the raw score was calculated using a 10 amino acid 

sliding window approach over the prediction space.
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3.8.2 Shannon diversity index

In this work, Shannon’s diversity is an index of residue conservation and it was cal­

culated with equation 3.3. The values were calculated in each alignment column and 

averaged over a running window of 10 amino acids.

where p a>i is the frequency of the amino-acid a at column i.

3.8.3 Hydrophobicity profile

Kyte-Doolittle (Kyte and Doolittle 1982) hydropathy scores were calculated in spe­

cified sequences. The scores was averaged using a 10 amino-acid window in the 

respective sequence.

3.8.4 Prediction of T-cell epitopes

Studies using recombinant peptides from laboratory lines (Allsopp et al. 2002; Sanni 

et al. 2002) suggest that individuals in endemic regions elicit interferon-y and interleukin-

10. An analysis of CD4+ T-cell responses to DBLa tags to which a child is exposed to 

was reported to be associated with protection from future malaria episodes suggesting 

a role for CD4+ T-cells in protection (Gitau et al. 2012b; Gitau et al. 2014). Given the 

extreme sequence diversity in the DBLa tag and based on the idea that CD4+ T-cells 

are important for a functional B-cell response.

Only a few studies have found associations between the MHC class II immune

(3.3)
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responses and P. falciparum surface antigens (Troye-Blomberg et al. 1991). The failure 

to detect associations can be attributed to contribution of non-MHC induced factors 

and the lack of epitope specificity given the sequence diversity in surface antigens. One 

study explored HLA class II restriction among a group of 2000 individuals in Gambia 

and reported that DRB1*1302 - DQB1*0501 are associated with reduced susceptibility 

to severe malaria. This suggested that MHC polymorphism is maintained by altering 

susceptibility to infectious pathogens (Hill et al. 1991). Nonetheless, more work is 

require to explore the possibility of MHC restriction against immuno-dominant CD4+ 

epitopes in PfEMPl.

The major histo-compatibility molecules (MHC) bind short peptide molecules. The 

MHC-peptide is presented to the T-cell receptors each of which can only bind particular 

MHC-peptide combinations. The first studies to report MHC class II association with 

immune responses used small panels of antigens derived from three P. falciparum 

surface proteins, namely the merozoite surface protein, the circumsporozoite proteins 

and Pfl55/RESA proteins (Riley et al. 1992).

T-cell epitopes were predicted using NetMHCIIpan-3 (Karosiene et al. 2013; Nielsen 

et al. 2010) and Predivac (Oyarzun et al. 2013). NetMHCII-pan is a pan-specific epi­

tope prediction tool that uses hidden markov models and machine learning to predict 

MHC class-II T-cell epitopes from amino acid sequences. NetMHCIIpan-3 is based 

on artificial neural networks that were trained on more than 50,000 quantitative 

peptide-binding measurements covering HLA-DR, HLA-DP, HLA-DQ and two murine 

molecules (Karosiene et al. 2013).

Predivac is based on an algorithm that identifies specificity determining residues
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(SDRs) (Oyarzun et al. 2013) that identifies the residues involved in forming a stable 

peptide-MHC complex. Specifity Determining Residues (SDRs) are a small set of 

structurally conserved positions in the peptide-binding interaction interface that are 

responsible for specific recognition events. The approach was first described for sub­

strate specificity prediction of protein kinases (Ellis and Kobe 2011; Kobe and Boden 

2012; Saunders et al. 2008; Saunders and Kobe 2008). Predivac works by establish­

ing a correlation between the SDRs in the HLA class II query protein and the SDRs 

associated with HLA proteins of known specificity. The process involves the following 

steps:

i. SDRs for each binding position are identified in the query HLA class II protein 

sequence.

ii. PredivacDB, a purposed-built database of SDRs and high affinity binding data 

(IC5o < 50nM, which is a measure of the effectiveness of binding), is queried 

and amino acid frequencies and weights are calculated for peptide sequences 

associated with allotypes sharing similar SDRs as the query protein at each 

binding position.

iii. A position-specific scoring matrix (PSSM) is built based on the binding data. 

T-cell epitope mapping is carried out by parsing query protein sequences into 

overlapping peptides, each of which is assigned a binding score using the PSSM.

The outcome of Predivac is a relative score between 0 and 100. For a given HLA 

class II protein, a peptide is a "better" candidate to be a MHC class II high-affinity 

binder, and therefore a CD4+ T cell epitope, if it scores higher than another peptide
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from a given protein. Given that, most of the immune response in protein-based 

vaccination is mounted against a few dominant epitopes, despite the presence of many 

potential epitopes within a given antigen. Vaccine formulations built on epitopes that 

do not dominate the immune response do not induce effective protection in the 

vaccinated organism, therefore; it is important to identify immunodominant epitopes.

The peptide-MHC kinetic stability is important in controlling MHC class II pep­

tide’s immunogenicity. Predivac was developed on the assumption that positive bias 

in capturing peptide features correlates with promiscuity and immunodominance 

(Oyarzun et al. 2013).

Predivac web-server could accept one sequence per MHC allele at the time of ana­

lysis. Predivac-util (listing A.22), a python library was developed to submit multiple 

sequences for multiple MHC class II alleles. Promiscuous epitopes were defined as 

peptides that bound strongly or weakly to multiple MHC class II alleles.

3.8.5 Predivac-util

The Predivac online server allows a user to submit one sequence and one allele per 

request. Given hundreds of sequences and over 20 HLA alleles, it would have taken a 

lot of repetitive and time consuming effort to get prediction results using the Predivac 

web interface.

Predivac-util (listing A.22) was developed to automate bulk sequence submission 

to Predivac server. This command line utility was written in Python and is run with 

two arguments. The first argument is a list of sequences in fasta format and the second 

argument is a list of HLA DR alleles, one allele per line. A three seconds delay between
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submissions is enforced to avoid overwhelming the server with multiple requests. This 

delay can be adjusted upwards or eliminated. Upon a successful run, Predivac-util 

produces a tab delimited file containing the predictions. Predivac-util relies on an 

uninterrupted Internet connection. It does not have the capacity to resume jobs if the 

connection fails during a run. Future versions may fix the issue.
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Chapter 4
Evaluation of classification approaches used to measure 

expression of var genes in clinical isolates

4.1 Background

As discussed in chapter 1 section 1.7, var classification approaches depend on the 

conserved upstream promoter region, the coding regions (Lavstsen et al. 2003; Smith 

et al. 2000a), the semi-conserved DBLa region of the DBLla domain (Bull et al. 2007) 

and the organization of the domain architecture in full-length sequences (Rask et al. 

2010) to capture putative functional attributes used in grouping var genes.

The classification approaches are evaluated on ability to discriminate between 

severe and non-severe malaria and ability to discriminate severe malaria syndromes 

such as impaired consciousness, respiratory distress, anaemia and cerebral malaria. 

The extent to which the var sequence grouping approaches are consistent with each 

other and whether they measure the same functional properties has not been ad­

equately addressed.

This chapter compares the Cys/POLV (Bull et al. 2007), domain cassettes (Rask 

et al. 2010) and the classification based on the 5’ upstream promoter in classifying 

var genes. The results suggest that, functional correspondence between the DBLa 

domains, the domain cassettes (DC) and the Cys/PoLV (CP) tag classification is not
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consistent. This may partly be explained by the fact that each classification method 

captures limited information about a var sequence. Nonetheless and despite a long 

history of recombination DBLa tag sequences provide information on features of 

full-length var genes. This may be particularly the case within specific geographical 

regions.

Recently a lot of work has focused on the domain classification partly because 

these classifications are derived from full length sequences and more importantly, 

specific domain arrangements for example DC8 and DC13, have been shown to be 

associated with severe malaria (Lavstsen et al. 2012). Furthermore there is evidence 

that DC8 and DC 13 domains are associated with specific binding phenotypes (Turner 

et al. 2013). (see chapter 1 section 1.7 for details). For a recap, the main PfEMPl 

classification approaches are summarized in table 4.1

Name Description Reference

Ups classification 

Cys/POLV

Domain Cassete

Based on the conservation of upstream Smith 2000,Lavstsen 2003 
promoter regions
Based on the number of cysteines Bull 2007 
and amino acid motifs in the 
DBLasequence tag
Based on domain arrangment of full Rask 2010 
length PfEMPl sequences

Table 4 .1 : A summary o f the main PfEMPl classification approaches.
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4.2 Methods

4.2.1 Data collection and sequence classification

DBLa sequence tags were extracted from 403 full-length var sequences in seven gen­

omes from a study of var sequence diversity and classification of PfEMPl sequences 

(Rask et al. 2010). The dataset comprised sequences from the 3D7, IT4, HB3, DD2, 

RAJ116, IGH-CR14, and the PFCLIN isolates. The sequence tags were classified based 

on the Cys/POLV approach (Bull et al. 2007) and information on each upstream 

promoter region and domain cassette was derived from the data set.

A total of 314 sequences were used in the analysis after removing var2csa se­

quences and those that did not have upsA classification data available. The var2csa 

sequences were excluded because they are associated with expression in pregnant 

women and they cannot be amplified using the DBLa universal primers. Sequences 

whose 5’ upstream promoter regions were missing were removed from the analysis. 

The Cys/POLV classification used sequences from 3D7 and IT4 to define the block- 

sharing groups 1 and 2 (Bull et al. 2008) (see chapter 1 section 1.7.1). The block 

sharing groups were defined based on a global collection of sequences that included 

sequences from 3D7 and IT4 laboratory isolates. In this analysis, sequences from 3D7 

and IT4 isolates were excluded because they comprised the blocks-sharing groups 

definition and they create bias in the analysis.
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4.2.2 Sequence alignment

Sequence alignments were performed using Muscle, a fast and accurate protein align­

ment program (Edgar 2004).

4.2.3 Defining block-sharing groups of sequences using a network approach

A total of 1,317 published DBLa sequences was obtained from Kilifi (Bull et al. 2008) 

and from published parasite genomes (Rask et al. 2010) together with three DC8 

sequences from a study that was conducted in Tanzania (Lavstsen et al. 2012).

Sequences that shared 10 amino acid sequence blocks were identified and used 

to draw a network of sequences that shared common sequences herein referred to 

as a block-sharing network from the laboratory isolates. The block-sharing networks 

were visualized using Cytoscape (Shannon et al. 2003) an open source platform 

for visualizing molecular interaction networks. Similar to the Kilifi network (Bull 

et al. 2008) the network from the laboratory isolates formed two large connected 

components, a major component and a minor component as shown in figure 4.3.

4.3 Results and discussion

Figure 4.1 shows the association between ups classification and Cys/PoLV groups 

based on 33 DBLa sub-domains from seven laboratory isolates. This figure was con­

sistent with previous comparisons of Cys/POLV and ups classifications (Bull et al. 

2007; Bull et al. 2005). While the majority of sequences containing two cysteines 

were confined within sequences containing the upsA promoter, a number of them was
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also found in sequences that are associated with upsB and upsC promoters. Sequences 

with the DBLa-0.3 domain were exclusively from the upsB group and contained 

proportionately higher number of sequences with two cysteines. The DBLa-0.3 is 

associated with sequences with the DC13 domain architecture.

Sequences with DBLa-2 domain were exclusively from upsB and contained both 2 

and 4 cysteines. They also appear to contain sequences from both group sharing block 

1 and 2. DBLa-2 sequences tend to belong to domain cassette 8 (DC8) (explained 

further in chapter 1 section 1.7). DBLa-2 domain is associated with sequences with a 

DC8 domain architecture.
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Figure 4.1: The correspondence between ups and Cys/POLV classification based on the DBLa 
sub-domains. The upstream promoter region classification is on the bottom panel, Cys/PoLV (CP) 
in the middle panel and block-sharing groups on the upper panel. The domains are arranged 
from  left to right in order of decreasing proportion of sequences with upstream promoter A  to C. 
The total number of sequences from each domain is shown at the top o f the bars. Sequences with 
2 cysteines and block sharing group 1 are largely upsA and contain distinct DBLa sub-domains.

The domain classification that were suggested by Rask et al. (2010) study were 

partly based on local sequence alignments. Applying sequence alignment to a global 

collection of recombining var  sequences is challenging because the alignment process 

does not take into account the recombination history. It increases the likelihood of 

bringing together genetically distinct sequences with short local sequence similarities 

and depending on the length of the sequences relative to the full length molecule, it
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is also possible to define sequences as distinct while they are actually part of the same 

group of recombining sequences.

Cys/POLV classification studies suggest that the MFK and the REY motifs are 

mutually exclusive, which implies that sequences containing MFK or REY motifs are 

genetically distinct. Though this genetic distinctness may only apply to a specific 

homology block within the sequence rather than the full-length sequence. From the 

analysis of sequence data in the seven genomes, a few sequences with DBLal.5, 1.2 

and 1.6 domains, were identified to belong to CPl-MFK+ue and CP2-REY+ue (figure 

4.1) suggesting that the domain classification approach brought together what are 

otherwise functionally distinct sequences. This has two implications, first, the tag 

region may not always contain enough information to enable molecular typing of the 

entire domain. Second, the Rask domain classification may contain little distinctive 

nucleotide features that are functionally informative given the amount of genetic 

diversity in var genes.

4.3.1 Distinct Cys/PoLV groups are associated with upsA

There has been much interest in the idea that specific var genes are associated with 

severe forms of malaria. This is based on the idea that specific cytoadhesive functions 

may be associated with pathogenic patterns of sequestration. Var gene sequences that 

are found to be associated with severe disease would be of potential importance and 

good candidates for studies on antibodies that are associated with naturally acquired 

immunity. As was discussed in section 1.7 in chapter 1, sequences from the upsA 

group and those that are characterized by domain cassette 8 and 13 have been shown
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to be associated with severe disease (Lavstsen et al. 2012; Turner et al. 2013).

A sensitivity-specificity analysis was used to assess the ability of Cys/POLV tag 

classification to predict upsA sequences and sequences containing DC8 and DC13 cas­

settes within this var sequence dataset. Sequences with two cysteines and belonging 

to block-sharing group 1 (group A-like) (Warimwe et al. 2009; Bull et al. 2008) were 

good in predicting var sequences with an upsA promoter. Sequences with a combin­

ation of three semi-overlapping features, that is two cysteines, block sharing group 

1 and and CPI membership improved upsA prediction as shown in figure 4.2 B. Se­

quences with DC 13 were associated with sequence tags containing two cysteines and 

belonging to group sharing block 1. The same group of sequences were not associated 

with var genes containing DC8 cassettes as shown in figure 4.2 C.

In addition, logistic regression models were used to calculate the odds of predicting

upsA from tag classsification methods and the results are shown below.

Table 4 .2 : The odds o f predicting upsA sequences using the cys-POLV definition o f group A  
sequences (cys2-bsl). This group showed significant odds of association with upsA sequences.

Dependent variable:
upsA

group_A_like 112.000*** (19.882, 2,134.776)
Constant 0.250*** (0.113, 0.496)
Observations 74
Log Likelihood -26.868
Akaike Inf. Crit. 57.736

Note: *p<0.1; **p<0.05; ***p<0.01
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Table 4 .3 : The odds of predicting upsA sequences from  the CPI cys-POLV sequences. CPI sequences 
are often associated with severe malaria. They had significant odds of predicting upsA sequences.

Dependent variable:
upsA

CPI 38.000*** (7.024, 710.078)
Constant 0.500** (0.278, 0.868)
Observations 74
Log Likelihood -38.342
Akaike Inf. Crit. 80.684

Note: *p<0.1; **p<0.05; ***p<0.01

Table 4 .4 : A logistic regression model showing the odds of predicting upsA sequences using a 
combination of CPI and cys2-bsl (group A-like) sequences. This is a broad definition of sequences 
that are associated with severe malaria. This group had the highest odds o f predicting upsA 
sequences compaired to CPI or cys2-bsl alone.

Dependent variable:
upsA

CP l_plus_groupA 130.500*** (22.856, 2,503.821)
Constant 0.222*** (0.096, 0.454)
Observations 74
Log Likelihood -25.246
Akaike Inf. Crit. 54.493

Note: *p<0.1; **p<0.05; ***p<0.01
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There was not enough observations to precisely predict DC 13 and DC8 sequences 

from the cyspolv groups and therefore this analysis should be interpreted with care.
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Figure 4.2: Receiver-operator characteristic curves (ROC) for assessing the prediction o f ups A, 
DC13 and DC8 sequences. (A.) CPI sequences and sequences with two cysteines and belonging to 
block-sharing group 1 (cys2-bsl) were good predictors of upsA sequences. Prediction o f sequences 
with upsA promoter was improved by using tag sequences that classified as two cysteines and 
block-sharing group 1 together with CPI group. (B.) DC13 sequences were well predicted by 
sequence tags with two cysteines and block-sharing group 1 but not CPI group. DC13 appear to 
be a subset of group-A like var sequences. (C.) Predicting DC8 sequences from tag sequences with 
two cysteines and belonging to block-sharing group 1 together with CPI group. DC8 cassettes 
were poorly predicted by cys2-bsl (group A-like) sequences.
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4.3.2 DC8 and DC13 sequences exhibit distinct recombining patterns

Recombination networks and structuring can be visualized based on sequence blocks 

that are shared between sequences. Recombining segments can vary in length and 

therefore several recombination structures can be defined depending on the length 

of shared blocks. To address this, Bull et al. (2008) used amino acid blocks with a 

variable number of amino acids to draw a network of shared sequence blocks. Using 14 

amino acids, the network segregated into two main components, which were referred 

to as block-sharing group 1 and 2. DC8 sequences were restricted to block-sharing 

group 2 component while DC13 were restricted to block-sharing group 1. Sequences 

from Lavstsen et al. (2012) study in Tanzania belonging to block-sharing group 2 

shared sequence blocks and were connected to a component of Kilifi sequences as 

shown in figure 4.3.
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Figure 4.3: A network o f block-sharing sequences collected from  Kilifi(Bull et al. 2008), labor­
atory (Rask et a l 2010) and Tanzanian isolates (Lavstsen et a l 2012). The diamond shaped 
enlarged nodes represent DC13 sequences. The circular-shaped and enlarged nodes represent DC8 
sequences. Red nodes represents block sharing group 1 and the blue nodes represent block-sharing 
group 2 based on the Cys/POLV classification. All DC13 sequences (diamond shape) appear on the 
right-most part o f the network. DC8 sequences (circular nodes) appear on the larger component 
but also in between the smaller and the larger component. Two of the DC8 sequences classified as 
block-sharing group 1 are overlaid on the larger component on this network.
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4.3.3 Newly described DBLa domains could consist of genetically heterogen­

eous sequences.

The Rask et al. (2010) study (see chapter 1 section 1.7) used sequence alignments 

to stratify sequences into different sub-domains. Sequence alignments of diverse and 

recombining global collection of var sequences require careful interpretation because 

multiple alignments ignore the recombination history. Sequences that are otherwise 

functionally distinct could be brought together by local alignments of recombining 

segments as discussed in 4.1.

Examination of DBLa tags shows that MFK and REY motifs are never found on the 

same sequence, suggesting that they contain genetically distinct regions. The DBLal.5, 

DBLal.2 and DBLal.6 groups defined by Rask and colleagues comprise of a mixture 

of sequences which contain both MFK and REY motifs. This suggests that the newly 

defined sub-domains do not always classify sequences into genetically distinct groups. 

This point is supported by a study by Larremore et al. (2013) that explored community 

structuring in var gene sequences. Larremore defined distinct highly variable sequence 

blocks from a collection of var sequences and showed that recombination constraints 

shaped the network structures in distinctive ways that agreed with known clinical 

phenotypes (ibid.). Importantly, the study showed that highly variable regions tend 

to differ from each other but their recombination communities correspond to known 

ups classification. They did not explore the var sub-domains as defined by Rask. This 

is the discordance that we present here.
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4.3.4 Cys/PoLV groups cannot predict DC8 sequences given a global collection 

of sequences but may do so within a restricted geographical location

Similar to group A-like sequences, DC8 sequences are associated with severe mal- 

aria(Lavstsen et al. 2012; Rask et al. 2010; Bengtsson et al. 2013; Bertin et al. 2013) 

and associate with a specific class of DBLa2 sequences that could result from a re­

combination event at a recombination hotspot situated 3’ of the DBLa tag region 

(Lavstsen et al. 2012).

This suggests that the DBLa tag provides no information on this group of var 

genes. This is consistent with the observation that DC8 sequences also correspond 

to CP2, CP3 and CP4 Cys/PoLV groups as shown in figure 4.4 and figure 4.5 and in 

block-sharing group 1 and 2. This suggests that DC8 cassette comprises of a genetic­

ally diverse group of sequences and that it is not possible to predict DC8 sequences 

using the Cys/PoLV groups. In other words DBLa tag analysis is limited in making 

predictions about important full length molecules.
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Figure 4.4: The relationship between domain cassettes (lower panel), the Cys/PoLV (middle 
panel) and block sharing groups (upper panel). The cassettes sorted from  left to right such that 
the leftmost sequences contain the largest proportion of upsA while sequences to the right contain 
the largest proportion ofupsC. The number of sequences from each domain cassette is shown at 
the top of each bar. DCO denotes sequences that were not assigned to a domain cassette according 
to the original study by Rask and colleagues.
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Figure 4.5: Bar plots showing the distribution o f block sharing groups among 23 domain cas­
settes. All the sequences with DC13 cassettes were block-sharing group 1. Sequences with DC8 
cassettes were block-sharing group 1 or 2. Some o f them did not belong to either block-sharing 
group 1 or 2. Sequences with DC5 cassettes were from  different Cys/PoLV groups all o f which 
belonged to block-sharing group 1. A CP4 sequence from  block-sharing group 2 was found to 
have a DC22 cassette.

The highest proportion of observed block-sharing group 2 sequences was found 

in sequences with DC8 cassettes as illustrated in figure 4.5. In addition the DC8 se­

quences identified in Tanzania (Lavstsen et al. 2012) were similar to "sig2" sequences 

as show in the alignment in figure 4.6. "sig2" sequences have a LYLD-VREY-KAIT-PTNL 

distinct sequence identifier. Sequences from the Lavstsen et al. (ibid.) study in Tan-
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zania those from Bull et al. (2008) study in Kilifi corresponded with CP2 sequences in 

block-sharing group 2. This suggests that DC8 sequences are associated with specific 

tag types within a particular region during a specific time of sampling. These "sig2" 

sequences were found in two severe malaria cases by Bull and colleagues (Bull et al. 

2005)

1983 3 DIGDIIRGKDLYLD HE GKQHLEERLER IFANIQN 351983_1 DIGDIIRGKDLYLD HE GKQHLEERLEQ FENIKN 354187.dom2 DIGDIIRGKDLYLD HE GKQHLEERLER IFANIQK 35
1965_1 DIGDIVRGKDLHLR HE G IQHLEKRLE S FEKIQK 354140.dom DIGDIIRGKDLYLD HE GKQHLEERLEQ FENIKN 354187.doml DIGDIIRGKDLYLD HE GKQHLEERLEQ FENIKN 354187.dom3 DIGDIIRGKDLYLD HE GKQHLEERLEQ FENIKN 354187B DIGDIIRGKDLYLD HE KQHLEERLEQ FENIKN 35

1983_3 
1983_1 
4187.dom2 
1965_1 
414 0.dom 
4187.doml 
4187.dom3 
4187B

K N - E K L K D  
N N —E K L K D  
E N - G D I N T  
N N N N K L S N  
N N A A K L S  E 
N N A A K L S E  
N N A A K L S E  
N N A A K L S E

l p :
l p :
LK

IT :g a t 69
IT NAE 69
IT RAE 69
IT KAK 70
IT RAE 70
IT KAK 70
IT KAK 70
IT KAK 70

1983 3 KDISSKN IRDAK ILFHYN GHH— NDKAQ TYLDY 103
1983_1 GTDKYFKKSSGGDYLFSGGK GRN-EEKV TYLDY 1034187.dom2 EKDIYSKTTDNGKLILWNYN GHHVNQDV TNLDY 104
1965_1 EGDIYSKT —ANGNT T LWNDN GHHVNQDV TNLDY 104
414 0.dom EKD T YFKNRENGKLLLWNYK GHHVNQDV TNLDY 1054187.doml EGDIYSKT NNGN VFWY K GHHVKQDV TNLDY 1054187.dom3 EGDIYSKT -ANGNTTLWNYN GHHVNQDV TNLDY 1044187B EGDIYSKT -ANGSTTLWNYN GHHVNQDV TNLDY 104

1983 3 V QYLR 109
1983_1 V QFLR 109
4187.dom2 V QFLR 110
1965_1 V QFLR 110
4140.dom V QFLR 111
4187.doml V QFLR 111
4187.dom3 V QFLR 110
4187B V QFLR 110

Figure 4.6: An amino acid sequence alignment o f DC8 sequences from  Lavstsen et al. (2012) 
study in Tanzania and sig2-like sequences from Kilifi collected by Bull et al. (2005). Although 
these sequences were collected at different times and from two different locations within East- 
Africa, it is interesting that they were similar based on the amino acid sequence and contained a 
signature h e p g  motif.
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Figure 4.7: A neighbour-joining tree ofDC8 and "sig-2" sequences from  East-Africa. Sequence 
1983_3, 1983_1 and 1965_1 was were from Lavstsen et al. (2012) study conducted in Tanzania 
and the rest of the sequences were from Bull et a l (2005) study in K ilifi. Although the sequences 
were collected at different time points and in two different geographical locations within East- 
Africa, the similarities between them is remarkable and importantly both studies associated these 
sequences with severe malaria.

4.3.5 Other significant DC groups

Sequences with DC4 cassettes are reported to associate with binding to ICAM1 (Bengtsson 

et al. 2013) In this data set, there were only 2 sequences with DC4 cassettes; one se­

quence correspond with CP3 and the other one with CP6. A larger sample size would 

more appropriate in order to provide a plausible observation.

4.4 Conclusion

This analysis shows that Cys/POLV analysis is inconsistent with the domain cassette 

classification and performs poorly in identification of im portant domain cassettes.

04



The Rask et al. (2010) DBLa domains are not associated with particular functional 

groups and that functional and distinct groups of sequences may have geographical 

restriction.

An important consideration when interpreting these results is that the sequences 

that were analyzed were from laboratory isolates and therefore they are not represent­

ative of var sequences from clinical isolates. Second, it is possible for var sequences to 

belong to multiple domain cassettes and presumably the domain cassettes described 

by Rask et al. (ibid.) could have missed novel cassettes if more clinical parasites were 

sampled.

The observations show that Cys/PoLV groups containing two cysteines and block- 

sharing group 1 can predict upsA sequences with high sensitivity and specificity and 

that they can distinguish var genes with DC8 domain architecture, at least within a 

restricted geographical area and at specific time points.

A distinct group of sequence tags contain a HEPG motif correspond to var genes 

with a DC8 architecture (figure 4.6). DC8 sequences also contain a known recombin­

ation break-point and carry both CP4 and CP2 DBLa sequence features suggest that 

when they arise, DC8 sequences could spread rapidly within a population.

The Cys/POLV classification corresponds well with the ups classification but is 

poorly informative on domain architectures. Therefore it is a poor method of assessing 

the molecular diversity of full-length var genes. As highlighted earlier, more sequence 

data from clinical isolates are required to understand the correspondence between 

the various expression classification approaches and to provide appropriate data for 

a detailed thorough analysis.
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Chapter 5
The role of point mutations in generating var diversity

5.1 Background

Diversity in var sequences is generated through recombination (Freitas-Junior et al. 

2000; Taylor et al. 2000a; Kraemer et al. 2007; Falk et al. 2009). Recent studies have 

shown evidence for mitotic recombination (Bopp et al. 2013; Claessens et al. 2014) 

as discussed in chapter 1 section 1.8). Mitotic recombination adds another level 

of diversity and is also associated with DNA and chromosomal structural changes 

(Sander et al. 2013; Claessens et al. 2014). Despite immense molecular diversity, var 

genes are able to maintain discrete functional properties as described in chapter 1 

section 1.7.

Among other approaches such as recombination, nucleotide substitution contrib­

utes to genetic variation upon which selection acts. It is difficult to estimate substi­

tution patterns in var sequences for several reasons. First, var genes are long and 

diverse molecules that undergo extensive recombination events. Secondly, var genes 

are characterized by length differences which hinders direct comparison of sequences 

without taking into account how insertion and deletions are treated. Thirdly, the pres­

ence of PCR and sequencing errors can add significant noise when profiling mutation 

patterns. These factors provide significant challenges of estimating selection. Despite
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these challenges, it is important to understand how the pattern of nucleotide variation 

is structured to gain an understanding of how it is shaped by immune selection

Molecular diversity studies make use of multiple sequence alignments, distance 

metrics, and tree building methods to infer sequence relatedness and selection pres­

sure. Regrettably, in presence of recombination, the basic assumptions of many phylo­

genetic methods are violated (Schierup and Hein 2000; Anisimova et al. 2003).

Zilversmit et al. (2013) developed a statistical method based on a Hidden Markov 

Model to show the evolutionary history of genes that are suggested to overcome 

some of these challenges. In order to describe patterns of single nucleotide variation 

in DBLa, sequences were grouped into clusters of known similarity and therefore 

sequences in the same cluster were assumed to be closely related and thereby com­

parable. The pattern of variation was obtained from a profile of substitutions and 

described based on nucleotide type and codon position within isolates and between 

isolates as well as in hyper-variable and conserved regions of the DBLa.

5.2 Methods

The full methods and approach are described in chapter 2 and chapter 3 of this thesis. 

In summary, input sequences were clustered at predefined global identity thresholds 

ranging from 98 to 88 percent with a 2% step to yield six identity thresholds. At each 

level of identity, sequences were grouped into clusters and nucleotide differences 

between pairs of sequences from each cluster were identified, annotated and pooled 

together. For comparison purposes, random substitutions were generated from or 

based on the respective input files as discussed in chapter 3 section 3.1.

84



To minimize the effect of PCR generated errors, sequences from each isolate were 

clustered at 96% identity and only representative sequences from each cluster were 

considered for analysis. While this approach was aimed at ensuring that the overall 

quality of sequences was high and that the number of substitutions that were attrib­

utable to PCR misincorporations were minimized and resulted in decrease number of 

sequences.

5.3 Results

5.3.1 DBLa sequences are diverse

Figure 5.1 and figure 5.2 shows an illustration of how the sequences clustered at 98% 

and at 88% global identities. Each dot represents a sequence and the colors denote 

group A (red) and non-group A (blue) sequences. The largest clusters corresponded 

with sequences that had the least amount of intra cluster variation.
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At higher sequence similarities, sequence clusters comprised of either group A or 

non-group A members while at lower identities some clusters contained a mixture of 

both group A and non-group A sequences.

5.3.2 Pattern of random substitutions in DBLa sequences

Two substitution profiles were created based on random substitutions of nucleotides 

in the original sequence data from Kilifi. This was to test the idea that substitution 

could not be fully accounted by random errors. The first model (hereafter referred to 

as model A) of substitution utilized data from Kilifi to generate random substitutions 

based on equal probability of transitions and transversions assuming a uniform model 

of evolution and no bias for any nucleotide substitution. A neighbour-joining tree that 

was constructed from a PRANK alignment in each cluster and a randomly selected 

sequence from each cluster were used as input to the Phylosim R package to generate 

random substitutions as described in chapter 3.

The second model of random substitutions (hereafter referred to as model B) 

generated random substitutions in a randomly selected sequence. The sequence was 

"mutated" 5000 times while maintaining the overall sequence similarity at 98% in the 

first instance and then another batch was created using the same approach at 96% 

and so on.

There were no differences in the profile of substitutions between the models at 

98% similarity (Kruskal-Wallis rank sum test p-value=0.68) but there were differences 

between the models in similarities lower than 98%. ( Kruskal-Wallis rank sum test 

p-value < 0.001).
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Model A was preferred for comparing profiles with actual tag sequences because 

it constitutes a pool of changes derived froma larger number of seed sequences with 

different lengths and variable nucleotide composition.
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Identity (%) sequences Total DBL tags Clusters Distinct types Diversity ratio

98 5001 3364 578 2257 0.2560
96 5001 2205 127 2011 0.0631
94 5001 1592 70 1500 0.0466
92 5001 1184 61 1100 0.0554

Table 5 .1 : A table showing the number of randomly generated sequences using a single template 
sequence. The clusters column refers to the number of groups of sequences that was generated  
and excludes ’one-member* clusters whereas the distinct types were the total number o f groups 
including one-member clusters. The diversity ratio refers to the fraction o f clusters that were used 
to generate the pairwise comparisons.
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Figure 5.3: The frequency o f random substitutions in DBLa sequence tags generated with two 
random models. Figure A,C,E,G represent the model A and the rest represent model B’s substi­
tution profile. The type o f nucleotide substitutions are shown along the x-axis and the inner 
bars represent the frequency of a substitution at codon position 1 (red), position 2 (yellow) and 
position 3 (green). The gray bar represents the sum of substitutions for each type of substitution.
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Figure 5.3 shows the distribution of substitutions at each identity threshold in each 

random model. In model A , the frequency of each type of change was proportionately 

higher than in model B.
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Random model Observed

19.69%

14.65%18.62% 17.59%

15.91 %

13.51%

9.6 %

33.3 %49.1 % 3.72 %

2.1 %

2.0 %

Figure 5.4: The average frequency of different substitution in percent (%) in based on random 
model B and sequences collected in 2008-2010 period. The orange arrows indicate transitions 
and blue arrows indicate transversions. On average G-A transitions accounted for nearly half o f 
all the observed substitutions in sequences from  Kilifi.
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Figure 5.5: The frequency o f random substitutions. Figure A-D shows the relative frequency o f 
random substitutions that were generated based on model B. Figure E-H shows the frequency 
of the same random substitutions scaled by the ratio o f transitions to transversions from  actual 
DBLa sequences collected between 2008-2010 as described in chapter 3 section 3.1. The codon 
position frequencies were omitted to avoid over adjusting.
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The simplest models of evolution assume that nucleotide changes arises independ­

ently and that the transition to transversion ratio (TI:TV) are identical across sites. 

The second codon position is often constrained. A substitution at the second codon 

position results in a change in the encoded amino acid. The third codon position is 

the least constrained and a change in the third codon position does not always result 

in a change in the encoded amino acid.

The tag sequences showed a strong bias for transition substitutions. The average 

frequency of transitions and transversions in the random models versus from the 

observed sequences from Kilifi was calculated and is shown in figure 5.4. The purpose 

of this calculation was to show the relative differences in the number of substitutions 

between randomly generated substitutions and from actual sequences.

5.3.3 The correlation between frequency of substitutions in random model and 

in actual sequences

To assess the distribution of substitutions between the random unsealed profiles and 

that from actual sequences, a scatter plot of the correlation between the frequency of 

substitutions in a random model and from sequences in Kilifi sequences is shown in 

figure 5.6. In summary there was no evidence for a positive correlation between the 

observed substitutions and the random unsealed substitutions.
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Figure 5.6: Spearman correlation between frequency o f substitutions from randomly generated 
substitutions and substitutions derived from DBLa sequences collected between 2008 and 2010. 
Figure A-D shows the random substitutions against the actuals sequences. Figure E-H shows the 
correlation between the scaled random substitutions and the actual substitutions from  Kilifi se­
quences. The scaling was based on the transition:transversion ratio derived from DBLa sequences. 
Each point represents the frequency of each type o f substitution at the respective codon. Rho 
indicated above each plot refers to the overall correlation and the p-value is indicated in brackets.
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Figure 5.6 shows that the ratio of transistion and transversion was important in 

describing the susbstitution models. Without scaling or accounting for this ratio the 

random and uniform model could not fully account for differences in the substitution 

profiles. Another way to put it is that that random based on Jukes-Cantor model of 

substitutions could not fully account for the observed profile of subsititutions. A more 

through analysis would be important to fully account for this observation.

5.3.4 Distribution of variation at each codon

Nucleotide composition varies widely among genomes and the G + C content differs 

between genes and organisms. The mechanisms of codon variation are related to 

codon and amino acid compositions. In most genes composition bias reflects the action 

of mutation and selection and can be linked to polymerase and transcription efficiency. 

The most likely factor that determines codon or amino acid usage is mutational bias 

that shapes GC composition constantly when genomes are either replicated or repaired 

by DNA polymerases

Figure 5.7 shows the G + C content and the proportion of purines at each codon for 

a group DBLa sequences from Kilifi that were collected between 2008 and 2010. The 

purines were more frequent at codon position 1 and 2 when compared to pyrimidines. 

The 3rd codon had the least G+C content and comprised of about an equal proportion 

of purines and pyrimidines.
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Figure 5.7: A scatter plot showing the percent GC content (x-axis) and the average proportion of 
purines at each of the codon positions in DBLa andAM Al sequences. DBLa sequence tag regions 
are purine rich, codon position 2 is more GC-rich than codon position 1 and 3. The plot was 
generated by calculating the average purine content and the average G+C content o f the bases at 
each codon. The figure implies that variation is likely to be influenced by base composition.

5.3.5 Density of substitutions in conserved and polymorphic regions of the 

DBLa sequence tag

Based on sequence alignment of PfEMPl sequences, the DBLa sequence region falls 

within the homology block D to H (Smith et al. 2000a). The homology blocks are 

the most relatively conserved regions of the sequence and are interspersed by the 

polymorphic blocks which are denoted with abbreviation HP in this thesis. Nucleotide 

diversity (ti) scores were calculated to explore differences in density of substitutions 

between the homology and the polymorphic regions. Nucleotide diversity scores in 

homology block D and H and the polymorphic regions HP1 and HP2 in each cluster 

were calculated as shown in figure 5.8. In the figure, the density of substitutions was 

plotted in sequences containing randomly substitutions (simulated) and the actual 

sequences collected from Kilifi (observed). Figure 5.8 shows the substitution profile 

of sequences clustered at 98% similarity.
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kilifi random
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Figure 5.8: The figure shows the nucleotide diversity (n ) from  polymorphic blocks (hp) and 
homology blocks (hb) in alignments of sequences that were similar at 98% (A) and 96% (B) that 
were collected. A similar profile was calculated in sequences that contained random substitutions. 
Each line is a diversity score from  a single alignment and the grey shade shows the distribution. 
The homology blocks from Kilifi sequences showed a higher proportion o f substitutions than the 
polymorphic blocks.
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5.3.6 Variation in homology block D and H

The homology blocks are relatively conserved regions of the PfEMPl molecule (Smith 

et al. 2000a). Here we considered the distribution of variation in homology block 

D and block H which are at the 5’ and 3’ ends of the tag region. Figure 5.9 shows 

the distribution of point mutations in homology block D and in homology block H. 

Clusters of homology blocks for comparison were extracted from alignments of full- 

length sequence tags. The complete DBLa sequences were first aligned using different 

cutoffs and then the homology blocks were extracted from full length alignments of 

the tag region. This ensured that the substitutions were from sequences that were 

similar at the global level.
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Figure 5.9: Distribution of nucleotide substitutions in homology block D (A) and block H (B). 
The homology blocks were extracted from full-length alignments of DBLa sequences and therefore 
these alignments reflect substitution in very closely related sequences. The red bars represent 
subsitutions in the first codon position and the yellow and green bars represent substitutions 
in the second and third codon positions respectively. The gray bar represent the overall sum of 
substitutions fo r each type of substitution. 1Q1



The profile of substitutions within the conserved regions of the DBLa tag was 

different from that observed from full-length sequence tags. The homology blocks 

showed a remarkable bias in substitutions at the third codon compared to the full tag 

sequences.

5.3.7 Overall distribution of point m utations in DBLa sequence tags

The DBLa sequence tags are A-T rich as illustrated in figure 5.11. Nucleotide composi­

tion varied across the codon positions as illustrated in the figure 5.11. The proportion 

of T residues at the first codon was higher compared with that at the second and the 

third codon position. The proportion of C was the lowest at all the codons positions. 

The proportion of T at the third codon position was relatively higher than that of C 

and G and almost equal to that of A.

The most frequent type of substitutions in DBLa sequences were the G-A/C-T 

transitions. Generally, the frequency of G-A transitions was higher than C-T in most 

sequence groups and as illustrated in figure 5.10 and figure 5.12. The G-A transitions 

were more frequent at the first and the second codons positions. The proportion of 

Guanine (G) and Adenine (A) was proportionately higher at the first and the second 

codon position compared to the third codon position (shown in figure 5.7).

There was relatively higher number of C-T transitions at the third codon position. 

The most common transversions in sequences from Kilifi were T-A and C-A nucleotide 

changes. The T-A transversions were more common at the third codon position and the 

C-A transversions were proportionately higher at the first and second codon positions.
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Figure 5.10: The overall distribution o f random substitutions (A-D) and from  actual sequences 
tags from  Kilifi collected between 2008 and 2010 (E-H). This plot shows the mean frequency o f 
each type o f substitution that were selected at random. In each figure, 50 random substitution 
were selected from the pool of all substitutions with replacement and the process was repeated 
100 times. The mean number of each type o f substitution is shown, the error bars indicate the 
95% confidence internal. There was significant difference between the distribution o f substitutions 
(Kruskal-Wallis rank test p-value < 0.001).
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Figure 5.10 suggests that substitutions in the DBLa sequences are not just random 

but are also shaped by the evolutionary pressures acting on the sequences. The figure 

also provides evidence that the subsitutions cannot be fully accounted by PCR errors. 

More analysis of codon usage and selection pressures pressures is required to fully 

account for these substitution profiles.
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Figure 5.11: The distribution of nucleotide content in DBLa sequences tags from Kilifi andAmele 
region o f Papua New Guinea is shown in the figure. Panel A shows the overall distribution o f 
A,C,T and G nucleotides while panels B-E shows the distribution of each type of nucleotide at each 
respective codon for both Kilifi andAmele. The green lines represent individual observations and 
the grey area shows the respective distribution.
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Figure 5.12: The per codon nucleotide substitution distribution from  4817 DBLa sequence 
tags collected in Kilifi. Each plot shows the absolute frequency o f each type of substitution. In 
comparison to the random substitution model, there was significant different in the pattern of 
changes (Kruskal-Wallis test p-value < 0.001). C/T and G/A transitions were the dominant type 
of substitution changes.
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5.3.8 Distribution of point mutations in DBLa sequences from other geograph­

ical regions

Transmission and host immunity varies between geographical regions which in turn 

can impose different selection pressures on the expressed var repertoire. In this section 

the distribution of nucleotide substitutions was explored in sequences from two geo­

graphic locations other than Kilifi. Sequences from Papua New Guinea were obtained 

from a published genomic epidemiology study (Barry et al. 2007), and sequences 

from South America were obtained from a var diversity study (Albrecht et al. 2010).

The distribution of the proportion of nucleotide content in sequences from Papua 

New Guinea was similar compared to sequences from Kilifi (figure 5.11). The G-A/C-T 

transitions were the most frequent transitions. The frequency of G-A was relatively 

higher than that of C-T. In both cases there were more variation at the third codon 

position as shown in figure 5.13.

C-A changes were the most frequent types of transversion substitutions and unlike 

the Kilifi sequences the number of T-A changes was relatively low. The transversions 

occurred more regularly at the third codon. The distribution of substitutions was a 

remarkable departure from the random model and also from what was observed in 

Kilifi sequences.
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The var repertoire from parasites in the amazon basin has been described as 

relatively conserved (Albrecht et al. 2010; Bopp et al. 2013). Following from the 

observations in Amele region, it was interesting to describe the substitution profile of 

sequences from this region. There were no differences in the distribution of nucleotide 

content in sequences from Brazil compared to sequences from Kilifi or Amele. Overall, 

the frequency of transitions was higher than that of the transversions. T-A and C-A 

transvertions were the most dominant across all the similarity thresholds and similar 

to what was observed in sequences from Kilifi and Amele. C-T transitions were more 

frequent at the third codon. G-A transitions occurred proportionately frequent across 

all the codons as shown in figure 5.14.
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5.3.9 Variation in group A and non-group A sequences

Group-A var genes are relatively conserved and are associated with expression in 

severe malaria (Warimwe et al. 2009) and are of considerable importance as dis­

cussed in chapter 1 section 1.7. Group-A like DBLa sequences were defined as se­

quences characterized by two cysteine residues and belong to group-sharing block 

1 as discussed in chapter 1 section 1.7.1 and elaborated further in chapter 4. Given 

the role of group A var in immunity, it was hypothesized that they could be under 

different selection pressure from non-group A sequences.

A total of 1000 sequences from each group were randomly selected and clustered 

as described in chapter 3. Figure 5.15 shows the distribution of substitutions using 

an equal number of randomly selected group A and non-group A sequence tags from 

Kilifi and that were collected in the 2008 - 2010 time period.
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Figure 5.15: The frequency of substitutions in group A-like and non group A sequences (column 
B). Group A-like sequences were defined as sequences with 2 cysteines and belonging to block- 
sharing group 1. In each case 1000 randomly selected sequences were clustered and the number 
of substitutions in each cluster at each identity threshold is shown..
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From visual inspection of the substitution profile, there were no obvious differ­

ences between group A and non group A sequences. Non-group A var tags had a 

proportionately higher absolute count in the number of substitutions compared to 

group A as shown in figure 5.15. The overall distribution of changes was also stat­

istically significant at each percent similarity threshold based on Kruskal-Wallis rank 

test.

The non-group A sequences were diverse and comprised of fewer clusters com­

pared to the group A-like sequences. This explains the difference in absolute number 

of substitutions that was observed between the two groups. The mechanism that 

drives the substitution in group A and non-group A sequences could be the same 

regardless of the expression profile in severe and non severe malaria.

5.3.10 Sequence conservation in multiple isolates

To assess whether there were sequences tags that were common in multiple isolates, 

all the sequences from Kilifi were clustered at 100% identity and the representative 

sequences from each cluster written to a file. A representative sequence was the 

index sequence against which all the sequences in a given cluster were compared 

to such that they had similar or greater identity with the representative sequence. 

Therefore representative sequences at 100% identity represent the non-redundant set 

of all the sequences under comparison. The representative sequences were clustered 

between isolates at 98% identity. Each sequence in each cluster was annotated with 

the respective frequency at 100% identity and number of distinct isolates as shown 

figure 5.16.
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There was little 100% conservation among the sequences. The most conserved 

sequences were the varl as depicted by the sequences from cluster #2799  in figure 

5.16.

cluster_1033 cluster_1215 cluster__1622 cluster_1625 cluster_1957 cluster_2052 duster_2055  cluster_2080 cluster_2389 cluster_2526

w n •' - .
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CO
.2  d uster_2530  cluster_2567 cluster_2631 d u ster_2653  d u ster_2718  d uster_2799  cluster_550 cluster_599 cluster_725 d u ster_ 8 0 5

0 “ i ______
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Figure 5.16: The frequency (y-cocis) o f identical sequences (x-axis) from  a population o f var 
sequences. The frequency of each representative sequence is annotated with the number o f isolates 
that contained an exact 100% identical sequence. Isolates are depicted by the different colours. 
Sharing of identical sequences was limited to only a few  isolates.
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5.3.11 Substitution patterns in varl sequences

The varl sequences were analyzed in more detail following the observation that they 

were the least diverse group and that they formed clusters with the most number of 

sequences across all the identity thresholds that were considered as shown in figure 

5.1, figure 5.2 and figure 5.16. Furthermore, varl sequences are thought not to be 

expressed on the surface of the parasite (Winter et al. 2003) and presumably they are 

not under the same selection pressure as other var genes and in particular group A 

var genes.

Varl had a similar profile of nucleotide content as non varl sequences as shown 

in figure 5.17. The G -A /C -T  transitions were over represented in the varl sequences. 

There was little variation at 98% identity compared to 88% identity. The overall num­

ber of substitutions at the various identity thresholds were relatively low compared 

to what was observed in other DBLa sequences.

115



A
1 .0 0 -

0 .7 5 -

0 .5 0 -

a.

0 .2 5 -

0.00-

B 1.00 

0 .75

o  0 .5 0 -Q.O
Q.

0 .25

0.00-
A1 A2 A3

1 .0 0 -

0 .7 5 -

O 0 .5 0 -

Q.
0 .2 5 -

0.00-

C  1.00-1 

0 .7 5

O 0 .5 0 -Q.O
0 .2 5 -

0.00

E 1.00 

0 .7 5

C1 C 2 C3

o  0 .5 0 -
Q.O

0 .2 5 -

0.00-
G1 G 2 G3 T1 T2 T3

Figure 5.17: The nucleotide content o f varl sequences is shown below for a total o f 103 varl 
sequences that were collected from  Kilifi in the period 2003-2007. This dataset contained the 
largest repertouire of varl sequences from a single location. Figure A shows the overall distribution 
of nucleotides and figure B-E shows the distribution of each nucleotide at each codon.
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Figure 5.18: The distribution o f substitutions in 103 DBLa varl sequences at 98% and 88%  
sequence identity. Varl were conserved between parasite genomes and appeared to have a constant 
sequence length o f 330 nt. The majority o f changes were G-A and C-T transitions. G-C, G-T and 
T-A changes were not observed at 98% sequence identity and they were relatively few  at 88%.
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5.3.12 Insertion/deletions in varl

Varl DBLa sequences contained several substitutions as profiled in figure 5.18. Ma­

jority of varl substitutions were confined to a region that was between codon 68 and 

109.

The sequences from the varl alignment had deletions/insertions at two locations 

relative to the varl sequence 6 0 A - l c 0 8 .  The first was a codon deletion at position 

246-248 and the second was a two nucleotide deletion at position 281-282. Interest­

ingly, sequence 6 0 A - l c 0  8 contained a 5 nucleotide deletion from position 294-298. 

This somewhat appeared to compensate for the length of the molecule.
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Figure 5.19: A truncated image showing an unusual insertion/deletion events in varl sequences. 
Deletions at position 246-248 and 281-282 were observed in 102 sequences relative to the first 
sequence which contained a five nucleotide deletion at position 294-298 thereby maintaining the 
overall length of the molecule at 330 nucleotides. The above alignment was generated as a codon 
alignment using the PRANK alignment tool.

Although this observation is interesting and raises questions on role of v a rl se­

quences, it is also difficult to interprate given that it was only observed once. It could 

be that the v a rl sequence is a more recent recombinant and that the alignm ent is 

largely made of ancient sequences. It would be important to explore more sequences 

from multiple isolates.
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5.3.13 varl sequences may contain two co-evolving sites

Varl constituted of clusters with the highest number of members across the similarity 

thresholds that were considered (98-88%). A phylogenetic tree of va rl sequences 

is shown in Figure 5.20. Members of varl were divided into two groups based on 

mutations at nucleotide 204 and 246 (codon 68 and at codon 82 respectively).
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Figure 5.20: A. A neighbour joining tree o f varl sequences that were similar at 90% and were 
collected in 2008-2010. Based on the NJ tree, the sequences could be grouped into two major 
clades based on mutations at nucleotides 204 and 246.
B. A scatter plot o f the correlation between the proportion o f expression (in percentages) of varl 
DBLa sequences collected in 2008-2010 (same sequences in panel A) in each isolate and their 
respective antibody reactivity.

To explore the functional relevance of the sequences in each of the two clades, the 

expression profile for each of the varl sequences was determined.
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mutation kaks lod freq
1 68 16.50 5.81 0.59
2 82 16.50 5.81 0.59

Table 5 .2 : The ratio o f synonymous to non-synonymous change (Ka/Ks) was determined in 
alignment with 5 7  va rl sequence tags sampled between 2003-2007. Codons 68 and 82 had kaks 
scores greater than 1 which suggested that they could be under selection pressure.

mutation kaks lod freq
1 68 7.00 2.47 0.61
2 82 6.50 2.29 0.57

Table 5 .3 : The ratio of synonymous to non-synonymous change (Ka/Ks) fo r  an alignment of 24  
varl sequence tags that were collected between 2008  and 20 1 0  period.

The explore if variation in varl sequences was of functional importance, the Ka/Ks 

ratio was determined in varl sequences from the two study periods. The first dataset 

comprised of 53 varl sequences from samples that were collected in 2003-2007 and 

the second dataset comprised of 23 varl sequences from samples that were collected 

in 2008-2010. Table 5.2 and 5.3.13 shows the Ka/Ks values in each respective dataset. 

The table shows two distinct mutations within the varl sequences and that could be 

important in structuring this conserved repertoire.

5.4 Discussion

These results show that nucleotide variation is an important mechanism in generation 

of variation in var sequences. Transition changes formed the bulk of all observed 

changes other than T-A transvertions relative to a random substitutions model. Nuc­

leotide changes at the third codon was pronounced in C-T and T-A substitutions in 

sequences from Kilifi, PNG and Brazil. Sequences from Amele had a striking bias for 

changes at the third codon position. The pattern of nucleotide content was consist­
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ent across all the sequences from different geographical regions although there was 

variation in the actual distributions. Interestingly diversity in homology blocks was 

relatively higher than in the previously described polymorphic blocks.

There was little variation in the pattern of changes between group A and non­

group A sequences but there were differences in the absolute number of changes 

in which case, non group A sequence tags were more diverse than the group A var 

sequences. This independently confirmed other studies that suggest that group A var 

genes are more conserved. Varl sequences were very conserved and they split into 

two groups based on two mutations. A thorough analysis with a larger data set is 

required to confirm these observations.

The distribution of transition and transversions was consistent across sequences 

from different geographical regions although the profile of substitutions by codon 

position was remarkably different between sequences from Kilifi, Amele and Brazil. In 

conserved sequences the majority of substitutions occurred at the third codon position 

compared to substitutions from random substitution profiles.

The samples that were collected between 2003-2007 had been amplified using the 

Amplitaq Gold polymerase. Amplitaq has an error rate of 2.6 x 10-5 and like most 

Taq polymerases it lacks the 3’-5’ proof-reading exonuclease activity. Samples that 

were collected in 2008-2010 period were amplified with Bio-X-ACT, a proprietary mix 

of high fidelity enzymes that contain 5’-3’ DNA polymerase activity and 3’-5’ proof­

reading activity to prevent nucleotide misincorporation during a reaction. The profile 

of substitutions between sequences that were amplified with Bio-X-ACT and those 

that were amplified with Amplitaq gold suggested that the choice of polymerase had
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little effect on distribution of substitutions and presumably PCR errors.

Sequences from Kilifi exhibited a higher density of substitutions in conserved 

regions that in polymorphic regions in sequences that were very similar to each other. 

The distribution of changes in these sequences was not contiguous but as the percent 

threshold was relaxed from 98% to 88%, the number of contiguous changes increased.

Sequences from Amele region that were collected in 2006, showed an interesting 

profile in the distribution of substitutions (figure 5.13). There was a strong bias for 

transition changes accompanied by a strong bias for substitutions at the 3rd codon. 

These sequences were identified as relatively conserved at the amino acid sequence 

level. The nucleotide content was similar to sequences in Kilifi. This might be ex­

plained by a strong purifying selection on these sequences.

DBLa sequences from Brazil are less diverse compared to sequences from African 

parasites (Albrecht et al. 2010). It has been reported that Brazilian sequences are 

characterized by high type sharing (Barry et al. 2007). These sequences formed larger 

clusters at 98% similarity but the distribution of substitutions was not different from 

sequence in Kilifi and was unlike that which was observed in PNG isolates.

Network-based non-alignment approaches (Bull et al. 2007; Bull et al. 2008; Lar- 

remore et al. 2013) have been used to study DBLa sequence tag expression in clinical 

cases. These studies have reported differences in expression profile of sequences that 

are expressed in younger children compared to older individuals (Bull et al. 2008; 

Warimwe et al. 2009). They have also shown that the var expression profile is modi­

fied by the host immunity (Warimwe et al. 2009), which could suggest that immunity 

exerts selection pressure on var genes.
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Varl (Kyes et al. 2003) is an unusual conserved molecule in P. falciparum parasite 

genomes (Lavstsen et al. 2003; Kraemer et al. 2007) with a distinct 5’ promoter 

region (Vazquez-Maci'as et al. 2002). Varl is constitutively transcribed throughout 

the intra-erythrocytic stages (Kyes et al. 2003; Lavstsen et al. 2005) and expressed by 

parasites in nearly all disease phenotypes (Rottmann et al. 2006). These observations 

suggest that varl does not have a specialized function,nonetheless, varl is actively 

expressed and maintained in the parasite var repertoire.

The function of varl sequences in P. falciparum genomes is not well understood. 

Initially it was thought that varl could be as important as the pregnancy associated 

and geographically conserved var2csa, but the fact that varl is expressed in all dis­

ease phenotypes and across the erythrocytic cycle is enigmatic. Figure 5.18 shows 

the distribution of point mutations in varl sequences. Transition changes were the 

primary sources of single point variation in generating nucleotide diversity in v a r l . 

Interesting mutations at position 204 and 246 suggested that varl can be divided into 

two separate groups. It would be interesting to explore the functional or structural 

relevance of such mutations.

In one group of varl sequences most of the substitutions were confined between 

nucleotide position 68 and 109. From table 5.2 and table 5.3.13 an estimate of the 

Ka/Ks ratio suggests evidence of diversifying selection on the respective codon sites. 

And raises the question of whether this region is an active recombination site given 

that the changes appear in a non-random manner and only within this region. The 

observation that all the changes were confined to these contiguous positions would 

support this idea. The varl orthologue in Plasmodium reichenowi is reported to be
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1,584 nucleotides longer than in the 3D7 parasite line (Otto et al. 2014) suggesting 

that varl may have lost a functional component.

Varl sequences are largely conserved in multiple parasites. Point mutations at 

two distinct positions partition the varl sequences into two groups and both position 

could be under diversifying selection. A thorough examination using varl full-length 

sequences from different geographical locations across different time points is re­

quired to ascertain and confirm these observations.

In summary, there were interesting differences in the distribution of substitutions 

at the third codon in sequences from Amele in Papua New Guinea compared to 

sequences from Kilifi and from Ariquemes in Brazil. Although varl are conserved, 

a number of substitutions were observed at different similarity thresholds. It would 

be important to investigate these in relation to functional relevance and structure. 

A more rigorous population genetic analysis would be required to understand the 

nature of substitution distribution within the tag sequences and if there is a relation 

with immune selection. In addition is would be important to re-sequence some of the 

isolates to confirm the observations.

5.4.1 Limitations of this study

The total number of sequences in most clusters was relatively small and therefore 

these sequences or clusters could not be considered for population genetic analysis. 

Secondly, it was not possible to fully account for PCR errors and to derive a quantifi­

able error rate partly due to lack of appropriate reference sequences. Thirdly, it was 

not possible to assign the direction of a substitution and therefore the total number
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of substitutions from one nucleotide to another were pooled together.

5.4.2 Future work

This study developed a simple approach to explore substitution patterns in highly 

diverse and recombining sequences. Some of the methods are adhoc and could benefit 

if more sophisticated approaches of molecular evolution are applied.

The study of selection and the question of validity of observed subsitutions could 

easily be done with deep sequencing. This would allow more sophisticated and state 

of the art approaches to be applied in the study. By setting coverage thresholds for 

known mutations, it would be possible to analyze structural changes, SNPs as well as 

minority variants in multiple clinical samples.

Although, mosaicism is a challenge in assembly of full length var genes, this study 

would have benefited from looking at how changes are distributed along the entire 

length of PfEMPl sequence in parasite isolates collected from areas that are under dif­

ferent transmission intensities. It would also be important to compare the substitution 

bias across the genome relative to the telomeric genes.

One of the interesting observations was that varl sequences had a similar distri­

bution of substitutions compared to other var sequences. This raises an important 

question on the role of va r l. On the other hand varl sequences had an unsual pat­

tern of variation which raises the question on whether varl contain a recombination 

break-point?

Further investigation should focus on comparing the distribution of changes in 

recent var sequences relative to ancient sequences.
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Chapter 6
Identifying potential epitopes using a predictive approach

6.1 Background

In this chapter, a computational approach is described which was used to explore the 

epitope diversity in DBLa sequences and to identify commonly occurring epitopes 

and epitope positions. Epitope predictions were performed against linear B-cell epi­

topes and T-cell epitopes using a limited group of MHC class II T-cell alleles. Two 

main approaches were used to investigate immune selection on predicted epitopes as 

outlined below,

1. Explored whether the regions associated with these epitopes were associated 

with specific patterns of nucleotide substitution using methods described in 

chapter 5.

2. By using an existing data set of var expression data to test whether expression of 

commonly occurring predicted MHC-class II PfEMPl epitopes were correlated 

with host age, to explore whether expression of common epitopes within these 

key parasite antigens are selected against as children develop naturally acquired 

immunity.
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6.2 Results

B and T-cell epitopes were identified using an in-silico epitope prediction approach as 

described in the methods development chapter 3 section 3.8.4 and in section 3.8.1.

For Bepipred based B-cell epitope predictions the cutoff threshold for epitope was 

the default score of 0.35 as described in chapter 3. NetMHC-II T-cell epitopes were 

identified as overlapping sets of peptides. They were categorized as strong binders, 

weak binders (IC50 >50nM and IC50 < 500nM) and non-binders (IC50 > 500nM) 

based on the predicted IC50. The predicted IC50 was a surrogate measure of the 

strength of binding.

The Predivac server was used to predict and score peptides based on their ability 

to form stable MHC-peptide complexes. Predivac assigns values between 1 and 100 to 

the predictions. Peptides with a prediction value of >60 are assigned as epitopes. In 

this study, a conservative approach was adopted and only predicted peptides that were 

within an arbitrary 95th percentile of the scores were considered as immunodominant.

The T-cell prediction results were presented based on the predicted affinity scores 

and the predicted ability to bind to five or more HLA alleles. A conservative approach 

was adopted such that only predicted strong binders were considered for further 

investigation.

6.2.1 Linear B-cell epitopes are correlated with sequence diversity

Linear B-cell epitopes were predicted with Bepipred (Larsen et al. 2006) (http: // 

www. cbs . dtu. dk/services/BepiPred/) as described in chapter 3 section 3.8.1.
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The mean Bepipred scores for an alignment of sequences are shown in figure 6.1. The 

predicted linear B-cell epitope scores were significantly correlated with hydrophobicity 

(Kyte and Doolittle 1982) and sequence diversity, calculated using Shannon’s diversity 

index (Shannon 1948). Regions with high Bepipred epitope scores were the most 

diverse as shown in figure 6.1. Group-A and non-group-A sequences had a slightly 

different binding profile which was more detectable in the 3’ region of the molecule.
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Figure 6.1: Figure A shows a plot of the mean Bepipred scores and sequence diversity in aligned 
and randomly selected DBLa sequences. The red dots represents Bepipred scores at each position 
in group-A sequences and the black are the Bepipred scores from non-group-A sequences. The blue 
crosses represent the mean Shannon diversity index calculated using a window size o f 5 amino 
acids along the alignment columns. There was a significant positive correlation(rho=0.3,p-value 
< 0.001) between the mean Bepipred scores and the sequence diversity. Differences in the Bepipred 
scores between group-A and non-group-A sequences were more pronounced towards C-terminus. 
The black and blue lines on figure A represent the homology blocks D and H respectively. Figure B 
and C shows the correlation between diversity and Bepipred scores in both group A and non-group 
A respectively.
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6.2.2 The DBLa sequence region contains potential MHC class II T-cell epitopes

There are several approaches and tools for predicting T-cell epitopes. NetMHCIIpan 

(Nielsen et al. 2010; Karosiene et al. 2013) is a pan-specific approach to epitope 

prediction and was shown to outperform several other prediction tools and therefore 

it was adopted for the purpose of T-cell epitope prediction in this analysis and as 

described in chapter 3 section 3.8.4. Because it is known that the length of a peptide 

often correlates with binding strength (O’Brien et al. 2008), the length of the peptides 

were arbitrary chosen as 9 amino-acids 15 and 18 amino acids to represent short 

medium and long peptides respectively. A total of 39 arbitrarily chosen HLA alleles 

were used in the predictio; 13 were HLA-DP-DQ and 26 were HLA-DR alleles. A total 

of 365 non-redundant DBLa sequence tags from Kilifi collected between 2008 and 

2010 were used as input. It was not computationally possible to use all the HLA alleles 

for prediction given the limited resources. Secondly, fi there was an important signal, 

the rationalle should have picked it with predictions from the limited HLA predictions.

The binding profiles for predicted strong binders are shown in figure 6.2. The 

upper and lower panels represents peptides with 15 and 18 amino-acids respectively. 

There were no predicted strong binders for peptides with 9 amino-acids presumably 

because they were too short for MHC class II binding.

A peptide was considered a strong binder if the predicted binding affinity in IC50 

was less than 50nM and a weak binder if the binding affinity was between 50nM and 

500nM. Peptides with IC50 above 500nM were considered as a non binders. These 

are the defined cutoff thresholds for binders and non-binders. The total number of
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predicted binders and non-binders for each peptide group is summarized in table 6.1.

strong_binders weak_binders nonjoinders
9 amino acids 0 334 1339961

15 amino acids 11956 122173 1135752
18 amino acids 9376 157241 1068251

Table 6 .1 : The frequency of overlapping strong, weak and non binders predicted w ith NetMHCII 
from  365  DBLa sequences. There were no strong binders from  short peptides w ith a length o f 9 
amino acids. The most strong binders were from  peptides with 15 amino acids. Peptides with 18 
amino acids had fewer strong binders byt the majority of weak binders.
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Figure 6.2: The frequency (y-cucis) o f predicted NetMHCII peptide cores per HLA allele (x-axis). 
Figure A shows the frequency of strong binders. The frequency of 18-mers and 15-mers is shown 
in black and grey respectively Within the strong binders, there was a lot of variation in the 
frequency o f predicted binders for each HLA allele under consideration. The peptides with 18 
amino acids were largely weak binders.
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6.2.3 Predicting peptides with stable peptide-MHC complexes in DBLa sequences

Formation of stable peptide-MHC (p-MHC) complexes is important for immunodomin­

ant epitopes. Mutations in a peptide alter the strength of binding and it is important to 

identify the key residues that are important for a peptide-MHC interaction. The most 

immunodominant epitopes could not be identified based on NetMHCIIpan affinity 

values. The Predivac server (Oyarzun et al. 2013) was used to predict core epitopes 

that form stable peptide-MHC complexes. The pMHC kinetic stability is important in 

controlling the MHC class II peptide immunogenicity.

Immunodominant epitopes were defined as peptides that are predicted to induce 

the most potent immune responses from a set of immunogenic peptides competing 

that bind to the same MHC molecule. The Predivac server allowed only one sequence 

and one HLA-DR allele input at a time. A Python script, predivac-util (listing A.22, 

described in chapter 3 section 3.8.5), was developed to automate sequence submission 

and retrieval from predivac server.

Predivac was developed using high-affinity binding data in the belief that there 

are peptide features that correlate with promiscuity and immunodominance. Based 

on the prediction criteria, peptides are assigned a normalized binding score between 1 

and 100 where 100 are the strongest binder. These scores are obtained by establishing 

a correlation between the specificity determining residues (SDRs) in the HLA query 

protein and the SDRs associated with HLA proteins of known specificity as described 

in chapter 3 section 3.8.4. According to Predivac developers a predicted peptide score 

>60 was used to discriminate potential epitopes from non-epitopes.
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For the purpose of this analysis, an arbitrary conservative definition of a Predivac 

epitope was defined to only consider peptides that were in the top 5% of the scores. 

Promiscuous binders were defined as peptides that were within the top 5% of the 

predicted binders and could bind to an arbitrary chosen minimum of 5 of the 27 

number of HLA alleles that were tested.
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Figure 6.3: A bar plot of the frequency of predicted immunodominant HLA class II peptides using 
the Predivac server. Predivac scores predicted core peptides on a scale o f 1 - 100. Peptides with 
scores >60 are defined as epitopes. Only the 95th percentile of epitopes are shown. HLA allele 
DRB1 *0410 had the highest frequency of predicted peptides.

In relation to NetMHCII predictions, Predivac predictions shown in figure 6.3 were 

considerably fewer. This would be explained by the fact that only a few epitopes are 

likely to be immunodominant. It is also im portant to note that a very conservative 

threshold was considered and that could partly explain the fewer numbers.
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6.2.4 Overlapping peptides predicted by both NetMHCII and Predivac were 

few

Using Predivac, a total of 1,157 core peptides were associated with strong binders 

and 329 core peptides were predicted to form strong peptide-MHC complexes. A 

total of 98 core peptides were predicted by both NetMHCII and Predivac. A total of 

34 out of the 98 peptides were predicted to bind to 5 or more HLA alleles. Figure

6.4 illustrates the overlap between the predicted strong binders (netMHCII), strong 

pMHC complexes (predivac) and binding to multiple alleles (promiscuous).

NetM HCII

Figure 6.4: A venn diagram showing the total number o f overlapping peptide cores that were 
predicted by both netMHCIIpan as strong binders and by Predivac server as immunodominant. 
NetMHCII peptide cores were based on the 15 amino-acid long peptides. Promiscous peptides 
were defined as core peptides that were predicted by both NetMHCII and predivac and were also 
predicted to bind to five or more HLA molecules respectively.
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6.2.5 The frequency of predicted promiscuous epitopes is limited

Conservation of the 34 promiscuous epitopes among DBLa sequence tags from Kilifi, 

Amele and Brazil was calculated using the epitope conservation tool (Bui et al. 2007) 

(http://tools.immuneepitope.org/tools/conservancy/iedb_input). Pep­

tide conservation was defined as the best local alignment of a peptide in a DBLa 

sequence. The percentage identity was calculated from the number of peptides that 

matched the aligned sequences above 90%. Table 6.2 shows the name of the peptide, 

the number of identical hits, the sequence search space, and the percent conservation 

in each of the 34 promiscuous epitopes and listed from the most to the least conserved. 

The sequence search space comprised of sequences from Kilifi, Papua New Guinea 

and South America.
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Peptide Hits Sequences Conservation
ISGDTKVFT 59 13974 0.42
IYKDLKDLH 45 13974 0.32

YEGLKNNGA 42 13974 0.30
LTGDARNNA 35 13974 0.25
YQKDAPNYY 25 13974 0.18
YEGLSNNGA 21 13974 0.15
IWRALTCHA 22 13974 0.16
IRNDDRTLK 15 13974 0.11
LYFDGRCGR 14 13974 0.10
IQLEERLEQ 12 13974 0.09
YLGDVRTTL 13 13974 0.09
FKKIYNKLI 11 13974 0.08
IYKSLTPEA 9 13974 0.06

FRNTCSSKS 10 13974 0.07
IGADGRVTE 11 13974 0.08
VKLSNNLRA 7 13974 0.05
FGKIYNKLI 8 13974 0.06

LYFDDRCGR 9 13974 0.06
YNGLSNNGV 6 13974 0.04
YKNLKNPAQ 4 13974 0.03
FLNIQNDNS 5 13974 0.04
LKLEEKLKQ 4 13974 0.03
ITCDNRLRG 5 13974 0.04
YGSDTRNYY 5 13974 0.04
FRFTCSKGV 2 13974 0.01
IYEDLKDLH 2 13974 0.01
IYKDLKDGV 2 13974 0.01
IYKDLKDAK 3 13974 0.02
LKGDARTHY 2 13974 0.01
IHKDVTNRK 1 13974 0.01
LMEDLKNDR 2 13974 0.01
YKNDTKNYY 2 13974 0.01
ITCDARHDA 3 13974 0.02
LTCDDKLSK 1 13974 0.01

Table 6 .2 : The conservation profile o f 34 predicted promiscuous epitopes among from  a dataset 
of sequences from  Kenya, Papua New Guinea and South America.
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6.2.6 Promiscuous peptides from group A-like sequences are conserved

Sequence hits from table 6.2 were classified based on the Cys-POLV classification 

as shown in figure 6.5. The most conserved peptides were from group A-like se­

quences with the exception of peptide LTCDARNNA which is conserved largely in 

CP4 sequences.
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From figure 6.5 (A), the least conserved peptides were from non group A like 

sequences. The most conserved peptides came from sequences belonging to block- 

sharing group 1. Three of the peptides were from sequences containing block-sharing 

group 2 as shown in figure 6.5 (B).

6.2.7 Predicted promiscuous peptides were expressed largely in group-A se­

quences

The relation between the 34 promiscuous peptides and var expression was evaluated 

using data from clinical isolates collected in Kilifi. Another evaluation was carried 

out using a randomly chosen set of 34 sequences that had been predicted as strong 

binders. The random peptides were selected from a collection of strong binders. The 

aim was to determine if the peptides were expressed in a subset of PfEMPl proteins 

from commonly recognized parasites. Table 6.3 shows the correlation between the 34 

peptides and expression based on Cys-POLV groups.
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There was a positive correlation between the sequences and group A-like se­

quences (BSl-cys2) and CP3 sequences. A positive correlation was also observed 

with sequences from CPI and CP2. There was no correlation between the promis­

cuous and CP4 sequences. The random peptides had a negative correlation with 

group A-like (BSl-cys2). These random peptides showed a negative correlation with 

CPI, amd no correlation with CP2. A negative correlation with CP3 and a positive 

correlation with CP4 was observed.

6.2.8 Relationship with clinical classification

Clinical classification was determined in parasite isolates expressing sequences con­

taining one or more of the 34 promiscuous peptides. A total of 178 isolates had 

clinical information. The majority of the isolates (n=78) were from individuals with 

severe disease and the rest (n=55) were from individual with non-severe disease. A 

few (n=6) isolates were from individuals with asymptomatic disease.

6.2.9 Relationship between peptide expression and age of the host

Table 6.4 shows the that there was no correlation observed between sequences con­

taining the promiscuous epitopes and age of the host although. No correlation was 

observed with the random peptides either.

_____________________ age__________
promiscuous peptides -0.02( 0.720 ) 

random peptides 0.02( 0.737 )

Table 6.4: The correlation between host age and the expression of sequences containing the 34 
promiscuous peptides shows that there was no evidence of an association.
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6.3 Discussion

The results show that linear B-cell epitopes are associated with diverse regions and 

that a few MHC-class II epitope peptides that were widely recognized by HLA alleles 

are conserved in sequences that were expressed by individuals with severe disease 

and were associated with young host age. The most conserved promiscous T-cell 

epitopes were identified in a subset of DBLa sequences that were associated with 

severe disease and young host age as shown in figure 6.5.

6.3.1 Linear B-cell epitopes are prevalent in polymorphic regions

Predicted linear B-cell epitope scores were higher in amino acid residues that were 

found in polymorphic and hydrophobic regions of the DBLa sequence tag as shown in 

figure 6.1. One explanation for this is that Bepipred takes into account Parker’s hydro- 

philicity scale to predict B-cell epitopes, therefore it is not surprising that hydrophobic 

residues provided high Bepipred scores. What is interesting is that, variation in these 

regions appears to converge to residues with specific physico-chemical properties 

which may suggest surface exposure and potentially an interaction with antibodies. 

Using a Markov model derived from known antibody-antigen binding data is an im­

provement to the prediction accuracy (Larsen et al. 2006).

Evidence to support the importance of short linear epitopes comes from laboratory 

studies using peptide arrays and predicted linear epitopes. A predicted linear peptide 

in AMA1 was shown to be recognized by serum samples that also recognized domain 

II of Plasmodium vivax AMA-1 (Bueno et al. 2010). Ditlev et al. (2011) used Bepipred
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to identify B-cell epitopes in DBL4e of var2CSA in the FCR3 isolate (Ditlev et al. 2011). 

These studies showed that ELISA derived peptides could be predicted in-silico and 

that the peptides showed high reactivity to sera from multi-gravid women. There is 

evidence to suggest that rosetting is mediated by the variable regions of the PfEMPl 

protein and that short linear-peptides in sub-domain 1 and 2 of the DBL1 alpha domain 

contain anti-rosetting features (Albrecht et al. 2013).

One of the main drawbacks of linear B-cell epitopes is that B-cell cross-reactive 

epitopes are likely to be discontinuous and that the prediction accuracy of linear 

B-cell epitopes is poor (Blythe and Flower 2005). Discontinuous epitopes rely on 

prediction of accurate antigen-antibody structures. In relation to this work, regions 

that interact with antibodies would be under diversifying selection. There was not 

enough evidence to suggest that diversifying selection was acting on regions that 

were identified with high B-cell epitopes. Moreover the DBLa sequence tag is short 

relative to the full-length molecule and may not be key to B-cell immunity, at least 

not in a direct way.

6.3.2 Promiscuous T-cell epitopes are conserved in sequences associated with 

expression in severe malaria

To identify potential important regions of the DBLa molecule, two pan-specific meth-
}

ods were used to predict MHC class II T-cell epitopes from 39 arbitrary selected 

HLA-alleles. A total of 34 promiscuous peptides were identified based on a conser­

vative filtering criteria. The peptides were not very conserved in a majority of the 

sequences. The most conserved peptide was only present in a subset of sequences
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containing the MFK motif. Although the MFK motif is often associated with cys2 se­

quences, this motif was found in a cys4 sequence that contained an MFK motif and a 

few sequences in CP3 (figure 6.5). This observation may be a sequencing error. It is 

difficult to ascertain or drawn any conclusion from the single observation.

Peptide elongation has been reported to increase the MHC class II binding affinity 

(O’Brien et al. 2008). From table 6.1 the frequency of strong binders was high in 

15 amino acid peptides suggesting that this was the preferred optimal length for a 

peptide. Nonetheless, it is still difficult to discern the optimal length of the binders 

without experimentation. There were no strong binders with 9 amino acid peptides, 

which suggests the importance of residues other than the core peptides.

Although pan-specific methods are developed to cope with HLA class II allele 

diversity (Nielsen et al. 2010), most pan-specific tools predict epitopes for only a 

single locus (mostly the HLA DR). HLA restriction was a major challenge in T-cell 

epitope prediction given that HLA alleles identify peptides with varying affinities. If 

an allele recognizes a peptide, it is not guaranteed that a different HLA allotype will 

recognize and bind to the same or similar peptide. Another challenge in MHC class-II 

T-cell epitope prediction is the breadth of available tools and the respective accuracy. 

An important epitope must be recognized by a sufficiently large number of MHC class 

II alleles and at the same time it should be sufficiently conserved among the PfEMPl 

molecules.
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6.4 Conclusion

Based on the limited data set, sequences containing the predicted and promiscuous 

epitopes were found to be expressed in individuals with severe disease. It would be 

important to confirm the ability to raise T-cell immune responses against the predicted 

binders and seroprevalence studies on recombinant tags would be potentially useful.
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Chapter 7 
Conclusion

7.1 Molecular diversity

The immense molecular diversity in var genes (Barry et al. 2007) is generated largely 

through recombination (Kirkman et al. 2014; Sander et al. 2013; Zilversmit et al. 

2013; Duffy et al. 2009; Freitas-Junior et al. 2000; Kerr et al. 1994). Mitotic recom­

bination could account for majority of the sequence variation that is observed within 

an isolate (Bopp et al. 2013; Claessens et al. 2014) and meiotic recombination ac­

counts for the majority of observed variation between different isolates and between 

populations. Lack of a suitable or defined var gene epidemiological sampling frame­

work is challenge for exploring both sequence and molecular diversity including the 

role of single nucleotide substitutions. Due to recombination, sequences from diverse 

isolates tend to contain sequence blocks with disparate "ages" which complicates 

measures of evolution and tests of selection.

Figure 7.1 shows how new antigenic determinants can be generated through 

random mutations and selected by antibodies and thereby shape the var gene reper­

toire. Evidence for geographical conservation of antigenic determinants came from 

the Aguiar study that showed that despite presence of antigenic diversity, there was 

considerable pan-agglutination of parasite samples by serum collected from diverse
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malaria endemic geographical regions (Aguiar et al. 1992). This suggested that there 

are shared surface antigen epitopes between isolates from different geographic re­

gions.

A functional role may constrain serological diversity and is particularly important 

to identify such proteins because they are potential vaccine candidates and they can 

protect against specific forms of malaria. On the other hand, and as illustrated in 

figure 7.1 serological diversity may be restricted by functional constraints that restrict 

diversity.
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Random mutations

V V
S ynonym ous N on-Synonym ous

V V V
No antigenic 

change
No antigenic 

change
A ntigenic

change

C o n serv e d /h id d e n  ep ito p es

Immunity

Endothelial ce lls

Figure 7.1: Non-synonymous mutations random mutations contribute to new antigenic types. 
The host immunity structures antigenic repertoire. A successful antigenic variant is recquired to 
escape the host immunity and maintain binding to one or more receptors. The balance between 
novel antigenic diversity and maintenance of afunctional role for example binding to endothelium, 
is thought to be important in structuring the var gene repertoire.
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7.2 A recap of the aims of the study

This study attempted to understand the relationship between sampled sets of var 

sequences from clinical parasite isolates by comparing approaches for classifying 

var sequences. The study was extended to explore the pattern of sequence diversity 

in DBLa sequences by comparing pairwise differences between groups of similar 

sequences at different sequence identity thresholds and later comparing patterns of 

changes in relation to predicted epitopes regions.

An unexpected observation was that at 98% and 96% similarities, the frequency 

of substitutions within DBLa homology blocks between isolates was relatively higher 

compared to substitutions within the polymorphic blocks.

7.3 Summary of methods

Sequences data in this study was prepared using approach than utilized a consensus 

reads read alignment using CAP3, a sequence assembly tool (version date 12-21-07) 

(Huang and Madan 1999) and Vsearch (version 1.0.16), a tool for processing meta- 

genomic sequences, including searching, clustering, sorting, masking and shuffling. 

Sequences were clustered using a global alignment procedure and then grouped into 

clusters based on similarity at a given thresholds. An immunoinformatic approach 

was used to identify potentially immunogenic peptides in the DBLa tag. Predicted epi­

topes were evaluated based on the expression profile in samples that were collected 

in Kilifi and the age of the host.
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7.4 Understanding relationships between sequences and classification approaches

In chapter four, approaches for measuring the expression of var genes from clinical 

studies were compared with Cys/PoLV classification using 306 published sequences 

from 3D7, DD2, HB3, IT4, RAJ116, PFCLIN and IGH3 laboratory isolates (Rask et al. 

2010). Results from chapter four showed that;

• Distinct Cys/PoLV groups are associated with upsA genes. Here we developed an 

approach to rapidly identify group-A sequences which highlights the importance 

of the Cys/PoLV classification method in predicting features of the full-length 

molecule.

• DBLa domains represent very heterogeneous sequences. Therefore using trees 

to define these sequences maybe misleading. Mutually exclusive sequences can 

be found among collections of sequences that have been placed in different 

subgroups of the Cys/POLV classification.

• Cys/PoLV groups do not predict sequences with DC8 cassettes given global 

collection of sequences but may do so within a restricted geographical location 

such as East Africa.

7.5 The role of mutations in generating diversity

Data from chapter five showed that point mutations contribute to the overall var 

diversity. The analysis approach attempted to minimize the effect of PCR errors, but 

without a quantifiable approach of accounting for PCR errors, it is difficult to make a

150



firm statement on the role of these substitutions. In summary,

• In similar sequences, diversity in the homology blocks was relatively higher 

than in the polymorphic blocks in sequences. The known homology blocks 

were defined based on collection of DBL domains from diverse sequences and 

presumably they contain recombining sequence blocks of different ages. By 

looking at sequences collected from the same geographic area and that were 

clustered at high similarity, the observed differences can be attributed to real 

substitutions.

• The T-A substitution was the most frequent transversion and had higher fre­

quency at the third codon compared to the first and the second codon. From the 

random model of substitutions, there was no difference in the number of T-A 

substitutions. Even upon accounting for the ratio of transitions to transversions, 

the relative frequency of T-A substitution did not differ in a proportionally. Se­

quences from Kilifi, differed in a statistically significant way in the distribution 

of substitutions. Therefore the differences in distribution of T-A changes cannot 

be fully accounted by T-A proportion in the sequences.

• Sequences from Kilifi isolates showed a different substitution pattern compared 

to sequences from Papua New Guinea. Sequences from the Amele region in 

Papua New Guinea had a striking substitution bias at the third codon position 

across all types of substitutions. We considered the possibility that this differ­

ence might merely be due to composition bias at the third codon within these 

sequences. Interestingly there were no differences in the substitution profile
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compared to sequences from Kilifi.

• Substitutions within the homology blocks were less frequent and they were pre­

dominant at the third codon. c-T  transversion was more prevalent in homology 

block H than homology block D.

• Substitution bias at the third codon was observed in homology blocks D and H 

from distantly related sequences.

Previously we have identified varl DBLa sequences using sequence motifs. The 

clustering approach was successful in independently identifying varl sequences based 

sequence similarity. Chapter 5 showed that varl genes are characterized by a muta­

tion hot-spot that may be under diversifying selection or active recombination, varl 

showed a different pattern of substitutions in that GT changes were rare at 98% and 

88% similarities. Overall the proportion of GA and CT changes was similar to what 

was observed in other var sequences. Unlike other var sequences, varl sequences that 

were sampled in this study had a distinct uniform length of 330 nucleotides.

7.6 Prediction of epitopes and relationship with age and expression

Chapter 7 explored predicted linear B-cell epitopes and MHC class II T-cell epitopes 

in relation to expression in var sequences and host age. Predicting B-cell and T-cell 

epitopes is not trivial given the sequence diversity and MHC allele diversity. The 

predictions were limited to a few arbitrary selected MHC class II alleles. Linear B-cell 

epitopes scores were correlated with sequence diversity and the hydrophobicity profile 

which could be due to the fact that Bepipred linear B-cell epitope prediction partly
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relies on propensity scales. The most diverse regions were potent B-cell epitopes and 

there was a difference in B-cell epitope predictions between group-A and non-group-A 

DBLa sequences towards the N-terminal as shown in figure 6.1.

In this study a conservative approach was adopted and only 34 promiscuous pep­

tides were identified using two MHC class II T-cell epitope prediction tools. This is 

a very limited set of peptides to make general conclusions about predicted epitopes. 

Furthermore, the number of HLA alleles that were considered were also a limited 

set. Nonetheless, it is important to appreciate that these limited set of epitopes were 

associated with expression in group-A var genes, secondly a large proportion of the 

sequences containing these peptides were from severe malaria individuals and the 

rest from non-severe cases. Only a tiny proportion (n=6) was from asymptomatic 

individuals but that may be because there was only a few asymptomatic individuals.

7.7 Further work and conclusion

This work was an exploratory description of variation in var sequences based on 

the 300-500 base-pair DBLa sequence tag. For a more comprehensive analysis focus 

should shift to full length sequences. This could be better achieved by making use of 

parasite cloning and sequencing of var genes to confirm the variation bias in C-T/G-A 

transitions as well as collection of newly available sequences from around the world.

It would be interesting to investigate role of potential mutagenic events in plas- 

modium parasites. An interesting focus is the role of cytosine deamination during 

transcription. It has been shown that B-cell-specific-activation-induced cytidine deam­

inase (AID) works directly on DNA to deaminate deoxycytidine (Petersen-Mahrt et al.
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2002). AID is thought to be responsible for antibody gene diversification through 

gene conversion and class-switch recombination although the exact mechanism is not 

well understood.

Studies in E. coli have shown that deamination of cytosine leads to uracil U, uracil 

simulates thymine (T) in DNA and pairs with adenine (A), and after two rounds of 

replication the substitution from C/T is generated (Francino and Ochman 2001). In 

the human genome, CpG dinucleotides have been shown to mutate at a higher rate 

because of cytosine deamination. Methylated CpG dinucleotides go through deamina­

tion of 5-methylcytosine to produce thymidine (Coulondre et al. 1978). Given these 

accounts, it would be interesting to investigate the role of mutagenic events and in 

particular, DNA polymerases and mismatch repair in var sequences. This study showed 

an relatively higher number of G-A and C-T substitutions although it was difficult to 

assign direction to an observed substitution. It is possible that some substitutions 

maybe generated during replication or transcription. Whether this is a deliberate 

effort by the parasite to allow errors to persist remains to be investigated.

B and T-cell epitopes should be confirmed by peptide synthesis and testing for live 

cell surface reactivity and induction of T-cell responses respectively. Furthermore the 

predictions should be based on a wider panel of HLA alleles that comprise of alleles 

from the local population from where the acute samples were collected. Potential 

source of this data is whole genome sequences. A combination of prediction and 

empirical epitope discovery may be more useful in exploring PfEMPl based epitopes. 

Examples include the approaches that were considered by Patarroyo et al. (2014) and 

Albrecht et al. (2013) and discussed in chapter 1 section 1.10.2
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Appendix A 
Source code

A. 1 A script to search for DBLa sequence tags

This program depends on the DBLa classifier library

Listing A.l: A Ruby program to search for DBLa sequence tags

# ! / u s r / b i n / e n v  r u b y  
require 'bio' 
require 'optparse' 
require 'ostruct' 
require 'bio-dbla-finder'

options = OpenStruct.new

OptionParser.new do |opts|
opts.banner = 'Usage: dbla_finder -i infile -s stopcodons -o outfile'

opts.o n ('-h', '— help','Display this screen') do 
puts opts 
exit 

end

opts.o n ('-i', '— infile INPUT','DNA file to search for tags [required]^ 
') do |infile| 

options.infile = infile 
end

opts . on ( '-s ' , '--stopcodon STOPCODON', Integer, 'Number of stop codons 
to accept in the tag') do |stopcodon| 

options.stopcodon = stopcodon 
end

opts.o n ('-o','--outfile OUTPUT', 'File to write the tags to') do | 
outfile| 

options.outfile = outfile 
end 

end.parse!

infile = options.infile * f i l e _ p a t h  = 
stopcodon = options.stopcodon 
outfile = options.outfile
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#create a finder class in this case named robot 
robot = Bio::Finder.new(infile)

begin
#cali the find_tags method to list the tags to the stderr 
tags = robot.find_tags

if outfile.nil?
$stdout.puts tags 

else
output = File.open(outfile,'w ') 
output << robot.find_tags 
output.close 

end
#$stderr.puts "#{tags.size} tags found!"

r e s c u e  #Bio::FlatFile::UnknownDataFormatError 
$stderr.puts "bad_contigs_format" 

end

Listing A. 2: nucleotide class

class Bio::Sequence::NA

#translate the sequence to protein 
def to_protein(frame) 

seq.translate(frame) 
end

#get the hamming distance of 2 strings of equal length 
def hamming_dist?(strl,str2,mismatches=l)

strl.chars.zip(str2.chars).count{|ca,cb| ca!=cb} <= mismatches 
end

ifind strings that are similar based on the hamming distance 
def find_similar(haystack,needle, mismatches)

haystack.chars.each_cons(needle.length).map(&:join).select{|s| ^  
hamming_dist? (s,needle,mismatches)}

end

#given a tag return the potential motifs in the n-terminus 
def n_term_motifs(protein)

find_similar(protein,'DIGDI',2) 
end

#given a tag return the potential motifs in the c-terminus 
def c_term_motifs(protein)

find_similar(protein,'PQYLR',2) 
end

#positions for all n_terminus motifs 
def n_term_positions(motifs, protein)

motifs.map{ |motif| protein.match(/ xp.qucte (mot if) >/) .offsets
( 0 ) [ 0 ] }
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end

#posit ions for all c_terminus motifs 
def c_term_positions(motifs,protein)

motifs.map{|motif| protein.match ( / # {Regexp.quote(motif) ■).offsets 
( 0 )  [ 1 ]  }

end

ipairwise length differences for each n_terminus and c_terminus pair 
def tag_len_diffs(c_term_pos,n_term_pos)

c_term_pos.map{|i| n_term_pos.map{|j| i - j}} 
end

#potential tags
def candidate_tag_lens(tag_len_diffs,tag_range)

tag_len_dif fs .map{ | list | list. each_with_index .map { | i, index | index -f-° 
if tag_range.include? i}}

end

#get the tag region
def clip_tag(start,stop,step=0,num_sc=0) 

tag = seq.subseq(start + step,stop + step) 
amino_tag = tag.translate 
last_5 = amino_tag[-5..-1] || amino_tag
stop_codons = amino_tag.scan(/\*/).size 
tag if stop_codons <= num_sc && last_5 != 'PTYLD' 

end 
end

Listing A.3: finder class

module Bio
class Finder

attr_accessor :tag_range 
attr_accessor :stop_codons

def initialize(path)
0file ||= path 

end

def find
warn "[DEPRECATION] find' is deprecated, use ' extract_tags' 4-̂  

instead" 
extract_tags 

end

def extract_tags
ext = File.extname(@file) 
if ext == ! .fastq' I I ext == ' .fq' 

find_tags_fastq(@file) 
elsif ext == ' .fasta' | | ext == ' . fna' I I ext == ' .fas' 

$stderr.puts 'Only Fastq input is supported!' •
@file)

else
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$stderr.puts "File Read Error: '#{ext}' is not a supported
sequence file format"

end
end

def find_tags_fastq(file)
fastq = Bio::Faster.new(file) 
tags = []
fastq.each_record do |seq_header, sequence, quality| 

tags << find_tags(seq_header,sequence,quality) 
end
tags # . m a p { j r  I r .j o i n ( " \ n " ) } .  f l a t t e n . j o i n  

end

def get_frames(bioseq)
orfs = 6.times.map{|frame| bioseq.translate(frame+1)}.map{|trans| 

trans.split('*')} 
orfs.each_with_index.map{|orf,frame| frame + 1 unless orf.map{ |e | 

e if e.seq.size > 99}.compact.empty?}.compact
end

def b ioseq_obj(sequence_string)
Bio::Sequence::N A .new(sequence_string) 

end

def to_bioseq_generic(sequence_string)
Bio::Sequence.new(sequence_string) 

end

def to_fastq(name,sequence, qualities) 
output_array = [] 
output_array << "@f(name}" 
output_array << sequence 
output_array << "+#{name}" 
unless qualities.empty? 

if qualities.is_a? Array
output_array << qualities.map{|score| (score + 33).chr}.join 

else
output_array << qualities.split(/\s+/).map{|score| (score. 

to_i + 33).chr}.join
end

else
output_array << 'D' * sequence.length # a d e f a u l t  v a l u e  i n c a s e  

n o  q u a l i t y r  d a t a  i s  p r o v i d e d
end
output_array

end

def find_tags(seq_header, sequence, quality=[]) 
bio_seq = bioseq_obj(sequence) 
frames = get_frames(bio_seq)

frames.each do |frame|
protein = bio_seq.to_protein(frame)
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n_term_motifs = bio_seq. n_term__motifs (protein) 
c_term_motifs = bio_seq.c_term_motifs(protein)

n_term_positions = bio_seq.n_term_positions(n_term_motifs, 
protein)

c_term_positions = bio_seq. c_term_positions (c_term_motifs, •<—> 
protein)

tag_len_diffs = bio_seq.tag_len_diffs(c_term_positions, 4-̂  
n_term_positions) 

candidate_tag_lens = bio_seq.candidate_tag_lens(tag_len_diffs, 
tag_range)

candidate_tag_lens.each_with_index do |list,index| 
unless list.compact.empty?

aa_start = n_term_positions[list.compact.flatten.pop] 
aa_stop = c_term_positions[index]

tag_start = ((aa_start +1) *3) - 2 
tag_stop = (aa_stop * 3)

frame > 3 ? 0bioseq = bio_seq. reverse_complement : 
0bioseq = bio_seq.seq 

frame > 3 ? qualities = quality.reverse : qualities = ’
quality

tag_quals = qualities[tag_start..tag_stop]

case frame 
when 1,4

tag = 0bioseq.clip_tag(tag_start,tag_stop,0,stop_codons) 
return to_fastq(seq_header,tag,tag_quals) if tag

when 2,5
tag = 0bioseq.clip_tag(tag_start,tag_stop,1,stop_codons) 
return to_fastq(seq_header,tag,tag_quals) if tag

when 3,6
tag = 0bioseq.clip_tag(tag_start,tag_stop,2,stop_codons) 
return to_fastq(seq_header,tag,tag_quals) if tag 

else
end 4case statement 

end funless statement 
end #candidate_tag_lens 

end #frames loop 
end ffi nd_tags method 

end #class 
end #module

A. 2 A Ruby program  to classify DBLa sequence tags
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Listing A.4: A program to classify DBLa sequence

iThis script depends on the bio-dbla-alpha classifier package.

#!/usr/bin/env ruby
require 1/Users/george/Code/Ruby/bioruby-dbla-classifier/lib/bio-dbla—  

classifier' 
seq_file = ARGV[0]

Bio::FlatFile.open(seq_file).each do |entry| 
tag = Bio::Sequence::AA.new(entry.seq)
puts "#{entry.definition}\t#{tag.cyspolv_group}\t#{tag.dsid}\t#{tag.e^ 

bs_group} \ t# {tag. cys_count} \ t # {tag. length} \ t# {tag. varl_status } \t# {-<—3 
tag.sig2_status}\t#{tag.groupA_status}"

end

Listing A. 5: The nucleotide class

class Bio::Sequence::NA 
attr_accessor :mut_pos

#position specific polymorphic block 1 
def pspbl_dna(anchor_pos=0,win_len=42) 

self [42 + anchor_pos,win_len] 
end

#position specific polymorphic block 2 
def pspb2_dna(anchor_pos=0,win_len=42) 

if !ww_missing?
return self[(ww_pos * 3) - 12 - anchor_pos - win_len, win_len] 

elsif !vw_missing?
return self[(vw_pos * 3) - 36 - win_len - anchor_pos, win_len] 

else
return

end
end

#position specific polymorphic block 3 
def pspb3_dna(anchor_pos=0,win_len=42) 

if !ww_missing?
return self[(ww_pos * 3) + 42 + anchor_pos, win_len] 

elsif !vw_missing?
return self[(vw_pos * 3) + 8 + anchor_pos, win_len] 

else
return

end
end

#position specific polymorphic block 4 
def pspb4_dna(anchor_pos=0,win_len=42)

self[self.length - 36 - win_len - anchor_pos, win_len] 
end
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def polvl_dna_pos
mut_pos.map{|mut| mut - (aa_seq.polvl_pos * 3)} 

end

def polv2_dna_pos
mut_pos.map{|mut| mut - (aa_seq.polv2_pos * 3)} 

end

def polv3_dna_pos
mut_pos.map{|mut| mut - (aa_seq.polv3_pos * 3)} 

end

def polv4_dna_pos
mut_pos.map{|mut| mut - (aa_seq.polv4_pos * 3)} 

end

#return an array of distances from each polv 
def dist_from_polvs

[polvl_dna_pos, polv2_dna_pos, polv3_dna_pos, polv4_dna_pos] 
end

ireturn the homology block D 
#def block_D
# self[0,36]
#end

ireturn the sequences in homology block E 
#def block_H
# self[-36..-1]
#end

def block_D
self[0, ((aa_seq.polvl_pos + 1) * 3) + 9] 

end

def block_d_start 
1

end

def block_d_stop
((aa_seq.polvl_pos +1) * 3) + 9  

end

#+14 aa at the end of PSPB1 
def block_E

start = index(pspbl_dna) + 42 
myend = start + 42 
self[start..myend] 

end

def block_e_start
index(pspbl_dna) + 42 

end

181



def bl ock_e_stop 
block_e_start + 42 

end

def block_F
mystart = index(pspb2_dna) + 42 
myend = index(pspb3_dna) 
self[mystart..myend] 

end

def block_f_start
index(pspb2_dna) + 42 

end

def block_f_stop 
index(pspb3_dna) 

end

def block_H
self [ (aa_seq.polv4_pos * 3)..-1] 

end

def block_h_stop 
self.size 

end

def block_h_start
aa_seq.polv4_pos * 3 

end

#catch all methof missing. 
iTODO: do i really need it? 
def method_missing(m, *args, &block) 

puts 'undefined block' 
end

private
def accepted_length

aa_seq.accepted_length #300..50 
end

def aa_seq
self.translate 

end

def ww_pos
aa_seq.ww_pos #rindex("NW") 

end

def vw_pos
aa_seq. vw_pos # r m d e x  ("'010") 

end

def ww_missing?
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aa_seq.ww_missing? 4 t r u e  u n l e s s  a a _ s e q  =~ /WW/1  
end

def vw_missing?
aa_seq.vw_missing? e u n l e s s  a a _ s e q  = ~

end

def vw_ww_mi s s i ng ?
aa_seq.vw_ww_missing? #true i f  w w _ r n i s s i n g ?  && v w _ m i s s i n g ?  

end 
end

Listing A. 6: amino acid class

class Bio::Sequence::AA
BS1 = /DDDVEKGLKIVFEK|DKGEKKKLEKNLKD|DSRTDKLEENLRKI|GGGGRKKLEDNLKE| F-̂

GGRGRKKLEDNLIE GGRGRKKLEDNLKE GGRGRKQLEENLQK GKKKEKEKIYGNIE
GPKQEKKELEENLK GPSQEKIKLEENLK GPSQEKKKLEENLK HEQGNNKLEAILKT F-3
HEQGNNKLEARLKT HEQGYNKLEAILKT HEQGYNKLEAISKT HNHIKKPLLENLEQ A-’
HNHKKKPLLDNLEK HNHKKKPLLENLEQ HNNKKKALLDNLEK HNQKKINLEKSLHR f-1
HQQRKGKLEENLRN HQQRKRKLEENLRN HSKEKEKLQTNLKN KNESEIKRKEKLQR
KNESEKNTKKKLQG KNESEKRTKEKLQG NDADKVEKGLQWF NDADKVQKGLQVVF F—3
NDDVEKGLKIVFEK NDEDDVEKGLKIVF NDKDAAQKVLRTVF NDKDAVQKGLRAVF F—3
NDKDAVRHGLKWF NDKDYVENGLKKVF NDKEKDQRKKLDEI NDKEKDQRKKLDEN f-’
NDKVEKGLQVVFGK NDKVEKGLREVFKK NDKVEKGLREVFRK NDKVENGLKKVFDK F-“
NDKVENGLREVFKK NDNVEKGLKAVFRK NDNVEKGLKKVFDK NDNVENGLREVFKK F-5
NDQDDVEKGLKIVF NDQDEVWNGLRSVF NEDDKVQKGLQWF NEDVEKGLKVVFKK F—3
NEDVEKGLKVVFQK NEEDAVQKGLKKVF NEEDAVQKGLKWF NEEDAVQKGLRAVF F^
NEKDAVQNGLKKVF NEKVEIGLKKVFDK NEKVEIGLKKVFEK NERVEIGLKKVFKK F—3
NEKVEYGLRKLFKK NEMVEIGLKKVFKK NENVEKGLKIVFEK NENVEKGLKKVFDK F—3
NENVEKGLQVVFGK NEQDEVWKGLRDVF NGDYKEKVSNNLKT NGDYKEKVSNNLRA F—’
NGDYKKKVSNNLKT NKDDKIEKSLRAIF NKDDKVEKGLRAIF NKDDKVQKGLRAVF F—3
NKDDKVQKGLQWF NKDDKVQKGLRAVF NKHDNIEKGLREVF NKNVEIGLKKVFDK F—3
NKNVEIGLKNVFKN NKQEKEKREKLDEN NKQRKKILQEKLEN NNDDDKIKKGKLRG F—3
NNDNDKIKKEKLQE NNDNDKIKKEKLRG NNDNDKIKKGKLRG NNDNDRVKKEKLQN F^
NNDNDKVKKEKLRG NNDNDRVKKEKLQN NNDVEKGLDWFKK NNDVEKGLKVVFKK F^
NNDVVKGLDVVFKK NNEKDMREKQKLQS NNEKDMTEKQKLQS NNESEIKRKEKLRG F—3
NNESEKKKREELQG NNETDKEQKVKLEK NNHDNVEKGLKAVF NNHDNVEKGLKKVF F—3
NNHDNVENGLKAVF NNHDNVENGLREVF NNKEKEKIEKSLQN NNKENEKLQENLKR F—3
NNVDAVQEGLKWF NPEDKVHEGLKVVF NPEVEKGLKAVFRK NPEVENGLREVFNK F—3
NPQDKVQEGLKNVF NPQDKVQEGLKVVF NPQDKVQKGLREVF NQEDKVQEGLKVVF F-3
NRKEKGKLQTNLKN NSDDKVEKGLREVF NSDDKVENGLKKVF NTVDKIHEGLKWF F^
NTVDKVHEGLKWF NVHDKVEKGLQVVF NVHDKVEKGLQVVL NVHDKVERGLREVF F—5
NVHDKVERGLREVF NVHDKVETGLREVF SERVEYGLRKLFKK SNKEKEKIENSLQN F-3
TDKDAVQKGLRAVF TDKDDVENGLREVF TDKDEVKEGLKVVF TDKDEVWKGLRAVF F-3
TDKDYVENGLKAVF TDKDYVENGLKKVF TDKVENGLKEVFDK TDKVENGLKKVFDK F^
TDKVENGLKKVFDN TDNDAVQKGLRAVF TDNDEVWKGLGSVF TDNDEVWKGLRSVF F-3
TDNDEVWTGLRSVF TDNVEKGLRAVFGK TDNVENGLREVFKK TEKDDVEKGLKIVF F—3
VNGNDKLESNLKKI YDEKEKNRRKQLEN YNERDRAQKKKLQD YNERDRDKKRKLQE F—3
YNERDREKKRKLQD AKNDYTGDHPNYYK ALKHYKDDTKNYYQ ARYKKDEEDGNYYK F^
ARYKKDEEDGNYYQ DKNRGKLGALSLDD DNNSDKLRDLSVDK EHYEDVDGSGNYLK F—3
EHYKDVDGSGNYYK EKNYPDDGSGNYSK EKNYYNDGTGNYYK EYYEDKDPDKNYYQ F—3
EYYNDTNNKINYVK GIIDYDHDGPHYYK GINAYNDGSENYYK GINDCDRDGPEYYK F—5
GINDYDGDGPEYYK GINDYDRDGPEHYK GINDYDRDGPEYYK GINDYNDGSGNYFK F-3
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G I N D Y N D I S G N Y Y K

G K N Y P D D G S G N F Y K

H H Y K D D D I S G N Y S K

I H N Y D D N G S G N Y Y K

K A K Y E D L K T L P I D D

K D Y Y N A D E K G N Y Y K

K E Y Y Q D D G TG N Y Y K

K H Y A H D D G S V N Y Y K

K H Y T D T H G S I D Y D K

K K H Y E N D T D K N Y Y Q

K K V Y P E D V T G N Y Y K

K N D Y N P D G S G N Y F K

K N N D R T L N N L S I G Q

K N Y Y N P D G A G N Y Y K

KQ H Y K E D K D E N Y Y K

K R Y Y N D D T D N N L Y Q

K T I Y A D L K D V E I D D

KV H Y K E N K D G N Y VK

K V K Y P D L N D V E I D D

L K T R Y K K D D D N Y Y Q

M E S N A N L K K H T L E R

N H Y K D D D I S G N Y Y K

N K N K S P L D K L S L E Q

N V H Y K D D G S G N Y Y K

N Y Y A D G D K S G N Y Y K

P H Y T N D R G L A D Y V K

Q K H Y E D D G S G N Y Y K

Q K S D S S L Q R L S I E K

Q Q N N N T L E N L T D K Q

R E K Y K D L K D V E I D D

R I R H Y D D G S G N Y Y K

R N E N N N L G K L S N E Q

S D Y K D D D I D G N Y Y Q

S H Y E D K D K S G N Y I K

S V Q E R Y G N D P N F F Q

T V K E T Y K D D P N Y Y K

C A A R G N D L Y S K N I G

C D A P Q K V D Y F R K I S

C D A P R D A N F F I K N S

C D T E E S D T Y F K Q S S

C E A P Q K V D Y F R K G L

C F A D G S E E Y F I K S S

C G A G A K D T Y F T Y S K

C G A G E K D T Y F V Q L D

C G A T M N D I F S K N I G

C K A P E D A D Y F R K G S

C K A P K D A H Y F L K S S

C K A P N G A N Y F R K K S

C K A P Q D A N Y F R N I S

C K A P Q K A N Y F R K G S

C K A P T G A D Y F V Y K P

C K A S R N A N Y F R K A L

C N A P G D A H Y F R K D P

C N A P Y D A N Y F R K T S

|G K K Y Y N D E T G N Y Y K  

| G K N Y P D D G S G N Y Y K  

| I E A R Y K K D D D N Y Y Q  

| I K N D K T L N N L S N G Q  

|K A R Y K D R K D P N Y Y K  

I K E E Y G D L K D V P I D D  

| K G I N D Y D G D P N Y Y K  

|K H Y A H G D G S G N Y L K  

| K I K D Y D G D G P E Y Y K  

| K K H Y K K D E D P N Y Y K  

| K N A Y P D D G F G N Y Y K  

| K N D Y N P D G S G N Y Y K  

|K N Y N Y D E D G P E Y Y K  

| K N Y Y N P D G S G N Y Y K  

|K Q N N K K L K D L T D K H  

|K S Y Y D A D E K G N Y Y K  

| K T S N S N L K E L S L D K  

|K V H Y K E N K D G N Y Y K  

|K V K Y Q D L K D V E I D D  

|L Q A R Y K K D G D D F F K  

|N E H Y K E V K N G N Y V K  

|N H Y K D D N G S E N Y Y K  

|N K N N V P L D K L S L D K  

|N V H Y K E V K N G N Y V K  

|N Y Y N N T G N N A N Y A K  

| Q G I I D Y D N D P N Y Y K  

| Q K I Y E D I N N L P I D D  

| Q N Y Y A D D G S G N Y S K  

| R E H Y K E V K N G N Y I K  

| R E R Y K D L K D V E I D D  

| R I T H Y N D G S G N Y V K  

| R V K E T Y K D D P N Y Y K  

| S H Y A D H D K S G N Y L K  

| S H Y T D T H G S I D Y D K  

|T E T L Y K D E E G N Y L K  

|T V K G T Y K D D P Y Y Y K  

|C A A R Y H P G Y F K K S D  

|C D A P R D A D Y F K N V A  

| C D A P Y K S R Y F I Q S E  

| C E A P E N A Y I I K R R I  

| C E A P Q K V D Y F R K G S  

| C F A D G S E E Y F I Q S E  

| C G A G A R D E Y F I K P S  

C G A L P K S A Y F L Q S E  

C G T G E N D T Y F K N S S  

C K A P G D V N F F I K N S  

C K A P K D A N F F I K I S  

C K A P P K V D Y S R N I S  

C K A P Q D A N Y F R N V S  

C K A P Q K V D Y F R K G S  

C K A P T G A H Y F L K S S  

C K A S R N A N Y F R K I S  

C N A P G D V H Y F R K D P  

C N A P Y D A N Y V R R K S

|G K K Y Y N D G S G N Y Y K  

|G K Q Y Y N D E N G N Y Y K  

I I E T R Y E N D G P N Y Y Q  

| I S Y Y N A D E K G N F Y K  

|K D H Y K D E K D G N F F Q  

I K E I S D Y D N D P N Y Y K  

I K H Y A D E D G S G N Y Y K  

|K H Y A H G D G S G N Y S K  

| K I N D Y D G D G P E Y Y K  

|K K K K K G L S E L S T E K  

| K N A Y P D D G S G N Y F K  

|K N E N T D L N K L T T E K  

|K N Y N Y D K D G P E Y Y K  

|K P H Y K D D G F G N Y Y K  

| K R Y Y N D D T D D N F Y Q  

|K S Y Y N A D E K G N Y Y K  

| K T S N S N M D T L S L E Q  

|K V K Y P D L K D L Q I D D  

| K Y Y N D T N N K I N Y V K  

|L Q E R Y N D P K G D F F Q  

|N H Y K D D D G S G N Y Y K  

|N H Y K D D N G S G N Y Y K  

| N K N N V P L H N L S L D K  

| N Y N Y D E D G S G N Y V K  

|N Y Y N N T G N N V D Y V K  

| Q I S D Y D G D G P E Y Y K  

| Q K I Y K D L N N L P I D D  

I Q N Y Y A D D G S G N Y V K  

|R E H Y K E V K N G N Y Y K  

|R H Y A D H D K S G N Y Y K  

| R I T H Y N G V S G N C V K  

| S D Y K D D D G S G N Y Y K  

| S H Y A D H D K S G N Y Y K  

| S K I N D Y D G D P N Y Y K  

|T H Y A D E D G S E N Y Y K  

|V K A H Y K K D A P Y Y Y K  

| C D A P K D A N Y F I G S G  

|C D A P R D A D Y F R K G S  

| C D A P Y K S R Y F M Q S E  

I C E A P G D A H Y F R K G P  

I C E A S K N A N F F I K D S  

| C F A D G S E E Y F I Q S S  

| C G A G E K D T Y F T Y S K  

I C G A L P K S A Y F M Q L E  

| C I A P R D A H Y F L K S S  

| C K A P G D V N Y F R K I S  

| C K A P K D A N Y F I G S G  

| C K A P Q D A N Y F R K G L  

|C K A P Q D A N Y F T K E S  

| C K A P Q S V H Y F I K T S  

I C K A S K N A N F F I K N S  

| C N A P D K A E Y F V Y K S  

| C N A P N I S G Y F M Q S E  

|C N A P Y D A N Y Y R K Y S

| G K K Y Y N D G T G N Y V K  |

| G Q T Y P D D G S G N Y Y K |

| I E T R Y G S D T T N Y Y Q  |

| K A K E R Y K D I K N Y Y Q |

| K D H Y Q D D G T G N Y Y K  |

| K E K Y G D L K D V P I D D  |

| K H Y A H D D G S G N Y Y K |

| K H Y A H G D G S G N Y Y K  |

| K I T H Y D D I S G N Y Y K  | «->

| K K V Y P E D V T G N Y F K  |

| K N A Y P D D G S G N Y Y K  |

| K N K N T K L S T L T L E K  | f - 1 

| K N Y Y N P D E A G N Y Y K | ^

| K Q H Y K D D G S V N Y Y K  | ^

| K R Y Y N D D T D N N F Y Q |  ^

| K S Y Y N A D G E G N F Y K |

| K T S N T N M N T L S L D K |  ^

| K V K Y P D L N D I E I D D |  ^

| L K K H Y Q K D A P N Y Y K  | 4-^>

| L Q T R Y T N D G D N Y F K  | <!->

| N H Y K D D D I S G N Y S K  |

| N K N K P P L D K L S V D K  |

| N V H Y K D D G S E N Y Y K  |

|N Y N Y D E D G S G N Y Y K |

| N Y Y N N T G N N V N Y A K  | +->

| Q I S D Y T G D H P N Y Y K |  ^

|Q K N N S A L K K L T D K Q |

| Q N Y Y K D D P K K N Y Y K  |

| R E K Y K D L K D L P I D D | ^

| R I R H Y D D G S G N Y S K  | «-> 

| R K N N S S L R K L T N E Q  | f - 1 

| S D Y K D D D I D G N Y Y K | ^

| S H Y E D G D K S G N Y Y K  |

| S K I T D Y D N D P N Y Y K | ^  

|T H Y A D E D G S G N Y V K |

| V K A H Y Q K D A P N Y Y K | ^  

| C D A P Q K V D Y F R K G S  | <->  

| C D A P R D A H Y F L K S S  | ^  

| C D A S Y K S G Y F M Q S E |

| C E A P K D A N Y F I G S G | ^  

| C E A S K N A N F F I K N S  |

| C F A H N T E E Y F I K S E |

| C G A G E K D T Y F T Y S N  | «-> 

C G A L P K S A Y V L Q S E |  

C K A K E G D I Y S K T T D |  

C K A P K D A D Y F R K G S  | 

C K A P K G A N Y F R K E S  | <-> 

C K A P Q D A N Y F R K I S  | «-> 

C K A P Q G A N Y F R N I S |  

C K A P T G A D Y F K K K S | <->  

C K A S R N A H Y F L K S S | ^  

C N A P D N V N Y F R K Y S |  

C N A P N I S G Y F M Q S G  | <->  

C N A P Y D A N Y Y R Q T C  |
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BS2

C N A P Y E A Q Y F I K P S  

CN A P Y K A W Y F M H SE  

C R A P K N A H Y F I K S S  

C S A D D S E D Y F I Q S E  

C S A D G S E E Y F K K Q S  

C S A P D N A K Y V K Y F P  

C S A P G D V N Y F R K E S  

C S A P H N A Q Y V K Y V P  

C S A P Y D A N Y V R R K S  

C S A P Y H P G Y F R Q S K  

C S A P Y Y A D Y F K K K S  

C S V P Y E A Y Y F T Y K S  

C V A G E G N T Y F I Q L D  

C Y I P Y Y V N Y F K D I S  

C Y I P Y Y V N Y F K N I S  

Y K A P R K A N Y F I Y K S  

FE N A G K C G H N D N R V  

F S D N G P C G R K E L I V  

F S N E Y C G H Y K N G D P  

F S N R G P C G R N E T D V  

F S N S K C G H H N N D G P  

F S S H G K C G H N E G A P  

F T D G H C G R T Q E G H V  

F T D I G K C G H N E G A P  

F T N D G K C G H T E G T V  

F T N D G K C G H Y E N N I  

F T S A G K C R R N D N S V  

F T S E G Q C G H N D K S V  

F T S E G R C G H S E T N V  

F T S Q G Q C G H K E G T V  

F T S Q G Y C G H S E T N V  

F T S V G Y C G H N K G S V  

F W D R K C G H S N E G A P  

I V S F D Q C G H N D V D V  

L F D Y N C G H H K D N N V  

L F S D Y K C G H Y E G S P  

L F S N P K C G H E Q G T V  

L F S N R Q C G H G E H E V  

L F S N S K C G H E Q G N V  

L L F S N Y K C G H Y E G S  

N L I L T H P K C G H D T D  

S F A D A Y C G R G D E N V  

S F S D R K C G H Y E G A P  

S F S N G Q C G H R D E N V  

S F S N P K C G H N E N K V  

S F S S E Y C G H R Q G S A  

S F T N P K C G H G D N E V  

SQ G Q C G R N E N N G Y P  

T F S N D Y C G H G E H E V  

T V S F D Q C G H N D M H V  

V F  S N R Q C G H Y E D V P /  

=  /D K G E K K K L E  

D Q Q E K L Y L E N N L K K  

H E P G I Q H L E K R L E S

C N A P Y E A Q Y F I K S S

C N A P Y K S R Y F I Q S E

C R A P N E A N Y F K N V A

C S A D D S E D Y F I R S E

C S A G P K D T Y F I K S G

C S A P D Y A K Y F R Q T C

C S A P G D V N Y F R K F S

C S A P R D A D Y F I K N S

C S A P Y E A Q Y F I K S S

C S A P Y K S Q Y F I K S S

C S A P Y Y A D Y F K S V A

C T A P D K A N Y F I Y K S

C V A P E N A Y F R K T E A

C Y I P Y Y V N Y F K K K S

Y K A P K D A H Y F L K S S

A V S S N K C G H N D M N V

F E N A G K C R R N D N K V

F S N E H C G H H N N D D P

F S N N G P C G R N E T D V

F S N S G K C G G K E A P V

F S S D R C G H N N N D G P

F S S Q G Q C G H T E G T V

F T D I G K C G G K E A P V

F T D I G K C G H N K G S V

F T N D G K C G H Y E D A P

F T N D G K C G R Y E G A P

F T S E G K C G H N D N R V

F T S E G Q C G H S E T N V

F T S H G K C G H S E G A P

F T S Q G Q C G H S E T N V

F T S Q G Y C G R K E A P V

F T T E G Y C G R D E G A P

F W D R K C G H S N G G D P

K F S E R K C G H D E N A P

L F S D G H C G N K D G T V

L F S N A Y C G H Y E G S P

L F S N P K C G H K Q G K V

L F S N R Q C G H N E G A P

L F S N S K C G H R Q G N V

LW NDK CG HHVDKDV

P S Y I K C G H N N K D D P

S F S D H K C G H D E N A P

S F S N D Y C G H N E N K V

S F S N P K C G H E Q G N V

S F S N S K C G H G E H E V

S F S S E Y C G H R Q G S V

S F T N P K C G H G E H E V

S S T N T Q C R C A T N D V

T F T Y T K C G H D E N K V

T V S N A K R R E G D E N P

E N L K N | D Q E R K H L L E

D R K E K V K L E E N L K N

H E P G I Q Y L E K R L E S

C N A P Y E A Q Y Y I K S S  

C N A P Y K S R Y F M H S E  

C R A P N G A N Y F R K G L  

C S A D G S E D Y F I K S S  

C S A G Q K D T Y F I K P N  

C S A P G D A K Y V K N F P  

C S A P G D V N Y F R K G L  

C S A P R D A Q Y F I K S S  

C S A P Y E A Y Y F T Y K S  

C S A P Y N A H Y F I K S S  

C S A P Y Y A D Y F R K G S  

C T A P D N V N Y F R K Y S  

C Y A P N N A N Y F I G S G  

C Y I P Y Y V N Y F K K T P  

Y K A P Q D A N Y F R N V S  

E F T G G Y C G R D E T D V  

F L Y P K C G H N N K N D L  

F S N E H C G H Y K N G D P  

F S N N K C G H S N G G D P  

F S N S G P C G R K E L T V  

F S S E G K C G H K E G T V  

F S S S G P C G R D E A P V  

F T D I G K C G H G D K D V  

F T G G G Q C G R N E T D V  

F T N D G K C G H Y E D N V  

F T R Q G Y C G H S E T N V  

F T S E G K C G R N E T N V  

F T S E G Q C R R N D N S V  

F T S H G K C G R N E T N V  

F T S Q G Q C G H T E G T V  

F T S Q G Y C G R K E L T V  

F T T E G Y C G R N E G A P  

I F S N E H C G H K Q G S V  

K F S E R K C G H N E G S P  

L F S D H K C G H E E S R V  

L F S N D Y C G H K Q G N V  

L F S N R Q C G H D E N K V  

L F S N S K C G H D E N K V  

L F S N Y K C G H Y E D A P  

N F S N P K C G H D E G I V  

P S Y L K C G H N N K D D P  

S F S D H K C G H G D K D V  

S F S N D Y C G H R Q G S V  

S F S N P K C G H G D N E V  

S F S S E Y C G H E Q G N V  

S F T N G Q C G H N E E N V  

S F T N P K C G R G D N E V  

T E G Y C G R N E N N G Y P  

T S E G Q C G H N D K M R P  

T V S S N K C G H N D M D V

K R L E T | D Q E R K Q H L E

G P D Q E K K K L E E N L R

H E P G K Q H L E E R L E Q

C N A P Y K A Q Y Y I K S S  

C N A P Y K S R Y F M Q S E  

C R A P Q K A N Y F K N V A  

C S A D G S E E Y F I Q S E  

C S A P D N A K Y F K P P K  

C S A P G D A K Y V K Y F P  

C S A P G D V N Y F R K I S  

C S A P Y C A D Y F K K K S  

C S A P Y G A N Y Y R K Y S  

C S A P Y Y A D Y F K K K P  

C S A Q N N E V Y F I N S E  

C T A P Y G A N Y Y R K Y S  

C Y I P Y C V N Y F K N I S  

C Y I P Y Y V N Y F K K T S  

Y K A P R K A D Y F R N I S  

E F T S G Y C G R N E T N V  

F S D N G H C G R N E T N V  

F S N E Y C G H K K N E D P  

F S N P K C G H S N G G D P  

F S N S G T R G R K E L T V  

F S S E Y C G H Y K N G D P  

F T D D G K C G H Y E G A P  

F T D I G K C G H K Q G N V  

F T G G G Q C R R N D N S V  

F T N D G K C G H Y E G A P  

F T S A G K C R H N D N S V  

F T S E G Q C G H D E N K V  

F T S E G Q R G H S E T N V  

F T S I G K C G H N K G S V  

F T S Q G Q C G R N E R N V  

F T S V G Y C G H N K G I R  

F W D R K C G H S N E G A L  

I V S F D Q C G H N D M D V  

K F S S D R C G H N E G D P  

L F S D Y K C G H Y E D A P  

L F S N P K C G H E Q G N V  

L F S N R Q C G H E Q G N V  

L F S N S K C G H D E S K V  

L F W D R K C G H D E R N V  

N F S N P K C G H K Q G N V  

S E G K C G H K E T E R D L  

S F S D H K C G H Y E G A P  

S F S N E Y C G H R Q G S V  

S F S N P K C G H G E H E V  

S F S S E Y C G H G D N E V  

S F T N P K C G H D E N K V  

S L I L P Y S K C G R D T D  

T F S G Y W C G H Y E G A P  

T V S F D Q C G H N D M D V  

V F S N R Q C G H Y E D A P

K R L E T | D Q Q E K A K L E

G P N Q E K K L L E N K L K

H E P G K Q H L E E R L E R

G 3
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HEPGKQHLGERLEQ HEQGINRLEARLKT HEQGNNRLEARLKT HEQGYNRLEARLKT
HNRRKEKLETRLEE HQQRKHLLEKRLET KKKLEENLRNIFKN NDEEKKKRDELEKN e3
NTHESAQRKKLEEN REKGKSRLEARLKT REPGKQHLEERLER YNEKDQEEKRKLQE f-1
YNETDKVQKAILQQ YSQKYKDEKSKLEE AKNHYNDTSKNYYK ARDHYNDTSGNYYQ
DAKKHYGDDENYYK IEHYKDDPEENFYE IKSNYNDSEGNYFK IKSQYDDNEGNYFK •<—3
KDHYKGDEANNYFQ KDNNTKLNDLSIQE KKTNPALKSFTNEE KNNNNELNNLSLDK
KNNNNKLSNLSTKE KSSYNDDGTGNYFK KSYYKNDNDRNYFK NKNKSPLDKLSLDK
NKNNPPLYKLSLEK NNNAAKLSELSTAQ NYYEDNDTDKNYYQ QKENGDINTLKPEE f-3
QNKNENLKSLSLDK QNNNTKLQNIPLHE QRNNIKLQNIPLHE QRNNIKLQTLTLHQ
SAKEHYQDTENYYK TRYKKDDEDGNFFQ VKDRYQNDGPDFFK CDAGAADEYFKKSG e3
CDAGQKDTYFKQSS CEAGTSDKYFRKTA CEAKSDDKYNVIGP CGAGMKDIYSKTMN
CGAPKEAKYFRKTA CGAPSDAQYFRNTC CGASEDAKYKVIGP CGATMNDIFSKNIR -e3
CGATVDDIFSKNIR CGATVDDISSKNIR CGTEDKDTYFIKSG CGVEENAKYFRESS r3'
CHAPPDAQYTKKGP CKAEVDDIYSKTAN CKAKEGDIYSKTAN CKAKEGDIYSKTMN 3
CKAKKGDIYSKTMN CKAKKGGIYSKTMN CKANDDAEYFRKKD CKAPDKANYFEPPK
CKAPDKANYFKPPK CKAPEEDHYFKPAQ CNAPKDANYFEYNS CNAPTGADYFVYKP e3
CNAWGNTYFRKTCS CRAEEKDIYSKTTD CRAEEKDTYFKNRE CRAEEKEIYSKTTD e3
CRAEEKGTYFKNRE EFSGGKCGHKDNNV EFTDGHCGHNEENV EFTDGHCGHRQGNV
EFTGGQCGRDGENV ESNKGQCRCFSGDP ESNMGQCRCFSGDP ESNMVQCRCFSGDP
ETHGYCRCVNRVDV FSNDQCGHNNGGAP FSNDQCGHNNRGDP FWYPKCGHHVKQDV
FWYPKCGHHVKQEV FWYPKCGHHVRQDV FWYPKCSHHVKQDV GANAIKAGDNVSIV -e3
GGHYKNCHCIGGDV GGTYKNCRCASGNV ILFDYKCAHDNDKV KFSNPKCGHNEGSP e-3
LFYYKCGHYVYKDV LWNDKCGHHVKQDV LWNYKCGHHVNQDV LWNYNCGHHVNQDV e->
LWNYNCGHHVNRDV PCSVQKCTCINGDP PNKCRCEDANADQV SFTNGQCGRDGENV e3
SWYPKCGHHVKQDV TLFDYKCGHDENAP TLWNEKCGHGDYNL TPTQGKCHCIDGTN
TPTQGKCHCIDGTV/

SIG2 = /AKLSELSTAQ|CRAEEKDTYF|KCGHHVNQDV|HEPGKQHLEE|EPGKQHLEER| R3
PGKQHLEERL GKQHLEERLE KQHLEERLEQ QHLEERLEQM HLEERLEQMF LEERLEQMFE •e3
EERLEQMFEN ERLEQMFENI RLEQMFENIK LEQMFENIKN EQMFENIKNN QMFENIKNNN
MFENIKNNNA FENIKNNNAA ENIKNNNAAK NIKNNNAAKL IKNNNAAKLS KNNNAAKLSE
NNNAAKLSEL NNAAKLSELS NAAKLSELST AAKLSELSTA RAEEKDTYFK AEEKDTYFKN f3
EEKDTYFKNR EKDTYFKNRE KDTYFKNREN DTYFKNRENG TYFKNRENGK YFKNRENGKL f3
FKNRENGKLL KNRENGKLLL NRENGKLLLW RENGKLLLWN ENGKLLLWNY NGKLLLWNYK R3
GKLLLWNYKC KLLLWNYKCG LLLWNYKCGH LLWNYKCGHH LWNYKCGHHV WNYKCGHHVN ■<—3
NYKCGHHVNQ YKCGHHVNQD AKLSELSTAQ CKAKEGDIYS NCGHHVNQDV HEPGKQHLEE R3
EPGKQHLEER PGKQHLEERL GKQHLEERLE KQHLEERLEQ QHLEERLEQM HLEERLEQMF R3
LEERLEQMFE EERLEQMFEN ERLEQMFENI RLEQMFENIK LEQMFENIKN EQMFENIKNN •<—3
QMFENIKNNN MFENIKNNNA FENIKNNNAA ENIKNNNAAK NIKNNNAAKL IKNNNAAKLS f3
KNNNAAKLSE NNNAAKLSEL NNAAKLSELS NAAKLSELST AAKLSELSTA KAKEGDIYSK f3
AKEGDIYSKT KEGDIYSKTA EGDIYSKTAN GDIYSKTANG DIYSKTANGN IYSKTANGNT R3
YSKTANGNTT SKTANGNTTL KTANGNTTLW TANGNTTLWN ANGNTTLWNY NGNTTLWNYN •f-3
GNTTLWNYNC NTTLWNYNCG TTLWNYNCGH TLWNYNCGHH LWNYNCGHHV WNYNCGHHVN •<—5
NYNCGHHVNQ YNCGHHVNQD GDINTLKPEE CRAEEKDIYS NCGHHVNQDV HEPGKQHLEE f3
EPGKQHLEER PGKQHLEERL GKQHLEERLE KQHLEERLER QHLEERLERI HLEERLERIF •A3
LEERLERIFA EERLERIFAN ERLERIFANI RLERIFANIQ LERIFANIQK ERIFANIQKE
RIFANIQKEN IFANIQKENG FANIQKENGD ANIQKENGDI NIQKENGDIN IQKENGDINT R3
QKENGDINTL KENGDINTLK ENGDINTLKP NGDINTLKPE RAEEKDIYSK AEEKDIYSKT A3
EEKDIYSKTT EKDIYSKTTD KDIYSKTTDN DIYSKTTDNG IYSKTTDNGK YSKTTDNGKL t-3
SKTTDNGKLI KTTDNGKLIL TTDNGKLILW TDNGKLILWN DNGKLILWNY NGKLILWNYN A3
GKLILWNYNC KLILWNYNCG LILWNYNCGH ILWNYNCGHH LWNYNCGHHV WNYNCGHHVN R3
NYNCGHHVNQ YNCGHHVNQD/

def has_ _accepted_length?
true if accepted_length.include? self.length
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end

def start_motif
Hwarn " [DEPRECATION] ' start_motif' is deprecated. Please use ' 

n_terminal_motif' instead." 
n_te rmi n al_moti f 

end

def end_motif
#warn " [DEPRECATION] 'end_motif' is deprecated. Please use '■<—11 

c_terminal_motif' instead." 
c_terminal_motif 

end

def n_terminal_motif 
self[0,5] 

end

def c_terminal_motif 
self[-5,self.length] 

end

def ww_pos 
rindex(" WW") 

end

def vw_pos
rindex("VW") 

end

#number of cysteines 
def cys_count 

scan(/C/).size 
end

#get the 5 ’ end of the sequence from the 'middle' 
def polvl_to_polv2

slice(rindex(polvl),rindex(polv2) - 6) 
end

#get the 3 'end of the sequence from the "middle" 
def polv3_to_polv4

slice(rindex(polv3), (rindex(polv4) - rindex(polv3) + 4)) 
end

4The first position of limited variability (polvl) 
def polvl 

self [ 1 0 , 4 ] 
end

#The second position of limited variability (polv2) 
def polv2

if !ww_missing?
return self[ww_pos - 4,4]
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elsif !vw_missing?
return self[vw_pos - 12,4] 

else
return

end
end

#The third position of limited variability (polv3) 
def polv3

if !ww_missing?
return self[ww_pos + 10,4] 

elsif !vw_missing?
return self[vw_pos + 2,4] 

else
return

end
end

#The fourth position of limited variability(polvl) 
def polv4

self[self.length - 12,4] 
end

#Assigning dsid group based on number of cysteines, presence of REY 1 
motif in polv2 and MFK in polvl, 

def cyspolv_group 
case
when cys_count > 4 || cys_count == 3 || cys_count < 2 

group = 6
when cys_count == 4 && polv2 =~ /REY/i 

group = 5 
when cys_count == 4 

group = 4
when cys_count == 2 && polvl =~ /MFK/i 

group = 1
when cys_count = = 2  && polv2 =~ /REY/i 

group = 2 
else

group = 3 
end 
group 

end

def polvl_pos 
index(polvl) 

end

def polv2_pos 
index(polv2) 

end

def polv3_pos 
index(polv3) 

end
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def polv4_pos 
index(polv4) 

end

#return the block sharing group 
def bs_group 

case
when self =~ BS1

block_sharing = 1 
when self =~ BS2

block_sharing = 2 
else

block_sharing = 0 
end
block_sharing

end

def is_bsl_and_bs2?
!!(self =~ BS1) && !!(self =~ BS2) 

end

def is_ _varl_cpl?
true if (cyspolv_group ==1) && (self =~ /NVHDKVEKGLREVF| 

NVHDKVETGLREVF/i)
end

def is_ _varl_cp2 ?
true if (cyspolv_group == 2) && (self =~ /APNKEKIKLEENLKK/i) 

end

def is_varl?
return true if is_varl_cpl? || is_varl_cp2? 

end

def varl_status 
if is_varl?

status = 'varl' 
else

status = 'not-var-l' 
end 
status 

end

# return var group A like tags. Group A like sequences are associated 
with disease severity. 

def is_groupA_like?
true if (cys_count == 2 && bs_group ==1) || cyspolv_group == 1

( cyspolv_group == 1)
end

def groupA_status 
if is_groupA_like? 

status = 'A'
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else
status = 'other' 

end 
status 

end

idistict sequence identifier(DSID) 
def dsid

"#{polvl}-#{polv2}-#{polv3}-#{cys_count.to_s}-#{polv4}-#{self 
length}"

end

#position s p e d  fic polymorphic block 1 
def pspbl(anchor_pos=0,win_len=14) 

self[14 + anchor_pos,win_len] 
end

#position specific polymorphic block 2 
def pspb2(anchor_pos=0,win_len=14) 

if !ww_missing?
return self[ww_pos - 4 - anchor_pos - win_len, win_len] 

elsif !vw_missing?
return self[vw_pos - 12 - win_len - anchor_pos, win_len] 

else
return

end
end

iposition specific polymorphic block 3 
def pspb3(anchor_pos=0,win_len=14) 

if !ww_missing?
return self[ww_pos + 14 + anchor_pos, win_len] 

elsif !vw_missing?
return self[vw_pos + 6 + anchor_pos, win_len] 

else
return

end
end

#position specific polymorphic block 4 
def pspb4(anchor_pos=0,win_len=14)

self[self.length - 12 - win_len - anchor_pos, win_len] 
end

def accepted_length 
100..168 

end

def ww__missing?
true unless self =~ /WW/i 

end

def vw_missing?
true unless self =~ /VW/i
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end

def vw_ww_mis s i ng ?
true if ww_missing? && vw_missing? 

end

def group6_bsl
true if cyspolv_group == 6 && bs_group == 1 

end

def sig2_like?
return true if self =~ SIG2 

end

def sig2_status 
if sig2_like?

sig2 = 'sig2' 
else

sig2 = 'non-sig2' 
end 
sig2 

end 
end

A.3 A Ruby program  to extract DBLa sequence tags from chrom atogram s

Listing A. 7: Extracting DBLa sequence tags from chromatograms

# ! / b i n / b a s h

# T h i s  s c r i p t  s h o u l d  b e  r u n  f r o m  t h e  g r o u p e d _ b y _ c l o n e s  f o l d e r ,  i . e  a l l  -i—9 
t h e  s e q u e n c e s  f o r  e a c h  i s o l a t e ' s  c l o n e s  a r e  l o c a t e d  

#run t h e  c o p y _ p e r _ c o l o n y  s c r i p t  f i r s t  t o  g e n e r a t e  t h i s  l i s t  o f  •<—> 
s e q u e n c e s

i g e t  t h e  l i s t  o f  i s o l a t e s  f r o m  I s  t h e  c u r r e n t  f o l d e r  
echo "generating a list of isolate names"

4 1 s  -1  I awk  ' { p r i n t  $ 9 } ' / p e r i  - l n e  ' p r i n t  /  (AB [ 0 - 9 ]  {1,  3 } )  /  ' / s o r t  —f-3 
k l . 2 n r / u n i q  > i s o l a t e _ n a m e s . t x t

find . -type f -name '*.fasta' | grep -Eo 'B[0 — 9] {1, }' I sort -kl.2n | 
uniq >isolate_names.txt

sed '/A$/d' isolate_names.txt >isolate_names

while read isolate 
do

mkdir -p ../$isolate

echo "copying data for $isolate"
cp $isolate\-* . ./$isolate

cd ../$i solate
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#Is I p e r i  - l n e  ' p r i n t  / B  [ 0 - 9 ]  {1 ,  3 } -  ( [  0 - 9 ]  {1,  2 } )  /  ' > $ i s o l a t e \ _ c l o n e s  . 
t x t

Is *.fasta | peri -lne 'print /B[0-9] {1,3}-( [0-9] {1,2})/' >$isolate\-(—1 
_clones.txt

#r e m o v e  e m p t y  l i n e s
sed '/A$/d' $isolate\_clones.txt | uniq >temp.txt 
mv temp.txt $isolate\_clones.txt

while read clone 
do

echo "creating clone $clone directory" 

mkdir -p $isolate\_$clone

echo "copying $isolate-$clone.fasta and $isolate-$clone.fasta.qual 
files to directory $clone"

mv $isolate\-$clone\_* $isolate\_$clone

cd $isolate\_$clone

# c h a n g e  t h e  name o f  t h e  q u a l  f i l e  t o  * . f a s t a . q u a l
#mv $ i s o l a t e  \ _ $ c l o n e \ - M l  3 . q u a l  $ i s o l a t e \ _ $ c l o n e \ - M l  3 .f a s t a . q u a l

f e c h o  " r u n n i n g  c a p 3  f o r  $ c l o n e  r e a d  p a i r s "
~/cap3/cap3 $isolate\-$clone\_M13.fasta $isolate\-$clone\_M13.fastaf^’ 

.qual >$isolate\_$clone\.cap.txt

i a p p e n d  t h e  c l o n e  n a m e s  t o  t h e  c o n t i g s  r e n a m e  t h e  c o n t i g s  
sed "s/A>/>$isolate\-$clone\_/" $isolate\-$clone\_M13.fasta.cap.̂  

contigs >$isolate\_$clone.renamed.contigs.fasta 
sed "s/A>/>$isolate\-$clone\_/" $isolate\-$clone\_M13.fasta.cap. 

contigs.qual >$isolate\_$clone.renamed.contigs.qual

f c r e a t e  a s i n g l e  l i n e  f a s t a  a n d  q u a l  f o r  t h e  a s s e m b l e s  a n d  r e n a m e d 4-̂  
c o n  t i g s

awk '/A>/ {printf("\n%s\n",$0) ;next; } { printf (" %s", $0); } END 
printf("\n");}' < $isolate\_$cl one . renamed, contigs . fasta >4-̂  
$isolate\_$clone.SL.renamed.contigs.fasta 

awk '/A>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END 
printf ("\n" );} ' < $isolate\_$clone . renamed, contigs . qual 
$isolate\_$clone.SL.renamed.contigs.qual

sed '/A$/d' $is olate\_$clone.SL.renamed.contigs.qual >temp.txt 
mv temp.txt $isolate\_$clone.SL.renamed.contigs.qual

sed '/A$/d' $isolate\_$clone.SL.renamed.contigs.fasta >temp.txt 
mv temp.txt $isolate\_$clone.SL.renamed.contigs.fasta

i c r e a t e  a f a s t q  f i l e  f r o m  t h e  a s s e m b l e d  c o n t i g  a n d  t h e  
c o r r e s p o n d i n g  q u a l i t y  f i l e  

echo "creating a fastq file"
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peri -/Softwares/makefastq. pi $isolate\_$clone . SL . renamed. contigs . 4-̂  
fasta $isolate\_$clone . SL. renamed, contigs . qual >$isolate\_$clone4—5 
.SL.renamed.contigs.fastq

# r u b y  ~/ S o f t w a r e s / t o _  f a s t q .  r b  $ i s o l a t e  \ _ $ c l o n e . S L . r e n a m e d . c o n t i  g s . 4-̂ 
f a s t a  $ i s o l a t e \ _ $ c l o n e . S L . r e n a m e d .c o n t i g s . q u a l  > $ i s o l a t e \ _ $ c l o n e e — 
. S L . r e n a m e d . c o n t i g s . f a s t q

echo "calling dbla tags for $clone contig"
ruby ~/Code/Ruby/bioruby-dbla-finder/lib/bio-dbla-finder.rb 4-̂

$isolate\_$clone.SL.renamed.contigs.fastq >$isolate\_$clone. SL. 4-̂ 
tag.renamed.contigs.fastq

# e c h o  " a p p e n d i n g  c l o n e  n a m e s  t o  t h e  d b l a  t a g s "
#sed " s / ' " > / > $ i s o l a t e \ _ $ c l o n e \ _ / "  $ i s o l a t e \ _ $ c l o n e . t a g s  . c o n t i g s  >4-̂  

S i s o l a t e  \ _ $ c l o n e . r e n a m e d . t a g s . c o n t i g s

# e c h o  " a p p e n d i n g  c l o n e  name  t o  t h e  c o n t i g s "
# s e d  "s / ^ > / > $ i s o l a t e  \ _ $ c l o n e  \ _ / "  $ i s o l a t e \ _ $ c l o n e - M l  3 .  f a s t a . c a p .4-° 

c o n t i g s  > $ i s o l  a t e \ _ $ c l o n e . r e n a m e d . f a s t a . c a p . c o n t i g s

# e c h o  " t r a n s l a t i n g  d b l a  t a g s  f o r  $ c l o n e "
# t r a n s l a t e  $ i s o l a t e \ _ $ c l o n e . r e n a m e d . t a g s . c o n t i g s  > $ i s o l a t e \ _ $ c l o n e . 4—1 

t r a n s l a t e d . d b l a . t a g s . c o n t i g s

cd . .

done <$isolate\_clones.txt 

cd ../data_per_colony

done <isolate_names

cd . .

echo "concatenate the fastq files"

find . -type f -name SL.tag.renamed.contigs.fastq' -printO | xargs 4-̂
-0 cat >tags.fastq

i p r i n t  t a g s . f a s t a
ruby ~/Softwares/read_fastq.rb tags.fastq seq >tags.fasta

i c o u n t  t h e  t o t a l  n u m b e r  o f  p o t e n t i a l  t a g s
countseqs tags.fasta

# s o m e t i m e s  t h e  d b l f i n d e r  d e t e c t s  m u l t i t p l e  t a g  l i k e  r e g i o n s  i n  l o n g e r  4-̂
c o n t i g s .

i T h e s e  n e e d  t o  b e  c o r r e c t e d / r e m o v e d  m a n u a l l y
grep ">" tags.fasta | sort | uniq -c | sort -nk 1 | uniq | awk '{if($l4-J

>1) print}' >duplicated_tags.txt
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A.4 A bash pipeline to cluster DBLa sequences using an identity cutoff

This bash script uses Vsearch to cluster sequences, Bio-CDHIT-report to parse clustered 
files.

Listing A.8: A program to duster sequences using an identity cut-offs

# ! / b i n / b a s h
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# T h i s  b a s h  s c r i p t  t a k e s  a s e q u e n c e  f i l e  a n d  c l u s t e r s  t h e  s e q u e n c e s  a t  ■<—“ 

p r e d i f i n e d  i d e n t i t i e s  (98 - 88)  
i F o r  e a c h  c l u s t e r  i n  e a c h  i d e n t i t y ,  we a l i g n  t h e  s e q u e n c e s  a n d  s e a r c h  

f o r  c h a n g e s ,  p o s i t i o n s  o f  t h e  c h a n g e s  a n d  t h e  t y p e  o f  c h a n g e s .
#We t a l l y  a l l  t h e  c h a n g e s  i n  e a c h  i d e n t i t y

#D e p e n d e n c i e s
# B i o - c d - h i t - r e p o r t
# R u b y
#AWK
i s e d
#t r a n s l a t e . r b  
#m ut  3. t i o n . r b

( ( A u t h o r : G e o r g e  G i t h i n j i
# E m a i l : g g i t h i n j i @ k e m r i - w e l l c o m e . o r g
#MIT L i c e n c e
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  

seqfile=$l

[ $# -eg D ] && { e c h o  " U s a g e :  $0 n u c l e o t i d e _ f i l e e x i t  1 ; }  

identities=(98 96 94 92 90 88)

seqfilefullpath=$( cd $ (dirname $seqfile); pwd)/$(basename $seqfile)

# s o r t  t h e  i n p u t  s e q u e n c e  w i t h  u s e a r c h  s o r t b y l e n g t h  command  
vsearch -sortbylength $seqfile — output $seqfile.sorted.fasta

sortedfilefullpath=$( cd $ (dirname $seqfile); pwd)/$(basename $seqfile.-e^ 
sorted.fasta)

# c r e a t e  t h e  d i r e c t o r i e s  t o  h o l d  o u t p u t  f o r  e a c h  c l u s t e r  i d e n t i t y  
for id in ${identities[@] }; do 

mkdir -p "${id}"
fr_id=$(bc<<<"scale=2; $id/100") 
echo $fr_id

f u s e  c d - h i t  t o  c l u s t e r
# c d - h i t - e s t  - i  $ s e q f i l e  - o  $ i d / c l u s t e r . $ { i d } - c  $ f r _ i d  #r e t i r e  c d - h i t  

f u s e  t h e  u c l u s t  a l g o r i t h m  t o  p e r f o r m  t h e  c l u s t e r i n g
f u c l u s t  — i n p u t  $ s o r t e d f i l e f u l l p a t h  — u c  $ i d / c l u s t e r . $ { i d } . u c  - - i d  ${<r^ 

f r _ i d )  - - o p t i m a l
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fuse vsearchl.1.1
vsearch -cluster_smallmem $sortedfilefullpath -id ${fr_id} -centroidsf-" 

$id/cluster.${id}.nr.fasta -uc $id/cluster.${id}.uc

#convert the output to cd-hit format
uclust — uc2clstr $id/cluster.${id}.uc — output $id/cluster. $ { id} . e-> 

clstr

cd "${id}"

fWrite a file containing the cluster-id and respective list of 
cluster members 

fecho "Parsing clusters"

ruby ~/Softwares/parse-cdhit.rb cluster . $id. clstr member >-f-j 
seqs_per_cluster.txt 

ruby ~/Softwares/parse-cdhit.rb cluster.$id.clstr size >P-> 
seq_numbers_per_cluster.txt

echo "Sorting cluster numbers"
sort -t$',' -k2 -nr seq_numbers_per_cluster.txt >sorted.fJ 

seq_numbers_per_cluster.txt 
awk -F, '{if($2 > 1) print $1}'< sorted.seq_numbers_per_cluster.txt >f^ 

most_clusters.txt

#create directories for each cluster in most_cluster.txt 
while read clustr; do

echo "processing $clustr"

mkdir cluster_$clustr 
cd cluster_$clustr

fwrite the fasta members for clustr $name
grep " /s$ { clustr}: " . ./seqs_per_cluster . txt | awk -F : '{print $2}'-<-J

| tr , '\n' >members.txt
fastagrep -F -X -f members.txt $sortedfilefullpath >f^ 

cluster_$clustr.fasta

fecho "Translating"
fruby ^/Softwares/translate.rb -i cluster_$clustr.fasta -f 1 -o 4—' 

cluster_$clustr.aa.fasta

fecho "Aligning sequences"
fmuscle -in cluster_$clustr.fasta -out cluster_$clustr.aln #-f^ 

physout cluster_$clustr.phylip 
prank -d=cluster_$clustr.fasta -o=cluster_$clustr -codon -F —f-5 

showtree -quiet

freplace mutation.rb with polymorphic_sites. rb 
fecho "Searching for polymorphic sites"
fruby ~/Code/Ruby/blocks/lib/polymorphic_sites.rb cluster_$clustre- 

.aln >cluster_$clustr.snps.muscle.txt 
ruby ~/Code/Ruby/blocks/lib/polymorphic_sites.rb cluster_$clustr. 

best.fas >cluster_$clustr.snps.prank.txt
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#echo "searching dN and dS changes"
^-/Softwares/selection.rb -i cluster_$clustr.aln -S I awk '{prints 

$4}' I sort I uniq -c / sed -e 's/^[ \t]*//' >cluster_$clustr<- 
. dN_dS. txt

~/Softwares/selection . rb -i cluster_$clustr.best. fas -S | awk 1 {-f-̂ 
print $4}' | sort | uniq -c | sed -e 's/A [ \t]*//' >■<—>
cluster_$clustr.dN_dS_prank.txt

cd . .
done <most_clusters.txt

echo "collect snps in $id identity threshold"
#find . -type f -name *. snps .muscle. txt / xargs cat I sed -e 's/^[ \t-f- 

]*//' >all.snps.muscle.txt 
find . -type f -name *.snps.prank.txt | xargs cat | sed -e 's/A [ \ t<-^  

]*//' >all.snps.prank.txt

cd . . 
done

A. 5 A program  to cluster sequences within isolates

Listing A.9: A program to cluster sequences within isolates

# ! / b i n / b a s h

# f i n d  t h e  i s o l a t e  f i l e  name i n  s e q s  f o l d e r  
for file in ../seqs/*.fa 
do

fullpath=$(cd $ (dirname $file); pwd)/$(basename $file) 
filepath="${file##*/}" 
filename="${filepath%.*} " 
mkdir -p $filename 
cd $f ilename
ruby ~/Softwares/get_blocks.rb $fullpath >$filename.block_H.fasta 
clusteringpipeline $filename.block_H.fasta 
cd . . 

done

mkdir block_H 
mv *.nr block_H

A. 6 A program to parse cd-hit form atted cluster files

Listing A. 10: A program to parse CD-HIT clusters

require 'bio-cd-hit-report'

clusterfile=ARGV[0] 
out = ARGV[1]

def print_members(report)
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report.each_cluster{|c| puts "#{c .cluster_id}:#{c .members}"} 
end

def print_sizes(report)
report.each_cluster{|c| puts "# {c .cluster__id},# {c .size}"} 

end

report = Bio::CdHitReport.new(clusterfile)

if out == "member"
print_members(report) 

elsif out == "size" 
print_sizes(report) 
else

puts "Error" 
end

Listing A. 11: parser class

class CdHitParser
attr_accessor :report_file

def each
data,header = nil, nil 
File.open(report_file).each do |line| 

if line[0].chr == '>'
yield Cluster.new(:name => header,:data => data) if data 
data = ''
header = line[1..-1].strip 

else
data << line 

end 
end
yield Cluster.new(:name => header, :data => data) 

end 
end

Listing A. 12: cluster class

class Cluster
attr_accessor :name, :data

def initialize(arg={}) 
self .name = arg[:name] 
self.data = arg[:data] 

end

def cluster_id
name.scan(/Cluster\s(.*)/).join 

end

def members
entries.join(' , ' )
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end

def representative
data.split("\n").map{|line|line.scan(/>(.+)\.{3}\s\*/)}.join 

end
alias :rep_seq :representative

def size
entries.size 

end
alias :length :size 

def entries
data.split("\n") .map{|line|line.scan(/>(.+)\.{3}/) } 

end 
end

Listing A. 13: report class

module Bio
require_relative 'cluster' 
require_relative 'parser'

class CdHitReport 
include Enumerable

def initialize(file)
@report = CdHitParser.new 
@report.report_file = file 

end

def cl usters 
els = []
greport.each do |c| 

els << c 
end 
els 

end

def each_cluster(&block) 
clusters.each(&block) 

end

def total_clusters 
clusters.size 

end

def get_members(cluster_id)
clusters.select {|cluster| cluster.cluster_id == cluster_id.to_sfJ 

}.map{Ic|c.members}
end
alias :get_cluster :get_members 

end 
end
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A. 7 A Ruby program  to translate DNA sequences to amino acid sequences

Listing A. 14: A program to translate DNA sequences

# !/ u s r / b i n / e n v  ru by

require 'optparse' 
require 'ostruct' 
require 'bio1

defaults = {frame: 1}
options = OpenStruct.new(defaults)

OptionParser.new do |opts|
opts.banner = 'Usage: translate -i inputfile -f frame -o outputfile'

opts.o n ('-h', 'Translate DNA to Amino Acids') do 
puts opts 
exit 

end

opts.o n ('-i', '— infile FILE','DNA input file [required]') do |infile-^
I

options.infile = infile 
end

opts.o n ('-f', '— frame FRAME',Integer, 'Frame to translate [optional]^
1) do |frame| 

options.frame = frame 
end

opts.o n ('-o', '— outfile FILE', 'amino acid output file [optional]') do4—’ 
Ioutfile| 

options.outfile = outfile 
end 

end.parse!

class Utility
def translate(file,frame)

Bio::FlatFile.auto(file).map do lentryl
">#{entry.definition}\n#{Bio::Sequence::N A .new(entry.seq).4-° 

translate(frame)}"
# p u t s  B i o : : S e q u e n c e : : N A . n e w ( e n t r y . s e q ) . t r a n s l a t e  ( f r a m e )  

end 
end 

end

# r e a d  o p t i o n s  
file = options.infile
frame = options.frame
outfile = options.outfile

util = Utility.new
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begin
trans_seqs = util.translate(file,frame)

if outfile.nil?
f w r i t e  t o  t h e  s t d  o u t p u t  s t r e a m  
$stdout.puts trans_seqs 

else
f w r i t e  t o  t h e  s p e c i f i e d  o u t f i l e  
output = File.open(outfile,'w ') 
output << trans_seqs.join("\n") 
output.close 

end

$stderr.puts "#{trans_seqs.size} sequences translated!"

rescue TypeError
$stderr.puts 'Error! Provide an input file. Run translate -h ' 

end

A.8 A Ruby program  to find pairwise nucleotide differences from a sequence 
alignment

Listing A. 15: A program to locate pairwise changes from DNA alignments

# ! / u s r / b i n / e n v  r u b y  

# r e q u i r e  ' b i o '
require File.join("#{ENV['HOME 1] }/Code/Ruby/find-dbla-mutat ions/lib","•*-* 

find-dbla-mutations.rb") 
file_path = ARGV[0]

f i n i t i l i z e  a c l a s s  
mutation = Mutation.new

f g e t  t h e  d a t a
data = mutation.fasta_to_hash(file_path)

f l o c a t e  m i s m a t c h e s
mutation.locate_mismatches(data)

# o u t p u t  a s u m m a r y  o f  t h e  d i f f e r e n c e s  
summary = mutation.change_summary

f w h i c h  s e q u e n c e s  d i d  we a n a l y s e ?  
f p u t s  m u t a t i o n . s u b j e c t s

f w r i t e  t h e  o u t p u t  t o  t h e  command l i n e .  Can b e  p i p e d  t o  a f i l e  
puts summary

A.9 A bash program  to cluster sequences using uclust

Listing A. 16: A bash script to cluster sequences with usearch
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# ! / b i n / b a s h

i C h e c k  t o  s e e  i f  a t  l e a s t  o n e  a r g u m e n t was s p e c i f i e d  
if [ $# -It 1 ] ; t h e n

echo "You must specify the directory -d and identity -i arguments" 
exit 1

fi

i P r o c e s s  t h e  a r g u m e n t s  
while getopts d:i: opt 
do

case "$opt" in 
d) dir=$OPTARG; ; 
i) identity=${OPTARG};;

esac 
done 
echo $dir 
echo $identity

for file in $dir/*.fasta 
do
filename=$(basename $file) 
filename="${filename%.*}"

f s o r t  t h e  s e q u e n c e
uclust — sort $file — output $filename.sorted.fasta

# c l u s t e r  a t  g i v e n  i d e n t i t y
uclust — input $filename.sorted.fasta — uc $filename.uc — id ${-P̂  

identity}

f w r i t e  a f a s t a  o u t p u t  o f  a l l  t h e  s e e d  s e q u e n c e s  a s  a n r  d a t a b a s e  
uclust — input $filename . sorted. fasta --uc2fasta $filename.uc — types-f—’

S — output $filename.$identity.fasta
done

mkdir -p sorted_fasta
mv *.sorted.fasta sorted_fasta

mkdir -p cluster_files 
mv *.uc cluster_files

f s o r t  t h e  c l u s t e r  f i l e
sort -n -k2 -k4 cluster_files/*.uc >cluster_files/sorted.nr.uc

f f r o m  t h e  s o r t e d  c l u s t e r  f i l e  w r i t e  a ne w  f i l e  c o n t a i n i n g  t h e  f r e q u e n c y ■<—3 
o f  m e m b e r s  f o r  e a c h  c l u s t e r  

awk '{print $2}' sorted.nr.uc | sort -n|uniq -c | awk *{if($l>2) print-P-1 
}' | sort -nkl >clusters.names.sizes.txt

A. 10 A bash program  to generate random  substitutions based on a reference 
sequence
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Listing A. 17: A script to create random substitutions given a reference sequence in fasta 
format

# ! / u s r / b i n  e n v  r u b y

require 'optparse' 
require 'ostruct' 
require 'bio' 
require 'securerandom1 
require 'pickup'

options = OpenStruct.new

OptionParser.new do |opts|
opts.o n ('-h', 'shows this help screen') do 

puts opts 
exit 

end

opts.o n ('-i', '— infile FILE','input fasta file') do |infile|
options.infile = infile 

end

opts.o n ('-r','— error_rate Error', Float, 'Error rate per nucleotide ' ^  
) do |error_rate| 

options.error_rate = error_rate 
end

opts.o n ('-o','— outfile FILE','Output file') do |outfile| 
options.outfile = outfile 

end

opts.on('-w' '— weights Weight',Float,'weighting levels') do Iweights^
I

options.weights = weights 
end

end.parse!

class Bio::Sequence
attr_accessor :substitutions 
attr_accessor :weights

NUCLEOTIDES = ['A','C ', 'T ','G ']

# The  n u m b e r  o f  r a n d o m  p o s i t i o n s  t o  c h a n g e  
def positions_to_sub

(1..self. length).to_a.sample(substitutions) 
end

# W e i g h t e d  r a n d o m  n u c l e o t i d e s  
def weighted_random_nucleotides

weights = []
weighted_nt = Pickup.new(weights)
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weighted_nt.pick(subsitutions) 
end

# R e t u r n s  an a r r a y  o f  x  r a n d o m  n u c l e o t i d e s  w h e r e  x  i s  t h e  n u m b e r  c f
g i v e n  s u b s t i t u t i o n s  

def random_nucleotides
substitutions.times.map{NUCLEOTIDES[rand(NUCLEOTIDES.length)]} 

end

# R a t e  b a s e d  m u t a t i o n s  
def rate_based_mutate

# s u b s t i t u t e  n u c l e o t i d e  g i v e n  p o s i t i o n s  w i t h  r a n d o m  n u c l e o t i d e s  
positions_to_sub.zip(random_nucleotides) .map do | position, 

nucleotide| 
if self[position] == nucleotide

nucleotide = (['A ','C ','G ', 'T '] - [nucleotide]).sample(1) 
self[position] = nucleotide.join 

else
self[position] = nucleotide.downcase 

end 
end 

end 
end

infile = options.infile 
error_rate = options.error_rate 
weights = options.weights

def b iosequences(file)
Bio::FlatFile.auto(file).map do |entry|

Bio::Sequence.new(entry.seq.upcase) 
end 

end

def calculate__mismatches(error_rate,seq_length)
(error_rate * seq_length).round 

end

def mutate_seqs(bioseq_objects,error_rate) 
bioseq_objects.each do |bioseq| 

seq_len = bioseq.length
bioseq.substitutions = calculate_mismatches(error_rate,seq_len) 
bioseq.rate_based_mutate
Sstdout.puts ">#{SecureRandom.hex(5)}\n#{bioseq.seq}" 

end 
end

begin
sequences = biosequences(infile) 
mutate_seqs(sequences,error_rate)

rescue TypeError => type_error 
$stderr.puts type_error.message
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rescue Bio::FlatFile::UnknownDataFormatError =>format_error 
$stderr.puts format_error.message << "provide a fasta format" 

end

A. 11 A Perl program  to generate random  substitutions

Listing A. 18: A peri script to generating random mutations given a sequence

# ! / u s r / b i n / p e r l

use strict; 
use warnings; 
use Bio::Seq; 
use Bio::SeqIO;
use Bio::SeqEvolution::Factory; 
use Getopt::Long;

#read command l i n e  a r g s  
my $seqfile = ' #= $ARGV[ 0 ] ;

# % i d e n t i t y  w i t h  t h e  t e m p l a t e  s e q u e n c e  
my $identity = '1;

#t r a n s i t i o n : t r a n s v e r s i o n  r a t i o  
my $rate = 2;

GetOptions('seqfile=s'=>\$seqfile, 'identity=i'=>\$identity, 'rate=i1=>\<—> 
$rate);

my $inputstream = Bio::SeqIO->new(
-file -> $seqfile,
-format => 'Fasta',

) ;

my $seqobj = $inputstream->next_seq(); 
my $seq = l c ($seqobj->seq);

my $tempseq = Bio::Seq->new(-seq => $seq, -alphabet => 'dna');

my $evolve = Bio::SeqEvolution::Factory->new (-rate => $rate, -seq => 
$tempseq, -identity => $identity);

my @mutated;
for (1..10) { push @mutated, $evolve->next_seq }

foreach(@mutated){print $_-> seq ."\n";}

A. 12 An R program  to simulate random  substitutions

Listing A. 19: A script to simulate substitutions based on a model

# !/ b i n / b a s h
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clusterfile=$l

clusterFileFullPath=$( cd $ (dirname $clusterfile); pwd)/$(basename
$clusterfile)

directory=$(dirname ${clusterFileFullPath}) 

while read cluster_no; do

i c r e a t e  a n e i g h b o u r  j o i n i n g  t r e e
# m u s c l e  - m a k e t r e e  - i n  $ d i r e c t o r y / c l u s t e r _ $ c l u s t e r _ n o / e -

c l u s t e r _ $ c l u s t e r _ n o . f a s t a  - o u t  c l u s t e r _ $ c l u s t e r _ n o . t r e e  - c l u s t e r  
n e i g h b o r j o i n i n g

#awk  ' { p r i n t  f  ( "%s ",  $ 0 ) }  ' < c l u s t e r _ $ c l u s t e r _ n o  . t r e e  >-f-J 
c l u s t e r _ $ c l u s t e r _ n o _ 2 . t r e e

#o v e r w r i t e  t h e  o r i g i n a l  t r e e  f i l e
#mv c l u s t e r _ $ c l u s t e r _ n o _ 2 . t r e e  c l u s t e r _ $ c l u s t e r _ n o . t r e e

# g e t  a r a n d o m  s e q u e n c e  f r o m  t h i s  c l u s t e r
# T h i s  s o l u t i o n  i s  b a s e d  on r e s e r v o i r  s a m p l i n g . I t  i s  o p t i m a l  i n  -f—5 

t e r m s  o f  b o t h  t i m e  a n d  s p a c e  c o m p l e x i t y  a n d  vsorks  w i t h  an 4-* 
a r b i t r a r i l y  l a r g e  i n p u t  f i l e .

#h t t p s : / / w w w . b i o s  t a r s .o r g / p / 1 8 8 3 1 /
bioawk -c fastx -v k=l 1{y=x++<k?x-l:int(rand()*x);i f (y<k)a[y]=">"«— 1̂ 

$name"\n"$seq}END{for (z in a)print a[z]}' $directory/-f-J 
cluster_$cluster_no/cluster_$cluster_no . fasta >•(—5 
cluster_$cluster_no.fa

Rscript ~/Code/R/phylosim_simulation.R cluster_$cluster_no.fa > 
$directory/cluster_$cluster_no/cluster_$cluster_no.best.dnd ^  
cluster_$cluster_no.s .fa

ruby ~/Code/Ruby/blocks/lib/polymorphic_sites.rb cluster_$cluster_no. • 
s .fa >cluster_$cluster_no.snps.txt

done <$clusterfile

# f i n d  . - t y p e  f  - n a m e  * . s n p s . t x i  
a l l . s n p s

x a r g s  c a t / s e d  - e  ' s / * [ \ t ] * / / '  ><

A. 13 A script to extract regions from a DBLa sequence

Listing A.20: A script to extract sequence regions of interest

# // u s r / b i n / e n v  r u b y  
require 'bio1
require 'commander/import' 

program :version, '0.0.1'
program :description, 'This program extracts sequence regions given a •<—> 

position and a window length' 
program rauthor, 'George Githinji emai1 :ggithinji@kemri-wellcome.org'
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command :regions do |r|
r.syntax = 'extract region [option]'
r.summary = 'find and extract a region of sequence given a variant 

position'
r .description = 'Extracts overlapping sequence regions from given a 

MSA variant position and a window length.'

r.example 'extract region', 'extract region — infile FILE — pos 
INTEGER — win INTEGER'

r.option '— infile FILE', 'Input file'
r.option '— pos INTEGER', Integer, 'A variant position' 
r.option '— win INTEGER', Integer, 'Window length'

r.action do |args,options| 
infile = options.infile 
pos = options.pos
win = options.win

# R e a d  i n  a F A S T A - f o r m a t t e d  m u l t i p l e  s e q u e n c e  a l i g n m e n t  
fasta_seqs = Bio: :Alignment: : Mult iFastaFormat. new (File . open (inf ile) ' 

.read)

fasta_seqs.entries.each do |e| 
for i in 0..win

$stdout.puts e.seq[(pos - 1) - i, win] unless pos - i <= 0 
end 

end 
end 

end

A. 14 A bash program to find variation context

Listing A.21: A simple pipeline to find the frequency of isolates sharing sequence regions 
around a variant position

# ! / b i n / b a s h
db="/Users/george/454_data/blast-db/454"
classified="/Users/george/454_data/blast-db/4 54.classified.txt"

cluster=$l
position=$2
window=$3

clsname=$(basename "$cluster") 
clsext="${clsname##*.}" 
clsname="${clsname%.*}"

i r e m o v e  s u f f i x  f r o m  a l i g n m e n t
~/Code/Ruby/Blocks/lib/extract regions — infile $cluster — pos 

$position — win $window | sort | \
uniq | awk -v cl=$clsname.$position '{print ">"cl"." FNR "\n" $0}' \
>"$clsname.$position.$window.fa"
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blastn -query $clsname.$position.$window.fa -db $db -outfmt 6 |\ 
awk -v win=$window '{if ($3 == 100 && $4 == win) print $2}' | \
sort -n | uniq >hits.454.$clsname.$position.$window.txt

grep -wFf hits.454.$clsname.$position.$window.txt $classified |\
awk '{print $1,$7,$2}' | sort -k2 | sed 's/\..*$//g' | sort -n | uniq-e-3

-c

A. 15 A Python program m  for submitting epitope prediction requests to the 
Predivac server

Listing A. 22: Automated prediction of T-cell epitopes using the Predivac online server.

# ! / u s r / b i n / e n v  p y t h o n

from bs4 import BeautifulSoup
from urllib2 import urlopen
from ClientForm import ParseResponse
from optparse import OptionParser
from Bio import SeqIO
import sys
import time

# m a in  c l a s s  
#4-

class Predivac(object):
rr rr rt

S c r a p p i n g  t h e  p r e d i v a c  web d a t a b a s e  u s i n g  b e a u t i f u l o u p  a n d  p y t h o n
ff ft ft

def _ _init (self,Sequence,Allele):
i f  rr tr

I n i t i a l i z e  c l a s s  p a r a m e t e r s
ft rt rr

self.Sequence = Sequence 
self.Allele = Allele
self.PredivacLink = 'http://predivac.biosci.uq.edu.au/cgi-bin/e-^ 

binding.p y '

def FillForm(self):
i f  ft rt

F i l l  t h e  w e b f o r m
tt ft ft

ProtString = "\n".join(self.Sequence) 
webpage = urlopen(self.PredivacLink) 
forms = ParseResponse(webpage) 
form = forms[0]
form['subtype'] = {'protein'] 
form['sequence'] = ProtString 
form['allele'] = [self.Allele] 
form['threshold'] = ['3']
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response = urlopen(form.click()) 
soup = BeautifulSoup(response) 
return soup

def ParseResults(self):
ff ft n
P a r s e  t h e  p r e d i c t i o n  t a b l e
rr rr rr

soup = Predivac.FillForm(self)
table = soup.find("table", id = "prediction-table") 
predictions = [] 
try:

for row in table.findAll('tr'): 
tds = row('t d ') 
if len(tds) > 1:

id = tds[0].text 
nanomer = tds[l].text 
score = tds[2].text 
start = tds[3].text 
end = tds[4].text
full_entry = id + ":" + nanomer + ":" H 

+ start + ":" + end 
predictions.append(full_entry) 

except AttributeError: 
return

return join(predictions)

# s p l i t t i n g  t h e  p r o t e i n  s e q u e n c e  t o  a c c o m o d a t e  p r e d i v a c

def chunks(s, n) :
" " " P r o d u c e  h i ' - c h a r a c t e r  c h u n k s  f r o m  ' s ' . " " "  
for start in range(0, len(s), n): 

yield s [start:start+n]

# P a r s e  f a s t a  e n t r i e s

def ParseFasta(infile):

handle = open(infile, "rU")
FastaResult = []
for record in SeqIO.parse(handle, "fasta"): 

Id = record.id 
Sequence = record.seq 
Entry = (Id,Sequence)
FastaResult.append(Entry) 

return FastaResult

# P a r s e  a l l e l e  l i s t

score + " :
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def ParseAllele(infile):
Alleles = []
for line in open(infile, "rU"):

Alleles.append(line.strip()) 
return Alleles

#S e t t i n g  c o m m a n d l i n e  o p t i o n s  
# v -

def commandline_options() :

parser = OptionParser(usage="usage: %prog [options]") 
parser.add_option("-p", "— proteins",

type="string", 
dest="protein_file", 
help="Fasta file with proteins") 

parser.add_option("-a", "— allele",
type="string", 
dest="allele_file", 
help="File with list of alleles") 

parser.add_option("-d" , "— delay" , 
type="int", 
dest="time_delay", 
default=3,
help="Minimum time delay before hitting server (■<-J 

Default 3s)") 
parser.add_option("-o", "--output", 

action="store", 
type="string", 
dest="result_file", 
default="results.txt" , 
help="The final output file")

(options, args) = parser.parse_args() 
options_args_parser = [options,args,parser]

return options_args_parser

t tmain
#

def main () :
options, args, parser = commandline_options() 
ProteinFile = options.protein_file 
AlleleFile = options.allele_file 
TimeDelay = options.time_delay 
OutputFile = options.result_file
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if ProteinFile is None or AlleleFile is None:
sys.stderr.write("\nError: A mandatory option is missing!\n") 
parser.print_help() 
sys.exit(-1) 

else:
FastaFile = ParseFasta(ProteinFile)
Alleles = ParseAllele(AlleleFile)
FOut = open(OutputFile, 'w ' ) 
for Entry in FastaFile:

for Allele in Alleles:
ProtId,ProtSeq = Entry 
ProtId_M = ’>' + Protld 
ProtSeq = str(ProtSeq)
SeqPieces = [ProtId_M] f r d i v i n d  t h e  s e q u e n c e  i n t o  p i e c e s  
for chunk in chunks(ProtSeq, 50):

SeqPieces.append(chunk)

sys . stderr . write ( "predicting %s with %s\n" % (Protld,-t-* 
Allele))

soup = Predivac(SeqPieces,Allele) 
soup.FillForm()
Results = soup.ParseResults()
FOut.write("%s\t%s\t%s\n" % (Protld,Allele,Results)) 
time.sleep(TimeDelay) 

sys.stderr.write("\nPrediction complete, results written to to 1 
%s\n" % (OutputFile))

#Run i t

if  name  == ' main 1 :
main ()

A. 16 A program  to predict netMHCII epitopes using a parallel approach

Listing A. 23: A script to predict MHC-class II epitopes

# 1/ b i n / s h
## T h i s  s c r i p t  s h o u l d  b e  i m p r o v e d  w i t h  GNU p a r a l l e l !  :)

prediction_method="NetMHCII-pan-3"

fasta_file=$l 
allele_file=$2 
peptide_len=$3
# o u t p u t _ f i l e = $ 4

echo "Predicting class II T-cell epitopes" # $ f i l e _ n o "  #>> $LOG_FILE

function wait_run_in_parallel()
{
local number_to_run_concurrently=$l
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if [ 'jobs -np | wc -1' -gt $number_to_run_concurrently ]; then
wait 'jobs -np | head -1' # w a i t  f o r  t h e  e l d e s t  or.e t o  f i n i s h

fi
}

# r u n  t h e  p r e d i c t i o n  a n d  s a n i t i z e  t h e  o u t p u t  t o  c s v  f i l e  
function predict(){ 

local allele=$l
netmhcpan3 -f $fasta_file -a $allele -length $peptide_len |
sed 1/\#/d' I s e d  ' / ---/ d '  /
sed 1/Pos/d1 | sed ’/Number/d1 | 
sed 's/A *//' I sed 's/[ \t]*$//' |
sed 's/<=WB//' | sed 's/<=SB//' |
tr -s 1 [:blank:] ' ', ' |
sed '//s$/d'| sed 's/,$//'

# f u n c t i o n  t o  r u n  MHCII  p r o g r a m  f o r  e a c h  a l l e l e s  a n d  s e n d  t h e  j o b s  t o  
t h e  b a c k g r o u n d  

run_prediction () {
# R e a d  t h e  a l l e l e  f i l e  
while read mhc_allele 
do

predict $mhc_allele >>"$mhc_allele.pred.temp" &
wait_run_in_parallel 10 # r u n  10  j o b s  a t  a t i m e  a n d wait t o  e x e c u t e .  

done <$allele_file
}

i e x e c u t e  t h e  j o b s  
run_prediction
i w a i t  f o r  a l l  b a c k g r o u n d  j o b s  
wait

# c o n c a t e n a t e  t h e  f i l e s
cat *.pred.temp >>all.hla.preds

i c l e a n u p ! 
rm *.pred.temp

A. 17 A Ruby program  to print block-sharing networks in csv form at

Listing A. 24: A script to print block-sharing networks

# ! / u s r / b i n / e n v  r u b y

require 1bio-dbla-classifier' 
require 'commander/import'

program :version, '0.0.1'
program :description, 'Generates a network from DBL-alpha amino acid 

sequence tags'
program :author, 'George Githinji email: biorelated@gmail.com' 

command :create do |c|
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#A s t r u c t u r e  t o  h o l d  t h e  name a n d  p s p b  t y p e s
class Pspb < Struct.new(:id,:name,:pspbl,:pspb2,:pspb3,:pspb4) 

def all_pspbs
[pspbl,pspb2,pspb3,pspb4]

end
end

c.syntax = 'network create [options]'
c.summary = 'creates a network given a list of amino acid sequences^

T

c .description = 'This command generates a tab-separated list of 2 P  
columns where each entry in each column is a node.' 

c. example 'network', 'create — infile FILENAME — blocksize INTEGER •<—’ 
— outfile FILENAME' 

c.option '— infile FILE', 'Specify an input file(amino acid only)' 
c.option '--blocksize INTEGER', Integer, 'specify the length of t h e ^  

pspb block. Default is 10'

c.action do |args, options|
options.default :blocksize => 10 
seq_file = options.infile 
blocksize = options.blocksize

pspbs = Bio::FlatFile.open(seq_file) .each_with_index.map do | 
entry,index|
pspbl = Bio::Sequence::AA.new(entry.seq).pspbl(0,blocksize) 
pspb2 = Bio::Sequence::A A .new(entry.seq).pspb2(0,blocksize) 
pspb3 = Bio::Sequence::A A .new(entry.seq).pspb3(0,blocksize) 
pspb4 = Bio::Sequence::A A .new(entry.seq).pspb4(0,blocksize)

Pspb.new(index + 1,entry.definition,pspbl,pspb2,pspb3,pspb4-ej 
)

end

puts "nodel\tnode2"
pspbs.combination (2) .each do |i|

puts "#{ i [0 ]. name }\t# { i [ 1 ]. name} " if (i [ 0 ] . all_pspbs & i-F̂
[1].all_pspbs).size > 0

end
end

command :attribute do |a|
a.syntax = 'network attribute [options]' 
a.summary = 'generate network attributes file'
a .description = 'This command generates a network attributes A-3 

file for loading into cystoscape'

a.example 'network', 'attribute — infile FILENAME'
a.option '—f ' , '— infile FILE', 'specify the sequence input file-*-3

I

#a s t r u c t u r e  t o  h o l d  t h e  c y s p o l v  c l a s s i f i c a t i o n  a n d  b s  s h a r i n g  -f-3 
g r o u p s

class Attr < Struct.new(:id,:name,:cyspolv,:bsgroup);end
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a.action do |args, options| 
seqfile = options.infile

attrs = Bio :: FlatFile . open (seqfile) . each_with_index . map do 
I entry,index|
cyspolv = Bio::Sequence::AA.new(entry.seq) 3 

cyspolv_group 
bsgroup = Bio::Sequence::AA.new(entry.seq) .bs_group 
Attr.new(index + 1,entry.definition,cyspolv,bsgroup)

end

puts "geneXtcyspolvgroupXtbsgroup" 
attrs.each do |attri|

puts "# {attri . name } \ t# { attri . cyspolv} \ t# { att ri . bsgroup} A-’
ff

end
end

end
end

A. 18 A Ruby program to print homology blocks and hypervarible blocks from 
sequence tags

Listing A.25: A program to print the homology blocks D and H and hypervarible blocks HP1 
and HP2

# ! / u s r / b i n / e n v  r u b y  
require 'bio' 
require 'bio-alignment' 
require 'bio-alignment/bioruby' 
include Bio::BioAlignment

file = ARGV[0]

include Bio::BioAlignment

aln = Alignment.new
Bio::FlatFile.auto(file).map.each_entry do |entry| 

aln << Sequence.new(entry.definition,entry.seq) 
end

seq_len = aln[0].to_s.length 

block_H_start = seq_len - 39 

ww_motif_pos = aln[0].to_s.rindex(/TGGTGG/) 

hp2__start = ww_motif_pos + 4 2 

hpl_start = 42
hpl_stop = ww_motif_pos - 21
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# b l o c k  D
puts aln.columns[0..42].map{|c| c .to_a}.transpose.each_with_index.map{| 

s,i| ">seq_#{i+1}\n#{s .join}"}

#b e f o r e  WW h y p e r v a r i a b l e  r e g i o n
# p u t s  a l n .  c o l u m n s  [ h p l _ s t a r t . . h p l _ _ s t o p ]  . m a p {  I d  c .  t o _ a  } . t r a n s p o s e  . 

e a c h _ w i t h _ i n d e x . m a p { /s , i I  "> s e q ^ # { i + 1 } \ n # { s . j o i n } " }

t a f t e r  WW h y p e r v a r i b l e  b l o c k
# p u t s  a l n .  c o l  umns [ h p 2 _ s t a r t . . b l o c k _ H _ s t a r t  ] . map { I c  I c  . t o _ a }  . t r a n s p o s e . 

e a c h _ w i t h _ i n d e x . m a p { I s , i I  "> s e q _ # {i + 1 } \ n # { s . j o i n } " }

# b l o c k _ H
i p u t s  a l n .  c o l u m n s  [ b l o c k _ H _ s t a r t . . s e q _ l e n ]  .m a p{ / c / c . t o _ a } . t r a n s p o s e . 

e a c h _ w i t h _ i n d . e x . map { / s ,  i  / " > s e q _ #  { i + 1 } \ n # { s  . j o i n } "}

A. 19 A Ruby program  to generate random  nucleotide substitutions

Listing A. 26: A Ruby implementation of a program to generate random substitutions

#// u s r / b i n  e n v  r u b y

require 'optparse' 
require 'ostruct' 
require 'bio' 
require 'securerandom1 
require 'pickup'

options = OpenStruct.new

OptionParser.new do |opts|
opts.o n (1-h', 'shows this help screen') do 

puts opts 
exit 

end

opts.o n ('-i' , '— infile FILE', 'input fasta file') do |infile|
options.infile = infile 

end

opts.o n ('-r','— error_rate Error', Float, 'Error rate per nucleotide'̂  
) do |error_rate| 

options.error_rate = error_rate 
end

opts.o n ('-o', '— outfile FILE','Output file') do |outfile| 
options.outfile = outfile 

end

opts.on('-w' '— weights Weight', Float,'weight ing levels') do |weights-<—> 
I

options.weights = weights 
end
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end.parse!

class Bio::Sequence
attr_accessor :substitutions 
attr_accessor rweights

NUCLEOTIDES = [ ' A ' , ' C ' , ' T ' , ' G ' ]

# The n u m b e r  o f  r a n d o m  p o s i t i o n s  t o  c h a n g e  
def positions_to_sub

(1. .self. length).to_a.sample(substitutions) 
end

# W e i g h t e d  r a n d o m  n u c l e o t i d e s  
def weighted_random_nucleotides

weights = []
weighted_nt = Pickup.new(weights) 
weighted_nt.pick(subsitutions) 

end

# R e t u r n s  an a r r a y  o f  x  r a n d o m  n u c l e o t i d e s  w h e r e  x  i s  t h e  n u m b e r  o f
g i v e n  s u b s t i t u t i o n s  

def random_nucleotides
substitutions.times.map{NUCLEOTIDES[rand(NUCLEOTIDES.length)]} 

end

# R a t e  b a s e d  m u t a t i o n s  
def rate_based_mutate

# s u b s t i t u t e  n u c l e o t i d e  g i v e n  p o s i t i o n s  w i t h  r a n d o m  n u c l e o t i d e s  
positions_to_sub.zip(random_nucleotides).map do |position,^ 

nucleotide| 
if self[position] == nucleotide

nucleotide = (['A 1, 1C ', 'G ', 'T 1] - [nucleotide]).sample (1) 
self[position] = nucleotide.join 

else
self[position] = nucleotide.downcase 

end 
end 

end 
end

infile = options.infile 
error_rate = options.error_rate 
weights = options.weights

def biosequences(file)
Bio::FlatFile.auto(file).map do |entry|

Bio::Sequence.new(entry.seq.upcase) 
end 

end

def calculate_mismatcb.es (error_rate, seq_length)
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(error_rate * seq_length).round 
end

def mutate_seqs(bioseq_objects,error_rate) 
bioseq_objects.each do Ibioseql 

seq_len = bioseq.length
bioseq.substitutions = calculate_mismatches(error_rate,seq_len) 
bioseq.rate_based_mutate
$stdout.puts ">#{SecureRandom.hex(5)}\n#{bioseq.seq}" 

end 
end

begin
sequences = biosequences(infile) 
mutate_seqs(sequences,error_rate)

rescue TypeError => type_error 
$stderr.puts type_error.message 

rescue Bio::FlatFile::UnknownDataFormatError =>format_error 
$stderr.puts format_error.message << "provide a fasta format" 

end

A.20 A Ruby program  to parse and work with DBLa sequences from CAF form at­
ted files

Listing A.27: assemble tags

require 'bio'
['caf', 'cafrecord', 'phrap'].each do |name|
require File.join(File.expand_path(File.dirname( FILE )),"#{name } " )

end

puts "Processing . . . . "
dir_path = "#{ENV['HOME']}/Batchl_files_from_thomas/batchl_cafs"

Dir.chdir(dir_path) do
p = Caf::Parser.new('batchi.caf')

puts "Total caf records = #{p.caf_records.size}"

# r e j e c t e d _ r e a d s  = p . r e j e c t e d _ _ s e q s
#p.t o _ f i l a  ( ' r e j e c t e d _ r e a d s _ 2 . f a s t a ' ,  r a j e c t e d _ r e a d s ) 

puts 'removing vector sequences' 

without_vector_seqs = p .no_vector_seqs
p . to_f ile ( ' batchl__without_vector_seqs_2 8_07_2 011 .fasta ' , p . 

no_vector_seqs)

end

puts "Finished successfuly"
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Listing A. 28: caf class

module Caf 
class Parser

def initialize(file)
@file = file 

end

def caf_records 
$/ = "\n\n" 
records = []

File.open(@file) do |f| 
f.each_line do |line| 

read = CafRecord.new 
case line 

when /^DNA/
records << CafRecord.new 
records.last.dna_data = line.strip 

when /^BaseQuality/
records.last.quality_data = line.strip 

when /^Sequence/
records.last.metadata = line.strip 

else
puts "Unrecognized line: #{line}"

end
end

end
records

end

def sequence_list
caf_records.map {|read| read.sequence} 

end

def name_list 
caf_records.map {|readl read.name} 

end

def no_vector_seqs
caf_records.map {|read| read.trimmed_fasta if read.'H 

passes_vector_filter?}.compact #r e m o v e  n i l s
end

def re jected_seqs
caf_records.map {|read| read.raw_fasta unless read.f-^ 

passes_vector_filter?}.compact f r e m o v e  n i l s
end

def no_primer_seqs
caf_records.map {|read|read.deprimed_fasta if read.passes_filtersfJ 

?}.compact # r e m o v e  n i l s
end

def no_primer_seqs_quals
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caf_records .map { | read | read. deprimed_base_qual_fasta if read.-S-̂  
passes_filters?}.compact #ren :ov e  n i l s

end

def raw_caf_reads
caf_records.map {|read| read.raw_fasta}.compact 

end

i w r i t e  an  o u t p u t  t o  a p h y s i c a l  f i l e  
def to_file(path,contents)

File.open("#{p a t h w ') do |f| 
f.puts contents 

end 
end

end i c l a s s  
end i m o d u l e

Listing A. 29: cafrecord class

class CafRecord
attr_accessor :dna_data,:quality_data,rmetadata

#r e t u r n  t h e  name  
def name

# d n a _ d a t a  = d n a _ d a t a . t o _ s
# p o s s i b l e  b u g  f o r  d i f f e r e n t  r e c o r d s  n a m e s
# f o r  g e o r g e s  s e q u e n c e s
# n a m e _ r e g  = c r e a t e _ r e g e x p ( " (VARPB. * ) $ " )
name_reg = create_regexp(" (VAR[PBI BP] .*)$") f a l l o w  m i s t y p e d  r e a d  3 

n a m e s  VARPB/VARBP
# n a m e _ r e g  = c r e a t e _ r e g e x p ( " ( V A R P B \ \ d \ \ d . .\\d.\ \ d \ \ d \ \ ..\ \ d .  *) ") 
dna_data.to_s.scan(name_reg).join

end

§ r e t u r n  t h e  r a w  r e a d  dn a  s e q u e n c e  
def sequence
# n a m e _ r e g  = c r e a t  e _ r e g e x p ( " ( AD N A \ \ s : \ \ s V A R P B \ \ d \ \ d . . \ \ d . \ \ d \ \  cR—>

\\. . \ \ d .  *) ") 
name_reg = create_regexp(" (ADNA : VARPB.*)$")
# d n a _ d a t a . t o _ s  [25 ,  d n a _ d a t a . t o _ s . s i z e ] . d e l e t e ( " \ n " ) . s t r i p  r e s c u e  "" #<—1 

i f  d n a _ d a t a
dna_data.to_s.gsub(name_reg,'').delete("\n").strip 

end

t f s t r i n g  o f  b a s e  q u a l i t y  s c o r e s  
def quality_scores

# q u a l i t y _ d a t a  = q u a l i t y _ d a t a . t o _ s  
score_regexp = create_regexp(" (A\\d.*)") 
quality_data.to_s.scan(score_regexp).to_s 

end

# g e t  t h e  v e c t o r  p o s i t i o n s  x x x x x x x a c a t a t a t a t a x x x x x x x  
def vector_positions
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seqvector = create_regexp("/'Seq_vec\\s+SVEC\\s+(\\d+\\s+\\d+)")
i g e t  t h e  v e c t o r  p o s i t i o n s
# s v e c l _ s t a r t , s v e c l _ s t o p , s v e c 2 _ s t a r t  r s v e c 2 _ s t o p  
get_vector_positions(seqvector,metadata.to_s)
i r e t u r n  s v e c l _ s t a r t , s v e c l _ s t o p ,  s v e c 2 _ s t a r t , s v e c 2 _ s t o p  

end

def clip_positions
clipping = create_regexp("^Clipping\\s+QUAL\\s+(\\d+\\s+\\d+)") 
get_clip_positions(clipping, metadata.to_s)
i r e t u r n  c l i p _ q u a l _ s t a r t , c l i p _ q u a l _ s t o p  

end

# r e t u r n s  a s e q u e n c e  w i t h  n o  v e c t o r  r e g i o n s  
def trimmed_seq 

begin
highest_start = vector_clips[0] 
lowest_end = vector_clips[1]

clip_len = lowest_end.to_i - highest_start.to_i 
clip_len
i l e n _ r a n g e  = ( 3 0 0 . . 5 0 0 )
i i f  l e n _ r a n g e . i n c l u d e ?  c l i p _ l e n

trimmed_seq = sequence[highest_start, clip_len]
i e l s e

# t r i m m e d _ s e q  = "" 
i e n d

i p u t s  "c l i p _ l e n : # {c l i p _ l e n } "
i p u t s  " t r i m m e d _ s e q _ s i z e : # { t r i m m e d _ s e q . t o _ s . s i z e } " 

return trimmed_seq if trimmed_seq.to_s.size > 300 
rescue 
end 

end

i r e t u r n s  b a s e  q u a l i t i e s  d e v o i d  o f  v e c t o r  q u a l i t y  s c o r e s .  
def t rimmed_base_qualities

highest_start = vector_clips[0] 
lowest_end = vector_clips[1]

clip_len = lowest_end.to_i - highest_start.to_i 
clip_len
len_range = (300..500) 
if len_range.include? clip_len

t rimmed_base_q = quality_scores . split ( / /). slice (highest_start, 
clip_len).join(" ")

else
trimmed_base_q = "" 

end
trimmed_base_q

end

i r e t u r n s  h i g h e s t  s t a r t  a n d  l o w e s t  e n d s  f o r  e a c h  r e a d  
def vector_clips
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# f i r s t  s t e p :  s e t  h i g h e s t _ s t a r t  t o  s v e c l _ s t o p  a n d  l o w e s t _ e n d  t o  10  
000

highest_start = vector_positions[1] 
lowest_end = 10_000

# s e c o n d  s t e p
i c h e c k  w h e t h e r  s v e c 2 _ s t a r t  i s  l e s s  t h a n  10 00 0;  i f  t r u e  s e t  

l o w e s t _ e n d  t o  s v e c t 2 _ s t a r t  
unless vector_positions[2] == 0

lowest_end = vector_positions[2] if vector_positions[2] < 3
lowest_end

else
lowest_end = clip_positions[1] #i f  we o n l y  h a v e  1 s v e c  e n t r y ,  

end
highest_start = clip_positions[0] if highest_start < 

clip_positions[0]
lowest_end = clip_positions[1] if lowest_end > clip_positions<-J 

[1]
return highest_start, lowest_end

end

# a g o o d  r e a d  i . e  s i z e  > 1 a f t e r  r e m o v i n g  t h e  v e c t o r  s e q u e n c e s  
def passes_vector_filter?

true if trimmed_seq.to_s.size > 1
l e n g t h  o f  r e a d  t o  a c c e p t

end

i r e t u r n  t h e  r e a d ' s  r e g i o n  w i t h o u t  p r i m e r s  
def deprimed

seq = Bio::Sequence::NA.new(trimmed_seq) 
start_pos = primer_boundaries[0] 
end_pos = primer_boundaries[1]

if start_pos.nil? or end_pos.nil?
start_pos, end_pos = 0 , 0  

end

clip_len = end_pos - start_pos 
seq.to_s[start_pos, clip_len + 1].upcase 

end

i r e t u r n  t h e  b a s e  q u a l i t i e s  o f  t h e  r e a d  w i t h o u t  p r i m e r s  
def deprimed_base_qual

start_pos = primer_boundaries[0] 
end_pos = primer_boundaries[1]

if start_pos.nil? or end_pos.nil?
start_pos, end_pos = 0 , 0  

end

clip_len = end_pos - start_pos
trimmed_base_qualities.split(/ /).slice(start_pos,clip_len + 1) . 

join(" ")
end

220



def deprimed_base_qual_fasta
">#{name}\n#{deprimed_base_qual}"

end

i r e t u r n s  t h e  s t a r t  a n d  e n d  p o s i t i o n s  o f  u n m a s k e d  r e g i o n  
def primer_boundaries

seq = Bio::Sequence::N A .new(trimmed_seq) 
primer_regs.each do |reg|

seq.gsub!(reg) { |x| "X" * x.length }
end

# R e p l a c e  a l l  5 '  b a s e s  b e f o r e  "X" w i t h  "X" .
# s e q . s u b ! ( / \ A [ * X ] + X / ) { /x/ "X" * x . l e n g t h  }

# R e p l a c e  a l l  3 '  b a s e s  a f t e r  "X" w i t h  " X " .
i s e q . s u b ! ( / X [ * X ] + \ z / ) { I x l  "X" * x . l e n g t h  }

# l a s t _ m a t c h _ s i z e  = s e q . s c a n  ( / [ * ( X + ) ] * $ / ) [ 0 ] .s i z e
#R e p l a c e  a n y  l e f t  e n d  b a s e  on t h e  3 '  e n d  w i t h  a ' '  o n l y  i f  

X X X c g c t c t X X X t c  a n d  n o t  X X X c g c t c t g c t c  
seq.sub!(/[A (X+)]*$/,'1) if seq.scan(/[A (X+)]*$/)[0].size < 20

# G e t  t h e  s t a r t  a n d  e n d  p o s i t i o n s  o f  t h e  u n m a s k e d  r e g i o n .
# s t a r t _ p o s  = s e q . i n d e x ( / [ * X ] / )  i s t a r t  p o s i t i o n
# e n d _ p o s  = s e q . r i n d e x ( / [ * X ] / )  f e n d  p o s i t i o n

return seq.index(/[AX]/),seq.rindex(/[AX]/)
end

i r e m o v e  a n y  r e a d  w h e r e  s t o p  c o d o n s  >= 6 o r  o r  r e a d  l e n g t h  > 5 0 0  
def passes_sc_filter?

^ t r a n s l a t e  r e a d  s e q u e n c e  i n  a l l  6 f r a m e s  
passed = []
6.times do |frame|

stop_codons = Bio::Sequence::N A .new(deprimed).translate(frame +
1).scan(/\*/).size 

passed << deprimed unless stop_codons > = 6  | | deprimed.size > G-1
500 i h a v e  a l o o k  a t  t h i s  l i n e ! !

end
true if passed.size > 0 

end

def passes_filters?
passes_vector_filter? && passes_sc_filter? 

end

def raw_fasta 
fasta(sequence) 

end

def trimmed_fasta 
fasta(trimmed_seq) 

end
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def deprimed_fasta 
fasta(deprimed) 

end

def six_ _frame_traslate_deprimed 
six_frame_translate(deprimed) 

end

private
# c r e a t e s  a r e g u l a r  e x p r e s s i o n  g i v e n  a s t r i n g  
def create_regexp(expression, opts={}) 
options = {:case_sensitive=>true}.merge!(opts) 

i n s e n t i v e  b y  d e f a u l t  
Regexp.new("#{expression}",options) 

end

def get_vector_positions(seqvector, value)
vector_positions = metadata.to_s.scan(seqvector) 
svecl_startq, svecl_stopq = vector_positions[0].to_s.split(/ /) 
svec2_startq, svec2_stopq = vector_positions[1].to_s.split(/ /) 
return svecl_startq.to_i, svecl_stopq.to_i, svec2_startq.to_i, f  

svec2_stopq.to_i
end

def get_clip_positions(clipping, value) 
clipping_positions = metadata.to_s.scan(clipping) 
clip_qual_startq, clip_qual_stopq = clipping_positions[0].to_s. 

split(/ /)
return clip_qual_startq.to_i, clip_qual_stopq.to_i 

end

def get_sequence(sequence,start,clip_len)
sequence[start + 1, clip_len] if clip_len >= 300 

end

def get_qualities(qualities,clip_len,start)
# s p l i t  t h e  q u a l i t y  d a t a  t o  g e t  an  a r r a y  
q = qualities.to_s.split(/ /)
q.slice(start,clip_len).join(" ") if clip_len > 300

end

Ireturn t h e  l e n g t h  o f  t h e  s e q u e n c e  
def size(seq) 
seq.size 

end

#re t u r n  a b i o s e q u e n c e  o b j e c t  
def b iosequence(seq)

Bio::Sequence.new(seq)
end

i c r e a t e  a f a s t a  f o r m a t  f o r  t h e  r e a d  
def fasta(seq)
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# p u t s  n a m e . c l a s s
biosequence(seq).output(:fasta,:header =>name.to_s,:width=>500) 

end

#r e t u r n s  t h e  g  + c  c o n t e n t  f o r  t h e  s e q u e n c e  
def gc_contect(seq) 
biosequence(seq).gc_content 

end

i r e t u r n s  a l i s t  o f  s i x  f r a m e  t r a n s l a t i o n s  
def six_frame_translate(seq) 

content = []
6 .times do |i|

content << Bio::Sequence::N A .new(seq).translate(i+1)
end
content

end

i c r e a t e s  a c o l l e c t i o n  o f  p r i m e r  s e q u e n c e s  t o  l o o k  f o r  
def p rimer_regs
primers = ['G*CACG[A IC ]AGTTT[C |T]G C ', 'G*CCCATTC[G |C ]TCGAACCA', 'GC[G| 

A]AAACT[T |G]CGTGC1, 'TGGTTCGA[C|G]GAATGGGC'] 
primers.collect! { |primer| create_regexp(primer) }

end

end

Listing A.30: Phrap wrapper

module Phrap 
class Runner

# r u n  t h e  p h r a p  p r o g r a m  
def bull_phrap(fasta_file)
phrap_out = %x(phrap_99 -retain_duplicates -ace -preassemble 

group_delim . -minscore 200 # { f a s t a _ f i l e })  
puts phrap_out 
end

# r u n  t h i s  f o r  r e a d s  f r o m  t h e  sa m e  i s o l a t e  
def bloqvist_phrap(fasta_file)

phrap_out = %x(phrap_99 -retain_duplicates -ace ’ 
repeat_stringency 0.9 -minmatch 20 " { f a s t a _ f i l e })

end

end

end

Listing A.31: Caf to Phrap

require 'bio' 
class Caf2phrap

i i n s t a l l  c a f 2 p h r a p  e x e c u t a b l e  
def run(caf_file,fasta_name)
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caf2phrap_out = %x(caf2phrap -caf # { c a f _ f i l e  
end

i c r e a t e s  a r e g u l a r  e x p r e s s i o n  g i v e n  a s t r i n g  
def create_regexp(expression, opts={})

options = {:case_sensitive=>true}.merge! (opts) 
i n s e n t i v e  b y  d e f a u l t  

Regexp.new("#(expression}",options) 
end

def primer_regs
['G*CACG[A|C]AGTTT[C[T]GC' , 'G*CCCATTC[G|C]TCGAACCA', 1GC[G|A]AAACT[TA- 

IG]CGTGC','TGGTTCGA[CIG]GAATGGGC'].map! { | primer | createjegexpf^
(primer) }

end

def trim(filename) 
seqs = []
Bio::FlatFile.auto(filename) { |f| f.map {|entry| entry} }.each do |

entry|
i p u t s  e n t r y . s e q
start_pos = entry.seq.index(/[Ax]/).to_i 
stop_pos = entry.seq.rindex(/[^x]/).to_i

clipped = stop_pos - start_pos 
seq = entry.seq[start_pos, clipped + 1] 
seq_len_range = (300..500) 
if seq_len_range.include? seq.size 

i r e m o v e  t h e  p r i m e r s  
primer_regs.each do Ireg|

seq.gsub!(reg) { |x| "x" * x.length }
end

seq. sub ! ( / [ ̂ (x+) ] * $/, 1 ' ) if seq. scan ( / [ (x+ )]*$/)[ 0 ]. size < 20

primer_start_pos = seq.index(/[^x]/) 
primer_stop_pos = seq.rindex(/[Ax]/) 
tag = primer_stop_pos - primer_start_pos
seqs << Bio :: Sequence . new (seq [primer_start_pos, tag + 1] .upcasef-^ 

). output(:fasta, :header => entry.definition, :width=>600)
else

puts "#{entry.definition} does not meet the upper(500) or lowers 
(300) nt thresholds"

end
end
seqs

end

# w r i t e  d a t a  t o  f i l e
def t o_file(path,contents)

File.open("#{path}",'w 1) do |f| 
f.puts contents 

end 
end
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end

input_file = "#{ENV['HOME']}/Batch2_files_from_thomas/batch2_cafs/e^ 
batch2_caftools.fasta" 

output_file = "#{ENV['HOME']}/Batch2_f iles_f rom_thomas/batch2__caf s / ^  
batch2_caftools_no_primer.fasta" # c a f t o o l s _ n o _ p r i m e r s . f a s t a

puts 'initializing1

caf2 = Caf2phrap.new

puts 'trimming reads'

reads = caf2.trim(input_file)

puts 'writing to file'
caf2.to_file(output_file,reads)

puts 'Done!'
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Appendix B 
Miscellaneous

This chapter includes work that supports specific sections of the main text. Some of 

this analysis was too short or inconclusive on its own and may require additional data 

or experiments that could not be conducted given the time and budget restrictions.

B.l Regions of diversity in the DBLa sequence tags

Figure B.l shows the codon diversity (upper panel) and pairwise distance (lower 

panel) for a group of 100 randomly selected DBLa sequence tags from Kilifi. This 

figure shows that relative sequence conservation is confined within specific regions of 

homology that are interspersed by very diverse regions. The codon usage is also not 

uniform even in conserved amino acid columns. The mean pairwise identity along 

the alignment positions is shown by the black line in the lower panel.
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Figure B .l: A codon diversity plot (upper panel) and a pairwise distance plot (lower panel) 
summarizing the extent o f codon and nucleotide diversity in a group o f 100 randomly selected 
DBLa sequence tags from Kilifi. Each codon is shown by a different colour. The pairwise distances 
(y-axis) were calculated using a 10 nucleotide sliding-window along the length o f the alignment 
(x-axis). The black line shows the mean pairwise distance for each column o f the alignment.
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Figure B.2: Distribution o f clusters and non redundant sequences generated with CD-HIT and 
UCLUST version 5 algorithms. A) The x-cucis represents the isolates and the y-axis shows the 
frequency of representative sequences for each isolate. The bar plots show that at 100% similarity 
the two algorithms create the same number of clusters per isolate. Diverse isolates tend to contain 
higher number of clusters. B) A scatter plot showing the linear relationship between the two 
clustering algorithms at 100% similarity. CD-HIT produced more clusters for some isolates relative 
to uclust.

This work uses the Usearch/Vsearch approach in clustering given that the al­

gorithm meets a definition of sequence identity that is applicable to this work. Fur­

thermore it is straightforward to understand and has several advantages over CD-hit 

as explained in the previous sections.

B.2 Length polymorphism in DBLa sequence tags

DBLa sequences differ in length. Figure B.3 shows a histogram and a density plot of 

the mean distribution of sequence lengths from 6,200 DBLa sequence tags collected 

from Kilifi during the 2003 -2007 and 2007 - 2010 periods.

Iso la te s uclust
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Figure B.3: A distribution o f length in 6,200 DBLa sequences collected between 2003-2007  
and 2007-2010 time periods in Kilifi. The red plot shows the mean density in length o f the tag 
sequences. Although the upper limit for DBLa sequences is defined at 500 nucleotides majority of 
sequences did not surpass 450nt in length. The mean length was normally distributed.

B.3 Dinucleotide frequency

Because dinucleotide frequency is known to affect codon bias, which in turn can affect 

the pattern of substitutions, a comparison of the expected and the actual frequency 

of 16 dinucleotides was assessed. If a particular dinucleotide was over-represented, 

it meant that it occurred many more times than what was expected by chance and if 

was under-represented, it meant it occurred fewer times than expected.

The p (rho) statistic was calculated for the observed and expected dinucleotides. 

Rho is a measure of over or under-represented dinucleotides. If a DNA sequence had 

a frequency fx of a 1-nucleotide DNA word x, and a frequency f y of a 1-nucleotide 

DNA word y ,  then the frequency of the dinucleotide xy  is expected to be the product
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offx and fy.

Rho (p) is defined by equation B.l

P M  =  f x y / U x  * f y )  (B.l)

where f xy a n d /x are the frequencies of dinucleotide xy and x  in a sequence.

From equation B.l, dinucleotide frequecies in a sequence are expected to be equal 

to the products of the frequencies of the two nucleotides that compose them and 

therefore p should be equal to 1 if they are not under or over-represented.

Figure B.4 shows the dinucleotide p statistic from the 16 dinucleotide pairs.

Table B .l:  Summary of dinucleotide frequency

Statistic N Mean St. Dev. Min Max
AA 5,280 57.077 7.492 21 85
AC 5,280 18.979 4.304 6 33
AG 5,280 26.559 4.437 6 43
AT 5,280 39.386 4.218 23 55
CA 5,280 20.193 4.001 8 34
CC 5,280 8.648 2.708 1 28
CG 5,280 12.716 5.316 1 28
CT 5,280 10.424 2.451 3 27
GA 5,280 35.068 5.971 12 53
GC 5,280 11.930 4.126 3 28
GG 5,280 17.755 3.669 5 34
GT 5,280 16.245 3.286 6 28
TA 5,280 29.842 4.280 14 47
TC 5,280 12.920 2.645 5 37
TG 5,280 23.038 3.852 11 36
TT 5,280 27.093 4.176 14 42
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Figure B.4: A plot o f dinucleotide rho statistic in DBLa sequences. The rho-statistic is a measure 
of how over or under represented a given dinucleotide is. The most over-represented dinucleotide 
are GA, TT, TG, CC, CG and AT. There was a lot of variation in some dinucleotides like CC where 
some sequences seem to be very rich in CC and other very under-represented CC. CT,AG, GT and 
TA dinucleotides are largely under-represented although there is a lot of variation.

The p statistic shows a lot of variation in dinucleotide representation. Generally, 

GA, TG, TT and CC were over-reprented and CT,AG, GT and TA dinucleotides are 

largely under-represented.

B.4 Relative synonymous codon usage(RSCU) in DBLa sequences

The relative synonymous codon usage (RSCU) score is a measure of the frequency of

a particular codon relative to the frequency that the codon would be observed in the

absence of any codon usage bias.
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The RSCU score was calculated using equation B.2

RSCU  =  9ii ni (B.2)
E m  v J

j 9ij

where g{j is the observed number of the ith codon for j th amino acid which had 

type rii synonymous codons.

A codon that is used less frequently than expected had a value of less than 1 and

a value >1.0 indicated positive codon bias meaning that the codon was used more

than expected.
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AA Codon N RSCU AA Codon N RSCU

Phe TTT 14827 1.38 Ser TCT 3520 1.16
TTC 6678 0.62 TCC 464 0.15

Leu TTA 15056 2.46 TCA 4228 1.39
TTG 6956 1.13 TCG 987 0.32

Tyr TAT 29303 1.58 Cys TGT 9848 1.22
TAC 7701 0.42 TGC 6299 0.78

ter TAA 0 0 ter TGA 0 0
ter TAG 0 0 Trp TGG 14900 1

Leu CTT 7829 1.28 Pro CCT 5097 1.12
CTC 882 0.14 CCC 3171 0.7
CTA 4268 0.7 CCA 7169 1.58
CTG 1795 0.29 CCG 2723 0.6

His CAT 6182 1.46 Arg CGT 4223 0.61
CAC 2258 0.54 CGC 6735 0.98

Gin CAA 18245 1.52 CGA 8487 1.23
CAG 5701 0.48 CGG 2259 0.33

He ATT 11607 1.2 Thr ACT 6555 0.79
ATC 3883 0.4 ACC 3797 0.46
ATA 13491 1.4 ACA 16409 1.98

Met ATG 2341 1 ACG 6401 0.77
Asn AAT 34498 1.63 Ser AGT 6993 2.3

AAC 7748 0.37 AGC 2076 0.68
Lys AAA 48572 1.53 Arg AGA 16360 2.38

AAG 14747 0.47 AGG 3247 0.47

Val GTT 5169 0.87 Ala GCT 9208 1.38
GTC 4247 0.72 GCC 3243 0.49
GTA 8509 1.43 GCA 9967 1.49
GTG 5816 0.98 GCG 4309 0.64

Asp GAT 43675 1.5 Gly GGT 15898 1.5
GAC 14389 0.5 GGC 5129 0.48

Glu GAA 30033 1.7 GGA 17107 1.62
GAG 5300 0.3 GGG 4206 0.4

Table B.2: Relative synonymous codon usage (RSCU) indices fo r DBLa sequences in Kilifi. The 
RSCU is an indicator of codons that are used more frequently than expected.

Table B.2 shows a summary of the observed RSCU values for different codons in 

DBLa sequences collected from Kilifi.
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Figure B.5: A summary o f substitutions from  DBLa sequence tags that were sequenced using 
the 454-platform. The y-cocis shows the frequency o f substitutions and the x-axis shows the 
substitution type and the frequencies at the respective codon positions. G-A, C-T, C-A and T-A 
substitutions were predominant. Substitutions at the 3rd codon position were preferred by C-T, 
G-T and T-A substitutions. C-A, G-A and G-C substitutions showed preference for 1st codon 
positions. The frequency o f C-A substitutions was remarkably higher in this data-set compared 
to the capillary sequenced data-set.

B.5 Pattern of variation in var2csa in isolates collected from around the world

A total of 978 full-length and partial var2csa sequences were downloaded from Gen- 

bank using a keyword search. The DBLa-finder was used to search for published 

DBLa tags and the 68 sequences that were identified by the program, were clustered 

as explained previously
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The pattern of substitutions is shown in figure B.6. The most frequent substitutions 

were G-A, C-T and T-A. The most frequent substitutions at the third codon position 

were C-T, G-T and T-A. G-A substitutions were more frequent at the 1st codon position 

in these sequences.

>88% >90%

1 5 0 -

1 0 0 - nun nHnnnH
>92% >94%

1 5 0 -

1 100-
O'
CD
~  5 0 -  

0-

1 5 0 -

1 0 0 -

5 0 -

0-

n l
>96% >98%

C-A C-T G-A G-C G-T T-A C-A C-T G-A G-C G-T T-A

Figure B.6: A summary of the type and codon location of polymorphisms in 69 DBLa tags 
from  global isolates. The sequences were clustered at between 98% and 88% identity. The y-cucis 
shows the frequency of polymophisms and the x-axis shows the type and codon location o f the 
polymorphisms. G-A, C-T and T-A transversion were the most frequent.
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B.6 Frequency of substitutions in sequences collected from different parts of 

the world

398 sequences from India, Sudan, Cape Verde, Solomon islands, Philippines, Kenya, 

Brazil, Thailand, Africa,Vanuatu were retrieved to form a global collection of DBLa 

sequences. The full list of accession is provided in appendix B.

The sequences were clustered and substitutions were enumerated and plotted. 

Figure B.7 shows a summary of the distribution of the substitutions.
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Figure B.7: The frequency o f 367 DBLa tags collected from  different geographical regions. The 
sequences were clustered at between 98 and 88 percent sequence identity. The y-axis represents 
the frequency o f substitutions and the x-axis represents the type and codon position in each of 
the substitution type. G -A  and C -T  substitutions were more prevalent which is consistent with 
previous observation from particular geographical regions.

B.7 Clustering ratio

Table B.3 shows the number of clusters and the fraction of clusters that were used for 

pairwise comparisons. 

Sequences from Kilifi had the lowest clustering ratio compared to sequences from 

other regions in the world. The sequences from Brazil has relatively higher clustering 

ratios. This could be explained by the fact that the sequences were collected from
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Region % Identity Clusters Total clusters Ratio

Amele 98 77 180 0.438
96 76 172 0.441
94 74 170 0.435
92 75 168 0.446
90 75 165 0.455
88 75 163 0.460

Kilifi 98 465 2725 0.171
96 479 2665 0.180
94 496 2617 0.190
92 526 2553 0.206
90 543 2497 0.217
88 571 2422 0.236

Global 98 47 309 0.152
96 48 306 0.157
94 48 303 0.158
92 52 299 0.174
90 52 295 0.176
88 53 291 0.182

Brazil 98 160 213 0.751
96 152 192 0.792
94 152 192 0.792
92 152 189 0.804
90 150 186 0.812
88 149 182 0.824

Table B.3: The clustering ratio fo r sequences collected in various geographical regions are given. 
The cluster ratio is the proportion of sequences that were used in the pairwise comparisons to the 
total number of clusters that were created a t a given identity threshold. For very diverse sequences 
the ratio is close to 0 and for more conserved dataset clustering ratio is close to 1. The clustering 
ratio increased with decrease in sequence identity within each dataset. Sequences from  Brazil 
were more conserved compared to sequences from  Kilifi.
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fewer isolates. Nonetheless, sequences from south America have been described as 

relatively conserved and could miss a lot of virulent sequences compared to sequences 

from Africa (Albrecht et al. 2010).
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Figure B.8: Frequency o f substitutions in 162 DBLa tags from  Madang in Papua new Guinea. 
They-axis shows the frequency of substitutions and the x-axis shows the type and codon position 
for each substitution.

B.8 Differences in the distance between polymorphic sites

The distance between polymorphic sites in sequence varied based on the clustering 

threshold. Nucleotide distances were lower in sequences with low identities sug­

gesting that presence of contiguous polymorphic sites. The frequency of nucleotide
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distance between polymorphic sites is shown in figure B.9. 
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F igure  B.9: A dotplot o f nucleotide distances (Y-axis) between adjacent substitution sites in se­
quences clustered a t >98%  to 88% sequence identity. The upper panel shows nucleotide distances 
in sequences where random substitutions were introduced.

B.9 Homology block F contained relatively more mismatches

There were relatively more substitutions at block F compared to block D. The changes 

were predominated by G-A and C-T substitutions with most occurred at the 3rd codon 

except for C-A changes that occured mostly at the 1st codon and the 3rd codon.
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Figure B.10: A summary of within isolate distribution of polymorphisms in homology block F

B.9.1 Within-isolate variation in homology block D and H

Figure 4.4 shows the distribution of substitutions in homology blocks D and H in 

sequences from the same isolate.

Sequences from the same isolate were clustered and aligned and the pairwise 

differences were tallied across all the isolates. The frequency of substitution was sum­

marized using the frequency plots shown in figure B .ll  (block D), figure B. 10(block 

F) and figure B.12 (block H).

Block D region is relatively conserved and very few mutations were counted at
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98% sequence identity. The number of observed mutations increase gradually with 

decrease in sequence identity. Most changes were confined to the third codon. There 

were very few changes at 98% identity and the profile of changes did not match the 

one that was observed in lowe percent identities.
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Figure B . l l :  A plot o f the frequency of substitutions in homology block D region from sequences 
collected from the same isolate.

Block H changes were dominated by C-T substitutions with relatively high frequen­

cies at the third codon position. The profile for changes at 98% identity was different 

from the rest, though the numbers were few and may be due to errors.
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Figure B.12: Within isolate distribution o f substitutions in homology block H. Sequences with 
equal to or greater than 98% identity were few they have the same profile that was found for full 
length sequence tags. There was a bias for substitutions at the 3rd codon position except for T-A 
changes where substitutions at the 2nd codon position were more preferred.

B. 10 HLA prevalence

The frequecies of HLA alleles among individuals in the coastal region is unknown. 

In the absence of HLA allele frequency, HLA alleles were chosen to cover the known 

supertypes such that they covered the 9 HLA-DR supertypes, 6 HLA-DQ, and 6 HLA-DP 

alleles.

A sense of HLA alleles that are prevalent in Kilifi was obtained from limited data 

aimed at identifying prevalent HLA alleles among children in Kilifi (unpublished).
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HLA typing was perfomed on 11 samples that were collected from children in Kilifi 

(which datasets? How representative are they?). Figure B.13 shows a frequency plot 

of the HLA alleles from the 11 samples. While this is not conclusive, a sense of
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Figure B.13: A frequency histogram plot of HLA alleles from 11 samples in Kilifi. The T-cell 
HLA typing was perfomed using samples from Kilifi. This information was not used and did not 
influenced the MHC T-cell predictions used in this thesis.
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