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The fundamental nanoscale processes that initiate radiation damage in biological material 

have not yet been fully elucidated. This represents a significant barrier to developing multi

dimensional simulations of radiation effects that can lead to advances in radiotherapy and 

radioprotection. This thesis explores UV- and electron-induced processes in DNA and RNA 

bases. Pure and hydrated clusters are studied in order to better understand the effects of the 

chemical environment on the radiation response of these important biomolecules.

Although extensive research has been carried out on the relaxation pathways of UV-excited nuc- 

leobases, no previous experiments have investigated bond breaking in neutral electronic excited 

states. This thesis reveals a new fragment ion from uracil (C3H4N20+) that can be accessed by 

multi-photon ionization (MPI) but not by electron impact ionization (Eli). This provides the 

first experimental demonstration that neutral excited state dynamics in a nucleobase can lead 

to bond breaking in the aromatic ring, as predicted in recent theoretical studies. The specific 

excited state dynamics have not yet been identified definitively and are the subject of on-going 

ultrafast pump-probe experiments in collaboration with Townsend and co-workers (Heriot-Watt 

University). The time-resolved measurements provide new evidence supporting a theoretically 

predicted relaxation pathway into long-lived triplet states.

Dissociative ionization of hydrated nucleobases and uracil-adenine clusters has been studied 

experimentally for the first time. Evidence for deamination reactions is observed in hydrated 

adenine complexes. The production of C3H4N20+ fragments from uracil is strongly suppressed 

by clustering with water whereas the channel remains open in uracil-adenine complexes. To 

unravel the specific cluster-mediated dynamics and reactions responsible for these effects, fur

ther experiments are required with greater control over the cluster targets. Indeed the range 

of monomers and cluster configurations in neutral beams currently limits interpretations and 

direct comparisons with calculations. In response to this challenge, a new experiment has been 

built that enables radiation effects to be studied on molecules and clusters in Stark-deflected 

beams (MPI, Eli, and future electron attachment measurements). Early results on nitrometh- 

ane beams include a demonstration that studying Eli as a function of the Stark deflector voltage 

can be used to deduce whether certain product ions came from monomers or from clusters.
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Chapter 1

Introduction

This thesis investigates radiation-induced processes in biomolecules and their clusters. 

Electronic excitation, ionisation, and fragmentation pathways of DNA and RNA bases 

are studied following exposure to UV light and high-energy electrons. Concurrently, the 

thesis reports on the development of a unique experiment to probe the interactions of 

low-energy electrons with biomolecules and clusters in controlled beams. The common 

aim is to enhance our understanding of the fundamental processes by which radiation 

can initiate structural and chemical changes in biological macromolecules [49]. In par

ticular, DNA lesions are understood to be key precursors of lasting biological damage 

(cell death, mutations, and cancers) and a major international research effort is cur

rently devoted to applying nanoscale insights to improve cancer therapies [50, 51]. The 

present experiments also contribute to our understanding of the mechanisms responsible 

for the remarkable radio-stability of DNA and RNA, with implications for evolution and 

the molecular origins of life [52]. Despite the extensive applied interest, there is only 

limited understanding of the effects of the chemical environment (approximated here by 

clustering) on the radiation response of key biomolecules. This chapter introduces the 

general motivations and context for the present research.

1
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1.1 Radiation induced processes in fundamental biomolecules

and their clusters: this thesis and the wider field

While studies of isolated molecules generally provide the clearest data interpretations 

[53], equivalent experiments on clusters enable closer analogies to be drawn with biolo

gical environments where different isomeric forms, intermoleculax energy transfer pro

cesses, and reactivity can be significant. Indeed molecular clusters are of fundamental 

interest as an intermediary between isolated molecules and bulk material. Clusters 

provide an important test case to extend the scope of experimental and theoretical 

techniques, for example surface analytical methods [54] and quantum chemical calcu

lations [55], in order to characterise progressively more complex systems. Research 

of this kind provides insights to relate the specific information gained from studies of 

isolated molecules to a microscopic understanding of radiation-induced processes in con

densed media. The study of clustering effects on molecular geometries [56], electronic 

configurations [57], and diverse types of reactivity [58, 59] has thus developed into a 

major interdisciplinary field. Indeed cluster research has demonstrated important new 

fundamental molecular interactions, notably Intermolecular Coulombic Decay [60]. A 

selection of significant research topics on molecular clusters are listed below.

•  Creation and geometric form of clusters [61, 62, 63, 64]

•  Changes of ionisation potentials, as well as the energies and (vibrational) coupling 

of excited and ionic states upon clustering [65, 66, 67]

•  Transfer of charge and transfer of vibrational energy to inter-molecular modes 

[68, 69, 70]

•  Dissociation of clusters [71, 72, 73]

•  Characteristic properties of cluster-assembled materials [74, 75, 76]

•  Microscopic aspects of nucleation phenomena [77]

The results in Chapters 4-7 were mainly recorded using an experimental system at the 

Open University (OU) to probe the electronic excited state dynamics and the ionic
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states of biomolecules in isolation and in dipole-bonded clusters (hydrogen bonds and 

7r-stacking). In particular, the experiments applied multi-photon ionisation (MPI) to 

investigate UV induced processes in DNA and RNA bases. The photophysics of nuc- 

leobases has attracted considerable interest as the electronic excitation and relaxation 

pathways can play important roles in the formation of DNA lesions [78, 79]. Understand

ing and, where possible, quantifying the dynamics and reactivity of excited nucleobases 

is therefore important for building molecular-scale models of DNA damage [80].

The present MPI and electron impact ionisation (Eli) experiments have focused on 

adenine, uracil, and their hydrated clusters. We have also carried out experiments 

on thymine, deuterated uracil and hypoxanthine. In all of these molecules, ultrafast 

(sub-picosecond) relaxation to the electronic ground state is the dominant relaxation 

pathway following electronic excitation in the near UV [49] and this plays a central 

role in their radio-stability. However competing relaxation routes into relatively long- 

lived electronic excited states have also been identified and theoretical calculations have 

predicted that some of these pathways lead to significant structural changes in the 

excited molecules such as ring-opening [3]. These relatively long-lived excited states 

and structural changes can be an important source of radiation damage in DNA and 

RNA. However, to our knowledge, no previous experiments have been carried out on 

electronically excited nucleobabses to look for evidence of major structural changes 

(e.g. bond breaking on the aromatic ring as opposed to hydrogen abstraction and /  or 

the modification of bond lengths /  angles). Similarly, no previous experiments have 

been carried out on clustered nucleobases to look for signs of (unimolecular or inter- 

molecular) reactivity initiated by electronic excitation. The experiments in Chapters 

4-7 contribute to addressing these important gaps in the literature.

In addition to neutral electronic excitation, ionisation is a key process in radiation 

damage to biological tissue. Clearly, the break up of an excited nucleobase ion within a 

macromolecule represents a damage site and the fragments (neutral and ionic) can then 

react with nearby molecules to exacerbate the effect. Therefore the dissociative ionisa

tion pathways of DNA and RNA bases have been studied for many years, stretching 

back to the 1960s [47, 81]. Nonetheless, a number of details remain unresolved including



4 CHAPTER 1. INTRODUCTION

the identification of certain fragment ions. The MPI mass spectra in this thesis answer 

some of these questions, taking advantage of good mass resolution, high signal to noise 

ratios, and comparisons with deuterated molecules. However, a much more striking 

issue in the literature is the scarcity of research (experimental or theoretical) into how 

clustering affects the dissociative ionisation pathways of nucleobases. The first PhD 

thesis by a member of the OU Molecular Clusters Group [2] presented MPI mass spec

tra of hydrated nucleobases but analysis of fragment ion production was restricted by 

high background signals. Aside from Barc’s thesis, the closest precedent for the present 

experiments is Schlatholter et al.’s [82] study of ion impact induced dissociative ionisa

tion in pure clusters of nucleobases. The present MPI and electron impact ionisation 

(Eli) measurements in Chapters 4 and 7 provide the most detailed information to date 

on how clustering with water affects the fragmentation of nucleobase ions. Furthermore, 

the fragmentation of mixed nucleobase clusters (uracil-adenine: a base pair in RNA) is 

studied here for the first time.

It is challenging to derive detailed interpretations from the presently observed clus

tering effects. Indeed, comparisons between measurements and theory in this area of 

research are severely compromised by the experimental difficulty of selecting distinct 

neutral cluster targets as opposed to a broad distribution of monomer and cluster con

figurations. Therefore, a significant effort has been directed into the developing a new 

experiment that allows for better control over the molecular and cluster targets. The ex

periment utilises a Stark deflection method developed and optimised by Kiipper (DESY, 

Hamburg), Meijer (Fritz Haber Inst., Berlin), and co-workers [16, 83, 84, 85]. These 

researchers have made considerable advances in the manipulation of neutral molecu

lar beams using inhomogeneous electric fields, in particular separating specific cluster 

configurations from mixed supersonic jet [85], as well as different structural conform- 

ers [84] of gas-phase biomolecules. This method is based on accelerating molecules or 

clusters in strong electric field gradients, with resulting deflections as a function of the 

effective dipole moment /  mass ratio. Indeed, large variations [86] in the dipole moments 

and polarisabilities of DNA base monomers, pure complexes, base pairs, and hydrates
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provide considerable scope to improve target definition using Stark deflection. In addi

tion to MPI and Eli, the new experiment will probe electron attachment (EA) to Stark 

deflected targets for the first time.

The EA project is being carried out in parallel with Gorfinkiel, Fabrikant, and co- 

workers’ development of theoretical methods to simulate low-energy electron interac

tions with clusters [87]. It is envisaged that the measurements will thus provide a test 

for the theory and hence lead to advances in our fundamental understanding of elec

tron attachment in multi-molecular environments. The importance of studying EA to 

biomolecules arises from the observation that DNA strand breaks can be induced effi

ciently by sub-ionisation energy electrons [88] - the most abundant secondary product 

of ionizing radiation (5 x 104 electrons per MeV deposited). Free electrons are analogues 

of the secondary electrons released by ionisation events. The importance of elucidating 

electron attachment processes in biomolecular clusters has led to a significant number 

of internationally renowned groups currently focusing on the subject. Current high- 

impact experimental work includes Scheier, Mark (Innsbruck), Ellis (Leicester), and 

co-workers’ studies of EA to clustered nucleobases, sugars, and amino acids embed

ded in helium droplets . Brpndsted-Nielsen (Aarhus), Cederquist (Stockholm), Huber 

(Caen), and co-workers [89] have revealed that a critical number of associated water 

molecules can completely suppress the collision-induced fragmentation of nucleotide 

anions. Denifl and co-workers’ recent DEA experiments on pyrimidine clusters and 

pyrimidine-water clusters showed that hydration causes a strong modification of DEA 

resonances [90]. Understanding EA processes in biomolecular clusters can lead to im

provements in biophysical models of radiation-induced damage and also has potential 

to stimulate radiotherapy innovations based on the use of radio-sensitising dopants to 

modify EA-induced damage processes.
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1.2 Radiation damage to biological material

The effect of radiation on biological material is complex and involves a wide range 

of processes. Therefore the research effort into elucidating these phenomena is multi

dimensional and requires both bottom-up and top-down approaches. The timescales of 

radiation damage events are listed in Table 1.1 and cover 24 orders of magnitude [42] 

ranging from 10“ 15 s to 109 s.

Table 1.1: Timescales of radiation damage in biological material. [42]

Stage Time Events

Physical stage ltr15 s Electronic excitation and ionisation

1(T14 s Vibrational excitation, dissociation 
and electron thermalisation

nr12 s Diffusion of free radicals

Chemical stage ltr10 s Free radical reactions with the solute

10"8 s Formation of molecular products

10“5 s Completion of chemical reaction

Biochemical 1 s—1 hr Enzymatic reactions, repair processes

Biological 1 hr—100 yrs Genomic instability, aberration,
mutation, cell killing, appearance of 

tumours and secondary tumours

This thesis provides information to help understand processes in the physical stage of 

radiation damage, most of all excitation (electronic and /  or vibrational), ionisation, 

and dissociation. The increasing temporal scales in Table 1.1 are broadly linked to 

increasing spatial scales, extending to whole-body-scale effects such as the initiation of 

secondary tumours (metastases). In the bottom-up approach, understanding and mod

elling large-scale damage (cell, tissue, organ or organism) requires detailed knowledge 

of all nanoscale processes [78, 91]. Cellular damage begins with radiation interactions 

with important molecular constituents, notably proteins [92] or DNA. The molecules in

vestigated in this thesis play essential biological roles: nucleobases are subunits of DNA 

andRNA, while their hydrated clusters are model systems for the aqueous conditions
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Figure 1.1: The structure  of DNA: (left) an a r tis t’s impression on the  double helix 
structure, and (right) the key molecular sub-units.

w ithin a cell. The experim ents mainly mimic direct (or prim ary) rad iation  in terac

tions w ith nucleobases (notably UV absorption and fast electron im pact). The planned 

electron attachm ent experim ents will mimic indirect (or secondary) processes whereby 

a low-energy electron released by an ionisation event can in teract w ith a nearby m o

lecule of interest and potentially in itia te  nanoscale damage. Indeed the form ation and 

dissociation of transient negative ions ( TNI )  is now recognised to play a m ajor role 

in secondary radiation damage to DNA [8 8 ], adding to the im portan t contribution of 

reactivity  involving radical cations and neutrals (notably OH") [93, 94].

W atson and Crick [95] were the first to identify the DNA structu re  -  the righ t-handed  

double helix. The helix is made of a sequence of nucleotides, each consisting of a 

nucleoside and a phosphate group [96]. A diagram  of DNA is shown in Figure 1.1. 

Nucleosides in tu rn  are made of a five-carbon sugar, deoxyribose, and a nucleobase: 

adenine, thym ine, guanine and cytosine. The coding of genetic inform ation is perform ed 

by the  specific sequence of nucleobases. Gregory et al. [97] have determ ined th an  the  

first hum an chromosome contains approxim ately 224 million nucleotides.
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Figure 1.2: Com plem entary base pairs in the W atson-Crick bonding configurations. 
Adenine is bonded to Thym ine (A -T  pair) via two hydrogen bonds, whereas Guanine 
share’s th ree hydrogen bonds w ith Cytosine (G -C  pair).

The two strands of DNA are held together by hydrogen bonds between individual bases, 

w ith adenine always binding to thym ine, and guanine to cytosine. Figure 1.2 shows the 

two base pairs in the  W atson-Crick bonding configurations of stable DNA (although 

other hydrogen bonding configurations are possible between nucleobases in different 

situations). The 7r-stacking of nucleobases along the length of a DNA strand  also plays 

an im portan t role in the dynamics of DNA, for example by providing a pathw ay for 

Proton-C oupled E lectron Transfer (P C E T ) [98]. This provides an incentive to study 

7r-stacked nucleobase clusters as well as hydrogen-bonded complexes. It is also worth 

noting th a t nucleosides of the two strands are bonded to the phosphate groups in two 

different places -  either via carbon C3 or C5 (see Figure 1.1). Therefore, the two strands 

have opposite directionality [99]. This opposite yet complementary nature of strands 

plays a critical role in DNA replication. Most cells in the hum an body replicate m any 

tim es during a lifetime. In the context of this thesis, the key point here is th a t the 

chemical environment of a nucleobase changes significantly during the DNA replication 

process. Therefore we should not only consider the most stable structure  of DNA 

when considering its nanoscale radio-sensitivity. Indeed, cellular radio-sensitivity is 

well known to  vary between different stages of the cell cycle [1 0 0 ].

The chemical environment plays an im portant role in determ ining the structu re  of DNA, 

w ith the level of hydration being particularly  significant [101]. Indeed, adequate hy

dration  (~  30 % by mass) is necessary to support the double-helical structure  of the 

DNA [102]. Furtherm ore, solvation of the bases creates a unique pa tte rn  of water
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molecules, depending on the sequence of the nucleotides. This helps the proteins to 

sense the base sequence from the outside of DNA [101, 103, 104]. The solvation shell 

around the double helix also allows specialised proteins to slide along the strands more 

easily [101]. Moreover, water molecules have been shown to mediate proton transfer 

reactions [105], stabilise neutral excited states [106], and lower ionisation energy [67]. 

However, while extensive studies have been carried out on condensed hydrated DNA 

and on its subunits in solution, the previous experimental research on hydrated clusters 

of DNA /  RNA bases (notably offering more direct detection of radiation products) is 

scarce.

Although DNA stores the genetic information, another nuclei acid, RNA, is used in 

cells for carrying instructions for protein synthesis. The structure of RNA is similar to 

DNA, but with several key differences. Typically RNA has a single strand, with the 

deoxyribose replaced with ribose. Furthermore, thymine is replaced in RNA by uracil. 

Indeed, most of the results presented in Chapters 4-7 are on uracil or its clusters (in

cluding hydrated uracil and adenine-uracil complexes). Three types of RNA are used 

in the protein synthesis process: messenger (mRNA, shown in Figure 1.3) to carry ge

netic information from the DNA into to the ribosome (where the protein synthesis takes 

place), transfer (tRNA) to transfer amino acids to the ribosome, and ribosomal (rDNA) 

which is a building block of the ribosome itself. It is also interesting that RNA preceded 

DNA as the vessel to store genetic information in early life forms . Greater chemical- 

and radio-stability is believed to have driven the evolutionary transition from RNA to 

DNA [107], although the specific nanoscale mechanisms responsible for the increased 

radio-stability of DNA are not yet fully elucidated. Apart from its important role as 

an RNA base, another incentive to study uracil arises from the role of its derivatives 

(notably halogenated uracils) in chemo-radiotherapy as radiosensitisers [108, 109].

Figure 1.4 shows schematically the most common types of DNA damage found in ir

radiated media. The formation of nucleobase radical cations and pyrimidine dimers 

(i.e. the formation of a covalent bond between the neighbouring pyrimidine bases) 

make up 80 % of the UV induced damage [110]. The ionisation measurements on isol

ated and clustered nucleobases in this thesis are particularly relevant to these damage
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Figure 1.3: A hairpin loop of mRNA. The single strand  loops onto itself. [1]
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Figure 1.4: Common types of DNA damage. Reproduced from [2].

routes. O ther im portan t types of damage include in trastrand , in terstrand, and DNA- 

protein cross links, where the sequence of links between the two strands is corrupted. 

Intercalations (i.e. insertion of molecules between the stacked bases) can also play a 

significant role. Moreover, DNA can suffer either loss or addition of bases, or base 

dam age by dissociative ionisation. Although the quantities of these damages are meas

urable macroscopically, the underlying physical pathways leading to their creation are 

only partially  elucidated. The study of gas phase biomolecules and clusters can provide 

insight to b e tte r understand  these processes.
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Single-strand breaks (SSB) and double-strand breaks (DSB) axe recognised as partic

ularly important classes of DNA damage. DSBs form when single strand breaks on 

opposite complementary strands occur in close proximity. The main cellular repair 

mechanisms for strand breaks are homologous recombination [111] (not always pos

sible) and nonhomologous end joining [112]. However, the latter method can be viewed 

as imprecise because the break can be rebuilt with a different sequence of nucleotides. 

SSBs and DSBs can be measured macroscopically using the agarose gel electrophoresis 

method [113]. However, the electrophoresis method does not provide information on 

the location of the strand break or on the specific interaction that initiated it. Hence, 

it is important to complement these studies with more fundamental experiments and 

calculations. For example, in their seminal paper in 2000, Boudai'ffa et al. [88] were able 

to demonstrate that DEA plays a central role in radiation damage to DNA by matching 

electrophoresis results with DEA measurements on gas-phase nucleobases.

Biologically relevant conclusions cannot be drawn from knowledge of the physical stage 

of radiation damage alone. In particular, physical damage to DNA or another key mac

romolecule must be considered in the context of biochemical repair. For example, the 

majority of cells possess defence mechanisms against oxidative damage, including base 

excision repair (BER) and nucleotide excision repair (NER) enzymes. Different types 

of DNA damage can be more or less dangerous according to the corresponding repair 

efficiency. Hence the propagation of harmful radiation effects is highly dependent on the 

specific nanoscale damage process. This point highlights the fundamental limitation of 

using macroscopic measures of radiation interactions with material (notably dose: en

ergy deposited per unit mass) to predict biological effects. Indeed, current radiobiology 

and radiotherapy depends on empirical correction factors to adjust dose-based predic

tions according to radiation type (for example incident X-ray photons compared ions) 

and tissue type. Nanoscale mechanistic characterisation of radiation damage is required 

to advance beyond these approximations. Indeed, the evidence base is widely recognised 

as being inadequate to support dose-based predictions of the effects low-intensity radi

ation exposure.
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1.3 Summary

The first stages of radiation damage in biological material (the excitation, ionisation 

and dissociation of important molecules due to primary and secondary radiation inter

actions) have not been fully elucidated. This represents a significant barrier to building 

multi-dimensional simulations of radiation effects that can overcome the limitations of 

models based on macroscopic data alone. Furthermore, understanding the radiation 

response of fundamental biological blocks in isolation and in diverse chemical environ

ments can provide clues into the molecular origins of life. This thesis explores UV- and 

electron-induced process in DNA and RNA bases. Studies of pure and hydrated clusters 

contribute to bridging the complexity gap between understanding radiation effects in 

isolated molecules and in condensed biological media.

1.4 Layout of the thesis

Chapter 2 introduces the fundamental concepts that govern radiation interactions with 

single molecules and clusters, as well as the principles of Stark deflection. Chapter 3 gives 

a detailed description of the experimental setups that I have exploited and developed 

during this PhD. Multi-photon ionisation (MPI) and electron impact ionisation (Eli) 

experiments on adenine and its hydrated clusters are presented in Chapter 4, with 

a particular focus on intra-cluster reactivity. The MPI and E li results in Chapter 

5 provide insights into bond breaking and dissociation of electronically-excited and 

ionised gas-phase uracil. These measurements inspired the ultrafast, time-resolved MPI 

experiments in Chapter 6. The effects of clustering on the radiation response of uracil 

are studied in Chapter 7. Chapter 8 summarises the main results in the thesis and 

discusses future work.



Chapter 2

Theory

The first aim of this chapter is to give an introduction to the interactions of photons 

and electrons with molecules and molecular clusters. The chapter then addresses the 

principles of molecular manipulation using electric field gradients (Stark deflection). 

After a brief introduction to the Born-Oppenheimer approximation, molecular orbitals, 

electronic excitation, electron attachment, ionisation, and fragmentation processes are 

discussed. Intermolecular forces responsible for the creation of molecular clusters are 

introduced, with an emphasis on hydrogen bonding, as this is the strongest bonding 

mechanism of the clusters studied in this work. Understanding the non-radiative relax

ation processes that govern the energy dissipation pathways is crucial to interpret the 

results presented in Chapters 4-7, while knowledge of electric field effects on molecules 

is required to understand the experimental development work in Chapter 3.

2.1 Molecules and clusters

2.1 .1  T h e  B o rn -O p p e n h e im e r  a p p ro x im a tio n

The Born-Oppenheimer approximation allows for the separation of molecular dynamics 

into separate, non-coupled electronic, vibrational, and rotational modes. Under this 

approximation, the total internal energy of a molecule can be expressed as the sum of 

the energies associated with the respective modes (equation 2.1).

13
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n orbital n orbital nQ orbital k* orbital cr(n-7i) orbital

Figure 2.1: Electron density for five orbitals in the valence shell of uracil. Reproduced 
from reference [3].

This provides an invaluable framework to help us understand excited molecules, bu t 

it is im portan t to keep in m ind th a t it is only an approxim ation of nature. Coupling 

between electronic and vibration motions is discussed in Section 2.1.4.3. R otational 

m otion influences vibrational excitation in a m anner similar to a centrifugal force, i.e. by 

elongating bonds [8 ]. However, these couplings are weak, and can be trea ted  effectively 

as pertu rbations in m ost situations.

2.1 .2  M o le c u la r  o rb ita ls

The molecular orbital model describes electronic m otion in molecules according to 

quantum -m echanical principles, i.e. using Schrodinger equation. Electrons are not 

assigned to  individual atom s, bu t ra ther their quantum  sta te  is determ ined by taking 

into account all nuclei as well as other electrons. Molecular orbitals represent these 

quantum  states in the same language as atom ic orbitals describe electrons’ sta tes in 

isolated atom s, i.e. as a region of space w ith high probability of finding the electron. 

The m easure of th is probability is called electron density. In stable molecules, regions 

of high density are usually found around atom s and along bonds. Figure 2.1 shows the 

density of the  valence shell electrons for five molecular orbitals in uracil. The right-m ost 

orbital if of particu lar im portance for this thesis, as it corresponds to a ring-opening 

transition  discussed in Section -5.4.2.

E 'to ta l — -^electronic 4" -^vibrational 4~ -Ej-otational (2 .1)
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Solving the Schrodinger equation for molecular orbitals is not possible analytically ex

cept for the simplest molecules such as homo-nucleic diatomics. A number of numerical 

methods have therefore been developed to tackle this problem, with the LCAO  ('Linear 

Combination of Atomic Orbitals) [8] methods being the most readily used. Equation

2.2 shows how single electron molecular orbitals, ipi, are built.

Where cSi are weighing coefficient, and Xs are the atomic orbitals. Specific selection of 

Xs is called a basis set.

Molecular orbitals in the valence shell are often delocalised over two or more nuclei -  

allowing for the electrons to be shared, and lowering the total energy of the system.

nificantly more complex shapes than atomic orbitals. The highest occupied molecular 

orbital is often referred to as the HOMO, while the lowest unoccupied molecular orbital 

is known as the LUMO. Experiments presented in Chapters 4-7 only probe the valence 

shell. Valence orbitals obtained through LCAO are given letter designation according 

to their shapes and function:

•  a  -  for perfectly symmetrical orbitals about the internuclear axis

•  7 r -  a 7r-type orbital is created by sideways overlap of two adjacent p-orbitals

•  n -  for orbitals not contributing to the binding energy of the molecule.

If the orbitals have antibonding character, a star is added after the letter to indicate 

this, e.g. 7r*. These definitions are descriptive and not mutually exclusive for molecular 

orbitals. Hence, some orbitals are described with two letter designation. For example, 

nucleobases studied in Chapters 4, 5 and 7 all have states of mr or an  character, some 

of them also exhibiting antibonding character. Other types of orbitals (e.g. Rydberg) 

can also mix with valence orbitals. A detailed description of molecular orbitals and 

molecular bonding is available in reference [114].

(2 .2)
s

Delocalisation of orbitals plays a critical role in chemistry, producing orbitals of sig-
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2 .1 .3  I n te r  m o le c u la r  fo rces

Intermolecular interactions are central to this thesis, as they determine the forces re

sponsible for the aggregation of molecules into clusters. Throughout this thesis, the 

term “molecular cluster” is used to represent a complex consisting of two or more mo

lecules. The molecules can be the same (homo-molecular), e.g. nitromethane dimers 

(and higher nitromethane clusters, see Section 3.5.1.1), or different (hetero-molecular 

clusters), e.g. uracil-water complexes described is Chapter 7. Other types of clusters 

(such as “valence clusters” with covalent bonds such as fullerenes [55], or atomic clusters, 

e.g. helium nano-droplets [115, 116, 117]), are not studied here. In this work, hydrogen 

bonding plays a particularly important role as it the mechanism responsible for both hy

dration of DNA /  RNA bases and producing their dimers and base pairs. Intermolecular 

forces can split into the following categories [118]:

2.1.3.1 T he London D ispersion forces &: th e  L ennard-Jones po ten tia l

The London dispersion force arises due to fluctuations in electron density in atoms 

and molecules. A multipolar expansion is often used to describe the attractive part 

of dispersion forces, with the first non-vanishing term being the instantaneous dipole- 

dipole interaction. The interaction potential, Vdisp, for the London dispersion forces is 

given in equation 2.3.

I'disp =  (2-3 )

Where r is the intermolecular distance, and C  is a constant dependent on polarisab- 

ility and ionisation energy. Higher multipoles are often omitted. At short distances, 

repulsion due to electrostatic charge and (mainly) the Pauli Exclusion Principle starts 

to dominate, typically as 1 /r12. Combining this with 2.3 gives the Lennard-Jones po

tential, V LJ, shown in equation 2.4.

(2.4)
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With e and ro being the binding energy and equilibrium distance, respectively. Due to 

the weak nature of these forces [118], binding energies are relatively low, ranging from 

< meV to several tens of meV (e.g. 24 meV for the Xe dimer)

2.1.3.2 D ipole-dipole and  higher m ultipole in te rac tion

For molecules possessing permanent dipole moments, their interactions tend to orient 

the molecules to achieve the minimum total potential energy of the system. For co- 

planar molecules with dipoles at an angle 9, the dipole-dipole interaction potential 

F dd can be written in the form of equation 2.5:

’/DD(r) = - S (1 _ 3 c o s2 e ) (2-5)

With jui, H2 being the permanent dipole moments, For two interacting dipoles of 1 Debye 

each, the bonding energy will be [118] approximately 15 meV at room temperature. 

Higher multipoles, despite generally not contributing much to the binding energy of the 

cluster, may play a role in determining the structure of the cluster. For example, the 

structure of (HF) 2  determined exclusively by considering dipole-dipole interaction would 

be linear. However, Dyke et al. have experimentally determined [119] that the angle 

between the molecular dipoles is approximately 60°. Examples of molecular clusters 

where quadrupole interactions dominate include dimers of CeH6 and perfluorobenzene 

(CgFg). Highly symmetrical molecules with low dipole moments, but strong quadrupole 

moments can result in T-shaped geometries for clusters [118], or 7r-stacking (shown in 

Figure 2.2). 7r-stacking is a broad term referring to a number of non-covalent interactions 

between 7r electrons. A detailed review of several types of interaction often refered to 

as 7r-stacking is available in reference [4].
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S  X r^ i

Figure 2.2: 7r-stacked (a) and T-shaped (b) benzene dimer. Reproduced from [4],

2.1.3.3 Induction  forces

Asymmetry of the charge distribution of a molecule can result in an induced dipole 

moment in a nearby molecule. In this case, the two induced dipoles now interact with 

each other with an attractive potential given by equation 2.6.

V DID (r) =  - M l<*2

(47re0) r
(2.6)

Where oli is the polarizability of the second molecule. Despite having a very similar 

mechanism to dipole-dipole forces, induction forces are far less susceptible to thermal 

effects -  the induced dipole moment follows the permanent dipole moment if it gets 

thermally reorganised. For a 1 Debye molecule with a neighbouring molecule with 

polarizability volume of 1023 cm3, binding energy will be approximately 8 meV.

2.1.3.4 H ydrogen bonding

A hydrogen bond can be schematically written as A — H  • • • B. The hydrogen is cova

lently bound to A, which is electronegative (e.g. Nitrogen, Oxygen, Fluorine etc.), and 

also interacts [118] with a second electronegative atom, B. Since A is electronegative, 

the charge concentrates around it, and moves away from the hydrogen. Hence, B , which 

is also electronegative, is electrostatically attracted to the hydrogen. At the same time, 

A  and B  repel each other, which tends to keep the hydrogen bond approximately linear. 

The binding energy is in 80% electrostatic, with the other 20% arising from induction 

and dispersion interactions, as well as charge transfer interactions. Figure 2.3 shows
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|—| Acceptor

Hydrogen bond 
«  ►

O' 111M11 iH— O
Donor

5+
Figure 2.3: Hydrogen bonding in w ater dimer. Bond length and angles for tem peratures 
from 0 to  80° C. can be found in [5] Local charge density denoted by 5

a schem atic diagram  of the  hydrogen bonded w ater dimer. T he hydrogen bond donor 

is the  molecule th a t is covalently bonded to the  hydrogen. The second molecule par

ticipating  in the  bond, w ith a partia l negative charge, is th e  bon d ’s acceptor. Typical 

hydrogen bonding energies he in the  range 100-250irieV , b u t much stronger bonds have 

also been observed. For example, the  strongest hydrogen bonded is difluoride negative 

ion [120, 121], w ith a bonding energy of 7 eV. Properties of hydrogen bonding include:

•  Bond angle is close to  180°.

•  H- ■ • B distance is significantly longer th an  the  AH covalent bond.

•  The associated covalent bond is stretched and its v ibration  is red-shifted

Hydrogen bonding is particu larity  im portan t in the  context of th is thesis. Hydrogen 

bonds axe the strongest bonds th a t form between the  neu tral molecules discussed in 

C hapters 4 and 7. In particular, purine derivative nucleobases bases (adenine, guanine) 

form hydrogen bonds w ith pyrim idine derivatives (thym ine, cytosine and uracil) in DNA 

and RNA. Hydrogen bonds provide a  potential “bridge” for p ro ton  transfer, and also 

partic ipate  in determ ining secondary and te rtia ry  structu res of proteins.
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Figure 2.4: Four types of M PI processes: (a) one photon resonant one-colour two photon 
ionisation ( 1 + 1 ); (b) one photon resonant two-colour two photon ionisation ( 1 + 1 ’); 
(c) two photon resonant one-colour three photon ionisation; and (d) non-resonant two 
photon ionisation. Reproduced from [6 ]

2 .1 .4  M u lt ip h o to n  io n isa tio n

Photon  absorption processes th a t lead to  the ionisation of the molecule can be char

acterised by the num ber of photons absorbed: single or m ultiphoton. M ultiphoton 

processes are typically labelled in a (n +  m) fashion, where n  is the num ber of photons 

th a t bring (or “pum p”) a ground s ta te  molecule into a neutral excited sta te , and m  is 

the  num ber of photons th a t are further required to remove (or “probe”) the electron 

from the bound s ta te  into the  continuum . For example, a  process th a t requires only one 

photon to  prom ote the  molecule from the ground s ta te  into an excited neutral s ta te , 

and one further photon to  ionise it, will be labelled as (1+1). If wavelengths of n  and 

m  are the  same, the  technique is called one colour, and if different, two colour. Two 

colour M PI is denoted by pu tting  a prim e next to  the m  num ber, e.g. (1+ 2’). Figure

2.4 shows four types of m ultiphoton processes [6 ]. In the  present work, the  M PI m ethod 

is used to  investigate electronic excited states, as well as providing inform ation about 

ionic states. Some other types of M PI investigate vibrational excitations -  molecules 

are pum ped into a v ibrational s ta te , and then ionised by another photon.
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At a given photon fluence it is clear that the longer the lifetime of the neutral excited 

state, the higher the probability for the molecule to absorb another photon (or photons) 

that would ionise it. If the process is resonant, i.e. the wavelength of the n photon 

matches the energy gap between the ground and the excited states, the technique is often 

called Resonance Enhanced Multiphoton Ionisation (REMPI). However, this term is not 

prefered in this thesis as the electronic excitations occurring in the present experiments 

are energetically broad. Non-resonant processes via virtual excited states induced by 

the laser axe more experimentally challenging as the virtual excited states are very 

short lived. Schechter et al. [122] reported seeing weak non-resonant MPI signals from 

xenon at 266 nm with a fluence of 7.49 x 109 W /cm 2. This is at least one order of 

magnitude higher fluence than achievable with the nanosecond system used for most of 

the experiments in this thesis (see Chapter 3 for experimental description and Chapters 

4, 5 and 6 for results), but still well below the level where field ionisation becomes 

noticeable (~  1013 W /cm 2 [123]).

The evolution of neutral electronic excites states is an extensive research topic with 

numerous applications. This is often studied with time-resolved multi-photon ionisation, 

where n photons are supplied by a Pump laser and m  photons are provided by a Probe 

laser. The time delay between pump and probe pulses gives the molecule time to 

evolve before the probe pulse arrives. Typical timeframes for electronic, vibrational and 

rotational excitations are <  10-15, 10~14 to 10-12, and 10-13 to 10-11 s, respectively. 

For the technique to be most effective and instructive, laser pulses are to be kept as 

short as possible, typically on femtosecond timescale1, while achieving high fluence.

In the non-resonant case [124], the order of non-linearity, K $, provides an estimation 

of the number of photons absorbed (the “photon order”) and follows relation shown in 

equation 2.7:

1For the OU experiments (Chapters 4, 5 and 7) one-colour nanosecond timescale laser was used. 
U ltrafast experiments described in Chapter 6 were performed w ith  a two-colour femtosecond timescale 
laser.
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Figure 2.5: Illustration showing potential energy curves for two states. Such curves 
could be in terpreted  as fragm ent of full potential energy hypersurface, p lo tted  in one 
dimension. Common features found on hypersurfaces are marked. Reproduced from 
[2]-

W here N{ is the num ber of ions produced (ion yield), and I  is the  laser pulse intensity. 

This simple relation is however not true  near sharp resonances [125], where a dram atic 

increase in ion yield is observed2. Near resonance, K q no longer represents the  num ber 

of photons absorbed due to the  shift of molecular energy levels in the laser-induced 

electric field (the S tark  shift, see Section 2.4.2). The laser intensities used to  derive 

photon orders in the  present work (up to 5 x 10' W /cm 2) are below the level where 

Stark shifts have been reported to be noticeable: 5 x 107  — 109  W /cm 2  [124]. However, 

this shift is state-dependent. In the context of the OU M PI experiments, where the 

ionisation relies on an absorption into a broad neutral excited state, it is im portant to 

note th a t broad sta tes are not affected significantly by Stark shifts [126], and therefore 

relation 2.7 provides valid m ethod to derive photon orders [127, 128].

N on-radiative evolution of the  molecule is determ ined by the shape and features of 

its po ten tia l energy hypersurface, which is a result of plotting the molecule’s potential 

energy as a function of its internuclear distances for all degrees of freedom. The main 

features commonly found on such hypersurfaces include (see Figure 2.5 for reference) 

the Franck-Condon region, local minima, avoided crossings and Conical intersections.

2e.g. in Section 5.5 of this work.



2.1. MOLECULES AND CLUSTERS 23

>05
a>ca>
•+=ca>
o
Q.

3O
_Q)O5

Internuclear distance

Figure 2.6: Franck-Condon principle illustrated. The m ost probable electronic tran s
ition will induce a change in the  vibrational s ta te  from V5 —0 to  V ’—3. Reproduced 
form [2 ].

2.1.4.1 Franck-C ondon principle

Following photon absorption, electronic transitions in molecules occur on a  very fast 

timescale. Indeed, the  Franck-Condon principle sta tes th a t the  transition  is so fast 

th a t the nuclei have no tim e to  change their positions. As a result, the  molecule finds 

itself in a  vibrational s ta te  w ith the same internuclear distance as the  original s ta te . 

The m ost probable transition  occurs from a point where vibrational m otion is abou t to  

reverse, i.e. the  kinetic energy associated w ith the vibration  is a t its  m inim um . T his can 

be schematically represented by the vertical line in Figure 2.6. Hence, the  associated 

excitation energy is called Vertical. In contrast, in a  transition  directly  into the  lowest 

vibrational level of an electronic excited sta te , the  associated energy is nam ed Adiabatic.

2.1.4.2 R ad iative decay

A fter excitation into a neutral excited sta te , a  molecule can de-excite radiatively via 

one of the  following processes:

•  Fluorescence -  for deactivation involving sta tes  of the  same m ultiplicity. T rans

itions typically occur between 0 . 0 1  and 1 0  /xs.
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• Phosphorescence -  for transitions involving a change in the multiplicity, e.g. 

triplet-singlet. Phosphorescence generally occurs between ground vibrational states 

of the excited triplet and the vibrationally-hot electronic ground state. These are 

slow processes with lifetimes up to several minutes.

The two decay mechanisms described above are too slow to have a significant effect in 

MPI experiments described in Chapters 4, 5 and 7, as the molecules investigated in this 

thesis relax in a radiationless way on much shorter timescales.
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Figure 2.7: D iagram s showing a close-up of the S2  -  Si conical intersection in pyrazine. 
A diabatic surfaces are shown in (a), diabatic in (b) Reproduced from [7]

2.1.4.3 N on-radiative decay

Non-radiative decay mechanisms of polyatom ic molecules are discussed in detail in [8 ]. 

Potential energy hypersurfaces derived under the Born-O ppenheim er approxim ation 

(nuclear m otion is slow enough for the  electrons to adjust im m ediately) are referred 

to  as adiabatic po ten tial energy surfaces. W hen the Born-O ppenheim er approxim ation 

breaks down [129, 130, 131] (which is typical in the  region where the energy gap between 

two sta tes is low), a representation using diabatic surfaces is more convenient. Figure 

2.7 shows the two approaches for describing the S2  — Si conical intersection in pyrazine, 

studied theoretically by Woywod et al. [7] using C ASSC F  (com plete-active-space self- 

consistent-field) and M R C I (multireference configuration interaction) techniques.

To discuss non-radiative evolution in more detail, let us consider Figure 2.8. Two adia

batic surfaces represent excited (upper, E - )  and ground (lower, E +) electronic states. 

Each of these surfaces comprises two diabatic lobes-representing products (white) and 

substrates (grey). The crossing region is called a conical intersection {C l). Following 

electronic excitation in the Franck-Condon region (labelled FC in Figure 2.8), the  sys

tem  finds itself on a slope of the potential energy hypersurface. In the  vicinity of the  FC 

region, the  E -  potential energy hypersurface has the shape of a well. A side of th is val

ley might have a shape of a local maxim um  along a particu lar internuclear coordinate. 

Then, the top of this local m aximum is denoted as the  saddle point (TS -  transition  

point in Figure 2.8). Depending on the am ount of kinetic (i.e. vibrational) energy, the 

system  might go through the Franck-Condon minim um  (M*) and reach the top  of the
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Figure 2.8: Illustration of non-radiative decay via a conical intersection. Reproduced 
from [8 ]

saddle point. This local energy barrier might also be overcome by tunnelling. If the 

system  goes over the saddle, it will w ith near unity  probability go through the conical 

intersection (C) and find itself back on the surface representing the electronic ground 

sta te . After going through the conical intersection, the system can either evolve back to 

the ground s ta te  m inim um  (point P ’), or continue the other way, towards point P, which 

could lead either to dissociation or more complicated dynamics. The to ta l energy of the 

system  m ust be conserved, so the transition  only occurs if there is a way to dissipate 

the excess energy to either vibrational, ro tational or translational degrees of freedom. 

Furtherm ore, energy can be transferred to a neighbouring molecule.

The m ultiplicity of a s ta te  of a molecule is equal to 25  +  1  where S is the sum of the 

spin quantum  num bers of the electrons in the molecule. If all electrons’ spins are paired 

(5  =  0 ), th is leads to  a singlet state. Alternatively, antiparallel orientation of spins 

leads to 5  =  1  and m ultiplicity of three. Such states, being triply degenerate (i.e. there 

are 3  possible orientations of spin vectors and their projections) are called trip le t states. 

D epending on the  m ultiplicity of the states involved, the  transition  is termed:
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•  Internal conversion, IC -  if there is no change in the multiplicity (i.e. singlet- 

singlet or triplet-triplet)

•  Inter-system crossing, ISC -  when the multiplicity changed during transition, i.e. 

singlet-triplet

Transitions that involve a change of multiplicity are normally strongly forbidden, since 

the spin-overlap integral is zero (spins are orthonormal). The spin overlap integral, M s, 

is shown in equation 2.8.

M, =  J  SiSj drs (2.8)

Where Si and Sj represent spin functions of the respective states involved in the trans

ition. Transitions of this kind can, however, occur due to spin-orbit or vibronic coupling. 

The Spin-Orbit interaction can be modelled using perturbation theory by introducing 

for every electron a perturbing Hamiltonian, H s - o , that can be written in form of 

equation 2.9.

H S- o  =  < - ( l - S )  (2.9)

Where (  is the Spin-Orbit coupling constant, L - orbital angular momentum operator, 

and S  - the spin angular momentum operator. It can be shown that the perturbed 

triplet state can be expressed by equation 2.10:

■*$* (2-io >

Where Si is the i-th singlet state. Hence the probability of the inter-system crossing is a 

function of the coupling matrix element. For atoms, the strength of spin-orbit coupling 

depends on atomic number as z4 [132]. In molecules, the transition is enhanced in 

the presence of a heavier atom, but the z4 dependence needs to be scaled to represent 

the probability that an electron is near the atom. Indeed, substitution of an oxygen 

atom by sulphur in nucleobases has been reported to disable IC and make ISC the most
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efficient radiationless deactivation pathway (see Richter et al.’s work [37] and references 

therein).

Transitions forbidden on the ground of mismatched molecular symmetry also can be 

weakly allowed if the molecular geometry is briefly distorted due to vibrational motion. 

This mixing of vibrational and electronic motions [133] is called vibronic coupling. The 

fact that transitions involving a change of multiplicity are only very weakly allowed 

leads to triplet states having long lifetimes.

2.1.4.4 D ynam ics in m olecular com plexes

In addition to transitions observed in isolated molecules, molecular complexes allow for 

extra channels of dynamics, mainly:

• Charge-transfer transition -  Occurs in complexes containing both electron donors and 

acceptors [59].

• Formation of Excimers - An excimer is a complex that is weakly bound if one member 

is electronically excited but dissociates when it returns to ground state [134]. Clusters 

formed on the same principle as excimers but with more than two species are called 

exciplexes.

• Proton Transfer -  Transfer of a proton from an excited or ionised molecule in a 

cluster into a neutral partner ([135, 136]). Proton transfers are routinely observed in 

the hydrogen-bonded clusters studied in this work (see Chapter 7). Indeed, the presence 

of protonated species is an indicator of good clustering conditions.

•  Intra-Penning Ionisation -  If molecule A in a complex is excited above the ionisation 

potential of another member of the cluster (B ), the system can [137] lower its total 

energy by autoionizing B  at the expense of A’s excitation (A*B —> A B + +  e~ ).

2.2 Ionisation and appearance energies

The ionisation energy is the energy required to remove an electron from an isolated 

molecule. The molecule is assumed to be in its ground vibrational state. There axe
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two ionisation energies: vertical and adiabatic -  the naming convention follows that of 

vertical and adiabatic excitation energies described in Section 2.1.4.1. As the energy 

required to remove an electron depends on the orbital that the electron is removed from, 

a term first, second, etc. is often added. Hence, the first ionization energy is the energy 

required to remove an electron from the HOMO.

By analogy, the appearance energy of a given fragment ion is the minimum energy 

required to produce the ion by excitation of the ground-state molecule to a dissociative 

ionic state. The analysis of fragment ion production from molecules and clusters is a 

major part of this thesis.

2.3 Electron induced processes

Electron induced processes is a general term encompassing all phenomena initiated by 

an incident electron. In the context of this thesis, the most important ones are Electron 

Impact Ionisation {Eli)  and Electron attachment {EA). The former is routinely used 

to draw comparisons with MPI in Chapters 4, 5, and 7. E li is also the main probe for 

optimising the Stark/EA experiment (Section 3.4). If an incident electron has >  the 

relevant threshold energy, it can excite a molecule to any neutral or ionic state accessible 

from the molecule’s initial state (i.e. electronic and vibrational ground state in most 

of the experiments described in this thesis). Electron attachment, however, follows a 

different mechanism -  trapping the electron depends on discrete states, and hence is a 

resonant process. The study of electron attachment in controlled molecular beams is 

the main objective of the Stark /  EA experiment.

Another electron induced phenomenon, not probed in this work, is electron-induced 

neutral electronic excitation. Electron collisions can initiate “optically forbidden” trans

itions with far greater efficiency that photons, as they are not subject to optical selection 

rules. A detailed description of electron-induced neutral electronic excitations can be 

found in reference [138].
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2.3 .1  E le c tro n  Im p a c t  Io n isa tio n

The theory for electron impact ionisation, despite it being one of the first electron- 

molecule interactions to be investigated [139], is still not fully resolved [138]. The 

principal difficulty is the treatment of both continuum electrons (the projectile and 

the ejected electron), as well as the ion, until they are well apart. This requires a full 

solution to a three body problem. Additional complexity arises since ionisation is rarely 

a single channel process. Ions can be produced directly or via autoionisation following 

impact-induced excitation, including Auger processes (these involve relaxation following 

the promotion of an electron from an inner shell orbital to an unoccupied orbital). 

The ionisation of molecules can be non-dissociative or dissociative, often with multiple 

channels resulting in the production of the same fragment ion.

Electron impact ionisation can be characterised by various cross sections, such as total 

cross section, partial cross sections and differential cross section. These can be measured 

experimentally (with varying levels of difficulty; the necessary characterisation of beams 

seeded with low vapour pressure species such as nucleobases is particularly challenging) 

or calculated at various levels of theory (such as Binary Encounter Theory, Plane- 

Wave Born Approximation, or First Born Approximation). Total E li cross sections for 

DNA bases and uracil, calculated using the binary-encounter-Bethe model, are shown in 

Figure 2.9. The typical energy (200 eV) used in electron impact experiments described 

in this thesis has been marked. For these molecules, the cross section increases in an 

intuitive manner with the molecule’s size.

2.3 .2  A tta c h m e n t

Electron attachment (EA) will be probed in the future using the Stark/EA experiment 

(the development of which is described in section Section 3.4. However, this thesis does 

not present EA results so it is only described very briefly here. References [140, 141] 

axe recommended for the full review of EA processes.

Electron attachment occurs when a free electron attaches to an atom or a molecule 

to form a transient negative ion (TNI). The process reveals information about the
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Figure 2.9: Total ionisation cross sections of all DNA bases and uracil, calculated using 
an Independent Atom Model. Reproduced from [9].

symmetry, binding energies, and spatial charge d istributions of m olecular o rbitals th a t 

are no t occupied in the  neutral molecules. The form ation of a  TN I is in a  resonant 

process, w ith resonant energies generally below 20 eV. TNIs are therm odynam ically  

unstable species (with typical lifetimes in the range of 1 0 _1° — 1 0 - 1 4  s) and can decay 

via two mechanisms: an autodetachment or a  dissociation. In the  la tte r  case, the  TN I 

can dissociate into a  stable negative ion and a n eutral fragm ent in a  process referred to  as 

Dissociative E lectron A ttachm ent (D E A ). DEA processes are of particu lar im portance 

in biomolecules due to  the ir link w ith single and double strand  breaks of the  DNA [8 8 ]. 

TN I resonances can be divided into four categories: shape resonances, core excited shape 

resonances, Feshbach resonances and vibrational Feshbach resonances.

In a  shape resonance, the incident electron is trapped  in a po ten tia l well w ith the 

molecule in its ground electronic state. The potential well arises from the  in teraction  

of an a ttrac tive  polarisation potential w ith a repulsive centrifugal po ten tia l, due to  

the  relative m otion of the  two bodies. The trapping  occurs due to  th e  shape of th is 

potential, giving the resonance its name. M ost of the  shape resonances occur a t low 

energies ( 0 - 4  eV), and have lifetimes in the range of 10~ 1 5  -  10 - 1 0  s or longer.

Core excited shape resonances (or valence excited resonances) as well as Feshbach res

onances form when the target molecule is in an  excited electronic s ta te , ra th e r th an  the
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ground state. Similarly to the shape resonances, in the core excited shape resonances 

the trapping occurs due to the shape of the effective potential well. Feshbach reson

ances describe the formation of anion with an electron trapped in a virtual state of 

lower energy that the neutral excited state of the target molecule. Core excited shape 

resonances have two electrons in orbitals that are normally unoccupied, and a hole in a 

lower, normally occupied orbital. Typical energies of core excited resonances lie within 

the 8 — 12 eV range.

Vibrational Feshbach resonances involve vibronic coupling in the target molecule. The 

energy of the incident electron is distributed across the vibrational modes of the mo

lecule. The anionic state has energy lower than the ground state of the parent mo

lecule. Hence, this type of a resonance often leads to a production of stable anions. For 

many polyatomic molecules TNIs exhibit very long lifetimes against autodetachment 

(>  10"6 s) [141].

The long range attraction of electrons to neutral molecules depends on the molecule’s 

dipole moment, while vibrational excitation (vibrational Feshbach resonances), and elec

tronic excitation (core-excited shape resonances) also play key roles. Clustering modifies 

dipole moments, molecular geometries (and hence vibrational excitation), and electronic 

states so it has major effects on EA. Accordingly, several papers have demonstrated 

shifts in DEA resonances [142, 90], as well as in EA cross sections [87] due to clustering. 

To clarify these effects, we aim to perform the first EA experiments on selected clusters.

2.4 Stark Deflection

In any crossed beam experiment on molecules or clusters, it is clearly advantageous 

to have the tightest possible control over the target. Ideally, the target should be in a 

single, and pre-defined state (e.g. the electronic, vibrational and rotational ground state 

of a specific isomer). Charged particles can be manipulated relatively easily using elec

tric fields, according to their mass-to-charge ratio, or with devices such as ion-mobility 

spectrometers. The manipulation of neutral beams poses a much greater experimental 

challenge [143]. The MPI /  E li experiments presented in Chapters 4, 5 and 7 only enable
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the target to be modified by changing the expansion conditions of the supersonic jet. 

This offers only limited control. The new Stark /  EA experiment (development described 

in Chapter 3) applies the Stark-deflection technique to manipulate neutral species in 

our molecular beams. This method uses an inhomogeneous electric field and was first 

used to deflect small molecules [144], and hence determine their permanent dipole mo

ments. More recently, Filsinger et al. [83] extended it for the separation, alignment 

and orientation of large polar molecules (3-Aminophenol, Benzonitrile, Iodobenzene). 

Trippel et al. [85] have recently used this technique for the separation of Indole — H2 O 

clusters [85] from indole molecules, water molecules, and larger indole-water clusters in 

a mixed beam.

Stark deflection uses strong inhomogeneous electric fields to interact with a beam of po

lar molecules or clusters. The method can be rationalised in classical terms as follows. 

The polar molecules orient themselves in the field direction. Then, due to the inhomo

geneity of the electric field, one side of the dipole finds itself in a stronger field than the 

other. Hence there is a net force applied to the molecule. The resultant acceleration 

is proportional to its dipole moment over mass ratio. The following sections introduce 

the key quantum concepts of the technique.

2.4 .1  S ta rk  effect o n  m o lecu les in  s tro n g  e le c tr ic  field .

Let us consider a molecule in an electric field of intensity defined as e =  |f|. The symbol 

e has been chosen here to avoid confusion with energy E. The Stark shift, i.e. the 

change of energy of a quantum state due to the presence of an external electric field, 

can be calculated using second-order perturbation theory, with the states labelled with 

quantum numbers J, and M, for the angular momentum, and its projections onto the 

axis of the external field, respectively. In the idealised case of a rigid rotor molecule, it 

is useful to introduce a dimensionless coupling constant, uj =  fie/R  with the permanent 

dipole moment /i (in Debye, or C • m in S.I. units) and rotational constant R  (in units 

of energy).

The force acting on a dipole in an electric field depends on the orientation of the dipole 

with respect to the field. The energy of some quantum states will increase with field,
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or, in other words, it is more favourable for them to move to a region of space where 

the field is lower. Hence, they are called low-field-seekers, LFS. Similarly, states whose 

energy decreases with the field are known as High-field-seekers, HFS. In weak fields, 

molecules rotate like a pin-wheel, and no net deflection of a population of molecules 

is observed. However, for the low-lying J  states, a strong electric field can induce a 

transition from pin wheeling rotor into a pendular librator confined to oscillate in a 

small angle around the direction of the field.

In order to derive the Stark-Shift in a strong field, an assumption has to be made that 

the transition from freewheeling to pendular states is instantaneous. This is true under 

the assumption that the strong field arises adiabatically, which is justified by the fact 

that the domain of rotational motions covers 1CT11 to 10~13 s, while the passage through 

the fringing field of a Stark deflector is typically of the order of 10-5 s [145].

For simplicity [10], let us consider a rigid linear molecule in a uniform electric field. In 

this case, Schrodinger’s equation is as equation 2.11:

(J2 -  oj cos e) I J, M; w) =  E  \ J, M; w) (2.11)

With J 2 being the squared angular momentum operator, 6 the angle between the axis 

of the dipole moment, and the external field, and E  the energy. For oj  -» 0, both J  and 

M are good quantum numbers. In the presence of the field, i.e. oj ^  0, only M remains 

a good quantum number, as states within each J  manifold have now different energies 

with |M|.

For the bound pendular states with energies below field-free J — 0 level, the dipole 

oscillates around the positive side, i.e. with \9\ <  0. For the states with energy greater 

than that of field-free J  =  0, the dipole overshoots the |0| =  0 mark, and then slows 

down until stopped, then the motion is reversed. This means that, for the most of the 

time, the dipole is pointing in the opposite direction to the external s field.

In a strong field, a new quantum number up can be introduced, in the form of equa

tion (2.12). The level mapping is illustrated in Figure 2.10. The Stark shift W  is given 

by equation 2.13:
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Figure 2.10: Mapping diagram of Field-free (cu =  0) to strong field rotational states. 
Reproduced from [10].

vp — 2J — \M\ (2 .12)

W  ( v p ,uj )  / R  =  - o j  +  ( v p +  1) (2u;)1//2 (2.13)

A detailed description of the calculation method for the asymmetric top molecules, for 

any orientation of their permanent dipole moment, can be found in [146]. Filsinger 

et al. [83] calculated Stark energy curves for 3-Aminophenol (Figure 2.11a) and for 

ytterbium fluoride (Figure 2.11b). Typically, in weak fields small molecules are in low- 

field-seeking states (LFS), that is, their energy decreases with increasing external field 

strength. For large molecules, however, coupling between closely spaced states of the 

same symmetry transforms low-field seekers to high-field seekers in the relatively weak
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Figure 2.11: Stark energy curves for: a) -  selected low rotational states of benzonitrile. 
The upper inset shows the molecules structu re  and its relevant param eters [11]. The 
lower inset shows all sta tes w ith a field-free energy below 1.2 cm -1 for lower field in
tensities, and b) - y tterb ium  fluoride. The transition  from low-field-seeking regime to 
high-field-seeking is visible. The bottom  plot shows the effective dipole m oment for 
the corresponding stark  curves. Reproduced from [12]

field regime. Transitions of this kind can be seen in the changes of m onotonicity of the 

curves in Figure 2.11b.

As the energy shift is state-dependent, it is useful to introduce an effective dipole mo

m ent, defined in the form of equation 2.14:

Hence, the effective dipole m oment is the negative slope of the Stark energy curve. This 

param eter is the m ost convenient way to describe how a molecule in a given s ta te  will 

respond to  the S tark deflection technique, as described in the next section. Combining 

equations 2.13 and 2.14 in the strong field limit, the effective dipole moment can be 

given by equation 2.15:

d\V
(2.14)

(2.15)

The s ta te  dependency is only lifted when \ /2 u  up + 1, and the fraction becomes 

negligible, i.e. the external field is sufficiently strong. Such strong fields are, however,
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not within the scope of this work -  the maximum achievable field in our Stark-Deflector 

(see 3.4.1.2) is 120 kV/cm (the main limiting factor is the risk of discharges that could 

damage the surface). Stronger fields can be achieved by utilizing short intense laser 

pulses, for example of the order of 1015 W /cm 2 [123]. It is therefore clear that the 

effective dipole moment is largest when the molecule is in a low up state.

Rotational energy levels correspond to the microwave part of the EM spectrum. The 

spacing between levels is proportional to rotational constants of a molecule, which in 

turn are inversely proportional to its moments of inertia. Hence, larger and bulkier 

molecules (higher moments of inertia) have smaller rotational constants and, as a 

consequence, higher density of rotational states. For example, the CO molecule’s 

J ’ <— J  =  1 •*— 0 transition [147] has an energy of 0.468 meV , whereas an analogous 

transition in benzene — di has an energy [148] of 0.033 meV, corresponding to temper

atures of 5.43 and 0.38 K, respectively. Methods used to achieve such low temperatures 

are described in 2.4.2.

For a polar molecule in an inhomogeneous electric field, the net force acting on it due 

to the Stark effect follows the equation 2.16:

F  =  /ieffVe (2.16)

Above, we have shown that we can manipulate the energy of a polar molecule in a 

given rotational state by applying a strong external electric field. But how can we 

use this to move a polar molecule in space? The key is to set up a volume with an 

electric field gradient, and pass molecules through it. In this case, the net force acts 

on the passing molecules and gives them a velocity component perpendicular to their 

propagation axis. For example, benzonitrile (one of molecules used for the optimisation 

of Stark/EA experiment described in Section 3.4) in a 100 kV/cm field exhibits a Stark 

shift of —6.71 cm-1 , and an effective dipole moment of 0.0711 cm-1 /(kV /cm ) [12]. 

Filsinger et al. [84] have observed a « 2  mm deflection of benzonitrile at the distance 

of 0.22 m after their Stark deflector.
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2.4 .2  R o ta tio n a lly  co ld  m o le c u la r  b e a m s .

As shown in equation 2.15, in order to achieve a high effective dipole moment for a Stark- 

deflection experiment, it is important to produce a target beam which is as rotationally 

cold as possible. Also, a rotationally cold ensemble has fewer states occupied with 

significant population. The probability pi that a system having temperature T  will be 

found in state with energy e* can be expressed in form of equation 2.17 (Boltzmann 

rotational distribution [149])

r  =  eXp(- ^ /fcbT) (2.17)

Where kb is the Boltzmann constant (kb =  8.617 • 10-5 eV/K), and Q is the system’s 

partition function, i.e. the sum of Boltzmann factors for all accessible states. Assuming 

that the population of states is negligible above a certain rotational energy, an ensemble 

will have “bands” of rotational states for different species in the beam. Narrowing these 

bands helps to achieve more effective Stark separation, as this reduces the overlap 

of populations. In the present work, molecular cooling is achieved in a supersonic 

expansion.

Molecular beams can be produced in two distinctive limiting cases: effusive or supersonic 

[150]. Effusive beams are formed when the great majority of molecules experience no 

collisions as they leave the reservoir, i.e. when the mean free (Ao) path is much larger 

that the diameter of the orifice (D) (Ao »  D). As there are no collisions during 

expansion, effusive beams have similar temperatures (internal temperatures, as well 

as translational) as the reservoir. Supersonic beams, on the other hand, are perfectly 

suited for producing beams of internally cold molecules. Due to high number of collisions 

during expansion, they also allow for nucleation and are widely used as cluster sources - 

collisions provide the only opportunity to convert one type of thermal energy to another 

(i.e. internal to translational or vice-versa). Supersonic beams are discussed in more 

detail in the following section.
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Figure 2.12: Continuous free-jet expansion (Reproduced from [13])

2.4.2.1 Supersonic Expansion o f gas

A supersonic jet is formed when a gas is expanded through an orifice that is significantly 

larger than the mean free path of the gas particles, as summarised in expression 2.18 

below.

A0 <  D  (2.18)

The expansion can be divided into three regimes [15]:

• Near-nozzle regime the jet density is high enough that collisions are frequent 

enough to maintain equilibrium conditions. Modelling this expansion stage is 

relatively easy for monoatomic gases, as it follows ideal-gas models.

•  Intermediate stage: the jet density falls to a point where internal degrees of free

dom gradually decouple (see Section 2.4.2.6 for detailed description of vibrational 

and rotational cooling)

• Molecular flow regime: the final stage where jet density has dropped to a point 

where collisions are so infrequent that no further cooling occurs and the gas flow 

can be treated as a free molecular flow.

The transition points from one regime to another are not precisely defined, as the process 

has a continuous nature. However, for the typical conditions of the present experiments
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the free molecular flow regime can safely be assumed at a distance of 20 D from the 

nozzle orifice [151]. This corresponds to 1  mm in most of the experiments in this thesis.

Due to the interaction with the background gases, two distinctive shock zones develop 

(see diagram in Figure 2.12): barrel shock and Mach disk. The barrel shock forms an 

envelope around the centreline of the expansion, while the Mach disk is a nearly flat 

terminal shock wave perpendicular to the propagation axis. The location of the Mach 

disk can be expressed by a simple formula [151] shown in equation 2.19:

xM =  0 .67D x[ m  (2.19)
V Pb

Where po is the pressure in the gas reservoir and pb is the residual pressure in the 

expansion chamber. The “zone of silence” is the area enveloped by the barrel shock and 

terminated by the Mach disk where the local speed of sound drops to a near-zero value. 

The flow is nearly undisturbed until the Mach disk, where significant turbulence is to 

be expected.

In order to perform experiments on the beam in high vacuum conditions, a skimmer is 

typically place inside the zone of silence. This allows for transmitting the central “core” 

of the beam into another chamber. By placing the skimmer in the zone of silence, 

the turbulence from the Mach disk can be avoided. Skimmers are often placed some 

distance from the chamber wall, to avoid interaction with the gas particles scattered 

from the back wall, and are of aerodynamic shape with a sharp edge, to minimise the 

possibility of introducing any turbulence by the skimmer.

2.4.2.2 T ranslational cooling o f expanding gas

Translational cooling is linked to the velocities of the atoms /  molecules with respect to 

each other. Figure 2.13 shows a typical thermal (Maxwell-Boltzmann curve) distribution 

for a static gas as well as two supersonic jets.

It is often useful to express beam velocity in term of its Mach number, i.e. the ratio of 

the average flow velocity of the gas to its speed of sound. The flow is then sub-sonic if
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Figure 2.13: Velocity distributions for two Mach numbers in supersonic jets. Maxwell- 
Boltzmann distribution of the reservoir gas marked as M  =  0. Reproduced from [13]

the Mach number is lower than unity, and supersonic when higher. Due to substantial 

cooling of the gas during the supersonic expansion, its local speed of sound is greatly 

lowered, as it is oc V T  [150]. During the expansion, the enthalpy of the system is 

conserved (equation 2 .2 0 ).

of the gas and its velocity, respectively, at position x. Since the flow of a supersonic jet 

is directional, the mean velocity of the gas is no longer equal to 0 . This means that the 

translational temperature of the gas is no longer determined by the root-mean-square 

of the velocity distribution (proportional to the average kinetic energy of the particles), 

but by the width of said distribution.

By analysing equation 2.20 one sees that the limit on the maximum velocity, %ax, is 

imposed when all the enthalpy gets transformed into kinetic energy (equation 2 .2 1 ).

H  (x) +  2 m v (x )2 =  constant (2 .20)

Where m  is the mass of the atom/molecule, and H{x) and v{x) are the molar enthalpy

'max (2.21)

Where H{Tq) is the enthalpy of the gas at the temperature of the source reservoir. 

Terminal velocities predicted using equation 2.21 for several noble gases, expanded 

from a reservoir kept at 300 K, are given in Table 2.1.
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Table 2.1: Terminal velocities for a selection of noble gases, at room temperature, and 
at 530 K. This temperature corresponds to a typical temperature of the sample powder 
in experiments described in Chapters 4, 5 and 7.

Gas Term inal velocity  [m /s]

300K 530K

Helium 1770 2300

Neon 786 1032

Argon 559 730

Krypton 386 510

Xenon 308 406

In this idealised continuous model the cooling happens indefinitely, following the relation 

in equation 2.22, where B  is a parameters specific for the expanding gas, xo the position 

at which the expansion begins, and 7  is the ratio of specific heats of the gas. In reality 

the density of the beam soon drops to a level where collisions are not likely. This 

prohibits the gas from maintaining thermal equilibrium and the cooling stops. The

terminal Mach number, My, can be expressed [150] in the form of equation 2.23:

M t  =  G ( ^ j  ^  (2.23)

Where G  is a parameter dependent only on 7 . A collisional effectiveness parameter e 

denotes maximum fractional change in the mean random velocity per collision (depend

ent on the chosen gas). For argon, equation 2.23 takes the form [151] of equation 2.24, 

when pressure po is expressed in bars and orifice diameter in centimetres.

Mt =  133 • (p0D )0A (2.24)

Equation 2.24 in fact approximates any well behaved monoatomic gas, with the not

able exception of helium [14]. Classical mechanics calculations for helium, give good 

approximations at low values of the pqD  product. For example, pqD  should be less
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Figure 2.14: Term inal speed ratios (Vmax/ Vrhermai) of a) helium and b) neon, as a 
function of poD  product. Solid curves have been produce w ith quantum -m echanical 
calculations, whereas the  dashed lines are for classical mechanics calculations. Repro
duced from [14] .

th an  50 m bar • cm to apply classical mechanics calculations to an expansion of helium 

at room tem perature. Above this value quantum  mechanical calculations m ust be used. 

Figure 2.14 shows the ratios of term inal velocity to m ean therm al velocity (directly 

proportional to term inal tem perature) for helium and neon. The quantum -m echanical 

curve for helium clearly shows improved cooling at high poD  product values. In neon, 

this effect is barely observable.

Using the Mach num ber, equation 2.22 can be rew ritten as follows:

The term inal translational velocity of the je t can be obtained by substitu ting  M (x )  

in equation 2.25 w ith its term inal value given by 2.23 or, for the case of argon, 2.24. 

Hence, to obtain a lower final translational tem perature, one m ust

•  Use colder gas in the upstream  reservoir

• Use gas w ith fewer degrees of freedom, ideally a monoatom ic, or

•  Increase poD  product.

(2.25)

Furtherm ore, the most effective translational cooling will be achieved in a gas w ith  fewer 

degrees of freedom (ideally an atom ic gas). Internal degrees of freedom are critically
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important in Section 3.4 and Chapters 4, 5 and 6 . The vibrational and rotation cooling 

of molecules is described in Section 2.4.2.6 .

2.4.2.3 M ass flow

Using the continuity equation and Bernoulli’s equation, it is possible to derive the 

expected flow rate through an orifice [152]:

Where m  is mass and t -  time. A  is the area of the orifice and R (R =  8.31 J/mol/K) 

is the gas constant. By grouping parameters together, equation 2.26 can be expressed 

in a simpler form of 2.27.

Therefore, for any given gas at a stable temperature, the gas load is proportional only 

to the reservoir’s pressure and nozzle diameter squared.

2.4.2.4 Seeded beam s & velocity slip effect

Seeded molecular beams are created by adding a small amount of a second species 

into the carrier gas. The resulting mixture will behave as a single-species gas with 

its properties expressed as a weighted average of the constituent gases. Hence, if the 

amount of the seeded gas is small, the behaviour of the mixture is dominated by the 

more abundant (and typically lighter) species. During the expansion, if the reservoir 

pressure is high enough, the lighter buffer gas particles will impact on the slower heav

ier ones repeatedly, accelerating them nearly to their own velocity. Furthermore, the 

heavier molecules reach nearly the same terminal temperature as the buffer gas, which 

is typically much lower than could be achieved by expanding a pure gas of the seeded 

molecule.
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However, if the pressure of the buffer gas is low to moderate, the “velocity slip” effect 

may be observed. In these conditions, the initial acceleration of the heavier species is 

incomplete, and the seeded molecules “lag behind” the carrier gas [153], and therefore 

the two constituents reach different terminal temperatures. The velocity slip effect is 

more pronounced for the lighter carrier gases. Amirav et al. [153] have investigated this 

experimentally, and indeed their results suggest the cooling efficiency follows natural 

order of He < Ne <  Ar <  Kr <  Xe. To achieve the same amount of cooling with He as 

with Xe, the flow rate of the gas had to be increased by a factor of 400.

2.4.2.5 C lustering

During the initial stage of expansion, multi-body collisions are frequent in supersonic 

beam, and the temperature of the gas decreases rapidly. These conditions are perfect 

for cluster formation. This has been noticed very early in the studies of supersonic 

beams and has led to extensive research [83, 154, 155, 156] on molecular complexes 

formed this way. Classical nucleation theory cannot be used to describe the clustering 

process in supersonic expansions [15]. This is believed to be due to the expansion’s 

far-from-equilibrium nature. Furthermore, the specific properties of the small clusters 

are significantly different from those of the bulk matter and cluster dissociation due to 

collisions cannot be neglected.

The overall energy of the system decreases during clustering, and therefore a third 

body is required to remove the excess. The number of three body collisions in the 

expansion varies as P qD ,  whereas the number of binary collisions varies as P qD .  At the 

same time, the mass throughput varies as P qD 2 , as shown in equation 2.27. Therefore, 

to maximise the production of clusters without increasing gas load, orifice diameter 

should be decreased while reservoir pressure is increased (maintaining a constant value 

of p o D 2 ).

In addition to the number of collisions, clustering also depends on the temperature of 

the nozzle. Yang et al.’s [157] studies of methane clusters have shown that the average 

cluster size was larger for nozzle temperature of —30° C than for 27° C. They have also 

identified the crucial role of the specific buffer gas to promote nucleation.
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The effect of nucleation on the translational temperature of the beam is, however, signi

ficant [15]. The condensation energy of the clusters is released back into the ensemble, 

in the form of random motion of all particles in the frame of the propagating beam. This 

increases the translational temperature of the beam. The detailed energy balance is, 

however, complicated as the binding energy is highly size-dependent for small clusters.

2.4.2.6 R o ta tio n a l and  v ib ra tional cooling

During the first stage of the expansion, all degrees of freedom are coupled together due 

to near-equilibrium conditions. In principal, seeded molecules find themselves in a cold 

bath, and collisions with the carrier gas cool internal degrees of freedom in addition to 

translational cooling. However, as the expansion progresses, the jet density drops and 

collisions become less frequent. This lack of collisions causes the degrees of freedom to 

gradually decouple, and limits the amount of vibrational and rotational cooling. Hence, 

it is then necessary to introduce the concept of independent translational, vibrational 

and rotational temperature. The internal degrees of freedom can only be cooled by 

exchanging quanta of vibrational or rotational energy in a scattering process. The 

probability of such exchange has to be calculated by solving Schrodinger’s equation for 

the specific molecule, atom and vibrational or rotational state involved. An in-depth 

analysis of the simplest systems can be found in reference [158], but general conclusions 

can be applied to most atom-molecule collisions.

Typically, vibrational degrees of freedom decouple first [159], as the translational- 

vibrational relaxation is a slow process. This is because intra-molecular binding forces 

are large compared to inter-molecular repulsion forces at scattering distances. Also, 

the long timescale of vibrational motion means that the collision can be considered 

instantaneous [158], further reducing the probability of coupling. All these considera

tions lead to the vibrational temperature being the highest of the three. For example, 

Amirav et al. [153] reported achieving Ty =  50 K for supersonic-expanded tetracene 

with poD =  2.3. By comparison, translational temperature was equal to Tt =  7K. It is 

worth noting, however, that since spacing between vibrational levels is relatively large,
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even tem peratures as high as 50 K lead to a very lim ited num ber of v ibrational levels 

occupied w ith significant population.

R otational relaxation is a much faster process, which increases the  probability  of ex

changing a quantum  of ro tational energy during a scattering event, so ro ta tional degrees 

of freedom decouple relatively late [15, 153, 158]. This leads to ro tational tem pera tu re  

being close to translational tem perature  [153]. Figure 2.15 shows th a t the  translational 

and ro tational tem peratures of aniline indeed closely follow each other. However, a  sig

nificant num ber of sta tes can be populated even in a beam  w ith ro tational tem pera tu re  

of few K because ro tational states in large molecules are separated  by very low energies.

2.5 Summary

This chapter gives a brief in troduction of the m olecular excitation and relaxation  pro

cesses th a t are investigated in C hapters 4-7. Conical intersections are of particu lar im

portance to  understand the electronic excited s ta te  dynam ics of DNA and RNA bases.



48 CHAPTER 2. THEORY

Hydrogen bonding is discussed as it is the strongest bonding mechanism for dry and hy

drated clusters discussed in Chapters 4 and 7. The Stark effect in strong electric fields 

and the production of cold molecular beams are described in some detail. Together, 

they provide the basis for the manipulation of neutral beams by Stark deflection, as 

presented in Chapter 3.

It is important to note that although the key principles for excited state dynamics 

are well established, the complexity of the problem in real molecular systems, and 

particularly molecular clusters, is too great to be treated by theory alone. Hence, 

experiments on controlled molecular and cluster targets are of great importance.



Chapter 3

Experimental

3.1 Introduction

This PhD is centred on two parallel research activities in the Molecular Clusters Labor

atory at the Open University (UK). The first activity involved applying a multi-photon 

ionisation (MPI) /  electron impact ionisation (Eli) mass spectrometry experimental 

system to study isolated and clustered nucleobases. The second involved designing and 

building a new experimental system to study MPI, Eli, and electron attachment (EA) 

to molecules and clusters in Stark deflected beams. For convenience, the systems are 

referred to as the M P I/E li experiment and the Stark/EA  experiment.

The MPI/EII experiment is presented relatively briefly here, as previous descriptions 

of the system are available in Barc’s thesis [2] and in recent publications [160, 161]. 

Improvements that have been carried out since the publication of Barc’s thesis are 

highlighted in this chapter. The greatest strength of the experiment is the ability to 

directly compare MPI and E li mass spectra of supersonic beams. Differences in ion 

production by MPI (step-wise ionisation via one or more electronic excited states) and 

E li (direct access to ionic states) can be traced to neutral excited state dynamics and /  or 

to the selective nature of MPI. The compact experimental design (only around 1 0  cm 

from the expansion nozzle to the laser or electron beam) enables high signals to be 

obtained. The MPI /  E li experiment was used to acquire the data presented in chapters

49
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4, 5 and 7. The apparatus used for complementary ultrafast pump-probe experiments 

at Heriot-Watt University is described in Chapter 6 .

Most of this chapter is devoted to the Stark /  EA experiment. In addition to enabling 

low-energy electron interactions with molecules and clusters, this new experiment has 

the great advantage of providing a tool to select specific molecular and cluster targets 

from mixed neutral beams. To our knowledge, no previous experiment has investigated 

electron-induced processes in Stark-deflected beams of molecules and clusters. Prelim

inary results are presented to demonstrate different aspects of the new experiment’s 

performance to date. Low signal levels from the low-energy electron source remain a 

challenge but a program of measurements exploiting the capabilities of the complete 

Stark /  EA experiment is anticipated in the near future.

3.2 M ulti-Photon ionisation /  Electron Impact ionisation 

experiment

This experimental setup, developed mainly by Bare [2], is shown schematically in Figure 

3.1. Very briefly, an inert carrier gas seeded with vaporized uracil and /  or water flows 

through a pinhole nozzle into a pumped chamber to form a supersonic jet. The jet 

passes through a skimmer and crosses a pulsed UV laser beam for MPI measurements 

or an electron beam from a commercial gun (Kimball ELG-2) for E li experiments. The 

resulting ions are detected using a reflectron time-of-flight mass spectrometer (TOF- 

MS).

Argon or helium carrier gas is introduced via stainless steel tubing (combination of 

Swagelok and VCR connections). The pressure is controlled with manual regulators in 

the typical range 0.5 — 2  bar and monitored using a transducer (Swaglok PTU  series). 

A stainless steel H2 O reservoir is connected to the carrier gas line via a valve. The 

reservoir and the gas line can be heated using resistive wire and the H2 O temperature 

is monitored using a thermocouple in contact with the reservoir wall. The resistive 

wire is wrapped more sparsely around the reservoir than around the gas line in order 

to prevent condensation. An improvement since Barc’s thesis is the replacement of a
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Figure 3.1: Schematic view of the M PI / E l i  experim ental system.

therm ally insulated vacuum feed through th a t provided a weak point for condensation 

and consequently lim ited the stability  of hydrated  beams.

The nozzle is a closed stainless steel tube w ith a laser-drilled pinhole orifice (Lennox  

Laser). Several interchangeable nozzles are available w ith different lengths and orifice 

diam eters (50 or 70 ^m  were used in the present m easurem ents). T he investigated 

molecules are loaded as powders into a cartridge which is then  inserted near the  nozzle 

orifice. A design improvement since B arc’s thesis [2] is a top-loading system  th a t enables 

powder to be changed w ithout modifying the beam  alignm ent. T he nozzle assembly is 

heated by a clamp heater and tem perature  is m onitored using a therm ocouple inser

ted  directly into the powder cartridge. The clamp heater serves the dual purpose of 

sublim ating the powder and preventing condensation in the nozzle orifice.

The gas m ixture flows through the nozzle orifice into a pum ped cham ber referred to 

as the Expansion Chamber. This is pum ped w ith either one or two turbom olecular 

pum ps (Pfeiffer Vacuum TM U  521 and Oerlikon SL 700 w ith respective argon pum ping
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speeds of 500 and 690 1/s). Clusters can be formed in the initial stage of the supersonic 

expansion due to 3-body collisions. The level of clustering in the molecular beam can 

be varied between measurements by changing the carrier gas, the carrier gas pressure, 

and the partial pressure(s) of the seeded molecules [150]. The supersonic beam then 

passes through a conical skimmer (Beam Dynamics, model 2) with a 400 ^m orifice. 

The separation between the nozzle and the skimmer can be varied by using different 

nozzles, as well as by using spacing disks. Typical nozzle-skimmer separation is between 

5 and 15 mm. To avoid molecular deposition, the skimmer is heated to 125 °C using a 

series of resistive heaters.

The skimmed beam enters the Diagnostic chamber which is evacuated by an Oerlikon 

MAG W 600 (argon pumping speed 600 1/s) turbomolecular pump. The base pressure 

in the diagnostic chamber, monitored by an IONIVAC gauge with an electronic readout, 

is in the 10- 8  mbar range after baking the chamber overnight. Indeed, the background 

signals at low masses that affected Barc’s MPI measurements were removed by extensive 

baking. The molecular beam is crossed at 90° by a pulsed laser beam. The third 

harmonic output (355 nm) of an Nd:YAG laser system ( Continuum Powerlight I I 8000) 

provides the pump source for a dye laser (Sirah Cobra-Stretch). Coumarin dyes give 

access to the wavelength range 220 — 277 nm and a diffraction grating with groove 

density 1,800 lines/mm enables the wavelength to be selected with a resolution better 

than 1 0 - 3  nm . The pulse width and frequency are 7 ns and 10 Hz . The average 

laser pulse energy can be adjusted in the range 100 — 2000 /zJ by changing the delay 

between the pulses triggering the xenon flash lamps and the Q-switch of the Nd:YAG 

laser. The energy of each pulse is recorded using a Pyroelectric joulemeter (Spectrum 

Detector Inc. SPJ-D-8). A convex lens on a slider is used to control the laser spot 

diameter (3 mm without the lens) at the interaction with the molecular beam. We do 

not have a measure of the temporal fluence structure during pulses (discussed further 

in Section 5.3).

The physical parts of the reflectron mass spectrometer (schematically shown in Figure 

3.2) were designed and constructed by KORE Technologies. Its voltage control system
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Figure 3.2: D iagram  of the m ass spectrom eter’s electrodes.

was hom e-built w ith the exception of the ion extraction  pulse (—380 V, 2 /is, approxim 

ate  rise tim e 1 ns) from a triggered system  produced by K O R E  Technologies. Following 

extraction, acceleration to  - 2  kV, and deflection to  com pensate for the  m olecular beam  

velocity, the  cations pass through the field-free region (FFR ) of the  flight tu b e  (addi

tionally evacuated using a 145 1 /s  Oerlikon TU R B O V A C  151 turbom olecular pum p) 

and the  reflectron optics. The voltage on the final reflection electrode (Vo) can be 

adjusted to determ ine the  kinetic energy of an ion in the  F F R  (discussed fu rther in 

C hapter 5). The reflectron is a  set of ion optics used to  decelerate and then  reverse the  

direction of travelling ions. The reversed ions are guided back into the  field-free region 

(FFR ), for a  second pass. This greatly  enhances the mass resolution of the  instrum ent 

by essentially doubling the length of the  drift tube. Moreover, the  in teraction  of ions 

w ith the retarding field reduces the effect of different K E on the arrival tim e of a  specific 

ion mass, because ions w ith higher KE penetra te  deeper into th e  reflectron and  hence 

spend more tim e there. The reflectron p a rt of the  spectrom eter consists physically of 

three electrodes w ith external voltage connections: the  F F R  grid (typically -2,027 V), 

the re tardation  grid (typically -1,370 V), and the  reflection electrode (typically between 

0 and -350 V). To achieve the best possible field uniformity, a  series of ring electrodes 

are m ounted along a resistor chain between the externally supplied electrodes (5 rings



54 CHAPTER 3. EXPERIMENTAL

between the FFR and retardation grids; 11 between the retardation grid and the reflec

tion electrode).

The discrete dynode electron multiplier detector includes a -1 0  kV post-acceleration 

grid to increase the detection efficiency of high-mass ions. The pre-amplified ion sig

nals are timed using a 250 ps resolution Fast Comtec P7887 time-to-digital conversion 

(TDC) card. The timing of all components is controlled by an external clock (Quantum 

Composer 9520 Series Pulse Generator). Mass resolutions of m /A m  =  1,000 are 

obtained routinely using a focused laser beam. A new data acquisition system was 

developed using Lab VIEW (see Appendix B for more details).

In addition to the MPI experiments, the design of the Diagnostic chamber allows for 

performing E li measurements. The commercial electron gun, Kimball ELG-2, gives 

an output of 10 — 30 pA  (monitored via the bias current across the electron gun) 

and the electron energy can be varied from 5 to 2 , 0 0 0  eV. The electron beam is 

continuous and ions are typically extracted at a frequency of 20 kHz. The output 

beam is not tightly focused and therefore ions are extracted from a much bigger volume 

compared to MPI. Furthermore, unlike in the MPI experiments, fragment ions can travel 

a significant distance away from their ionisation origin due to the potential time lapse 

between ionisation and extraction. The resultant large extraction volume degrades mass 

resolution.

3.3 Beam position characterisation using TOF reflectron

As noted in Section 3.3, a convex lens on a slider was used to modify the laser spot 

diameter at the interaction with the molecular beam and hence gain further control over 

the UV fluence. This was previously estimated using simple ray diagrams for partially 

defocused measurements [160], but we did not have a reliable method to determine 

the spot diameter close to the focal point. This problem was solved by recording MPI 

signals as a function of the voltage on the reflection electrode - the final electrode in 

the reflectron part of the mass spectrometer (see Figure 3.2). The reflectron is a set 

of ion optics used to decelerate and then reverse the direction of travelling ions. The
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reversed ions are guided back into the field-free region (FFR), for a second pass. This 

greatly enhances the resolution of the instrument by essentially doubling the length 

of the drift tube. Moreover, the interaction of ions with the retarding field reduces 

the effect of different KE on the arrival time of a specific ion mass, because ions with 

higher KE penetrate deeper into the reflectron and hence spend more time there. The 

reflectron part of the spectrometer consists physically of three electrodes with external 

voltage connections: the FFR grid (typically —2,027 V), the retardation grid (typically 

—1,370 V), and the reflection electrode (typically between 0 and —350 V). To achieve 

the best possible field uniformity, a series of ring electrodes axe mounted along a resistor 

chain between the externally supplied electrodes (5 rings between FFR and retardation 

grids; 1 1  between retardation grid and reflection electrode).

For the MPI and E li experiments, ions are produced directly at beginning of the mass 

spectrometer, in the region further referred to as the “ extraction volume”. This volume 

is spatially limited by the “backplate” and “extraction grid” electrodes (Figure 3.2). For 

one example of backplate and “extraction grid” voltages, Figure 3.3 shows the calculated 

equipotentials ( CPO-3D version 8 ) in the extraction volume of the mass spectrometer. 

Along the central axis of the mass spectrometer, Figure 3.4 shows that the voltage 

against distance relationship is very close to a straight line. Therefore, knowing the 

electrode voltages and separations, we can reasonably apply linear interpolation to 

calculate the voltage at a given position. The laser /  molecular beam crossing point is 

assumed to be on the TOF axis following careful alignment of the experiment.

Mass spectra can then be measured as a function of the Reflection voltage (Vg), in 

order to derive the maximum distance from the extraction grid at which an ion can 

be produced and then be directed onto the detector. For non-dissociative ionisation 

(zero kinetic energy release), the key condition for detection is that the voltage at the 

point in space where the ion is produced must be closer to ground than the reflection 

voltage. This is because the ion, in order to reach the detector, must be stopped and 

its trajectory reversed in the TOF’s reflectron. The ion will have zero kinetic energy 

when it reaches a point in space where the voltage is the same as in the place it was 

created (see Figure 3.5). Therefore the ion signal will not be affected significantly by
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Figure 3.5: Diagram showing the principle of using the reflectron to measure an ion’s 
initial position. Ion A (blue solid line) will be reflected into the detector because the 
Va lies within the reflectron. By contrast, ion B  (green dashed line) will not be stopped 
because Vb lies outside the reflectron.

the reflection voltage until it corresponds to the crossing position of the focused laser 

spot and the molecular beam. However, beyond that point the ions will have too high 

kinetic energy to be stopped by the reflection voltage, and will hit the electrode. Such 

ions are not reflected and never reach the detector. Hence, the ion signal drops. When 

working with a focused laser beam, the laser spot diameter will be small compared with 

the molecular beam diameter at the crossing point (typically several mm depending 

on the nozzle-skimmer separation). Therefore, as shown in Figure 3.6, the reflection 

voltage range across which the ion signal falls from its maximum to zero provides a 

measure of the laser spot diameter.

This method can adapted for measurements of the width of the molecular beam. In 

this case, the Kimball ELG-2 electron gun is used. Although the Kimball gun has a 

focusing function, the electron beam is wider than the extraction volume of the mass 

spectrometer in all the experiments in this thesis (confirmed by measuring the current 

on the backplate and the extraction grid). Hence, for non-dissociative ionisation, a 

measurement of the kind shown in Figure 3.6 determines the width of the molecular 

beam instead of the width of the (much wider) electron beam. Figure 3.7 shows such 

a measurement carried out to determine the argon beam position and diameter in the
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Figure 3.6: M PI m easurem ents (220 nm, He 0.8 bar, powder 264 °C) of uracil+ pro
duction as a function of the reflect voltage. The signal cut-off w idth (9 ±  1  V) can be 
directly correlated to the diam eter (0.31 ±  0.04 mm) of the focused laser spot at the 
intersection with the molecular beam  .

S tark /E A  experim ent. The two lines correspond to  two different positions of the Kim

ball gun. Evidently, the ions produced outside the mass spectrom eter were deflected 

and this inform ation led to additional shielding being installed in the  chamber.

3.4 Stark deflection /  EA experiment

3.4.1 O verv iew

The S tark /  EA experim ent (shown schematically in Figure 3.8) is designed to study 

electron and m ulti-photon driven processes in Stark-selected targets. The Stark de

flector applies a strong electric field gradient to deflect molecules and /  or clusters in 

supersonic beam s as a function of their effective dipole m oment /  mass ratio  (see Sec

tion 2.4 for the  key fundam ental concepts). Controlled deflection depends strongly on 

achieving a ro tationally  cold molecular beam. This requires extensive pum ping for the 

supersonic expansion w ith a differential pum ping stage (the Intermediate Chamber in
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the Figure 3.8). After passing through the deflector, molecules /  clusters in the beam 

are sampled using a moveable skimmer. The selected part of the beam then crosses a 

beam of electrons. The resultant anions or cations then enter the extraction volume of 

a time of flight mass spectrometer (several cm downstream from the shielded electron 

beam). Electron energy resolution is greatest at low electron beam currents and elec

tron attachment cross sections are typically low compared with the MPI cross sections, 

so the experiment is designed with low signal levels in mind. To counter the low signal 

levels, the experiment uses a continuous-expansion molecular beam and a continuous 

electron beam, while the TOF mass spectrometer can be operated with a high duty 

cycle. It is also possible to probe the selected molecules /  clusters using MPI-TOF (ns- 

timescale UV pulses, described in section Section 3.2) as well as EII-TOF using a broad 

high-energy electron beam (Kimball electron gun, described in Section 3.2). In these 

cases, the ions are produced inside the extraction volume of the mass spectrometer. The 

laser beam and Kimball electron gun beam are not shown in Figure 3.8. The vacuum 

arrangement of the Stark/EA  experiment is shown schematically in Figure 3.9 and 

controlled using a home-built Vacuum Security System (described in Appendix A). The 

vacuum security system interfaces with a Lab VIEW platform for experimental control 

and data acquisition (described in Appendix B).

3.4.1.1 T he m olecular beam

This section describes the key parts of the gas supply, the sample molecule introduction 

systems, the expansion chamber, and the intermediate chamber. As in the MPI /  E li 

experiment, the molecular beam is formed by a continuous expansion of helium or argon 

seeded with molecules from a liquid reservoir or a powder cartridge mounted very close 

to the nozzle orifice. However, the horizontal orientation of the nozzle in the Stark /  EA 

experiment reduces the probability of the nozzle becoming blocked with impurities or 

condensed sample molecules. The Stark /  EA design also has the advantage of enabling 

the powder cartridge to be refilled while maintaining an overpressure of argon in the 

gas line. Hence it is not necessary to break the vacuum to refill or change the powder. 

The entire gas line, including the nozzle, is mounted on a 3D movement. The planar
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Figure 3.10: (a) Gas line assembly for S tark /E A  experiment; (b) D etail of the nozzle 
assembly diagram  for use w ith interchangeable Agar Scientific fine orifice discs (diam eter 
30 — 70 fim ).

movement allows for precise alignment of the nozzle w ith relation to  the skimmer. 

Movement in the  th ird  axis provides ability to  modify nozzle -  skimmer distance. The 

gas line assembly is shown schematically in Figure 3.10.

T he carrier gas can either flow directly into the nozzle or it can be redirected to  pass 

th rough stainless steel liquid reservoir. This “bubbling” system  increases the pick-up 

ra te  of molecules from the  liquid sample. The reservoir and the gas line can be heated 

using resistive wire and the  tem perature  is m onitored using therm ocouples a t several 

control points (inside liquid, inside the powder cartridge, on the outside of tubing on 

either side of the  vacuum  feedthrough, and on the outside of the  nozzle close to  the 

orifice). T he resistive wire is w rapped more sparsely around the reservoir th an  around 

the gas line in order to  prevent condensation.

In order to  optimize ro tational cooling, a  more refined nozzle is required th an  the  laser- 

drilled nozzles (Lennox L aser) used in the M PI /  E li experim ent. Therefore a new nozzle 

assembly was designed to  house a platinum  /  iridium  alloy (95 : 5 %) disc w ith a fine 

orifice (Agar Scientific) as shown schematically in Figure 3.10b. A resistive heater is 

coiled around the  assembly. A selection of discs allows for changing the orifice diam eter
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between 2 0  and 70 fim. The orifice shape is nearly ideally circular, helping to minimise 

turbulence in the expansion. General principles of supersonic expansion are described 

in details in Section 2.4.2.

The gas mixture (500 — 2 , 0 0 0  mbar) is expanded into a chamber (referred to as Expan

sion chamber) evacuated by an Oerlikon TURBOVAC MAG W 2200 iP  turbomolecular 

pump (2 , 1 0 0  1/s , backed by Oerlikon TRIVAC D65 B, pumping speed 65 m3 /h , typical 

vacuum pressure during experiments in the 1 0 ~ 5  — 1 0 - 4  mbar range). The beam then 

passes through a conical skimmer {Beam Dynamics model 2 skimmer, diameter 2  mm) 

into a second stage of differential pumping. The separation of the nozzle and skimmer 

orifices is typically in the range 1  — 5 cm. The Intermediate chamber is evacuated by an 

Oerlikon TURBOVAC SL 700 turbomolecular pump, with a pumping speed of 690 1/s 

(~  10- 6  mbar during experiments). The beam passes through a second conical skimmer 

(orifice diameter 1  mm) into the Deflection chamber. The skimmers can be heated using 

resistive heaters and thermocouples mounted on their assembly systems.

3.4.1.2 T he S ta rk  deflector

The Deflection chamber (typical pressure in the 10~ 8 mbar range) houses the Stark 

deflector and is evacuated by an Oerlikon SL 700 turbo pump with an oil-free (Scroll) 

backing pump. The Stark deflector is of the same 2-wire design as used in Filsinger 

et al.’s [16, 83, 84] and Trippel et al.’s [85] experiments (also discussed in Section 2.4) 

and has been built by Kupper and co-workers at the Deutsches Elektronen-Synchrotron 

(DESY), Hamburg. Briefly, the design comprises two electrodes of 200 mm length: a 

rod that is typically held at 10 kV during experiments and a grounded trough (see 

Figure 3.11a). The rod and the trough are separated by 1.5 mm and their specific 

shapes establish the field gradient (Figure 3.11b) that is necessary to deflect a beam of 

polar molecules that passes between them (see Section 2.4). A skimmer is mounted at 

the entrance of the deflector in order to prevent the molecular beam from hitting the 

electrodes and to control the width of the deflected beam (see Section 3.5.1.1). Another 

skimmer after the deflector can be installed to aid alignment.
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Figure 3.11: (a) 3-D drawing of the S tark deflector (b) Cross-section of the Stark 
deflector, showing calculated electric field intensity. Reproduced from [16].

Due to  the  high field strength  in the  device, the  pressure in the  cham ber m ust be 

<  1 0 ~ 6  m bar to  prevent an axe discharge. Furtherm ore, a  High-Voltage conditioning 

procedure has to  be perform ed to  prepare the  electrode surfaces for strong fields follow

ing exposure to air (i.e. every tim e the  deflection cham ber is vented). The conditioning 

procedure requires gradual increasing of the voltage on the rod electrode of the deflector 

while m onitoring current flow w ith a nano-am m eter for any sign of a  discharge. More 

detail on the  conditioning procedure is provided in A ppendix A.

3.4 .1 .3  T he cross beam  apparatus and d etection  system

A fter the deflection stage, the  beam  enters a  drift tube. The purpose of th is tube  is 

to  give ex tra  length to  exaggerate any deflection effects. In previous experim ents using 

the same deflector design [85], deflections of 3-aminophenol of up to  5 mm a t a  distance 

of 0.5 m  after the deflector were achieved. Therefore the  same distance between the 

deflector and the moveable skimmer is used in the present experim ent. The extension 

tu b e  is be connected via a  gate valve to  the  Interaction cham ber (see Figure 3.9, evacu

a ted  to  u ltra-high vacuum  by an Oerlikon TU RBO VAC  SL 700 turbom olecular pum p, 

backed by an Oerlikon SC RO LLVAC  S C  SOD D ry pump.

Stark  deflected species can be selected using a  movable skimmer. The skimmer is m oun

ted  on a 3-way movement, so the  S tark Deflector can be m ounted in either horizontal 

or vertical position. The molecular beam  (selected or not) can then  cross a low-energy
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electron beam for the purpose of creation of anions. Electrons are emitted from a fil

ament and then energy-selected using a double-pass cylindrical monochromator with 

controlled angular aberrations [162] (LK  Technologies Inc., model 5000). The mono

chromator is mounted on a backplate built in the OU Science Faculty workshop. Low 

energy electrons are highly sensitive to magnetic fields so the Interaction chamber is 

made of non-magnetic stainless-steel alloy (316L). Moreover, it houses a 1.5 mm thick 

MuMetal shield. The electron monochromator is mounted inside an additional MuMetal 

shielded box, and all components inside the chamber are built from non-magnetic ma

terials (mostly aluminium, copper and titanium). MuMetal is a nickel-iron alloy that 

has extremely high magnetic permeability after heat treatment (>  400,000 relative to 

free space). The shielding effect arises not from blocking magnetic fields, but from 

providing the magnetic flux with a low-resistance path. Therefore, the shield should be 

as close to a closed volume as possible, and thick enough to avoid saturation.

The voltages of the monochromator are controlled by a unit designed and built at 

the OU by F. Robertson. The monochromator requires 2 2  separate voltages and one 

current input. All voltages are referenced to the beam (cathode) voltage, which in 

turn is referenced to ground. Only 3 of the voltages need to be varied independently 

(cathode’s midpoint potential, “beam”, and 2  electrodes in the focusing optics, B i and 

B 2 ) in order to control the energy and focusing of the beam. Hence the divider was 

designed for manual control of all the voltages, with additional remote control of beam, 

Bi, and B2  via a four channel, 16 bit USB DAC, Measurement Computing type USB- 

3101 interfaced with the control software (Appendix B).

The intensity of the electron beam is monitored using a Faraday cup. Typical resolutions 

in recent DEA experiments in the recent literature range from 14 meV [154] to 120 meV 

[163]. The monochromator is capable of energy resolution in the sub-meV range, but 

this is only achievable at very low beam currents. The manufacturers stated that a 

resolution of 2.5 meV (FWHM) could be achieved with a beam current of 250 pA, 

while 20 meV is achievable at 10 nA. However the maximum current that we have 

been able to attain so far was only 1  nA, and this is too low for effective optimisation 

of the experiment. Therefore the results presented in sections 3.5.1 and 3.5.2.2 were
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performed using the Kimball electron gun (described below) or a modified version of 

the low-energy electron system without the dual-pass energy selector.

Ions produced at the molecular beam /  low energy electron beam crossing point drift 

freely into the extraction volume, where a pulsed voltage extracts them into a reflectron 

time-of-flight mass spectrometer (KORE Technology), similar design to the M P I/E li 

mass spectrometer. The ion extractor has been built in the Science Faculty Workshop 

following a series of simulations performed using CPO-3D software. For parent anions 

and for large fragments ions (e.g. parent anions minus one hydrogen atom), the incident 

velocity of the molecular beam enables efficient ion transport into the TOF extraction 

region. Fragment ions produced with large kinetic energy release (and hence approx

imately isotropic velocities) will enter the extraction region with much lower efficiency 

(<  10 % ). The mass spectrometer electrodes are shielded electrically by a copper 

shield.

The design of the Interaction chamber also enables E li and MPI experiments to be car

ried out on the selected species with ionisation taking place in TOF extraction volume. 

In this case, the electron beam is produced by a commercial electron gun (Kimball 

ELG-2). E li typically gives much more intense signals and therefore enables optimisa

tion of the system prior to gaining good control of the low energy electron source. The 

laser beam, produced with the same setup as described in Section 3.2, also crosses the 

molecular beam in the extraction region. This can give an independent confirmation of 

selectivity, as different isomers can show different REMPI features (e.g. associated with 

vibronic structure). For example, Nir et al. [164] attributed several distinct features 

in the rich REMPI spectrum of gas phase cytosine exclusively to the -keto or -enol 

tautomeric forms of the molecule. The width of the beam at the point of the movable 

skimmer can be estimated using simple geometric considerations. By moving the mov

able skimmer in one of the axis, and recording mass spectra for each of its positions, it 

is possible to produce spatial profiles of the beam. Figure 3.12 shows profiles, and lists 

the expected widths, for several skimmer diameters (1 mm, 0.5 mm, 0.2 mm) in front of 

the Stark-Deflector. The estimated width is in very good agreement with the measured 

width. The absolute signal intensity for the three measurements showed 1:0.25:0.04
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Figure 3.12: 200 eV E li spatial profiles of the  argon beam  for three skimmer in Front 
of the  Stark-Deflector. The inset table gives expected beam  w idth  calculated from 
simple geometric considerations. The length of the  coloured arrows corresponds to 
these expected widths. .

ratio , i.e. proportional to  the area of the skim m ers4 orifices. This indicates negligible 

scattering of the  molecules out of the beam ..

3.5 Performance of Stark /  EA experiment

3.5.1 S ta rk  se lec tio n  c h a ra c te r is a tio n  u s in g  n i tro m e th a n e

The first experim ental tests were perform ed using nitrom ethane. T he molecule is a good 

choice for initial tests for the  reasons listed below. Table 3.1 com pares a  few im portan t 

properties of n itrom ethane w ith a benzonitrile, a molecule studied  in previous S tark 

deflection experim ents by Kiipper and co-workers [16, 83, 84, 85].
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Table 3.1: Selected physical properties of n itrom ethane and benzonitrile

N itrom ethane Benzonitrile
(CH3 NO2 ) (C7 H5 N)

M olecular weight 61.0400 103.1213

Dipole m oment 3.46 D [165] 4.52 D [11]

Dipole m om ent /  mass 0.057 D /am u 0.044 D /am u

•  Q uite high vapour pressures of n itrom ethane are achievable w ithout significant 

heating  required of the  liquid sample (e.g. 28 Torr a t 20 °C [45]).

•  The molecule has a  large dipole m oment /  mass ratio  (see Table 3.1) and hence 

should be deflected quite readily. Accordingly, Schwettm ann et al.’s [166] calcu

lations predicted effective S tark  slowing of nitrom ethane.

• E lectrons can a ttach  to  n itrom ethane w ith high cross sections (e.g. 7 x 10-22 m 2 

for N O 2  production by electron capture a t 0.5 eV [167])

•  The molecule can be detected w ith a single-colour ns-timescale pulsed laser in 

the wavelength range accessible w ith our system via single photon dissociation 

producing NO and subsequent 2 -photon resonant ionisation of NO [168].

3.5.1.1 R em oval o f n itrom ethane m olecules from beam s by Stark deflection

The sim plest S tark  deflection experim ents w ith the current system involve measuring 

the electron im pact ionisation signal of a  given ion by as a function of the  voltage across 

the  deflector electrodes. The results shown in Figures 3.13, 3.14 and A.2 were recor

ded w ith 1 m m  skimmers positioned directly before and after the Stark-Deflector. The 

moveable skimmer was positioned far enough above the beam  to  have no influence. The
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Figure 3.13: Com parison of n itrom ethane+ and benzonitrile+ signal intensities, as a 
function of deflection voltage. N itrom ethane tem pera tu re  25 °C, Benzonitrile tem per
atu re  130 °C. O ther argon expansion param eters (driving pressure, nozzle diam eter, 
etc.) were kept identical for bo th  sets of m easurem ents.

Table 3.2: M easure of deflection for two driving pressures of helium.

He pressure [mbar] D(2 kV) D(6 kV) D(10 kV)

380 32.22 % 58.69 % 66.37 %
950 6.45 % 15.75 % 21.71 %

200 eV electron beam  from the Kimball gun fills the  T O F  extraction  volume essen

tially isotropically. Therefore, the removal of molecules from the beam  is dom inated  by 

deflected species h itting  the  deflector electrodes or the  skimmer after the  deflector.

Figure 3.13 compares the deflector voltage dependence of n itrom ethane+ and benzonitrile+ 

signals. The argon carrier gas pressure (500 m bar) and nozzle diam eter (50 //m) were 

the same in bo th  m easurem ents bu t to  achieve efficient seeding benzonitrile was heated  

to 130 °C. T he figure clearly shows th a t n itrom ethane molecules were deflected out 

of the  beam  more efficiently th an  benzonitrile. This is likely to  be partia lly  due to  

the higher dipole m om ent /  mass ra tio  of nitrom ethane and partia lly  due to  reduced 

occupation of high ro tational sta tes in the  beam  due lower tem pera tu re  in th e  nozzle.
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Figure 3.14: N itrom ethane+ detection as a function of deflecting voltage for two driving 
pressures of helium.

T he choice of the  carrier gas pressure is often a  compromise between seeding efficiency 

(observed to  be b e tte r in helium th an  argon in our system) and cooling efficiency (ex

pected to  be b e tte r in argon th an  helium due to  the  velocity slip effect described in Sec

tion  2.4.2.4). Figure 3.14 and Table 3.2 show the signal suppression of n itrom ethane+ 

as a function of deflection voltage, for room -tem perature nitrom ethane seeded in two 

different driving pressures of helium. The results clearly dem onstrate more efficient de

flection of nitrom ethane in the  380 m bar expansion than  in the  950 m bar expansion. As 

an  aside, lower helium pressure also resulted in a higher absolute nitrom ethane signal 

due to  m ore efficient seeding (Figure A.2).

G reater n itrom ethane deflection a t lower helium pressure can be a ttrib u ted  to  lower 

ro ta tional tem perature. According to  equation 2.24, for a  given nozzle diam eter, higher 

driving pressure results in b e tte r cooling. However, this situation  is expected to  be com

plicated in the present continuous expansion. Because the pressure in the  expansion 

cham ber is quite high, it is necessary to  place the nozzle relatively close to  the skim

m er and hence the cham ber wall. Reflected carrier gas atom s from the cham ber wall 

and the  skimmer housing can produce additional shocks th a t degrade cooling efficiency
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Figure 3.15: 200 eV E li ion yields of different species from a n itrom ethane-argon  beam , 
as a function of Stark-deflector’s voltage. Argon carrier gas pressure 500 m bar, nozzle 
d iam eter 20 /tm

Therefore, there is an optim um  driving pressure th a t corresponds to  the  lowest achiev

able rotational tem perature  of the beam  for a given pum ping speed in the  expansion 

chamber.

Figure 3.15 shows how the 200 eV E li  signals for several different ions varied w ith 

deflection voltage in an argon beam  seeded w ith n itrom ethane. The neu tra l beam  

contained a range of clusters, as dem onstrated by peaks up to  (N itrom ethane+ . The 

deflection voltage dependence in Figure 3.15 was recorded w ith a restric ted  m ass/charge 

range to increase the ions’ extraction frequency. Clearly, the  strongest signal suppression 

in Figure 3.15 is observed for the  monomer ion (0.057 D /am u  , see Table 3.1). No value 

for n itrom ethane dim er’s dipole m oment is available in the  literature. However, in Li 

et al.’s [169] theoretical study on the interm olecular interaction of the n itrom ethane 

dimer, the  optim ised geom etry suggests th a t its dipole m oment /  mass is very low (the 

dipole mom ents of the  two molecules are arranged in approxim ately opposite directions). 

This explains why the signal suppression for the dim er in Figure 3.15 is much weaker 

than  for the  monomer. However, the  most interesting feature of Figure 3.15 is the
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protonated monomer data which closely follows the dimer’s curve. Protonated species 

can only be products from larger clusters (see Section 2 .1.4.4) and protonated monomers 

are generally produced particularly efficiently from dimers. The protonated dimer, 

which must originate from trimers or even larger clusters (with smaller overall dipole 

moments and bigger masses, therefore much lower dipole moment /  mass ratios), shows 

a flat dependence to within the present uncertainties. Hence Figure 3.15 shows that 

plotting an ion’s signal intensity versus the deflection voltage is a powerful method to 

deduce the origins of fragment ions in mixed beams. This technique provides a valuable 

complement to the approach of moving the skimmer in order to select just one portion 

of a deflected beam.

3.5.1.2 B eam  profile b roadening  and  full deflection of n itrom ethane

In order to deflect molecules in the most controlled manner possible, further effort has 

been devoted to reducing the rotational temperature of the beam. As discussed in 

Section 2.4.2, increased cooling can be achieved in principle by increasing the poD. 

However, this also increases the gas flow (See equation 2.27) through the nozzle, raising 

the pressure in the expansion volume and hence tending to increase internal beam 

temperature as indicated in Figure 3.14. The experiments described in this section 

investigate the effect of the nozzle diameter on the observed deflection of nitromethane. 

Argon was the carrier gas in all the measurements presented here 1. The Stark deflector 

was mounted horizontally in these experiments.

The results presented in Figure 3.16 were recorded with a 50 fim nozzle and with the 

expansion conditions optimised for maximum cooling (poD =  25 bar • //m, expansion 

chamber pressure 2.5 x 1 0 ~ 4  mbar). The movable skimmer was scanned in the deflecting 

and non-deflecting planes with 0, 4 and 8  kV applied to the Stark-deflector. For each 

skimmer position and deflection voltage a mass spectrum was recorded. The most 

striking feature of these measurements is the broadening of the nitromethane+ profile 

in the deflecting plane in plots Figure 3.16a, b and c, red curves. The broadening is 

not observed in the non-deflecting plane (Figure 3.16a, b and c, black curves) or in any

1For more details why argon cools molecules more efficiently, refer to Section 2.4.2.4
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Table 3.3: Profile widths for nitromethane4- and argon4- signals in deflecting and non
deflecting planes for Stark-deflector voltages of 0, 4 and 8  kV.

Target Voltage [kV] Plane FWHM [mm]

0 Deflecting 1.48

Nitromethane 4 Deflecting 2.62
8 Deflecting 2.72
0 Non-Deflecting 1.24
4 Non-Deflecting 1.34
8 Non-Deflecting 1 . 2

0 Deflecting 1.31

Argon 4 Deflecting 1.31
8 Deflecting 1.31
0 Non-Deflecting 1.39
4 Non-Deflecting 1.39
8 Non-Deflecting 1.39

plane for the argon4- signals (Figure 3.16 d, e and f). To obtain a systematic measure 

of the broadening, the width of the profiles has been obtained by fitting a Gaussian bell 

curve the data points. The fits for the argon data are always better than R2 =  0.98; 

Table 3.3 gives the obtained values.

The observed shape broadening, without a significant profile shift, can be explained by 

assuming that the molecules in the beam axe not rotationally cold enough to trigger 

the transition into the pendular rotational states (See Section 2.4.1). Hence, there is 

roughly an equal number of molecules deflected “up”, as “down”. As a consequence, a 

series of measurements was performed with a 2 0  /im nozzle in an attempt to achieve 

increased cooling. The optimized conditions in Figure 3.17 were poD =  1 1  bar • pm  and 

expansion chamber pressure 4 x 10- 5  mbar (i.e. greater expansion chamber pressure 

than Figure 3.16, highlighting the complexity of the cooling conditions). The figure 

shows 4 kV profiles for nitromethane4- and for argon4- in the deflecting plane. The 

nitromethane4- maximum position has not shifted but a clear asymmetry is observed 

in the Stark-broadened profile. The four series have been recorded over several hours, 

indicating the stability of the experiment. The results clearly show that the movable 

skimmer can be used effectively to select a specific portion of a Stark-Deflection CW 

beam for collision experiments. In Figure 3.17 conditions, for example, a measurement 

with the skimmer positioned, at —1.5 mm on the deflection axes would probe the lowest
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Figure 3.17: Argon and nitrom ethane profiles in the deflecting plane for 4 kV deflection 
voltage. High-held seeking molecules are deflected towards negative positions.

J-sta tes of the ensemble in the  molecular beam. Further optim isation is required to 

achieve a fu lly  deflected profile ion signal instead of an asym m etric broadening bu t the 

present function of the  Stark deflection system  can already enable a range of in teresting 

experim ents on controlled beams.

3.5 .2  Low e n e rg y  e le c tro n  b e a m s

3 .5 .2 . 1  P rincip les o f electron m onochrom ator’s op tim isation

The device used in the S tark /  EA experim ent is a double-pass cylindrical m onochro

m ator w ith controlled angular aberrations (Figure 3.18). The principles of cylindrical 

electron m onochrom ators and aberration control can be found in references [162] and 

[170]. Briefly, a m onochrom ator works by m anipulating the electron beam  in elec

trosta tic  fields to narrow the energy distribution  of the electrons. In m ost designs, a 

therm ionic emission cathode is used as the source of electrons. T he em itted  electrons
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Figure 3.18: M onochrom ator system  w ith  the electrodes labelled. Top and Bottom  
covers of the  two sectors are not shown.

have a  M axwellian d istribution  of energies, given by equation 3.1.

where k b is the B oltzm ann constant (11600-1 eV /K ) and T  is the  cathode’s tem perature 

(in K elvin). In practice, this means the  energy resolution of the em itted  electrons is in 

the range of 0.3 — 0.6 eV, depending on the exact m aterial of the cathode. The electrons 

need to  be extracted  and collim ated to  form a beam  th a t feeds one (or more) energy 

dispersive elements, i.e. the  sectors. This is commonly done by a triple electrostatic lens 

and a  repeller electrode. The formed beam  enters a region enclosed by two cylindrical 

electrodes, where the electric field curves the p a th  of the  beam. The electric field er can 

be w ritten  in the  form of equation 3.2:

W here A V  is the  voltage between the two cylinders, R \  and R-2  their respective radii 

and r th e  radial position w ithin the field. Since an electron with a mass m  , velocity 

v , and charge e travels on a  circle w ith a radius r  when equation 3.3 is satisfied, the 

nom inal pass energy Eq , i.e. the energy of the electron th a t travels on the central p a th

A Ek =  2.54 &b • T (3.1)

A  1
fr "  In { R \j  R2) ' r

(3.2)
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in the sector, can be then written in the form of equation 3.4.

m V 2
(3.3)--

r

(3.4)

For a double-pass monochromator, the pass energies of the two sectors can be different. 

Note that the resolution of the monochromator, and the monochromatic current, are 

rather smooth functions of the pass energy in the second sector. To maximise trans-

be operated at a low pass energy. Therefore, the first sector should be operated in a 

retarding mode, with a higher pass energy. The precise value of the pass energy is not

entrance slit or by decreasing potential on the exit slit. The latter approach is used 

more often as the electrons are decelerated over a longer distance, reducing the effect of 

space-charge impact on performance. The choice of the pass energy in the first sector 

depends on the properties of its feed beam. In order to maximise transmission, the pass 

energy should match the maximum in the feed beam’s energy distribution. The optimum 

pass energy for the first sector can be chosen by analysing the output current of the 

sector (measured as the current on the exit electrode of the second sector) as a function 

of its pass energy and depends on the working point of the first sector (a function of 

the sector’s midpoint potential, the entrance slit potential, and the retardation factor). 

Physical properties of the sector also play a role in the selection of the optimal pass 

energy, such as the offsets of positions of the entrance and exit slits from the central

mission while maintaining good resolution, the second energy dispersive element should

critical and typically lies between 2  and 1 0  times the pass energy of the second sector. 

The retardation factor Fexit at the exit of the first sector is given by equation 3.5.

(3.5)

Where ef/exit is the potential energy at the exit slit. Typical retardation factors range 

between 1.5 and 5. This can be achieved either by increasing the potential at the
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Table 3.4: Raw voltages applied to the electrodes of the electron monochromator. All 
voltages are referenced to the Veeam voltage, which in turn is referenced to the ground. 
This set of voltages produced 0.7 nA current measured at the Faraday cup.

Electrode Voltage [V ] E lectrode Voltage [V ]

A1 Left 55.7 A1 Right 58.8
A2 Lower 31.3 A2 Upper 29.9
A3 Left -0.21 A3 Right -1.02
M l Slit 5.82 Repeller -5.11

M l Top Cover 7.32 M l Bottom Cover 1.75
M l Inner 1.80 M l Outer 1.77

M l Exit /  M2 Slit 3.47 M2 Exit 3.28
M2 Top Cover 5.12 M2 Bottom Cover 0.60

M2 Inner 0.59 M2 Outer 0.77
B I Upper 0.79 B I Lower 0.59
VBeam -10 B2 21.6

patch. Typically, the potential of the entrance slit is a good starting point for the 

optimisation.

Space charge plays a major role in the performance of cylindrical monochromators. 

Most of the effect can be compensated for by modifying the deflection angle of the 

sector. However, this can only compensate for the electron’s beam divergence in the 

focusing plane, and effects of the space charge are still noticeable in the non-focusing 

plane, 6Z. Applying a negative bias to the top and bottom covers (with respect to the 

midpoint of the sector, i.e. the potential corresponding to the central path) helps to 

minimise the beam’s divergence in this plane. The value of the bias depends mainly on 

the retardation mode of the sector. Bigger compensation is required in the entrance slit 

retardation mode, than in the exit slit retardation mode. Typical values of the bias are 

in the range —1 to —3 V.

3.5.2.2 E lection beam  op tim isa tion  for th e  S ta rk /E A  experim ent

By applying the principles described above to the device installed on the electron cham

ber, it was possible to produce monochromatic beams of up to 1 . 2  nA. Table 3.4 gives 

the raw voltages that resulted in a good measurable current and Table 3.5 gives calcu

lated parameters of the monochromator.
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Table 3.5: Working point of the electron m onochrom ator. All voltages are referenced 
to the Vgeam voltage, which in tu rn  is referenced to the ground. This set of voltages 
corresponds to  the raw values from Table 3.4.

P r o p e r t y V a l u e

M l  D e l ta 5 .5 7

M l  M id p o in t 4 .5 4

M l  C o v e rs -2 .7 5

M l  N o m in a l p a s s 3 .01

M 2 D e l ta 4 .35

M 2 M id p o in t 2 .95

M 2 C o v e rs -2 .3 5

M 2 N o m in a l  p a s s 2 .35

Faraday
Cup

Interaction
region

Connection
BlockRepeller

Figure 3.19: M ounting arrangem ent for the electron source w ith the two sector removed. 
The electron tra jecto ry  sim ulation (blue trace) has been calculated using SIM ION 8 
software.
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Table 3.6: List of voltages for the electron beam source resulting in 8  /iA  recorded on 
the Faraday cup.

Electrode Voltage

A l +9.8 /  +10.8

A2 +10.2 /  +9.1

A3 +15.8 /  +12.6

Block +80

B1

B2 +71.9

However, no ions were observed when irradiating the molecular beam with the mono

chromatic electron beam. This was attributed to stray electric fields between the elec

tron beam and the TOF extraction volume and /  or poor focusing conditions for ions 

entering the TOF extraction from outside. A more intense electron beam was required 

to identify the specific issues. Therefore the sectors of the monochromator were (tem

porally) replaced with a single connection block. This new assembly (Figure 3.19) 

provides much more intense beams (up to 2 0  fiA) at the expense of energy resolution. 

The list of voltages resulting in 8  fiA recorded on the Faraday cup is given in Table 

3.6. This system enabled E li mass spectra to be recorded for an argon beam (Figure 

3.20). The threshold value for ionisation ( 16 ±  0.5 eV ) is in agreement with literature 

value ( 15.76 eV [45]), However, comparisons with measurements using the Kimball 

gun revealed an approximate signal loss of three orders of magnitude. Further tests are 

currently in progress.

3.6 Summary

This chapter provides a description of the crossed-beam apparatus at the OU for study

ing multi-photon ionisation (MPI) and electron impact ionisation (Eli) of isolated and 

clustered molecules. Improvements to the system during this PhD have effectively elim

inated background signals in MPI mass spectra and enabled E li measurements to be 

performed with tuneable mass resolution. Results obtained using the MPI /  E li exper

iment are presented in Chapters 4, 5 and 7. The facility for the ultrafast time-resolved
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Figure 3.20: Mass spectrum  recorded for 70 eV (8 iiA ) electron in teractions w ith an 
argon beam. The insert shows the argon ion yield as a  function of incident electron 
energy.

M PI m easurem ents carried out w ith David Townsend and co-workers a t H eriot-W att 

University is described in C hapter 6.

A new experim ent has been designed and built to  study electron attachm ent (EA), E li, 

and M PI of molecules and clusters in Stark-deflected beam s (S ta rk /E A ). The system  

is described in detail here and a num ber of early results are presented to  dem onstrate 

its perform ance to  date. E li  m easurem ents show th a t we have been able to  m anipulate 

the shape of a  n itrom ethane beam, w ith the m ost ro tationally  cold molecules deflected 

m ost. Furtherm ore, we have successfully modified the  com position of a collim ated beam  

of nitrom ethane molecules and clusters by progressive removal of the  species w ith the 

largest efective dipole m om ent /  mass. Studying the  dependence of a  given p roduct ion 

signal on the  deflection voltage can reveal the origin of the ion (e.g. w hether it comes 

from ionised monomers, dimers, and /  or larger clusters). This provides a powerful tool 

for research into radiation-induced processes in clusters.
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Chapter 4

Reactivity in adenine-water clusters

This chapter probes unimolecular and intermolecular reactivity in hydrated adenine 

clusters using multi-photon ionisation (MPI) and electron impact ionisation (Eli) mass 

spectrometry. The effects of clustering with water on fragment ion production from 

adenine axe studied for the first time. Complementary measurements are reported 

on the closely related molecule hypoxanthine to attain evidence for its formation via 

theoretically predicted deamination reactions in adenine-water clusters.

4.1 Introduction

The relaxation pathways of both isolated and hydrated adenine (C5 H5 N5 ) following 

excitation to the lowest lying bright mr* state have been mapped out in considerable 

detail using ultrafast pump-probe experiments [171, 172, 173] and quantum chemical 

calculations [174, 175, 176]. Sub-ps-timescale internal conversion to the vibrationally 

hot electronic ground state via intermediary nir* and cm* states is found to dominate, 

although evidence for much weaker intersystem crossing pathways to long-lived triplet 

states have also been reported [177]. Previous studies of reactivity in hydrated adenine 

have focused on tautomeric transitions [178, 179] and proton transfer in adenine dimer 

ions [180]. Since the present data was published [161], Alauddin et al. [181] repor

ted infrared photodissociation spectroscopy measurements on A 2 • (H2 0 )+ (n =  1 — 4)

83
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nh2 nh2

Ok
Figure 4.1: Selected tautom ers of adenine [17, 2]. From left to right: amine-N9H (the 
most abundant in the gas-phase), amine-N7H, amine-N3H and am ine-N lH .

Figure 4.2: Selected tautom ers of hypoxanthine [18, 19]. From left to right: keto- 
N1H /N 9H  (the m ost abundant in the gas-phase), keto-N lH /N 7H , enol-cis-Nl and enol- 
trans-N l

clusters in order to  probe the local solvation structures. However, no experim ents have 

directly explored the  effects of hydration on the dissociative ionisation pathways of ad

enine. The optim ised geometries of adenine-w ater clusters are shown in Figure 4.3. The 

present m easurem ents apply UV m ulti-photon ionisation (M PI) mass spectrom etry to 

analyse fragm ent ion production from adenine-w ater clusters. Furtherm ore, this chapter 

provides the  most detailed analysis to date of M PI and electron im pact ionisation (E li) 

production of hydrated  adenine monomer ions and hydrated  reaction products (not

ably hydrated  p ro tonated  adenine) from larger dissociated clusters. The key interest 

in directly comparing M PI and E li of mixed clusters stems from the selective nature 

of M PI, notably w ith water molecule photoexcitation being inaccessible in the present 

laser conditions.

The m ost abundant gas-phase tau tom ers of adenine are shown schematically in Figure 

4.1, while Figure 4.4 shows the optim ised geometries of 7r-stacked and H-bonded adenine 

dimers. System atic theoretical works recently showed th a t the most stable tautom er 

of neu tra l adenine is N9H-adenine followed by two other tautom ers (N3H-adenine and
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A..( 1120)1 A..(I120)2 A..(H20)3

Figure 4.3: O ptim ized geometries of adenine-(H 2 0 )n (n = l ,  2 , 3) neu tra l clusters cal
culated usin a semi-empirical model. Reproduced from [20].

Figure 4.4: Optim ised structures (B 3LY P-D /6-31+G (d,p)) of the  m ost energetically 
stable configuration of (a) 7r-stacked, and (b) H-bonded adenine dim er. R eproduced 
from [2 1 ].

N7H-adenine) a t energies of 29 and 31 k J /m o l w ith respect to  N9H-adenine [17, 182, 

183]. IR-UV and R 2PI double resonance spectroscopy perform ed by P liitzer et al. [184] 

on oven-vaporised adenine before expansion through a  nozzle showed th a t only the  N9H- 

adenine was present in their experim ents. These findings are further supported  by M P2 

and D F T  calculations. In contrast, Nir et al. [185] dem onstrated  th a t gas-phase adenine 

produced by heating and then  followed by jet-cooling m ay lead to  the  presence of two 

distinct isomers -  N9H and N7H. However, m ost recently Bravaya et al. [182] proved 

th a t jet-cooling of adenine leads only to the  m ost stable tau tom er, i.e. N9H. Hence, it 

is also assumed th a t N9H-adenine is by fax the  m ost abundant gas-phase tau tom er in 

the beam s probed in the  present work.

One possible reaction product of adenine and w ater th a t would not be readily identifiable 

in the m ass spectra  of hydrated  adenine is hypoxanthine (C 5 H 4 N 4 O) w ith  m ass 136 a.u., 

equal to  pro tonated  adenine or an adenine isotopom er containing one 1 3 C. Sim ilarly to  

adenine, the  m ost abundant gas-phase tau tom ers of hypoxanthine have been reported  

[186, 187, 188] to  be two -keto forms (Figure 4.2), w ith the m ore dom inant of the

a. b.
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+h 2o

H

Figure 4.5: D iagram  illustrating  a predicted [22, 23] hydrolytic deam ination reaction of 
adenine

two being the keto-N lH /N 9H  [189]. A negative activation barrier for hypoxanthine 

production in the closing system of four w ater molecules around adenine has been 

predicted theoretically (—2.4 kcal/m ol), w ith one water molecule as catalyst and the 

others as m edium  [22, 23]. Figure 4.5 shows the predicted reaction schematically.

The reaction s ta rts  w ith four water molecules being hydrogen bonded to adenine. A 

6 -m em bered ring transition  s ta te  is formed, involving the adenine molecule and two 

w ater molecules ( /  and I I ) .  The other two water molecules (medium) do not participate 

actively in the reaction -  their sole role in the reaction is lowering the overall barrier. 

An in term ediate s ta te  is then reached with one water molecule hydrogen-bonded to the 

C 6  and N1 positions in a te trahedral configuration. In the  next step, the  interm ediate 

sta te  decomposes via transferring a H-atom  from water I  to  w ater I I .  Simultaneously, 

another H atom  from w ater I I  transfers to the NH 2  group bonded to the C 6  atom  

of adenine. W ater I I  does not participate any further in the reaction. As the two H 

transfers occur a t the  same tim e, w a te r / /  plays the role of a catalyst (the reaction is 

an associative H shuttling reaction). Finally, the C 6 —NH 3  bond breaks releasing an 

am m onia molecule. The OH complex left over from water I  breaks -  the  oxygen creates 

a double bond w ith the C 6 , while hydrogen with the N5. Hence the reaction finishes 

w ith the  form ation of hypoxanthine molecule.

W hile the  m ain aim of the  present M PI and E li experim ents on hypoxanthine is to 

elucidate adenine-w ater reactivity, the  molecule is also interesting as a universal nuc- 

leobase th a t binds w ithout discrim ination to natu ra l bases. Its potential applications 

in polym erase chain reaction (PC R ) hybridisation probes and gene therapies have been
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discussed by Rutledge et al. [190]. In contrast with adenine, very few experimental 

studies of the photophysical properties of hypoxanthine have been reported in the lit

erature. Electronic spectra and excited state geometries have been investigated the

oretically [191], both in isolated and hydrated conditions. As with DNA bases, 7r7r* 

transitions dominate hypoxanthine absorption in the wavelength range (220-225 nm, 

5.64-5.51 eV) of the present MPI experiments. Further studies have been focused on 

hydrogen bonding and stacking interactions with DNA bases [190], and on gas phase 

acidity and proton affinity [192].

4.2 Experimental conditions

The experiments discussed in this section have been performed with the MPI/EII exper

imental setup. A full description of the experiment is given in Section 3.2. Argon seeded 

with sublimated adenine or hypoxanthine (Sigma-Aldrich, minimum purity 99 %) with 

or without water vapour flowed continuously through a pinhole (70 /im diameter in the 

Figure 4.7 measurements, 50 jum in Figure 4.8 and 4.10) into the expansion chamber 

that was pumped at 1 , 2 1 0  1/s.

The adenine temperatures (237 — 276 °C) were comparable with or lower than those ap

plied in previous supersonic beam experiments that reported no evidence for thermally 

driven decomposition, isomerisation, or reactivity of adenine [26]. Hypoxanthine was 

heated to 295 °C in order to obtain clear signals above background. To our knowledge, 

no previous experiments have been carried out on hypoxanthine seeded in a supersonic 

beam. Tembreull and Lubman [193] brought the molecule into the gas phase by laser 

desorption. Dawley et al. [194, 195] produced an effusive beam for electron attachment 

experiments by heating hypoxanthine to 180 °C under vacuum and observed no evidence 

of thermal decomposition. However, it should be noted that much lower temperatures 

are systematically applied in experiments of this kind compared with experiments using 

seeded carrier gas. For example, Schlatholter et al. [82] carried out ion impact ionisa

tion experiments on adenine vaporized under vacuum at 140 °C, whereas Kim et al.
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Figure 4.6: M PI (220 nm) m ass spectrum  of cytosine (282 °C, 0.6 bar Ar) revealing a 
num ber of new product ions th a t indicate therm al damage of the powder sample in the 
nozzle.

[61, 196] produced a molecular beam  for M PI and E li studies (w ith no evidence for 

therm al damage) by sublim ating adenine a t 240 — 250 °C in a  helium flow.

The present experim ental procedures can reveal evidence for therm al decomposition 

and /  or reactivity  via unexplained peaks in the mass spectra, particularly  a t m /z  values 

th a t are greater th an  the  paren t ion bu t do not m atch a plausible cluster ion. Naturally, 

the  relative yields of ions linked to therm al decomposition tend  to  increase w ith tim e as 

well as a t higher tem peratures. For example, previous electron im pact ionisation mass 

spectra  [45, 197] and our M PI experim ents on cytosine a t 250 °C showed no evidence 

for the  peaks labelled as therm al products in Figure 4.6. The rem aining powder after 

the m easurem ent a t 282 °C was significantly discoloured, providing further evidence for 

therm al damage. No peaks suggesting therm al damage were observed in the present 

m easurem ents on adenine and hypoxanthine and no powder discolouration occurred.

4.3 Results and discussion

4 .3 .1  M P I  a n d  E l i  o f  gas p h a se  a d e n in e  a n d  h y p o x a n th in e

Figure 4.7 shows M PI and E li  production of adenine and hypoxanthine radical cations. 

The same laser and electron beam  conditions were applied for bo th  molecules and the 

same argon pressure (0.5 bar) was used in all four m easurements. It was necessary to use
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Figure 4.7: Com parison of M PI (220 nm, average fluence 4 x  107 W /c m 2) and E ll 
(200 eV) of adenine and hypoxanthine (Ar 0.5 bar).

a higher powder tem perature  for hypoxanthine (295 °C) th an  for adenine (240 °C) in 

order to achieve a reasonably strong E li signal. Previously, Bare [2] unsuccessfully tried  

to m ulti-photon ionise hypoxanthine a t 240 °C. This indicates th a t hypoxanthine has a 

m arkedly lower vapour pressure than  adenine at any tem peratu re  in the  present range 

(to our knowledge, no vapour pressures of hypoxanthine are available in the  lite ra tu re ) .

The mass spectra do not contain peaks for adenine or hypoxanthine clusters ions. W hile 

th is does not discount the possible presence of clusters in the  neu tra l beam s [198], com

parisons w ith previous experim ents on adenine suggest th a t the  supersonic expansion 

conditions were not suitable for significant cluster form ation. For exam ple Kim et al. 

[196] expanded 2.0 bar of helium seeded w ith adenine and w ater vapours th rough  500 / im  

d iam eter pulsed nozzle. As a first approxim ation, clustering in supersonic beam s in

creases w ith the pressure above the nozzle and the nozzle diam eter squared (poD2; see 

Section 2.4.2.5 for details). The product of PqD2 was 400 tim es greater in Kim et a l.’s 

experim ents th an  in the m easurem ents shown in Figure 4.7.

The ratio  of 4 ±  3 % for m /z  =  136/135 counts in the adenine M PI d a ta  is broadly 

consistent w ith the  ratio  of 7.4 % expected due to  isotopom ers [71]. By contrast, K im



90 CHAPTER 4. REACTIVITY IN ADENINE-WATER CLUSTERS

et al.’s [61] MPI experiments (ns-timescale pulses at 266 nm) showed a major increase 

in the m /z =  136/135 ratio due to intermolecular proton transfer in adenine clusters 

(discussed further in Section 4.3.2). The MPI signal intensity from hypoxanthine was 

too low to see any clear signal due to isotopomers.

Whereas adenine MPI has been observed in the present laser fluence regime in a num

ber of previous studies (222-266 nm) [2, 127, 193, 198, 199], the present measure

ments demonstrate hypoxanthine MPI using ns-timescale laser pulses for the first time. 

De Vries [200] stated that hypoxanthine can be ionised effectively with 1 0 0  fs pulses 

(wavelength not given) but not with 1 0  ns pulses. Tembreull and Lubman [193] were 

unable to ionise hypoxanthine at 2 2 2  nm, ~  106  W /cm 2. Therefore, it is not surprising 

that the present hypoxanthine MPI signal (220 nm, average fluence 4 x 1 0 7  W /cm 2) is 

relatively weak. Assuming similar E li cross-sections for the two molecules at 200 eV 

(a reasonable expectation according to the binary-encounter-Bethe model [9]), Figure 

4.7 indicates that adenine MPI is more than six times stronger than hypoxanthine MPI 

in the present laser conditions. This effect is most likely due to particularly short 

lifetimes of the electronic excited states of hypoxanthine accessed in the present MPI 

experiments. Time-resolved experiments are necessary to verify this interpretation and 

elucidate the relevant excited state dynamics.

4 .3 .2  H y d ra tio n  effec ts o n  f ra g m e n t ion  p ro d u c tio n  fro m  a d e n in e

Figure 4.8 compares MPI mass spectra of adenine (A) seeded in argon beams with and 

without water vapour. The measurements were carried out at relatively low laser fluence 

(average 4 x 105 W /cm 2, 225 nm) in an effort to reduce cluster dissociation via higher 

order (>  3) photon absorption. The measurement in dry conditions showed a very weak 

peak for A j  (0 . 2  % of the A+ signal) and the ratio of m /z =  136 counts over m /z =  135 

counts was 8 . 0  ±  0.4 %, close to the expected isotopomer ratio of 7.4 % [71]. This 

indicates that the adenine molecules were predominantly isolated. The mass spectrum 

of adenine with water vapour demonstrates A+ • (H2 0 )n production up to n =  3. It 

is interesting to note that the intensity of the A j signal is approximately doubled in 

the hydrated measurement ((9 ±  2) • 10- 3  counts/pulse compared with (4 ±  1) • 10~ 3
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Figure 4.8: M PI mass spectra (225 nm, average fluence 4 x 10° W /c m 2, powder 237 °C, 
Ar 0.8 bar) of dry adenine and hydrated  adenine (water 100 °C).

counts/pulse in dry conditions), suggesting th a t either the  presence of w ater in the 

expansion aids the  form ation of complexes w ith two or more adenine molecules, or th a t 

the presence of w ater makes it more likely th a t an adenine cluster survives ionisation 

in tact.

The ratio  of m /z  =  136 counts over m /z  —135 counts in the  hydrated  m easurem ent 

(Figure 4.8) was 23 ±  2 %, clearly larger th an  the adenine isotopom er ratio . T he ex tra  

m /z  =  136 ions can be assigned to  AH+ form ation via interm olecular p ro ton  transfer 

and subsequent cluster dissociation. Hiinig et al.’s [180] tim e-dependent pum p-probe 

experim ents on pure adenine complexes dem onstrated  th a t AH+ fragm ent ions were 

produced by proton transfer in adenine dim er ions. Indeed, proton transfer from A + to  A 

in a  dim er cation is exothermic: the proton affinity of n eutral adenine is 225.5 kcal/m ol 

(9.78 eV) [45] while the acidity of the adenine radical cation is 220.9 kcal/m ol (9.58 eV)

[201]. Park  e t a l.’s [136] D FT  studies showed th a t proton transfer in hydrated  adenine 

dim er ions can occur w ith a barrier lower th an  0.5 kcal/m ol. Kim et al. [196] discussed 

the possibility th a t proton transfer from w ater to  adenine in th e  mr* excited s ta te
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Figure 4.9: Electron energy loss (EEL) spectrum of water for 1 0  eV impact energy and 
140° scattering angle, showing no structures in the energy loss range coinciding with 
the photon energies used in the present MPI experiments (4.59 — 5.64 eV). [24]

could explain the strong AH+ production (as well as weak A+ • (H2 0 )n) production) in 

their 266 nm MPI experiments. They concluded that this reaction was highly unlikely 

due to its large endothermicity in hydrated adenine. Hydrogen transfer from H2 O 

(homolytic bond cleavage energy 123 kcal/mol) to the adenine radical cation (H affinity 

109 kcal/mol) can also be ruled out [201]. Moreover, no electronic excited states of 

water are accessible in the wavelength range (220 — 225 nm, 5.64 — 5.51 eV) probed 

in the present MPI measurements [24, 202, 203, 204]. Figure 4.9 shows Cvejanovic 

et al.’s [24] electron energy loss (EELS) spectrum of water in the energy region partially 

covered in this work. Excitations to optically dark states are much more likely in the 

EELS spectra, compared with UV absorption spectra, and hence the absence of any 

features in Cvejanovic et al.’s measurements with low incident electron collision energy 

(<  10 eV) strongly indicate there are no states available in the 5.64 — 5.51 eV range. 

Therefore, AH+ production in the present MPI experiments must begin with adenine 

excitation. The m /z =  136 peak may also contain a contribution of hypoxanthine+ 

due to deamination reactions in closed-shell adenine-water complexes and subsequent 

cluster dissociation.

Notwithstanding the low laser fluence, Figure 4.8 demonstrates significant fragment ion 

production in both dry and hydrated conditions. Table 4.1 lists the fragment ions that
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were clearly observed above the background level. Previous MPI-TOF measurements at 

222 nm [193] have shown m /z =  28 products from laser-desorbed adenine in a supersonic 

jet. The only other MPI fragment ion of adenine MPI mentioned in a journal article 

is H+ (recorded at 266 nm with a much higher fluence than the present measurements 

[127]). Bard [2] reported evidence for MPI (226 nm, 4.6 x 106  W /cm 2) fragments at 

m /z =  28, 54, 6 6 , 70 and 81, but high background levels prevented a detailed analysis. 

Lin et al. [205] reported significant photo-dissociation of adenine in their 248 nm MPI 

experiments using ns-timescale laser pulses but did not specify the fragment ions. How

ever, dissociative ionisation of adenine has been studied extensively in ion impact [206, 

and references therein], electron impact [47], and single photon absorption [43] experi

ments. Taking into account differences in energy deposition and signal /  noise ratios, the 

previous measurements were broadly consistent in terms of the fragment ions produced. 

Accordingly, Table 4.1 shows that the present dry adenine MPI mass spectrum includes 

all the strong fragment ions (>  2 0  % of the A+ signal) observed in Jochims et al.’s [43] 

2 0  eV photoionisation measurement. Only one weak peak is observed in the present 

dry adenine MPI result that had not been reported previously: m /z =  6 8  (C2 H2 N3 + or 

CaH4 N2 +). However, since the present data were published, a new article has repor

ted that Gaussian fitting of a large data set of electron impact ionisation mass spectra 

(0 -  200 eV with relatively low mass resolution) revealed evidence for weak fragment 

ion production at this mass over charge ratio [207]. On the basis of appearance energies 

and thermochemical data, Jochims et al. [43] proposed that the dominant fragmentation 

pathways of the excited adenine radical cation involve HCN loss followed by C4 H4 N4 + 

(m/z =  108 with the lowest appearance energy) dissociation (notably via further HCN 

loss), CH3 N2  loss followed by C2 H4 N3 + (m/z =  70) dissociation, and direct C4 H3 N4  loss 

producing H2 CN+ (m/z =  28).

The only previous studies of adenine dissociative ionisation in clusters were carried out 

on pure adenine complexes using MPI (266 nm ns-timescale laser pulses) [44] and 50 keV 

C>5 + impact [82]. Schlatholter et al. [82]’s ion impact experiments demonstrated strong 

production of m /z =  118 ions (indicating NH3  loss, not observed in adenine monomers) 

as well as enhanced m /z =119 (NH2 loss) and m /z =  92 (C4 H2 N3 +) signals due to
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Table 4.1: Ions observed following MPI of adenine in dry and hydrated conditions 
(Figure 4.8 data, not including cluster ions), photoionisation (20 eV) of adenine [43], 
photo-dissociation of protonated adenine (266 nm, average fluence ~  107  W /cm 2) [44], 
and E li (electron energy not available) of hypoxanthine [45].

m /z

% of the parent ion peak (except in the case of AH+) with the previously proposed 
assignments, where available.

Adenine 
M PI A

Hydrated  
adenine 
M PI A

Adenine
photo

ionisation
[43]

AH~^ photo
dissociation  

[44] B

Hypoxanthine 
EII[45] B

136 8.0 ±  0.4 23 ±  2 Not shown Not shown 1 0 0

135 1 0 0 1 0 0 100 (C5 H5 N5+) Not shown 1 0

134 0.3 ±  0.1 0.8 ±  0.3 10 (C5 H4 N5+) Not shown

1 2 0 0.08 ±  0.04 1.2 ±  0.4 1 (C5 H4 N4+)

119 0.3 ±  0.1 3.3 ±  0.6 3 (C5 H3 N4+ ) 100 (C5 H3 N4 + )

109 31 (C4 H5 N4 +) 1 0

108 0 . 2  ±  0 . 1 1 0  ±  1 57 (C4 H4 N4+) 1 0

107 0.3 ±  0.1 0.7 ±  0.3 10 (C4H3N4+)

94 13 (C4 H4 N3 +)

92 9 (C4 H2 N3+)

82 5 (C3 H4 N3 + )

81 1 . 2  ±  0 . 2 2.3 ±  0.5 50 (C3 H3 N3+) 1 0

80 10 (C3 H2 N3+) 3

70 0.7 ±  0.1 1.0 ±  0.3 17 (C2 H4 N3+) 1

6 8 0 . 2  ±  0 . 1 1

67 10 (C3 H3 N2+) 5 (C3 H3 N2+) 1

6 6 0 . 8  ±  0 . 1 0.6 ±  0.3 41 (C3 H2 N2+) 3
65 1

55 5 (C2 H3 N2+ )

54 0.9 ±  0.1 1.6 ±  0.4 55 (C2 H2 N2+) 30

53 0.4 ±  0.1 1.1 ±  0.4 28 (C2 HN2+) 8

43 0.3 ±  0.1 2.0 ±  0.5 34 (CH3 N2+) 2

42 16 (CH3 N2+)

41 7 (CHN2+)

40 1 (CN2+)

39 1 (C2 HN+) 3
38 3

29 0 . 6  ±  0 . 1 1.4 ±  0.4 60 (CH3 N+) 7

28 0.7 ±  0.1 1.3 ±  0.4 110 (CH2 N+) 5 (CH2 N+) 32

27 10 (CHN+) 4

18 0.6 ±  0.3 Not shown 25 (NH4+ )
Fragment ion peaks that have higher MPI count rates in the hydrated measurement than in the dry 
measurement are highlighted in bold.
A The MPI columns only include peaks with count rates that are clearly greater than background 
measurements. The error boundaries are based on assumed Poisson statistics.
B The approximate percentages in the AH'*" photo-dissociation and hypoxanthine Eli columns were 
read from figures. Trace features in the mass spectra are not included.
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clustering. The present MPI measurements did not reveal ion production at m /z =  118, 

although it should be noted that the signal/noise ratios were quite low in this m /z 

range. It also worth noting that Schlatholter et al. [82] used an aggregation source that 

produced clusters containing considerably more adenine molecules than the present 

apparatus. The m /z =  119 and m /z =  109 fragment ions were most intense in Cheong 

et al.’s [44] MPI experiments on adenine clusters (minor peaks were mentioned but not 

listed); both strong photodissociation products of protonated adenine. The present work 

provides the first data on how clustering with water affects fragment ion production 

from adenine. Figure 4.8 and Table 4.1 show that hydration significantly increased 

the count rate of m /z =  108 (C-tHUN^) ions as well as slightly enhancing m /z =  1 2 0  

(C5 H4 N4 +) and m /z =  119 (C5 H3 N4 +) ion production. Conversely, it reduced the count 

rates of all the other fragment ions in the dry adenine MPI mass spectrum. These 

observations can be rationalised in terms of energy removal from the excited adenine 

cation via cluster dissociation tending to enhance the production of large fragment 

ions with low appearance energies at the expense of smaller ions with relatively high 

appearance energies, predominantly associated with sequential fragmentation pathways. 

Hydration also opened a fragment ion channel at m /z =  18 (NH4 + , discussed below). 

Cheong et al. [44] analysed AH+ fragmentation following photoexcitation at 266 and 

263 nm (4.66 and 4.71 eV). In agreement with earlier collision induced dissociation 

(CID) experiments [208], the dominant fragment ions occurred at m /z =  119, m /z =  109 

and m /z =  18 (see Table 4.1 for more detail). The hydrated adenine measurement 

in Figure 4.8 (with enhanced m /z =  136 production), showed a clear increase in the 

m /z =  119 and m /z =  18 signals. The m /z =  119 fragment was also produced from dry 

adenine so its enhancement may be (wholly or partially) due to energy removal from 

the excited radical cation via water molecule loss limiting sequential fragmentation 

processes. Indeed, the absence of a clear peak at m /z =  109 in the hydrated adenine 

measurement suggests that AH+ fragmentation did not contribute very strongly to 

the present data. However the m /z =  18 signal in the hydrated adenine measurement 

provides compelling evidence for fragment ion production from AH+ .
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MPI experiments on argon-water beams did not produce any m /z =  18 ions, as ex

pected considering water’s transparency in the present wavelength range (220-225 nm) 

[24, 202, 203, 204]. MPI (225 nm, average fluence 7 x 1 0 5  W /cm2) measurements on ad

enine (248 °C) in an expansion with argon (0.9 bar) and D2 O (100 °C) provided further 

evidence supporting the assignment of the present m /z =  18 peak to NH4 + production 

following AH+ dissociation. Extensive hydrogen-deuterium exchange was evidenced by 

a series of peaks at m /z =  135-141 (maximum at m /z =  138) replacing the m /z =  135 

and m /z =  136 peaks observed in adenine-H2 0  experiments. The mass spectrum also 

included a series of weak peaks between m /z =  18 and m /z =  2 2 , with a maximum at 

m /z =  21 indicating NHD3 + production. Detailed figures are given in Appendix A (Fig

ure A .l).

Previous electron impact measurements [45] showed the strongest fragment ions de

rived from hypoxanthine to be at m /z =  54 and m /z =  28 (both also fragment ions from 

adenine, as shown in Table 4.1). Ion production at these m /z values was suppressed 

by hydration in the present data. Therefore, the present data does not provide clear 

evidence for fragment ions traced to hypoxanthine formation in hydrated adenine com

plexes. This may be attributed to the fact that hypoxanthine is multi-photon ionised 

with much lower efficiency than adenine in the present laser fluence regime (Figure 

4.7), hence any fragment ion production will also be relatively weak. Similarly, the fact 

that the total ion count rate in the hydrated measurement is only 2 1  % of that in the 

dry measurement can be partially attributed to hypoxanthine production and its low 

MPI efficiency in the present laser conditions. However, there are several possible con

current mechanisms that can reduce the total MPI signal. In MPI experiments using 

ns-timescale laser pulses at 266 nm, Nam et al. [198] observed that hydration increased 

the number of photons required for A+ MPI production by one (hence reducing MPI 

efficiency at a given fluence) and attributed this to energy loss via cluster dissociation 

in the neutral electronic excited state. Hydration can also cause shifts in the excited 

states of nucleobases (notably stabilisation of nn* states [106, 209]) and hence modify 

their relaxation dynamics with resultant changes in MPI efficiency.
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4 .3 .3  C o m p a rin g  M P I  a n d  E l i  o f  h y d ra te d  a d e n in e  co m p lex es

Figure 4.10 compares MPI and E li mass spectra of adenine-water clusters. As 

A2 H+ • (H2 0 )n peaks in the E li mass spectrum could not be separated from 

(H2 0 )nH+ (n >  15), the present discussion focuses on the production of A+ • (H2 0 )n 

and 136+ • (H2 0 )n (AH+ • (H2 0 )n or hydrated hypoxanthine complexes). E li experi

ments on adenine-water clusters have been carried out by Kim et al. [65, 196]. How

ever, whereas hydrated protonated thymine and uracil clusters were demonstrated, the 

presented mass spectra did not distinguish between A+ • (H2 0 )n and 136+ • (H2 0 )n. 

The E li plot in Figure 4.10 shows a series of 136+ • (H2 0 )n peaks preceded by weaker 

features attributed to A+ • (H2 0 ) n. As discussed above, AH+ production from pure 

adenine clusters is attributed to the proton transfer in adenine dimer ions followed by 

dissociation [180]. However, this mechanism is very unlikely to produce AH+ • (H2 0 )n 

because complete loss of water molecules is expected to precede the cleavage of A j  due 

to its high binding energy (e.g. 1.34 eV in A j  • (H2 0 ))  compared with adenine-water 

(e.g. 0.49 eV in A j • (H2 0 ))  [210]. Alternatively, the removal of an electron from water 

in a hydrated cluster can lead to partial dissociation with a remaining excess proton 

(as observed for the pure protonated water clusters) that can migrate to adenine due 

to its markedly higher proton affinity [135]. While hypoxanthine formation may also 

contribute to the 136+ • (H2 0 )n peaks (the calculated closed-shell deamination reac

tion barrier is only —0.104 eV [22], so little water molecule loss is expected), the fact 

that hydrated protonated thymine and adenine have been observed in Kim et al.’s [65] 

E li measurements indicates that water ionisation followed by dissociation and proton 

migration to adenine is highly likely to take place in the present E li experiments.

Previous mass spectra of adenine-water clusters have been measured using diverse MPI 

schemes with both ns-timescale and fs-timescale laser pulses [2, 18, 198]. The novelty 

of the MPI mass spectrum in Figure 4.10 is that it is presented in sufficient detail 

(with adequate resolution and signal /  noise ration) to reveal 136+ • (H2 0 )n peaks. The 

production of these ions cannot be initiated by water ionisation at this wavelength

[202] and AH+ • (H2 0 ) n formation via proton transfer in hydrated adenine dimer ions
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Figure 4.10: Com parison of M PI (upper plot, 220 nm, average fluence 3 x 106 W /cm 2) 
and E li  (lower plot, 200 eV) m ass spectra of hydrated adenine (powder 276 °C, water 
70 °C, A r 1.8 bar).

is very unlikely (see argum ent above). This leaves hypoxanthine+ ■ (H 20)n as the  m ost 

probable assignment for the  present 136+ • (H 20)n M PI signals. Hence the high ratio  

of 136+ • (H20 ) n /  A+ • (H20 ) n counts in the E li  m easurem ent com pared w ith the M PI 

d a ta  is consistent w ith the low M PI efficiency of hypoxanthine (Figure 4.7) as well as 

the  opening of the  w ater ionisation induced proton transfer pathw ay in E li. Kim et al. 

[65] reported  evidence for analogous hydrolytic deam ination reactions in cytosine-w ater 

clusters.

T he assignm ent of hypoxanthine+ • (H 20)n peaks in the present M PI mass spectrum  

has possible im plications relevant to  the structure  of the adenine-w ater complexes in 

the  neu tral beam . The present d a ta  and previous mass spectra of adenine-w ater com

plexes [196] show evidence for A+ • (H 20)n production extending to  a t least n = 7 

and Kim et a l.’s [61] calculations support a closed shell s tructure  a t n  =  4. There

fore, deam ination reactions in closed shell adenine-w ater complexes could reasonably 

be expected lead to  negligible production of large A + • (H 20)n complexes. A possible 

explanation for A + • (H 2 Q )n production w ith n > 4 is th a t a significant proportion of
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the A • (H2 0 )n complexes in the neutral beam do not have closed-shell configurations; 

water-water bonds have formed while at least one hydrogen-bonding site of adenine re

mains vacant. This interpretation appears to be broadly consistent with semi-empirical 

optimised structure calculations [2 0 , 2 1 1 ] showing that water molecules preferentially 

group around a single bonding site in A • (H2 0 )n (n <  3). It is interesting to note that 

Liu et al. [89] reported significant hydration effects on the collision induced dissociation 

of adenosine monophosphate anions (AMP- ) with up to 13 water molecules preferen

tially clustered on one side of the anion.

The MPI measurements revealed a broad peak centred at m /z =  193.7. This feature 

is most likely due to the dissociation of excited cluster ions in the TOF drift tube. 

This mechanism is similar to a metastable channel revealed in uracil. A complete 

discussion on the analysis method is given in Section 5.4.3. Briefly, time-of-arrival of 

the investigated ion is compared with a known reference peak. The measured time 

difference is compared with an analogous calculated value. This analysis showed, that 

either A+ or AH+ formation by A2 + dissociation in the drift tube could produce the 

observed feature. However, the combined experimental uncertainties were too great to 

distinguish which one is more likely to dominate. None of the alternative metastable 

dissociations considered, notably from precursor cluster ions containing water molecules, 

could produce flight times consistent with the observed feature. Further experiments 

using the reflection voltage to determine the ion’s kinetic energy are necessary to identify 

the fragmentation process unambiguously. Kim et al. [61] also observed evidence for 

metastable dissociation of pure and hydrated adenine cluster ions, while Alvarado et al. 

[212] have shown that adenine cation fragmentation can proceed via CN loss followed 

by neutral H loss after a microsecond-order delay.

4.4 Conclusions

The present MPI and E li data enhance our understanding of the unimolecular and 

intermolecular reactive processes in adenine-water clusters. With the exception of 

the CsH4 N4 +, CsH3 N4 + , and C4 H4 N4 + fragment ion channels, clustering with water
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stabilised adenine with respect to dissociative multi-photon ionisation. All sequential 

fragment ion pathways were suppressed. These hydration effects can be attributed 

to energy dissipation from the excited radical cation via cluster dissociation. Water 

ionisation followed by partial cluster dissociation and proton migration to adenine is 

expected to dominate 136+ • (H2 0 )n production in the present E li experiments. Weak 

136+ • (H2 0 )n MPI peaks have been observed for the first time. MPI experiments on 

isolated hypoxanthine were carried out to verify whether the 136+ • (H2 0 )n peaks could 

be assigned to hydrated hypoxanthine ions following deamination reactions in closed- 

shell adenine-water clusters. Accordingly, hypoxanthine was successfully ionised using 

ns-timescale laser pulses for the first time. The low MPI efficiency compared with aden

ine suggests particularly fast internal conversion to the electronic ground state following 

7T7T* excitation.



Chapter 5

Multi-photon and electron impact 

ionisation of jet-cooled uracil, deuterated 

uracil and thymine

The chapter focuses on structural changes in uracil due to electronic excitation. It is 

argued here that differences multi-photon ionisation (MPI) and electron impact ionisa

tion (Eli) mass spectra can be traced to neutral electronic excited state dynamics. MPI 

wavelength thresholds for the production of specific fragment ions and comparisons with 

deuterated uracil and thymine provide further insights into excited state transitions and 

dissociative ionisation pathways.

5.1 Introduction

The experiments described in this chapter probe the pyrimidine derivative base uracil 

( C 4 H 4 N 2 O 2 ) ,  which forms two hydrogen bonds with adenine in RNA, using a MPI /  E li 

experiment described in detail in Chapter 3. Uracil’s close structural similarity with 

the DNA base thymine adds to the interest in this molecule, particularly with respect 

to differences in the photophysical properties of the two bases and their possible ra

diobiological consequences [213]. Figures 5.1 and 5.2 show the lowest energy conformers

101
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Figure 5.1: Uracil tautom ers, from left to  right: diketo, 0 4 /H 3 , 0 4 / H I ,  0 2 /H 3 , 
0 2  /  H I and  dienol.
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Figure 5.2: Thym ine tautom ers, from left to  right: diketo, 0 2 / H I ,  0 4 /H 3 , dienol.

of uracil and thym ine, respectively. In the  present experim ents only the  diketo form 

is expected to  be present -  infrared spectra of uracil vapour from powder heated at 

200 -  325 °C into 10 —15 Torr of argon indicated th a t only the diketo form was present 

[26]. Moreover, infrared cavity ringdown spectroscopy experim ents of jet-cooled uracil 

following heating a t 210 — 220 °C also showed th a t the  only gas-phase tautom eric struc

tu re  was the  diketo form [214]. These two experim ents were performed in conditions 

similar to  the  ones in the present work.

The present M PI wavelength (220-270 nm) range coincides w ith excitation to the 

S2 (7T7t*) s ta te  th a t dom inates the  low-energy p a rt of uracil’s UV absorption spectrum  

[29]. A series of u ltrafast spectroscopy and com putational chem istry studies (e.g. ref

erences [31, 33, 35],) have explored the radiationless decay pathways of S2 (7T7r*)-excited 

uracil in isolation as well as w ithin certain hydrated  complexes and base-pairs (see 

C hapters 6  and 7 for a sum m aries of the u ltrafast and cluster literature). Recently, 

C arbonniere et al. [215] studied ab initio  intram olecular vibrational redistribution  in the 

non-radiative excited s ta te  decay of uracil. Theoretical calculations have identified ring 

opening [3] and tautom eric transitions [213] in electronic excited states. Nachtigallova 

et al. [3] identified a radiationless relaxation pathw ay from S2 (7T7r*) to  the lowest-energy 

singlet s ta te  of uracil, S i( 7r7r*), via a ring-opening conical intersection. More recently
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(published at the same time as the present experimental results), Richter et al. [37] 

carried out dynamics calculations with non-adiabatic and spin-orbit couplings that 

supported this pathway. However, no previous experiments have been carried out to 

look for evidence of excited state ring opening. Hence, the non-adiabatic dynamics 

calculations provided the impetus for the experiments as well as the essential context 

for the proposed interpretations. Due to the possibility of neutral excited state trans

itions in the stepwise excitation process, MPI can activate channels that are closed in 

single photon ionisation or collision induced ionisation experiments where ionic states 

are directly accessed from the electronic ground state [216]. This chapter also presents 

equivalent MPI measurements on thymine, for which no analogous ring-opening pro

cess has been predicted [3]. A distinctly higher pump energy (5.64 eV, 220 nm) was 

applied than in the previous MPI studies of thymine (4.34 — 4.77 eV, 285.7 — 260 nm) 

[31, 32, 33, 217, 218, 219, 220] increasing the likelihood of isomeric transitions during 

S2  (7T7r*) deactivation.

The main aim of the present experiments was to study fragment ion production by MPI 

as a tool to observe evidence for excited state transitions. The present MPI scheme 

using single-colour nanosecond-timescale laser pulses enabled the initial excitation to 

be carried out in a much wider wavelength range than any previous study. Time resolved 

pump-probe measurements and experiments on clusters containing uracil are presented 

in Chapters 6  and 7.

5.2 Experimental

The experiments presented in this chapter have been performed with the MPI /  E li 

setup described in Section 3.2. Argon or helium buffer gas (0.5 — 1 . 2  bar) seeded 

with sublimated uracil, thymine (both Sigma-Aldrich, minimum purity 99 %), and /  or 

fully deuterated uracil (CDN isotopes, 98.4 %) flowed continuously through a 50 fim 

diameter pinhole into the pumped expansion chamber (500 1/s in the Figure 5.3, 5.5, 

5.6 and 5.8 measurements; 1 , 0 0 0  1/s in Figure 5.12) to form a supersonic jet. The 

powder temperatures (250 — 270 °C) were comparable with or lower than those applied
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in previous supersonic beam experiments that reported no evidence for thermally driven 

decomposition, isomerisation, or reactivity of uracil or thymine [26]. Accordingly the 

present mass spectra revealed no evidence for thermal reactivity spectra (discussed 

further in Section 5.4.2) and there was no powder discolouration.

5.3 Non-dissociative MPI of isolated uracil

The experiments in this section were carried out by heating uracil to 250 °C in 0 . 6  bar 

of argon. This pressure is lower than the driving pressures applied in previous super

sonic expansion experiments probing isolated uracil, and accordingly no evidence was 

observed for uracil cluster ions or their derivative UH+ (see Section 7.3 in the chapter 

on uracil clusters) in the measurements presented in Figures 5.3, 5.5, 5.6, 5.9 and 5.8. 

Uracil molecules were multi-photon ionised in the wavelength range 220-270 nm with 

average fluence 105 -10 8  W /cm 2. Previous single-colour MPI experiments using ns laser 

pulses at 222 nm, [193] 248 nm [205] and 235-268 nm [221] did not produce any dis

cernible uracil cation signals, whereas Brady et al. [217] were able to record a REMPI 

spectrum with a 270-285 nm pump and a 193 nm probe (both ns-timescale pulses). 

Bare [2] used the present MPI system to demonstrate MPI of uracil seeded in argon at 

223.8 nm with some presence of clusters (UH+/U =  33 ± 6  %) and with high background 

signals severely limiting any analysis of fragment ion production. Figure 5.3 shows weak 

U+ production (~  1 0 - 2  counts/pulse) at 2 2 0  nm as a function of laser pulse energy. 

To reduce possibility of saturation effects in the photon order1 measurements, the data 

in 5.3 were measured at average fluence (3-7) x 105 W /cm2, close to the minimum 

required to accumulate adequate statistics. The observed photon order of 2.3 ±  0.4 

indicates 2 -photon ionisation.

Chapter 6  presents ultrafast time-resolved experiments on gas-phase uracil using 2 0 0  nm 

pump pulses and provides a short review of the earlier measurements and calculations ex

ploring the excited state dynamics [3, 31, 32, 33, 34, 35, 37,222]. A weak long-lived decay 

component is observed and attributed to triplet states accessible via Si(n 7r*), following

1See Section 2.1.4
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Figure 5.3: Power dependence (a  =  photon order) of uracil+ production  on laser pulse 
energy. The m easurem ent was carried out at 220 nm  w ith average fluence (3-7) x 
105  W /c m 2, powder tem perature  250 °C, and argon pressure 0.6 bar. .

Ligare et a l.’s [36] recent calculations. E tinski et al. [223] theoretically  characterised 

the lowest lying electronic states of uracil and perform ed calculations indicating th a t 

T i ( 7T7t*) can be populated from the Si s ta te  on a sub-nanosecond tim e scale. However, 

single photon ionisation from T i is unlikely in the  present energy range (5.64 — 4.60 eV) 

in view of its low calculated vertical excitation energy of 3.78 eV (see Table 6.1; Ab- 

ouaf et a l.’s EELS m easurem ents gave a vertical energy of 3.65 eV , cited as a  private 

com m unication by Nguyen et al. [224]) com pared w ith 5.56 eV for S2 (7r7r*) and 4.67 eV 

for Si [223], while the ionisation energy of uracil is 9.15 ±  0.03 eV [43]. Therefore, the 

m ost plausible 2 -photon pathway in the present experim ents involves ionisation from  S2  

or Si (both of which can be trapped  on ps-timescales, as discussed in C hap ter 6 ). The 

average fluence values in the Figure 5.3 m easurem ent suggest th a t successive pho ton  ab

sorption on a ps-timescale would be rare. However, higher longitudinal m odes can lead 

to fluence peaks during ns-timescale laser pulses [225]. Indeed, the fact th a t processes 

known to occur via virtual excited sta tes were observed w ith M PI ( 2  +  1  ionisation of 

H and CO discussed in Section 5.5) at an average fluence of 2  x 1 0 8  W /c m 2  provides
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Figure 5.4: Scheme of the  reaction mechanisms of uracil. Reproduced from [3]

a strong indication th a t the  laser pulses contained fluence peak structure  th a t can also 

account for photo-ionisation from the lowest-lying states. The M PI m easurem ents on 

u racil-w ater clusters in C hapter 7 provide further evidence suggesting th a t ionisation 

from trip le t states in unlikely to contribute significantly to the present single-colour 

M PI signals.

Table 5.1: Photon orders for the production of selected fragm ent ions from gas-phase 
uracil irradiated  at 220 nm  (5.64 eV). W here available, previous photo-ionisation ap
pearance energies (AE) are given [43]

P h o to n  o rd e r  (a )  fo r  d if fe re n t  p ro d u c t  ions

A v e ra g e

flu e n c e

1 12

(A E

9.15 eV )

8 4 6 9

m e t a B

69

(A E

10.95 eV )

42

(A E

13.25 eV )

4 0

( A E

14.06 eV )

28

( A E

13.75 eV )

14 12

3 x 105 

- 7  x 10s

2.3 

±  0.4a

2.0 

±  0.3

ooo
N 

-H

C 3.0 

±  0.9
C 3.5 

±  0.9
C C

1 x 106 

- 5  x  106

1.5 

±  0.2

1.1 

±  0.2

1.1 

±  0.2

1.5 

±  0.4

2.1 

±  0.3

1.7 

±  0.2

2.6 

±  0.3

2.9 

±  0.6
c

9 x 106 

- 6  x 107

0.2 

±  0.1

0.3 

±  0.2

0.1 

±  0.2

0.1 

±  0.2

0.7 

±  0.1

0.6 

±  0.1

1.2 

±  0.1

1.4 

±  0.1

2.4 

±  0.2

A Shown in 5.3
B U racil+* dissociation after 1.3 — 14.6 fis producing CsH 3 N O + 
c  Insufficient counts to derive a photon order.
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5.4 Fragment ion production in MPI and E li of isolated  

uracil

5.4.1 D o m in a n t f ra g m e n ta tio n  p a th w a y s

Figure 5.5 shows uracil M PI mass spectra  as a  function of wavelength in the  range 

220-277 nm. The average fluence in these m easurem ents was 7 x 107  W /c m 2, leading 

to  significant production of fragm ent ions. Table 5.2 lists the  peaks observed a t 220 nm. 

Dissociative ionisation of uracil has been studied extensively by electron im pact [45, 46, 

81, 226, 227, 228], ion im pact [82, 206, 228, 229, 230, 231, 232, 233] and single photon 

absorption [43]. The peak assignm ents are discussed further in Section 5.6 and Section

5.7. Taking into account differences in energy deposition and signal /n o ise  ratios, the 

previous experim ents were broadly consistent in term s of the  fragm ent ions produced 

and three high-resolution examples are sum m arised in Table 5.2. T he only previous 

m easurem ents probing fragm ent ion production in uracil M PI were carried out using a 

260 nm  pum p (~  50 fs) and a  780 nm  probe (40 fs) w ith a variable delay of up to  10 ps 

[35, 234]. These previous M PI mass spectra showed no clear evidence for fragm ent ions 

th a t were no t observed in the  earlier collision and photoabsorption experim ents.

28
700
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M ass /  charge (m /z)

600

500
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60

40 50 60 70 80 90 100 110
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50

U  30
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40

10 20 30 40 50 60 70

M ass /  charge (m/z)

80

84 69 via metastable U  
a  dissociation .

Figure 5.5: W avelength dependence of uracil M PI (250 °C, Ar 0.6 bar). M ass spectra  
w ith 104  laser pulses were recorded a t 2-7 nm  intervals in the  range 220-277 nm  w ith 
average fluence 7 x 107  W /cm 2.
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On the basis of appearance energies and thermochemical data, Jochims et al. [43] pro

posed that the dominant fragmentation pathways of the excited uracil radical cation 

involve HNCO loss followed by C s^ N O * (m/z =  69) dissociation (particularly H, CO, 

HCN, and HCNH loss). Matsika et al.’s [35, 234] ab initio calculations also supported se

quential fragmentation via C s^ N O * as the mechanism to produce the strong fragment 

ions at m /z =  42, 41, and 28. Only in the case of ion production at m /z =  28 was direct 

dissociation of the radical cation energetically competitive with the minimum sequential 

fragmentation pathway. DFT calculations by Sadr-Arani et al. [235] identified plausible 

sequential fragmentation routes via C3 H3 N0 2 ** (m/z =  85) or CsHUNO* (m/z =  70), 

as well as pathways via CsHsNO** (m/z =  69). Table 5.1 shows photon orders for the 

strongest product ions recorded at 2 2 0  nm, in three fluence ranges, corresponding to 

different degrees of saturation, as well as previously measured single photon ionisation 

appearance energies [43]. As would generally be expected, the fragment ions with ap

pearance energies > 11.28 eV (twice the energy of the 220 nm  photons) have photon 

orders that are greater than uracil*.

5.4 .2  T h e  m /z  =  84 f ra g m e n t ion

Figure 5.5 and Table 5.2 demonstrate ion production at m /z =  84 by MPI at 2 2 0  nm. 

Figure 5.6 shows that the relative production of this fragment ion increased with 

falling wavelength and that its production threshold was between 237 and 232 nm  

(5.29 ±  0.06 eV). The production of m /z =  84 ions from uracil has only been observed 

after the current data has been published [160], in laser-induced plasmas (266 and 

1064 nm ns-timescale pulses) [236] where multiple collisions can plausibly lead to the 

ionisation of excited neutral isomers. A 2 0 0  eV E li mass spectrum was measured in 

molecular beam conditions that matched the MPI experiments (Figure 5.8). In agree

ment with the previous work, strong Eli signals were obtained at m /z =  112 and 69 

but no peak was observed at m /z =  84. The first interpretation considered was that the 

new fragment ion may be traced to the ionisation of a neutral fragment, following dis

sociative ionisation of uracil. A process of this kind would have relatively high photon 

order. For example, consider Matsika et al.’s [35, 234] proposed pathway for CH^N*
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Table 5.2: P roduct ions observed following the ionisation of gas-phase uracil by 2 0  eV 
photons [43], by fast electrons [46, 47] and by M PI at 2 2 0  nm  (Figure 5.5 inset).______

m / z  ( w h e r e  a v a i l a b le ,  ii n t e n s i t y  is  g iv e n a s  a

p e r c e n t a g e  o f  t h e  s t r o n g e s t  p e a k )

2 2 0  n m 7 0  e V e- im p a c t 7 0  eV P r o p o s e d  io n  f o r m u la N o te s

M P I

( p r e s e n t I m h o f f  e t R ic e  a n d p h o t o

w o r k ) a l .  [46] D u d e k [ 4 7 ] i o n is a t i o n  [43]

113 (2% ) 113 - - C 4 H 4 N 2 C>2 ^  w ith  one

112 (39% ) 1 1 2 112 (78% ) 112 (63% ) C 4 H 4 N 2 0 2 +

- - 96 - w eak 96 - weak -

84 (8 %) - - - C 3 H 4 N 2 0 + D e u te ra te d  co m p a riso n  

s u p p o r ts  C 3 H 4 N 2 O '’'

- - 77 - weak - -

- 70 B 70 (7%) 70 - w eak C 3 H4 N O +  [43, 235]

69 m e ta - - - U ra c il‘S d isso c ia tio n  a fte r

(6 %) A 1.3 — 14.6 /isp ro d u c in g  

C 3 H 3 N O +

69 (4% ) 69 69 (63% ) 69 (52% ) C 3 H 3 N O +  [43, 235, 35]

6 8  ( 2 %) 6 8 6 8  (33% ) 6 8  (33% ) C 3 H 2 N O +  [43]

- 67 67 - w eak - -

- 56 56 - weak 56 - weak -

- 53 53 - weak 53 - w eak -

- 52 52 - weak 52 - w eak -

- 51 51 - weak - -

44 (5% ) 44 44 (8 %) 44 -w eak C H 2 N O +  [46]

43 (4% ) 43 43 (15% ) 43 (10% ) C H N O +  [43]

42 (34% ) 42 42 (100% ) 42 (100% ) C 2 H 2 0 +  [43, 235, 35] /  

C 2 H 4 N +  [235, 46]

D e u te ra te d  co m p a riso n  

s u p p o r ts  C 2 H 2 0 ''‘

41 (10% ) 41 41 (48% ) 41 (50% ) C 2 H 3 N +  [43, 35] /  C 2 H O +  

[43]

P o ssib le  c o m b in a tio n

40 (17% ) 44 40 (57% ) 40 (25% ) C 2 H 2 N +  [43] D e u te ra te d  c o m p a riso n  

s u p p o r ts  C 2 H 2 N -*"

39 (7% ) 39 39 (15% ) 39 - weak C 2 H N +

38 (6 %) 38 38 (7% ) - C 2 N +

- 30 - - -

29 (9% ) 29 29 - weak 29 - w eak C H 3 N +  [43, 23 5 ]/ H C O +  [43] D e u te ra te d  co m p a riso n  

s u p p o r ts  C H s N -*"

28 ( 1 0 0 %) 28 28 (78% ) 28 ( 8 6 %) C H 2 N +  [43, 235, 3 5 ] / C O +  

[46]

D e u te ra te d  c o m p a riso n  

s u p p o r ts  C H 2 N'*"

27 (7% ) 27 27 - weak 27 - w eak C H N +  [43]

26 (18% ) 26 26 - weak 26 (5% ) C 2 H 2 +  [43] D e u te ra te d  c o m p a riso n  

s u p p o r ts  a  C N +  c o n tr ib u tio n

25 (3% ) 25 - - c 2 h +

24 (9% ) 24 - - c 2 +

- 18 18 - weak H 2 O"*" im p u rity [4 3 ]

- 17 N ot 17 - w eak N H 3 +  [43]

- 16 m easu red - -

15 (2% ) 15 - C H 3 +  [46]

14 (24% ) 14 14 - w eak N +  [43]/ C H 2 +  [46] D e u te ra te d  c o m p a riso n  

s u p p o r ts  C H 2

13 (4% ) 13 N ot av a ilab le C H +

1 2  (2 2 %) 1 2 C +

2

1 ( 1 %) 1 H +  [46]
T h e  p rese n t d a ta  co lu m n s on ly  in clu d e  peak s  w ith  c o u n t ra te s  t h a t  a re  c le a rly  g re a te r  th a n  b a c k g ro u n d  m e a su re m e n ts .
In th e  co lu m n s su m m a riz in g  th e  d a ta  of Jo ch im s e t a l. [43] a n d  R ice a n d  D u d ek  [47], c h an n els  w ith  in te n s it ie s  <  5 % o f th e  
m ax im u m  p e a k  a re  lab e lled  w eak . S ad r-A ran i e t al. [235] re p o r te d  o th e r  p o ssib le  a ss ig n m en ts  b u t  p ro p o se d  th o se  c ite d  ab o v e  as 
th e  m o st p ro b ab le .
A T h is  m e ta s ta b le  ch a n n e l a p p e a rs  a t  m /z  =  87.6 in th e  c a lib ra te d  m ass s p e c t r a  show n in  F ig u re  5.5.
B Im h o ff e t al. [46] su g g ested  th a t  C 3 H 3 N O +  in c lu d in g  a  13C iso to p e  m ig h t c o n tr ib u te  to  th is  p eak .
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(m/z =  28) and C3 H2 N 0 2 + (84 atomic mass units) production via direct dissociation of 

the uracil radical cation. To produce CsH2 N0 2 + via this process would require at least 

one more photon than production. Table 5.1 shows that the error boundaries

of a(84) and a(112) overlap in all three fluence conditions probed, while a (28) is ap

proximately one photon greater. Hence the m /z =  84 ions were produced by 2-photon 

absorption and any hypothetical dissociative ionisation followed by neutral fragment 

ionisation pathway can be discounted. The production of the new fragment ion must 

therefore depend on a process that occurs in a neutral excited state. This process is 

bypassed when uracil is excited directly to an ionic state, as in the present and previous 

E li measurements. The possible candidates for this neutral excited state process are 

dissociation (an excited radical fragment can plausibly be ionised by subsequent single 

photon absorption) or a transition into an isomeric state with its own distinct disso

ciative ionisation pathways. The absence of the m /z =  84 peak in the previous MPI 

experiments [35] can be attributed to the 260 nm pump photons having insufficient 

energy to overcome the dissociation or isomeric transition barrier.

Nachtigallovci et al. [3] carried out non-adiabatic dynamics simulations of the decay 

mechanisms of uracil following excitation to the bright S2  state. In particular, they 

calculated the stationary points and minima on the crossing seams of the S2  and Si 

excited states and the electronic ground state (So) at the CASSCF, MR-CISD, and 

MS-CASPT2 levels. Prom the perspective of this work, the most interesting relaxa

tion pathway is S2 (7T7r*)-Si(cr(n — 7r)7r*)-So with ring opening at the S2 /S 1 crossing 

seam. Indeed, Nachtigallovd et al. [3] predicted that this ring opening deactivation 

pathway leads almost certainly to new photochemical products. Two aspects of this 

pathway specifically link it to the ion at m /z =  84. First, the CASSCF minimum energy 

of 5.25 eV for the S2 /S 1 crossing seam matches the 5.29 ±  0.06 eV threshold for the 

present m /z =  84 signal. The equivalent MR-CISD, MR-CISD with Pople corrections, 

and MS-CASPT2 minimum energies (5.97, 5.57, and 5.84 eV, respectively) agree less 

closely with the present threshold but are nonetheless consistent with an effect that is 

only observed significantly above the S2  band origin (Etinski et al.’s [223] calculations 

using four methods placed the adiabatic energy between 3.74 and 4.03 eV). Second,
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\
/

Open 36B 3T
1

Figure 5.7: Structures of S2 /S 1  MXS optimised at the SA-3-CASSCF(10,8)/6-31G* level 
of theory. The CO group in the  open configuration, which subtraction  is the proposed 
m echanism for creation of the  m /z  =  84 ion, is circled. Reproduced from [3].

the  predicted ring opening transition  leaves a CO group at one end of the  structure  

(Nachtigallova et al.’s [3] Figure 2, reproduced here in Figure 5.7). Therefore CO loss 

following photoionisation of th is electronically excited isomer appears to be probable, 

leaving C 3 H 4 N 2 O 4" w ith m /z  =  84. Hence, the calculations provide a compelling argu

m ent to  assign the new M PI fragm ent ion and, equally, the present experim ental results 

support the  theoretically predicted ring-opening pathway.

The M PI and E li m easurem ents shown in Figure 5.8, were separated by only a few 

m inutes. The beam  conditions were unchanged; it was not necessary to cool and reheat 

the powder sample. Therefore the absence of the m /z  =  84 peak in the  E li result 

provides a strong indicator th a t its presence in the M PI result is not linked to any 

therm al dam age in the  nozzle, adding to the evidence already noted in Section 5.2. In 

order to further test the possibility of therm al effects on the M PI production of m /z  =  84 

fragm ents, Figure 5.9 shows a comparison of two M PI mass spectra recorded with 

different powder tem peratures (all other experim ental conditions were unchanged). The 

relative signals at m /z  =  84 and m /z  =  112 (uracil4-) are the same in bo th  m easurem ents 

to  w ithin the sta tistical uncertainties. This is consistent w ith the assum ption th a t the 

je t cooling produces vibrationally cold molecules in both  experim ents and hence the 

sublim ation tem perature  has no effect on the M PI pathways.
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5.4 .3  M e ta s ta b le  d isso c ia tio n  p a th w a y

The present MPI measurements revealed a metastable dissociation pathway, apparent 

in Figure 5.5 as a peak centred at m /z =  87.6. In Figure 5.9, the same feature appears 

at m /z =  88.7. The flight-time-to-mass calibration depends on an ion having the same 

mass throughout its journey through the mass spectrometer. Hence, the non-integer 

m /z values (not even half-integer that could in principle indicate doubly charged ions) 

can be attributed to the ion dissociating during its flight time, with the (no longer 

meaningful) calibrated m /z value changing for different optimised mass spectrometer 

voltages.

In order to assign features produced by delayed (or metastable) dissociation, a calculator 

has been produced in MS Excel for ion flight times. Previous fight time calculations by 

the Molecular Clusters Group were only guidelines due to imprecisely defined positions 

of the ion optics in the commercial reflectron mass spectrometer. If any fragmentation 

occurs less than around 1 0  ns after ionisation (note that the approximate width of a 

laser pulse is 7 ns and a typical TDC bin size in our measurements is 8  ns), then it is 

only necessary to know the mass spectrometer voltages and the crossing point of the 

laser beam and the molecular beam in order to predict flight time (in the range of tens 

of /is with a precision of around 1 0  ns). The crossing point can be determined using 

a reflect voltage cut-off measurement such as the one shown in Figure 3.6 on page 58. 

Alternatively, if a measurement of this kind is not available for a given alignment, the 

calculator can be used in reverse to determine the starting position (the crossing point 

of the laser and molecular beam) of an easily recognised ion (e.g. uracil+) based on the 

measured flight time.

To apply the calculator to a metastable dissociation requires additional information: the 

masses of the ions before and after the dissociation and the time of the fragmentation. 

Therefore the flight time alone is not enough to determine a metastable dissociation 

unambiguously. In the case of metastable dissociation observed in the present MPI mass 

spectra of uracil, this additional information is the kinetic energy (KE) of the fragment 

ion. Dissociation events that take place before the ion has reached the field-free-region of
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the mass spectrometer will lead to a broad distribution of modified flight times. Hence, 

these distributions do not manifest themselves as a distinct peak in a mass spectrum. 

By contrast, all distributions of a given type (i.e. from one parent ion to one fragment 

ion) that take place during the first journey through the field-free-region of the reflectron 

mass spectrometer will result in one flight time and hence a peak in the mass spectrum 

that can be KE-analysed.

The calculator divides the journey from ion production to detection into two parts: 

before and after a conceivable metastable dissociation. First, an ion is produced during 

the laser pulse (7 ns) and travels for a certain time through the mass spectrometer. 

It then undergoes dissociation into a lower-mass ion and one or more neutrals. The 

remainder of the time-of-flight is calculated for this new ion. The masses of the ions, 

as well as the exact location of the dissociation can be varied to accommodate different 

scenarios. At the same time, the penetration depth into the reflectron part of the mass 

spectrometer (described in detail in Section 3.2) can be determined. Should this depth 

be greater than the physical length of the reflectron, the ion hits the last electrode, and 

is lost. This allows for calculating the cut-off reflection voltages associated with specific 

metastable dissociation channels, i.e. the voltages corresponding to the ions penetrating 

the full depth of the reflectron and reaching the last electrode.

The TOF spectrometer’s reflection electrode voltage (a diagram showing ion optics of 

the mass spectrometer in shown in Figure 3.6), enables a cut-off voltage to be determined 

for any peak in a mass spectrum. For ions produced promptly by the laser pulse, this 

cut-off voltage is linked to the position at which they were produced, as described in 

Section 3.4.1.1.

The situation changes if a fragment ion is produced some time after the laser pulse. 

In this case, the kinetic energy of the fragment ion will be lower and hence it can be 

reflected in a weaker field. Therefore the cut off voltage for these metastable fragment 

ions will be more negative than the extraction grid’s voltage (—380 V)

The TOF-Calculator can be used in three modes:
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Figure 5.10: The cut-off reflect voltage of the m etastable HNCO loss signal from uracil 
(220 nm, average fluence 7.43 x 107  W /cm 2, argon 0.7 bar uracil tem perature  252 °C). 
The equivalent cut-off voltage for all ions produced by prom pt dissociation of the excited 
uracil radical cation is between 100 and 200 V, depending on the precise alignment of 
the  laser and the molecular beam  (see Figure 3.6)
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1. Cut-off voltage determination. Masses of the parent ion and the candidate frag

ment ion are specified. Then dissociation times are tested iteratively to see if the 

observed cut-off voltage can be reproduced. The calculations can also be carried 

out for sequential fragmentations; however this naturally becomes more complic

ated. Therefore the method is best suited to identify metastable decay pathways 

producing relatively large fragment ions.

2. Calculated difference between time-of-arrival of the investigated ion and a refer

ence peak is compared with the equivalent value obtained experimentally. Typic

ally, the parent ion peak is used as a reference.

3. Calculation of absolute values of time-of-flights. This method predicts the time of 

flight for the investigated ion in a specific dissociation scenario. Several values cor

responding to dissociation taking place in different parts of the mass spectrometer 

are calculated. Experimentally obtained value is compared. For a well-defined 

peak, such as a parent ion or the most abundant fragment, this agrees within less 

than 8  ns, which is the precision of experimental values.

As shown in Figure 5.10, the cut off voltage of the 87-88 peak was found to be between 

858 and 860 V. Having determined the position of the ion production, time-of-flight cal

culations were performed. Direct dissociation (uracil+ fragments after a given amount 

of time to produce the ion that hits the detector) and intermediate dissociation (uracil+ 

dissociates promptly followed by a later second fragmentation to produce the ion that 

hits the detector) were both considered. Cut-off voltages corresponding to dissociation 

in early stages of the mass spectrometer (i.e. before field-free-region) are never higher 

than 680 V; therefore they never fit and are not considered. Easily distinguishable is a 

tendency for the calculations to favour lighter product ions with decreasing intermediate 

ion mass.

Further calculations were performed in order to narrow down the list of possible ions. 

The expected difference of time of arrival between the metastable peak and uracil parent 

ion was calculated and compared with the measured data. Details of the calculations 

for several considered channels can be seen in the Appendix A.
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The only agreement of the calculations with the measurements was obtained for a 

dissociation of uracil+ (m /z =  112) into m /z =  69 ions in the Field Free Region (FFR) 

of the TOF Spectrometer. The time window for the dissociation in the FFR of the 

mass spectrometer is 1.31 //s (uracil+ ions reach the entrance to the FFR) to 13.3 us 

(product ions reach the first electrode in the reflectron). Recent data from Delaunay 

et al. [237] also showed evidence for metastable HNCO (m/z =  43) loss on a microsecond 

timescale from a closely related molecule: bromouracil. Rice et al. [81] also mentioned 

that they saw evidence for delayed HNCO loss from electron-induced ionised uracil 

but did not present the data. Interestingly, Figure 5.6 shows that this metastable 

dissociation signal was above the background level at < 222 nm but not at 224 nm 

(threshold 5.61 ±0.03 eV), whereas prompt (<  10 ns after ionisation) ion production at 

m /z =  69 increased steadily with wavelength as a percentage of total ionisation. Table

5.1 indicates that both peaks were produced by 2-photon ionisation at 220 nm (5.64 eV), 

consistent with the 10.95 eV appearance energy for the m /z =  69 fragment in previous 

photoionisation experiments [43]. Note that metastable dissociation channels could not 

be distinguished in the E li data (Figure 5.8) because the ions were not produced at 

precisely defined times; the electron beam was continuous and the TOF start coincided 

with the pulsed extraction voltage.
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5.5 Neutral fragment production

Neutral fragments of uracil following dissociation in neutral or ionic states have not 

been observed directly in any previous experiments. The high laser fluence (average 

108 -10 9 W /cm 2) measurements in Figure 5.11 show an enhancement of the H+ signal 

from uracil at the 243.1 nm (2 +  1) resonant wavelength for hydrogen MPI [180]. 

Jochims et al. [43] assigned the m /z =  6 8  fragment ion to H loss from C3 H3 NO+ on the 

basis of appearance energies and thermochemical calculations, although this is clearly 

not the only plausible pathway for neutral H production. The particular interest in 

CO is due to it being the neutral by-product of the mechanism that can be associate 

with ion production at m /z =  84 (see Section 5.4). Figure 5.11 demonstrates strong 

enhancement of the m /z =  28 signal at the 230.05 nm resonance for CO MPI [238, 239]. 

While this is broadly consistent with the proposed m /z =  84 pathway, Jochims et al. [43] 

proposed competitive neutral CO loss mechanisms within the sequential fragmentation 

processes producing the prominent ions at m /z =  41 (H3 C2 N+) and 40 (C2 H2 N+) (see 

Table 5.2).
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Figure 5.11: Uracil mass spectra showing enhanced MPI at 2 +  1 resonant wavelengths 
for hydrogen (243.10 nm, left) and CO (230.05 nm, right). The m easurem ents were 
carried out w ith powder tem perature  250 °C, Argon pressure 0.6 bar, at the m aximum 
laser fluence (average 2 x 108  W /c in 2) for the present system.

5.6 MPI comparisons of gas-phase uracil, deuterated uracil 

and thymine

Figure 5.12 compares high-mass ion production from gas-phase uracil (U), deuterated  

uracil and thym ine (T). The conditions of the target beam  (helium seeded w ith mo

lecules sublim ated at 250 °C) and the focused laser beam  were the same in all four 

m easurem ents. No peaks were observed for cluster ions. Further evidence support

ing negligible clustering in the neutral beams was provided by the absence of signals 

a ttrib u tab le  to pro tonated  nucleobases. These are recognised as m ajor dissociation 

products of nucleobase cluster ions (as discussed in C hapter 4). Zadorozhnaya and 

Krylov [240]’s calculations showed th a t the hydrogen-bonded uracil dimer cation re

laxes to a proton-transferred form. Similarly, therm o chemical calculations have shown 

th a t proton transfer from T + to  T  in a dimer cation is exothermic [241, 242]. The 

(nucleobase ion +1 m ass unit) /  (nucleobase ion) signal ratios in 5.12 are 6  ±  1 % for
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U, and 5 ±  1 % for T. These are in good agreement with the respective natural isotope 

ratios of 5.2 %, 6.3 %, and 5.1 % [243]. By contrast, the high intensity of the MPI sig

nal from thymine compared with uracil can be partially attributed to its relatively long 

time constant for relaxation from Si (6.4 against 2.4 ps in Ullrich et al.’s [31] 250 nm 

pump - 200 nm probe experiments). Bare [2] carried out MPI experiments on uracil and 

thymine in argon beams but did not attempt to draw direct comparisons. Indeed, the 

measurements were not carried out using matching laser conditions (223.8 — 229 nm), 

expansion conditions, clustering, and alignments. High background levels presented an 

additional challenge for analysis.

The ratio of the peaks at m /z =  115 and 116 in Figure 5.12b indicates that our molecu

lar beam comprised 2 0  % C4 D3 HN2 0 2 + and 80 % C4 D4 N2 0 2 +. Rice et al. [81] studied 

electron impact ionisation of various pyrimidine derivatives, including partially deuter

ated uracil produced by dissolution in D2 O. They assumed that replacement of hydrogen 

by deuterium occurred exclusively at nitrogen atoms. Accordingly, we assume that our 

brief exposure of fully deuterated uracil to air (to load the sample in the experiment) 

led to some hydrogenation at nitrogen sites. The m /z =  8 8  and 87 peaks in Figure 5.12b 

clearly indicate the loss of 28 mass units from C4 D4 N2 C>2 + and C4 D3 HN2 0 2 + . This 

rules out the possibility of the m /z =  84 peak in Figure 5.12 a being due to CNH2  loss 

from uracil+ . As the loss of two nitrogen atoms (or an N2  molecule) without further 

fragmentation would require a very unlikely rearrangement, we assign the peak to CO 

loss. This is in line with the interpretation of the results from Section 5.4.2.

As noted above, the particular interest in the MPI production of m /z =  84 ions from 

uracil stems from their proposed association with ring opening at the crossing seam of 

the neutral molecule’s two lowest-lying electronic excited states. This fragment ion is 

not formed by direct excitation of U to ionic states, for example in collisions [81, 160]. 

Similarly, the electron impact ionisation mass spectrum of T shows no fragment ion 

peaks that could be traced to CO loss 2. Therefore any MPI peaks corresponding to

2Figure 5.12 does not include an MPI mass spectrum of cytosine because a fragment ion at m/z =  83 
(the radical cation m/z value minus 28 mass units) has been reported in previous electron impact 
ionisation experiments [81]
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Figure 5.12: M PI mass spectra (220 nm , average fluence 9 x 1 0 7  W /cm 2, He 0.8 bar) of 
uracil, deu terated  uracil and thymine: details of the m /z  ranges close to the parent ion 
masses. The red dashed line corresponds to the parent ion minus 28 mass units. The 
neu tra l ground s ta te  geometries of the dom inant gas-phase tautom ers [25, 26, 27, 28] are 
shown as inserts, w ith a bold dashed line on uracil representing the neutral ring fissure 
position a t the S2  — Si crossing seam based on Nachtigallova et al. [3] calculations.



5.6. MPI COMPARISONS OF GAS-PHASE URACIL, DEUTERATED URACIL
AND THYMINE 123

T + minus 28 mass units would suggest an analogous ring-opening pathway. Plot c in 

Figure 5.12 shows no evidence for processes of this kind.

Accordingly, Nachtigallova et al. [3] noted the absence of a ring-opening channel in the 

calculated relaxation dynamics of thymine following S2  excitation [244]. The reasons 

for this specific difference compared with uracil were not discussed, although possible 

kinematic effects of the CH3  group of T were mentioned in the context of more general 

differences in relaxation pathways. S2 /S 1 internal conversion in uracil involves out- 

of-plane displacement of the C5 hydrogen atom [244], hence it seems plausible that 

restricted vibrations due to C5 bonding with CH3 in thymine could disrupt access to a 

possible ring-opening conical intersection.
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5.7 Low-mass fragment ion production from uracil+ and 

deuterated uracil+

Further to the channels discussed above, Figure 5.6 shows the wavelength dependence of 

four smaller fragment ions and uracil+ as a percentage of total ionisation. The m /z =  42, 

40, 28, and 14 signals (assigned in Table 5.2 and shown to be >  3 photon ionisation 

processes in Table 5.1) did not show threshold behaviour in the 220-270 nm range, 

while the relative production of uracil+ decreased steadily with increasing wavelength 

(threshold 4.62 ±  0.03 eV). The latter effect can be rationalised if one assumes that 

higher order (>  3) photon absorption almost exclusively causes dissociative ionisation. 

At photon energies only slightly above half the single photon ionisation energy (9.15 ±  

0.03 eV [43]), 2 photon ionisation will be very weak whereas >  3 photon ionisation can 

occur relatively efficiently as long as the S2  -  Si pathway is accessible. As discussed 

above, several previous experiments have clearly shown S2 — Si deactivation following 

excitation at 4.64 eV [31, 32, 33].

The deuterated uracil data identifies several other fragment ions that have been debated 

in the literature (notably CH2 +, CNH2 + , and C2 H2 0 +). Starting at low masses, the first 

aspect of Figure 5.13 to note is the absence of any signal at m /z =  13 in the deuterated 

measurement. CH+ ions were produced from uracil, both in the present data (albeit 

weakly) and in previous MPI and Eli experiments [46]. The fact that negligible CH+ 

ions were produced from the deuterated target (approximately 2 0  % C4 D3 HN2 O2 and 

80 % C4 D4 N2 O2 , as noted above) is consistent with our assumption that the carbon 

sites on the ring have not experienced D /  H exchange. Ion production at m /z =  14 has 

been attributed to CH2 + by Imhoff et al. [46] and N+ by Jochims et al. [43]. Accordingly 

the strong peaks at m /z =  14 and 16 in Figure 5.13b can be assigned to CD+ and CD2 +.

The most striking result in the next ion group (m /z =  24-32) is the shift of the strongest 

peak from m /z =  28 in Figure 5.13a to m /z =  30 in Figure 5.13b. This clearly indicates 

that the peaks are respectively dominated by CH^N* and CD2 N+, whereas Imhoff 

et al. [46] assigned this feature to CO+. As weak C2 H+ production was previously 

observed from uracil [160, 46] the peak at m /z =  26 in Figure 5.13b is expected to
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Figure 5.13: MPI mass spectra (220 nm, average fluence 9 x 1 0 7  W /cm 2, He 0 . 8  bar) 
of uracil and deuterated uracil: detail of the m /z range 10-75.

contain a contribution of C2 D+ . Compared with the m /z =  25 feature in Figure 5.13a, 

however, the strength of the m /z =  26 peak in both plots suggests a contribution of CN+ 

(not proposed in any previous works). The peaks at m /z =  28-30 in Figure 5.13b are 

expected to contain contributions of C2 D2 + and CDN+ , as well as possibly CHDN+, 

CO+ , and CDO+. The only plausible assignment for the clear feature at m /z =  32 in 

the deuterated measurement is CD3 N+, removing previous doubt in the origin of the 

m /z =  29 peak in the uracil mass spectrometry [43].

The most intense peak in the m /z =  38-45 group is shifted from m /z =  42 in Figure 

5.13a to m /z =  44 in Figure 5.13b. This supports assignment to C2 H2 0 + [35, 43, 235], 

as opposed to C2 H4 N+ [46, 235]. The group’s second strongest peak (m/z =  40 from 

uracil) is also apparently shifted by two mass units in the deuterated measurement, 

consistent with the accepted assignment to C2 H2 N+. The main peaks in the m /z =  67-74 

group are also consistent with the previous assignments to C3 H2 NO+ and C3 H3 NO+ 

from uracil [35, 43, 235]. It is interesting to note that Figure 5.13a shows a broad tail
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structure extending 0.3 /is (approximately 2 m /z units in this part of the calibrated mass 

spectrum) after the m /z =  69 peak. This tail can be attributed to the same metastable 

dissociation as discussed in Section 5.4.3, taking place while uracil+ is accelerated from 

the laser /  molecular beam crossing point to the entrance of the TOF drift tube (a 

journey time of 1 . 1  /is in the present measurements).

5.8 Conclusions

The work presented in this chapter advances our understanding of UV induced processes 

in gas-phase uracil. The most striking result is the observation of a new fragment ion at 

m /z =  84 by 2-photon ionisation. This fragment ion is not formed by direct excitation of 

gas-phase uracil to ionic states, so its MPI production must depend on neutral excited 

state dynamics. Measurements on deuterated uracil have identified the m /z =  84 ion 

from uracil as C3 H4 N2 0 + (uracil+ minus CO). The threshold photon energy (5.29 ±  

0.06 eV) for this product agreed with the calculated energy (5.25 eV at CASSCF level) 

of the ring-opening crossing seam [3] and the geometry of the predicted isomer indicates 

likely CO abstraction. Hence there is a compelling case for proposing MPI production 

of this fragment ion as an experimental marker for ring opening in neutral excited uracil. 

This suggests possibilities for diverse measurements exploring the process in depth (e.g. 

using coincidence and /  or time-resolved methods). Indeed, the present results provided 

the motivation for the first study of uracil using ultrafast femtosecond timescale pump- 

probe experiment using pump photons above the ring-opening threshold energy. The 

ultrafast measurements are described in Chapter 6 . MPI measurements on thymine 

did not reveal an analogous CO loss process that could suggest an analogous excited 

state ring-opening pathway. This suggests that substitution of a heavy group at the C5 

position of the pyrimidine ring can stabilise excited nucleobases with respect to isomeric 

transitions.

Aside from the m /z =  84 fragment ion, the present measurements on deuterated uracil 

have provided unambiguous assignments for a number of fragment ions from uracil that 

have been debated in the literature. Furthermore, neutral CO has been experimentally
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demonstrated as a product from uracil dissociative ionisation for the first time. The 

chapter also demonstrates the MPI experiment’s experimental capability to identify 

delayed fragmentation of excited ions (HNCO loss from uracil+*). Further investigation 

is required to interpret the observed MPI wavelength threshold for this process.

The results in this chapter form the basis of one publication in Journal of Chemical 

Physics [160] and one further publication that is currently in press in International 

Journal of Mass Spectrometry [245].
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Chapter 6

Ultrafast studies of uracil

Chapter 5 revealed a new fragment ion (C3 H4 N2 0 +) from uracil that depends on a 

critical process in a neutral excited state. Although this process has not yet been 

identified definitively, the result appears to be consistent with Nachtigallova et al.’s 

[3] prediction of new photochemical products due to excited-state ring opening. This 

chapter presents the first ultrafast experiments with a sufficient pump energy (6.20 eV, 

2 0 0  nm) to investigate deactivation pathways from the vibrationally hot singlet states 

accessed in the previous chapter. The main aim was to better understand isomeric 

transitions and /  or dissociation processes in neutral excited states. The measurements 

were carried out at a newly developed laser desorption spectrometer at Heriot-Watt 

University.

6.1 Introduction

The electronic excited states of nucleobases and their deactivation pathways have long 

attracted considerable interest. The greatest number of works have focused on the 

broad S2 state that dominates the low-energy part of the UV spectra of DNA and RNA 

bases. Figure 6.1 shows the experimental and calculated photoabsorption spectrum of 

gas-phase uracil, while Table 6.1 lists the available vertical and adiabatic energies of 

the lowest lying singlet and triplet excited states. It worth noting that the adiabatic

129
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Figure 6.1: B arba tti et a l.’s [29] calculated (ab initio), and Clark et a l.’s [30] experi
m ental UV absorption spectrum . Key photon energies are labelled [3, 31, 32, 33, 34, 35].

Table 6.1: S3 , S2 , S i, and T i energies and oscillator strengths.

S t a t e
E x c i t a t i o n  e n e r g y  (e V ) 

E t in s k i  e t  a l.  [223] 
(D FT /M R C I/T ZV P//B 3-L Y P/T Z V P)

O s c i l l a t o r  s t r e n g t h  
T e n  a n d  B a r a n o v  [246] 

(CNDO /S)

v e r t i c a l a d i a b a t i c

S 3  (tt —» 7r* ) 6.7 [246] - 0.18
S 2 (?T - >  7T*) 5.56 - 0.44
S i ( n  - *  7r*) 4.67 3.96 0.005
T 1 (7r —  ̂ 7T*) 3.78 3.13 -

energies of the  S2  and S3  sta tes have not been reported explicitly. The UV spectrum  of 

uracil is characterised by two broad bands separated by a low intensity region. W hereas 

the  lower energy band is dom inated by absorption into one s ta te  of 7T7r* character (S 2 ), 

the  higher energy band is composed of several sta tes (three of 7r7r*-character and one 

1nR ss  s ta te). T he experim ental spectrum  [30] in Figure 6.1 shows similar features to 

the  calculations, bu t shifted tow ards lower energies. Richter et a l.’s [37] CASSCF- 

sim ulated absorption plots suggest surprisingly high onsets (around 5.0 eV for S2  and 

around 5.7 —6.0 eV for S3 ) and much stronger S2 /S 3  overlap than  shown in Clark et a l.’s 

experim ents so B arb a tti et a l.’s [29] calculated spectrum  is preferred here.

In the  last 10-15 years, a  series of ultrafast time-resolved pum p-probe experim ents have 

provided extensive insights into the relaxation pathways from the optically bright S2  

sta te . T he results are sum m arised in Table 6 . 2  (adapted  from Richter et al. [37]). Kang
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et al. [32] studied intrinsic lifetimes of DNA and RNA bases using tim e-resolved M PI 

(267 nm  pum p, 800 nm probe), albeit w ith a relatively low tem poral resolution (400 fs). 

All pyrimidines exhibited an u ltrafast Gaussian com ponent followed by a  longer-lived 

exponential decay. The authors reported a single exponential decay com ponent for 

uracil w ith a tim e constant of 2.4 ps. An additional ns-timescale decay com ponent in 

thym ine has been a ttrib u ted  to  trip le t states, bu t no evidence was observed for an  ana

logous channel in uracil. Ullrich et a l.’s [31] Time-Resolved Photoelectron Spectroscopy 

( T R P E S ) (250 nm  pum p, 2 0 0  nm  probe, tem poral resolution of 140 fs, reproduced here 

in Figure 6.2) of uracil showed evidence of th ree components: an u ltrafast G aussian 

(<  50 fs), followed by two exponential decay com ponents w ith tim e constants of 530 fs 

and 2.4 ps. However, Canuel et al. [33] suggested th a t Ullrich et a l.’s biexponential 

decay may be due to  the  lim itations of their experim ental setup and fitting  procedures, 

and instead proposed an ultrafast com ponent w ith a  tim e constant of 130 fs followed 

by a  single exponential decay channel (1.05 ps).
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Table 6.2: Summary of decay times of uracil measured by pump-probe experiments. 
No direct experimental evidence has been reported for longer time constants associated 
with triplet states. Based on [37].

Setup n  (fs) t 2 (fs) r2 (ps) Reference
^pump (•nm) Aprobe (nm)

267 nx800 - - 2.4 Kang et al. [32]
250 2 0 0 < 50 530 2.4 Ullrich et al. [31]
267 2x400 130 - 1 . 1 Canuel et al. [33]
267 330a 96 - - Gustavsson et al. [247]
267 330a < 1 0 0 - - Gustavsson et al. [247]

262 nx780 70 2 . 2
Kotur et al. [34]

(parent ion)

262 nx780 90 3.2 Kotur et al. [34]
(69+ fragment)

262 nx780 70 2.4 Matsika et al. [35]
(parent ion)

262 nx780 90 - 2 . 6
Matsika et al. [35] 

(69+ fragment)

a Fluorescence upconversion in aqueous solution.

Further insights have emerged from adiabatic and diabatic dynamics calculations. Hudock 

et al. [244] studied dynamics of electronically excited uracil at the FMS:CASSCF(8 ,6 ) 

level, but did not report decay time constants. Single time constants were suggested by 

Nieber and Doltsinis [248] (551 — 608 fs at the SH:CPMD/BLYP level) and Fingerhut 

et al. [249] (516 fs, SH:CAS(14,10)). However, Lan et al.’s [250] calculations at the 

SH:OM2/MRCI level support an ultrafast ( 2 1  fs) channel followed by a 570 fs channel. 

Barbatti et al. ’s [251] SH:CAS(10,8) calculations also suggest duel decay, but with much 

longer time constants: 650 — 740 fs followed by a long-lived 1.5 —1.8 ps channel. Etinski 

et al.’s calculations showed Si is unlikely to correspond to the dark state in uracil, and 

suggested an ISC from Si to a triplet state. The most recent combined experimental 

and ab initio study by Ligare et al. [36] is the only one to probe the dark state directly, 

assigning it to a 3 7T7t* state with time constants in the range of 49 — 64 ns.

Overall, the current consensus on the main decay routes from S2 -excited uracil can be 

summarised in Figure 6.3. The S2  state can decay directly into the electronic ground 

state (So) via a barrierless path involving two Cl’s: S2  — Si (mr*) followed by Si — So- 

This pathway is responsible for the ultrafast decay component. An alternative decay
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lowing the  excitation to  S2 . The diagram  combines aspects of Fig. 6  in Ligare et al. 
[36] and Fig. 7 in Richter et al. [37].

p a th  giving rise to  the ps-timescale com ponent involves trapp ing  in S2  for a  few pico

seconds, followed by decay into either Si or S0. Ps-tim escale trapp ing  can also take 

place on the  Si s ta te  prior to in ternal conversion to So or intersystem  crossing to  a 

trip le t state. Indeed, Ligare et al. [36] used double resonant (U V +IR ) spectroscopy to  

observe a  trip let s ta te  w ith a tim e constant in the range of 49 -  64 ns, w ith  a 

character. Richter et al. [37] reported  th a t the  Si s ta te  can decay directly into the  

T 2  trip let state, which can subsequently decay to  T i. The same au th o rs’ calculations 

also indicated th a t S,3 -excited uracil decays to  S2  in <  1 0 0  fs. As an aside it is w orth 

recalling th a t the  photon fluence th a t can be produced using OU focused laser is no t 

sufficient for non-negligible successive photon absorption on fs-timescales.

The only available u ltrafast time-resolved studies of uracil fragm ent ion production are 

those of M atsika and co-workers [34, 35, 222] (262 nm  pum p, 780 nm  probe). Decay 

curves were reported  for fragm ents w ith m /z  =  28, 41, 42 and 69, bu t full analysis was 

lim ited to  the parent ion and the m /z  =  69 fragm ent ion. Decay com ponents of 70 fs and 

2 . 6  ps have been identified, and a ttrib u ted  to ionisation from S2 . However, the  au thors 

also reported  a longer (>  1 0  ps) com ponent, and tentatively  assigned it to  ionisation 

(260 +  780 nm  M PI) from Si minimum. The production of lower m ass fragm ent ions 

has been a ttrib u ted  to  sequential fragm entation of the m /z  =  69 ion, and the  decays 

were qualitatively similar to  the m /z  =  69 result.
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The previous ultrafast experiments used 250 [31], 262 [34, 35], and 267 nm [31, 32, 33] 

pump beams; nobody has carried out experiments on the dynamics initiated by the 

absorption of more energetic photons. Hence, the motivation for this work was to 

study gas-phase uracil’s dynamics with a significantly higher pump energies (6 . 2 0  and 

5.64 eV) available using the Heriot-Watt (HW) setup described below. Indeed, short 

pump wavelengths can lead to new photochemical products. Nachtigallova et al. [3] 

and Richter et al. [37] predicted a ring opening transition at the S2 (7T7t*) -  Si(<r(n -  

7r)7r*) crossing seam with a threshold photon energy of 5.25 eV and a time delay of 

about 500 fs. Similarly, our MPI experiments have demonstrated a new fragment ion 

from uracil excited with <  5.29 ±  0.06 eV (Chapter 5). Townsend and co-workers’ 

experiment enables ultrafast (~  50 fs) pump pulses to be generated with energies above 

this threshold.

6.2 Experimental

6.2 .1  T h e  u l tr a fa s t  p u m p -p ro b e  e x p e r im e n t a t  H e r io t  W a tt  U n iv e r

s ity

Townsend and co-workers at Heriot Watt University have recently built a new laser 

desorption spectrometer that offers exceptional versatility for 2 -dimensional ultrafast 

pump-probe experiments. Although the present data is restricted to a single pump 

wavelength ( 2 0 0  nm), further measurements on uracil have been planned that will ex

ploit the broad range of near-UV wavelengths accessible using the Heriot-Watt system. 

The experimental setup consists of an ultrafast laser system, a Laser Induced Acoustic 

Desorption {LIAD) source, and a time-of-flight (TOF) mass spectrometer. The laser 

system is shown schematically in Figure 6.4 and is described briefly in the paragraph 

below. The LIAD source and the time-of-flight extraction optics are mounted in an 

ultra-high vacuum chamber, as shown in Figure 6.5. The chamber and the spectro

meter were evacuated using separate turbomolecular pumps. The layout of the mass 

spectrometer is shown in Figure 6.5. A thorough description of the experimental system 

will be published in the near future.
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Figure 6.4: Overview of the laser setup (adapted from Figure 3 in reference [38]). The 
specific configuration corresponds to 220 nm  pum p, 400 nm  probe experim ents.

The pum p and probe pulses for the tim e resolved m easurem ents bo th  originated from the 

fundam ental ou tpu t of a regeneratively amplified Ti:Sapphire laser system , operating 

w ith a pulse duration of 60 fs and a central wavelength of 800 nm. The fundam ental 

ou tpu t was split into several beamlines, to  produce the required wavelengths for the 

experim ents by Sum Frequency G eneration (SFG, equation 6.1). A lthough not used in 

the present m easurem ents, the  option of mixing w ith the  ou tpu t of an optical param etric  

amplifier (Spectra Physics, OPA 800C ) provides access to an essentially continuous 

range of wavelengths for fu ture experim ents (for example using a 2 2 0  nm  pum p, as 

shown in Figure 6.4). The SFG efficiency scales w ith the  square of the power of the 

incident light and depends on crystal properties such as the effective m ode area, the 

length of the  crystal and the effective nonlinearity. Furtherm ore, phase-m atching m ust 

be satisfied to achieve non-zero SFG. Effectively, SFG efficiency can vary from few % 

[252] up to 80 — 90 % [253, 254]. A full description of the technique and its physics can 

be found in reference [252].

1 -  1 +  1 
A3 Ai A2

(6 .1)
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The wavelengths used in the present experiments are:

• 800 nm (probe) - fundamental.

• 400 nm (probe) - Second harmonic generated using a 0 . 1  mm BBO crystal.

•  200 nm (pump) - Fourth harmonic produced by mixing third harmonic with the 

fundamental. The required third harmonic was generated by mixing the second 

harmonic with the fundamental.

The time delay between the pump and the probe pulses was varied precisely using 

a motorised linear translation stage (Physik Instrumente, M 403.62S with a Physik 

Instrumente, Mercury Step controller) that interfaced with a data acquisition platform 

developed in MATLAB. A pump-probe cross correlation of 160 ±  15 fs was obtained, 

and verified via non-resonant, two-colour (1 +  2’ or 1 +  3’) multiphoton ionisation 

measurements of butadiene.

The molecular target was introduced into the vacuum using a Laser Induced Acoustic 

Desorption (LIAD) source. Calvert et al. [255] have described the method in detail. 

Despite its name, shake-off has been ruled out as a possible mechanism of desorption 

in LIAD, as the system functions most effectively using a CW laser. This relatively 

new technique has been used successfully to introduce large molecules into vacuum 

[256, 257]. Poully et al. [256] have used the technique to introduce nucleosides into 

vacuum, referring to it as the “laser thermal heating source”. Zinovev et al. [258] studied 

properties of LIAD systems and proposed a mechanism of liberating molecules form 

the surface due to a combination of the thermal and acoustic waves. Furthermore they 

reported that the molecular velocities are consistent with a thermal desorption in the 

range of 230 -  430 °C (§kBT  =  0.065 -  0.090 eV).

The Heriot-Watt LIAD source is shown schematically in Figure 6.5. Powdered sample 

has been deposited on a 15 mm diameter, 10 pm  thick stainless steel foil using meth

anol to aid adhesion (subsequently removed by pumping). The foil was then clamped 

into the repeller electrode of the spectrometer, and mounted in the interaction cham

ber. Following evacuation of the system to its base pressure of 5 x 10“ 8 mbar, the
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Figure 6.5: The H erio tt-W att LIAD source and mass spectrom eter

back of the  foil was irradiated  by a 445 nm CW  desorption laser. The spot area of the  

laser is estim ated to be 0.5 by 3 mm, further focused by a 30 cm lens. The delivered 

power could be varied between 100 and 600 mW . After desorption from th e  foil, the  

plume of the  vaporised sample was intersected by the co-propagating pum p and probe 

pulses. The interaction between the light pulses and the desorbed plum e of the  vapor

ised molecules took place 2  — 3 mm from the surface of the repeller electrode. The 

resulting ions travelled through a single pass time-of-flight mass spectrom eter operated  

in W iley-M aclaren mode [259], and were detected using a M CP detector and a phosphor 

screen. Ions im pacting on the M CP /  phosphor screen assembly were recorded on an 

oscilloscope using a photodiode. A PC  software interface, developed using MATLAB, 

was used to bo th  download d a ta  and to control the oscilloscope. The mass resolution of 

the spectrom eter was relatively low (m /A m  ~  28), due to the  short length of th e  T O F  

flight tube, as well as the resolution of the oscilloscope. However, th is still provided 

sufficient mass resolution for the experim ents

6.2 .2  T h e  a d a p te d  so u rce  to  p ro d u c e  v ib ra tio n a lly -e x c ite d  m o le c u la r  

t a rg e ts  for M P I  e x p e rim e n ts  a t  th e  O p e n  U n iv e rs ity

M odifications for the  OU M PI /  E li experim ent have been commissioned to  produce 

uracil targets w ith internal tem perature  close to the H eriot-W att experim ent. The 

design exploits a new aluminium (chosen for its high therm al conductivity  and ease 

of machining) modified backplate of the T O F mass ion extractor as shown in Figure
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Figure 6 .6 : The OU M PI experim ent featuring the new heated backplate source.

6 .6 . The plate houses an array of closely spaced 1 mm diam eter holes, drilled at a 45° 

angle to  the surface, spread across a 2  cm diam eter area. The holes face the interaction 

region, and can be filled w ith powdered sample to produce vapour very close to the laser 

beam . To enhance sublim ation, a resistive heater is attached to the other side of the 

backplate and a therm ocouple has been used to m onitor the tem perature  of the  surface. 

The m axim um  tem perature  of the p late a tta ined  in the present configuration was 83 °C 

(I& bT =  0.041 eV). The uracil signal intensity increases steeply when moving the 

laser beam  closer to the  backplate. Considerable care has been taken to avoid scattered 

laser light h itting  the surface (verified by looking at the beam  shape and m easuring the 

pulse intensity  after the  exit window). Moreover, the m easurem ents were carried out 

w ith — 2 0  V on the reflect electrode of the mass spectrom eter. This means th a t any 

ions produced at the surface of the grounded backplate will a tta in  too much KE during 

their acceleration into the mass spectrom eter’s field free region to be reflected onto the 

detector (see Section 3.3)
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6.3 Results and discussion

6.3 .1  T im e -re so lv e d  (0-10 p s) u ra c i l+ a n d  f ra g m e n t io n  p ro d u c t io n  

fo llow ing  e x c ita t io n  a t  200 n m  (6 .20  eV)

Figure 6.7 shows time-resolved pump-probe mass spectra of uracil. The 200 +  800 nm 

(Figure 6.7a) data was recorded with 29 linear steps of 25 fs each, followed by another 

109 exponential steps ranging from 19 to 5056 fs. For the 200 +  400 nm (Figure 6.7b) 

data, 79 linear steps were recorded (25 fs each) with 59 additional exponential steps 

( 1 1 1  — 6871 fs). Stronger signals and a significant increase in the relative production 

of fragment ions with high appearance energies are observed in the 2 0 0  +  800 nm 

measurement compared with the 200+400 nm. Both of these effects can be attributed to 

the 800 nm (fundamental) probe pulse being 100 times more powerful than the 400 nm 

probe pulse.

Figure 6 . 8  shows decay curves from the 200 +  800 nm measurement for the ion groups 

at m /z =  112, 69, 42 and 28. Canuel et al. [33] noted that the time constants derived 

from decay curves can be highly dependent on the specific fitting procedure adopted. 

Hence, Townsend and co-workers’ expertise in fitting procedures will be applied in the 

near future. Notwithstanding the preliminary nature of the present analysis, it is clear 

that the fragment ion curves in Figure 6 . 8  show qualitative agreement with Matsika 

et al.’s [35] decays recorded with a pump wavelength of 262 nm (reproduced here in 

Figure 6.9). A Gaussian feature with fs-timescale width is followed by a ps-timescale 

exponential decay curve that is superimposed on a long-lived component (extending 

beyond the 10 ps limit of both Figure 6 . 8  and Figure 6.10). The general similarity 

of the decay curves for the three fragment ion groups suggests that similar excited 

state dynamics dominate. This can be viewed as being broadly consistent with the 

sequential fragmentation pathways of the excited radical cation reported in previous 

works [35, 43, 47].

Matsika et al. [35] tentatively assigned the long-lived component to ionisation from the 

Si minimum. However this suggestion was made before Ligare et al.’s [36] calculations
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Figure 6.7: False-colour m ap showing a. 200 nm (0.4 mW , 1.13 x 108  W /cm 2) +  
800 nm  (250 mW , 2.55 x 101 0  W /cm 2) and b. 200 nm (0.4 mW , 1.13 x 108  W /cm 2) +  
400 nm  (2.5 mW , 2.55 x 1 0 8  W /c m 2) (B) M PI pum p-probe experim ent. Note the dual 
linear+ log Y scale. The raw d a ta  are presented. The double peak structure  ~ m /z  =  112 
in plot a  is a T O F artefact.
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Figure 6 .8 : Decay plots for the production of uracil+  and fragm ent ions in the  m /z  
groups ~  69, ~  42 and ~  28. The curves have been norm alised to the  peak m axim a. 
The inset graph presents the curves norm alised to the peak maxim um  (=  1) and also 
to the long-lived component (=  0 ).

revealed intersystem  crossing from Si to trip le t sta tes w ith lifetimes of tens of ns. 

T he insert in Figure 6 . 8  suggests th a t the ps-timescale com ponent of the  fragm ent 

ion production is essentially complete w ithin 5 ps and no calculations have reported  

trapping on Si at longer times than  this. Therefore we propose th a t the  long-lived 

component in the  present d a ta  is most likely due to ionisation from trip let states.

M atsika et al. [35] observed uracil"1- production w ith a ps-timescale decay (tim e constant 

2.4 ps) bu t this component was much weaker th an  the corresponding feature in the  

fragm ent ion curves (2.6 ps for m /z  =  69). This difference is exaggerated in the present 

2 0 0  +  800 nm  result: the only features visible in the  uracil4- curve are the  fs-timescale 

Gaussian and the long-lived component. Figure 6.10 shows the decay curves recorded 

w ith relatively weak pulses of 400 nm  photons. Despite relatively poor signal /  noise 

ratio, the  200 +  400 nm  curve for uracil4- production provides evidence for a weak ps- 

timescale decay component. This difference com pared w ith the 200 +  800 nm  result 

highlights the  fact th a t the probe wavelength and /  or intensity can have significant 

effects on the observed dynamics.
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Figure 6.9: Ion yields of the  parent and selected fragment ions of uracil versus pum p 
(262 nm) -  probe (720 nm) delay for uracil. Reproduced from M atsika et al. [35].
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Figure 6.10: Decay plots for the  production of uracil+ and fragment ions in the m /z  
groups ~  69 and ~  42. The curves have been normalised to the peak maxima.
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Consideration of earlier time-resolved photoelectron spectroscopy can provide an inter

pretation for the results in Figures 6 . 8  and 6.10. Figure 6 . 2  (measured with 250 nm 

pump and 2 0 0  nm probe pulses) shows that the production of high-energy photoelec

trons (i.e. more than 0.5 eV) is essentially restricted to the ultrafast Gaussian compon

ent of the decay curve [31]. The geometries of uracil in its neutral electronic ground 

state (So) and in its ionic ground state (Do) are very similar [3], whereas major dif

ferences in the electronic excited state geometries have been reported [3]. Therefore, 

when ionisation takes place on a faster timescale than nuclear rearrangement following 

excitation to S2 , low vibrational levels of the ionic ground state can be accessed with 

strong Franck-Condon factors. Hence, most of the excess energy will be carried away 

by the photoelectrons and ionic fragmentation will be rare. Conversely, once sufficient 

time has elapsed for vibration to take place around the average positions of the nuclei 

in uracil’s S2  or Si states, only high vibrational levels of Do (or higher ionic states 

Di, D2  etc.) will be accessible with strong Franck-Condon factors. In this case, most 

photoelectrons will have low energies and most ions will fragment.

The pump photon energy (6 . 2 0  eV) in the present ultrafast experiments is markedly 

higher than the energy of the ring-opening S2  -  Si Cl (5.25 eV) predicted by Nachtigallova 

et al. [3] at a time delay of ~  500 fs. Similarly, it is greater than the 5.29 ±  0.06 eV 

threshold for m /z =  84 production in the OU MPI experiments using single colour ns- 

timescale laser pulses (Chapter 5). However, Figure 6.7 shows no evidence for ion 

production at m /z =  84. Figure 6.1 and Table 6.2 indicate that absorption into the S3  

band will dominate at 6 . 2 0  eV (200 nm). Therefore the absence of the m /z =  84 peak 

at delays up to 1 0  ps could conceivably be linked to the specific relaxation dynamics 

of S3 -excited uracil. However Richter et al.’s [37] calculations showed that S3 relaxes 

to S2  in <  1 0 0  fs (distinctly earlier than the predicted ring-opening Cl). Therefore, the 

S2  relaxation dynamics are still expected to play a critical role the present ultrafast 

experiments.
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6 .3 .2  D iscu ss io n  o f  ab sen c e  o f m /z  =  84 ions in  th e  u l t r a fa s t  m eas

u re m e n ts .

A selection of possible reasons why m /z =  84 ions (C3 H4 N2 0 +) were observed in Chapter 

5’s single colour 2-photon ionisation experiments but not in the present ultrafast pump- 

probe results are listed below.

1) Delay time (<  1 0  ps at HW; < 7 ns at the OU)

We could hypothesise that a critical step of the excited state dynamics responsible 

for the m /z =  84 peak takes place on a slower timescale than 1 0  ps (the time delay 

window probed in the ultrafast measurements). In particular, a late ring-opening conical 

intersection between two triplet states could be envisaged.

It is possible that delayed CO loss could take place from an excited neutral. Indeed, 

Chapter 5 gives an example of fragmentation on a slow timescale (HNCO loss from 

excited uracil+ up to several micro-seconds after ionisation). In this case, 2-photon 

production of C3 H4 N2 0 + in the Chapter 5 experiments would involve single-photon 

access to a long-lived state (a vibrationally-hot triplet state or the even-hotter electronic 

ground state), followed by CO-loss and single-photon ionisation of C3 H4 N2 O. Such 

single-photon ionisation is unlikely but not inconceivable as unstable neutrals can have 

very low ionisation energies. For example, the calculated vertical ionisation energy 

adenine with an additional hydrogen (AH#) is 5.32 eV [260].

2) Pump photon energy (6.20 eV at HW; 5.64 — 5.29 eV at the OU)

We could speculate that the increased level of vibrational excitation in S2 (predom

inantly accessed via S3  as described above) in the HW measurements could lead to a 

critical ring-opening Cl being avoided. To explore this possibility, further experiments 

are required with pump photon energies that directly overlap with the OU experiments 

that produced the m /z =  84 ion.
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3) Probe photon energy (1.55 or 3.10 eV at HW; 5.64 — 5.29 eV at the OU)

It is conceivable that excessive energy absorption at the ionisation stage could destabilise 

the CaH4 N2 0 + ion and hence lead to very weak signals. The probe energy steps in the 

HW measurements (notably 3 x 800 nm =  4.65 eV and 4 x 800 nm =  6.20 eV) do not 

overlap with the OU photon energy range that produced m /z =  84 ions (5.29 — 5.64 eV). 

However, total energy deposition in the two experiments does overlap (10.58 —11.27 eV 

at the OU, compared with 2 0 0  +  3 x 800 nm =  10.85 eV at HW) so this seems to be an 

unlikely cause of the observed difference.

4) Vibrational excitation of the target molecules

It can reasonably be assumed that the supersonic target jets in the OU measurements 

only contained vibrationally cold molecules, whereas the HW LIAD  system is expec

ted to produce vibrationally excited molecules. Vibrational excitation clearly plays an 

important role in multi-photon ionisation dynamics. However, both experiments access 

high vibrational levels of uracil’s singlet states. For example, the 220 nm photons used 

in the OU experiments are 1 . 6 8  eV above the calculated adiabatic energy of Si. Com

pared with this, the levels of vibrational excitation in the HW neutral target (average 

internal energy expected to be in the range 0.065 — 0.090 eV [48]) were very minor. 

Nonetheless, Section 6.3.3 describes an attempt to repeat the OU measurements on 

target molecules with internal energies close to the HW experiments.

5) Tautomeric forms of the target molecules

Any differences in the tautomeric structure of the target molecules of the two experi

ments could plausibly lead to different dynamics and fragmentation patterns. However, 

infrared spectra of uracil vapour from powder heated at 200 — 325 °C into 13 — 20 mbar 

of static argon [26] only showed evidence for the diketo form. Infrared cavity ringdown 

spectroscopy experiments of jet-cooled uracil following heating at 210 — 220 °C also 

showed that only diketo tautomers were present [214]. To our knowledge there are no 

studies of uracil tautomeric populations from laser desorption sources or LIAD. There
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are precedents for different tautomeric populations between simple heating and laser de

sorption (for example in Guanine [261]) but it would be extremely surprising if the HW 

LIAD source did not produce (at least) a significant proportion of the diketo tautomer.

6 .3 .3  M P I  m ass  s p e c tr a  o f  v ib ra tio n a lly -e x c ite d  m o le c u la r  ta rg e ts

Figure 6.11 compares three MPI mass spectra recorded using the OU modified back

plate source. The background measurement with no uracil powder shows no peaks 

at m /z =  84 or 112. Figure 6.11b demontsrates that MPI signals of uracil+ and the 

m /z =  84 fragment can be attained from uracil vapour at room temperature. Although 

further optimisation is required to eliminate nearby background features in the mass 

spectrum, this result indicates that the method has potential for interesting experiments. 

To our knowledge, all the measurements in the literature on gas-phase nucleobases have 

been carried out at temperatures >  1 0 0  °C (heated effusive beams, heated static gas 

cells, laser desorption or LIAD sources) or at low temperatures (supersonic jets). MPI 

studies of biomolecules at room temperature can strengthen analogies with biological 

environments.

Figure 6.11c and d show that m /z =  84 fragments can be produced with hight efficiency 

by multi-photon ionisation of uracil molecules at 83 °C ( § =  0.041 eV ). This average 

internal energy is distinctly greater than the activation energies of the V3 0  and V2 9  modes 

of uracil (see Table 6.3 [48]). The HW LIAD system is expected to produce targets with 

average internal energies in the range 0.065 — 0.090 eV [258] but a significant overlap 

of the vibrationally excited populations is expected in the two experiments according 

to the Boltzmann energy distribution. Therefore it is very unlikely that the absence of 

m /z =  84 peak in the HW experiments can be explained by a mismatch of the target’s 

internal energy compared with the OU measurements.
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Figure 6.11: M ulti-photon ionisation (7 ns pulses, average laser fluence 9 x 10' W /c m 2) 
m easurem ents carried out a t the OU using the modified backplate system : a) 2 2 0  nm, 
background m easurem ent, no powder , b) 220 nm, uracil powder a t 25 °C, c) 2 2 0  nm, 
uracil powder a t 83 °C, uracil and m /z  —84 signal highly sa tu ra ted , d) 232 nm  uracil 
powder a t 83 °C, minor signal saturation.



148 CHAPTER 6. ULTRAFAST STUDIES OF URACIL

Table 6.3: Activation energies of the lowest-lying (up to 0 . 1  eV) vibrational modes of 
uracil (reproduced from [48]).

M ode and 
sym m etry

Experimental activation  
energy (eV)

30 (A”) 0.018
29 (A”) 0 . 0 2 0

28 (A”) 0.046
27 (A”) 0.067
26 (A”) 0.082
25 (A”) 0.088
24 (A”) 0.094
23 (A”) 0.099
2 1  (A’) 0.049
20 (A5) 0.063
19 (A’) 0.065
18 (A’) 0.067
17 (A’) 0.094

6.4 Conclusions and future work

Ultrafast time-resolved MPI experiments have been performed in collaboration with 

David Townsend and co-workers at Heriot Watt University. The measurements provide 

the first time-resolved view of uracil’s dynamics following excitation to the S3 band and 

high vibrational levels of S2  and Si states. Decay plots for the production of uracil+ 

and several fragment ions show broadly similar characteristics to previous experiments 

carried out with much lower pump energies [35, 222]. This similarity appears to be 

consistent with fs-timescale deactivation of S3 -excited uracil into the previously studied 

S2  state, as predicted by Richter et al. [37]. The present results also provide evidence 

supporting access to long-lived triplet states identified theoretically by Ligare et al. [36].

The MPI experiments in Chapter 5 using ns-timescale laser pulses at the OU revealed a 

fragment ion at m /z =  84. This was proposed as a potential marker for ring opening at 

the S2 (7T7t*) — Si(cr(n — crossing seam [3]. However, the present ultrafast exper

iments did not produce this fragment ion over time delays up to 10 ps. Repeating the 

OU experiments on a vibrationally-excited molecular target showed that this different 

result is very unlikely to be linked to the internal energies of the target molecules. We
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consider that the absence of the m /z =  84 ion in the HW measurements is most likely 

to be due to the channel’s dependence on a so-far unidentified process on a timescale 

> 10 ps. Hence it seems that the specific ring-opening Cl identified theoretically by 

Nachtigallova et al. ~  500 fs after S2 excitation is unlikely be involved. Further ultrafast 

pump-probe experiments with longer time delays are planned, as well as measurements 

with pump energies that directly overlap with the OU experiments.
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Chapter 7

Hydrated uracil and uracil-adenine clusters

This chapter investigates clustering effects on the dissociative ionisation pathways of 

uracil. Particular attention is focused on MPI production of CaH4N20+ , in view of its 

proposed link to excited-state ring opening of gas phase uracil (Chapter 5). Hydrated 

uracil clusters are analysed as simple models for the hydrogen-bonded cellular environ

ments. As a further step towards understanding the radiation response of uracil within 

RNA, crossed beam experiments have been carried out on uracil-adenine clusters.

7.1 Introduction

The experiments described in this chapter probe the pyrimidine derivative base uracil 

(C4 H4 N2 O2 ) in clustering conditions. The first experimental comparison of uracil MPI 

in dry and hydrated clustering conditions has been obtained in order to advance un

derstanding of how the local water environment can modify the molecule’s response to 

UV excitation and ionisation. This question has attracted considerable interest with 

respect to the specific excitation and relaxation dynamics [247, 262, 263] but no pre

vious experimental or theoretical research has directly addressed hydration effects on 

the fragmentation pathways of the excited molecule or ion. Furthermore, MPI and 

E li experiments on uracil-adenine clusters are presented and compared with equivalent 

measurements on pure uracil clusters. Figure 7.1 shows the most stable configurations

151
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w

Figure 7.1: The m ost stable configurations of the  H-bonded uracil dim er and uracil- 
-adenine base pair. A dapted from [39].

of H -bonded uracil dim er and uracil-adenine base pair. Figure 7.2 shows 7r-stacked 

configuration of these clusters.

T he effect of H -bonding and n -  stacking has been extensively studied recently [240, 

264]. Calculations perform ed by Golubeva and Krylov [264] a t the  EOM -IP-CCSD /  

6-311(+)G (d,p) level of theory showed th a t i t  — stacking and hydrogen-bonding interac

tions lower the  ionisation energy of the  uracil dimer by 0.34 and 0.13 eV, respectively, 

relative to  uracil. Hence, uracil dimers are ionised more easily th an  the monomer. 

T he calculations also indicated th a t the ionisation can change the bonding from non- 

covalent to  covalent, thus inducing significant geometrical rearrangem ent in the  cation. 

Zadorozhnaya and Krylov [240] showed th a t ionisation changes relative order of the 

isomers in energy, from H -bonded <  n  -  stacked <  T-Shaped in the  neutral into proton- 

transferred  H -bonded <  T -shaped <  i t  — stacked in the cation.

P ro ton  Transfer ( PT )  reactions have been hypothesised to  be responsible for spontan

eous m utation  in the  DNA, as they could form rare tautom eric forms of base pairs th a t 

d istu rb  the genetic code [265]. H errera and Toro-Labbe [266] argued th a t the  step

wise Double P ro ton  Transfer ( DPT) ,  which is reported to  be more favourable th an  the 

single proton transfer [267], in uracil-adenine complexes requires significant structu ral 

rearrangem ent of bo th  the  donor and the acceptor, and hence has a significant energy 

barrier (11.20 kcal/m ol and 5.71 kcal/m ol for the  first and second step, respectively). 

Ceron-Carrasco et a l.’s [268] B P86/6-311+ +G (d,p) calculations confirm th a t the D P T
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TT-stacked U U  Tr-stacked U A

Figure 7.2: T he m ost stable configurations of 7 r-stacked uracil dimer and uracil-adenine 
base pair. A dapted from [39].
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Figure 7.3: The m ost favourable u racil-w ater cluster configurations calculated  by Ba-
chrach and Dzierlenga [40].



154 CHAPTER 7. HYDRATED URACIL AND URACIL-ADENINE CLUSTERS

Table 7.1: Calculated interaction energy A E  for relevant nucleobase pairs. Reproduced 
for [39].

Systems Interaction energy 
AEH_bond (eV) for 

H-bonded pair

Interaction energy 
Attacked (hV) for 

stacked pair

A-Ejj—bond /  
A-Estacked

AA -0.76 -0.47 1.62
UU -0.81 -0.36 2.25
AU -0.76 -0.44 1.73

in gas-phase clusters may not occur, and also show that it is unlikely in hydration. The 

role of water environment on the proton transfer has been investigated by Khistyaev 

et al. [105] in a combined experimental and theoretical study. They concluded that solva

tion quenched the PT between bases which is efficient in dry uracil clusters. This effect 

is observed for both H-bonded and ir — stacked structures. Bachrach and Dzierlenga 

[40] optimised uracil-water cluster configurations with up to six water molecules. The 

energetically most favourable geometries for clusters with up to four water molecules are 

reproduced here in Figure 7.3. Pedersen et al. [269] argue that attachment of a single 

water molecule changes the relative abundance of tautomers at room temperature. How

ever, they argue that more than one water molecule is required to obtain solution-phase 

characteristics, but the exact number remains unknown. Kim and Schaefer [270] cal

culated most stable molecular structures for mono- and dihydrated uracil-adenine pair 

using the B3LYP density functional. The calculation predicted structures with three 

hydrogen bonds, albeit with the third much weaker than the others. The optimised 

hydrated structures do not vary significantly from the gas phase configuration.

Sequential Monte Carlo Quantum Mechanics simulations of adenine in an aqueous en

vironment [271] suggest that solvation changes the order of the excited states from 

1n7r*, 1(vr7r* Lb), 1(7T7r* La) to 1(7T7r* Lb), 1(7T7r* La), 1n7r*. Furthermore, Epifanovsky 

et al.’s [272] calculations showed that solvation in water lowered the vertical excitation 

energies for uracil’s lowest singlet 1mr* and 17nr* states by 0.5 eV and 0.1 eV. A similar 

stabilising effect has been reported for Ionisation Energy Thresholds (IE T) by Close 

et al. [67]. Their B3LYP calculations showed a decrease in IET of about 0.15 eV for the
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Figure 7.4: A selection of uracil-adenine configurations in the gas phase. R eproduced 
from [41]. Zhanpeisov and Leszczynski were unable to  stabilise configuration d in the ir 
calculations.



156 CHAPTER 7. HYDRATED URACIL AND URACIL-ADENINE CLUSTERS

monohydrate. Attaching the second and third water molecules further lowers the IET 

by 0.07 eV each.

Section 5.4.2 and reference [160] presents evidence that suggests that MPI production 

of m /z =  84 ions (C3H4N20+) from uracil is a potential experimental marker for ring 

opening in neutral excited uracil. The ultrafast measurements presented in Chapter 6 

were not successful in terms of reproducing this fragment ion and potentially confirming 

its proposed association with the S2 — Si crossing seam. Nonetheless, the fact that 

m /z =  84 ions cannot be detected in experiments involving direct access to uracil’s 

ionic states show that their production must depend on some critical neutral excited 

state dynamics (an isomeric transition or a dissociation). This raises the question: 

do these critical neutral excited state dynamics in UV-excited gas-phase uracil also 

occur within irradiated biological RNA? If so, can they lead to radiation damage in the 

macromolecule? As a step towards answering these questions, MPI experiments have 

been carried out on clusters that provide approximations for the chemical environment 

of uracil within RNA.

7.2 Experimental

The experiments have been performed using the MPI /  E li system, described in detail 

in Section 3.2. To produce hydrated clusters, water vapour was mixed with the argon 

carrier, by connecting a stainless steel H2 O reservoir to the gas line via a valve. The 

reservoir and the gas line were heated using resistive wire and the H2 O temperature was 

monitored using a thermocouple in contact with the reservoir wall. The sample powders 

were purchased from Sigma-Aldrich, with the minimum purity of 99 %. In the case of 

adenine-uracil base pair clusters, the cartridge was loaded with an equal mixture (by 

mass) of the two sample powders. The powders were subsequently manually mixed by 

vigorous shaking. Variations of this simple mixed powder technique have been shown 

to be effective in the past, notably for the production of adenine-thymine clusters 

[21, 71, 273]. The method was also applied for preliminary MPI experiments on uracil- 

adenine clusters by Molecular Physics Group in 2011 [2]. However, the clustering was
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very weak in these results (500 1/s was used to pump the expansion chamber compared 

with 1,000 1/s in the present adenine-uracil measurements) and the signal/background 

ratio was too low for the analysis of fragment ion production. Aside from Barc’s thesis, 

no previous crossed beam experiments on uracil-adenine clusters have been reported in 

the literature.

The chosen nozzle orifice size in the present experiments was 50 fim (Lennox-Laser 

drilled). The temperatures (250 — 270 °C) of powders were comparable with or lower 

than those applied in previous supersonic beam experiments that reported no evidence 

for thermally driven decomposition, isomerisation, or reactivity of uracil or adenine 

[26]. Examination of the remaining powder after the experiment and the absence of 

any unexplained peaks in the mass spectra supported the absence of thermally driven 

reactivity. The carrier gas pressure, the powder temperature, and the pumping speed 

on the expansion chamber were modified in order to achieve significant clustering in the 

jet.

7.3 Uracil Hydrated clusters

The first step was to look at uracil-water clusters to approximate the hydrated cellular 

environment. Whereas various theoretical studies have been carried out on uracil- 

water clusters [274, 275, 276, 277, 278, 279], experimental studies are scarce. The only 

previous MPI measurements on uracil-water clusters were reported in Barc’s PhD thesis 

[2]. Working at 224 nm (1 x 106 — 4 x 106 W /cm 2), Bare observed hydrated uracil ions 

up to U+ • (H20)7 and hydrated uracil dimer ions up to U2" • (H20)3. Bare also showed 

that at least three photons were required to produce protonated uracil in hydrated 

clustering conditions. However, high background signals at low m /z values prevented 

Bare from being able to carry out a comparison of fragment ion production in dry and 

hydrated conditions.

The only MPI measurement of dry uracil clusters found in the literature was recorded 

in dry conditions by Kim et al. [280] using 274 nm ns-timescale laser pulses. The 

same group reported E li mass spectra of hydrated uracil clusters showing evidence
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Figure 7.5: Single-colour M PI ( 2 2 0  nm, average fluence 4 x 106  W /c m 2, powder 250 °C, 
A r 0.8 bar) of uracil in (a) - dry and (b) - hydrated conditions (water tem perature 
60 °C).

for UmH • (H 20)n series as well as Um • (H 20)n. [65] T he only previous experim ent in 

the  literature  th a t explored clustering effects on fragm ent ion production from uracil 

(dry clusters only) was carried out for 100 keV 0 5+ im pact ionisation [82]. Signals at 

m /z  =  83 (U+ m inus HCO) and 95 (U+ minus OH) were only observed in clustering 

conditions and were linked to  hydrogen bonding effects, as opposed to  stacking. Mass 

spectra  showing the differences between dry and hydrated M PI are presented in Figure 

7.5. A sum m ary of the  observed ion intensities is presented in Table 7.2. No evidence 

for new fragm ent ion channels from uracil due to  clustering was observed in the present 

data .

He et al. [262] reported  th a t hydration significantly represses access to  the long-lived 

trip le t sta tes of m ethyl-substitu ted  uracil and thym ine. In th is context, the  fact th a t 

the  to ta l M PI count ra te  is only reduced by 2 2  % ±  3 % due to clustering w ith water 

(Figure 7.5 and Table 7.2) provides an indicator th a t the dom inant M PI pathways in 

the  present experim ents do not involve these trip le t states. Further discussion of the 

singlet excited sta tes of gas phase uracil is provided in C hapters 5 and 6 .



7.3. URACIL HYDRATED CLUSTERS 159

Table 7.2 and Figure 7.5 show that the signal at m /z =  69 ( C 3 H 3 N O + , recognised els 

the precursor to further strong dissociation channels) was markedly stronger in the hy

drated measurement. This result may be attributed to energy removEtl from the excited 

uracil cation via cluster dissociation tending to stop certEiin sequential fragmentation 

processes at an early stage. The reduction in the signal at m /z =  40 (assigned to H loss 

from C3H3NO+, followed by CO loss) due to hydration is consistent with this interpret

ation. By contrast, other ion signals linked to C3 HsNO+ fragmentation (for example 

m /z =  28) did not change significantly. Therefore the presently observed hydration 

effects on the dissociative MPI pathways of uracil cannot be understood purely on the 

basis of generalised energetic arguments. This is unsurprising as theoretical studies 

have demonstrated shifts (generally stabilisation) of the 17r7r* and 1mr* states of uracil 

and their relaxation dynamics [247, 263] due to hydrogen bonding with water, as well 

increased excited state tautomerisation [213]. In this context, it is interesting that the 

production of the m /z =  84 fragment ion (C3H4N20+) was repressed by hydration in 

the present data. This may indicate that the presence of hydrogen-bonded water moi

eties disrupts access to the neutral excited state dynamics required for this dissociative 

MPI channel (e.g. the proposed S1 /S 2  ring-opening conical intersection discussed in 

Section 5.4). The result bears resemblance to absence of an equivalent CO loss channel 

in thymine, as compared with pure or deuterated uracil. Full discussion is given in 

Section 5.6.

Significant production of ions with m /z =  113 was observed both in the dry and hydrated 

measurements: ~  34 % and ~  140 % of the respective signals at m /z =  112. These 

peaks are assigned to protonated uracil (UH+) and a small contribution due to carbon 

isotopes in uracil (5.2 % [281]). UH+ has been detected following electron collisions 

with Um • (H20)n [65] but the previous papers on the ionisation of dry uracil clusters 

[82, 280] did not mention this product. Its production evidently involves intermolecular 

hydrogen or proton transfer and its presence in the dry mass spectrum shows that the 

process does not require the presence of water. Indeed, water is transparent at 220 nm 

[202, 24, 204, 203] so UH+ production in the present experiments must begin with uracil
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Table 7.2: Hydration effects on the production of ions, cluster ions, and selected frag
ment ions following uracil MPI at 220 nm. The corresponding mass spectra are shown 
in 7.5 The total ion counts in 104 laser pulses were 1960 (including 640 fragment ions) 
and 1520 (including 670 fragment ions) in dry and hydrated conditions, respectively.

Selected ion %  of to ta l ion counts

M ass /  charge A ssignm ent D ry H y d ra ted

225 U2H+ and U2+ isotopes 0.3 ±  0.2 -

224 u 2+ 0.2 db 0.1 0.6 ±  0.3

184 U+(H20 ) 4 - 0.7 ±  0.3

166 u +(h 20 ) 3 - 1.6 ±  0.5

148 U+(H20 ) 2 - 5 ±  1

130 U+(H20 ) - 13 db 2

113 UH+ and U+ isotopes 17 ±  2 21 ±  2

112 U+ 50 db 3 15 ±  2

<112 All fragment ionsa 33 ±  2 44 ±  3

84 c 3h 4n 2o + 4 ±  1 1.8 ±  0.5

69 metab U+* dissociation after 1.3 — 14.6 /us 
producing C3H3NO+

1.8 ±  0.5 0.7 ±  0.3

69 C3H3NO+ 1.1 ±  0.3 7 ±  1

42 c 2h 2o +  /  C2H4N+ 4 ±  1 3 ±  1

40 c 2h 2n + 4 ±  1 1.2 ±  0.4

28 c h 2n + /  CO+ 6 ±  1 7 ±  1
a Includes counts for fragment ions that have not been included in the table. 
b This metastable channel appears at m /z =  87.6 in the calibrated mass spectra shown 
in Figure 5.5 and 7.5
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excitation. Zadorozhnaya and Krylov’s [240] calculations showed that the hydrogen- 

bonded uracil dimer cation relaxes to a proton-transferred form that is much more 

strongly bound than the most stable stacked or T-shaped dimer cation configurations. 

Therefore, the present UH+ MPI signals are attributed to a negative barrier reaction 

from U+U to UH+ (U-H) followed by cluster ion dissociation. This interpretation is 

broadly consistent with the absence of UH+ • (H20)n peaks in the MPI mass spectrum 

(conversely, these species were observed by electron impact ionisation [65] and attributed 

to water ionisation followed by proton transfer to uracil). Due to the weaker binding 

energies of uracil and water molecules (depending on bonding configuration between 1.42 

and 2.49 kcal/mol for the monohydrate and 2.03 -  6.11 kcal/mol for doubly hydrated 

uracil [282]) UH+ (U-H) fissure can be expected to involve extensive water loss.

While clustering with water is evidently not essential in the presently observed MPI- 

induced proton transfer processes, it is interesting to note that the hydrated measure

ment in Figure 7.5 shows a strong increase in the UH+ signal. This may indicate that 

the presence of water in the expansion aids the formation of complexes with two or 

more uracil molecules. It should also be noted that MPI-induced proton transfer might 

play a role in determining the observed clustering effects on fragment ion production 

discussed above.
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7.4 Pure uracil clusters

Figure 7.6’s plots a) and b) compare MPI and electron impact ionisation (Eli) meas

urements carried out on uracil in an argon expansion. High pumping speed pumping 

speed (1,000 1/s) and high powder temperature was applied in order to achieve good 

clustering conditions.. The uracil dimer ion and the protonated uracil dimer ion are 

clearly visible in both the MPI and E li measurements. The MPI signal intensities for 

cluster ions and fragment ions are given in Table 7.3, while the complete analysis of 

this dataset is presented in the Appendix A. Strong production of UH+ relative to U+ 

(125 %) in Figure 7.6a-d demonstrates significant presence of clusters containing uracil 

in the target beams. The relative production of protonated uracil (UH+) in the E li 

measurement is even higher, perhaps due to neutral dissociation of excited U2 + in the 

high-energy collisions. MPI mass spectra of pure uracil clusters have previously been 

carried out using 274 nm ns-timescale laser pulses but no information on fragment ions 

was reported [280]. The only experiment in the literature that probed fragment ion 

production from pure uracil clusters was Schlatholter et al.’s [82] 100 keV 0 5+ impact 

ionisation with an aggregation source that produced considerably larger clusters whereas 

the present apparatus produced mainly dimers and trimers (evidenced by the U2 H+ sig

nal). Signals at m /z =  83 (U+ minus HCO) and 95 (U+ minus OH) were interpreted as 

providing evidence for hydrogen bonding instead of stacking. The present MPI and E li 

measurements did not reveal ion production at these m /z values, suggesting that the 

m /z =  83 and 95 ions are produced from large clusters.

Considering our particular interest in the MPI production of m /z =  84 ions, it is worth 

highlighting that this peak is clearly present in the mass spectrum for uracil in clustering 

conditions (Figure 7.6a). However, as we do not have an independent verification of the 

presence of isolated uracil molecules in the neutral beam, this result does not necessarily 

demonstrate that this dissociative MPI channel is available for uracil clusters.
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7.5 Uracil-adenine base pair clusters

As discussed in Section 7.3 clustering with water suppressed C3H4N20+ production 

while most other fragment ion channels were not significantly affected. This is in agree

ment with the proposed mechanism for the production of the ion - hydrogen bonding 

with water stabilises (or “protects”) uracil with respect to the proposed ring opening [3]. 

However, experiments discussed in Section 7.4 on dry uracil clusters did not reveal clear 

evidence for a similar stabilisation due to uracil-uracil clustering. As uracil pairs with 

adenine in RNA, experiments to test whether or not hydrogen bonding with adenine 

has a significant effect on UV-induced dynamics have been performed.

The hydrogen bonding configuration of adenine-uracil base pair depends on the tau

tomeric forms of the two molecules. Discussion about the most likely tautomeric form 

of adenine (amine-N9H, refer to Figure 4.1) is already given in Chapter 4. The most 

abundant gas phase tautomers of uracil are discussed in Section 5.1, and shown in Fig

ure 5.1. Predicted cluster geometries [41] are shown in Figure 7.4 with the most likely 

hydrogen bonded complex being the adenine amine-N9H bonded with uracil diketo 

(Figure 7.4a).

To our knowledge, no previous experiments have probed fragment ion production from 

uracil-adenine clusters. For both hydrogen-bonded and 7r — stacked optimised configur

ations, the calculated stabilities of AU pairs are greater than AA or UU [283], so mixed 

clusters are expected to form a significant part of the target beam. No new species were 

observed; the fragment ions in the Figure 7.6c and Figure 7.6d have previously been 

observed from dissociated uracil+ (e.g. C3 H3 NO+ at m /z =  69 [160]), adenine+ (e.g. 

C4 H4 N4 + at m /z =  108 [283]), and /  or protonated adenine (e.g. C4 HsN4 + at m /z =  109 

[44]).

In view of our particular interest in CsH^^O"1" with its proposed link to excited-state 

ring opening, it is noteworthy that the production of this ion approximately doubled 

in the uracil-adenine measurement compared with the pure uracil result (0.021 ±  0.003 

counts per pulse in Figure 7.6c compared with 0.011 ±  0.002 in Figure 7.6a). No peak 

at this m /z value has been observed from isolated, clustered, or protonated adenine
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Figure 7.6: M PI m ass spectra  (220 nm, average fluence 9 x 107 W /cm ) and E li (200 eV) 
of uracil (plots a) and b)) and a m ixture of uracil and adenine (plots c) and d)) vaporised 
at 270 °C in 1.0 bar of argon.
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[44, 161, 207], or from protonated uracil [284]. The fact that the U+ signals were the 

same (to within the uncertainty limits) in plots a and c as well as in plots b and d 

suggests that this result was not simply due to different populations of isolated uracil 

molecules in the neutral beams. Therefore the result supports CsH4N20+ produc

tion from multiphoton ionised uracil-adenine complexes. Zhanpeisov and Leszczynski 

[41] and [285] calculated that the most stable adenine-uracil configuration involves one 

(U) N3H • • • N1 (A) bond and one (U) C40 • • • HC6 (A) bond. Considering the proximity 

of these bonds to the proposed N3-C4 rupture site, the formation of hydrogen-bonded 

AU pairs is expected to have a suppressive effect on the uracil ring opening process 

identified by Nachtigallova et al. [3]. Hence the present result may be rationalised by 

supposing that the target beam contained a range of adenine-uracil configurations, in

cluding stacked complexes in which excited state ring opening is more plausible. It 

is interesting to note that the calculated interaction energy (MP2 level) of the optim

ised AU stacked pair is —9.08 kcal/mol, compared with —6.52 kcal/mol for its pure 

uracil counterpart [283]. Therefore, we suggest that the enhanced MPI production of 

C3 H4 N2 0 + in the adenine-uracil measurement compared with the pure uracil result 

may be traced to the relative populations of 7r — stacked clusters in the neutral beams.

The U+ /  A+ signal ratio was 71 % in Figure 7.6d, very close to the 75 % ratio between 

the calculated E li cross sections [285]. This indicates similar target densities of the 

two molecules in the expansion, as expected from the reported vapor pressures [206]. 

However the MPI signal of A+ was around 80 times stronger than U+ (Figure 7.6c). 

Ullrich et al. [31] 267 nm pump - 200 nm probe measurements on adenine indicated 

access to states with ns-timescale lifetimes (assigned to triplets) whereas their equivalent 

experiments on uracil revealed no evidence for states with longer lifetimes than Si 

(2.4 ps). Therefore, although a deactivation pathway from Si(n7r*) excited uracil to 

Ti(7T7t*) has been predicted theoretically [37], the relatively strong A+ signal in the 

present laser conditions may be partially due to more efficient access to triplet states. 

Alternatively (or concurrently), it may be traced to MPI via long-lived exciplex states 

in 7r — stacked nucleobases [286], [287]. Takaya et al. [287] reported A+U' and A+A'
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Table 7.3: Signal intensities for of ions, cluster ions, and selected fragment ion following 
uracil or uracil-adenine mixture MPI at 220 nm. The corresponding mass spectra are 
shown in 7.6. The total number of pulses were 16647 and 18000 for pure uracil and 
uracil-adenine mixture, respectively.

Signal in tensity  (counts /  pulse)
, . . in  strong  clustering  conditionsm /z  A ssignm ent -------------- - --------------_------------------

U racil U racil-adenine
220 nm  M P I 220 nm  M P I

270 a 2+ - 0 . 0 2 0 ± 0 . 0 0 1

248 UAH+ - 0.007 ± 0 . 0 0 1

247 UA+ - 0 . 0 1 2 ± 0 . 0 0 1

225 u 2 h + 0.0059 ± 0 . 0 0 1 2 0.0043 ± 0.0009

224 u 2+ 0 . 0 0 1 0 ± 0.0006 0.0015 ± 0.0007

136 AH+ - 0.80 ± 0 . 0 2

135 A+ - 2.72 ± 0.03

119 C5 H3 N4 4- - 0.044 ± 0 . 0 0 2

113 UH+ 0.040 ± 0.003 0.030 ± 0.003

1 1 2 U+ 0.032 ± 0.003 0.034 ± 0.003

states in ApU and ApA dinucleosides with respective decay constants of 240 ±  70 and 

105 ±  30 ps.

Li et al. [288] stated that proton transfer from N3 on adenine to N1 on uracil is expected 

in AU+ . This expectation appears to be based on analogies with other purine-pyrimidine 

radical cations, notably the Watson-Crick pairs [267]. The stabilities of UA+ with 

and without proton transfer are not available in the literature, nor are any associated 

reaction barriers. If Li et al.’s [288] expectation is correct and there is no barrier to 

prevent fast proton transfer then UH+ would be a major dissociative ionisation product 

of UA. However, Figure 7.6 shows that the UH+ signals were reduced significantly in 

the present measurements on adenine-uracil compared with pure uracil. Once again, 

this result is consistent with the neutral beam containing a range of mixed cluster 

configurations including n — stacked complexes as well as hydrogen-bonded base pairs. 

Specific calculations on UA cluster ions and experiments with greater control of target 

cluster configurations (for example, exploiting Stark selection methods, as discussed in 

Section 3.4 ) are required to clarify the proton transfer processes.
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7.6 Conclusions

Previous studies have identified mechanisms by which hydration tends to increase the 

photo-stability of uracil, notably shifting key singlet states to higher energies [247, 263], 

and restricting intersystem crossing into long-lived triplet states [262]. The present work 

shows that the new MPI fragment ion at m /z =  84 (CsH4N20+), proposed in Section 

5.4.2 as a potential marker for theoretically predicted [3] ring opening in electronically- 

excited uracil, is also stabilised by clustering with water. Further research is necessary 

to understand the specific mechanism responsible for this hydration effect.

Fragment ion production from uracil-adenine clusters has been probed for the first time. 

MPI measurements revealed evidence for enhanced CsH4N20+ production from uracil- 

adenine clusters compared with pure uracil clusters. As the formation of hydrogen- 

bonded AU pairs is expected to suppress the proposed uracil ring opening process, 

this may indicate a significant presence of 7r — stacked complexes in the neutral beam. 

In contrast with the deamination reactions in adenine-water clusters investigated in 

Chapter 4, no evidence for intermolecular reactivity aside from proton transfer was 

observed in uracil-water and uracil-adenine clusters.
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Chapter 8

Conclusions and outlook

This thesis investigates radiation effects on DNA and RNA bases in the gas phase as 

well as in clusters that represent simple model systems for biological environments. The 

three most important contributions are listed below.

(i) Comparing multi-photon ionization (MPI) of uracil with electron impact 

ionization (Eli) provides the first experimental demonstration that neutral 

electronic excited states dynamics in a nucleobase (uracil) can lead to bond 

breaking in the aromatic ring and the production of new photochemical 

products.

(ii) The effects of hydration on the dissociative ionization of nucleobases (aden

ine and uracil) have been studied for the first time. Significant suppression 

and enhancements of specific channels have been observed but the range of 

different species (monomers and various clusters) in the target beams limits 

the interpretations.

(iii) The contribution above highlights the importance of experiments with greater 

control over the neutral targets. In response to this challenge, a new experi

ment has been built that enables radiation effects to be studied on molecules 

in Stark-deflected beams. Early results include a demonstration that study

ing E li as a function of the Stark deflector voltage can be used to deduce
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whether certain product ions came from monomers or from clusters in a 

beam (nitromethane in an argon expansion).

The first contribution highlights the importance of including the (unimolecular and 

intermolecular) reactivity of excited nucleobases in nanoscale simulations of radiation 

damage in biological material. The assumption that ultrafast relaxation back to the 

vibrationally hot electronic ground state prevents damage in neutral excited nucleo

bases may be an over-simplification. Moreover, our ultrafast pump-probe experiments 

provided evidence supporting theoretically predicted access to long-lived (>  10 ps) 

triplet states of uracil. The second contribution demonstrates that clustering has major 

effects on the fragmentation pathways of nucleobases, many of which cannot be ex

plained purely on the basis of efficient energy removal from intra-molecular vibrational 

modes to inter-molecular modes. The third contribution opens a new route to under

standing these specific effects, as required for integration into radiation damage models 

and for rigorous comparisons with theory.

The main specific conclusions from each chapter of the thesis are summarised below:

Summary of conclusions from Chapters 4 - 7

C h a p te r  3: E x p e r im e n ta l

•  Improvements to the system during this PhD have effectively eliminated back

ground signals in MPI mass spectra and enabled E li measurements to be per

formed with tuneable mass resolution.

•  A new experimental system to study MPI, Eli and EA processes in Stark-selected 

biomolecules has been designed and built.

•  The data acquisition system based on Lab VIEW software interface has been in

tegrated with the experiment to allow semi-automatic acquisition of data. The 

system controls both the MPI /  E li and the Stark /  EA experiments, allowing for 

recording ion flight times together with corresponding parameters such as laser
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pulse energy, spectrometer voltages, deflector voltage, gas pressure or temperat

ures measured in several places in the experiments. A vacuum security system 

has been implemented.

• The ability to control the neutral molecular beam has been presented. Experi

ments showed deflection of nitromethane out of the axis of the beam.

• An alternative method to remove the species with the highest effective dipole 

moment /  mass ratios out the neutral beam has been shown.

C h a p te r  4: R e a c tiv ity  in  a d e n in e -w a te r  c lu s te rs

This chapter discussed MPI of adenine in isolation and clustered with water. The 

key result obtained is the evidence for production of hypoxanthine via a barrierless 

deamination reaction in a closed hydration shell of adenine.

•  With the exception of the three fragment ions (CsELiN^, C sH sN ^, and C4 H4 N4 + 

fragments ions) channels, clustering with water stabilises adenine with respect to 

dissociative MPI ionisation.

•  All sequential fragment ion pathways are suppressed. These hydration effects have 

been attributed to energy dissipation from the excited radical cation via cluster 

dissociation.

•  Hypoxanthine was successfully ionised using ns-timescale laser pulses for the first 

time. The low MPI efficiency compared with adenine suggests particularly fast 

internal conversion to the electronic ground state following mr* excitation.

•  Strong E li production of 136+ • (H20)n ions has been observed and attributed 

to water ionisation followed by proton migration to adenine and partial cluster 

dissociation.

•  136+ • (H20)n MPI peaks have been observed for the first time. This provides the 

first experimental evidence supporting the deamination reactions in closed-shell 

adenine-water clusters leading to the production of hydrated hypoxanthine ions.
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C h a p te r  5: M P I  a n d  E l i  o f u rac il, d -u ra c il  a n d  th y m in e

Uracil has been studied by ns timescale MPI and 200 eV Eli, and compared with several 

of its derivatives in the gas phase. The main result indicated a ring opening leading to 

the production of an m /z =  84 ion:

•  The first experimental evidence for a new UV damage process in uracil -  pro

duction of C3H4N20 + ion (uracil+ minus CO). The appearance energy of the ion 

matches calculated threshold for accessing the — Si(cr(n — cross

ing seam [3]. E li experiment have shown this channel is not produced by direct 

ionisation by 200 eV electrons.

•  Power dependence for the production of several fragment ions is measured, 2-photon 

processes lead to production of both U+ and m /z =  84 ion. This rules out disso

ciative ionisation followed by ionisation of a neutral product as a possible source 

of this ion.

•  Further research on deuterated uracil supported the interpretation that the ring- 

opening followed by a CO group subtraction is the most plausible pathway leading 

to the production of the m /z =  84 fragment.

• Studies of thymine have shown not shown an analogous process. This suggests 

that substitution of a heavy group at the C5 position of the pyrimidine ring can 

stabilize excited nucleobases with respect to isomeric transitions.

•  A metastable dissociation channel of the uracil radical cation producing C3 H3 NO+ 

and neutral CO fragments has been identified. The identification method cross

checks measured and calculated times-of-flight with a reflectron cut-off voltage to 

identify the metastable ion,

• Studies of 4-deuterated uracil lift several ambiguities previously reported in liter

ature in assignment of m /z =  42, 40, 29, 28, 26 and 14 fragment ions.
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C h a p te r  6: U ltra fa s t  s tu d ie s  o f u rac il

Ultrafast fs-timescale time resolved pump-and-probe MPI has been performed on uracil 

as a continuation of research described in Chapter 5. The measurements were carried 

out at Heriot-Watt University (HW) and provide the first time-resolved view of uracil’s 

dynamics following excitation to the S3 band and high vibrational levels of S2  and Si 

states.

• Pump-probe measurements on uracil have been carried out at a much lower pump 

wavelength (200 nm) than any previous ultrafast experiments (250 — 267 nm).

•  Decay plots for the production of uracil+ and several fragment ions show broadly 

similar characteristics to previous experiments carried out with much lower pump 

energies. This similarity appears to be consistent with fs-timescale deactivation 

of S3 -excited uracil into the previously studied S2 state.

• A long-lived component of the decay curves is clearly visible and provides evidence 

supporting access to long-lived triplet states.

• No evidence for the production of the m /z =  84 ion (observed in the single-colour 

MPI experiments at the OU using ns-timescale laser pulses) was observed with 

pump-probe delays up to 1 0  ps.

•  Experiments on a vibrationally-excited molecular target with the modified OU 

setup showed that this different result is very unlikely to be linked to the internal 

energies of the target molecules. Therefore we consider that the absence of the 

m /z =  84 ion in the HW measurements is most likely to be due to the channel’s 

dependence on a so-far unidentified process on a timescale >  1 0  ps.

C h a p te r  7: H y d ra te d  u ra c il a n d  u ra c il-a d e n in e  c lu s te rs

The final results chapter presents MPI and E li studies of uracil in clusters. For the 

first time, the experiments explore how bonding with water and with adenine modifies 

fragment ion production.
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•  No evidence for intermolecular reactivity aside from proton transfer was observed in 

uracil-water and uracil-adenine clusters.

•  The m /z =  84 fragment ion (CsH4N20+) was repressed by hydration. This may 

indicate that the presence of hydrogen-bonded water moieties disrupts access to the 

neutral excited state dynamics required for this dissociative MPI channel.

•  Enhanced C3H4N20+ production from uracil-adenine clusters compared with pure 

uracil clusters was observed. As the formation of hydrogen-bonded AU pairs is expected 

to suppress ring opening, this may indicate a significant presence of 7r-stacked complexes 

in the neutral beam.

Outlook

The current work brings new insights into radiation-induced unimolecular and inter- 

molecular processes in DNA /  RNA bases and their clusters. The main steps to continue 

this research in the near future are given below.

• The production of a new fragment ion at m /z =  84 has been identified and traced 

to so-far unidentified dynamics in neutral excited uracil. This process is mediated 

by clustering. However, further research is necessary to understand the specific 

dynamics.

-  Ultrafast experiments will be carried out at Heriot Watt University on uracil 

with a 220 nm pump beam. This will allow the time-resolved dynamics of 

uracil to be investigated following absorption into exactly the same part of 

S2 manifold as the single-colour MPI experiments at the OU.

— Ultrafast measurement will be carried out with pump-probe delays up to 100 

ps to look for the m /z =  84 production from a long-timescale process (notably 

triplet dynamics).

• Complete the development of the new experimental setup (Stark /  EA experiment)
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— Use the Stark/EA system to perform MPI experiments on Stark-selected 

clusters. In particular, this can enable the production of m /z =  84 ions from 

uracil-adenine clusters to be studied as a function of specific cluster con

figuration. This has potential to test our hypothesis that the production 

of these ions in the present mixed beams can be traced to pi-stacked com

plexes. Similarly, experiments of this kind can elucidate the mechanism by 

which hydration suppresses this fragment ion channel.

— Optimise the electron attachment probe for the Stark /  EA experiment. Per

form EA experiments on biologically significant molecules and their cluster 

utilising the target selection technique.

As discussed in Chapter 1, structural modifications and dissociations of nucleobases in 

neutral or ionic excited states are important radiation damage processes in DNA and 

RNA. Moreover, the products (particularly radical fragments) can induce further dam

age by reacting with the nearby subunits of the macromolecule. This thesis reveals new 

detail on the response of isolated nucleobases to UV and electron irradiation, notably 

providing insights into the electronic excited state dynamics of uracil and identifying 

dissociative ionization products that have been debated in the literature. This informa

tion can be incorporated into models of radiation-induced damage in biological material. 

Indeed, the key input data for the most precise (nanoscale) Monte Carlo simulations 

of radiation tracks in condensed material [91] is currently provided by experiments and 

calculations of radiation interactions with isolated molecules.

Accounting for phase and intermolecular bonding in nanoscale radiation damage sim

ulations represents a major challenge. The study of molecular clusters presented in 

this thesis extends our understanding of how specific processes observed in irradiated 

isolated molecules evolve in a multi-molecular environment as a step closer to biological 

material. This provides valuable data and understanding for the development of multi

dimensional simulations of radiation effects that can overcome the limitations of models 

based purely on gas-phase data or macroscopic data. As those radiation damage models 

are the basis for cancer treatment planning, their completeness is crucial for accurate 

dosing. The significant changes in fragment ion channels due to clustering observed
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in this thesis highlight the importance of integrating nanoscale intermolecular bonding 

effects into radiation damage models.

The understanding of hydrated biomolecular clusters is still far from complete. For 

example, it is challenging to derive detailed interpretations for presently observed clus

tering effects on fragment ion production from multi-photon ionized nucleobases. A 

significant barrier for interpretations is the difficulty in acquiring good control over the 

neutral targets. The present development of the Stark /  EA experiment is a significant 

step towards overcoming this difficulty. The inclusion of a low-energy electron system, 

as well as options to perform MPI and E li experiments can offer exceptional breadth 

in the analysis of radiation effects in selected biomolecular clusters. The preliminary 

data obtained using the Stark /  EA experiment shows that this system will indeed be 

an invaluable contribution to the existing advanced methods to probe radiation-induced 

processes in controlled neutral targets. The system is one of new generation of exper

iments that will enable unprecedented levels of control on neutral molecular /  cluster 

targets.
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Figure A .l: M PI spectrum  (225 nm, average fiuence 7 x 105 W /cm 2) of adenine (248 °C) 
in an expansion w ith argon (0.9 bar) and D 2 O (100 °C), showing a sequence of peaks 
between m /z  =  18 and m /z  =  22, supporting the assignment of the m /z  =  18 peak to 
NH^“ production following AH+ dissociation.
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Vacuum Security System

The Vacuum Security System overlooks the state of the vacuum and, if necessary, is able 

to securely shut it down. The system allows for turning on and off 2 roughing pump, 5 

turbomolecular pumps and a pneumatic security valve, that prevents oil backstreaming 

into the chambers, in case of turbopump malfunction. The system is interfaced with 

vacuum gauges at both roughing lines, and emergency shutdown is initiated if pressure 

in either of them rises above a specified triggering level (typically 5.0 x 10-1 mbar ), or 

if a turbomolecular pump reports an error (such as gas overload, motor temperature too 

high etc.). The system provides several relay outputs for controlling devices that need to 

be disabled in case of a system shutdown, e.g. the electron gun, electron monochromator 

and the MCP detector. The system operates in three modes:

•  Safe -  for fully automatic operation. If the system is tripped, an alarm siren is 

sounded, and the system is shut down.

•  Pump/Vent -  With security fully disabled and

•  Experiment -  With sensing subsystem engaged, but automatic shutdown disabled. 

This mode is used when performing experiment. In case of the system is triggered, 

only the alarm siren is activated. This leaves the decision to either continue or 

shutdown at the operator’s discretion.

Further layer of vacuum security is provided by the control software (Appendix B), 

which can lower the Stark-deflector’s voltage sufficiently slow.
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Stark Deflector conditioning

The Stark deflector’s power supply is remotely controlled via the Lab VIEW experi

mental control platform, with security checks monitoring the pressure in the deflection 

chamber. In case of a sudden increase in of the pressure in the vessel, the deflector’s 

voltage is lowered, at a safe rate, to avoid discharges. This rate is about three times the 

advised increase rate (1 kV/min ), and is a compromise between lowering the voltage 

fast enough not to risk discharges due to increased pressure, and risking discharges due 

to draining the charge too fast.

Table A.l: Stark Deflector high voltage conditioning.

Tim e [minlA Voltage [kV] M ax current [ 1 0  8 A]B

0 0 —» 3 16.0
15 3 0 . 2

18 3 —>■ 6 1 1 . 0

33 6 0.7
36 6  —> 7 8.3
51 7 1.4
52 7 —> 8 10.4
67 8 1.5
6 8 8  —> 9 8 . 0

83 9 0.5
84 9 -> 10 2 0 . 0

99 1 0 1 . 6

1 0 0 10 -» 10.5 7.3
115 10.5 0.5
116 10.5 11 6.7
131 1 1 1 . 2

132 11 11.5 9.2
147 11.5 2 . 1

148 11.5 ->■ 12 4.4
173 1 2 3.2

A Maximum voltage increase rate: 1 kV/min
B maximum current observed during either increasing or observing the voltage.
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Nitromethane seeding
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Figure A .2: N itrom ethane signal intensity as a function of argon gas pressure.

Uracil metastable fragmentation pathway

This section described the calculation performed to identify the  m etastable decay of 

uracil, as discussed in Section 5.4.3. Reflect cut-off voltages were calculated for the  most 

plausible m etastable dissociation schemes, and compared with experim ental values in 

tables A .2 (low fluence M PI mass spectrum ) and A.3 (high fluence). Direct dissociation 

(a single dissociation of uracil"1" at a given delay tim e after ionisation) and sequential 

dissociation (uracil+ dissociates prom ptly followed by a delayed second fragm entation to 

produce the ion th a t h its the  detector) were both  considered. Colour-coding corresponds 

to the  difference between calculated and measured values. Green cells correspond to 

<  5 V  difference while yellow cells correspond to <  15 V difference.

F urther calculations were perform ed in order to narrow down the list of possible ions. 

The expected difference of tim e of arrival between the m etastable peak and uracil parent 

ion was calculated and com pared w ith the measured data. The difference, between these

180



Table A .2: Calculated Cut-O ff Voltages (Low fluence) for m etastable dissociation in the 
FFR . Cut-off 898 ± 1  V. (220 run, average fluence 4 x 106 W /c in 2, argon 0.7 bar uracil 
tem peratu re  250 °C)

Unfocused Intermediate Ion

Production
Direct
dissociation

111
(H loss)

110
(2H loss)

109
(3H loss)

108
(4h loss)

99
(CH loss)

97
(NH loss)

85 643 631 618 605 592 462 430
84 659 647 634 622 609 480 449
72 854 843 832 822 810 700 673
71 870 860 849 838 827 719 692
70 886 876 865 855 844 737 711
69 902 892 882 872 861 755 729
68 919 909 898 888 878 774 748
67 935 925 915 905 895 792 767
66 951 941 931 922 911 810 786
56 1113 1105 1096 1088 1079 994 973

Table A .3: Calculated Cut-Off Voltages (High fluence) for m etastable dissociation in 
the FFR . Cut-off 860 ±  1 V, conditions as Figure 5.10.

Focused Intermediate Ion

Product Ion
Direct
dissociation

111
(H loss)

n o
(2H loss)

109
(3H loss)

108
(4h loss)

99
(CH loss)

97
(NH loss)

85 588 575 561 548 534 399 366
84 604 592 579 565 552 418 385
72 807 796 785 773 762 647 619
71 824 813 802 791 779 6 6 6 638
70 840 830 819 808 797 685 658
69 857 847 836 825 814 705 677
68 874 864 853 843 832 724 697
67 891 881 870 860 849 743 716
66 907 898 8 8 8 877 867 762 736
56 1076 1068 1059 1050 1041 952 930

two values for several schemes, is shown in tables A .5 on the following page (high fluence) 

and A.4 on the next page (low fluence).

Each value in Tables A.5 and A.4 is averaged over 4 m easurem ents w ith different voltage 

on the “reflect” electrode. High-fluence m easurem ents were perform ed w ith voltages: 86, 

95, 127 and 131 Volts, while low-fluence m easurem ents w ith 86, 190, 195 and 202 Volts.
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Table A.4: Average difference between calculated and m easured time-of-flight difference 
between m etastable and uracil peak [ns] (Low Fluence). Experim ental conditions as 
Table A .2.

Unfocused Intermediate Ion

Product Ion
Direct
dissociation

111
(H loss)

n o
(2H loss)

109
(3H loss)

108
(4h loss)

99
(CH loss)

97
(NH loss)

85 1518 1453 1388 1322 1257 673 545
84 1423 1357 1291 1226 1160 572 442
72 277 207 136 65 -6 -644 -786
71 182 111 37 -32 -103 -746 -889
70 86 14 -57 -129 -200 -847 -480
69 -10 -82 -154 -226 -298 -949 -1094
68 -94 -178 -250 -323 -395 -1051 -1196
67 -201 -274 -347 -420 -493 -1152 -1299
66 -297 -370 -443 -517 -590 -1253 -1401
56 -621 -1335 -1412 -1489 -1567 -2272 -2429

The tendency from tables A.2 and A.3 two is reversed in tables A.5 and A.4 -  w ith 

decreasing mass of interm ediate ions, heavier product ions are favoured. Cells colour- 

coded green, in tables A.5 and A.4, correspond to <  24 ns difference, which is a typical 

w idth of a well-resolved peak, while yellow code correspond to  a <  48 ns difference.

Table A .5: Average difference between calculated and m easured time-of-flight difference 
between m etastable and uracil peak [ns] (High Fluence). Experim ental conditions as A.3
on th e  prev ious page.__________________________________________________________________

Focused Intermediate Ion

Product Ion
Direct
dissociation

111
(H loss)

n o
(2H loss)

109
(3H loss)

108
(4h loss)

99
(CH loss)

97
(NH loss)

85 1498 1432 1367 1302 1236 650 521
84 1405 1339 1274 1208 1142 552 421
72 250 225 154 83 13 -627 -770
71 204 132 61 -10 -82 -726 -869
70 111 39 -33 -104 -176 -824 -969
69 18 -54 -126 -198 -270 -922 -1068
68 -74 -147 -219 -292 -365 -1021 -1167
67 -167 -240 -313 -386 -459 -1119 -1266
66 -260 -333 -406 -480 -553 -1217 -1366
56 -1186 -1263 -963 -1418 -1496 -2202 -2360
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Uracil clusters

Tables A.6 and A.7 show the summary of the ions observed in uracil and adenine in 

current work, and in selected literature. Gaussian fitting of a large data set of electron 

impact ionization mass spectra of gas-phase adenine (0—200 eV with relatively low mass 

resolution) revealed evidence for weak fragment ion production at m /z =  65 (labelled 

with a start in the tables) and assigned it to CsHN2 + [207]
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Appendix B

Control Software

Software for controlling the two OU experiments has been designed and implemented. 

The front panel is shown in B .l. Written in Lab View dataflow visual programming 

language, the newest version (v.34) of the software allows for controlling the following 

devices:

•  Mass spectrometer Start, stop and pause measurements.

-  Load and save spectra.

-  Perform automatic Gaussian fitting to a peak.

-  Set range, binwidth and sweep preset.

-  Display properties of current spectrum (runtime, no. of sweeps, no. and rate 

of count in the current view).

-  Automatically consecutively name spectra and save them to disk.

-  Automatically create a single CSV files with all spectra along with their 

names.

-  Automatically calibrate spectra based on the voltages on the mass spectro

meter.
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Figure B .l: Front panel of the Control Software (v.34) 

e Pulse generator

-  S ta rt and stop pulsing.

-  A utom atically set pulse generator’s settings for M PI or E li experiments.

-  Set pulsing frequency

-  In M PI mode:

* T urn flashlamps on/off Turn Laser ou tpu t on/off. Two switch system 

im plem ented as a  safety measure against accidentally turning beam  out

pu t. User has to  switch ARM switch, and then LASING switch within 

3 seconds.

* Set Flashlam ps - Q-Switch delay, and hence control pulse energy.

* Set Laser pulse - ion extraction delay
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•  Stark-Deflector

-  Turn high voltage output of the Glassman High Voltage PSU on/off

-  Slowly raise or lower Stark-deflector’s voltage. The change rate is below 

lkV/min to avoid discharges.

•  Laser energy meter

-  Measure laser pulse energy and pulsing frequency.

-  Save energies to a CSV file.

-  Automatically calculate average pulse energy and standard deviation of the 

dataset in real time.

•  Vacuum gauges

-  Read, save and plot vacuum pressures. Six channels can be processed simul

taneously, grouped into two section, for each of the experiments.

-  Plot old pressure log files.

-  Warning message is played if pressures in MPI’s diagnostic and Stark/EA’s 

electron chamber rises above safe level.

• Turbomolecular pumps

-  Read, save and show temperature of five turbomolecular pumps.

-  A warning message is played if any of pump’s temperature is too low or too 

high.

-  In case of critical temperature, the experiment can be safely shut down via 

the Vacuum Security System. Any warning messages reported by the pumps 

axe displayed and logged.

-  Status of each of the pumps (off, no rotation, active, acceleration /  deceler

ation) is displayed
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• Gas line

-  Gas line pressure is displayed and logged

• Temperature controllers

-  Three Czaki temperature controllers’ values can be read and saved.

-  Option to turn on controller’s relay on/off and set desired temperature on 

the controller.

• Nano-ammeter

-  Read and display current measured by the nano-ammeter.

Further to these features, the control software cross-correlates the devices. The list of 

features that takes advantage of simultaneous control of two or more devices is given 

below:

• Option to automatically stop laser output when spectrum acquisition has finished.

• Option to automatically save laser pulse energies to a filename matching current 

spectrum’s filename.

• Control checks on the pressure are performed when used attempt to turn on high 

voltage on the stark- deflector. In case of a rise of pressure in the Stark chamber, 

voltage on the Stark deflector is automatically lowered to avoid discharges.

• Automatically limit the pulsing frequency based on the current range and binwidth 

setting to avoid sweep overlap.

The software allows for running semi-automatic scans. Scan parameters, such as initial 

and final voltage o the deflector, initial and final position of the movable skimmer, etc. 

and their respective steps, can be set. The approximate time required to run a scan 

is determined and displayed. The software records spectra automatically and changes 

the parameter whenever it is possible. If a parameter cannot be set automatically (e.g.
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the movable skimmer’s position has to be adjusted manually), an appropriate message 

is displayed.

The software has an extensive system of log generation. Parameters are automat

ically saved for each spectrum (such as experiment used, MPI/EII, carried gas, en

ergy/wavelength, target, spectrometers voltages etc.). Also, events such as pump warn

ing, change of Stark-Deflectors voltage etc. are logged. In addition, the user has an 

option to manually add a message which is saved along the timestamp in the report file. 

Vacuum and gas line pressures are automatically logged in CSV files with a filename 

matching the date. Files are automatically changed at midnight UTC time.

Most events have associated voice messages. For example, a message “Acquisition com

pleted” is played when a spectrum acquisition has completed. The voice messages are 

extremely valuable in situations that otherwise might not be noticed by the user, e.g. 

when the pressure in electron chamber rises above safe limit for operating the electron 

gun.
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Multi-photon ionization and fragmentation of uracil: Neutral excited-state 
ring opening and hydration effects

B. Bare, M. Ryszka, J. Spurrell, M. Dampc, P. Limao-Vieira,a) R. Parajuli,b) N. J. Mason, 
and S. Edenc)
Departm ent o f  Physical Sciences, The Open University, Walton Hall, M ilton Keynes M K 7 6AA,
U nited K ingdom

(Received 4 November 2013; accepted 4 December 2013; published online 31 December 2013)

Multi-photon ionization (MPI) of the RNA base uracil has been studied in the wavelength range 
220-270 nm, coinciding with excitation to the S2(n jr*) state. A fragment ion at m/z =  84 was 
produced by 2-photon absorption at wavelengths <232 nm and assigned to C3H4N20 + follow
ing CO abstraction. This ion has not been observed in alternative dissociative ionization processes 
(notably electron impact) and its threshold is close to recent calculations of the minimum activa
tion energy for a ring opening conical intersection to a o(n-jr)7i* closed shell state. Moreover, the 
predicted ring opening transition leaves a CO group at one end of the isomer, apparently vulnera
ble to abstraction. An MPI mass spectrum of uracil-water clusters is presented for the first time and 
compared with an equivalent dry measurement. Hydration enhances certain fragment ion pathways 
(particularly CsHiNO"1") but represses C3H4N20 + production. This indicates that hydrogen bonding 
to water stabilizes uracil with respect to neutral excited-state ring opening. © 2013 A1P Publishing 
LLC. [http://dx.doi.org/10.1063/1.4851476]

I. INTRODUCTION

The electronic excitation and ionization dynamics of nu- 
cleobases have attracted interest for many years with the cen
tral aim of understanding the pathways that can initiate reac
tivity and the formation of DNA and RNA lesions.1 Isolated 
molecules are the natural starting point to probe the photo
physics, while parallel studies on pure and mixed clusters 
enable closer analogies to be drawn with biological environ
ments where different isomeric forms, intermolecular energy 
transfer processes and reactivity can be significant.

The present experiments probe the pyrimidine derivative 
base uracil (C4 H4 N2O2 ), which forms two hydrogen bonds 
with adenine in RNA. Its close structural similarity with the 
DNA base thymine adds to the interest in this molecule, 
particularly with respect to differences in the photophysical 
properties of the two bases and their possible radiobiological 
consequences.2 A series of ultrafast spectroscopy and compu
tational chemistry studies (e.g.. Refs. 3-5) have significantly 
advanced our understanding of the radiationless decay path
ways from the bright n n  * state of uracil in isolation as well as 
within certain hydrated complexes and base-pairs. In particu
lar, theoretical calculations have identified ring opening6 and 
tautomeric transitions2 in electronic excited states. This pro
vides the impetus for our experiments as well as the essential 
context for the proposed interpretations. Due to the possibility 
of neutral excited state transitions in the stepwise excitation

a,Permanent address: Laboratdrio de Colisdes Atomicas e Moleculares. 
CEFITEC, Departamento de Fi'sica, Faculdade de Ciencias e Tecnologia, 
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

b*Permanent address: Department of Physics, Amrit Campus, Tribhuvan 
University, Kathmandu, Nepal.

c)Author to whom correspondence should be addressed. Electronic mail: 
s.p.eden@open.ac.uk

process, MPI can activate channels that are closed in single
photon absorption or collision induced ionization experiments 
where ionic states are directly accessed from the electronic 
ground state.7 Accordingly, the first aim of the present work 
was to study fragment ion production by MPI as a tool to 
observe evidence for excited state transitions. These were 
recognizable via major differences between MPI and elec
tron impact ionization (EH) mass spectra and distinct wave
length thresholds for the production of specific fragment ions. 
Although time resolved analysis was not possible, the present 
MPI scheme using single-color nanosecond-timescale laser 
pulses enabled the initial excitation to be carried out in a 
much wider wavelength range (220-270 nm) than any previ
ous study. Furthermore, we performed the first experimental 
comparison of uracil MPI in dry and hydrated clustering con
ditions in order to advance our understanding of how the local 
water environment can modify the molecule’s response to UV 
excitation and ionization. This question has attracted consid
erable interest with respect to the specific excitation and re
laxation dynamics8-10 but no previous research has directly 
addressed hydration effects on the fragmentation pathways of 
the excited molecule or ion.

II. EXPERIMENTAL

The experimental system developed for these studies is 
described here for the first time. As shown in Fig. 1, argon 
seeded with vaporized uracil and/or water flowed through a 
CW nozzle into a pumped chamber to form a supersonic jet. 
The jet passed through a skimmer and crossed a pulsed UV 
laser beam for MPI measurements or an electron beam from 
a commercial gun (Kimball ELG-2) for Eli experiments. The 
resulting ions were detected using a reflectron time-of-flight 
(TOF) mass spectrometer.

0021-9606/2013/139(24)/244311/10/$30.00 139, 244311-1 © 2013 AIP Publishing LLC
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Multi-photon ionisation (MPI) and electron impact ionisation (Ell) mass spectrometry experiments have 
been carried out to probe unimolecularand intermolecular reactivities in hydrated adenine clusters. The 
effects of clustering with water on fragment ion production from adenine have been studied for the first 
time. While the observation of NH4’ fragments indicated the dissociation of protonated adenine, the 
dominant hydration effects were enhanced C4H4N4* production and the suppression of dissociative ion
isation pathways with high activation energies. These observations can be attributed to energy removal 
from the excited adenine radical cation via cluster dissociation. Comparisons of MPI and Ell measure
ments provided the first experimental evidence supporting hypoxanthine formation in adenine-water 
clusters via theoretically predicted barrierless deamination reactions in closed shell complexes.

® 2014 Elsevier B.V. All rights reserved.

1. Introduction

Radiation induced processes in DNA bases have been inves
tigated intensively in recent years in order to better understand 
the fundam ental process that can initiate DNA lesions [1]. Further 
interest relates to the m echanism s underpinning the remarkable 
photo-stability o f  DNA bases and their possible evolutionary im pli
cations. W hile studies o f  isolated m olecules generally provide 
the clearest data interpretations, equivalent experim ents on 
hydrogen-bonded com plexes enable closer analogies to be drawn 
w ith  biological environm ents w h ere different isom eric forms, 
interm olecular energy transfer processes, and reactivity can be sig
nificant. The relaxation pathways o f both isolated and hydrated 
adenine (C5H5N5) follow ing excitation to the low est lying bright 
t t t t * state have been m apped out in considerable detail using 
ultrafast pum p-probe experim ents [2- 4 ] and quantum chemical

* C orresponding au tho r. T e l: +44(0)1908858255.E-mail address: s .p .eden@ openjc .uk  (S. Eden).

1387-3806/S  -  see fron t m a tte r ® 2014 Elsevier B.V. All rights reserved.
h ttp ://dx .do i.o rg /! 0 .1016/j.i jm s.2014.01.007

calculations [5- 7 ]. Sub-ps-tim escale internal conversion to the  
vibrationally hot electronic ground state via interm ediary nTt* and 
(t it * states is found to dom inate, although evid en ce for much 
weaker intersystem  crossing pathways to long-lived  triplet states  
has also been reported [8]. Previous stu dies o f  reactivity in hydrated  
adenine have focused on tautom eric transitions [9,10] and pro
ton transfer in adenine dim er ions [11], H owever, no experim ents  
have directly explored the effects o f  hydration on the d issocia
tive ionisation pathw ays o f adenine. The present work applies UV 
m ulti-photon ionisation (MPI) m ass spectrom etry to  analyse frag
m ent ion production from ad en in e-w ater  clusters. Furthermore, 
w e have carried out the m ost detailed analysis to  date o f MPI and 
electron impart ionisation (Eli) production o f  hydrated adenine  
m onom er ions and hydrated reaction products (notably hydrated  
protonated adenine) from larger dissociated clusters.The key inter
est in directly comparing MPI and Ell of m ixed clusters stem s from  
the selective nature o f  MPI, notably w ith  w ater m olecu le p hoto
excitation being inaccessible in the present laser conditions.

One possib le reaction product o f adenine and w ater that w ou ld  
not be readily identifiable in the m ass spectra o f  hydrated adenine
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R ecen t m u lti-p h o to n  io n iza tio n  (M PI) e x p e rim e n ts  o n  uracil rev ea led  a f ra g m e n t ion  a t  m /z  8 4  th a t 
w a s  p ro p o se d  as  a p o te n tia l  m a rk e r  fo r ring  o p e n in g  in  th e  e lec tro n ica lly  e x c ited  n e u tra l  m o lecu le . The 
p re s e n t  MPI m e a su re m e n ts  o n  d e u te ra te d  u rac il id en tify  th e  fra g m e n t a s  C3H4N2O* (uracil*  less  CO), a 
p lau s ib le  d isso c ia tiv e  io n iza tio n  p ro d u c t from  th e  th e o re tic a lly  p re d ic te d  o p e n -r in g  iso m er. E qu ivalen t 
m e a su re m e n ts  o n  th y m in e  do  n o t  rev ea l a n  a n a lo g o u s  CO loss ch an n e l, su g g e s tin g  g re a te r  s tab ili ty  o f 
th e  e x c ited  DNA base. MPI an d  e le c tro n  im p a c t io n iza tio n  e x p e r im e n ts  h av e  b e e n  c a rried  o u t  o n  u rac il- 
a d e n in e  c lu s te rs  in o rd e r  to  b e t te r  u n d e rs ta n d  th e  ra d ia tio n  re sp o n se  o f  u rac il w ith in  RNA. E v idence for 
C3H4N2O* p ro d u c tio n  fro m  m u lti-p h o to n -io n iz e d  u rac il-a d e n in e  c lu s te rs  is te n ta tiv e ly  a t t r ib u te d  to  a 
s ig n ifican t p o p u la tio n  o f  ir -s ta c k e d  co n fig u ra tio n s  in th e  n e u tra l  b eam .

® 2 0 1 6  P u b lish ed  by  E lsev ier B.V.

26 1. In tro d u c tio n

2tQ4 The dynamics and stabilities of nucleobases following excitation
2* to their bright S2( t t i t * )  states have been researched intensively in
2v recent years [1], Time resolved pump-probe experiments [2] and
jo calculations [3] on isolated molecules have yielded rich insights
31 into their excited state dynamics, while studies of base pairs and
32 hydrated clusters have enabled closer analogies to be drawn with
33 cellular environments [4], Internal conversion to the vibrationally
34 hot electronic ground state (either directly or via S3 states of
.75 mainly rnr* and tr-rr* character) dominates S2(ttit*) deactivation
jo [5,6], although intersystem crossing to long-lived triplet states has
37 also been identified [7,8], The present work investigates dissocia-
38 tive multi-photon ionization (MPI) of uracil (C4H4N2O2) as a tool
39 to gain additional understanding of its relaxation pathways from
40 S2(irir*) and from excited ionic states. Uracil forms two hydrogen
41 bonds with adenine in RNA and is geometrically similar to the DNA
42 base thymine (C5H6N2O2 ; uracil methylated at the C5 site of the
43 pyrimidine ring system).

Q2 * Corresponding author. T el.:+44 01908858255. E-mail address: s.p.eden@open.ac.uk (S. Eden).

Structural modifications and bond breaking in electronically 
excited or ionized DNA and RNA bases are of particular inter
est as they represent potential radiation damage pathways in 
the respective macromolecules. Nachtigallova et al. [9] theoreti
cally identified ring-opening at the S2('7nr*)-Si (a(n-Tr)ir*) crossing 
seam. More recently, Richter et al. [10] carried out dynamical calcu
lations with non-adiabatic and spin-orbit couplings that supported 
this pathway. The ring-opening process was predicted to lead to 
new photochemical products [9], Bare et al. [11] observed a new  
fragment ion at m/z 84 (uracil* minus CO or CNH2) by single
color 2-photon ionization of uracil. The threshold photon energy 
(5.29 ±  0.06 eV) for this product agreed with the calculated energy 
(5.25 eV at CASSCF level) of the ring-opening crossing seam [9] and 
the geometry of the predicted isomer indicates likely CO abstrac
tion. Therefore MPI production of this fragment ion was proposed 
as a potential experimental marker for ring opening in neutral 
excited uracil, suggesting possibilities for diverse measurements 
exploring the process in depth (e.g. using coincidence and/or time- 
resolved methods). The first aim of the present work was to test if 
the new fragment ion is indeed due to CO loss by studying MPI of 
deuterated uracil (dominantly C4D4N2O2). These results have the 
added value of identifying several previously debated fragments 
from the radical cation, while further evidence to assign specific

http://dx.doi.0rg/10.10 i 6 /j.ijms.2015.12.006 
1387-3806/® 2016 Published by Elsevier B.V.
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