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Abstract

In many clinical studies the occurrence of different types of disease events over time is of interest. For 

example, in cardiovascular studies, disease events such as death, stroke or myocardial infarction are 

of interest. As another example, in central nervous system infections such as cryptococcal meningitis, 

unfavourable events such as death or neurological events and favourable events such as coma or 

fungal clearance are relevant. In statistical terminology, competing risks refer to data where the time 

and type of the first disease event are analysed. Such data arise naturally if a nonfatal disease event 

is of interest but is precluded by death in a substantial proportion of subjects. Competing risks are 

the topic of the first four chapters of this thesis. An alternative approach used in many randomized 

controlled clinical trials is to combine different harmful events to a single composite endpoint. The 

analysis of trials with a composite endpoints is the topic of the fifth chapter. This thesis is organised 

as follows:

Chapters 1 and 2 are introductory chapters and provide an overview of statistical approaches to 

competing risks and semi-nonparametric (SNP) density estimation. Two concepts that form the basis 

for the work in Chapters 3 and 4 are introduced here: the cumulative incidence function (CIF) and 

SNP densities. For competing risks data, the CIF describes the absolute risk of different event types 

depending on time and is the most important quantity for data description, prognostic modelling, 

and medical decision making. SNP densities are densities that can be expressed as the product of a 

squared polynomial (of variable degree) and a base density which is chosen as the standard normal 

or the exponential density in this work.

Chapter 3 presents a novel approach to CIF-estimation. The underlying statistical model is specified 

via a mixture factorization of the joint distribution of the event type and time and the time to event 

distributions conditional on the event type are modelled using SNP densities. One key strength of 

the approach is that it can handle arbitrary censoring and truncation. A stepwise forward algorithm 

for model estimation and adaptive selection of SNP polynomial degrees is presented, implemented 

in the statistical software R, evaluated in a sequence of simulation studies, and applied to data sets 

from clinical trials in central nervous system infections. The simulations demonstrate that the SNP
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approach frequently outperforms both parametric and nonparametric alternatives. They also support 

the use of “ad hoc” asymptotic inference to derive confidence intervals despite a lack of a formal 

mathematical verification for the relevant asymptotic properties.

Chapter 4 extends the work of Chapter 3 to regression modelling, i.e. the quantification of cov- 

ariate effects on the CIF. A careful discussion of interpretational and identifiability issues which are 

intrinsic to models based on the mixture factorization is provided and the usage of the model is only 

recommended in settings with sufficient follow-up relative to the timing of the events. A simulation 

study demonstrates that the proposed approach is competitive compared to common statistical mod

els for competing risks in terms of accuracy of parameter estimates and predictions. However, it also 

shows that “ad hoc” asymptotic inference is only valid if sample size is large. The chapter also provides 

a suggestion for model diagnostics of the proposed model, an area that has been somewhat neglected 

for competing risks data.

Chapter 5 discusses the analysis of composite endpoints. A common critique of traditional analyses 

of composite endpoints is that all disease events are equally weighted whereas their clinical relevance 

may differ substantially. This chapter addresses this by introducing a framework for the weighted ana

lysis of composite endpoints that handles both binary and time-to-event data. To address the difficulty 

in selecting an exact set of weights, it proposes a method for constructing simultaneous confidence in

tervals and tests that protect the familywise type I error in the strong sense across families of weights 

which satisfy flexible inequality and order constraints based on the theory of ^-distributions. It is 

then demonstrated in several simulation scenarios as well as applications that the proposed method 

achieves the nominal simultaneous overall coverage rate with lower efficiency loss compared to the 

standard Scheffe’s procedure.

Final remarks are given in Chapter 6 together with an outlook for potential future research direc

tions.
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Chapter 1

Introduction to competing risks

Survival analysis plays an important role across a large spectrum of research fields such as industrial 

reliability testing and clinical research. The outcome in survival analysis is the time from a time origin 

until the occurrence of the event of interest such as failure of a component in industrial settings or 

death in clinical studies.

In many settings, however, subjects can experience different types of events over time. In stat

istical terminology, competing risks refers to the situation where the time and the type of the first 

occurring event is of interest. For example, a competing risks endpoint for patients with cryptococ- 

cal meningitis initiating anti-fungal therapy is the time from initiation of therapy to fungal clearance 

(beneficial event) or to death prior to fungal clearance (competing harmful event). Work on compet

ing risks started in the 18th century (Putter et al. (2007)) when Bernoulli investigated the possible 

consequences on mortality rates caused by elimination of smallpox. However, models specific to com

peting risks have only been developed since around the 1970s (Gail (1975), Prentice et al. (1978) and 

Putter et al. (2007)).

According to Roller et al. (2012), there are two important clinical settings where competing risks 

prevail, i.e. included subjects are susceptible to several different disease events. The first setting refers 

to studies in elderly or multimorbid patients with long-term risk exposure such as smoking, diabetes 

or hypertension. The second setting are severely ill subjects with short term risk exposures such as 

acute infections, cell depletion, or mechanical ventilation which are frequently seen among intensive 

care unit patients, transplant recipients, or subjects with severe tropical diseases.

Andersen & Keiding (2012) gave a concise discussion and critique of current statistical approaches 

to competing risks. In particular, they highlighted three principles that a competing risks method 

should adhere to in their opinion, namely:

1. Do not condition on the future

16



CHAPTER 1. INTRODUCTION TO COMPETING RISKS 17

2. Do not regard individuals having already experienced an event as remaining “at risk” of the 

other competing events

3. Stick to the real world

I shall elaborate more on each of these principles when discussing some of the well-known compet

ing risks approaches along with their strengths and limitations. Before that I introduce some basic 

competing risks concepts.

1.1 Basic com peting risks: notation and concepts

Given a total number of n subjects, the observed competing risks data for one subject consist of the 

time to the first event T  and the type of that event D, possibly subject to censoring and truncation. 

Of note, here and elsewhere, I drop supscripting with the index i for referring to a specific subject 

i for simplicity unless really needed. The event type D can take one of J  distinct values {1,..., J}, 

where J  is an integer denoting the total number of event types. J  = 1 refers to ordinary survival 

analysis and J  = 2 occurs in many competing risks applications. In the literature, the different event 

types are referred to as competing risks, competing events, competing causes or failure causes. The 

use of the last term may lead to confusion because an event can be both beneficial and harmful. 

I will generally refer to the event type D — 1 as the “event of interest” and the other events as 

“competing events”. Besides marginal modelling of (T ,D ), the association of (T,D)  with a set of 

baseline covariates Z, i.e. regression modelling, is important but I will drop Z from all formulas for 

convenience unless it is really needed. Some authors have also studied time-varying covariates in 

the presence of competing risks e.g. Beyersmann & Schumacher (2008). However, modelling time- 

varying covariates Z(t) in competing risks data is beyond the scope of this thesis. In the following 

subsections the main quantities relevant to modelling the joint distribution of (T , D) are defined.

1.1.1 Basic competing risks entities

1. The cause-specific hazard (CSH) function or “force of transition” Aj(t) is defined as the instant

aneous rate of having a specific event type j  at time t conditional on being event-free up to time 

t (Aalen (1978))
v P ( t < T  < t  + At, D = j \ T > t )

\ j { t ) =  Inn —*-=------------- r-j------- —— —  (1.1.1)J At—>0+ At

Competing risks can be described by a multi-state model where each subject can move from the 

initial state (being event free) to one of the J  event states with “transition intensities” (Bey

ersmann et al. (2012)) Aj(t), j  =  1,..., J , see Figure 1.1.1. As is evident from Figure 1.1.1,
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Figure 1.1.1: Multi-state model for competing risks.

[T| Event 1

Initial stat Event 2

[ j ]  Event J

competing risks methods do not consider further transitions between events, i.e. all event states 

are treated as absorbing. Of note, in some applications, transitions between events are pos

sible (e.g. transition after ‘fungal clearance’ to ‘death’ in cryptococcal meningitis) but modelling 

them is outside the scope of competing risks and would require more general multi-state models 

(Beyersmann et al. (2012)).

2. The cumulative cause-specific hazard or “cumulative force of transition” Aj  (t) of event type j  

(Aalen (1978))

Of note, as raised in Putter et al. (2007), this is in general not the marginal survival function for 

the ( la te n t )  time to event type j  in the absence of other event types. It only has this interpretation 

if the latent event times are independent of each other. This will be discussed further in Section

(1.1.2)

3. The exponentiated negative cumulative cause-specific hazard

Gj(t) =exp(-A,,(£)) (1.1.3)

1.3

4. The overall survival function S(t) and the total hazard function A(t) are given by

d\ogS(t )j
(1.1.5)
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These are the survival probability and the hazard of the time to the first event of any type 

(composite endpoint)

5. The cumulative incidence function (CIF) CIFj(t)  of event type j  measures the absolute risk 

(probability) of having an event of type j  until time t.

In the literature,-the CIF is also named the probability of transition (Aalen (1978)), the cause- 

specific failure probability (Gaynor et al. (1993)), or the subdistribution function (Fine & Gray 

(1999)). Most competing risks approaches assume that all subjects will eventually have an event

Amongst the quantities given above, the CSH and the CIF are the most prominent and form the 

target of most statistical models. The family of CSH functions A j (£) or the family of CIFs, CIFj (t) for 

j  =  1,..., J ,  each uniquely determine the competing risks process or the joint distribution of (T,D) . 

However, as can be seen from (1.1.6) we see that the CIF of one event type j  depends on the CSHs 

of all event types and not just event type j  in a non-trivial way. This has implications on whether or 

not one should choose competing risks models based on the CSH or the CIF; especially for regression 

modelling as will be discussed in Section 1.5.

1.1.2 Censoring and Trimcation

As in traditional survival analysis, competing risks data may also be subject to different types of 

censoring and truncation which prevent the observation of an event. Typical censoring and truncation 

schemes are right-censoring, left-truncation, and interval-censoring.

A subject is right-censored if it is known that the subject was still event free (“alive”) at time t but 

the exact event time is unknown as the subject was not followed-up beyond time t. For the validity 

of traditional survival and competing risks models, it is essential that censoring is independent of 

the time-to-event process (see e.g. Kalbfleisch & Prentice (2002), page 194 for a precise definition) 

which essentially means that subjects censored at time t  would have had the same future prognosis as 

subjects who remain under observation beyond time t. A simple form of independent right-censoring

CIFj(i) = P(T < t , D =  j ) (1.1.6)
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occurs if a subject’s censoring time C is stochastically independent of the competing risks process 

(T,D) and the observed data consists of the time to the event or censoring T  =  min(C',r), the 

censoring indicator 6 =  I(T < C), and the censored event type D =  5 x D, where I (p) =  1 if the 

statement p is true and 0 otherwise.

Left-truncation or delayed entry occurs if some subjects only enter the study from time t onwards 

and some subjects are prevented from entering the study altogether because they have an (unob

served) event prior to entering. As for right-censoring, the left-truncation time must be independent 

of the time-to-event process for the validity of traditional survival and competing risks models.

An extension of right-censoring is interval-censoring which assumes that the subject’s event is only 

known to have occurred in the interval [L, i?.] but the exact time is unknown. If R  < oo, we shall 

always assume that the event type D  is also observed. R  =  oo corresponds to right-censoring and in 

this situation the event type will also be unknown. Interval-censoring can be thought to occur because 

the subjects’ status is only observed at certain time points characterized through a random observation 

process (M, V) where M  + 1 denotes the number of observation times and V = (Vo,..., Vm) denotes 

the ordered times. The subject’s event time might fall in between any two consecutive elements in V  

(Hudgens et al. (2014)) i.e L = Vi and R  =  Vi+1 (I =  0 , M  -  1).

Formally there are two types of interval-censoring. The first type is “mixed case interval-censoring” 

which assumes the observation process to be independent of the time and the type of event i.e. 

(M, V)±(T: D ). For example, this situation occurs in clinical trials where the status is only assessed 

at pre-defined follow-up visits but an actual patient’s visits may differ from the exact time point in a 

non-informative way. One special case of mixed case interval-censored data is “current status data” 

where each subject’s event time is only known to occur either before or after a single random time 

point C. This means the interval is either (0, C] or [C, oo) with C < oo, where the event type can only 

be known in the former case while the latter corresponds to right-censoring. Such data usually arise 

from cross-sectional competing risks studies (Maathuis (2006)).

The assumption made in mixed case interval-censoring is not always valid; for example when at 

least one event type is death, there will not be any more observation times after death. This can be 

covered by the second type of interval-censoring called “independent inspection process” (IIP) which 

only requires the observation time Vi to be independent of the competing risks process conditional on 

the history of the observed data up to Vj_i. This means Vi±(T, D) | Hi where Hi is the history of the 

observed data up to time V*_i and H 1 = V0 =  0 (see Hudgens et al. (2014) for details).
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1.2 Naive approaches to com peting risks and their criticism

An early naive approach to analysing the time to an event of interest in the presence of competing 

risks and right-censoring is to treat subjects experiencing competing events as right-censored at that 

time point and to then apply standard survival methods such as the Kaplan-Meier estimator and 

the log-rank test. Many authors (Gaynor et al. (1993), Gooley et al. (1999), Kalbfleisch & Prentice 

(2002) and Putter et al. (2007)) have criticized this approach because the Kaplan-Meier estimator 

is not a valid estimator of the CIF in the presence of competing risks. It incorrectly treats patients 

experiencing competing events as if they could have experienced the event of interest as a first event 

but that observation was precluded by censoring. Thus, the Kaplan-Meier estimator overestimates the 

CIF and examples where the naive Kaplan-Meier estimators of two competing events add up to more 

than 1 due to risk overestimation have been presented by several authors (Putter et al. (2007)).

It can be shown that the Kaplan-Meier estimator in the presence of competing risks estimates 1 - G j  

from Equation (1.1.3) rather than CIFj  (Lin (1997)). Gj can be interpreted as the marginal survival 

probability in a virtual world where the competing events could be prevented and this has no effect 

on the event of interest. However as emphasized in Gail (1975) and Putter et al. (2007), this poses a 

hypothesis that cannot be statistically tested because of the non-identifiability of latent failure times 

from the observed data as established in Tsiatis (1975). Of note, withdrawing subjects experiencing 

competing events from the risk set (i.e. treating them as right-censored) is a valid approach to non- 

and semi-parametric estimation of the (cumulative) CSH and associated regression models. Indeed, 

the classical nonparametric estimate of the CIF is based on (discrete) nonparametric estimates of all 

CSHs and then combining them according to formula (1.1.6), see Section 1.4.1 for more details.

In terms of statistical inference, log-rank tests have been used in the competing risks setting to 

compare CIFs between two groups. As noted in Lin (1997), this approach is flawed in the presence of 

competing risks, because the log-rank test for the event of interest actually compares the correspond

ing CSH between the 2 groups and not the CIFs. As the relation between the CIFs and the CSHs is 

non-trivial (see the last equality in Equation (1.1.6)), a reduction in the CSH of one cause does not 

necessarily translate into a reduction in the corresponding CIF (Putter et al. (2007)).

According to Koller et al. (2012) another common problem of published clinical studies in popu

lations susceptible to competing risks is that they frequently focus on the event of interest exclusively 

and either do not report the competing event at all or only report its frequency without further ana

lysis.
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1.3 Approaches based on latent failure tim es

One way to estimate quantities of one event type while properly accounting for competing events is to 

consider competing risks data as a realization from a multivariate failure (event) time model, where 

each subject is assumed to have a potential (latent) failure time for each event type but only the time 

and type of the first occurring event are observed. The goal of such methods is to estimate the joint 

and marginal distributions of the latent times to event. As formulated in Gail (1975) and Putter et al.

(2007), the joint multivariate survival distribution of the latent times to J  distinct events is given by

S ( t 1, . . . , tj)  = P ( T 1 > t 1, . . . , f J > t j ) (1.3.1)

where Tj denotes the latent time to event of type j  and we only observe T  = m in^i,...,./} (T)} 

and D =  arg in in^^  ^  {7j}. It follows that S  (t, ...,£) =  P ( T  > t) which is indeed the total 

survival function in (1.1.4). Moreover according to Theorem 1 of Tsiatis (1975), it is always true that 

dCI'd t ^  = and additionally Aj(t) =  — aiog| (*>•,••’*) (Andersen & Keiding (2012)). Both the

total survival function and the CSHs are identifiable from the observed data. The marginal survival 

function of event type j  (called “net” survival probability in Tsiatis (1975)) is

Sj (t) = P ( f j >t )=S{0 , . . .0 , t , . . . ,0 )  (1.3.2)

Importantly Sj is only equal to Gj in (1.1.3) if the' latent event times {Tj}j=zY j  aie assumed 

to be independent of each other. Indeed, the basic assumption of latent failure time approaches is 

the marginal independence of failure causes for general estimation or independence conditionally on 

covariates for regression modelling, see Gail (1975). Without the independence assumption, neither 

the joint survival function nor the marginal distributions are identifiable from the observed data as 

shown by Gail (1975) and Tsiatis (1975). Unfortunately, testing the independence assumption itself 

based on the observed data is also beyond the realm of statistics because for any independent latent 

failure times, a model with dependent failure times can easily be created which produces identical 

observed competing risks data (Tsiatis (1975)). As a simple illustration, assume that the two latent 

times Ti and T2 are independent and consider the alternative latent failure times pair 7 \ and T2 =  

T2I  (T2 < Ti) +  (Ti +  e) I ( f 2 > f i ) ,  e > 0. Clearly in the latter setting, the two latent times are not 

independent of each other; and yet the two settings yield the same observed data. In clinical settings, 

the independence assumption is often unrealistic and by using latent variables, this approach violates 

the principle to “stick to the real world” of Andersen & Keiding (2012).

One clinical area where latent failure time models have been used is in settings where one is
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interested in estimating how the survival of a population would change if one cause of death, e.g. 

death due to cancer, could be eliminated (Andersen & Keiding (2012) and Honore & Lleras-Muney 

(2006)). Once one is willing to make the independence assumption, one can e.g. estimate Gj with 

the Kaplan-Meier method considering subjects having competing risks as censored and then interpret 

Gj as the marginal survival function for event type j .  Of note, this does not estimate ClFj  because 

1 -  Gj ^  CIFj  regardless of the independence assumption. The independence assumption might 

be more realistic in clinical setting if only independence conditional on carefully chosen covariates 

is assumed and using regression modelling instead of marginal inference can lead to more realistic 

estimates. However, Andersen & Keiding (2012) caution that in the clinical context, removing one 

disease from a population may also affect a person’s susceptibility to other diseases. Moreover, a 

critique from the side of causal inference is that the effect of eliminating a specific cause of death on 

other death causes depends on the exact intervention to achieve this (e.g. a surgical intervention might 

have a different impact on other causes of death than a behavioural intervention) (Hofler (2005)).

One method to avoid the independence assumption is to resort to parametric models for S. How

ever, as pointed out in Gail (1975), the choice of such models cannot easily be justified from the 

data. Another approach based on latent failure times that avoids the independence assumption is 

to estimate bounds for the marginal survival probabilities. Unfortunately, the resulting bounds are 

often wide and not practically useful (Honore & Lleras-Muney (2006)). To circumvent this Honore & 

Lleras-Muney (2006) proposed an approach using parametric assumption for each latent failure time 

to tighten the bounds. There are also references from econometrics (Heckman & Honore (1989) and 

McCall (1996)) showing that if one includes covariates, identification can be improved.

This section discussed the main features of approaches based on latent failure times to competing 

risks. The use of such methods allows us to answer questions that cannot easily be addressed using 

other approaches to competing risks such as the effect of eliminating certain competing events. How

ever, all latent failure time methods are based on assumptions that cannot be verified using statistical 

tools.

1.4 Estimation o f the cumulative incidence function

For exploratory and descriptive analyses of competing risks data, estimation and graphical display of 

the CIFs, possibly stratified by categorical covariates, is frequent. A commonly used method for such 

purposes is the nonparametric estimator of the CIF.
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1.4.1 Nonparametric estimation

Based on the third equality of Equation (1.1.6), one can estimate a CIF by first estimating the total 

survival function and the CSHs and then plug these estimates into 1.1.6. For right-censored data, 

these quantities can be estimated nonparametrically. As shown in Putter et al. (2007), one can use the 

Kaplan-Meier estimator S(t) =  11*^ <t (* ~ ^7) ° f the time to the composite event (i.e. occurrence of 

any event) for S  and nonparametric maximum likelihood estimates (NPMLE) for Aj : Xj (t ) =  for 

t = U and 0 otherwise. In these formulas, Us are the observed event times (from any cause) in the 

data set, n* is the size of the risk set at time U, di is the total number of subjects experiencing an event 

at time U and dji is the total number of subjects experiencing an event of type j  at time U- The CIF 

is then estimated as: CIFj(t )  =  Yli t <t ^j{U)S{U-1). The Kaplan-Meier of £  can also be calculated 

from the estimates Xj (t). Therefore this approach indirectly estimates the CIF via estimating all CSHs 

at the observed time points.

Statistical inference and large sample theories for the above nonparametric estimator of the CIF 

have been discussed by several authors. Gaynor et al. (1993) discuss how confidence bands for several 

competing risks entities can be estimated based on Taylor-series expansions and the delta method. 

Using counting process and martingale theory, Lin (1997) proved that the nonparametric estimator 

of the CIF is consistent, and that a properly normalized version of it converges in distribution to 

a zero-mean Gaussian process with a covariance function whose consistent estimator is provided. 

Additionally, Lin (1997) developed a resampling technique to approximate the distribution of this 

process and to construct simultaneous confidence bands for the cumulative incidence curve as well as 

tests for between-group comparisons of CIFs.

The nonparametric estimator of the CIF defined above is the most frequendy used descriptive 

statistic for competing risks data and plays a similar role as the Kaplan-Meier estimator for survival 

data. It is readily available in most statistics software. Moreover, it does not suffer from issues related 

to nonidentifiability as functions of the cause-specific hazard are always estimable (Prentice et al. 

(1978)). In addition, compared to parametric methods, the use of nonparametric methods poses 

no concern about model misspecification. However as noted in Gaynor et al. (1993), nonparamet

ric models are saturated. Therefore they tend to yield estimates with less efficiency compared to 

parametric models. Benichou & Gail (1990) conducted a simulation study showing that substantial 

efficiency gains by using parametric models are possible. However the same simulation indicates that 

nonparametric methods should be used when we have no prior knowledge about the shape of the true 

CIF. Another issue concerning nonparametric models is that they do not allow for extrapolation bey

ond the last observed time point. Finally, while the mentioned nonparametric estimator is applicable
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under right-censoring and can easily be adapted to incorporate left-truncation, it cannot be directly 

applied to interval-censored data. Hudgens et al. (2001) proposed two nonparametric methods to es

timate the CIFs for competing risks data subject to interval-censoring and truncation. However, even 

in standard survival analysis where there is only one type of event, the nonparametric estimator of the 

survival function has non-standard asymptotic properties and slower than the usual i/n-convergence 

in certain settings (Kalbfleisch & Prentice (2002)). Recently developed asymptotic properties for sev

eral nonparametric models for current status data can be found in Li & Fine (2013), Groeneboom 

et al. (2008b) and Groeneboom et al. (2008a).

Parametric methods can also be used for CIF estimation. As many of the proposed parametric 

methods can also be used in the regression setting, they will be discussed later in Section 1.5.3.

1.4.2 Nonparametric comparison of cumulative incidence functions

In many clinical settings, competing risks data can be grouped by a categorical covariate such as the 

assigned treatment arms in a randomized trial. A natural question arising from this setting is whether 

and to what extent the absolute risk of a specific event type over time, i.e. the CIF, differs between 

groups. I only discuss the comparison of two groups here and, without loss of generality, I focus on 

the first event type. Let the CIF for group k (k =  1,2) of the first competing risk be denoted by C IF f .  

The null and alternative hypotheses are

H0 :CIF}(-)=CIF?(-)vs.
(1.4.1)

Ha : [CIFl(-) > CIF?{-) or CIF?{-) < CIF?] and C IF }( )  /  CIF?(-)

where the targeted alternative hypothesis Ha assumes “stochastic ordering” of absolute risks.

The two most popular test statistics addressing the stochastic ordering alternative in (1.4.1) are the 

integrated weighted difference (IWD) and a variant of the Kolmogorov-Smimov test for the absolute 

risks. The IWD is defined as

f w ( t ) [ c i F \ ( t ) - C I F l ( t ) ] d t  (1.4.2)

and the Kolmogorov-Smimov type test takes the form

sup W ( t ) \ c i F \ { t ) - C I F \ { t ) \  (1.4.3)
te[0,r] 1 '

where W(-) is a positive weight function, and r  is a suitably chosen time point which is usually the

minimum of the largest observation times in each group (Pepe & Fleming (1991)). Compared to

IWD the Kolmogorov-Smimov type test is more more sensitive to large differences over a short time
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period than moderate differences during longer periods which could be more clinically desirable. In 

practice, both test statistics in (1.4.2) and (1.4.3) are often based on the nonparametric estimates of 

the relevant CIFs resulting in corresponding “nonparametric” statistics.

Works on using the IWD to compare two cumulative incidence functions based on their nonpara

metric estimates include Pepe (1991), Pepe & Mori (1993), Bajorunaite & Klein (2007) and Bajorun- 

aite & Klein (2008), who also discussed approaches based on the Kolmogorov-Smimov type test. Using 

counting process theory and martingale central limit theorems, it was proven that the corresponding 

IWD is asymptotically normal with zero mean under the null hypothesis. Various variance estimators 

for this distribution were proposed (Pepe (1991) and Bajorunaite & Klein (2007)). An alternative 

approach to compute p-values based on resampling was proposed by Bajorunaite & Klein (2007) who 

adapted earlier work by Lin (1997) for constructing confidence bands for a single CIF over a certain 

time period.

For the nonparametric IWD-based test one role of the weight function M/ (-) is to stabilise the test 

statistic. Additionally we can use the weight function to target a more specific alternative hypothesis 

such as stressing on earlier or later differences.

Even though the stochastic ordering alternative in (1.4.1) is a broad alternative, an even more gen

eral alternative is CIFi(-) ^  C7F2(-) which includes the case of “crossing CIFs”. A more appropriate 

test statistic sensitive to this general alternative is a variant of Cramer von Mises’s test (Schumacher 

(1984) and Pepe & Fleming (1989)), which is

■j  W(t) [ciF\{t) -  C /Fi(t)]2 dt

However, the null distribution of this statiistic has the form of a linear combination of infinitely many 

independent x2 random variables which leads to a rather complex calculation for the p-value (Schu

macher (1984) and Pettitt & Stephens (1976)). Moreover, the stochastic ordering alternative could 

be more clinically relevant as it indicates a homogeneous effect over time.

1.5 Regression m odelling o f com peting risks

In most applications, we are not only interested in estimating the CIFs but also informal estimation 

and testing of the effects of covariates on the competing risks outcome. Both the CSH function and the 

CIF are the targets of prominent parametric and semi-parametric regression modelling approaches to 

competing risks. As mentioned earlier, from the second equality in Equation (1.1.6), the two quantities 

are related and both the knowledge of all CSHs and the knowledge of all CIFs, respectively, completely 

characterizes the competing risks process. However, Equation (1.1.6) also shows that the CIF of the
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event of interest does not only depend on the CSH of that event but also on the CSHs of all competing 

events. Thus, covariate effects on the CSHs of the event of interest cannot be directly interpreted 

on the CIF scale and vice versa. A case study with only one binary covariate demonstrating this 

interpretational limitation of CSH-based analyses was given in Beyersmann et al. (2007).

The choice between choosing a model for the CSHs or a model for the CIF should thus be carefully 

made and should depend on the research question (Roller et al. (2012)). Several publications have 

argued that the CIF (which directly models the absolute risk of events) should be the target for pro

gnostic modelling and medical decision making (Gail & Pfeiffer (2005) and Wolbers et al. (2009)). 

For a “mechanical understanding” of the underlying competing risks process, the interpretation of 

covariate effects on all CSHs is often the most informative analysis (Beyersmann et al. (2007), Putter 

et al. (2007) and Roller et al. (2012)). Popular regression models for the CSH and the CIF are briefly 

discussed below.

1.5.1 The semiparametric cause-specific hazards model

One of the most commonly used CSH-based regression approaches is the semiparametric CSH model 

based on Cox’s proportional hazards model (Cox (1972)). This models the CSH of event type j  given 

covariate values Z as Xj(t \ Z) =  AJ;0 exp (ZT0j),  where A^o is the base line CSH for event type 

j  and Z and fy are the covariate vector and the corresponding regression coefficients, respectively. 

According to Holt (1978), J3j can be estimated by maximizing the partial likelihood as in Cox (1972), 

thus allowing for the use of usual asymptotic methods for inference. The partial likelihood is

where N  is the total number of subjects in the datasets, J  is the number of competing events, and Ri 

is the risk set at the event time U of subject i consisting of all subjects without censoring or an event 

of any type prior to that time. Of note, the partial likelihood (1.5.1) factorizes into partial likelihood 

contributions for each cause-specific hazard. Thus, if the different cause-specific hazards models do 

not share parameters, estimation can proceed with standard Cox survival software including a single 

event type only and censoring subjects with competing events. More generally, cause-specific hazards 

models with shared parameters for different cause-specific hazards can also be fitted using standard 

software for stratified Cox models using a data duplication method, i.e. generation of an extended 

dataset with N  x J  rows containing one data row for each subject and event type, respectively (Putter 

et al. (2007))

One limitation of the proportional cause-specific hazards model is the proportionality assumption

J)
(1.5.1)
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inherited from Cox’s original work. Fortunately, this can be dealt with by considering time varying 

covariates.

An alternative to semiparametric CSH modelling are parametric CSH models as laid out in Benichou 

& Gail (1990). These models can gain more efficiency if the parametric form is “correct!/’ specified.

1.5.2 Fine and Gray models

Fine & Gray (1999) proposed a direct semiparametric model for the CIF. This model belongs to a 

class of transformation models with a log{- log{l — tt}} transform applied to the CIFs. The method 

is implemented based on the concept of the subdistributional hazard (SH) of cause j ,  Xj(t), defined 

as the hazard function for the improper random variable T* =  I (D = j )  x T  +  (1 — I(D — j )}  x oo 

which implies that Aj(t) is equal to -d log  (1 -  CIFj( t )) /dt.  This hazard is then assumed to follow a 

proportional hazards specification: Xj {£; Z} =  Xjo(t) exp {ZTftj}, where Z and fij are the covariates 

and regression coefficients respectively. Importantly, this model implies the following model for the 

CIF: CIFj(t; Z) =  1 — exp | — Xjo(s) exp {ZT(3j }  dsj and one can thus directly interpret covariate 

effects on the cumulative incidence scale. Here it is worth emphasizing that it is still difficult to deduce 

quantitative effects of covariates on the CIFs. However, it is clear that a covariate associated with an 

increased SH of event type j  for higher covariate values is also associated with an increase in CIFj,  

thus there is a direct qualitative interpretation.

In the absence of censoring and truncation can be estimated by maximizing the corresponding 

likelihood defined as (Fine & Gray (1999)):

where Ri is the risk set at event time U. Unlike the risk set in Equation (1.5.1) which includes

keeps subjects experiencing events other than those of type j  in the risk set indefinitely. Under right- 

censoring, a modification of the score function of Equation (1.5.2) based on inverse probability of 

censoring weighting can be used to estimate fij.

The Fine and Gray model is closely related to Gray’s -sample test (Gray (1988)), a commonly 

used test statistic for comparing CIF of an event of interest between groups, which is usually regarded 

as the competing risks counterpart of the log-rank test. This test also considers the null and alternative 

hypotheses specified in (1.4.1). For the case of two groups and assume that the first event is of 

interest, the involved test statistic is z — W(t) | aJ(£) -  A°(i) j dt, where A® is the estimate for the 

SH of the first competing risk under the null hypothesis based on data pooled from all groups, and Aj

n

(1.5.2)

only event-free subjects, the Fine and Gray model uses an alternative risk set definition Ri  which
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is the estimate for the SH of the first competing risk based on data from the first group. According 

to Theorem 1 of Gray (1988) r  and W(-) are chosen such that is asymptotically normal. In

practice, these choices may also be context dependent. Unlike the test based on the IWD statistic 

defined in (1.4.2), Gray’s A-sample test does not have the power for covering the whole stochastic 

ordering alternative in (1.4.1). This is because Fine and Gray’s estimation of the subdistributional 

hazards assumes proportionality, while H a in (1.4.1) includes some cases of crossing SHs.

Separate Fine and Gray regression models can in principle be applied to different event types to 

obtain the respective covariate-dependent CIF estimates. This is both a simplification (because the 

models for different event types can be run independently) and a limitation. The limitation is that it 

is generally mathematically impossible for the proportional subdistributional hazards model to hold 

simultaneously for all event types. Moreover, in studies of two competing events with a limited follow- 

up duration, it can easily occur that the Fine and Gray model indicates that a covariate is associated 

with a higher CIF for both the event of interest and the competing event. However, this is incompatible 

with the fact that for t ->• oo, the two CIFs must add up to 1 for all covariate values. Moreover, it could 

be that at some time points, the predicted CIFs for the two event types add up to values exceeding 1 

for certain covariate values.

Furthermore, the risk set definition associated with the SHs violates principle 2 ‘Do not regard 

individuals having already experienced an event as remaining “at risk” of other’ of Andersen & Keiding 

(2012) . Indeed, SHs are somewhat artificial constructs which should not be interpreted as realistic 

rates. Nonetheless, if the focus is on how covariates affect the CIFs then this use of the SHs is just a. 

pragmatic way to achieve the goal.

A final limitation of the Fine and Gray model is that it cannot cope with arbitrary censoring or trun

cation. The original proposal assumed right-censoring only (Fine & Gray (1999)) but the framework 

has recently been extended to left-truncation (Geskus (2011)). However, to my knowledge, variations 

of the Fine and Gray model for interval-censoring have not yet been proposed.

1.5.3 Parametric and mixture factorization models

Several parametric approaches to competing risks have been proposed. Compared to nonparametric 

and semiparametric models, these models rely on more restrictive distributional assumptions. How

ever, if the parametric model is a good approximation to reality, they might allow for more efficient 

estimation. In addition, the inclusion of arbitrary censoring and truncation patterns including interval- 

censoring is much more straightforward in the parametric setting. In principle, parametric models for 

the CSHs can be formulated but the current literature mostly discusses models for the CIF. One way
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to model the CIF is through a mixture factorization (Larson & Dinse (1985))

CIFj (t) = P ( T < t , D = j ) = P ( T < t \ D = j ) P ( D  = j )  (1.5.3)

The marginal probabilities P(D — j )  are the probabilities of eventually having an event of type j  and 

can be modelled as having a multinomial distribution. The conditional probability P(T < t \ D =  j )  

is proper and can be modelled by any distribution for non-negative continuous random variables. For 

example, Larson & Dinse (1985) modelled the hazard of T  given D  =  j  with a piecewise constant 

hazards model. An alternative parametric model that has been suggested is the 3-parameter Gamma 

distribution (Checkley et al. (2010)). In the regression context, standard parametric survival models 

can be used to characterize the distributions of T  \ D = j  conditional on covariates, and a multinomial 

regression model for modelling the marginal distribution of D.  Alternatively, Ng & McLachlan (2003) 

proposed a mixture model where the hazards of T  \ D = j  follow proportional hazards models whose 

baseline hazards are nonparametrically specified as step functions.

In view of the total survival function in Equation (1.1.4), (1.5.3) means 1 — S  (t) =  <

t \ D — j )P{D = j).  By specifying different models for different conditional distributions P(T < t | 

D  =  j),  we can use a mixture of models to estimate S  (t ), hence the name “mixture factorization”

An extensive analysis of parametric mixture factorization models including the discussion of large- 

sample properties of maximum likelihood estimators, test statistics and model existence and unique

ness can be found in Mailer & Zhou (2002). One criticism of the mixture factorization is that by 

conditioning on D,  it conditions on the eventual failure cause which lies in the future which violates 

principle 3 of Andersen & Keiding (2012) to not condition on the future. To circumvent this, Nicolaie 

et al. (2010) proposed an alternative factorization:

P(T < t , D = j )  = P(D = j \ T <  t )P(T <t )  (1.5.4)

A problem with this factorization is that it is complicated to model D \ T.  In Nicolaie et al. (2010), 

D  | T  is specified by the relative hazard: 7Vj(t) =  ^ ^ A fc"(T) modelled by a time-dependent

multinomial logistic model: iTj(t) =  y - ^ r B(t))»where j3j is a row vector of p parameters and 

B ( £ )  =  (Bi  (t) , Bp{t)) is a predefined set of p functions of time.

Instead of using a mixture factorization model, one can also directly model the CIF with a para

metric function. However, as CIFj{oo) =  limt-+ooP{T < t ,D =  j )  ^  1 in general, we must use 

an improper distribution to model this quantity. In Jeong & Fine (2007) a generalized Gompertz
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distribution was used to model the CIF

CIFj(t) = 1 — exp [/3{1 — exp(ai)}/a] (1.5.5)

CIFj  characterizes an improper distribution function if a  < 0 and |/3| < oo. According to Jeong & 

Fine (2007) such a direct model of the CIF requires fewer parameters than a mixture factorization 

modelling approach and is thus more efficient. Additionally, Jeong & Fine (2007) claimed that their 

direct approach has a better chance to capture plateau patterns of the CIF and therefore is suitable 

for cure type models. However, as the Fine and Gray model, this approach estimates CIFs of different 

event types separately and thus may violate the constraint that their sum should not exceed 1. Also 

unlike the mixture factorization model, identifiability of the model in Jeong & Fine (2007) has not 

been well established.

As for survival data, parametric competing risks model can be extended to handle interval-censoring 

and left-truncation. An example where a parametric mixture factorization model is used to analyse 

interval-censored competing risks data can be found in Lau et al. (2008) and Lau et al. (2011).

1.6 Contrasting different regression approaches to com peting risks

Section (1.5) summarizes several competing risks models, for which the target of modelling is either 

the CSH or the CIF and the choice between them depends on the research questions. As discussed, 

CSH-based regression models allow direct interpretation of covariate effects on the CSHs but not the 

CIFs. Many of these approaches specify a Cox’s proportional hazard model for each CSH. As a result, 

such models can easily be fit to data using techniques already developed by Cox. However, as for 

the original Cox’s model, they cannot easily be extended to handle interval-censoring. On the other 

hand, parametric CSH models can easily cope with different types of censoring at the price of making 

distributional assumptions.

When interest is in covariate effects on the CIFs, one standard approach is to use the Fine and 

Gray model which assumes proportional SH and is directly linked to the CIF. Nevertheless, one needs 

to be cautious when interpreting the SHs and their ratios because, as discussed, they are based on a 

non-intuitive risk set definition which regards subjects experiencing other event type as still at risk of 

the event of interest.

In some competing risks analyses, both Cox proportional CSH models and Fine and Gray models 

are used (Grambauer et al. (2010)). In such occasions, the estimated hazards ratios or subdistri

butional hazards ratios refer to different quantities, respectively, and hence may differ substantially 

from each other (Latouche et al. (2007), Beyersmann & Schumacher (2007) and Grambauer et al.
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(2010)). Initial studies on the relationship between the CSHs and the SHs can be found in Latouche 

et al. (2007), Beyersmann & Schumacher (2007), Beyersmann et al. (2009) and Grambauer et al. 

(2010) which showed that the subdistributional hazard function is related to the CSH according to 

the following formula:

As a consequence of Equation (1.6.1), proportionality cannot hold for both types of hazards simul

taneously. There have been several attempts to study the validity of fitting the Fine and Gray model 

to data following a Cox proportional cause-specific hazards model. In such case, the Fine and Gray 

model estimates the “least false parameter” (LFP). In some cases (Grambauer et al. (2010)), the LFP 

can still yield SHs ratios that are quite close to the true CSHs ratios for a specific event type j .  Empir

ically, this usually happens if the covariate affects only the CSH of the event type j  but not of other 

event types.

An alternative approach for modelling the CIF is through a mixture factorization as described in 

Section 1.5.3. This method offers flexible ways to specify and test for covariate effects: on the entire 

competing risks process, only on the marginal probabilities P  (D =  j )  or only on the conditional part 

P  (T < 1 1 D = j )  (Checkley et al. (2010)). This cannot be achieved if one models directly the CIF 

using some improper distribution. Moreover, according to Lau et al. (2011), mixture factorization 

models allow us to estimate the CSHs and SHs without worrying about the proportionality assump

tion which cannot hold simultaneously for both hazard types. This can be done using the following 

equations
, dCIFj(t) /dt  ; dCIFj(t ) /dt  
i W ~  S(t) ’ }(  ) ~  l - C J F j ( t )

In addition, one can easily incorporate left-truncation and interval-censoring when all parts of the 

mixture factorization are parametrically specified.



Chapter 2

Semi-nonparametric densities and their 

application in survival analysis

As discussed in Subsection 1.4.1, parametric models for competing risks might gain efficiency com

pared to non- or semi-parametric models, and can more easily incorporate arbitrary censoring and 

truncation patterns such as interval censoring at the cost of posing more restrictive distributional as

sumptions. Thus a method that combines the advantages of both approaches is desired. In this thesis, I 

investigate one potential approach to achieve this based on the so-called smooth “semi-nonparametric” 

(SNP) density representation introduced by Gallant & Nychka (1987) in an econometric setting. This 

method belongs to a wider class of “sieve extremum estimation” methods. Therefore, I shall begin this 

chapter by briefly discussing the general ideas of sieve estimation while restricting and focusing the 

exposition on aspects that are relevant to this thesis. Then I shall discuss the approach based on SNP 

densities as a special case of sieve estimation and discuss its applications in survival analysis.

2.1 Sieve extremum estim ation

2.1.1 Introduction

In statistics, we often have a sample of n random (possibly multi-dimensional) variables Zl 5 Zn, 

which are independently and identically distributed (i.i.d) according to a distribution determined by 

a “true” parameter 0O e  0 . The space © can be of infinite dimension, for example a function space. 

The parameter space © is usually a metric space with a metric d and I will assume that such a met

ric exists throughout the rest of this section. To estimate 0O from the sample we need an empirical 

(sample-dependent) criterion function Qn (0) : 0  -> M. Estimation of 0O could then in principle 

proceed by maximizing Qn over © yielding the estimator: arg max^ge Qn(0). However, when the

33
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dimension of 0  is not finite, it is difficult to compute such a maximizer (Chen (2007) and Bier- 

ens (2014)). Moreover, it may be ill-defined, inconsistent or converge to the true parameter only 

at a slow rate of convergence (Chen (2007)). In his book Grenander (1981) proposed a solution 

to this problem by introducing the method of sieve extremum estimation. The idea is to optimize 

the criterion function over a sequence of much less complex and often finite dimensional parameter 

spaces {0n}“=i called sieves of increasing complexity. The sieves {0n}£Li usually refer to a non

decreasing sequence(0! C © 2 C • • • 0 n C • • • C 0) of suitably chosen finite dimensional subspaces 

which are dense in © i.e. (Jn ©n = 0 .

In many applications including the semi-nonparametric models in this thesis, 0 — (£ ,h )  €  S xTL, 

where E is a subset of a finite dimensional Euclidean space and H  is a function space of infinite 

dimension. In this case one may be interested in both components £ and h  or just in £ with h  being 

considered as a nuisance parameter. Estimation of £ and h  can be done using two main approaches: 

two-step procedure or simultaneous estimation. In the former, we first estimate h by h, and then 

subsequently estimate £ using h  in place of h  in the criterion function. Estimation of h in this case can 

be done nonparametrically or based on a sieve with the corresponding sieves {'Hn}c£=1 in TL. In the 

simultaneous estimation approach, estimation of £ and h  is done simultaneously by maximizing the 

criterion function over the sieve space 0 n = E x Tin, which is what I will implement for my models.

The literature on sieve estimation is substantial and a large number of criterion functions and 

sieve spaces have been proposed. Indeed, many known estimation methods can be placed under the 

framework of sieves. Some examples are: the histogram and penalized regression (Geman & Hwang 

(1982)) as well as generalized least squares and maximum likelihood estimation (Chen (2007)). The 

choice of a suitable criterion function and sieve space depends on many considerations including how 

easy it is to optimize the criterion function for a sieve and how good the large sample properties of 

the resulting sieve estimator are. Of most relevance to this thesis is the method of sieve maximum 

likelihood estimation (MLE), a branch of a broader class called sieve M-estimation (Chen (2007)). In 

this case, the empirical criterion function is simply a log-likelihood function, defined as

Qn(9) = LY,l(e,Zi) (2 .1.1)
i= l

where I (0, Zi) is the log-likelihood contribution of the ith observation for a given 0. For future use 

define Q(6) = E  [Z (0, Z)\ where the expectation is taken under the “true” distribution of Z  which is 

determined by 0q. We can think of Q as a “population” or deterministic criterion function. The sieve
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MLE (extremum) estimate is then defined as

§n = arg max Qn(9) (2.1.2)
0e©„

Of note, in practice it is often impossible to find an exact MLE extremum estimator due to computa

tional reasons, but rather an approximate maximizer which has the property: Qn > sup0Qn Qn (9) -  

Op (r]n) with rfn —y 0 as n  oo. However, this does not change the asymptotic properties of the es

timator. Thus for simplicity I consider 9n as in (2.1.2).

2.1.2 Large sample properties of sieve MLE

The literature on asymptotic or large sample properties of sieve estimators is extensive and of consid

erable technical sophistication with frequent usage of advanced methods from functional analysis and 

empirical process theory. As this topic is not the focus of this thesis and an extensive and relatively 

recent overview article exists (Chen (2007)), I shall restrict this short overview to general results on 

sieve maximum likelihood estimation which were accessible to me. Of note, asymptotic results spe

cifically developed for SNP density estimators, the sieve estimators mostly relevant to this thesis, will 

be deferred to Section 2.2. In the following, I use definitions and notation from the previous section 

i.e. our data is modelled by i.i.d. observations Z i , ..., Zn which follow the same distribution as Z. It is 

further assumed that the support of Z  is in an Euclidean space. Additionally, I use plimn_>o0Xn = X  

to mean that X n — > X  in probability and an ~  bn denotes that there exist constants c\ and c2 such
n —> oo

that ci < < c2 for all n.

Consistency of sieve MLE

Consistency of sieve MLE has been discussed by several authors, either specifically or as a special case 

of sieve M-estimation, and a variety of regularity conditions required to establish consistency have 

been provided. Early discussions can be found in Geman & Hwang (1982) and Gallant 8c Nychka 

(1987). An overview article is Chen (2007), whereas Bierens (2014) provides a recent consistency 

proof under low-level conditions. Many of these results are applications or generalizations of Wald’s 

classical consistency theorem which is included in most general textbooks on asymptotic theory (see 

e.g. Theorem 5.14 of Van der Vaart (2000)).

Theorem 3.1 of Chen (2007) states that the sieve estimator defined in (2.1.2) is a consistent 

estimator for the true parameter 0o under the following conditions:

• Condition 1 (identification) Q{9) is uniquely maximized on 9 at 0O G ©> and Q (9a) > —oo.
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• Condition 2 (sieve spaces) 0 n C ©n+1 C 0 ,  Vn > 1; and there exists a sequence nn90 e ©n 

such that d  (9q, 7rn 0 o )  -> 0.

• Condition 3 (continuity) The criterion function, Q(9), is upper semi-continuous with respect to 

the metric d(-, •).

• Condition 4 (compact sieve space) The sieve spaces, ©n , are compact under the topology im

plied by the metric d ( •).

• Condition 5 (uniform convergence over sieves) plimn_).00 suP<?e©„ \Qn{0) -  Q{0)\ =  0.

For ©n =  0 ,  these conditions essentially reduce to standard parametric conditions for the consistency 

of MLE over a compact space. However, the main use of this theorem is for cases where © is not 

compact which is true for several semi-nonparametric models including the ones developed in this 

thesis. Conditions 1 to 4 are standard regularity conditions but condition 5 is often difficult to verify. 

For this reason, Chen also discussed an alternative and potentially easier to verify condition, see 

condition 3.5M in Chen (2007). Bierens (2014) also criticised condition 5. Specifically in some MLE 

settings Q(6) can be -oo  for some 6*. If such 9* belongs to ©w* for a large enough N* while Qn(9) 

is finite for all n, sup6,€0n |<5n(#) -  <2(0)| =  oo, Vn > N* leading to sup0€0n |<5n($) -  <2(#)| oo 

almost everywhere (a.s.). To overcome this, Bieren constructed his own consistency results with a 

new set of conditions as a generalization of Wald’s theorem for the specific case of sieve MLE, see 

Assumption 4.1 and Theorem 4.1 in Bierens (2014). Finally, Theorem 3.1 in Chen (2007) already 

incorporates non-i.i.d observations, and Theorem 4.1 in Bierens (2014) can also be extended to such 

situation.

Convergence rates of sieve MLE

Similar to the study of consistency, several authors have studied convergence rates of sieve M-estimators 

in general and sieve MLE in particular, see for example Van de Geer (1993), Wong & Shen (1995), 

Birge & Massart (1998) and Chen (2007). For simplicity I restrict the discussion here to results from 

Chen (2007). A general result on convergence rates for “usual” M-estimator, i.e. not in the sieve 

context, is provided in Corollary 5.53 of Van der Vaart (2000). According to this, the convergence 

rate depends on the behaviour of the empirical criterion function Qn which can be written as the sum 

of the deterministic map Q and a random fluctuation Qn -  Q- Intuitively, 9n converges rapidly to 90 

if the deterministic map changes quickly as 9 moves away from 9q, while the random fluctuation re

mains small. Setting specific bound constrains to guarantee these behaviours and using the theory of
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empirical processes, Van der Vaart showed that under suitable conditions, we can obtain the expected 

asymptotic result: =  Op(1).

For sieve estimation, the rate of convergence depends on two quantities: 1) on the sieve approxim

ation error rate d  (90 ,n n9o) (as defined in the consistency theorem above) and 2) on the complexity of 

the sieve space as measured by the so-called metric entropy with bracketing Sn (Wong & Shen (1995) 

and Chen (2007)) taking values in (0,1). According to (Chen (2007)), for sieve M-estimators and 

i.i.d. data, d(9o , 7rn 0 o ) =  Op(en) holds with cn =  max ( 5 n , d (6q, 7rn # 0 ) }  under suitable regularity 

conditions. As n increases the complexity Sn of © n increases, whereas d (90, ^n90) decreases. Thus, 

for an optimal rate of convergence, one should choose the complexity of the sieve spaces such that 

dn X  d (Oq, 7Tn $o)

Asymptotic normality of sieve MLE

Unlike consistency, there has not been a rich literature on asymptotic normality for sieve M-estimators, 

particularly when 9 =  (£,/i) e E x H and simultaneous estimation as described in Subsection 2.1.1 

is used. Nonetheless, some advances in this topic (Shen (1997) and Chen & Shen (1998)) were sum

marized in Section 4.2.1 of Chen (2007). In particular, Theorem 4.3 of Chen (2007) gives conditions 

for v^-asyniptotic normality of smooth functionals of sieve M-estimators. However, according to 

Bierens (2014) these are complex conditions, because they cover a wide class of sieve M-estimators. 

Alternatively, he proposed lower-level conditions for deriving v^-asymptotic normality of the finite 

(parametric) component £ of sieve MLE, see Section 6 of Bierens (2014). However, one of the associ

ated assumptions is that © =  ©n for some n  which is rather restrictive. Moreover, in his concluding 

remarks, Bierens (2014) admitted that he failed to verify one of these asymptotic normality conditions 

for his example, the SNP Logit model, which is simpler than the models discussed in this thesis.

2.2 Semi-nonparametric (SNP) density estim ation

This section discusses a special type of sieve estimation, the so-called semi-nonparametric (SNP) dens

ity estimates which play an essential part in my thesis. Of note, whereas some publications discuss 

multivariate estimation, I simplified all statements and notations to the univariate case which is dir

ectly related to my work.

I start with laying down some definitions and notations useful for later discussions. For p e  [1, oo) 

and an integer m > 0 the Sobolev norm of a real valued function /  with respect to a non-negative 

weight function fi(x) is defined as
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max sup 
A < m  u

i /p

(2.2.1)

for p < oo and as

for p = oo. For m  =  0 and p — 1 two special cases are the Li and L 2 norms for p =  1,2 respectively. 

The normed linear space of real valued functions /  with | |/ | |m p ^ < 00 is denoted by Wm^ 4l. For 

p — 2, Wm,2 ,fi is a Hilbert space with the corresponding inner product

For a general reference on Hilbert spaces and Sobolev norms I refer to Adams & Fournier (2003).

SNP density estimation was first introduced in Gallant & Nychka (1987) for econometric applica

tions in which estimation of some unknown parameters £0 from a Euclidean space E0 of main interest 

often also requires estimation of an unknown density function /o based on a sample of n  observations. 

If fo  is assumed to have a parametric form so that it can be parametrized by a finite dimensional para

meter 9o, the method of maximum likelihood estimation (MLE) can be used to estimate £0 and fo  by 

optimizing the corresponding criterion function Q n over the parameter space of £0 and 6 0 . However 

such a method can potentially produce biased results when the parametric assumption regarding fo 

is in doubt. To circumvent this Gallant and Nychka proposed a novel SNP density estimator inspired 

by the method of truncated Hermite series approximation. More specifically, Gallant and Nychka as

sume that the unknown density fo  lies in a class H of “smooth”, m 0 differentiable, densities defined 

as (Gallant & Nychka (1987) and Fenton & Gallant (1996b)) :

where p o (x )  =  (1+ z 2)So and <i0 is fixed and greater than 1/ 2. ho is a fixed strictly positive, probability

restriction on fo . These bounds are necessary to ensure that quantities such as log f ( z ) f o ( z ) d z  

and log/(z) are greater than -00  for all /  and / 0 belonging to %. According to Gallant and Nychka 

% accommodates / 0 with reasonable deviations from normal tails. This includes densities whose

A <m

H = {/o(^) =  92{z) +  eoho(z) : ||s'||m0j2j/i0 < B0, ||M m 0)2)/z0 < #o, eo > o} , (2.2.2)

density function with expectation zero which together with the small positive constant e0 forms a 

lower bound for the tails of / 0; while Bq  bounds the tails of / 0 from above and imposes smoothness

tails are not fatter than a t-like tail with fo (z )  cx (l +  z 2) 60 v and thinner than normal tail with 

h 0 (z )  oc e~“2+A for some 77 >  0 and A € (1,6 0  -  1). H  is also flexible enough to include distributions



CHAPTER 2. SEMI-NONPARAMETRIC DENSITIES AND  THEIR APPLICATION IN  SURVIVAL 
ANALYSIS 39

with any kind of skewness, kurtosis or multi-modality except for violent oscillations, kinks or jumps.

Because H  is an infinite dimensional parameter space, direct estimation of any fo e % by optimizing

a criterion function over H  is difficult as discussed in Section (2.1.1). Therefore Gallant and Nychka

proposed to simplify estimation of f 0 by looking at a much less complex, finite dimensional sieve space

of the form

=  { f ( z i&) = w l ajzj j  bo ( Z) + eo h o ( z ) < B o } ,  (2.2.3)

mo,2,(io

where h0, e0 are as defined above, b0 (z) is a strictly positive density function having a moment generat

ing function, e.g. the normal density, and a  =  (aj)^f0 must satisfy f R f (z,  a )dz =  1. The degree of the 

polynomial K n determines the complexity of and its choice is often data-driven as discussed later 

in this section. As (2.2.3) uses the same eo and h0 as (2.2.2), it inherits the same tail conditions which 

can help to reduce computational problems like computing log/(z, a) when P ^ ( z )  =  (j>2f=o aj z^  

is close to 0 in applications. According to Lemma A.5 in Gallant & Nychka (1987), using integra

tion by parts V0 =  { p K (z)bo(z); ||Pk(^)&o(^)IL0)2,Mo < K  =  ° » 2’ •■'■} is comPlete 311(1 therefore 

dense in Wm0;2)At0. As a consequence, for every g from (2.2.2), there exists an increasing sequence of 

polynomials P k ( z )  such that lim/<--»oo \\g(z ) — PK(z)bo(z)\\Tno2^ Q = 0. This and Lemmas A;1 - A.3 in 

Gallant & Nychka (1987) imply that

i Bmo l|<r!W -fK W i> o W lL „ .,» ,„ = 0- (2-2A)

which suggests that optimizing the log-likelihood Qn (£, / )  over may yield good estimates for

fo and fo when the degree K n of the polynomial in (2.2.3) is increased with sample size. In fact 

Theorem 0 in Gallant & Nychka (1987) states that the estimates are consistent estimates for £o and fo 

under regularity conditions as stated below.

Theorem 0 of Gallant & Nychka (1987)

Consider E, TL, TL̂  as introduced so far and Qn as any finite sample based criterion function such as 

the log-likelihood function; let ( f n, f n j  =  argmax2xHnQn ( f , f )  be estimates of f 0 G E and fo € TL 

respectively and let there be norms |£| on E and ||.||m)O0i/i on TL, where p(z) =  (l + z2) 6 with m  € 

(1/ 2, m0) and 5 € (1/ 2, 50).

(a) Compactness: The closure ofTL with respect to ||-||m)00iM is compact in the relative topology gener-

atedby\\Mm,oo,p

(b) Denseness: U^Li is a dense subset of the closure ofH  with respect to ||.||m)00iM and c  TLn+i-

(c) Uniform convergence: There are points (fo, fo) € E x T L  and there is a function Q(f,  / ,  fo, fo) that
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is continuous in (£, / )  with respect to ||(£, /) || =  (jf |2 +  | | / | |^ ;0OjM) '  such that

lim sup. | <§ „ ( f , / ) - Q (£ , / ,&, / o) | = 0
n - > ° °  E x H  '  1

almost surely.

(d) Identification: Any point ( £ , / ) €  H x % with

Q (f» fo) < Q (fo, / 0) £o> fo)

must have |£ — £o| =  0 and \\f — /o||m)00jAl =  0.

If conditions (a) - (d) hold and limn_>00 K n — oo almost surely then

lim £n - f o  = 0, almost surely,
n—¥ oo | |

lim / n - /o =  0, almost surely.
n —>oc || llm,oo,/z

As long as it is assumed that the true unknown density f Q is in TL and that H and the sieves TLQn are 

defined in (2.2.2) and (2.2.3), respectively, Gallant and Nychka showed that conditions (a) and (b) 

hold in general, while conditions (c) and (d) must be verified for each specific problem. For instance 

in Gallant & Nychka (1987) this was done for two econometric applications. As ||.||m ^  is a strong 

norm, (Gallant & Nychka (1987) and Fenton & Gallant (1996b)) consistency of f n under this norm 

means that derivatives, moments and many functionals of / 0 can also be consistently estimated.

Theorem 0 in Gallant & Nychka (1987) only requires that lim ^oo K n = oo, which includes both 

deterministic increments, e.g. K n =  n1/ 5, and adaptive choice of K n, which uses additional inform

ation from the observed data besides the sample size. However for practical and theoretical reasons, 

the former is strongly disfavoured (Eastwood & Gallant (1991)). In many applications, K n is chosen 

based on an information criteria such as Akaike’s information criterion (AIC), the Bayesian informa

tion criterion (BIC) or Hannan-Quinn’s information criterion (HQC), see (Zhang & Davidian (2008)). 

This means that the model is fitted for increasing values of K n until the employed information cri

terion is optimized. However, a qualitative study of the performance of SNP density estimation of 

various densities from the Marron-Wand test suite suggests that in such settings, even SNP density 

estimates based on AIC quite frequently chose K n that were too low (Fenton & Gallant (1996b)). 

In view of this, other approaches for selection of K n based on cross-validation and on an estimate 

of the integrated squared error, f  ( f ( z )  -  fo(z)^ 2dz were suggested which were found to be more 

appropriate but can be computationally intensive in some applications (Coppejans & Gallant (2002)).
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Once K n is fixed, Hn is just a parametric class of densities and standard MLE can be used for estim

ation. Thus, the SNP method is a special case of sieve-MLE estimation. On the other hand even though 

each% n is a parametric class, the complexity K n is determined by the observed data and as discussed 

earlier, the class H includes most “reasonable” densities, i.e. model misspecification with respect to 

fo is less of an issue for the SNP method compared to parametric approaches. Moreover, varying K n 

also provides an informal way to test deviations of the estimated densities from the leading paramet

ric term b o ( z ) .  Therefore one can think of SNP as lying in-between parametric and nonparametric 

methods.

Even though the original sieve TL°n was given as in (2.2.3), in many applications bl(z) is replaced 

by the standard normal density, denoted by tp(z) (Fenton & Gallant (1996b), Coppejans & Gallant 

(2002), Zhang & Davidian (2008) and Doehler & Davidian (2008)). The corresponding new sieves 

are:

'Hn =  {f{z,  a) =  p £ n (z)ip(z) + e0h0(z)} , (2.2.5)

where all bound conditions, constants and functions involving H and the new sieve are as defined 

earlier except for the use of tp{ z )  in place of 6q ( z )  . This change in sieve definition affects only condition

(b) (denseness) in Theorem 0 of Gallant & Nychka (1987). Nevertheless from the proof of Theorem 

2 in Gallant & Nychka (1987), U^Li is still dense in t i  as long as an analogue of (2.2.4) holds i.e. 

for each g from TL, there exists an increasing sequence of polynomials Pk  ( z )  such that

jr’SJo =  °> (2'2 '6)

which in turn only requires that V =  \ Pk (z)\/<p(z); < Bo, K  = 0, i, 2,... > is
( II llm0,2,/io J

dense in Wmo>2j/Xo. This in fact holds as long as the base density tp(z) has the following property: 

( f  y/<p(u)duj \Zv{z) being a strictly positive density with a moment generating function, which 

holds for example when (p(z) has the form constant x exp y )  for p > 1 and q > 0, see Appendix 

(A.1).

We can also rewrite Ttn in terms of Hermite polynomials, see (Fenton & Gallant (1996b) and Kim

(2007))
f ( K \  ^
f { z ,B)=  h r  6jHej (z) ] e_z2/2 +  £0h0(z), 6 € ©„Hn =  { , (2.2.7)

where ©n =  ^6 =  (Oo, ■■■, 0k u) ■ Y,f=o ̂ 2 =  1 -  eoj and {HCj (z)}°^0 are orthonormal, bounded Hermite 

polynomials and hence complete in W/o,2,exP( - i2/2)- For more details on Hermite polynomials, I refer 

to Section 3 in (Coppejans & Gallant (2002)). Expression (2.2.7) means each member of H  can be
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expressed as an infinite Hermite expansion and can be estimated by truncated Hermite expansions in

(2.2.7). From a practical point of view the Hermite parametrization in (2.2.7) is also computationally

convenient and stable (Fenton & Gallant (1996b)).

The standard normal density ip(z) in (2.2.5) is also called the base density of the sieve. In principle, 

other parametric choices of the base density than the standard normal density are possible and have 

been applied in practical applications (Kim (2007), Zhang & Davidian (2008) and Doehler & Davidian 

(2008)). The only requirement on the base density is that (2.2.6) can still be attained. Ideally, the base 

density should be chosen to be “close” to the true underlying density as then a good approximation 

can be achieved with a low K n. Additionally, the term e0hQ(z) is often omitted in practical applications 

and this does not seem to cause any major issues; alternatively, one can set c0 to a very small number 

for which Q n can still be computed without error and h,0 is then often chosen to be ip(z) (Gallant & 

Nychka (1987), Gallant & Marie Davidian (2010), Coppejans & Gallant (2002), Doehler & Davidian 

(2008) and Zhang & Davidian (2008)).

Besides consistency, other asymptotic properties of SNP-based estimation methods have also been 

studied which I shall briefly review. In Fenton & Gallant (1996a), a slight modification of the SNP 

method was introduced with the use of the same sieve Tin in (2.2.5 or 2.2.7) but to approximate a 

different class of function:

f o ( z )  =  g 2(z )e ~ z2/2 +  e0<p(z) : g  €  W mo^ exp( - z 2/ 2 ), f R f ° ( z )d z  =  * }  ’ (2 .2 .8)

where g(z) must additionally satisfy that for every ao > 0 and a1} there exists k0, ki  > 0 such that 

f z 2> a 0B + a i 92(z ) exP (~z2/ 2) dz -  h  exp ( —kiVB^j.  This is a more restricted tail condition than the 

condition for membership in TL (Fenton & Gallant (1996b)). Fenton & Gallant (1996b) established 

results for the convergence rate of SNP estimators for members from TL^ under the Li norm in the 

case of density estimation which also imply strong consistency under the same norm. Although the 

authors could not theoretically establish that the rate is asymptotically equivalent to the rate achieved 

by the kernel density estimator, Monte Carlo simulations by the same authors demonstrated that 

the performance of the SNP estimator is often qualitatively similar to the kernel estimator (Fenton 

& Gallant (1996b)). As stated by these authors, the L\ norm is the natural norm for density es

timation. Furthermore Coppejans & Gallant (2002) considered the same space Tloo and proposed a 

method for selecting K n based on the integrated squared error and cross-validation, and established 

the asymptotic validity of their approach with a convergence rate result of the SNP estimator under 

the Hellinger distance. In a different application, Kim (2007) derived the asymptotic distribution of a 

Kullback-Liebler type test statistic for comparing two densities on a compact support and established
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a uniform convergence rate of a SNP estimator for a truncated density with compact support.

To my knowledge, no publication has yet formally demonstrated the asymptotic normality of SNP-

based estimators under the exact setting of Gallant & Nychka (1987). However, simulation studies for

several applications have demonstrated that standard errors and confidence intervals derived from

parametric maximum likelihood inference, i.e. ignoring the adaptive choice of the complexity I<n

and treating it as fixed, usually yield valid inferences (Gallant & Tauchen (1993), Gallant & Marie

Davidian (2010), Zhang & Davidian (2010) and Zhang & Davidian (2008)). Furthermore, Eastwood

& Gallant (1991) used a truncated Fourier series that is similar in spirit to the SNP method to estimate

a periodic function which formed a component in an additive model. In this setting, the authors could

prove that estimates of derivatives up to a certain order of the estimated function were asymptotically

normal under both deterministic and adaptive choice of K n, the length of the truncated Fourier series.

2.3 SNP densities in survival analysis

As mentioned in the previous section, SNP estimation was originally developed to solve econometric 

problems. However, more recently several SNP-based methods for biometrical applications have been 

proposed. For example Zhang & Davidian (2010) used SNP distributions in place of the standard 

normal for flexible modelling of the random effects in linear mixed effects models which are frequently 

used for analysing longitudinal data. More closely related to this thesis is the use of SNP method for 

analysing survival data proposed by Zhang & Davidian (2008) and Doehler & Davidian (2008). In 

these works a continuous, positive time-to-event random variable To is modelled as

log (To) =  fi +  crZ, a > 0 (2.3.1)

where Z  is a random variable with support ( - 00, 00) and either Z  or exp(Z) has a density f 0 in H 

defined in (2.2.2) which can be approximated by a density f x n coming from Hn. Similar to many 

econometric applications the authors ignored the term e0ho(z) in the definition of % and demonstrated 

in their simulation studies that this raised no issues. Thus the SNP density estimator has the form

/*„(*) =  p k S z)$(z ) = ( Y l aiz
\ i= 0

where ip(z) is the base density. Zhang & Davidian (2008) and Doehler & Davidian (2008) recommen

ded using either a standard normal base density when modelling the density of Z  or an exponential 

base density if exp(Z) is modelled by a SNP distribution, respectively. For K n =  0, this implies that 

To has either a log-normal or a Weibull distribution. Therefore (2.3.2) provides a good approximation

tp{z) (2.3.2)
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Figure 2.3.1: Log-likelihood of p: log [a/2 +  a/2 ( \ ogt  -  /j.)] 2 exp (logi -  f a f  /2^ j  for a 
single observation with t  =  1.

-1 0

-15

for low-degree polynomials if the true density is relatively “close” to one of these two frequently used 

parametric distributions in survival analyses.

Although ignoring e0h0(z) did not bring any troubles in the simulation studies of Zhang & Davidian

(2008) and Doehler & Davidian (2008), theoretically this can lead to a log-likelihood value of -oo  

which is numerically undesirable. A simple example is when we use model (2.3.1) with Z  following 

the distribution f 0(z) =  (a0 +  « i- )2 exp ( - z 2 / 2). Then any combination of p , a  and t  that gives

log*~M =  — will cause the log-likelihood to be -oo . Another potential issue involving the SNP 

log-likelihood is its multi-modality which was briefly mentioned in Zhang & Davidian (2008) but not 

strongly emphasized. However, it triggered these authors to consider multiple starting values for their 

model estimation. Multi-modality is a complication of most log-likelihoods based on SNP densities as 

illustrated in a simple example where log (T0) =  /x +  a Z  with f 0(z) — ( a / 2  4- V ^ z ) 2 ~^= exp ( ~ z 2/ 2), 

a is fixed at 1 while // is the only varying parameter. The corresponding likelihood f To (t \ n) =  

\  [\/2 -h \/2 (logt -  n)]2 exp (log 4 -  n)2 /2^ for a single observation t = 1 is displayed in Fig

ure 2.3.1. From this figure one can also see that the log-likelihood for /r is -oo  when /r =  1.

In both Zhang & Davidian (2008) and Doehler & Davidian (2008), the SNP density f Kn was 

parametrized using a set of spherical coordinates <j>Kn =  ( < ? f r , (j>i<n), with fa e  (—7t/2. 7r/2], i =
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1 Web appendix of Zhang & Davidian (2008) gave details about these, which was also

reproduced in Appendix A.2 of this thesis. One advantage of this parametrization is that it allows

for a convenient way of setting initial values for optimization by choosing them from a regular “grid”

over the parameter space. I shall also adopt this technique to my competing risks models with a slight

modification and will discuss this in more details later. The authors chose the complexity of the SNP

polynomial, K n, based on an information criterion such as AIC, BIC or HQC and used MLE for fixed

K n.

Doehler & Davidian (2008) focused on flexible SNP-based estimation of the survival function and 

proposed test statistics for two-group comparisons of survival functions. Zhang & Davidian (2008) 

discussed the more general setting of regression models for survival data. Specifically, they used 2.3.1 

as a model for the baseline survival or hazards function and additionally assumed that covariates af

fected this distribution according to either a proportional hazard model, an accelerated failure time 

model, or a proportional odds model. As SNP-based models are parametric for fixed K n these au

thors could easily deal with different types of censoring and truncation without compromising model 

estimation. Moreover, their simulation results indicate that the resulting estimates frequently outper

form both parametric and nonparametric alternatives. The simulation results from both publications 

further support the use of standard MLE inference which ignores the adaptive choice of K n. While 

somewhat ad hoc, the simulation results show that this approach usually yields confidence intervals 

and significance levels which closely approximate the nominal values. For small sample sizes, they 

suggest the use of the bootstrap and show that this yields improved coverage of confidence intervals 

at the expense of increased computation time.

Even though the above works lack a strong theoretical justification for the use of SNP-based in

ference for survival analysis, the strong performance of SNP-based estimator compared to frequently 

used alternative survival models in simulation studies, the ability of the method to deal with arbitrary 

censoring and truncation patterns, and the successful use of SNP in earlier econometric applications 

provide strong support and motivation to extend these methods to the competing risks setting.



Chapter 3

SNP estimation of the cumulative incidence 

function

As outlined in the previous chapter semi-nonparametric (SNP) densities have been successfully ap

plied in econometrics for more than two decades and have more recently been introduced to survival 

analysis. Motivated by the successful use of SNP methods in these areas which showed its advant

ages over traditional parametric, semi- and nonparametric methods and the growing importance of 

competing risks in medical applications, one aim of this thesis is to develop novel SNP competing 

risks models. The topic of this chapter is SNP estimation of the cumulative incidence function (CIF) 

whereas the next chapter covers regression modelling.

3.1 Model formulation

As in Chapter 1, competing risks data are denoted by (T, D) where T  is the time to the first event and 

D is one of J  discrete event types. The CIF for event type j  is central to competing risks modelling 

and defined as CIFj( t ) =  P( T  < t , D =  j).

My SNP model for the CIF is based on a mixture factorization which characterizes the CIF as

P ( T < t , D = j ) = P ( T < t  \ D = j ) P ( D = j )  (3.1.1)

This factorizes the CIF into a product of the marginal probability of the event type j  and the probability 

of surviving up to time t conditional on eventually experiencing an event of type j .  This factorization 

has been used by several authors (Larson & Dinse (1985) and Lau et al. (2011)) but has also been 

criticized because the conditional probability conditions on the future which is considered undesirable 

(Nicolaie et al. (2010) and Andersen & Keiding (2012)). I nevertheless use this factorization because

46
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it is mathematically correct and provides a convenient factorization for statistical modelling. In par

ticular, the goal of this chapter is to accurately estimate the CIF and I only use the factorization as a 

tool to achieve this.

Given D = j ,  T  \ D = j  is a “proper” random variable. Therefore the conditional probability 

P(T < t | D = j )  can be modelled with SNP densities. Specifically, I use the following “accelerated 

failure time” (AFT) model (Kalbfleisch & Prentice (2002) and Zhang & Davidian (2008)):

log ( T \ D = j )  = log (Toj) =  nj  +  cjZj  (3.1.2)

In the above equation Zj  is a random variable whose density is flexibly modelled by a SNP distribution. 

As in Zhang & Davidian (2008), I consider two different SNP models for Zf.  (1) a direct model of Zj  

as a SNP density of degree Kj  with a normal base density, and (2) an indirect model which models 

t z i as a SNP density with an exponential base density with rate 1. Even though early research based 

on SNP densities exclusively used normal base densities, Zhang & Davidian (2008) argued that an 

exponential base density may be employed and the correspondingly fitted models can be compared 

based on suitable information criteria as discussed in the subsequent sections. For competing risks 

settings, different CIFs are estimated using different SNP densities which in general can have distinct 

base densities. This feature is also supported by the implementation of my competing risks models.

One of the benefits of SNP models is that for Kj  =  0, the survival part of the models reduces to 

a standard parametric lognormal (for the normal base density) or Weibull (for the exponential base 

density) AFT model. Thus, the comparison of SNP models with Kj  = 0 for all j  =  1 , J  to more 

complex models with some Kj  > 0 offers an informal test for the appropriateness of using more 

standard parametric models. Furthermore, when the degrees Kj  of all SNP polynomials are fixed, the 

model is still parametric and standard maximum likelihood estimation and inference can be applied.

The marginal probabilities of my SNP models, namely P(D =  j ) in (3.1.1), are assumed to follow 

a simple multinomial logistic model with intercept terms only:

exP (7j)
1 +  E t J  exp (7*)

P (D =  j )  =  J Z _ l r3J , % (3.1.3)

where 7j (j  =  1,..., J  -  1) are the parameters, and 7j  is set to 0 to ensure model uniqueness.

Importantly both model components (3.1.2) and (3.1.3) are flexible enough to incorporate covari

ates as discussed in Chapter 4 on regression modelling.
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3.2 Likelihood construction

As discussed, my SNP model has two main components: the time-to-event distributions or (condi

tional) SNP components and the event type distribution or marginal component. For J  different event 

types, J  time-to-event distributions are required and will be parametrized by iij, aj,  the chosen SNP 

base density, the degree of the SNP polynomial Kj  and the coefficients of the polynomial. As in 

Zhang & Davidian (2008), I parametrize the polynomial coefficients by a set of spherical coordinates 

(f)K . — e  (-7t/2, 7t/2]; k  =  1, . . . ,  Kj}  and review this parametrization in Appendix A.2.1. For 

the marginal component, J  — 1 additional parameters j j ( j  =  1,..., J  -  1) are required and the total 

parameter set for fixed base.densities and a fixed set of SNP polynomial degrees K  =  { K \ , ..., K j }  is:

7j , j  = 1, J  -  1 and {fij, aj, K j , <f>K . } Jj=1

which I refer to as 6(K) for ease of discussion.

Simultaneous estimation of all parameters including the SNP polynomials degrees K  is very dif

ficult. However, for fixed SNP polynomial degrees, the method of maximum likelihood estimation 

(MLE), which is the most widely used method for statistical estimation and inference, can be used 

to estimate model parameters. Moreover, under the maximum likelihood framework, different cen

soring and truncation mechanisms can be included as for survival data (Zhang & Davidian (2008)). 

In this work, I consider competing risks models for data with right-censoring, interval-censoring and 

left-truncation, which are the most frequent types of censoring and truncation.

3.2.1 Likelihood contribution under right-censoring and left-truncation

Without left-truncation, a subject with an event of type j  at time t contributes the following to the 

likelihood:

P (T  e [t, t + 5t\,D = j)  =  P (T  e [t,t + St] | D =  j )P{D = j )

where St is an infinitesimally small positive number. Likewise, a right-censored case at time t contrib

utes:
j  j

P ( T > t )  = l - Y , P ( T < t , D = j )  = l - ^ 2 P ( T < t \ D = j ) P ( D = j )  
j~l  j =1
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In the presence of left-truncation at time It, the respective likelihood contributions for an observed 

event or right-censoring, respectively, at time t with t > It are as follows:

Of note, the likelihood expressions above ignored components for the censoring or left-truncation dis

tributions which I assume to be independent of the distribution of the competing risks process. Hence, 

these components can be regarded as unknown constants which do not affect maximum likelihood 

estimation (MLE).

3.2.2 Likelihood contribution under interval-censoring and left-truncation

Under interval-censoring, the likelihood contribution of a subject with event type j  occurring during 

the interval [I, r] with r  < oo is:

Under right-censoring i.e. r  =  oo, and implicitly assuming that the event type is also unknown, the 

likelihood contribution is as before:

P(T  e [t,t + 6t], D = j  \ T  > It)
P(T  e[ t , t  + St],D = j , T >  It) 

P( T  > It)
P(T  e  [t,t + St],D = j )

P(T > It)

= P(T e[ t , t  + 6 t ] \ D =  j )P(D = j )  x

P(T > t) 
P( T  > It)

P{T < r, D = j )  — P(T < l , D = j )

j
1 - Y ^ P( T <l , D  = k)
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Using the same rationale as before together with considering left-truncation the above formulas re

spectively equal:

{ |P(T  < r \ D = j ) - P ( T < l \ D = j ) ]  P(D = j ) } x | l - £ p ( : r < ; ( | I >  =  k)P(D = k)
I fc=l

and
J

l - J 2 p (T  < l \ D  = k)P(D =  k) 
k=1

where the truncation time It is smaller than I.

3.2.3 Log-likelihood calculations for fixed SNP polynomial degrees

Under the usual assumption of i.i.d observations, the log-likelihood of the entire sample equals the 

sum of the logarithm of all individual likelihood contributions as described above. Specifically for 

terms involving St, I use the respective SNP densities. For terms having the form of P(T < t \ D = j ) 

I evaluate the corresponding SNP survival functions. My implementation of the SNP density follows 

Zhang & Davidian (2008). This means the SNP density is as defined in Equation (2.3.2) which in turn 

follows directly Equation (2.2.5) with the tail e0h0(•) omitted. In this formulation, both the standard 

normal and standard exponential are possible base densities.

As in Zhang & Davidian (2008) and Doehler & Davidian (2008), I did not enforce a bound on the 

Sobolev norm (Equation (2.2.1)) of Pk (z)iP(z), where Pk {z) and tp(z) are the SNP polynomial and 

SNP base density, respectively. This could in principle be done by a priori fixing values of quantities 

determining the Sobolev norm, namely mo and So, as discussed in the definition of the H  class and 

its sieves in Section 2.2 but would require defining sensible default choices for these quantities and 

complicate the implementation. The only condition on the SNP densities that I enforced is that they 

must integrate to one, which is guaranteed by the spherical parametrization of the SNP polynomials.

Details of the spherical parametrization of the SNP polynomial as well as the calculations for the 

SNP densities and the corresponding survival functions are discussed in the web-based Appendix of 

Zhang & Davidian (2008) but can also be found in Appendix A.2 of this thesis.

3.3 Estimation procedure

In the preceding section I have discussed the construction of the log-likelihood for a fixed set of poly

nomial degrees K. In this case the other parameters of the model 0(K) can be estimated by MLE. 

However, including the polynomial degrees as unknown parameters into the log-likelihood is prob

lematic because this would require optimization over an infinite-dimensional parameter space and

x | l - ^ P ( T < Z t  \ D  = k)P(D = k)^
- l
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mandate optimization of the other parameters for all possible polynomial degrees which is infeasible. 

Moreover, as models with polynomial degrees are nested, models with higher degrees automatically 

tend to lead to better log-likelihoods. Hence, as discussed in Chapter 2, a more appropriate estimation 

technique is sieve extremum estimation with adaptive choice of the polynomial degrees according to 

an information criterion.

To reduce the computational complexity of the algorithm for multiple event types, I decided to 

implement this with a greedy step-wise forward algorithm and a fixed maximum complexity K max for 

all polynomial degree Kj( j  =  1, . . . ,  J ) . In my own implementation, I set K max =  2 as this is already 

flexible enough to capture a wide range of distributions, but the algorithm is designed in a way that 

Kmax can in principle easily be increased (at the expense of a more complex optimization problem). 

In the literature, values of K max from 2 to 4 have been suggested based on simulations and practical 

applications (Zhang & Davidian (2008), Doehler & Davidian (2008) and Fenton & Gallant (1996b)). 

A schematic of the step-wise forward algorithm for 2 competing risks (J  =  2), Kmax =  2, and AIC as 

the information criterion is given in Figure 3.3.1. In this example, the final model would chose K \ =  1 

and7 2̂ =  2 as only one forward step is allowed at this point which does not further improve AIC.

Figure 3.3.1: Adaptive greedy step-wise forward selection of polynomial degrees K \ and K 2 using

A fitted model with polynomial degrees K  =  (K i , ..., K j)  is preferred to the other models based 

on an information criterion of the form: 2 x {-Z{k-1v..jKj}(0(K)) +  qc}; where Z{Xi,...,k'j}(^(K)) is the 

log-likelihood evaluated at the MLE for fixed polynomial degrees and q is the total number of paramet

ers in the model i.e. the dimension of 9{K). Three different information criteria were considered: AIC 

(Akaike’s information criterion), BICn (Bayesian information criterion) and HQCra (Hannan-Quinn’s

AIC.

A IO 20 A I& 18

\
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criterion) which set c =  1, c =  log(n)/2, and c =  log{log(n)}, respectively. Moreover, I also considered 

replacing n, the sample size, by d, the total number of events of any type, in the definition of BIC 

and HQC and denote the resulting information criteria by BICd and HQCd, respectively (Volinsky & 

Raftery (2000)).

The greedy step-wise forward strategy for selecting the optimal polynomial degrees may miss the 

best possible information criterion. For example in Figure 3.3.1 although the model (K i =  1, K 2 =  0) 

has a worse AIC, its “child node” (K i = 2 , K2 = 0) may still have a better AIC than any of the con

sidered nodes and the algorithm would have missed this. However, an exhaustive search through all 

models would require fitting (Kmax + 1)J models compared to at most 1+ J 2 (Kmax -  l) + J(J  + l )/2 

for the greedy algorithm. For example, for K max — J  = 3, an exhaustive search always requires 64 

model fits while the greedy algorithm requires only 25 fits in the worst case.

For fixed polynomial degrees, the log-likelihood function is still rather complex and may have 

multiple extrema. Hence, good starting values for the numerical optimization algorithm are crucial. 

The next two subsections discuss how to initialize the algorithm for the parametric mixture factor

ization model corresponding to K i = . . .  =  K j = 0 and how to update parameter estimates from 

the previous step to obtain starting values for the new step with an increased polynomial degree. All 

algorithms and simulations in this chapter as well as in my entire PhD project were implemented in 

the statistical software R version 3.0.0 (2013-04-03) (R Core Team (2013)).

3.3.1 Starting values for the parametric mixture factorization model

In the parametric setting, the time-to-event for a specific event type is specified as: log (Tj) =  fij +&jZj  

leading to a log-normal model for T j if Z j  has a standard normal base density and to a Weibull model 

if exp (Zj) has a standard exponential distribution. Hence, initial values for Hj and <jj were obtained 

with standard software for fitting parametric AFT as outlined below.

Specifically, I used the R function survreg from package su rv ival (Themeau & Grambsch (2000)), 

which supports survival data from both the lognormal and the Weibull distribution. All observations 

with an observed event type j  and all censored observations were included in the AFT. Since the event 

type of a right-censored observation is unknown, they were not included “fully” (i.e. with weight 1) 

into the AFT log-likelihood. Rather, a right-censored observation at time t received a weight cor

responding to its crude estimate of the probability of ultimately experiencing event type j  given by 

P(D = j  \ T  >  t). Note that P(D =  j \ T  >  t) = P(D =  j , T  >  t ) / (P(D =  1 ,T  > £ ) +  ... +  P(D = 

J ,T  > t)) and P(D = j , T  > t), j  = 1 , . . . , J  can be estimated as follows. First, the R function cuminc 

from package cmprsk (Gray (2013)) is used to get the nonparametric CIF estimates, denoted by 

Pnp  ( T  < t , D  =  j ) .  Second, the crude estimates (Pj) for the marginal event probabilities P ( D  =  j )
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are derived by normalizing the values of the CIF estimates at the last observed time point to 1. Then 

p[D  =  j, T  > t) is estimated by Pj -  P ^p  {T < t , D  =  j).

For interval-censored observations, the event type is known, and they are included as interval- 

censored with weight 1 in the AFT. However, as the standard nonparametric estimator of the CIF does 

not allow for interval-censoring, interval-censored observations were assumed to experience the event 

at the mid-point of the interval for the sake of this estimate.

As suggested by Zhang & Davidian (2008) for survival analysis, in addition to using the starting 

values (pj,<Tj)j=1 j  from the survival AFT, I also used (fij ±  &j/2, &j)jz=1 j  as additional sets of 

starting values.

To get initial values for 7j , j  =  1,..., J  -  1, I optimized the full log-likelihood with respect to 

these parameters while fixing Cpj,aj)j=i j  at each set of starting values mentioned above. This 

sub-optimization itself requires initial values for 7j , j  — 1,..., J  -  1, which were taken to be Pj as 

described above. Then Pj, j  = 1, . . .  , J  were transformed to starting values for 7j according to

=  (3.3.1)

For the sake of determining starting values, left-truncation is currently ignored. In principle, it would 

be possible to extend the heuristic techniques outlined above to this setting but current R implement

ations for parametric AFT and nonparametric CIF estimation do not support left-truncation which 

would complicate implementation.

3.3.2 Starting values for the intermediate step

At an intermediate step which increases (K i , . . . ,  K j , . . . ,  K j )  to (K i , . . . ,  Kj  +  1 , . . . ,  Kj) ,  initial val

ues for i j , j  =  1, . . . ,  J  -  1 and all parameters related to conditional survival distributions for event 

types other than j  will be set to the corresponding MLE values from the previous step.

For getting starting values for survival parameters related to event type j , I follow Zhang & Dav

idian (2008) who suggested to use a grid of starting values for the new spherical coordinates ^Kj+i 

characterizing the SNP polynomial. Specifically, I use the grid {-1.5, -1.3 ,..., 1.3,1.5} for Kj  +  1 =  1 

and {-1.5, -0.5,0.5,1.5} x {—1.5, -0.5,0.5,1.5} for Kj + 1  =  2. A relatively large number of starting 

values is chosen because the log-likelihood is expected to be multi-modal with respect to the spherical 

coordinates.

Besides the “default” grids for Kj + 1 =  1 and 2, in general for Kj  +  1 =  m  my implementation 

allows for a grid of the form Si x ... x 5m whose Si,..., Sm are sequences of equally spaced points in 

[—1.5,1.5] whose lengths must be predetermined.

Tj = log ( ^
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Given initial values for <j>K5+1 > corresponding initial values for Hj and o-j are obtained as follows:

First I calculate E (log T  \ D = j )  and Var (log T  \ D — j )  based on the MLE estimates from the previous

step using the relation:

E (logT \ D = j ) = fij +  ajE(Zj); (3.3.2)

Var (logT \ D — j )  = <jjVai(Zj)

For the calculation of the moments of SNP distributions in (3.3.2), I refer to Appendix A.3. Second, 

given these values and the chosen new spherical coordinates, I solved (3.3.2) for ptj and <jj. In short, 

I update nj, aj to correspond to the new spherical coordinates (pKj+i such that the first two moments 

of log (T | D = j )  remain unchanged.

3.3.3 Optimization

As mentioned above, for each step of the estimation procedure, numerical optimization of the log- 

likelihood is performed from a set of different starting values. As this is computer intensive, my im

plementation in the statistical software R uses parallelization as supported by the R package parallel 

(R Core Team (2013)).

For a given set of initial values I optimize the likelihood using function maxLik in the R pack

age maxLik (Arne Henningsen & Toomet (2011)) which allows for different optimization approaches. 

After some experimentation, I chose the quasi-Newton method which calculates approximations to 

the Hessian using die “Broyden-Fletcher-Goldfarb-Shanno” (BFGS) updating formula. To improve 

numerical accuracy and speed up performance time, the gradient of the log-likelihood function was 

analytically implemented. Moreover, a direct calculation of the marginal probability in (3.1.3) is 

prone to computational instability even when the logarithm is calculated first because log P ( D  = j )  — 

—log ^1 -1- X)fc=i exp(7fc)j still has the terms exp (7 -̂) which can potentially grow really fast. To over

come this, I instead calculate log P (D  = j )  = 7  ̂- A max -  log (exp (~ AmBX) +  YlkZi exP (7k -  A maxf j  

with Amax =  max {71,..., 7j_ i ,  0}.

Amongst the fitted models for all starting values, I selected all obtained estimates for which the 

optimization algorithm suggested successful convergence and chose the parameters corresponding to 

the highest log-likelihood as the final estimate given the chosen degree of the SNP polynomials. In 

addition, for statistical inference, it is required that the best fit has a negative definite Hessian matrix. 

If this was not the case, I searched whether any fit from a different starting value had well-behaved 

Hessian and its corresponding log-likelihood was at most 1% less than the best fit. If this was the 

case, I used this alternative fit instead. If no solution with a well-behaved Hessian could be found, the



CHAPTER 3. SNP ESTIMATION OF THE CUMULATIVE INCIDENCE FUNCTION 55

algorithm returns the best fits from the previous step with a warning message. Of note, the simulation 

study discussed in Section 3.6 avoided this check of the Hessian matrix to speed up computation. 

However, when final parameter estimates were examined, it turned out that degenerate Hessians 

were rare and only occurred in 3/2000 (0.15%) simulations with right-censored data and at most in 

1% for a single scenario.

Besides the premature stopping of the algorithm due to a degenerate Hessian, the algorithm suc

cessfully terminates if the chosen information cannot be further improved or if all possible future steps 

would involve SNP polynomials with degrees exceeding K max.

3.4  Ad hoc statistical inference for CIF estim ates

As discussed in Sections 2.2 and 2.3, rigorous theoretical justification for asymptotic normality of SNP

estimates is lacking in general. However, empirical evidence from several studies on density estimation

and survival analysis suggest that the use of standard MLE-based inference for SNP estimates and

associated functionals based on the final fit and ignoring the adaptive choice of the degrees of the SNP

polynomials yields acceptable performance (Fenton & Gallant (1996b), Zhang & Davidian (2008) and

Doehler & Davidian (2008)).

Accordingly I base the calculation of the standard errors and confidence intervals for quantities

derived from the SNP estimates on the observed Fisher information matrix I  (dj  with respect to

9 =  0(K) with K  being the SNP polynomial degrees of the final fit. In particular, for a specific element

of 6, say 9r, the corresponding (two-sided) Wald-type a- level confidence interval is §r± z a/2I  (fi'j 
- 1 / 2

- 1 /2

where I  is the square root of the rth element in the diagonal of the estimated asymptotic

variance-covariance matrix I  (jfj , and za/2 is the a / 2-quantile of the standard normal distribution. 

For the pointwise confidence interval of a specific CIF estimate of event type j  at a chosen time t, 

CIFj  (f), I first compute the Wald-type confidence interval for the complementary log-log transform 

of this quantity, denoted by c log log (C IF j  (t)^j, using the delta rule:

: log log (CIFj( t )) ±  zo/2 [v  ( § , t f  I  (e) 1 V (m )1
1 /2

where V is the column gradient vector of clog log ( c i F j ( t ) j  as a function of 9. Then trans

forming this confidence interval back to the original CIF scale gives a confidence interval for CIFj(t).  

Operating on the cloglog-scale is expected to improve the validity of the normal approximation and 

avoids having out of range confidence intervals.

Here one might think that using the sandwich type robust variance estimator (see e.g. Equations
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(4.5.2) and (4.5.4) in Davison (2008)) for the above calculations would be more appropriate due to a 

missing rigorous justification for the asymptotic normality for the SNP estimates.. However from all of 

my simulation results, which will be shown later, conventional and robust standard errors yield similar 

confidence interval coverage probabilities. In addition theoretical work in linear regression setting 

shows that sandwich estimators themselves are very variable which can lead to coverage probabilities 

below nominal values (Kauermann & Carroll (2001)).

3.5 Comparison o f cumulative incidence functions based on SNP estim ation

The proposed SNP estimates can also be used as the basis for comparing CIFs of a specific event 

type between two different groups. This approach is a competing risk version of the two-sample test 

statistic in Doehler & Davidian (2008). The involved null and alternative hypotheses are the same as 

laid .out in Subsection 1.4.2

Here it is assumed without loss of generality that the CIF of the first competing risk is the target for 

testing. The considered test is also based on an IWD statistic:

where W(-) is a positive weight function, and r  is usually the minimum of the largest observation 

times from the compared groups as mentioned in 1.4.2 or a fixed time point within the observed

estimates instead of the nonparametric ones. The IWD in this setting differs from the IWD in Equation 

(10) of Doehler & Davidian (2008) in that the survival functions were replaced by the CIFs.

Like other IWD-based tests the weight function W (•) can be manipulated to make the test more 

sensitive to a specific alternative hypothesis. However, as SNP estimates of the CIFs do not suffer 

from the issues of instability at time points where the risk set is small like nonparametric estimates, 

if we are not interested in any specific alternative hypothesis, we can simply set W  = 1. In fact 

in a simulation of Doehler & Davidian (2008) that compared two survival functions, the IWD-based 

tests with W  (•) =  1 and W  (•) =  C\ (•) C2 (•) jp iC i (•) +  P2 C2 (•)} bad similar performance, where 

Ck (•), k =  1, 2, are the estimated censoring survival functions for each group.

For gathering statistical evidence to reject or not reject the null hypothesis, as suggested by Doehler

H0 : C1FH-) = CIFU-)  vs.

Ha : [CIFl(-) > CIF?(-) or CIF}(-) < CIFf]  and ClFl{-) ±  CIF?(-)

range of total survival time. However, unlike Subsection 1.4.2, here C I F 1 and C I F 1 are the SNP
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& Davidian (2008) a normal distribution as the null distribution is plausible with the variance of the 

IWD statistic derived using the delta method. I also make this normality assumption about the null 

distribution for my test statistic. Specifically, let the asymptotic covariance matrices for the estimated 

parameters of the fitted competing risks models for groups 1 and 2 be denoted by, respectively, Vi and 

V2. When PV(-) is a deterministic function, the variance of the I W D  can be estimated using the delta 

rule as

<t]w d  = v i w d  (eu e2f
^V\ o ,

V I W D f a M
\ 0  v2 '

where V I W D  (6h, 02) is the column gradient vector of I W D  (-, •) as a function of &i and 02, the 

estimates of parameters of the SNP models for groups 1 and 2, respectively. Note that there is no need 

to obtain information on covariances between parameter estimates from the two SNP models as they 

are estimated based on independent groups.

Once the IWD statistic and its variance estimate are computed, the p-value can be derived based 

on comparing the Wald-type statistic -WLP- to the cumulative standard normal distribution. Altern

atively, the null distribution and the resulting p-value can be evaluated exactly without relying on a 

normal approximation by implementing a permutation test or (or Monte-Carlo approximation to it). 

In Section 3.7, p-values based on the delta method and permutation tests, respectively, are compared 

for two real data sets.

3.6  Simulation studies

In this Section, I evaluate how well the proposed SNP-based CIF-estimation method performs across 

a variety of competing risks scenarios with both right and interval censoring. Alternative approaches 

which were also evaluated are the standard nonparametric estimator of the CIF and CIF estimates 

from parametric models based on the mixture factorization.

3.6.1 CIF estimation in the presence of right-censoring -  simulation set-up 

Simulation scenarios

The scenarios in this section consist of competing risks data with right-censoring and I considered both 

scenarios based on a mixture-factorization and scenarios based on specifying the cause-specific hazard 

functions. The first 4 scenarios are based on the mixture representation (3.1.1) of the competing risks 

process. This representation is consistent with the SNP model, flexible and allows for straightforward 

simulation from a scenario as follows: First, simulate the failure cause D according to a multinomial 

distribution, then simulate the event time from the corresponding conditional time-to-event time T  \
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D — j. If the conditional distribution T\D = j  was a SNP-distribution, I used a rejection method 

for simulation which was first suggested by Gallant & Tauchen (1993). A univariate version of this 

method is detailed in Appendix A.4.

For ease of exposition, I considered only two competing events, J  — 2, and varied the right- 

censoring probabilities among 35%, 45% and 65%. Details about how censoring was simulated is 

discussed in the next subsection. The conditional time-to-event distributions of T | D  =  j  and mar

ginal probabilities of failure causes for the simulation study with only right-censoring were varied as 

summarized in Table 3.1. The first scenario has a Weibull distribution for each conditional time to 

event distribution i.e. SNP distributions with exponential base densities and Ki = K 2 — 0. The second 

scenario models one conditional time to event distribution as lognormal and the other with a SNP dis

tribution with K  =  1 and a standard normal base density. The third scenario has two conditional 

event times both modelled with SNP distribution with a standard exponential base densities. Finally, 

the fourth scenario does not involve SNP-distributions but uses two logmixturenormal distributions 

instead. -y.

As simulations based on mixture factorizations might unfairly favour my own model, the final fifth 

scenario was based on specifying the cause-specific hazards (CSH) of the competing events instead. A 

method for simulation from cause-specific hazards is described in Beyersmann et al. (2009). However, 

in our case it is easier to simulate the data based on two independent latent failure times. In this case, 

the marginal hazards of the latent times are identical to the cause-specific hazards of the simulated 

competing risks data. Thus, I first simulated two independent latent failure times according to the 

distributions specified in the last row of Table 3.1 and then choose T  = min(Ti, T2) and D  =  lI(T i < 

T2) + 2I(Ti > T2). For this scenario, I considered 45% right-censoring.

For reference, all 5 scenarios with exact parameter choices are detailed in Table 3.1. This table 

also gives the implied marginal probability of an event of type 1 which for the cause-specific hazards 

scenario is 0.66.
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Table 3.1: Simulation scenarios for CIF estimation under only right-censoring.

Mixture representation based scenario 
Scenario / t \ d = i  Pi % f t \ d = 2 P2% %RC tm

2 Weibull
, W.(l,exp(—1)) 25 W  (5, exp (—0.25)) 75 65 50%

2 SNP stdnorm
logA/\—1,0.92) 25 SNPN{0.1,0.8, f ) 75 65 50%

2 SNP stdexp
S N P E {-0.2,0.8, | ) '50 S W P £ (-0 .3 ,0 .5 ,-f ) 50 35 90%

2 logmixturenorm
0.31ogA7(1.2,0.92) +  
0.71ogA7(0,0.62) 50 0.51ogAA(0,0.12) +  

0.5 log A7 (l,0.22)
50 45 75%

Cause specific hazards based scenario 
Scenario f Tl Pi% fr 2 P2% %RC tm

Logmixturenorm + Weibull
0.3 log A7(0.2,0.362) +  
0.7 log A/” (1.8,0.362) 66 W  (2.5, exp(2)) 34 45 75%

Note: f r \ D = j  is the density of the time to event distribution for event type j  conditional on the occurrence of that 
event type. Pj is the marginal probability of event type j. f r d is the density of the independent latent failure time 
distributions associated with event type j  used in the cause-specific hazards based scenario. W{shape, scale) 
means the density of a weibull distribution with a specific shape and scale, log AT (p, a2) refers to the density of 
a lognormal distribution with parameters p and a. SNPN(p, a, <f>) and SNPE(p, a, <j>) represent the densities 
of a random variable T  satisfying logT = p 4- aZ\ where Z has a SNP distribution with a standard normal 
base density or ez  has a SNP distribution with a standard exponential base density, respectively, with spherical 
coordinates <j). %RC is the overall proportion of right-censoring and the values in the column tm denote the 
quantile of the marginal distribution of T  corresponding to the maximum follow-up duration.

For each scenario, I also considered 2 different sample sizes: n =  100 and n — 500 leading to a total 

of 10 simulation settings. For each simulation setting, reported results are based on 200 simulated 

data sets from that setting.

Simulation of right-censoring

Independent right-censoring was simulated as follows. Let (T, D) be the uncensored data and C  the 

censoring time. Then the observed right-censored data is defined as (Tr, D') with T' — min{T, C} 

and D'  =  A x D, where A =  1 if T  < C  and A =  0 if T  > C. The censoring distribution C was 

simulated as C = min {tm, C e }, where the maximum follow-up duration tm was chosen as a suitable 

quantile of the marginal distribution of T  as detailed in Table 3.1 and Ce  was simulated according 

to an exponential distribution with rate A chosen appropriately to ensure the desired overall right- 

censoring probability. Specifically, tm and A were chosen by simulation based on large competing 

risks datasets of size n  =  106 from the respective scenarios.
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Evaluation criteria

As the simulation study focuses on comparing different methods for CIF-estimation and, moreover, 

not all scenarios were simulated based on SNP-models, I did not assess the precision of parameter 

estimates of the SNP-based models. Instead, I used evaluation criteria which directly quantify the 

precision of the resulting CIF estimates. First I calculated a time independent summary statistic, the 

so-called average integrated squared error (AISE):

A IS E j = ^ ' p  ( j ‘m { c i F j ^ - C I F ^ Y d t ^  (3.6.1)

In (3.6.1), Ns  is the total number of data sets for a simulation setting. CIFj i  refers to the estimated 

CIF for event type j  from the ith data set of the considered simulation setting and CIFj  is the respect

ive true CIF. This measure is an aggregated statistic for the bias of the CIF estimates from time 0 to 

tm. Of note, in the CSH (independent latent failure time) scenarios, the true CIFj  is not available in 

closed form and CIF1 was calculated as follows: T

C I F ^ ^ P i T  <t ,  D = T) (3.6.2)

= P(mm(T1,T2) < t , T 1 < T 2)

=  P ( m i n ( I i , 7 2 ) < < | l i < 7 2 ) P ( ? i < 2 2 )  ' f

=  P(7i < t | 7i < T2)P(D = 1)

where P(Ti < t \ Ti < T2) was approximated by the empirical distribution function from an un

censored population level simulated data set of all Tx with Ti < T2 based on a simulated dataset of 

size n =  106. CIF2 was calculated in the same way.

Second, I calculated point-wise Monte Carlo coverage probabilities of 95% confidence interval for

all CIF estimators at two selected time points, tm and tm/ 2, based on the complementary log-log

transformation. For SNP-based estimators, standard likelihood-based inference was used as detailed 

in Section 3.4.

Finally I report the median (inter-quartile range) computation time for each method and scenario, 

where all simulations were conducted on a computer with the following configuration: CPU Intel Core 

i7-3770 with 8 threads at 3.4GHz, Ram 10G.
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Compared estimation methods

SNP models either used a standard exponential or a standard normal based density for both event 

types; mixed base densities for different event types were not considered. The following information 

criteria were investigated for choosing both the optimal polynomial degrees and base density: AIC, 

BICn, BICd, HQCn and HQCd. The resulting best SNP-model was denoted by SB or, to highlight the 

chosen information criterion, as SB-AIC, SB-BICn, or SB-HQCn.

Information criteria were compared with respect to how frequently the SB model identified both 

the correct base densities and the correct polynomial degrees K\  and K 2 . For convenience, I denote 

the combination of the base density and the polynomial degrees by “base-A'”. Of note, this comparison 

was only possible for SNP-based simulation scenarios, i.e. scenarios corresponding to the first 3 rows 

in Table 3.1. As discussed previously, parametric lognormal or Weibull conditional time-to-event dis

tributions are also considered SNP scenarios as they correspond to SNP-distributions with polynomial 

degree 0.

To my knowledge, parametric models for competing risks data have not been implemented in 

standard statistical software. However, my own implementation for SNP-based models can easily 

fit lognormal (LN) and Weibull (WB) models based on the mixture factorization as a special case 

and these models were used as parametric benchmarks for my SNP-based methods. The standard 

nonparametric (NP) estimator of the CIF in the presence of right-censoring has been implemented 

in many statistical packages. For the simulation study I used the implementation in the R-function 

etmCIF from package etm (Allignol et al. (2011)).

3.6.2 CIF estimation in the presence of interval-censoring -  simulation set-up 

Simulation scenarios

The same simulation scenarios and sample sizes as for the simulation study with right-censoring 

detailed above were used except that censoring was simulated differently. In particular, the same 

uncensored data were reused. The choice of the maximum follow-up duration tm and subsequent 

right-censoring at tm was implemented as before. However, rather than simulating additional right- 

censoring before time t m, interval-censoring was simulated as follows depending on the chosen 

quantile of T  for the choice of tm' if tm corresponds to the 90% quantile of T , I chose 9 time points in 

(0, tm) creating 10 equally spaced intervals from 0 to tm. Likewise when tm is the median or the 75% 

quantile of T I chose 4 or 6 time points to get 5 or 7 equally spaced intervals in [0, tm\, respectively. 

For each subject, their corresponding observation process was defined as occurring at these time point 

plus some subject-specific “noise” for time points other than 0 and tm simulated according to a normal
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distribution with mean 0 and standard deviation equal to 1/5 of the interval length. If a subject had 

an event before time tm then their data was considered interval-censored between the two adjacent 

time points of the observation process; otherwise they were considered right-censored at tm.

Nonparametric method for interval-censored competing risks data

For interval-censored data, the used nonparametric estimator of the CIFs is based on the nonpara

metric maximum likelihood estimator for a bivariate distribution (X , Y),  subject to interval-censoring 

which is described in Gentleman & Vandal (2002) and Maathuis (2003). This estimator had been 

implemented in function computeMLE of the R package MLEcens (Maathuis (2013)) which supports 

interval-censored competing risks data as a special case. Specifically in our setting, X  corresponds to 

the time to event T  and Y  to the event type D. When T  is known to be in an interval [£l,£r] and 

D = j ,  X  =  [£l, £i?] and Y  = \j,j]. When T  is right-censored i.e. in [t, oo), X  =  [£, oo) and Y  =  [1, J], 

where J  is the total number of event types.

As mentioned in Gentleman & Vandal (2002), nonparametric MLE methods for interval-censored 

data do not always lead to unique estimators and in the competing risks setting, such methods yield 

lower and upper bounds for the CIF estimates. As the lower and upper bounds were usually very close 

to each other for my simulation scenarios, I considered the average of both curves as the nonparametic 

estimate of the CIF for evaluation of the performance of the method. A more specialised way to analyse 

interval-censored competing risks data has been discussed in Hudgens et al. (2001); however to my 

knowledge this method is not yet available in R.

3.6.3 CIF estimation in the presence of right-censoring -  results

First, I evaluated how frequently SB, i.e. the best SNP-model according to the selected information 

criterion, chose the correct base-K combination, i.e. the correct base densities and polynomial de

grees. Results are reported in Table 3.2. Of note, I found that for the information criteria BIC and 

HQC, results were very similar whether they were based on the sample size n  or the number of events 

d. Therefore, only results based on n are reported.
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Table 3.2: Frequency with which the SB models based on AIC, BICn or HQCn respectively chose the 
correct base-A for SNP scenarios (first 3 rows). For non-SNP scenarios, the frequency of SB models 
where the maximal allowed polynomial degree was chosen (i.e. Ki  =  2 or AT2 =  2) is reported (rows 
4 and 5).

Frequency of correct base-A

Scenario

AIC BICn HQCn

n 100 500 100 500 100 500

2 Weibull 65% RC 60 123 95 172 75 159
2 SNP stdnorm 65% RC 83 139 118 186 105 173
2 SNP stdexp 35% RC 122 138 153 191 137 174

Frequency of SB with Ai == 2 or A2 =  2
2 logmixturenorm 45% RC 193 200 135 200 165 200
Logmixturenorm + weibull 122 199 47 193 90 196
(CSH) 45% RC

All frequencies are based on 200 simulated data sets per scenario.

Among the SNP scenarios with smaller sample size (n = 100), the proportion that SB chose the 

correct base-A is quite low, ranging from 44.2% for AIC to 61% for BICn. For larger sample size 

(n = 500), these proportions increased considerably and ranged from 66.7% for AIC to 91.5% for 

BICn with an intermediate value of 84.3% for HQCn. As a comparison, Doehler & Davidian (2008) 

reported proportions ranging from 84% to 90% for HQCn to correctly identify K  =  0 for parametric 

lognormal or Weibull models in survival analysis based on a sample size of 400. This is similar but 

somewhat higher than my results which is not unexpected because if there are multiple event types, 

it is more difficult to identify the correct base-A" for all of them.

Several papers (Doehler & Davidian (2008) and Zhang & Davidian (2008)) suggested that one 

should choose HQC as the most appropriate information criterion. However, the results from Table 

3.2 demonstrate that BICn is considerably more successful in identifying the correct base-As than 

the other criteria. Thus on this basis, my results suggest that BIC should be used. However, the last 

2 rows in Table 3.2 shows the frequency that SB chose complex SNP with A^ =  2 or A2 =  2 for 

non-SNP scenarios. As can be seen, AIC tends to fit more complex models in this situation and this 

might indicate that AIC is more successful in approximating non-SNP distributions. Indeed, as shown 

below, in terms of AISE and pointwise 95%-CI coverage in non-SNP scenarios, AIC generally leads to 

the best results.

Table 3.3 shows relative average integrated square error (AISE) of parametric and nonparametric 

methods compared to the SB-AIC model. If a parametric Weibull or log-normal model was the true 

model for the respective CIF, SB-AIC performed almost as well as the true parametric model. Of note, 

Figure 3.6.1 shows that within [0, tm], the true CIFi  of the 2 logmixturenorm scenario and the true 

CIF2 of the CSH scenario should be estimated easily by one of the compared parametric methods. If
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this was not the case, SB-AIC usually outperformed the parametric models, sometimes dramatically 

so. SB-AIC consistently outperformed the nonparametric model for the first 3 simulation scenarios 

which were based on true underlying SNP models. However, for the non-SNP scenarios, the situation 

was less clear with advantages of either method for different scenarios. Nonetheless, from Figure 

3.6.1, my SNP method on average produced quite good CIF estimates for these scenarios.

Compared to SB-AIC, SB-BICn usually lead to smaller AISE for SNP-based scenarios but worse 

results for non-SNP scenarios (Table 3.3). Conclusions for SB-HQCn compared to SB-AIC were the 

same though in this case AISE estimates were closer to each other (data not shown). Figure 3.6.1 

visualizes estimated CIFs for the SB-AIC model with n =  500 and nicely illustrates that the SNP- 

approach is capable to closely approximate quite complex underlying CIF functions.
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Table 3.3: Average integrated square error (AISE) for different estimation methods for all scenarios 
with right-censoring. Shown is the relative performance (with standard error) of parametric and 
nonparametric methods versus the SB-AIC model, respectively, and AISE values for the SB-AIC and 
SB-BICn model.

n = 100 n = 500

Scenario CIFi c if 2 CIFx c if 2

2 Weibull 65% RC 
LN/SB-AIC 
WB/SB-AIC 
NP/SB-AIC 
SB-AIC xlO4 
SB-BICn xlO4

0.94 0.014 
1.01 0.011 
1.09 0.015 

8.90 
8.73

1.08 0.030 
0.91 0.018 
1.13 0.023 

4.50 
4.37 .

1.00 0.026 
1.00 0.010 
1.11 0.014 

1.62 
1.62

1.55 0.080 
0.96 0.029 
1.20 0.033 

0.74 
0.72

2 SNP stdnorm 65% RC 
LN/SB-AIC 
WB/SB-AIC 
NP/SB-AIC 
SB-AIC xlO4 
SB-BICn xlO4

0.96 0.009 
0.99 0.007 
1.02 0.010 

37.35 
36.96

1.42 0.060 
1.22 0.043 
1.13 0.024 

23.85 
23.26

0.99 0.004 
1.08 0.011 
1.05 0.008 

8.05 
8.01

3.90 0.289 
2.79 0.189 
1.18 0.029 

4.88 
4.79

2 SNP stdexp 35% RC 
LN/SB-AIC 
WB/SB-AIC 
NP/SB-AIC 
SB-AIC xlO4 
SB-BICn xlO4

2.81 0.176 
1.54 0.063 
1.17 0.024 

41.61 
40.92

1.24 0.027 
1.21 0.021 
1.04 0.006 

76.05 
76.02

12.611.183 
3.70 0.288 
1.27 0.034 

7.00 
6.89

2.85 0.152 
2.63 0.132 
1.06 0.006 

12.96 
12.88

2 logmixturenorm 45% RC 
LN/SB 1.010.018 
WB/SB 1.09 0.024 
NP/SB 1.05 0.012 
SB-AIC xlO4 49.15 
SB-BICn xlO4 50.31

1.73 0.067 
1.95 0.095 
0.89 0.015 

49.47 
55.14

1.48 0.059 
1.44 0.072 
1.07 0.011

10.38
11.39

4.76 0.305 
6.89 0.477 
0.85 0.016 

10.45 
10.47

Logmixturenorm + weibull (CSH) 45% RC 
LN/SB-AIC 1.40 0.054 0.98 0.018 
WB/SB-AIC 1.45 0.041 0.91 0.017 
NP/SB-AIC 1.04 0.014 1.12 0.023 
SB-AIC xlO4 122.09 55.96 
SB-BICn xlO4 133.74 55.32

4.15 0.333 
4.26 0.333 
1.06 0.013 

22.91 
23.85

1.12 0.032 
0.76 0.030 
0.94 0.028 

10.28 
10.69

Note: LN/SB-AIC, WB/SB-AIC and NP/SB-AIC are respectively the ratios (in bold) of the AISE of the parametric 
lognormal, Weibull and the nonparametric models, respectively, versus the SB-AIC model with corresponding 
bootstrap standard errors. For each scenario, the last 2 rows give AISE values for SB-AIC and SB-BICn.
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Figure 3.6.1: Simulation results for SB-AIC models for all 5 scenarios with right-censoring and a 
sample size of n  =  500.
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Bold lines show the true CIF\ for event type 1, and 1 — CIF2 for event type 2. Bold dashed lines show the cor
responding point-wise averaged fitted CIFs across 200 simulation runs. Light dashed lines show curves resulting 
from the two simulation runs leading to the minimal and maximum average residual from the true curve based 
on 300 equally spaced time point from 0 to tm, i.e. they display the worst observed under- and over-estimation. 
From left to right, top to bottom are the scenarios: 2 weibull, 2 SNP stdnorm, 2 SNP stdexp, 2 logmixturenormal 
and logmixturenormal + Weibull.

Pointwise Monte Carlo coverage probabilities of the nominal 95% confidence intervals (95% Cl) 

are displayed in Table 3.4. They were based on 200 simulation runs for each scenario which im

plies that the Monte Carlo standard error of the coverage probability estimate is 1.5%. Parametric 

estimators performed well if the true model was the same parametric model but showed dramatic 

under-coverage in several other situations. The SB-AIC model achieved observed coverage >90%  

for all scenarios except for the estimation of C IFi  at 0.5£m in the last scenario with n = 500 where 

observed coverage was only 82.5%. Also, there was some evidence of less dramatic undercoverage 

(observed coverage <92%) in a few other scenarios. SB-BIC performed similarly to SB-AIC in SNP 

scenarios but worse in non-SNP scenarios. The nonparametric estimator performed well with ob

served coverage >92% across all scenarios except for one very low observed coverage for the first
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scenario with n = 100 which may have occurred because none of the simulated data sets from this 

scenario has more than one event of type 2 before time 0.5tm.

Table 3.4: Observed coverage probabilities of nominal 95% Cl for the CIFs at tm/2 and tm in all 
scenarios.

n =  100 n =  500

Time point 0.5£m tm 0.5 tm tmL
Scenario CIFi c if 2 CIFi c if 2 CIFi c if 2 CIFi c if 2

2 Weibull 65% RC
LN 95.0 93.0 96.5 95.5 96.0 79.5 95.0 94.0
WB 94.5 95.5 96.0 94.5 95.0 96.5 98.0 94.5
NP 93.0 59.5 96.5 94.5 95.5 95.0 98.0 95.0
SB-AIC 92.5 94.0 96.5 94.5 95.5 91.0 98.0 94.0
SB-BICn 94.5 95.0 96.5 95.0 95.0 93.0 98.0 94.0

2 SNP stdnorm 65% RC
LN 94.0 65.5 95.5 94.0 92.0 8.5 93.0 77.0
WB 94.5 76.5 96.0 95.5 90.5 23.5 93.0 90.0
NP 95.5 96.5 95.0 95.0 92.0 95.5 92.5 92.0
SB-AIC 94.0 92.5 95.5 94.0 92.0 92.0 93.0 91.0
SB-BICn 94.0 92.0 95.5 93.5 91.5 91.5 93.0 92.0

2 SNP stdexp 35% RC
LN 40.5 86.5 63.0 95.0 0.0 65.5 1.0 94.5
WB 65.0 86.5 92.0 95.0 19.5 61.0 82.0 96.5
NP 95.5 94.5 96.5 94.5 97.0 95.0 96.0 96.5
SB-AIC 92.5 92.0 95.0 94.5 96.5 94.0 96.0 96.5
SB-BICn 92.0 91.5 94.5 94.5 96.5 94.5 96.5 96.5

2 logmixturenorm 45% RC
LN 90.5 66.5 91.0 92.0 79.0 10.0 77.5 89.5
WB 88.5 33.5 93.5 92.0 81.5 1.5 91.5 89.5
NP 95.0 93.5 95.5 95.5 93.5 94.5 93.5 92.0
SB-AIC 92.0 90.5 94.5 93.0 93.0 93.0 93.0 92.5
SB-BICn 90.0 83.0 93.5 93.0 89.5 93.5 91.5 92.5

Logmixturenorm + weibull (CSH) 45% RC
LN 89.5 87.0 95.0 94.0 75.0 74.0 93.5 95.0
WB 93.5 91.5 95.5 93.0 93.0 97.0 95.0 95.5
NP 95.5 94.5 94.5 93.0 93.5 95.0 94.5 95.5
SB-AIC 94.5 90.0 94.0 93.0 93.5 82.5 94.5 94.5
SB-BICn 93.0 88.5 95.0 93.0 92.0 80.5 95.0 95.5

Note: LN and WB are the Monte Carlo coverage probabilities of nominal 95% Wald confidence intervals (CIs) 
based on the parametric 2 x lognormal and 2 x weibull models respectively. SB-AIC and SB-BICn are the observed 
coverage probabilities of the best SNP models based on AIC and BICn respectively. NP is the observed coverage 
probability of the nonparametric model. The 95% CIs were calculated based on the cloglog transforms of the 
CIFs. Estimated standard error of Monte Carlo coverage entries «  1.5%.

In conclusion, regarding the choice of the most appropriate information criterion, the simulation 

results suggest that BICn or HQCn are preferable if one thinks that it is likely that the true data- 

generating mechanism is close to a Weibull or lognormal distribution or a SNP-distribution with a low
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degree polynomial. However, for non-SNP scenarios, AIC generally leads to lower AISE and better 

coverage of associated CL Regarding the observed undercoverage of SNP-based methods in some 

instances, bootstrap methods might provide improved results. Indeed, Doehler & Davidian (2008) 

showed that this is the case in the survival setting. However, in our setting computing times as 

tabulated in Table 3.5 are considerable and this prevented me from further exploring the bootstrap in 

a simulation setting.

Table 3.5: Median and IQR of the computing time (in second) for determining the best SNP model 
for a standard normal (SNP-stdnorm) or exponential base density (SNP-stdexp), respectively, based 
on AIC.

SNP-stdnorm SNP-stdexp
Scenario n = 100 n =  500 n = 100 n =  500

2 Weibull 65% RC
16.5 ( 9.9, 34.1) 

2 SNP stdnorm 65% RC
52.0 ( 26.8, 96.0) 16.6 (11.9, 39.8) 44.4 ( 36.5, 102.3)

21.2 ( 15.0, 37.4) 54.3 (48.7, 93.7) 42.2 (15.1, 57.7) 127.9 ( 71.8, 151.1)
2 SNP stdexp 35% RC

25.6 ( 16.9, 31.9) .71.0(55.1, 82.0) 39 .4(31.4 ,51.3) 97.1 ( 87.4, 122.1)
2 logmixturenorm 45% RC

22 .2(9 .0 ,34 .5) 76.1 ( 69.7, 94.7)
Logmixturenorm + weibull (CSH) 45% RC

30.0 ( 22.6, 37.1) 78.7 ( 72.9, 94.6)

18.3 (9.1, 33.1) 67.2 ( 59.4, 88.5) 24.0 ( 9.3, 33.8) 68.9 ( 63.8, 91.6)

In addition I observed that in non-SNP scenarios, even the conservative SB-BICn frequently chose 

Ki  =  2 or K 2 =  2. This suggests that more complex SNP models may be needed. Therefore, I 

repeated the entire simulation study with K max =  3. Table 3.6 indicates that indeed K i  = 3 or 

K 2 = 3 is frequently chosen if I allow it but computing time also increases substantially (Table 3.7). 

A comparison of AISE (Table 3.8) and coverage probabilities of nominal 95% Cl (Table 3.9) between 

Kmax =  2 and K max =  3 indicates that there is indeed some improvement in the non-SNP scenarios 

but that the gains are only moderate. In view of the increased computing time and only limited 

improvements, I consider only K max =  2 for all subsequent simulations. However, these results may 

indicate that if more efficient algorithms or higher computing power were available, further gains 

might be possible by not restricting K max at all and only letting the information criterion decide on 

the appropriate complexity.
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Table 3.6: Number of best SNP models based on AIC, BICn and HQCn allowing for K max =  3 which 
chose Ki  =  3 and/or K 2 = 3. Total number of simulation runs was 200 data sets per scenario.

AIC BICn HQCn

Scenario n 100 500 100 500 100 500

2 Weibull 65% RC 5 11 0 0 1 1
2 SNP stdnorm 65% RC 18 15 0 2 2 3
2 SNP stdexp 35% RC 22 22 0 0 8 8
2 logmixturenorm 45% RC 
Logmixturenorm + weibull 
(CSH) 45% RC

167 198 
71 108

74 179 
14 66

118 196 
44 73

Table 3.7: Median and IQR of the computing time (in second) for choosing the best SNP model for a 
standard normal (SNP-stdnorm) or exponential base density (SNP-stdexp), respectively, based on AIC 
with Kmax =  3.

SNP-stdnorm SNP-stdexp

Scenario n =  100 n =  500 n =  100 n =  500

2 Weibull 65% RC
16.5(9 .9 ,63.3) 52.0 ( 26.8, 234.7) 16.6 (11.9, 50.9) 44.4 ( 36.5, 202.2)

2 SNP stdnorm 65% RC
21.2 ( 15.0,105.4) 54.3 ( 48.7, 231.6) 44.5 (15.1,146.7) 297.5 ( 71.8, 598.3)

2 SNP stdexp 35% RC
60.6 (16.9,149.6) 183.6 (155.8, 430.5) 39.8 ( 31.9, 129.2) 97.1 ( 87.4, 302.9)

2 logmixturenorm 45% RC
58.7 (9.0, 96.5) 231.3 (179.5, 427.4) 73.8 ( 58.1, 123.7) 206.8 (187.9, 293.8)

Logmixturenorm + weibull (CSH) 45% RC
18.3 ( 9.1,107.0) 209.0 (164.3, 551.0) 68.4 (9.3,119.1) 211.4 (190.1, 248.8)
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Table 3.8: Comparison of AISE between best SNP models with K max =  2 and K max =  3.

n = 100 n = 500
Scenario C I F i c i f 2 C I F i c i f 2

2 Weibull 65% RC
SB-AIC K m a x  — 2 / K m a x  = 3
SB-BICn K m a x  = 2 / K m a x  — 3

1.00 0.003
1.00 0.000

1.00 0.000 
1.00 0.000

1.00 0.006 
1.00 0.000

1.00 0.006 
1.00 0.000

2 SNP stdnorm 65% RC 
SB-AIC K m a x  =  2 / K m a x  = 3 
SB-BICn K m a x  = 2 / K m a x  — 3

1.00 0.001 
1.00 0.000

0.99 0.005 
1.00 0.000

1.00 0.001 
1.00 0.000

0.98 0.014 
1.00 0.001

2 SNP stdexp 35% RC 
SB-AIC K m a x  =  2 / K m a x  = 3 
SB-BICn K m a x  =  2 / K m a x  = 3

1.00 0.006 
1.00 0.000

0.99 0.003 
1.00 0.000

0.99 0.008 
1.00 0.000

1.00 0.002 
1.00 0.000

2 logmixturenorm 45% RC 
SB-AIC K m a x  =  2 / K m a x  — 3 
NP /  SB-AIC K m a x  = 3  
SB-BICn K m a x  =  2 / K m a x  = 3 
NP /  SB-BICn K m a x  = 3

1.01 0.007 
1.06 0.012 
1.00 0.006 
1.03 0.017

1.07 0.010 
0.95 0.010 
1.04 0.008 
0.83 0.023

1.00 0.007 
1.07 0.011 
0.99 0.010 
0.97 0.017

1.13 0.015 
0.97 0.008 
1.10 0.015 
0.94 0.012

Logmixturenorm + weibull (CSH) 
SB-AIC K m a x  = 2/K m a x  = 3 
NP /  SB-AIC K m a x  = 3 
SB-BICn K m a x  = 2 / K m a x  — 3 
NP /  SB-BICn K m a x  = 3

45% RC 
1.01 0.008 
1.05 0.013 
1.02 0.014 
0.96 0.022

1.01 0.008
1.12 0.024 
1.00 0.003
1.13 0.024

0.99 0.009 
1.05 0.012 
1.02 0.009 
1.04 0.011

1.09 0.020 
1.02 0.029 
1.08 0.024 
0.98 0.034

Note: SB-AIC Kmax = 2/Kmax = 3 is the ratio (in bold) of the AISE from the best AlC-based SNP models using 
Kmax = 2 to using Kmax =  3 with the corresponding bootstrap standard errors. The same is for SB-BICn. In 
non-SNP scenarios, NP /  SB-AIC Kmax =  3 and NP /  SB-BICn Kmax =  3 are, respectively, the relative AISE of 
the nonparametric estimates versus the best SNP estimates using AIC and BICn with K max =  3.
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Table 3.9: Observed coverage probabilities of nominal 95% Cl for CIFs estimation using Kmax =  2 
and Kmax ~  3 *it ij^/2 and tm •

n = 100 n =  500

Time point 0.5tm tm 0.5fm tm

Scenario CIFi CIF2 CIFi CIF2 CIFi CIF2 CIFi CIF2

2 Weibull 65% RC
SB-AIC Kmax = 2 92.5 94.0 96.5 94.5 95.5 91.0 98.0 94.0
SB-AIC Kmax = 3 92.5 94.0 96.5 94.5 95.5 91.0 98.0 94.0
SB-BICn Kmax =  2 94.5 95.0 96.5 95.0 95.0 93.0 98.0 94.0
SB-BICn Kmax = 3 94.5 95.0 96.5 95.0 95.0 93.0 98.0 94.0

2 SNP stdnorm 65% RC
SB-AIC Kmax == 2 94.0 92.5 95.5 94.0 92.0 92.0 93.0 91.0
SB-AIC Kmax =  3 94.0 92.5 95.5 93.5 91.5 92.5 93.0 91.0
SB-BICn Kmax = 2 94.0 92.0 95.5 93.5 91.5 91.5 93.0 92.0
SB-BICn Kmax =  3 94.0 92.0 95.5 93.5 91.5 91.5 93.0 92.0

2 SNP stdexp 35% RC
SB-AIC Kmax =  2 92.5 92.0 95.0 94.5 96.5 94.0 96.0 96.5
SB-AIC Kmax =  3 92.0 92.0 95.5 94.5 96.5 94.0 96.0 96.5
SB-BICn Kmax =  2 92.0 91.5 94.5 94.5 96.5 94.5 96.5 96.5
SB-BICn Kmax = 3 92.0 91.5 94.5 94.5 96.5 94.5 96.5 96.5

2 logmixturenorm 45% RC
SB-AIC Kmax =  2 92.0 90.5 94.5 93.0 93.0 93.0 93.0 92.5
SB-AIC Kmax =  3 91.5 91.5 95.0 93.5 93.0 94.0 92.5 92.0
SB-BICn Kmax =  2 90.0 83.0 93.5 93.0 89.5 93.5 91.5 92.5
SB-BICn Kmax =  3 90.0 82.5 93.0 93.5 90.0 93.0 91.5 91.5

Logmixturenorm + weibull (CSH) 45% RC 
SB-AIC Kmax = 2 94.5 90.0 94.0 93.0 93.5 82.5 94.5 94.5
SB-AIC Kmax = 3 95.0 91.0 94.0 93.0 94.0 86.5 96.0 95.5
SB-BICn Kmax =  2 93.0 88.5 95.0 93.0 92.0 80.5 95.0 95.5
SB-BICn Kmax =  3 93.5 88.5 94.5 93.0 93.5 83.5 96.0 95.5

Note: SB-AIC Kmax — 2 and SB-BICn Kmax = 2 are, respectively, the Monte Carlo coverage probabilities of 
nominal 95% Cl for SB-AIC and SB-BICn using Kmax = 2. The same is for Kmax = 3. The 95% CIs were 
calculated based on the cloglog transforms of the CIFs. Estimated standard error of Monte Carlo coverage entries
«  1.5%.

3.6.4 CIF estimation of two competing risks in the presence of interval and 

right-censoring -  results

Similarly to the right-censored case, Table 3.10 demonstrates that the highest allowed SNP polynomial 

degree of 2 is frequently reached for non-SNP scenarios in the presence of interval censoring. How

ever, I observed much lower frequency of correct base-K; especially for low sample size. Despite this, 

SB-AIC in general produced good CIF estimates (Figure 3.6.2) and outperformed the nonparametric 

estimator across all scenarios in terms of AISE (Table 3.12). SB-AIC also outperformed parametric 

estimators in most settings if the parametric model did not reflect the true data-generating mechan
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ism. Observed pointwise coverage of SB-AIC models was mostly close to 95% but clearly below 90% 

in 3 instances (2 Weibull scenario: CIF2 at 0.5tm, n =  100 and n =  500; CSH scenario: CIF2 at

0.5tm, n =  500). Of note, I did not calculate confidence intervals for nonparametric estimates as they 

are not available in standard software and may have non-standard asymptotic properties (Maathuis 

(2006)). With respect to computing time, somewhat surprisingly, my implementation ran faster for 

interval-censored than for right-censored data, see Table 3.11. Finally, as in the simulation with only 

right-censoring, I expect that simulation results for SNP-based models in this Section maybe improved 

for higher K max.

Table 3.10: Frequency with which the SB models based on AIC, BICn or HQCn respectively chose 
the correct base-if for SNP scenarios (first 3 rows). For non-SNP scenarios, the frequency with of SB 
models with ATi =  2 or =  2 is reported (rows 4 and 5).

Frequency of correct base-AT

AIC BICn HQCn

Scenario n 100 500 100 500 100 500

2 Weibull 65% RC 33 58 94 143 60 103
2 SNP stdnorm 65% RC 40 93 72 168 65 132
2 SNP stdexp 35% RC 86 114 130 193 112 162

Frequency of SB with ATi == 2 or K2 = 2
2 logmixturenorm 45% RC 191 200 139 200 171 200
Logmixturenorm + weibull 98 179 15 104 55 153
(CSH) 45% RC

All frequencies are based on 200 simulated data sets per scenario.

Table 3.11: Average and IQR of the performance time (in second) of AlC-based SNP-stdnorm and 
SNP-stdexp methods.

SNP-stdnorm SNP-stdexp
Scenario n =  100 n =  500 n =  100 n =  500

2 Weibull 65% RC
17.8 ( 8.9, 31.2) 42.0 (20.6, 67.8) 17.5 ( 9.0, 30.8) 40.0 (22.3, 73.0)

2 SNP stdnorm 65% RC
21.8 (14.6, 31.9) 53.6 (37.7, 83.4) 21 .9(9 .6 ,33 .4) 62.6 (38.9, 86.7)

2 SNP stdexp 35% RC
27.1 (17.2, 32.7) 71.9(60.4,81.2) 27.4 (18.1, 34.8) 67.0 (56.8, 80.6)

2 logmixturenorm 45% RC
22.4 (17.5, 31.5) 60.7 (45.7, 68.9) 25.9 (18.6, 33.6) 60.4 (55.9, 65.9)

Logmixturenorm + weibull (CSH) 45% RC
22.9 (14.6, 32.5) 58.7 (42.4, 76.8) 24.1 (15.3, 37.6) 54.4 (45.6, 69.0)
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Table 3.12: Average integrated square error (AISE) for different estimation methods for all scenarios 
with interval-censoring. Shown is the relative performance (with standard error) of parametric and 
nonparametric methods versus the SB-AIC model, respectively, and AISE values for the SB-AIC and 
SB-BICn model.

n = 100 n = 500

Scenario CIFi c if 2 CIFi c if 2

2 Weibull 65% RC
LN/SB-AIC 0.94 0.013 0.91 0.042 0.92 0.019 0.58 0.052
WB/SB-AIC 0.96 0.013 0.85 0.031 0.91 0.016 0.37 0.032
NP/SB-AIC 1.31 0.027 1.86 0.096 1.70 0.061 3.24 0.193
SB-AIC xlO4 8.11 5.88 1.76 1.73
SB-BICn xlO4 7.82 5.09 1.66 0.82

2 SNP stdnorm 65% RC
LN/SB-AIC 0.95 0.009 1.47 0.063 0.85 0.018 3.53 0.223
WB/SB-AIC 0.95 0.010 1.32 0.052 0.87 0.021 2.78 0.167
NP/SB-AIC 1.26 0.025 1.53 0.053 1.58 0.050 2.06 0.109
SB-AIC xlO4 36.96 23.14 8.67 5.54
SB-BICn xlO4 35.80 * 23.77 7.80 5.29

2 SNP stdexp 35% RC
LN/SB-AIC 2.03 0.121 1.18 0.025 6.50 0.517 2.67 0.139
WB/SB-AIC 1.29 0.047 1.13 0.018 2.48 0.153 2.29 0.104
NP/SB-AIC 1.37 0.039 1.16 0.017 1.68 0.067 1.38 0.033
SB-AIC xlO4 38.12 78.49 8.26 13.53
SB-BICn xlO4 37.34 77.49 7.95 13.12

2 logmixturenorm 45% RC
LN/SB-AIC 0.96 0.021 1.79 0.079 1.44 0.058 5.02 0.327
WB/SB-AIC 1.08 0.024 2.04 0.104 1.65 0.085 7.12 0.490
NP/SB-AIC 1.25 0.025 1.25 0.027 1.52 0.047 1.46 0.048
SB-AIC xlO4 50.28 47.14 11.14 9.45
SB-BICn xlO4 49.12 48.13 12.24 9.68

Logmixturenorm + weibull (CSH) 45% RC
LN/SB-AIC 1.32 0.054 0.93 0.023 3.48 0.210 1.210.035
WB/SB-AIC 1.37 0.045 0.88 0.018 3.55 0.206 0.85 0.026
NP/SB-AIC 1.33 0.028 1.33 0.037 1.57 0.058 1.63 0.074
SB-AIC xlO4 117.32 49.85 25.88 10.21
SB-BICn xlO4 120.14 46.82 26.59 10.42

Note: LN/SB-AIC, WB/SB-AIC and NP/SB-AIC are respectively the ratios (in bold) of the AISE of the parametric 
lognormal, Weibull and the nonparametric models, respectively, versus the SB-AIC model with corresponding 
bootstrap standard errors. For each scenario, the last 2 rows give AISE values for SB-AIC and SB-BICn.
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Table 3.13: Observed coverage probabilities of nominal 95% Cl for the CIFs at tm/2 and tm in all 
scenarios.

n =  100 n =  500
Time point 0.5fm tm 0.5fm tm
Scenario CIFi c if 2 CIFx CIF2 c m CIF2 CIFx CIF2

2 Weibull 65% RC 
LN 96.0 84.0 95.0 92.5 94.5 91.0 97.5 95.5
WB 95.5 86.5 95.5 93.0 95.0 97.5 97.0 97.5
SB-AIC 95.0 80.0 95.5 92.5 94.5 84.0 97.5 97.5
SB-BICn 96.0 85.0 95.5 93.0 94.5 91.0 97.0 96.5

2 SNP stdnorm 65% RC
LN 94.5 69.0 95.0 94,0 93.0 10.0 94.0 79.5
WB 95.0 80.5 96.0 94.5 94.5 22.5 94.0 90.0
SB-AIC 96.0 95.5 95.0 94.0 92.0 93.5 94.0 91.0
SB-BICn 94.5 93.5 95.5 94.0 92.5 92.5 94.0 91.5

2 SNP stdexp 35% RC
LN 50.5 88.5 84.5 95.5 3.0 72.5 15.5 94.5
WB 77.5 89.5 96.0 94.5 45.5 76.0 86.5 95.5
SB-AIC 94.0 94.5 94.5 94.5 93.0 93.5 95.5 95.5
SB-BICn 95.5 94.5 95.0 94.5 94.0 94.0 95.0 95.5

2 logmixturenorm 45% RC 
LN 93.5 72.0 93.5 90.0 69.5 23.0 88.5 97.5
WB 90.0 45.0 93.0 92.5 70.5 0.5 94.0 92.5
SB-AIC 93.0 94.5 94.0 93.0 92.5 97.0 96.0 98.0
SB-BICn 93.5 93.0 93.0 92.5 87.5 97.0 95.0 97.0

Logmixturenorm + weibull (CSH) 45%) RC 
-LN 92.5 92.0 95.5 96.0 76.0 78.0 92.5 96.0
WB 97.0 94.5 95.5 95.0 93.5 93.0 94.5 96.5
SB-AIC 97.0 93.0 96.0 96.0 94.0 86.5 96.0 97.0
SB-BICn 97.0 92.0 96.0 95.0 92.0 84.0 95.5 97.0

Note: LN and WB are the Monte Carlo coverage probabilities of nominal 95% Wald confidence intervals (CIs) 
based on the parametric 2 x lognormal and 2 X weibull models respectively. SB-AIC and SB-BICn are the observed 
coverage probabilities of the best SNP models based on AIC and BICn respectively. NP is the observed coverage 
probability of the nonparametric model. The 95% CIs were calculated based on the cloglog transforms of the 
CIFs. Estimated standard error of Monte Carlo coverage entries «  1.5%.
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Figure 3.6.2: Simulation results for SB-AIC models for all 5 scenarios with interval-censoring and a 
sample size of n =  500.
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Bold lines show the true CIF\ for event type 1, and 1 — CIF2 for event type 2. Bold dashed lines show the cor
responding point-wise averaged fitted CIFs across 200 simulation runs. Light dashed lines show curves resulting 
from the two simulation runs leading to the minimal and maximum average residual from the true curve based 
on 300 equally spaced time point from 0 to tm, i.e. they display the worst observed under- and over-estimation. 
From left to right, top to bottom are the scenarios: 2 weibull, 2 SNP stdnorm, 2 SNP stdexp, 2 logmixturenormal 
and logmixturenormal + Weibull.

3.7 Application

In this section, the proposed SNP estimator for the CIF is applied to several data sets from clinical stud

ies conducted at the Oxford University Clinical Research Unit in Viet Nam (OUCRU-VN) and publicly 

available data sets. In all applications, I report the SB-AIC estimator used in the previous simulations,

i.e. the best SNP model selected according to AIC, whose K max is set at 3. For data with only right- 

censoring, I visually compare my SB-AIC estimates of the CIFs to those given by the nonparametric 

method described in Subsection 3.6.1. For interval-censored data, I use the nonparametric approach 

mentioned in Subsection 3.6.2.
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3.7.1 Initiation of antiretroviral therapy (ART) in HIV-associated tuberculous 

meningitis (TBM)

This data set is from a recent randomized control trial (RCT) conducted by OUCRU-VN which com

pared immediate versus delayed antiretroviral therapy (ART) initiation in HIV-positive patients with 

TBM (Torok et al. (2011)). The primary endpoint of the trial was overall survival. The clinical study 

did not detect a significant mortality difference between the two groups but observed significantly 

more severe (grade 4) adverse events in the immediate ART group supporting delayed initiation of 

ART.

Here, I summarize two secondary competing risks endpoints of the study: First, the time to the 

first neurological event (harmful event) or prior death i.e. death before experiencing any neurolo

gical event (harmful event) and second, in the subset of patients with a Glasgow coma score <15 

at enrolment, the time to coma clearance (beneficial event) or prior death (harmful event). For the 

precise definitions of these outcomes, I refer to Section “Outcome Assessment” in Torok et al. (2011). 

Patients without an event were right-censored at their last follow-up visit which was scheduled to 

occur at 12 months of follow up and this led to 33% right-censored observations for the first endpoint 

(neurological event or prior death) and 5% for the second (coma clearance or death).

For the outcome of the time to first neurological event or death, 101/253 patients experienced a 

neurological event and 68 died without a prior neurological event. Figure 3.7.1 displays the estimated 

cumulative incidence functions of the time to the first neurological event or prior death by treatment 

arm in all randomized patients and stratified by severity of the patient as quantified by the TBM grade 

at enrolment. In all displays, SNP CIF estimates closely agree with the nonparametric estimates. For 

6 out of 8 fitted SB-AIC models, standard normal base densities were chosen (exceptions are the CIFs 

corresponding to delayed ART in TBM grade I and immediate ART in TBM grade II). Moreover, 14 out 

of 16 fitted CIFs required a true SNP model with I< > 1 and 3 required K  = 3.

Results from statistical tests to compare the estimated CIFs from SNP models between the two 

treatment arms based on the IWD statistic (Section 3.5) are given in Table 3.14 with p-values derived 

from both the delta-method and based on a Monte-Carlo (MC) permutation tests. For these tests, the 

limit of the integral of the corresponding IWDs was 270 days and the unity weight function (W =  1) 

was used. Table 3.14 shows large p-values for both competing events which is in-line with the fact 

that observed differences between the two randomized arms appear to be mostly small.
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Table 3.14: P-values of IWD-based tests for differences in CIFs of neurological events and prior death 
between treatments.

Method for p-value 
Event Delta-method MC permutation test*

Neurological event 
Prior death

0.993
0.381

0.993
0.400

based on 1000 MC samples.

Figure 3.7.1: Cumulative incidence function for the time to the first neurological event (blue) and one 
minus cumulative incidence function for prior death (red) by treatment arm based on the SNP-AIC 
method and the nonparametric method.
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The outcome time to coma clearance or prior death was evaluated in 147 patients with impaired 

consciousness (GCS < 15) at enrolment and by definition, this excluded all subjects with TBM grade 

I and some with TBM grade II. In total 61 coma clearances and 79 prior deaths were observed, and 

in patients who cleared coma, this took a median (maximum) of 9 (181) days. The corresponding 

CIF estimates are displayed in Figure 3.7.2. As before my SNP estimated CIFs are also close to the 

nonparametric estimates and most SNP CIFs have standard normal base densities except for TBM
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grade II. I also observed that 3 of the 12 SNP fitted CIFs required I< =  3 and 7 of them had K  > 1.

Of note, the fact that in general the fitted SNP models chose polynomial degrees > 0 indicates 

that simple parametric models such as lognormal or Weibull mixture models might fail to capture the 

precise shapes of some of the CIFs.

Figure 3.7.2: Cumulative incidence function for the time to coma clearance (blue) and one minus 
cumulative incidence function for prior death (red) by treatment arm based on SNP-AIC method and 
nonparametric method.
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3.7.2 C om bination antifungal therapy  for cryptococcal m eningitis

In this example, I use a data set from a recent RCT conducted at OUCRU-VN investigating the effect of 

three different antifungal therapies in HIV-infected patients with cryptococcal meningitis (Day et al. 

(2013)). The two co-primaiy study endpoints were mortality during a follow-up period of 14 and 70 

days, respectively. The study found that combination antifungal therapy with Flucytosine and Ampho

tericin B led to a significantly lower mortality at 70 days compared to Amphotericin B monotherapy, 

the standard of care treatment in Vietnam. In contrast, superiority of a second combination therapy,
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Fluconazole and Amphotericin B, over Amphotericin B monotherapy could not be demonstrated.

The rate of decline of quantitative yeast fungal counts in the cerebrospinal fluid is an important 

marker of the potency of an antifungal therapy and the competing risks outcome considered here is 

the time from randomization to fungal clearance (beneficial event of interest) or prior death i.e. death 

without prior fungal clearance (harmful competing event). For this example I consider a follow-up 

period of 30 days as fungal count measurements were only performed irregularly after that time point. 

As fungal count measurements were only measured weekly according to protocol, the time to fungal 

clearance is given as having occurred in the interval from the time of the last positive count (+ 0.001) 

until the time of the first count of 0 (i.e. observed fungal clearance). Patients who died without 

prior fungal clearance were treated as prior deaths, e.g. if a patient died on the second day after 

randomization, the patient was assumed to have died in the interval [2, 3] days. Patients who neither 

reached fungal clearance nor died during the 30 days were right-censored at the time of their last 

positive fungal count. The data set contains data from 263 patients: 155 reached fungal clearance, 

64 died without prior clearance, and 44 were censored.

One problem with the endpoint derivation is that as fungal counts are not continuously meas

ured and fungal clearance is not an absorbing state, one cannot be 100% sure that subjects who 

died without documented fungal clearance truly did not reach (unmeasured) fungal clearance before 

death. If one wanted to properly account for this, this would require multi-stage modelling of the en

tire illness-death model which also allows for transitions from fungal clearance to death allowing for 

unobserved transitions due to interval-censoring. This is beyond the scope of this project. However, it 

is believed that most likely only very few subjects who were considered as prior deaths had previously 

reached (unobserved) fungal clearance for the following reasons:

• Amongst the 64 deaths, 40 died in the first 7 days. Fungal clearance before day 7 is very unlikely: 

amongst 112 fungal counts measured in the original database after enrolment but before day 7, 

95.5% (107/112) were positive. Specifically, among counts measured on day 6, 96.6% (28/29) 

were positive.

• Amongst the 24 subjects who died later than on day 7, linear extrapolation of their last two 

log-transformed counts was used to assess how likely it was that they were negative on the day 

of deaths. The prediction only gave likely fungal clearance prior to death in 3 (12.5%) of them.

• The above calculations are conservative as higher fungal counts and lower fungal clearance has 

been shown to be associated with increased risk of dying (Bicanic et al. (2009) and Day et al. 

(2013)).



CHAPTER 3. SNP ESTIMATION OF THE CUMULATIVE INCIDENCE FUNCTION 80

Thus, in the analysed data set I assume all deaths were without prior fungal clearance which is con

servative, i.e. it tends to underestimate the effect of antifungals on fungal clearance, a beneficial 

outcome. In addition, for simplicity, I only consider two treatment arms, namely Amphotericin B 

monotherapy and Amphotericin B plus Flucytosine, the more potent combination therapy.

CIF estimates are displayed in Figure 3.7.3 and show both a faster time to clearance and a lower 

risk of prior death for the combination therapy. This is also reflected by results from IWD-based 

tests for treatment effect on both competing events as displayed in Table 3.15. In these tests the 

corresponding IWDs focus on the period from 0 to 30 days with unity weight function. As in the 

previous example, SNP and nonparametric estimates closely agreed. In all SNP fits to the original 

data set the respective polynomials had K  < 1.

Table 3.15: P-values of IWD-based tests for differences in CIFs of fungal clearance and prior death 
between treatments.

Method for p-value 
Event Delta-method MC permutation test*

Fungal clearance 
Prior death

< 0.001 
0.020

< 0.001
0.026

*: based on 1000 MC samples.
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Figure 3.7.3: Cumulative incidence function for the time to fungal clearance (blue) and one minus 
cumulative incidence function for prior death (red) by treatment arm based on SNP-AIC method and 
nonparametric method.
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3.7.3 M enopause d a ta

In the previous example, I analysed a data set with interval-censoring. As mentioned in Subsection

1.1.2 one special type of interval-censored data is current status data where the status of the subject 

is only assessed at one time point. One example of a current status data set with competing risks is 

the menopause data set described in Krailo & Pike (1983) which is publicly available as data set m en

opause in the contributed R package etm. In brief this data set contains information on menopausal 

status of 2423 women and the time scale refers to a subject’s age. Menopausal status (operative, 

natural or none) for each subject was assessed only once giving rise to current status data.

As in this setting, it is also of interest to summarize the cumulative proportion of women having 

any type of menopause, for my SNP estimates, I stacked the two estimated CIFs in the graphical display 

such that their sum provides an estimate of this quantity. The same was done for the nonparametric



CHAPTER 3. SNP ESTIMATION OF THE CUMULATIVE INCIDENCE FUNCTION 82

estimates.

Again, from Figure 3.7.4, SNP results and the nonparametric fits agree with each other. For this 

data set, the best SNP fit is in fact the same as a parametric Weibull model. Despite having almost 

70% right-censored cases, i.e. women who did not have menopause at their assessment time point, 

CIF estimates from both SNP and nonparametric method add up to almost 1 at age 58.5. This can 

easily be explained by the fact that biologically women are highly unlikely to have menopause (due 

to any cause) after age 58, so the observed follow-up duration of time to menopause covers a range 

with very high mass of the distribution of the marginal time-to-event.

Figure 3.7.4: Stacked cumulative incidence function for the time to operative menopause (blue) or 
natural menopause (red) based on SNP-AIC method.
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3 .8  D iscu ss io n

In this chapter I have developed a new semi-nonparametric (SNP) model for the CIFs of competing 

risks data with arbitrary censoring and truncation. I then implemented a corresponding estimation
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algorithm in the statistical language R and compared the performance of the proposed estimator to 

alternative approaches in an extensive simulation study. The algorithm also implemented parametric 

lognormal and Weibull mixture model for competing risks as a starting point which are also not 

commonly available in statistical software.

SNP models were designed to combine the advantages of both parametric and nonparametric 

methods without the respective disadvantages. My simulations study confirmed that this is achieved 

in many instances and the SNP model frequently outperformed both parametric and nonparametric 

estimators. This confirms and extends similar results which have been previously obtained in survival 

analysis (Zhang & Davidian (2008) and Doehler & Davidian (2008)). Another strength of my method 

is that it is based on parametric submodels and thus easily allows for the inclusion of arbitrary cen

soring and truncation pattern. I have demonstrated this for interval-censoring. To my knowledge, 

in this setting there is currently only a single alternative method for CIF estimation implemented 

in the statistical software R. This alternative is a nonparametric method and the implementation cur

rently provides only estimates without associated confidence intervals. Moreover, my simulation study 

demonstrates that with interval-censoring, my SNP estimator gave more precise estimates across all 

simulation scenarios. Even though I only mentioned and implemented a competing risks model for 

right-censoring, interval-censoring and left-truncation which are most frequently seen in clinical ap

plications, my model can be easily extended to other situations such as left censoring and the general 

case of interval truncation (see page 436 of Everitt & Skrondal (2007)). In addition, it should be 

straightforward to extend my model to situations where the event type is partially missing. An ad

ditional strength of the method is that it provides smooth estimates which may frequently be more 

realistic approximation to the truth than a step function and also allow for more realistic simulations 

based on the fitted model.

The proposed algorithm for SNP CIF estimation in general worked well. Based on the simulation 

studies, I recommend AIC as the default information criterion for selection of the polynomial degrees 

because it performed best in situations when I simulated non-SNP scenarios and only lost little in SNP 

scenarios. As mentioned earlier, my greedy stepwise forward algorithm may not always identify the 

optimal information criterion but exhaustive search through all models would be much more com

putationally intensive especially if J , the number of different event types, is large. Of note, the use 

of information criteria like AIC,BIC and HQC for SNP model selection has been known for choosing 

too simple models in some applications (Coppejans & Gallant (2002)). Consequently an alternative 

criterion based on cross validation and mean-squared error was suggested. However, such a method 

would be practically infeasible in my setting due to a tremendous increase in computing time. The 

substantial computational power needed for my algorithm also led me to restrict the maximum poly
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nomial degree K max in the simulation study and prevented the exploration of coverage probabilities 

of bootstrap-based confidence intervals. In practical applications, where only a single model fit is 

required, I recommend exploring higher polynomial degrees though for all of the real applications 

that I considered, K max =  2 was sufficient. Bootstrap methods might improve upon the occasional 

observed undercoverage of confidence intervals and indeed, this has been shown to be true in SNP 

survival models (Zhang & Davidian (2008)).

My model is based on the mixture factorization (3.1.1) of the CIF and used a simple multinomial 

model for the marginal event probabilities and a SNP survival models for the conditional time-to- 

event models. As an alternative to my approach, one could explore the performance of other semi- 

parametric estimators which have been proposed for estimation of the survival function such as the 

logspline density estimator (Kooperberg 8c Stone (1992)). However, in the survival context, SNP 

estimators have been shown to outperform the logspline estimator (Doehler 8c Davidian (2008)) and 

I did not pursue this further.

A limitation of the SNP approach is that despite its strong performance in simulation studies asymp

totic properties such as consistency and asymptotic normality have not yet been established in the 

survival or the competing risks setting. I conjecture that it may be possible to extend the existing 

consistency proof for SNP density estimation (Gallant 8c Nychka (1987)). In the competing risks set

ting, one challenge is that the marginal probabilities of the different event types which are required 

in the mixture factorization are non-identifiable in the presence of a limited observed follow-up dur

ation. Interestingly, this did not seem to deteriorate the performance of the SNP estimator within the 

observed follow-up period in the simulation studies despite heavy simulated censoring, but it could 

complicate a consistency proof for the CIF up to the maximum follow-up. A plausible direction to 

tackle this issue could be found in Mailer 8c Zhou (2002), who provided the conditions for achiev

ing consistent estimates of parameters in parametric models based on mixture factorization. These 

include “sufficient follow-up” which is usually satisfied when right-censoring is not too heavy. Addi

tionally, my simulation study demonstrated that confidence intervals assuming asymptotic normality 

of the estimator often performed well and this may indicate that the resulting estimator is indeed 

asymptotically normally distributed. However, a formal proof of this would be extremely challenging.

Finally the current estimator does not include covariate information and I shall discuss SNP com

peting risks regression modelling in the next chapter.



Chapter 4

CIF-based regression method using SNP 

densities

Regression models for competing risks which model the cumulative incidence function (CIF) are ap

propriate for clinical applications where the main interest is in the absolute risks of events occurring 

over time. As discussed in Chapter 1, this is particularly relevant for prognostic research and medical 

decision making. In this chapter I shall discuss extension of the CIF-estimation approach introduced 

in the previous chapter to regression modelling.

4.1 Model formulation

Following the notations in Chapter 3, a direct extension of the CIF estimation approach proposed in 

Section 3.1 to regression modelling is achieved by including covariates into Equations (3.1.2) and 

(3.1.3). For event type j  where j  =  1 , . . . ,  J  this results in:

P ( T < t , D = j ]Y j , X )  =  P ( T < t \ D = r , Y j ) P ( D = j ; X )

log ( T \ D  = j ; Y j) = Y j  f t  +  log {Toj}  = Y j  f t  +  +  a,-ft for j  =  1, .. . , J  (4.1.1)

exp (XTj j )

1 +  Ek=i  exP (x T 7j)
P ( D = j ; X ) = m fo r j  = la n d

P {D  = J - , X ) = _ _ w _11
1 +  £*=1  exp (Xt 7; )

w h ereX =  ( l ,X i , . . . ,X p) and Y j =  are covariate vectors for the marginal {P(D = j ;X ))

and the conditional (P(T < t \ D = j-,Yj)) components, respectively. The corresponding vectors of 

regression coefficients are 7  ̂ =  (7,0, Ij i ,  • • •, 7jP) and f t  =  (fti* — »ft?;) •

In Model (4.1.1), the conditional time to event distributions T  \ D = j  are modelled with standard

85
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AFT models. As in Chapter 3 ,1 assume that Zj either has a SNP-distribution with a standard normal 

base density or exp (Zj) has a SNP-distribution with an exponential base density with rate 1. In this 

model, T0j  can be interpreted as the covariates-free “baseline” conditional survival time. For modelling 

the marginal probabilities, P (D  — j; X), I use a standard multinomial logistic model. For this model, 

the choice of the baseline category J  does not affect the model fit but changes the interpretation of 

the regression parameters 7j.

While the multinomial logistic model by definition includes only a single set of covariates X, the 

conditional time-to-event distributions T\D — j, j  =  1 , . . . ,  J  could in principle depend on separate 

sets of covariates Y j .  However, in practical applications, it will frequently be most meaningful to 

use the same or similar sets of covariates for the logistic model and all conditional time-to-event 

distributions. Note that with a slight abuse of notation I use j j  to denote a vector of regression 

coefficients in this chapter while in Equation (3.1.3) of Chapter 3 is a scalar. In addition, note 

that although X  contains a constant to model an intercept, the Y j  do not. This is to avoid non- 

identifiability of the AFT model which already absorbs the intercept into nj.

For survival analysis based on SNP densities, Zhang & Davidian (2008) suggested three alternative 

models: the AFT chosen here, the proportional-hazards model and the proportional-odds model. In 

principle, all three of them could be used to model the conditional distribution of T  | D — j  in 

competing risks. I chose the AFT model as the basis for my own models for the following reasons: 

First the use of the AFT model provides a direct way to assess covariate effects on time rather than a 

derived quantity such as the hazard function which facilitates interpretation. Second, only the AFT 

model is “closed” under a family of SNP distribution with any pre-specified base density. This means 

for competing risk j  that both the baseline conditional log survival time, log (T0j) — Hj +  OjZj, and 

all covariate-dependent conditional log survival time, log(T | D =  j ;Y j ) ,  in Model (4.1.1) follow 

essentially the same distribution (i.e. identical base density and SNP-polynomial) other than the 

intercept term. This would not be the case for e.g. the proportional hazards model where only T0j 

but not covariate-dependent survival times would follow a “simple” SNP model and, hence, the model 

would depend on the scaling of covariates which is undesirable.

4 .2  Parameter estim ation and ad hoc statistical inference

The likelihood construction for the regression model (4.1.1) is essentially identical to the likelihood 

construction required for estimation of the CIF detailed in Section 3.2, except for the fact that the 

likelihood now also depends on additional covariates. likewise, the same estimation procedure as 

detailed in Section 3.3 can be used with the additional need for acquiring starting values for the
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regression coefficients (3j and 7j (j =  1 , . . . ,  J) . This is done as follows.

Starting values for the parametric conditional survival models, i.e. and fij are obtained by

fitting lognormal or Weibull AFT regression models as described in Subsection 3.3.1. As described 

in that subsection, subjects experiencing events other than j  were excluded from the AFT model for 

event type j  and right-censored observations were weighted according to a crude estimate of their 

probability of ultimately experiencing event type j  conditional on being event-free at their censored 

times. For simplicity, I used the same (covariate-independent) estimate of this probability as for the 

case without covariates but included the covariates X j  into the AFT to obtain starting values for (3j. 

Elements of j j  are initialized by using the suboptimization described in Subsection 3.3.1, for which 

starting values of the intercepts yj0 are computed as previously described in Equation (3.3.1) while 

the non-intercept elements in 7 , are set to Os. This initialization of the intercept implicitly assumes 

that a covariate value of 0 corresponds to an “average” observation and for this reason, I recommend 

centering the covariates prior to fitting the model for numerical reasons. This does not affect the 

estimates of the regression parameters except for 7,0 and fij which can easily be transformed back to 

the scale of the original covariates if needed.

The whole estimation procedure is then carried out following the same step-wise forward al

gorithm as described in Subsection 3.3. For each forward step when the SNP-polynomial degree 

Kj  of the conditional survival distribution of event type j  is increased, multiple starting values for the 

spherical coordinates from a grid are chosen as previously described. The corresponding initial values 

for fij and &j are computed similar to Subsection 3.3 with a slight change of notation that T  | D  =  j  

in Equation (3.3.2) is now the baseline T0j  | D  =  j  as introduced in Model (4.1.1). Starting values 

for f3j and 7,• are the best fits from the previous step.

Approximate statistical inference for the SNP regression model (4.1.1) can also be performed 

using asymptotic theory for maximum likelihood estimation and ignoring the adaptive choice of the 

polynomial degree as described in Section 3.4. For testing whether a covariate affects the entire 

competing risks process at all, one can use a Wald-type test which simultaneously tests whether all 

regression coefficients (from the multinomial component model and all AFT sub-models) associated 

with that covariate can jointly be 0.

4.3 Model illustration and interpretation o f  parameters

An illustration of how a single binary covariate can affect the resulting CIFs in Model (4.1.1) is dis

played in Figure 4.3.1. In Figure 4.3.1 a), the baseline CIFs for two competing events (J  =  2) are 

shown. First, assume that the binary covariate does not alter the marginal event probabilities but ac-
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celerates the conditional time to the first event type T01 by a multiplicative factor of e-1 (i.e. =  — 1)

while decelerating the conditional time to the second event T02 by a multiplicative factor of e (i.e. 

/?2 =  1)- The resulting CIFs are shown in Figure 4.3.1 b). Second, assume that the binary covariate 

is associated with an odds ratio of e x p (- l )  «  0.37 for the probability of the first event but does not 

affect the conditional time-to-event distributions. The resulting CIFs are shown in Figure 4.3.1 c). 

Third, if both covariate effects are combined, the resulting CIFs are shown in Figure 4.3.1 d).

Figure 4.3.1: Illustration for different covariate effects on SNP model.
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a) Baseline CIFs (pale curves in other panels), b) CIFs for a binary covariate affecting only T \ D = j y c) CIFs for 
a binary covariate affecting only D, c) CIFs for a binary covariate affecting both T  | D = j  and D.

The component models (AFT and multinomial logistic) are well-known statistical models that are 

frequently used in practice and their interpretation is relatively straightforward though the interpret

ation of regression coefficients for the multinomial logistic model with more than two event types 

( J  > 2) can be somewhat involved. As illustrated in Figure 4.3.1 c), the proposed model is flexible 

and allows to model quite general covariate effects on the CIF (including crossing CIFs) if covariates 

are allowed to affect both the marginal and conditional components. However, this also complicates 

interpretation of the model because it is difficult to assess how the combined effect of a covariate on 

different component models jointly influences the resulting CIFs. Hence, in clinical applications, it 

will sometimes be beneficial to include covariates for selected component models only to facilitate
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interpretation if such a simplified model does not markedly deteriorate the model fit.

If covariates are only allowed to the multinomial logistic model i.e. the marginal component, then

log ClFj(t)  =  X T7! — log ^1 +  ^ ^ex p  (XT7fc) ̂  +  log P ( T  < t \ D —T) (4.3.1)

for j  =  1 , . . . ,  J  — 1, and a similar model holds for j  =  J .  This implies that the covariates have 

a multiplicative (and hence time-homogeneous) effect on the resulting CIFs. When J  =  2, 71 is 

simply the covariate vector containing the log-odds ratios corresponding to the marginal probability 

of event type 1 occurring. Hence a positive log-odds ratio implies that an increase in the corresponding 

covariate is associated with an increase in CIF\ at all time-points and a decrease in the CIF2 at all 

time-points. This simple qualitative interpretation of covariate effects on the CIF scale is similar to the 

Fine and Gray model (Fine & Gray (1999)) introduced in Section 1.5.2 except that it models covariate 

effects on different CIFs simultaneously and in a “consistent” way. As an example, this implies that 

their sum at any time point cannot be greater than 1 for any covariate combination which is not 

necessarily the case if CIF estimates are based on different Fine and Gray models for different event 

types. Indeed, as mentioned before in 1.5.2, in most settings it is mathematically impossible that exact 

Fine and Gray models hold simultaneously for all event types.

Interpreting covariate effects on the conditional component has been criticised because the corres

ponding survival time is conditional on the future event type (Andersen & Keiding (2012)). Neverthe

less, one can think of situations where such a parametrization could be useful such as an intervention 

that is expected to delay the conditional time to some detrimental outcome but not to change the 

ultimate probability of its occurrence. However, even if the intervention is randomized, causal inter

pretation of the resulting effects on the conditional components is delicate as it conditions on events 

occurring post randomization.

4 .4  Limitation o f the proposed m odel for studies w ith lim ited follow-up and  

an alternative m odel

As shown in Section 4.3, the proposed regression model (4.1.1) allows to model covariate effects on 

the CIF in a flexible way but it has an additional important limitation which has not been mentioned so 

far: The multinomial logistic sub-model describes the distribution of the marginal event probabilities, 

p(D  =  j ), but these event probabilities might be poorly identified based on data from studies with a 

limited duration of follow-up and heavy right-censoring.

As a simple example with only two event types (J  =  2) and no covariates, assume that the nonpara-
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metric CIF estimates at the maximum observed follow-up duration imax in a study are C IF i (tmax) — 

0.15 and C IF 2 (tmax) =  0.25. Even if these estimates were exact, all that the data would imply regard

ing P(D = 1) is that it must lie between 0.15 and 0.75, i.e. a non-informative bound. The implication 

for my model is that in this case, the model parameters would be nearly non-identifiable and obtained 

model-estimate would be dubious as they would heavily depend on the constraints implied by the 

(semi-)parametric model formulation rather than the actual data.

Interestingly, the simulation in Chapter 3 indicates that the CIF can be quite accurately estimated 

at time-points t when there are still a substantial number of patients under follow-up even if the 

underlying data is heavily censored. Thus, the identifiability issues of the underlying model did not 

appear to corrupt estimation of the CIF, i.e. the probabilities P(T < t ,D  =  j) ,  over the observed 

time range of follow-up. This may indicate that risk predictions from my regression models could also 

be relatively unaffected by a limited follow-up duration if predictions are restricted to the observed 

time range and I will further investigate this in the simulation study in Section 4.5. Moreover, if 

covariates are only allowed to affect the marginal probabilities, this induces time-homogeneity of 

covariate effects as discussed in Section 4.3, and under this constraint, the estimation of covariate 

effects is expected to be less affected by identifiability problems.

Nevertheless, the raised limitation indicates that my regression model is most applicable in set

tings with substantial follow-up relative to the timing of events, i.e. if the marginal probabilities are 

relatively well-identified based on the observed data. Otherwise, covariate effects should only be 

interpreted with extreme caution.

One alternative approach that avoids identifiability issues involving P(D = j )  and still adheres 

to the mixture factorization is to model the event status D  at a time-point where it is expected to 

be well-identified by the data explicitly rather than at time infinity. This might also be of interest 

when accurate risk predictions at a specific time point are desired, e.g. 10-year risk predictions for 

the occurrence of coronary heart disease which form the basis for treatment guidelines (Wolbers et al. 

(2009)). Specifically, choose a time point tm which I assume to be later than or equal to the maximum 

observed event or follow-up time tmax and define a new random variable

J D
Dm = l

1 0 , otherwise

Obviously Dm =  D for tm — 00 due to the basic assumption of most competing risks models that all 

subjects are assumed to have an event eventually. Under this new setting, the mixture factorization in
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(3.1.1) becomes

P(-T *  t ' D = »  -  "  tm’D = i )

-  P ( T ^ D = m D = % P ( D m ^ )
P ( T < t m \ D = j ) P ( D = j )

^ < t \ ° = % P{Dm=j)  (4.4.1)
P (T  < tm I D - j )

In the second equality, P (T < tm, D = j )  = P  (Dm = j)  by the definition of Dm. This mixture factor

ization is only sensible for time points t with t < tm but as I have assumed that tm is larger than all 

observed event or censoring times, it can be used as the basis of a likelihood construction which can 

essentially proceed as described in Section 3.2 while replacing P(D = j ) with p ^ ^ ^ D = j ) '

For this alternative model, one can still use a multinomial model for Dm but allow for an extra 

category to account for the possibility of Dm =  0. Moreover, the conditional components can be 

modelled based on AFT models and SNP densities as before.

One problem of the above model is that even though I directly model the event probabilities at time 

tm, the time-to-event random variable T  still has support on [0, oo) even though in reality, this distri

bution is also non-identifiable beyond tm. Indeed, when I implemented the model, the estimation pro

cedure either crashed or provided highly variable CIF-estimates even for parametric scenarios without 

covariates. I suspect that this is an issue of the numerical non-identifiability of P  (T < t \ D =  j )  due 

to the presence of p ^< ^ D = j)  *n t̂ ie likelihood function. Specifically, two different specifications for 

P  (T < 1 1 D = j )  can result in numerically very similar likelihood contributions of p^r<t^\D=j) f°r 

t < t m. Indeed, if the two specifications lead to proportional but non-identical conditional cumulative 

distributions up to time tm, their likelihood is identical. Due to these shortcomings and the failure 

of my numerical algorithm in this setting, I did not pursue this approach further. Yet an alternative 

approach could be to use distributions with support on [0, tm) as the basis for modelling the CIF up to 

time tm. In fact, SNP models for base densities with bounded support were introduced by Kim (2007). 

However, exploring such an approach in detail is outside the scope of my thesis.

4.5  Simulation study

In this section I report a simulation study to assess the performance of the SNP regression model 

defined in Equation (4.1.1) under various settings. One aim of this simulation study is to assess the 

potential bias and precision of parameter estimates. The second aim is to evaluate the precision of 

covariate-dependent CIF-estimates of my model if data are either simulated according to the mixture 

model (4.1.1) or alternative popular regression models for competing risks.
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For all scenarios, I considered two competing risks (J = 2) and two independent covariates Xi  

and X 2. X\  was simulated according to a Bernoulli distribution with p = 0.5, which could for example 

represent a random treatment assignment in an RCT. X 2 was simulated according to a normal distri

bution with mean zero and a standard deviation of 0.5. Uncensored competing risks data were then 

simulated either according to the mixture factorization (4.1.1) or alternative popular regression mod

els for competing risks as detailed in Subsections 4.5.1-4.5.3, and additional censoring was simulated 

as described in Subsection 4.5.4.

For each scenario I varied the sample size between 100 and 500. Results for each of the 26 

simulation settings (see below) are based on 200  simulated data sets.

4.5.1 Mixture factorization scenarios

The first set of scenarios is based on the mixture factorization in Equation (4.1.1) for which the 

conditional times to event type j  are specified as:

log ( T \ D = j - , X 1, X 2) =  X ^  +  X 2P $  + log (T0 \ D =  j ) ,

where the “baseline” distributions of T0 \ D = j  were chosen as displayed in Table 4.1. The marginal 

event probabilities are determined as:

P ( D  =  1 \ X UX 2) =  ^ > ^  +  X 111+X 2l2)
1 + exp (70 + Xi'yi +  X 2y2)

Values of 70, 71, 72 and /5^, are given in the first row of Table 4.1 and were fixed

for all distribution configurations of T0 \ D =  j .  For convenience, in all subsequent discussions 

, ^21 P2 2  will be referred to as AFT (regression) parameters whereas 70, 71 and 72 will

be called multinomial logistic (regression) parameters. Of note, 70 is set to log with Pi = P(D =  

1 | Xi  = X 2 =  0) =  33% which implies that the marginal probability P  (D =  1) is approximately 29%.

Figures 4.5.1,4.5.2 and 4.5.3 show the resulting CIFs for all 3 mixture factorization scenarios and 

selected covariates values. Simulated data from these mixture factorization scenarios were subject to 

both right- or interval-censoring as will be discussed in Subsection 4.5.4.



CHAPTER 4. CIF-BASED REGRESSION METHOD USING SNP DENSITIES 93

Table 4.1: Mixture factorization based scenarios.

Regression parameters (identical for all scenarios)
To 7i 72 (3'u j 3 1 2 ) ( ^ 2 1  j A2 2 )

-0.71 -0.5 1 (-2 ,1 )  (-1 ,0 )

Scenario names Baseline distributions
/ 2 0  |-D=1 /to |-D=2

2 x Weibull iy ( l ,e x p ( - l ) ) W  (5, exp (-0.25))

2xSNPN L N ( —1.0.92) S N P N ( 0 . 1,0.8, f )

2 x logmixturenorm 0.3LAr(1.2,0.92) +  0.7L N  (0 ,0.62) 0.5L N  (0 ,0.12) +  0.5L N  ( l, 0.22)

Note: f r 0\D=j is the conditional density of the baseline time to each event type j . W(shape, scale) means 
the density of a Weibull distribution with a specific shape and scale. SNPN(p,  a, <j>) is the density of a random 
variable T  whose logT = p + a Z ; where Z  has a SNP distribution with standard normal base density and 
spherical coordinates (j> as described in Zhang & Davidian (2008). LN  (/j, cr2) refers to the density of a lognormal 
distribution with parameters /< and a.

Figure 4.5.1:- True CIFs for the 2 x Weibull scenario.

CIF1 1-CIF2

O

0 0—̂ —̂
----X1 = 0 X2 = 0 \'
----X1 = 0 X2 = 1 »'

CO ----X1 =0 X2 = -1 CO 1'
0 X1 = 1 X2 = 0 0

— X1 = 1 X2 = 1 *'---  X1 = 1 X2 = -1CO CO P'
0 0 „ v -------------------------------------

^ — “ UL UO
s xX

0 s O tv/  _ _ ------ —----- -------------- --
/ * " I

CNJ CN t
0 f n O \

: v "
u

0 > O
0 O

2 3
Time

2 3
Time



CHAPTER 4. CIF-BASED REGRESSION METHOD USING SNP DENSITIES 94

Figure 4.5.2: True CIFs in 2xSNP stdnorm scenario. 
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Figure 4.5.3: True CIFs in 2 xlogmixturenormal scenario.
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4.5.2 Fine and  Gray’s scenario

The second type of scenarios follows the proposed model and simulation in Fine & Gray (1999). 

Specifically the first CIF follows a Fine and Gray model and is specified as:

CIF\  ( t ]Xu X 2) =  1 -  [1 - p { l  -  cxP( -0 } ]exp(-Yl/3flG+X2^ G)

with — —I, =  1 and p = P  (D =  1; Xi  — 0, X 2 =  0) =  33%. When there are no covari

ate effects, CIFi  [t \X \  =  0 , X 2 =  0) =  p { l  -  cxp(-i)} is simply p times the cumulative distribution
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function of a unit exponential distribution evaluated at t.

The simulation then proceeds as follows: First the event type for each subject is determined via a 

Bernoulli trial with

P(D = T,XUX 2) = CIFi {oo-,Xu X2) = 1 -  (1 -  p ) M x ^ i G+x ^ G)

If event type 1 is chosen then the covariate dependent time to event is simulated as

T = C I F ^ { U 1]X u X 2)

where C I F j-1 (•; X i , X 2) is the inverse of CIF\  (•; X \ , X 2), and U\ is a random variable with a uniform 

distribution on the interval |o, 1 -  (1 — p)exp(-Vl'3n  +A'2̂  12 )j_ Q n  other hand if event type 2 

is chosen, the conditional distribution of T  \ D  =  2 was simulated according to an exponential 

distribution with rate exp (Xl/3|iG +  X 2P22J), with /5|[G = 0 and ^ 2  =  2. Note that as in the

original simulation in Fine & Gray (1999), the CIF for event type 2 does not follow a Fine and Gray 

model because, as mentioned before, in most settings Fine and Gray models cannot simultaneously 

be true for all event types.

For the above set-up the marginal probability P(D  =  1) is about 25%. CIFs with different co

variate values are plotted in Figure 4.5.4. Data simulated from this scenario are subject to only 

right-censoring.

Figure 4.5.4: CIFs Fine and Gray.
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4.5.3 Cause-specific hazard s scenarios

The last type of scenario is based on the cause-specific hazards specification as described in Beyers- 

mann et al. (2009). Accordingly the CSH of each competing risk are specified as

Ai(t) = A0i (t) exp ( X h3^sh  + X 2Pi2SH) and A2(f) =  A02(i) exp ( X xp%xSH +  X 23%2SH)

where A0i(f) =  pyy, A0 2 ( )̂ =  21 and /3jy9/; =  —1,^22SH = l,/32iSH = 0 and ^ 22 n  =  2. Given these, 

the total survival time T  for each subject is simulated by using the inverse transform sampling method 

based on the relation:

P ( T  > t) = exp ( — /  [Xi(u) + X2(u)] du j  =  exp |\og (t +  1) ex 'P?iSH t2ex ip2iSH+x 2 p2

Next for a simulated T  a Bernoulli trial is conducted to decide with probability Ai (T)/  (Ai (T) +  A2 (T)) 

if the conditional event type D \ T  equals 1 or not based on

P  (D =  1 | T  E [t,t + dt ) ,T > t ) P ( T  G [t, t 4- c?f), D  — 1 | T  ^  t) 
P ( T  G [t, t + dt) | T  > t)
Ai (t)

(4.5.1)

Ai(f) 4- A2(t)

The above setting leads to a marginal probability P{D =  1) of approximately 31%. Figure 4.5.5 

displays the CIFs for different covariate values in this CSH scenario. As in Fine and Gray scenario, I 

consider only right-censoring.

Figure 4.5.5: CIFs for the cause-specific hazards scenario.
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4.5.4 Simulation of censoring

Two-different types of right' censoring (mild and heavy) and one type of interval censoring were 

simulated for all scenarios. In accordance with Subsection 3.6.1, right-censored data (T D ' )  was 

simulated based on the uncensored data (T, D ) and censoring time C  as follows:

T'  =  min {T, C } , D' = 1 (T  <C ) x D

As before, C was simulated as C  =  min {tm, Ce } where tm represents the maximum follow-up dura

tion which was set to the 95% or 75% quantiles of the marginal survival time T, respectively. For each 

of these values of tm, Ce  was generated from an exponential distribution with rate chosen to achieve, 

respectively, a 10% (mild) or 50% (heavy) overall right-censoring probability.

Interval censoring was simulated by first right-censoring observations at tm which was set to the 

90% quantile of T  (implying a 10% right-censoring probability). Then (0, tm) was divided into 12 

equally spaced intervals, and simulation of interval-censoring for each subject proceeded according to 

Subsection 3.6.2.

4.5.5 Competing approaches

In all scenarios, I used my SNP method with a maximal polynomial degree of K max — 2 and the choice 

of the most appropriate base density and polynomial degrees was based on AIC. For comparison 

purposes, I used parametric models based on the mixture factorization with lognormal or Weibull 

models for the conditional AFT models, which are derived from the SNP model by setting K max =  

0 as mentioned in Subsection 3.6.1. Additionally, for all settings without interval-censoring, semi- 

parametric alternative models were the Fine and Gray model (or, more precisely, two separate Fine 

and Gray model for each event type) and the Cox proportional CSH model.

4.5.6 Assessment methods

For the mixture factorization scenarios in Table 4 .1 ,1 summarized the mean and standard deviation of 

the obtained regression coefficient estimates, as well as the mean squared error across simulation runs. 

To assess reliability of standard MLE-based inference, I also determined the coverage of asymptotic 

95% confidence intervals.

For the Fine and Gray and CSH scenarios, looking at estimates of regression parameters from the 

SNP model is no longer meaningful. Instead, I compared the precision of resulting CIF estimates to 

the truth which is done via a modification of the AISE in Equation (3.6.1), the so-called mean of



CHAPTER 4. CIF-BASED REGRESSION METHOD USING SNP DENSITIES 98

average integrated square error (MAISE) which was also reported for mixture factorization scenarios. 

In particular for a simulation setting with N s  data sets, the MAISE of event type j  is

M A IS E j  — —— /  / \ c i F j i ( t ) x 1,x 2) - C I F j ( t ; x 1, x 2) \  d td F (x i ,x2)
i=1 Uxi,x2Jt-0  1 J .

As X i  is a Bernoulli random variable with probability 0.5, Equation (4.5.2) reduces to

(4.5.2)

N s

2 N s *V s . , / , / . :  | C IF j i  ( t;x i ,x2) — CIFj  (t ;x i,X 2 ) j  dtdF (x2) (4.5.3)

However, exact evaluation of the MAISE is computationally intensive. As a pragmatic solution, the 

following approximation is used. First, the integrated square difference i.e.

It 0 i CIFji t o ® 1 ’ * 2 ) “ CIFi ( * ; * ! » * 2 ) }

is approximated by the following sum over 200 equally spaced time points in [0, tr

tm
200 E

* c / f t  1 9 9  f  \
2 0 0  ’ ***> 2 0 0  l m J

| 'CIFj i  (t‘, x l t x2) - C I F j  (t-,xi,x2)}

Second, let H (x i ,x 2) denote the expressions inside the integrals f  of (4.5.3), then for each value 

of x i  (0 or 1) /  H  (-,X2 )dF  (x2) is approximated by taking the average of H (x  1, •) evaluated at 

150 random values generated from the distribution of X 2. Let X 2,Xl be the set of such values for a 

specific x\.  Accordingly the final approximation of (4.5.3), the so-called Monte Carlo mean of average 

integrated square error (MCSE), is

M C S E j  =
tm (150 x 200) - 1

N s

x E
i=l

2NS

E E
xi€{0,l} x2ex2,Xl

^ 2  \ c i F j i  ( t]xu x2) -  CIFj  (t ;xi ,x2)}

/  J
(4.5.4)

The MAISE and its approximation, the MCSE, measure the accumulated square error of the estim

ator over time and over covariate distributions. Of note, once generated, the same values of X 2 in 

X 2,x1 was used for calculating the M C S E j  for all compared methods. This reduces variability in the 

difference or ratio between the M C S E j  from different methods.
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4.5.7 Results

Results for all three mixture scenarios, namely mixture Weibull (2x Weibull), two SNP stdnorm (2x SNPN) 

and two logmixturenormal (2xlogmixturenorm), are tabulated in Tables 4.2,4.3, 4.4,4.5 and 4.6. In 

these tables, the first 4 settings of each scenario correspond to combinations of 10% and 50% right- 

censoring with n =  100 and n =  500, and the last 2 settings correspond to interval-censoring with 

10% right-censoring. Results from Fine and Gray, and CSH scenarios are reported in Table 4.7.

In the 2 x SNPN scenario with n = 100, 21% (42/200) of the SNP fits had a non-positive definite 

Hessian indicating issues with the estimation algorithm. However, this also happened to 13% and 

7% of results from the parametric mixture lognormal and mixture Weibull methods, respectively, in 

the same setting. A closer look at this setting reveals that subjects having the first competing risk 

had events very early as reflected in the left panel of Figure 4.5.2. Consequently, among all subjects 

having the first competing risk from the setting, more than 60% had event times within the first 

interval [0, tm/\2). This and the fact that the sample size of n =  100 is relatively low might lead 

to inadequate information to fit even a simple parametric mixture model to these data. Due to this 

unexpected phenomenon, results from this whole simulation setting are not reported. Moreover, as 

mentioned in Subsection 4.5.5 Fine and Gray method and Cox proportional CSH method cannot deal 

with interval-censoring. Thus no results from these methods for interval-censored data were obtained.

Mixture scenarios with only right-censoring

Among a total of 2400 right-censored data sets simulated according to the mixture scenarios, my 

estimation algorithm for the SNP models resulted in 12 (0.5%) fits with ill-behaved (i.e. not positive 

definite) Hessians. Most (10) of these cases were observed in the two last settings: 2xlogmixturenorm 

scenarios with 50% right-censoring (and n =  100 with 4 cases or n =  500 with 6 cases), while the other 

two came from a 2 x Weibull setting with 50% right-censoring and n =  500, and a 2 x SNPN setting 

having 10% right-censoring and n =  500. The parametric mixture Weibull method also resulted 

in one fit with an ill-behaved covariance in a 2xlogmixturenorm setting where there is 50% right- 

censoring and n =  100. All data sets involving ill-behaved covariance matrices resulting from any of 

the compared methods were excluded in all simulation reports.

Monte Carlo (MC) means of SNP estimates are shown in Table 4.2. In most settings average estim

ates of the regression parameters in the AFT models as well as non-intercept terms in the multinomial 

logistic model agreed closely with the true values indicating low bias. One exception is the mixture 

Weibull setting with 50% right-censoring and sample size of 100 where estimates of /3u , /32i , 7o and 

7i are noticeably inaccurate. Finally from Table 4.2 it can also be seen that bias and variability of all
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parameter estimates tended to worsen as the amount of right-censoring increased, especially for small 

sample size.

Tables 4.3 and 4.4 show the relative mean square error (MSE) of parameter estimates from the 

SNP models compared to parametric models. Values of relative MSE larger than one favour the SNP 

results. For mixture Weibull scenarios, estimates of regression parameters from the mixture Weibull 

model lead to smaller MSE than the SNP results though the benefit of fitting the true parametric model 

was less pronounced for the larger sample size. Performance of the log-normal parametric model in 

these scenarios lead to larger MSE than the SNP model for most parameters, especially for the larger 

sample size. For the 2 x SNPN scenarios, AFT parameters were estimated more accurately by the SNP 

method compared to parametric model except for the AFT for event type 1 (which was simulated 

according to a lognormal distribution), where the lognormal model performed best.

Parameters for the multinomial logistic model tended to be more accurately estimated by both 

parametric methods compared to the SNP model in the 2 x SNPN scenarios for n =  100, but for 

n = 500 MSEs for all 3 models were very similar. The benefit of the SNP model was most pronounced 

for the 2xlogmixturenorm scenarios where it dramatically outperformed the Weibull model regardless 

of sample size and also showed a clear advantage over the lognormal model for n = 500. Of note, the 

big increase in relative efficiency of /32i between n =  100 and n =  500 of the scenario 2xlogmixture 

with 50% right-censoring in both Tables 4.3 and 4.4 can be largely explained by the massive (tenfold) 

increase in precision (MC-SD) for the SNP estimator, see the corresponding cells in Table 4.2.

Table 4.5 compares the accuracy of covariate-dependent CIF estimates (as measured by the relative 

MCSE) between my SNP model and alternative parametric and semi-parametric methods. A relative 

MCSE larger than one supports the SNP method. Overall, my SNP model performed better than 

parametric alternatives, as it was never substantially worse (the lowest relative MCSE was 0.93) 

but performed substantially better than parametric methods for some scenarios (the largest relative 

MCSE were > 3 for both parametric models). Moreover, the SNP model substantially outperformed 

the semi-parametric Fine and Gray and Cox proportional CSH models across all mixture scenarios. 

Of note, for the mixture Weibull settings, CIF estimation from the Cox proportional CSH method was 

extremely unstable resulting in out of range estimates. This might be due to a corrupt estimate of 

the total survival time based on the Nelson-Aalen estimator for the cumulative cause-specific hazards 

at timepoints with small risk sets, or because of covariate values that are extreme (see page 117 of 

Beyersmann et al. (2012)). Consequently, these results were not reported.

The observed coverage of asymptotic 95% confidence intervals of my SNP model is reported in 

Table 4.6. In all settings, for the lower sample size of n =  100, considerable undercoverage was ob

served, especially for AFT parameter estimates. The lowest observed coverage was 57.5%. Moreover,
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only for this sample size, a dear adverse effect on 95%-CI coverage of increasing right-censoring was 

seen. When sample size was increased to n  =  500, 95%-GI coverage of all parameter estimates was 

substantially improved. In many cases the nominal coverage was achieved. However, some undercov

erage remained and the lowest observed level was 87%. For mixture Weibull and 2 x SNPN scenarios, 

which correspond to SNP models, one potential explanation for this undercoverage is that the SNP 

fits based on AIC frequently did not identify the correct base-K i.e. the correct combination of base 

density and the polynomial degrees K i  and K 2. This is in line with results shown in Table 3.2 for the 

situation without covariates. By contrast, model selection based on BIC was much more successful in 

identifying the correct base-K. However, this did not unfortunately improve coverage compared to 

the results reported in Table 4.6.
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Table 4.2: Accuracy and precision of SNP estimation in mixture scenarios.

Censoring
n

/?ii =  
-2

MC mean and MC standard deviation
012 =  021 =  022 =  70 =  7 l  =  

1 - 1 0  -0.71 -0.5
72 =  

1
2xWeibull 

10% 100
-2.03 0.90* -1.00 0.00 -0.72 -0.49 1.04
0.62 0.57 0.06 0.07 0.33 0.49 0.53

RC 500 -2.01 1.00 -1.00 0.00 -0.69 -0.52 1.00
0.21 0.20 0.03 0.02 0.15 0.20 0.25

50% 100
-2.31* 0.99 -0.94* -0 .01* -0.33* -0.93* 1.10
1.03 0.84 0.20 0.10 0.98 1.13 0.80

RC -2.03 0.97 -0.99* 0.00 -0.66 -0.56* 1.02500 0.41 0.30 0.06 0.04 0.37 0.41 0.30

RC+ 100
-2.52* 0.95 -1.00 0.00 -0.65* -0.65* 1.05
2.61 0.68 0.08 0.08 0.44 0.60 0.61

IC 500 -2.02 0.97 -1.00 0.00 -0.72 -0.51 1.01
0.28 0.25 0.03 0.03 0.19 0.25 0.25

2 xSNPN 

10% 100
-2.03 1.00 -0.99 -0.03* -0.73 -0.53 1.11*
0.45 0.47 0.18 0.17 0.35 0.53 0.59

RC 500 -2.00 1.02 -1.00 0.01 -0.72 -0.49 1.03
0.16 0.16 0.06 0.06 0.16 0.24 0.23

50% 100
-2.05 1.06 -0.96 -0.06* -0.62 -0.60* 1.13*
0.55 0.60 0.48 0.33 0.64 0.69 0.66

RC 500 -1.99 1.00 -1.00 0.00 -0.70 -0.50 1.03
0.18 0.20 0.08 0.08 0.20 0.25 0.26

* C+ 500 -2.25* 1.01 -0.99 -0.01 -0.69* -0.53* 1.05*
1.12 0.29 0.07 0.08 0.14 0.21 0.22

2 x logmixturenorm 
-1.99inn 1,77 0.99 -1.00 0.00 -0.73 -0.51 1.09*

10% 0.37 0.54 0.07 0.07 0.38 0.47 0.58

Rc 500 -2.04* 0.99 -1.00* 0.00 -0.67* -0.55* 1.01
0.16 0.15 0.02 0.02 0.15 0.22 0.24

50% 100
-2.0 7 0.98 -0.93* 0.01 -0.58* -0.75* 1.06
0.52 0.56 0.23 0.09 0.79 0.89 0.82

RC 500 -1.99 1.02 -0.99* 0.00 -0.69 -0.52 1.05*
0.19 0.19 0.02 0.03 0.29 0.33 0.28

RC+ 100
-2.08* 1.07 -0.96* 0.00 -0.68 -0.58* 1.07
0.58 0.56 0.07 0.06 0.43 0.53 0.56

IC 500 -2 .11* 1.00 -0.96* 0.00 -0.59* -0.64* 1.01
0.29 0.18 0.03 0.02 0.18 0.22 0.23

Note: RC is right censoring, IC is interval censoring.
*: true parameter is not contained in the interval MC mean ±  1.96 x (MC SD) fy/rn, m  =  200.
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Table 4.3: Relative efficiency (ratio of MC MSE) between mixture Weibull and SNP results.

Relative MSE Weibull /  SNP and bootstrapped SE
Censoring n @n @12 @21 @22 7o 7i 72

2xWeibull

100
10% RC

500

0.66 0.94 0.92 0.86 1.02 1.02 1.00
0.06 0.07 0.05 0.06 0.04 0.02 0.01
0.93 0.97 0.98 0.94 1.02 1.02 1.00
0.03 0.03 0.02 0.02 0.02 0.02 0.00

100
50% RC

500

0.75 0.72 0.86 0.82 0.93 0.94 0.99
0.07 0.06 0.13 0.07 0.10 0.09 0.04
0.90 0.86 0.86 0.92 0.83 0.86 1.00
0.04 0.05 0.07 0.04 0.09 0.07 0.01

100
RC+IC

500

0.97 0.82 0.70 0.78 0.90 0.96 1.00
0.02 0.09 0.08 0.05 0.05 0.05 0.03
0.76 0.87 0.93 0.95 0.93 0.95 0.97
0.16 0.03 0.03 0.02 0.03 0.03 0.01

2 xSNPN

100
10% RC

500

0.92 1.0 2 - 1.44 1.46 0.92 0.96 0.97
0.12 0.19 0.14 0.15 0.05 0.02 0.02
1.38 1.47 2.11 1.75 1.00 0.99 0.97
0.11 0.14 0.21 0.17 0.01 0.01 0.01

100
50% RC

500

1.08 0.98 0.99 1.29 0.66 0.82 0.90
0.13 0.12 0.22 0.19 0.11 0.11 0.05
1.82 1.46 4.59 2.41 0.95 0.99 1.02
0.16 0.14 0.59 0.24 0.05 0.03 0.02

RC+IC 500 0.40 0.84 2.09 1.24 0.92 0.98 0.97
0.08 0.11 0.20 0.10 0.04 0.02 0.01

2xlogmixturenorm

100
10% RC

500

1.95 1.19 5.02 4.88 1.24 1.15 1.06
0.23 0.12 0.84 0.99 0.08 0.08 0.03
5.21 2.29 10.46 10.26 1.45 1.10 1.10
0.63 0.23 1.37 1.53 0.14 0.09 0.03

100
50% RC

500

1.60 1.38 2.84 6.68 1.70 1.56 1.10
0.17 0.15 0.83 1.27 0.16 0.14 0.05
4.26 2.95 197.14 13.59 5.56 4.59 1.18
0.50 0.36 27.15 2.26 0.70 0.57 0.09

100
RC+IC

0.93 1.18 6.74 6.06 0.96 0.95 1.08
0.13 0.14 1.00 0.93 0.07 0.07 0.04
0.98 1.81 2.84 7.52 0.69 0.74 1.09500 0.27 0.22 0.33 0.93 0.06 0.05 0.04

103

Note: RC is right censoring, IC is interval censoring.
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Table 4.4: Relative efficiency (ratio of MC MSE) between mixture lognormal and SNP results.

Relative MSE Lognormal /  SNP and bootstrapped SE
Censoring n /?n P u  P21 P22 70 71 72

2xWeibull

100
10% RC

500

0.84 1.06 1.26 1.16 0.96 0.99 0.99
0.06 0.09 0.12 0.10 0.04 0.03 0.02
1.19 1.55 1.44 1.52 0.95 0.96 1.04
0.10 0.14 0.12 0.13 0.05 0.04 0.03

100
50% RC

500

1.19 0.90 1.11 1.10 1.24 1.14 1.03
0.12 0.10 0.11 0.15 0.11 0.08 0.06
2.04 1.43 1.74 1.28 2.14 1.81 1.05
0.26 0.16 0.35 0.14 0.43 0.30 0.05

100
RC+IC

500

0.90 0.84 0.87 0.96 0.84 0.89 1.01
0.02 0.12 0.10 0.08 0.04 0.04 0.04
0.77 0.95 1.32 1.25 0.84 0.91 0.93
0.16 0.06 0.11 0.09 0.04 0.04 0.02

2 x SNPN

100
10% RC

500

0.74 0.64 2.16 2.11 1.00 0.98 0.96
0.06 0.10 0.25 0.24 0.04 0.02 0.02
0.97 0.91 3.63 2.84 1.01 1.00 0.99
0.03 0.04 0.40 0.27 0.01 0.01 0.01

100
50% RC

500

0.71 0.64 1.40 1.90 0.70 0.81 0.93
0.07 0.05 0.25 0.30 0.10 0.08 0.05
0.96 0.98 8.65 4.47 0.96 1.01 1.03
0.02 0.03 1.15 0.51 0.03 0.01 0.01

RC+IC 500 0.83 0.73 1.88 1.53 0.93 0.99 0.99
0.09 0.09 0.20 0.14 0.04 0.02 0.01

2xlogmixturenorm

100
10% RC

500

0.87 0.59 4.39 4.38 1.19 1.13 1.03
0.09 0.07 0.72 0.85 0.07 0.06 0.03
1.21 1.11 9.62 11.44 1.44 1.08 1.07
0.14 0.07 1.41 1.58 0.15 0.09 0.03

100
50% RC

500

0.83 0.77 0.67 4.22 1.05 1.00 1.12
0.08 0.09 0.23 0.86 0.08 0.08 0.06
1.26 1.04 22.65 9.63 1.43 1.35 1.09
0.10 0.06 3.06 1.58 0.13 0.12 0.05

100
RC+IC

500

0.68 0.87 5.32 5.82 0.88 0.91 1.08
0.09 0.09 0.71 0.91 0.06 0.06 0.04
0.43 0.90 2.12 7.69 0.62 0.72 1.06
0.10 0.07 0.25 0.99 0.04 0.04 0.03

Note: RC is right censoring, IC is interval censoring.
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Table 4.5: Accuracy of covariate-dependent CIF estimates, as measured by the relative MCSE (ratio of 
MCSE) of the best SNP fits compared to alternative models in mixture scenarios.

Censoring n

Relative MCSE and bootstrapped SE 
Weibull/SNP Lognormal/SNP FG/SNP CSH/SNP

2 x Weibull

10% RC

50% RC

RC+IC

100

500

100

500

100

500

2 xSNPN

10% RC

50% RC

100

500

100

500

RC+IC 500 

2 x logmixturenorm 

100
10% RC

50% RC

RC+IC

500

100

500

100

500

CIFi c i f 2 CIFi c i f 2 CIFy c i f 2 CIFi c i f 2

0.95 0.97 0.96 1.09 1.25 5.25
0.01 0.01 0.01 0.02 0.03 0.25 - -

0.99 0.99 1.09 1.50 2.98 22.10 - -

0.00 0.00 0.02 0.04 0.14 1.40 - -
0.97 0.93 0.94 1.06 1.04 1.54 - -

0.01 0.01 0.02 0.03 0.02 0.07 - ■ -

0.98 0.98 1.07 1.61 2.22 4.13 - -

0.01 0.01 0.02 0.06 0.07 0.19 -

0.95 0.97 0.96 1.09 - - - -

0.01 0.01 0.01 0.02 - - - -

0.99 0.99 1.09 1.50 - - - -

0.00 0.00 0.02 0.04 - - -

1.00 1.09 0.98 1.26 1.10 1.51 1.08 1.18
0.01 0.02 0.01 0.04 0.03 0.05 0.02 0.03
1.03 1.44 1.00 2.67 2.00 4.41 1.8.5 1.58
0.00 0.04 0.00 0.11 0.07 0.19 0.06 0.05

0.99 1.07 0.94 1.41 1.15 1.22 1.12 1.23
0.01 0.04 0.02 0.07 0.04 0.05 0.04 0.05
1.06 1.75 1.00 4.76 2.66 2.01 2.41 1.93
0.01 0.06 0.00 0.23 0.12 0.08 0.10 0.07
0.98 0.98 1.07 1.61 - - -

0.01 0.01 0.02 0.06 - - - -

1.04 1.52 0.97 1.53 1.42 2.00 1.15 1.22
0.02 0.03 0.02 0.04 0.04 0.07 0.03 0.04
1.30 3.15 1.05 3.27 4.00 5.59 2.33 1.99
0.03 0.10 0.02 0.11 0.18 0.23 0.09 0.07

1.05 1.66 0.99 1.51 1.26 1.41 1.18 1.28
0.02 0.06 0.02 0.06 0.04 0.05 0.03 0.05
1.28 4.15 1.02 3.79 3.32 3.25 2.60 2.32
0.03 0.12 0.02 0.10 0.12 0.10 0.09 0.07

1.00 1.09 0.98 1.26 - - - -

0.01 0.02 0.01 0.04 - - - -

1.03 1.44 1.00 2.67 - - - -

0.00 0.04 0.00 0.11 - - -

Note: RC is right censoring, IC is interval censoring. not available.
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Table 4.6: Observed coverage of asymptotic 95% confidence intervals for the SNP estimates.

Censoring n SNP method

fin P12 /?21 # 2 2 7o 7i 72

2xWeibull 

10% RC 100
500

71.0
94.5

70.5
93.5

94.0
94.0

86.5
96.0

95.5
95.5

98.0
98.0

97.0
94.0

50% RC 100
500

57.5
87.0

68.0
89.0

72.0
96.0

85.0
94.5

80.0
92.0

81.5
92.0

93.5
93.0

RC+IC 100
500

63.0
93.5

62.5
91.5

78.0
93.5

75.5
94.0

85.5
92.0

92.0
94.5

93.0
93.5

2 x SNPN 

10% RC 100
500

70.0
92.5

69.0
95.0

88.5
92.0

88.0
94.0

92.5
92.5

93.0
91.0

92.5
93^5

50% RC 100
500

63.5
93.0

59.5
93.5

81.0
95.0

79.5
96.0

91.5
94.0

95.5
93.5

94.0
96.5

RC+IC 500 89.0 88.5 94.5 93.5 96.5 93.0 93.5

2xlogmixturenorm 
ino/ __  100 75.5 
10/0 RC 500 90.5

69.0
92.0

86.5
88.0

89.0
92.5

98.0
95.0

96.5
92.5

95.0
93.0

50% RC 100
500

72.0
90.0

69.5
88.5

89.0
96.0

89.5
87.0

86.0
93.0

86.5
92.5

91.5
94.0

RC+IC 100
500

71.0
92.0

71.0
91.5

83.0
62.0

91.5
93.0

89.0
86.5

93.5
90.5

93.0
94.0

Note: RC is right censoring, IC is interval censoring. 
Estimated standard error of Monte Carlo coverage entries «  1.5%.

Mixture scenarios with interval- and right-censoring

From Table 4.2, compared to settings with only 10% right-censored data, the introduction of interval 

censoring to these settings generally increased bias and variability in the estimates of all regression 

parameters. Marked differences were observed in settings with n — 100.

Table 4.3 shows that in mixture Weibull settings MSEs of all parameter estimates by the mixture 

Weibull method are significandy smaller than those from the SNP method. In these settings, most 

SNP estimates also had larger MSE than those from the mixture lognormal method, especially the 

multinomial logistic parameters. This was also the case for the 2 x SNPN scenarios with n =  500, 

where both parametric mixture methods outperformed the SNP method in terms of MSE except for 

the estimates of 21 and $2 2 - In 2xlogmixturenorm scenarios, SNP estimates for the AFT parameters 

were comparable to or much better than those from the mixture Weibull method. However this did 

not hold for the AFT parameters of the first competing risk when comparing SNP method to mixture 

lognormal method. SNP estimates of multinomial logistic parameters had larger MSE than those from 

both mixture Weibull and mixture lognormal methods.
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In terms of MCSE (Table 4.5), the mixture Weibull method was slightly better than the SNP 

method in mixture Weibull settings, whereas the advantage of SNP method over the mixture lognor

mal method was only noticeable for the setting with large sample size. For the 2 x SNPN setting with 

n =  500, SNP method were comparable to or more favorable than both parametric mixture methods. 

The most pronounced benefit of the SNP method was observed in the 2xlogmixturenorm setting with 

n — 500.

Similar to the simulation of mixture scenarios with only right-censoring, noticeable undercoverage 

of SNP estimates was also observed for interval-censored data with the lower small sample size of 

n =  100. Increasing sample size improved the coverage, in some cases up to the nominal level, but 

some marked undercoverage could still be seen.

Fine and Gray scenarios and CSH scenarios

From Table 4.7, there was in general no clear benefit of using SNP method over the parametric mixture 

methods with respect to accuracy of covariate-dependent CIF estimates. This is not unexpected as 

Figures 4.5.5 and 4.5.4 indicate that the true CIFs from the Fine and Gray, and Cox CSH scenarios 

appear to be well approximated by simple parametric curves.

For the Fine and Gray scenarios, the Fine and Gray method was slighdy better than the SNP 

method in estimating the first CIF, which exactly followed a Fine and Gray model. However it lost to 

SNP method in estimating the other CIF. In these settings, MCSEs from SNP CIF estimates were often 

smaller than those from the Cox CSH method. Finally in CSH scenarios, the Cox CSH method tended 

to surpass the SNP method. The SNP method was slightly better than the Fine and Gray method in 

estimating the first CIF, whereas the opposite was true for the estimation of the second CIF.
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Table 4.7: Accuracy of covariate-dependent CIF estimates, as measured by the relative MCSE (ratio of 
MCSE), of the SNP model compared to alternative models in Fine and Gray and CSH scenarios.

Relative MCSE
Bootstrapped SE

Censoring n Weibull/SNP Lognormal/SNP FG/SNP CSH/SNP

CIFi c i f 2 CIFi c i f 2 CIFi CIF2 CIFi c i f 2

0.97 1.00 0.96 0.95 0.94 1.31 1.08 1.16
0.01 0.00 0.01 0.00 0.02 0.01 0.04 0.01
1.00 1.00 1.08 0.95 0.94 1.37 1.97 1.18
0.00 0.00 0.02 0.00 0.01 0.01 0.08 0.00

0.95 1.00 0.86 0.89 0.88 1.16 0.93 1.11
0.02 0.01 0.02 0.01 0.03 0.02 0.03 0.01
0.94 1.00 1.04 0.89 0.93 1.26 1.31 1.15
0.01 0.00 0.03 0.00 0.02 0.01 0.04 0.01

0.98 1.00 1.03 0.94 0.98 1.10 0.98 1.01
0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01
1.00 1.00 1.18 0.94 1.05 1.11 1.04 1.02
0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00
0.93 0.99 0.97 0.86 0.79 1.03 0.84 1.00
0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01
0.99 1.00 1.31 0.84 0.86 1.09 0.95 1.02
0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.01

Fine and Gray 

100
10% RC

50%RC

CSH 

10%RC

50%RC

500

100

500

100
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4.5.8 Summary

Simulation results for regression are more difficult to interpret and less in favour of the SNP method 

compared to the results for CIF estimation reported in Chapter 3. Nevertheless, some advantages 

of the SNP approach compared to alternative methods were observed: First, for mixture scenarios, 

parameter estimates can be substantially more precise than results from parametric mixture models 

if the truth does not follow a simple parametric model. Second, covariate-specific CIF predictions 

based on SNP models were overall competitive compared to all investigated alternative parametric 

and semi-parametric models. Indeed, compared to each alternative model, performance of the SNP 

model was substantially better for at least one simulation scenario and never dramatically worse.

Asymptotic confidence intervals showed clear undercoverage for many parameter estimates across 

all mixture settings for a small sample size of n =  100. This indicates unreliability of standard MLE- 

based inference in cases with sample size (and censoring proportions) of similar magnitude. Never

theless, the simulation also shows that with a five-fold increase in sample size one could potentially 

rely on standard MLE-based inference.
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4.6 Model checking in com peting risks

From the previous sections, the final fit from a SNP model is a parametric model. Accordingly the 

validity of this final model can be informally verified by means of diagnostic approaches for paramet

ric competing risks models. Despite a wealth of research on model diagnostics for standard survival 

analysis, see Collett (2003) for a summary, to my knowledge there has not been any systematic dis

cussion on model diagnostics for competing risks models. Thus, in this section a short exposition of 

model diagnostics for competing risks models will be given.

4.6.1 Model assumptions in competing risks

To begin with, the basic assumptions for parametric competing risks model with time-independent 

covariates are:

1. The competing risks process underlying the observed data is adequately described by the para

metric model.

2. The observations are independent of each other.

3. Conditional on covariates X, the censoring (truncation) mechanism is independent of the com

peting risks process.

Assumption 2 is often not examined as it is implied by the context of data collection but can be in

formally checked by plotting residuals against a (measurable) factor that is suspected of inducing 

some dependency between the observations e.g. inclusion times of the subjects. In well-conducted 

studies with a pre-defined follow-up schedule and little loss to follow-up, assumption 3 is automatic

ally fulfilled. Assumption 1 can be formally and informally checked via statistical tests and graphical 

tools and is the main topic of this section. In what follows I shall mainly focus on right-censored data 

which will be followed by a brief discussion on extension to interval-censored data, whereas the case 

of left-truncation will not be covered.

4.6.2 Model checking for CIF estimation

If there are no or only a few categorical covariates, the appropriateness of a parametric model for 

the CIFs can be visually assessed by comparing the (stratum-specific) parametric CIF estimates to 

their nonparametric counterparts and corresponding point-wise 95%-confidence intervals. This can be 

supplemented with a test of the null hypothesis that the nonparametric CIF estimate is compatible with 

the fitted parametric model. If the test shows no statistical evidence for rejecting the null hypothesis 

and the graph also shows no discrepancy then one may confidently accept the chosen model.
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One option for such a test is to apply the method described in Hollander & Proschan (1979) 

for right-censored survival data to the situation of CIF estimation. Specifically, assume that there 

are two competing risks and that the relevant null hypothesis that the true CIF describing the data 

at hand (CIFi) has a known parametric form C l  Fie i-e. H0 : CIFi  (•) =  C l  Fie (•)> let X  and 

Y  be the improper random variables with cumulative distributions given by CIFi  and C l  Fie and 

point masses at time infinity of size 1 -  CIFi(oo) and 1 -  CIFie(oo), respectively. Under H0, 

j t max c j ' p^y^dciFie iy)  = \ C I F l e (tmax),  where £max is the maximum observed event time. Thus, 

under II0
^ m a x  1

C I F g  ((„«) I CIFi(y)dCIFie(y)  = -

which can also be interpreted as P (X < Y \ X  < £max, Y  < tmax). Hence the appropriate test statistic 

is
ftmax _____

Ptmax = CIF iq (tmax) I C I F M d C I F ^ y )  (4.6.1)
Jo

where CIFi  is the nonparametric estimator for CIFi  and C l  Fie is the parametric CIF estimate from 

the model being diagnosed. If the uncertainty in estimating C l  Fie is ignored, i.e. it is assumed to be 

a priori known and fixed, then Ctmax has an asymptotic normal distribution Af( 1/ 2, a) under H0 and a 

consistent variance estimator is available as shown in Appendix B.l. To avoid the complex estimation 

of the variance of Ctmax, a p-value can also be derived by following the resampling technique of Lin 

(1997).

As acknowledged in Hollander & Proschan (1979), one limitation of this test is that it is not 

sensitive to alternatives leading to P ( X  < Y \ X  < imax, Y  < tmax) = Moreover, the consequences 

of ignoring the fact that the parametric model itself is also estimated from the observed data in the 

derivation of the asymptotic distribution are somewhat unclear, though the test might still have value 

as an informal tool supplementing the graphical analysis. A possible work-around for this latter 

problem is to bootstrap the test statistic by repeatedly fitting both the parametric and nonparametric 

models to bootstrap samples to obtain a more accurate estimate of the standard error of the test 

statistic. As this approach would be computationally intensive and its validity is difficult to establish 

formally, I have not pursued it further.

4.6.3 Diagnostics for models based on mixture factorization

When there is no censoring, one can use separate diagnostic procedures for each of the J  + 1 com

ponent models in a competing risks model based on the mixture factorization: The J  AFT models for 

P(T  | D = j )  and the multinomial logistic model for P(D).  This offers the use of standard methods 

available for each submodel. Note that the problem at hand is not right-censoring per se, as standard
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model diagnostics for AFT models can cope with right-censoring, but the fact that the event type D is 

also unknown for right-censored observations.

To circumvent this problem, I suggest the following imputation-based approach: For each right- 

censored observation (with censoring time icens), impute the event type D by drawing it from the 

multinomial distribution with cell probabilities P (D = j  | T  > tcens] X ) , j  = 1 , . . . ,  J ,  which can be 

derived from the fitted model. Then all observed and imputed event types are used for diagnosing the 

multinomial logistic model. In addition, the AFT model for each event type j  is diagnosed by using 

observed event times of type j  and right-censored times from observations with imputed event type j .  

There are, however, some issues with the imputation:

1. It makes the model potentially look too good as one simulates from the model, which one wants 

to check.

‘ 2. Diagnostic plots might be affected by the specific random draw, i.e. they might look different if 

the random imputation is repeated.

These issues can be informally addressed by plotting imputed observations in a different colour in 

all diagnostic plots and by repeating these plots for multiple imputed data sets. An additional issue 

is that when censoring is heavy, the diagnostic plots are dominated by the imputed points. How

ever, as discussed Section 4.4, heavy right-censoring is often associated with a short follow-up dur

ation relative to event times which causes identifiability problems for models based on the mixture- 

factorization model. Thus, in this case one should consider abandoning any model based on the 

mixture-factorization altogether.

Model diagnostics for multinomial logistic models for P(D = j)

When P(D) is modelled by a multinomial logistic model, diagnostic tools designated for this type of 

model as discussed in Agresti (2002) can be employed. In the current setting, for each competing 

event j ,  the multinomial setting is simplified to a binomial setting by considering only P(D = j , 7 ; X) 

and P(D ^  j, 7 ;X), where 7  and X denote, respectively, the regression parameters and covariates. 

When there are only a few categorical covariates, subjects having the same covariate levels can be 

grouped into one unit yielding data of the form {yij,ni,Xi}i=:1 m, m < n, where n is the sample 

size, to is the number of groups, and yij is the number of subjects having event type j  amongst the rij 

subjects with the same covariate values Xj. Then one can consider the following Pearson-type residual

 _______ Vij ~  rijP (D =  j, 7; X j )________
e y  v A x P  ( D  =  7 ; X j )  |1  -  P  ( D  =  j ,  7 ; X i ) ]

(4.6.2)
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For large group size n*, has an approximate standard normal distribution when 7 is estimated from 

a correct model. Accordingly a plot of these residuals against the respective linear predictors should 

show a random scatter around zero without trends for extreme outliers.

For the situation of more than 2 event types (J  > 2) interpretation of Pearson residuals is more 

difficult, as the proposed approach generates multiple sets of Pearson residuals all of which depend 

on the full set of regression coefficients of the multinomial logistic model. Moreover, as the proposed 

approach involves imputing the event type for right-censored data, the proportion of imputed data as 

well as the group size n* should be visually coded in the plot

One complication of interpreting plots based on (even in binomial logistic regression) is that 

when there are too many strata or when X* has continuous elements (causing n* =  1) the residuals 

plots are difficult to interpret.

Model diagnostics for the AFT models for P(T | D =  j)

For each event type j ,  the parametric model for P(T \ D = j )  can be diagnosed by using all subjects 

observed to have that event type as well as censored observations with imputed event type j ,  who are- 

treated as right-censored. These can be regarded as an approximate random right-censored sample 

from the conditional distribution of T  \ D =  j ,  a proper survival time with a proper survival function 

Sj(t) =  P(T  > t | D  =  j).  In the remainder of this section, it is assumed that the event type of 

interest is j .  Let nj be the number of subjects with observed event type j  plus censored subjects 

whose imputed event type is j;  in other words those who were destined (possibly by imputation) to 

experience event type j .  The observed event- or censoring times for those subjects are denoted by

tjit i — lj • • • 1 Tlj•

A basis for assessing the overall fit of a model for P(T  \ D = j ) is the Cox-Snell residual. For an 

observation at time t j i , i  — l , . . . , n j ,  according to Section 7.1.2 of Collett (2003), Cox-Snell residuals 

are defined as

rcji =  (tji) (4.6.3)

Subscript i of the estimated survival function indicates its dependence on subject’s covariates i.e 

Sji (t) = Sji (t; Xji).  It is easy to see that regardless of the distribution of T, as long as T  is a valid ran

dom survival time then -  log S t  (T) always follows a unit exponential distribution (see e.g. Section

4.1.1 of Collett (2003) for a proof). Accordingly rc^,  i = 1, . . .  ,nj  becomes a random right-censored 

sample from a random variable U with a unit exponential distribution if Sji is a valid estimate for the 

survival function of the conditional time-to-event. Consequendy, -  log Su (rc6i) =  rc5i suggesting 

that if the model is correct, a plot of -  log Sj jM (rc^) vs. rcji} where S{jM (•) is the Kaplan-Meier
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estimator for the survival function of U based on rCji, should roughly resemble a straight line through

the overall goodness of fit of the relevant AFT model.

When an AFT model: log (T | D  =  j )  =  fij + X j f3j +  <jjCj (6), where Cj(8) means the distribution 

of ej is parametrized by 6, e.g. a SNP base density, is used

is the standardized residual. Thus rc^ = — log Se. ^  (rs^ ), where rSji has the form of “expected - 

observed outcome”.

To detect if under the fitted model any event times are unexpectedly large or small, plots of “mar-

gave theoretical discussions of martingale residuals in competing risks. By definition, martingale re

siduals are

where Sji — 1 indicates an event for the itft subject of those bound to have event type j  and Sji =  0 

means right-censoring. The corresponding martingale Mji is the difference between the counting 

process Nji(t), which counts the number of event over time for a subject deemed to have event type 

j ,  and the intensity process, which is the product of the conditional hazard \ r \ D = j  (t, 6, X ^) and the 

at risk process Yi(£). Specifically

Thus, rMji has the form of the difference between the observed and expected number of event for 

a subject in the interval (0, tji}. Moreover, it can be shown that asymptotically and r^ . , ,  I ^  i, 

are uncorrelated, and E  {tm^)  =  0. However, this residual is theoretically not symmetric as its range 

is (-oo, 1]. Thus, a symmetrized modification of the martingale residual called the deviance is used. 

This residual is defined as

the origin with unity slope. Any major and systematic deviation from the straight line might question

where, as mentioned in Section 7.1.1 of Collett (2003)

log t j i -  jlj - X j j j
rSji = ----------- :-------  —

°3
(4.6.4)

tingale” residuals vs. observed times or their ranks can be used. Chapter 7 in Andersen et al. (1997)

r  M ji  =  S j i  — r c ^ (4.6.5)

(4.6.6)

1 /9
rDji =  sgn (rMji) [-2  {rMji +  Sjt log (Sji -  rMji) }] (4.6.7)
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which is symmetrically distributed about zero. A (kernel) smoother can be used when plotting mar

tingale or deviance residuals against observed times to trace out systematic deviations or patterns.

Detecting non-linearity and interactions

Non-linearity can be informally assessed by plotting Pearson residuals (for tbe model for P(D )) or 

standardized residual rsdi (for the AFT models) against covariates given that right-censoring is ignor- 

able.

More formally, to gain insights into the functional form of a covariate for any regression model 

(including AFT or multinomial logistic models), one can investigate the estimated functional form 

obtained by including the respective covariate as a flexible function (such as a natural cubic spline 

with fixed degrees of freedom) rather than a simple linear term into the linear predictor.

To detect interactions of certain covariates in designated components of a model, following stand

ard likelihood setting, one can fit the model with these interactions in the chosen components and 

use Wald-type tests to verify the strength of the interactions. Alternatively, a likelihood-ratio test 

comparing the models with and without the interactions can also be used.

4.6.4 Diagnostics for competing risks models in general case

As competing risks modelling is a special case of multi-state modelling, it is expected that some dia

gnostic tools for multi-state models might be applicable to competing risks models. Titman & Sharpies 

(2010) proposed a summary residual based on comparing the observed and expected states at the ob

served time. However, this residual is driven by the labelling of the states which are the competing 

events in competing risks setting. Thus, such an approach could only be appropriate if there exists a 

natural ordering among the event types which is rare in practice.

Alternatively one can use a martingale-type residual. For right-censored competing risks data, the 

martingale residual for the ith subject and event type j  is

= I (fc = J) -  j  ' Xi (“' O'Xi) du (4-6'8)

where Aj i t i )  =  Jq Xj (u, 6, X^j  du is the estimated cumulative cause-specific hazard for event type j .  

r^ . .  is the difference between the observed and expected number of event type j  over (0, <*]. To avoid 

confusion with the martingale residual for the conditional time-to-event sub-models introduced 

earlier, here the subscript for individual (z) is put before the subscript for competing event (j) and a 

tilde is used in the notation Mij.  This means for any event type j ,  r^ . .  is computed for all subjects.
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r^. .  comes from the martingale

Mij (t) =  N{j (t) — f tl Y{ (u)Xj (u, 0, Xj) du (4.6.9)
Jo

where N{j(t) counts the number of event type j  over (0, i] for the Ith subject with the corresponding 

intensity process Yi(t)\j  (t , 0, X*) dt. When the fitted model is correct Mij and Mij for i , j  ^  I, k are 

orthogonal martingales Gray (1988). Thus asymptotically, and are uncorrelated. As before, 

due to martingale property E  is asymptotically zero. One way to use these residuals is, for

each competing risk j ,  plot against the observed times or the respective ranks. When the fitted

model is correct, smoothers for all plots should be close to the zero line.

As mentioned before, martingale residuals are in general not symmetrically distributed. Thus,

“deviance residuals” should be used, and are defined as

rDij =  s9n ( r ^ y ) [ -2  + 1 (£ =  j ) log ( i (Si =  j )  -  r ^ . .)  }] '  (4.6.10)

4.6.5 Possible extension to interval-censoring

As mentioned in Section 3.6.2, nonparametric CIF estimates no longer give a unique nonparametric 

estimate for the CIF in the presence of interval-censoring but upper and lower bounds. Nevertheless, 

in the case of no covariates or a low number of categorical covariates, it is still possible to visually 

compare the parametric fits with the corresponding estimated CIF bounds generated by the method 

of Maathuis (2003).

For proportional hazards models for survival data, Farrington (2000) proposed an interesting ex

tensions of residuals for right-censored survival data to interval-censoring and recommended the us

age of martingle-type residuals in this context. However, to my knowledge, this approach has not been 

generalized to AFT survival models with interval-censoring where the properties and applicability of 

its martingale-type residuals are less clear. Hence I also did not pursue this approach further in the 

present competing risks setting.

4.6.6 Influential diagnostic for competing risks models

General methods for identifying influential observations in models estimated by MLE can also be 

applied in the competing risks setting. For reference, the key results are briefly summarized here and 

are based on Section 3.1 of Titman & Sharpies (2010). For a broader discussion which also elaborates 

on assessing the influence of a subset of observations on a subset of parameters, I refer to Escobar & 

Meeker (1992).
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Individual influence on the whole set of parameters

Let 0 be the parameter vector in the chosen parametric model and 0, 0 ^  be the MLEs of 0 for the full 

data set with n observations and the data set without the ith observation, respectively. To assess the 

impact of removing the ith observation on the estimate of 0, a natural measure is the Mahalanobis 

distance between 0^  and 0 i.e.

■ (o(i)- § y  l ( § )  (% )-< ?) (4.6.11)

where I  (§̂ j is the observed Fisher information evaluated at the MLE. Of note, this quantity can also be 

motivated as a first-order Taylor approximation to 2 | l  ^  -  L (% )) j  where L is the log-likelihood 

function of the full data set. To avoid the computational intensity involving the calculation of this 

quantity, one can use the following approximation

( % ) - « ) T / ( « ) ( % , - « )  /-*(<?) i* (e .X i) (4.6.12)

where Ui (§, X* J is the score vector or the gradient evaluated at the MLE for the ith observation. From 

Section 3 of Cain & Lange (1984) this is due to

« / - ' ( « )

This measure of influence can be plotted against the observation number or other quantities of in

terest, e.g. the observed event or censoring time.

Individual influence on a specific parameter

Let 0j and be the estimates of the }th parameter in the model from the full data set and the 

data set without the ith subject, respectively. The obvious measure of influence of this subject on the 

estimate of 0j is 0 j ^  -  0j which, according to the previous section, can be approximated by the j th 

element of the vector 7_1 ^  Ui (§, .

4 .7  Applications

In this section, the regression model based on SNP densities formulated in Section 4.1 is applied to 

the tuberculous meningitis and cryptococcal meningitis data sets introduced in Chapter 3. As both 

data sets are from randomized clinical trials, I first studied the effect of the intervention as the sole 

covariate on both the marginal event probabilities and the conditional time-to-event distributions 

of all competing risks. In a second step, additional baseline covariates were added to the models.
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Uncertainty was quantified by 95% confidence intervals which were calculated by two alternative 

methods: a) using approximate “ad hoc” asymptotic inference as described in Section 3.4, b) using 

basic bootstrap confidence intervals where, as in Zhang & Davidian (2008), the base density and 

polynomial degrees where also re-estimated for each bootstrap sample.

As the data set used in the tuberculous example has only right-censoring, diagnostic methods for 

parametric competing risks model introduced in Section 4.6 are also used to assess the fitted SNP 

model, once regarded as parametric model.

4.7.1 Initiation of antiretroviral therapy (ART) in HIV-associated tuberculous 

meningitis (TBM)

As described in Subsection 3.7.1, the outcome of interest for this data set is the time, measured in days, 

to first neurological event (first competing risk) or prior death (second competing risk). Treatment 

effect in the simple regression model is represented by a binary covariate with two levels: immediate 

ART and delayed ART (“placebo"). Parameter estimates from a SNP CIF-based regression model which 

included treatment as a covariate for all sub-models are shown in Table 4.8. Confidence intervals 

based on the Hessian matrix of the log-likelihood function (i.e. by “ad hoc” asymptotic inference) 

were narrower than bootstrap based confidence intervals. There was no evidence that treatment 

affects any component of the competing risks process. This is in accordance with the result of the 

IWD-based randomization tests for equality of the CIFs reported in Table 3.14 which also lead to large 

p-values. Finally, an alternative analysis which fitted Fine and Gray models to each competing event 

separately also showed that treatment did not significantly affect the absolute risk of either competing 

events (p-values are 0.94 for neurological event and 0.57 for prior death)

Table 4.8: Estimates of regression coefficients and and corresponding confidence intervals for the 
model with treatment as the only covariate.

Estimate8 “Asymptotic” 
SE

“Asymptotic”
95%-CI

Bootstrap
SE*

Bootstrap
95%-CI*

Probability of D =  2 vs. D = 1
- Immediate ART: yes -0.20 0.29 (-0.77, 0.38) 0.33 (-0.91, 0.38)
Conditional time-to-event distribution for T  | D =  1
- Immediate ART: yes 0.23 0.27 (-0.31, 0.76) 0.29 (-0.42, 0.77)
Conditional time-to-event distribution for T  \ D = 2
- Immediate ART: yes 0.21 0.22 (-0.21, 0.63) 0.34 (-0.52, 0.89)

SE: standard error, Cl: confidence interval, D — 1: neurological event, D = 2: prior death.
$ log-odds ratio for D — 1 in the first model, log-acceleration factors for the conditional time-to-event models. *

based on 1000 bootstrap samples.

As shown in Figure 4.7.1, CIF estimates implied by the simple regression model and the nonpara-
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metric estimates are relatively close to each other. An application of the informal test presented in 

Section 4.6.2 to assess whether the observed data is compatible with the parametric fit implied by the 

regression model also lead to large p-values (p > 0.05 for all 4 CIFs).

Figure 4.7.1: CIF for the time to neurological even and one minus CIF for time to prior death by 
treatment arm.

Immediate ART Deferred ART

d
0 3 6 9 12

Months since randomization

No. at risk 127 44 30 28 14

~3 6 9
Months since randomization

46 39 32No. at risk 126

  SNP-C IF 1  NP-CIF 1   SNP-CIF 2  NP-CIF 2

Event type 1: Neurological event. Event type 2: Prior death.
SNP-CIF: SNP estimate of the CIF based on a regression model including treatment only.
NP-CIF: nonparametric estimate of the CIF (with 95%-pointwise confidence intervals).

The baseline TBM grade is considered a strong predictor of outcome in patients with TBM with 

higher TBM grade associated with worse outcome (Torok et al. (2011)). A regression model which 

included TBM grade in addition to treatment for all sub-models is summarized in Table 4.9. As 

for the simple regression model, the treatment assignment does not significantly affect any of the 

regression models after adjustment for TBM grade. This is not unexpected since randomized treatment 

assignment was stratified by baseline TBM grade.

Compared to baseline TBM grade I having TBM grade III was associated with a significantly lower 

marginal probability of experiencing a neurological event. This is not surprising as a higher TBM 

grade is known to be strongly associated with higher overall mortality leading to a higher chance to
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die prior to manifestation of any neurological events. Moreover, a more severe TBM grades seems to 

accelerate the conditional time to both prior death and first neurological event with a more dramatic 

effect on the conditional time to prior death. However, these effects did not reach statistical signi

ficance according to bootstrap-based confidence intervals (which were considerably wider than their 

“asymptotic” counterparts).

Table 4.9: Estimates of regression coefficients and 95%-CIs from the multiple regression model.

Estimate8 “Asymptotic”
SE

“Asymptotic”
95%-CI

Bootstrap Bootstrap 
SE* 95%-CI*

Probability of D = 2 vs. D =  1
- Immediate ART: yes -0.27 0.31 (-0.87, 0.34) 0.38 (-1.11, 0.36)
- TBM grade 2 (vs. 1) -0.82 0.45 (-1.69, 0.05) 0.66 (-2.30, 0.23)
- TBM grade 3 (vs. 1) -1.61 0.45 (-2.50, -0.73) 0.93 (-3.76, -0.60)
Conditional time-to-event distribution for T \D  = l
- Immediate ART: yes 0.29 0.30 (-0.30, 0.87) 0.50 (-0.56, 1.38)
- TBM grade 2 (vs. 1) -0.37 0.37 (-1.09, 0.35) 0.61 (-1.12,1.32)
- TBM grade 3 (vs. 1) -0.22 0.39 (-0.99, 0.54) 0.66 (-1.33, 1.30)
Conditional time-to-event distribution for T \D  = 2
- Immediate ART: yes 0.16 0.14 (-0.11, 0.43) 0.44 (-0.62,1.14)
- TBM grade 2 (vs. 1) -1.08 0.20 (-1.47, -0.69) 1.33 (-2.96, 1.78)
- TBM grade 3 (vs. 1) -1.42 0.25 (-1.91, -0.93) 1.81 (-2.77, 3.72)

SE: standard error, Cl: confidence interval, D — 1: neurological event, D = 2: prior death.
® log-odds ratio for D — 1 in the first model, log-acceleration factors for the conditional time-to-event models. *

based on 1000 bootstrap samples.

Figure 4.7.2 compares the fitted SNP CIF for each stratum specified by treatment arm and TBM 

grade. This shows reasonable agreement between SNP and nonparametric CIF estimates with the 

former almost always within the 95%-CI of the nonparametric estimates. One exception is the CIF of 

the time to death before experiencing any neurological event in TBM patients with grade 1 assigned to 

deferred ART in the early period where no neurological event was observed (though this could also be 

a problem of the 95% Cl for the nonparametric CIF estimate which is unreliable at those time points). 

This is also the only instance where the C'tmax test (Section 4.6.2) showed a significant result (p-value 

= 0.017).

Several of the diagnostic tools presented in Section 4.6 were also used to verify the final SNP fit by 

regarding it as a parametric model. To apply them, I first generated 9 imputed data sets where event 

types for right-censored observations were imputed according to the method discussed in Section 

4.6.3. For each of these data sets, plots of Pearson residuals (for the multinomial logistic model) and 

Cox-Snell and deviance residuals for each of the AFT models are displayed in Figures 4.7.3, 4.7.4 and 

4.7.5, respectively.

Cox-Snell and deviance residuals plots suggest that the final SNP model fits well across imputed
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data sets. Pearson residuals for the logistic regression model were substantially affected by the by 

imputation; especially for strata of small size or with high censoring. However, all Pearson residuals 

were small in absolute value. Finally, I calculated martingale residual as defined in Section 4.6.4 for 

each event type based on the respective cumulative cause-specific hazards implied by the SNP model 

and displayed them in Figure 4.7.6. These also show no noticeable evidence against the final SNP 

fit. In conclusion, according to the aforementioned diagnostic results, the fitted SNP model, once 

regarded as a parametric model, well-describes the data.
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Figure 4.7.2: CIF for the time to neurological event and one minus CIF for prior death by treatment 
arm and TBM-grade.
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Figure 4.7.3: Pearson residual for 9 imputed data sets for the multinomial logistic sub-model of the 
SNP competing risks model.
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As there are only two event types, the multinomial logistic sub-model reduces to binary logistic regression and 
Pearson residuals for the occurrence of event type 1 (neurological event) are shown.
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Figure 4.7.4: Cumulative hazard plots for 9 imputed data sets for the AFT sub-models of the SNP 
competing risks model.
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Figure 4.7.5: Deviance residual for 9 imputed data sets for the AFT sub-models of the SNP competing 
risks model.
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Figure 4.7.6: Martingale residual for the whole competing risks process (based on the cumulative 
cause-specific hazards implied by the SNP competing risks model).
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4.7.2 C om bination an tifungal therapy  for cryptococcal m eningitis

Here, I revisit the data set introduced in Subsection 3.7.2 which describes the interval-censored 

time to fungal clearance (beneficial event) or death prior to fungal clearance (competing event) 

in HIV-positive patients with cryptococcal meningitis. The main covariate is the treatment assign

ment (combination therapy of Flucytosine plus Amphotericin B versus Amphotericin B monother

apy). Other covariates of interest are the binary covariate indicating whether the baseline Glasgow 

comma score (GCS) was smaller than 15 and the continuous covariate of baseline fungal count (loglO- 

transformed). According to the clinical publication of the trial Day et al. (2013), both an impaired 

level of consciousness (GCS <15) and a higher baseline fungal count were independent predictors of 

6-month mortality. For simplicity, I included only observations with non-missing values for all cov

ariates in the regression models which comprise of 68/86 patients in the combination therapy group 

and 74/89 patients in the monotherapy group. The missing data was almost entirely due to missing 

baseline fungal counts and, due to the relatively large proportion of missing data, a more thorough 

analysis might be based on multiple imputation.

Results of the simple regression model are reported in Table 4.10, which shows that the combin

ation therapy significantly increases the marginal probability of reaching fungal clearance. This is in 

agreement with the results in Subsection 3.7.2 as well as the findings reported in Table 2 of Day et al.

(2013). It is less clear whether or not treatment really affects the conditional time to fungal clearance, 

and neither “asymptotic” nor bootstrap-based 95%-CIs showed a significant treatment effect on the 

conditional time to prior death. Moreover, it should be noted again that treatment effects for the
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conditional time to event distributions should be interpreted with caution because by conditioning on 

the event type they do not represent causal effects even in a randomized trial.

Table 4.10: Results from the simple regression model.

Estimate® ‘Asymptotic” “Asymptotic” Bootstrap Bootstrap 
SE 95%-CI SE* 95%-CI*

Probability of D = 2 vs. D = 1
- Combination therapy: yes 1.41
Conditional time-to-event distribution for T  | D
- Combination therapy: yes -0.55

Conditional time-to-event distribution for T  \ D
- Combination therapy: yes -0.69

SE: standard error, Cl: confidence interval, D = 1: fungal clearance, D = 2: prior death. 'f..''
® log-odds ratio for D '= 1 in the first model, log-acceleration factors for the conditional time-to-event models. *

based on 1000 bootstrap samples.

In Figure 4.7.7 I visually compared the estimated CIFs from separate SNP estimation (Subsection 

3.7.2) and the simple regression model. Unlike the previous example, there is a bigger disparity 

between the different SNP methods. In fact, the SNP fit of the simple regression model has I<i =  2 

and K 2 = 1, whereas the SNP models for the combination therapy group and the monotherapy group 

have fitted SNP distributions with, respectively {K\ =  1, K2 = 1) and (Kx =  1, I<2 =  0). All SNP 

models selected exponential base densities.

0.43 (0.57,2.25) 0.49 (0.48,2.43).] 9 /j
= 1

0.07 (-0.69,-0.40) 0.31 (-0.90,0.32)
, V-. O .

=  2 “  : 

0.46 (-1.59,0.20) 0.68 (;2 .31,0.49)
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No. at risk 
Ampho mono 
Ampho + flucytosine

Fungal Clearance

Days since randomization

Solid lines correspond to Amphotericin B monotherapy, dashed lines to Amphotericin B + Flucytosine
combination therapy.

Figure 4.7.7: CIF for the time to fungal clearance (blue for the simple regression model and black for 
separate CIF estimation) and one minus CIF for prior death (red for the simple regression model and 
gray for separate CIF estimation) by treatment arm.

All patients

Prior Death

Multiple regression results are displayed in Table 4.11: Estimates for the treatment effect were 

roughly comparable to the unadjusted analysis. Estimates for the other covariates showed the clin

ically expected direction (a higher marginal risks of prior death, slower conditional time to fungal 

clearance and faster conditional time to death for impaired consciousness and higher baseline fungal 

counts) but none of these effects except for GCS<15 for the conditional time to fungal clearance 

reached statistical significance according to the bootstrap confidence intervals. As in the previous 

example, all bootstrap-based confidence intervals were much wider than their “asymptotic” counter

parts.
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Table 4.11: Results from the multiple regression model.

f 128

Estimate^ “Asymptotic” ‘Asymptotic” Bootstrap Bootstrap 
SE 95%-CI SE* 95%-Ci*

Probability of D = 2 vs. D = 1
- Combination therapy: yes 1.82 0.49 ( 0.85, 2.79) 1.46 (-0.10, 3 53)
- GCS < 15: yes -1.41 0.53 (-2.45, -0.36) 1.50 (-2.97, 0 71)
- loglO baseline fungal count -0.46 0.24 (-0.93, 0.00) 0.33 (-0.90, 0 41)
Conditional time-to-event distribution for T  | D =  1
- Combination therapy: yes -0.39 0.08 (-0.55, -0.22) 0.24 (-0.62, 0 43)
-GCS < 15 : yes 0.38 0.10 (0.18, 0.58) 0.25 (0.07, 1 01)
- loglO baseline fungal count 0.17 0.04 (0.10,0.24) 0.11 (-0.14, 0 24)
Conditional time-to-event distribution for T  | D =  2
- Combination therapy: yes -1.05 0.48 (-1.99, -0.10) 1.14 (-3.60, 0 85)
- GCS < 15: yes -0.14 0.46 (-1.04, 0.76) 1.12 (-1.87, 1 87)
- loglO baseline fungal count -0.85 0.30 (-1.43, -0.26) 0.55 (-1.94, 0 11)

SE: standard error, Cl: confidence interval, D = 1: fungal clearance, D — 2: prior death, 
log-odds ratio for D — 1 in the first model, log-acceleration factors for the conditional time-to-event models.

based on 1000 bootstrap samples.

4.8  Discussion

This chapter first introduced a competing risks regression model by including covariates into the 

marginal and conditional models of the SNP method for CIF estimation proposed in Chapter 3. This 

offers a flexible way to describe covariate effects on the CIFs. The simulation studies demonstrated 

that the proposed model can lead to substantially more precise parameter estimates (compared to 

parametric models) and predictions (compared to parametric and semi-parametric models) when.the 

comparator models were not correctly specified. In contrast, estimates and predictions were only 

modestly improved by parametric and semiparametric models compared to my approach if data was 

simulated according to those alternative models. Moreover, to my knowledge, this is the only available 

flexible model for competing risks regression modelling in the presence of interval censoring where 

currently only parametric models have been proposed.

Despite these strengths, my SNP model carries the intrinsic weaknesses of a model based on the 

mixture factorization (4.1.1). First, the marginal component P{D) is poorly identified if the data in

cludes insufficient follow-up relative to the timing of events. The simulations in Chapter 3 showed that 

this identifiability issue does not seem to severely affect CIF estimation within the observed follow-up 

period. However, the problem is more severe here as one cannot restrict attention to the observed 

follow-up period because the regression coefficients on the marginal component model P(D ) describe 

the ultimate event state at time infinity. A practical implication is that the SNP model is primarily 

useful if P(D) is reasonably well identified from the data. The second limitation of using the mixture 

factorization is that it conditions on the future event status D  which makes interpretation of regres-
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sion coefficients difficult, especially for covariates affecting the conditional components. However, 

if regression coefficients are only allowed to affect the marginal component, interpretation is much 

easier because, as discussed in Section 4.3, covariate effects on the marginal component can directiy 

be translated to covariate effects on the CIFs at any time point. Of note, parametric competing risks 

models (Larson & Dinse (1985), Lau et al. (2008) and Lau et al. (2011)) as well as cure rate sur

vival models (Kuk & Chen (1992)) based on the mixture factorization also suffer from the problems 

discussed in this paragraph but these limitations are often not adequately discussed in the respective 

literature.

Another limitation of the SNP model relates to its “ad hoc” asymptotic statistical inference which 

ignores the adaptive choice of the polynomial coefficients. Simulations in Chapter 3 showed that this 

usually leads to reasonable inference for the purpose of CIF estimation. In the present regression set

ting, coverage of “asymptotic” confidence intervals was frequently close to nominal levels for a sample 

size of n =  500 (though there was some indication of undercoverage) but for the lower sample size of 

n =  100, undercoverage was substantial. In line with this, bootstrap standard errors and confidence 

intervals in the applications were much larger than the “ad hoc” asymptotic counterparts. While the 

validity of bootstrap-based statistical inference itself would be difficult to justify mathematically, it 

is nevertheless expected that bootstrap-based confidence intervals are more reliable. This has also 

been shown in simulations for SNP survival models (Zhang & Davidian (2008)) but could not-be 

investigated here as it was computationally infeasible.

The second theoretical part of this chapter gave a brief overview of diagnostic tools for right- 

censored competing risks regression models. Literature on diagnostics for competing risks methods is 

largely lacking and the proposed methods can be used for the final SNP fit of my model as well as for 

several parametric models.

In conclusion, the SNP regression model presented in this chapter is a an extension of the model in 

Chapter 3. It provides a flexible way to model covariate effects on the CIF under arbitrary censoring. 

The model performed well in simulation studies in terms of accuracy of parameter estimates and 

predictive ability. However, several limitations related to identifiability, interpretation, and validity of 

asymptotic inference remain.



Chapter 5

Weighted analyses of composite endpoints

The previous chapters focused on methods for competing risks where the time and type of the first 

disease event is of interest. This chapter focuses on composite endpoints which are increasingly 

used as primary endpoints in randomized controlled clinical trials (RCTs). Competing risks methods 

can be used to analyse composite endpoints but, as will be discussed, more general methods which 

also consider disease events occurring after the first event might be more relevant. Specifically, this 

chapter suggests novel test statistics for the weighted comparison of composite endpoints. Weights 

are introduced to address one of the shortcomings of conventional analyses of composite endpoints 

which ignore that different disease events included in the composite endpoint might differ in their 

clinical importance.

This chapter is structured as follows: Section 5.1 gives a short overview of the composite endpoints 

literature. Section 5.2 introduces a general framework for the weighted analysis of composite end

point considering both binary and time to event combined endpoints. Section 5.3 proposes a strategy 

for simultaneous inference across multiple weighting schemes. A simulation study which investigates 

the actual performance of the proposed multiplicity adjustment is given in Section 5.4, followed by 

applications (Section 5.5) and concluding remarks (Section 5.6).

5.1 Composite endpoints, a short overview

5.1.1 Composite endpoints in clinical studies

Traditionally a composite endpoint is defined as the occurrence of at least one of a given set of 

different disease events (also denoted as “component outcomes”) within a certain follow-up period 

(Ferreira-Gonzalez et al. (2007)). For example, in cardiology studies, the component outcomes could 

be myocardial infarction, stroke or death, and the conventional analysis would either focus on the

130
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binary outcome whether any of these events occurred or on the time to the first event. Composite 

endpoints have been widely used in a large spectrum of clinical disciplines including oncology (Mell 

& Jeong (2010)) and cardiology (Armstrong et al. (2011)). For example, Lim et al. (2008) showed 

that 37% of RCTs in cardiovascular medicine and surgery published between 2000 and 2006 reported 

a composite endpoint with a median of three individual component outcomes. Composite endpoints 

have also been used in RCTs of infectious diseases conducted by OUCRU-VN. Our trials in typhoid 

fever have used the composite primary endpoint of treatment failure defined as the occurrence of at 

least one of the following component outcomes: prolonged fever clearance time, need for rescue treat

ment, microbiological failure, relapse, or enteric-fever-related complications (Pandit et al. (2007) and 

Aijyal et al. (2011)). For trials in CNS infections such as tuberculous and cryptococcal meningities, 

we have reported the composite endpoints of the time to the first neurological event or death and the 

occurrence of disability or death at the end of follow-up (Thwaites et al. (2004), Torok et al. (2011) 

and Day et al. (2013)).

The widespread use of composite endpoints can be explained by the following clinical and stat

istical benefits. First, evaluating an intervention often requires looking at different relevant clinical 

outcomes which can represent various pathophysiological aspects of the disease process of interest and 

the composite endpoints provides an overall summary measure of the impact of an intervention (Can

non (1997), Freemantle & Calvert (2007b), Sampson et al. (2010) and Tong et al. (2012)). Similarly, 

the combination of efficacy and safety properties of an intervention might be useful (Ferreira-Gonzalez 

et al. (2007)). Second, from a statistical point of view, using composite endpoints can potentially in

crease the statistical power for detecting an effect of an intervention compared to focusing on a single 

component endpoint (Cannon (1997)). Indeed, as the incidence of the most severe outcomes includ

ing death has been reduced due to medical advances in many fields, RCTs with these most severe 

and often most clinically relevant outcomes as primary endpoints have become infeasible. Hence, the 

anticipated power gains (and corresponding decreases in the required sample size) from using a com

bined endpoint which includes death and less severe outcomes has probably been the main reason for 

the increasing usage of composite endpoints.

Despite these strengths, traditional approaches to analysing composite endpoints do have cer

tain limitations. Most comparisons of composite endpoints between treatment groups only compare 

whether any of the component outcomes occur (binary outcome) or the time to first outcome (survival 

outcome). This pooling of component outcomes of potentially varying clinical importance may lead 

to misleading perception of treatment efficacy because the result is driven by component outcomes 

which are observed more frequently and earlier but are often less severe and of less clinical import

ance than the less frequent and later events. For example, in studies of acute coronary diseases one of
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the less common outcomes is death, the most important/severe outcome (Armstrong et al. (2011)). 

Moreover, the effects of an intervention on different component outcomes (component effects) may 

differ in direction. This not only complicates the interpretation of the overall treatment effect, which 

is essential for choosing an optimal treatment, but may also remove or even reverse the power benefits 

of using composite endpoint (Ferreira-Gonzalez et al. (2007)). Moreover, a systematic review of RCTs 

reporting binary composite endpoints concluded that component outcomes are often unreasonably 

combined, inconsistently defined, and inadequately reported (Cordoba et al. (2010)).

5.1.2 Statistical analysis of composite endpoints

As mentioned above, in most analyses, component outcomes are pooled to a single binary or time- 

to-event endpoint. Accordingly, standard statistical methods such as tests for the comparisons of 

proportions or logistic regression (for binary outcomes) and log-rank tests or the Cox proportional 

hazards model (for time-to-event outcomes) are usually used for the statistical comparison between 

the two groups. However, several alternative analyses methods have been suggested in the literature 

and some of them are outlined in this and the next subsection.

In the case of binary outcomes, several authors have suggested to analyse the occurrence of dif

ferent component outcomes as a multivariate outcome and demonstrated that associated overall tests 

can be more powerful than the simple analysis of the collapsed outcome (Lefkopoulou & Ryan (1993) 

and Mascha & Imrey (2010)). A review article of analysis methods for binary composite endpoints 

which favours multivariate methods is Mascha & Sessler (2011). In their approach each subject car

ries multiple records representing their observed component outcomes. The treatment effect and 

the effects of other covariates on each component outcome are then modelled with a binary logistic 

regression model and correction for potential correlation between different patient records is done 

using generalised estimating equation, where the correlation between component outcomes from the 

same subject is modelled by an a priori specified within-subject correlation structure. Compared to 

the traditional approach, this method can produce results that are less driven by the more frequent 

components. In addition, it can incorporate various covariates and allows for testing heterogeneity of 

treatment effects across components. However, one disadvantage of their approach is that the analysis 

is more complex and hence more difficult to interpret for a clinical audience. Moreover, treatment ef

fects on component outcomes might be difficult to interpret in the situation of competing risks, e.g. 

an intervention associated with a higher mortality might also be associated with a lower probabil

ity of less severe outcomes simply because the pool of survivors that can potentially experience this 

component is reduced.

If individual component outcomes of a composite outcome are analysed, this poses two additional
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problems. First, RCTs with a composite primary outcome are often not adequately powered to de

tect treatment effects on component outcomes. Second, issues related to multiple testing arise. One 

method to deal with the latter is to use gatekeeping procedures which require organizing all hypo

theses of interest into an ordered sequence of sets. For each set, significance tests which preserve 

the type I error within that set are defined. The full procedure than sequentially proceeds through 

the sets but is only allowed to move to the next set if the overall test on the previous set reaches 

statistical significance, i.e. the “gate to proceed is open”. A review of gatekeeping procedures applied 

to composite endpoints is provided by Mascha & Turan (2012).

One method for analysing individual component outcomes for time-to-event outcomes is to focus 

on the time and type of the first event and then to apply competing risks methods, the topic of the 

previous chapters of this thesis. Such analyses suffer from the same problems as mentioned in the 

previous paragraph. One approach to address these issues has been proposed by Rauch & Beyersmann

(2013): They suggest to first order the component outcomes based on their clinical importance. Then, 

in the simplest case considered, a trial should be powered to show not only superiority of the tested 

treatment on the composite endpoint but also non-inferiority with respect to the most important 

component outcomes. In this framework, superiority and non-inferiority are investigated by using the 

overall hazard of the composite endpoint and the cause-specific hazards of the component outcomes, 

respectively.

Moreover, competing risks analyses applied to composite endpoints have one additional shortcom

ing: By focusing on the first event, they neglect that the first event may be followed by a subsequent 

component outcome which is more severe and clinically relevant. Hence, competing risks analyses 

applied to composite endpoints are not always useful and may even be misleading (Wolbers et al.

(2014)). To model first events and subsequent events jointly, more complex multistate models are 

required (Beyersmann et al. (2012)).

5.1.3 Weighted analyses

As discussed, one major problem of composite endpoints is that they weight all component endpoints 

equally whereas in reality, the clinical importance of component outcomes may differ substantially. 

Hence, several authors stressed the importance of weighting the component to improve the clinical 

relevance and interpretation of composite endpoint analyses (e.g. Ferreira-Gonzalez et al. (2007), 

Hong et al. (2011) and Tong et al. (2012)).

Several approaches to weighted analyses of composite endpoints have been proposed. For binary 

outcomes, Sampson et al. (2010) proposed assigning a weight or score to each component outcome, 

then summing up the scores corresponding to the component outcomes for each patient and com
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paring the total patient scores between treatment arms based on the Mann-Whitney U test. Weights 

can also easily be added to the multivariate analyses for composite binary outcomes outlined above 

(Mascha & Sessler (2011)). For time-to-event outcomes, Bakal et al. (2012) suggested a weight ad

justment to the Kaplan-Meier estimator. In this approach, all weights are constrained to be < 1 and 

full weights of 1 affect the Kaplan-Meier estimator as usual whereas fractional weights only remove 

that fraction of the subject from the risk set. A disadvantage of all of these methods is that the result

ing test statistics are somewhat difficult to interpret. To circumvent this, I will present an alternative 

test statistic with a straightforward clinical interpretation in Section 5.2.

Assigning exact quantitative weights to different component outcomes is challenging. First, in 

many clinical settings, elucidation of quantitative weights faces dissent between experts. Second, 

even when experts can reach consensus, individual patients might assess component endpoints dif

ferently (Glasziou et al. (1990) and Freemantle & Calvert (2007a)). Nevertheless, several proposals 

have been made in the literature. Recent proposals include deriving weights based on a clinician- 

investigator Delphi panel (Armstrong et al. (2011)), discrete choice experiment amongst patients 

(Tong et al. (2012)), or disability-adjusted life years lost (Hong-et al. (2011)). Moreover, ignoring 

weights altogether leads to the conventional analysis of composite endpoints which implicitly assigns 

equal weight to all first observed component outcomes and ignores subsequent outcomes altogether 

which appears to be even less meaningful. While assigning exact weights might be difficult in many 

settings, it is frequently possible to rank component outcomes according to their relative importance. 

To exploit this, I will introduce multiplicity adjustments for the proposed test statistic which either al

low for simultaneous inference across all sets of weights, all weights following an ordering constraint, 

or more general constraints, respectively (see Section 5.3).

5.2 A unified framework for w eighted analyses o f binary and tim e-to-event 

com posite endpoints

5.2.1 Notation and proposed test statistics

The previous section laid down several benefits of weighted analyses of composite endpoints. As seen 

from this short review, several approaches to weighted analyses of composite endpoints have been 

proposed but interpretation of the suggested test statistics is not straightforward. In this section, I 

propose a unified framework for weighted analyses of composite endpoints that can be used in the 

context of randomized clinical trials for both binary and time to event data.

Specifically, I assume that interest is in the occurrence of certain clinical event types k =  1 , . . . ,  K  

during a predefined follow-up period (0,r]. For a given weight vector w = (w i,.. . , w k )T  €  R K,
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I propose the following weighted test statistic for comparing the respective event type proportions 

between two independent groups A  and B

K

T ( w , t ) =  ^ w k (PA,k(r ) ~ P B , k ( r ) )  = w t V ( t ) (5.2.1)
k= 1

where PA,k(T) and ps,fc(r) are the estimated absolute risks or probabilities-that an event type k in 

group A and B  occurs in the interval (0, r], respectively. For convenience, from now on these quant

ities are referred to as event type probabilities. Using T(w, r) one can then conduct a Wald-type sig

nificance test of the two- (resp. one-) sided null hypothesis H 0 : T ( w , t ) = 0  (resp. H 0  : T ( w , t ) < 0) 

against the two- (resp. one-) sided alternative hypothesis HA : T ( w , t ) /  0 (resp. H a -.T(w , t ) > 0). 

Performing these tests is possible as long as f>{r) (and consequently T ( w , t )) follows an asymptotic 

normal distribution and a corresponding sample-based estimator of its covariance matrix is avail

able. Estimation of these quantities for specific situations shall be discussed later in Subsection 5.2.3. 

Meanwhile, it is assumed that these quantities are obtainable.

Importantly, the proposed test statistic has a straightforward and clinically relevant interpreta

tion. If the weights are standardized to sum to one, T { w , t ) is the weighted average of absolute risk 

differences for individual event types. Moreover, if each weight represents a certain type of “cost” 

associated with event type k  then T ( w , t ) estimates the expected cost difference between the two 

interventions A  and B. Of note, there is no technical barrier preventing the use of positive weights for 

some event types and negative weights for others. However, as negative weights are not sensible for 

component events of a composite endpoint which are usually all harmful, only nonnegative weights 

are considered for simplicity in this chapter. However, weights of opposing signs might be useful to 

measure more general trade-offs between beneficial and harmful event types.

5.2.2 Event type definition

If the number of component outcomes of a composite endpoint is large and subjects can experience 

more than one component outcome, subjects may experience many different possible combinations of 

component outcomes over time. In principle, each unique combinations can constitute an event type 

in the terminology of the previous subsection (“exhaustive” setting) but there are also simpler settings 

which require the assignment of weights to a more manageable number of event types. In particular 

two alternative settings, the “competing risks” and the “marginal” setting will be described.

To simplify the discussion I assume that the data follows an illness-death model with a composite 

endpoint consisting of one fatal component outcome and one nonfatal component outcome. Moreover, 

to be more illustrative, let the nonfatal outcome be nonfatal myocardial infarction {M I) and let the
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fatal one be death {DE) w ith or w ithout a prior M I.  In this case, the m ost “exhaustive” set o f  binary  

event types stem m ing from M I  and D E  is:

• M I +DE~:  having M I  and staying alive until r , w ith  w eight wMI+DE- .

• M I ~ D E +: dying in (0, r] w ithout any prior M I,  w ith  w eight wM I - DE+.

• M I +D E +: having M I  and dying in (0, r\, w ith  w eigh t wMI+DE+.

• M I ~ D E ~ : staying alive and MI- free until r , w ith  w eigh t w M i - d e -  •

I refer to these event types as “exhaustive” event types and the w hole setting is called the “exhaustive” 

setting. This definition o f event types partitions the set o f  all subjects into four m utually exclusive  

event type categories.

In general, it m akes sense to  give higher w eights to  event types that are clinically m ore severe or 

im portant. Under the current “exhaustive” setting this im plies w M i + d E + >  w M I - DE+ >  w m i + d e -  >  

w m i - d e - •  One m ay also m ake allow ances for exact zero w eigh t(s) e .g . letting wMI+DE- =  0 if  for 

som e reason M I +DE~  w ere n ot o f  interest. Moreover, it is usually sensible to exclude the even t type  

M I ~ D E ~  (no event) from the test statistic altogether (w hich  is equivalent to setting w M i - d e -  = 0 ). 

This also has the benefit that the resulting covariance m atrix o f  the test statistic V{r)  is o f  full rank  

(w hereas it w ould  be singular otherw ise) w hich  is required for the m ultiplicity adjustm ent m ethod  

presented in Section 5.3.

A lim itation o f the “exhaustive” setting is that the num ber o f “exhaustive” event types m ay grow  

very fast as the num ber o f binary com ponent outcom es increases, e .g . exponential grow th w h en  all 

com ponent outcom es are nonfatal. Such a grow th in the num ber o f event types m ay lead to  difficulties 

in choosing w eights for all possible com binations and sparsity in the respective observed num bers o f  

subjects w hich  m ay m ake the variance estim ator for the distribution o f  the respective T(w,  r ) statistic  

unstable. An alternative setting w ith  few er event types is as follows:

• M I +: experiencing M I  as a first event (w ith or w ithout later death) in (0, r], w ith  w eigh t wMI+.

• M I ~ D E +: experiencing death in (0, r] w ithout a prior MI,  w ith  w eight wMI- DE+.

• M I ~ D E ~ : staying alive and MI- free until t ,  w ith  w eight wMi - DE- .

I call this setting “com peting risks” setting because on ly  the first observed event is relevant. As before, 

M I ~D E ~  should be excluded in the calculation o f  the test statistics. Similar to  the “exhaustive” 

setting, all event types considered here are m utually exclusive. Of note, this setting is a specia l case  

o f th e  “exhaustive” setting w ith the additional w eigh t constraint wMI+ =  wMI+DE-  =  wMI+DE+.
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This weight constraint which represents ignorance of the test statistic with respect to what happens 

after the first M I  is difficult to justify clinically. Hence, the “competing risks” setting is not generally 

recommended and not pursued further.

The final setting that I propose is the “marginal” setting which consists of the following event 

types:

• M I+: M I  with or without later death in (0, r], with weight wMj+.

• D E +: death with or without prior M I  in (0, r], with weight wDe +

• M I~ D E ~ : staying alive and M I -free until r ,  with weight wMI- DE~ .

As before, the state M I~D E ~  is usually ignored and a natural weight constraint in this setting is

W D E +  W M I + -

The major difference between this setting and the previous two is that it contains overlapping 

event types, i.e. subjects experiencing both M I  and death experience both event types D E + and 

M I+. Thus, it is theoretically possible that the respective observed proportions of event types M I+ 

and D E + (in each group) sum up to more than one.

The marginal setting is also a special case of the exhaustive setting with the additional weight 

constraint that wMi +d e+ — wd e+ +  wm i+- This additional constraint which says that the “costs” 

of different component events sum up in an additive way appears reasonable in many contexts. For 

example in the current illness-death example, this setting appropriately accounts for the fact that 

M I+D E + is clinically more severe than M I+D E~. Thus, the “marginal” setting achieves the same 

reduction in dimensionality as the “competing risks” setting but is often interpretationwise preferable.

As the event types of the “marginal” setting can easily be derived from the exhaustive event types 

by simply pooling them, the test statistic (and associated covariance matrix) V ( t ) for this setting can 

be obtained as a simple linear transformation from the respective test statistics for the “exhaustive” 

events as discussed in the next subsection.

Of note, while the discussion in this subsection was for a simple illness-death model for illustrative 

purposes, the definition of “exhaustive”, “competing risks” and “marginal” settings can be transferred 

to more complicated settings in a straightforward way.

5.2.3 Distribution of the proposed test statistic

In this subsection the distributional properties of the test statistic T (w , t ) in Equation (5.2.1) are 

discussed for the different event type settings mentioned above. As before, this subsection also uses 

the notation given earlier in Subsection 5.2.1. For ease of discussion, I also keep using the myocardial
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infarction (M I) and death (D E ) example. However, the described theory can be extended to more 

general settings in a straightforward way.

The simplest scenario under which V{r) (hence T{w, r)) follows an asymptotic normal distribution 

is when all subjects have complete follow-up until time r . Whence under the “exhaustive” setting, the 

associated event type probabilities (in each group) can be consistently estimated by the corresponding 

observed proportions and these correspond to the cell probabilities of a multinomial distribution. 

Hence, a covariance estimator for the respective vectors of proportions is directly available by plugging 

the observed proportions into the corresponding covariance matrix derived from this multinomial 

distribution. D ( t ) can then be obtained as the difference of the two vectors of proportions for groups 

A  and B  and the associated covariance matrix is the sum of the two group covariance matrices for each 

group. Moreover, it follows from the central limit theorem result that V(r) based on the “exhaustive” 

event types (excluding the “no event” category M I~ D E ~) and an associated weight vector we =  

(w m i + d e -■>w m i ~ d e +>w m j + d e + ) T  £ I&4 - has an asymptotic multivariate normal distribution with a 

consistent covariance estimator Ve. Hence the estimated variance of T(u>, r)  is wTVew .

Under no right-censoring, as mentioned earlier the “marginal” event type proportions in group A  

can easily be calculated from the “exhaustive” ones by using an appropriate linear transformation. For 

the current example this linear relation is

P a ,m i + ( t )  

P a ,d e + ( t )

1 0  1 

0 1 1

P a ,m i + d e -  ( t ) 

P a ,m i ~ d e + { t )

^  P a ,m i + d e + ( t ) j

(5.2.2)

In a similar manner the “competing risks” event type proportions can also be derived as

P a ,m i + ( t ) I _

^ P a ,m i - d e + ( t ) J y
1 0 1 

0 1 0

^  P a ,m i + d e - ( t )  ^

P A , M I - D E +  ( t )

^ P A , M I + D E + { t )  j

(5.2.3)

(and the same relations obviously also hold for group B).

When right-censoring is present i.e. not all subjects are followed-up until time r ,  the “exhaustive” 

event type proportions can no longer be estimated with simple proportions. Instead, estimates and 

corresponding asymptotic covariance matrices for D ( t ) must be based on time-to-event modelling of 

the underlying multistate model. As discussed in books on multistate modelling (e.g. Andersen et al. 

(1997), chapter 2 and Beyersmann et al. (2012), chapter 8), the probabilities PA,k(T) and pB,k(T) in 

Formula (5.2.2) can then be nonparametrically estimated based on the Aalen-Johansen estimator for
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the state transition probabilities of time-inhomogeneous Markov processes with a finite state space. 

Conveniently, the Aalen-Johansen estimator as well as a corresponding Greenwood type estimate of 

the associated covariance matrix have been implemented in the R package etm (Allignol et al. (2011)).

Using this method one can first specify a suitable multistate model for the setting of interest, 

and then easily derive the consistent estimates for all event type probabilities (and an associated 

covariance matrix) based on the corresponding transition probabilities. In what follows, I shall discuss 

how such a derivation is done for each setting of event types for the chosen illness-death model (which 

can be extended to more complex settings in a straightforward way).

Following the conventional multistate modelling notation, let Ppq(s, t) be the estimated transition 

probability of being at state q at time t given being at state p at time s with s < t. The multistate 

model suitable for the “marginal” setting in the current myocardial infarction and death illustration is 

depicted in Figure 5.2.1, where the relevant states are state 0: alive and M I-free, state 1: having an 

M I  and state 2: death.

Figure 5.2.1: Multistate model for “marginal” setting.

|T| MI+

[ o ] m i ~ d e ~

U] DE+

Applying the aforementioned nonparametric multistate method to the multistate model in Figure

5.2.1, the “marginal” event type probabilities of interest in group A  can be consistently estimated by 

the estimates of the transition probabilities between time 0 and time r  as follows:

Pa ,m i + (r ) =  -P01 (0, t ) , and p a ,d e + (r) =  Po2 (0, r)

The multistate model in Figure 5.2.1 could also be slightly modified for getting the “competing risks” 

event type probabilities by removing the transition from state 1 to state 2, and relabelling state 2 as 

M I ~ D E +. Of note, in this case the Aalen-Johansen estimator would reduce to the standard non

parametric CIF estimator discussed in Subsection 1.4.1.

Deriving the “exhaustive” event type probabilities using the Aalen-Johansen estimator for the 

model in Figure 5.2.1 is difficult as it is not clear how to disentangle the probabilities of M I ~ D E + 

and M I +D E +. However, this computational issue can be resolved by explicitly accounting for the
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states M I~ D E + and M I+D E + via using the following multistate model

Figure 5.2.2: Multi-state model for “exhaustive” setting.

[7] M I+ D E - ------------- ►[§]M I+ D E+

\ q} m i - d e -

\2 ]M I~ D E +

In this model, estimation of the “exhaustive” event type probabilities is as follows

P a , m i +d e -  (t ) =  Poi (0>r ) > P a , m i - d e + ( t ) =  -P02 (0 ,r ) , and p a , m i +d e + ( t ) = P 03 (0, r)

Note that even though the “exhaustive” event type probabilities cannot be computed from the multistate 

model for “marginal” event types, the reverse is possible. This is because the linear relation in For

mula (5.2.2) can also be used here to derive (Pa ,m i + i Pa ,d e + ) from p a ,m i ~d e +> Pa ,m i + d e + 

Pa ,,m i +d e +-

5.3 Simultaneous inference for the w eighted analysis o f com posite endpoints

Despite the appealing features of weighted composite endpoint analyses discussed so far, there exists 

a tangible difficulty in determining a single set of quantitative weights that is acceptable to all stake

holders. Sometimes instead of one, a finite set of weighting options are given (e.g. Hong et al. (2011) 

and Tong et al. (2012)). However, it is often even easier to rank or assign more qualitative inequality 

constraints to component outcomes or the event types derived from them. For example, rather than 

assigning quantitative weights to deaths {DE) and myocardial infarction {M I), it might be less con

troversial that the weight for a death event should be at least twice as large as the weight for a M I

i.e. w d e +  > 2w m i + ,  or even less controversially w D e +  > w M i + -  However, as an infinite number of 

weights fulfil such inequality constraints, multiple testing problems arise. Thus, a method which al

lows for the construction of confidence intervals for T { w , t ) with (but not restricted to) simultaneous 

coverage of 95% across all weights and associated hypothesis test which protect the familywise type I 

error rate in the strong sense are desirable. In this section, I propose a multiplicity adjustment which 

achieves this.

This is an adaptation of method originally developed by Shapiro (2003) which is reviewed first
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(Subsection 5.3.1) and then applied to weighted analyses of composite endpoints under the frame

work discussed in Section 5.2 (Subsection 5.3.2). As later shown, the proposed approach can in

corporate a rich class of weight constraints including the nonnegativity constraints and an ordering 

constraints such as those mentioned above.

5.3.1 Simultaneous confidence intervals based on ^-distribution

By definition a set C in R K is a cone if for all w e C and for all r > 0, rw e C. For any chosen closed 

and convex cone C in R K, Shapiro (2003) suggested an approach for deriving simultaneous (two- or 

one-sided) confidence intervals with a desired overall coverage probability for the quantities wTV  , 

where w e C and V  e  R*- has a multivariate normal distribution M  (Vo, V ) with V  being a known 

nonsingular covariance matrix. In the following I first discuss one-sided confidence intervals with 

a simultaneous coverage of 1 — f  and then mention two-sided confidence intervals with an overall 

coverage of 1 -  a.

For most practical purposes including the ones in this chapter, it is sufficient to consider cones C 

having the following form

C = {w € Rk  : a[w = 0,i = 1, . . . ,  s;a[w > 0, z =  s +  1, . . . ,  K ]  (5.3.1)

where the K  x K  matrix ( a f , a ^ ) T is of full rank and at least one of the constraints is an inequality 

constraint. For this setting, the one-sided confidence intervals of the following form are considered:

C Il (w, V, c i-sl) =  |u;t D — (wTVw ) 1^ 2 , +oo^ (5.3.2)

where does not depend on each specific w but has to be chosen such that for given C and V, the 

corresponding simultaneous coverage probability is controlled at 1 — f  i.e.

P  (Vw 6 C, wTV 0  e CIL (w ,V,c i _ f )) > 1 — |  (5.3.3)

To achieve this, note that the event on the left-hand side is equivalent to

max {— P.0) . ™ < c;/_2a (5.3.4)
*,ec (wt Vw)V2 1 a
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Consequently, the probability of simultaneous coverage becomes

P ( V v , e C , w Tv 0 e c i L (v, ,v,c1. f ) ) = p ^ x ^ ^ u ^ < c 11/J t 'j cs.3.5)

> P ev - v 0)T wn2
max
wee (wTVw ) 1 / 2

< C l _ s

For Z(C, V) =  maxwec ^ tv w )1™2’ ^ aP^° C2003) showed tbat [Z(C,V ) ] 2 has an exact chi-bar 

squared (x2) distribution. The theoretical properties of x 2-distributions have been thoroughly dis

cussed by many authors (e.g. Kudo (1963) and Shapiro (1988)). By definition, the distribution of a 

X2-variate is the weighted sum of independent x 2-distributions. For Z(C, V) this means, for all c

K
P ( Z ( C ,V ) > c ) = '£ w i (C, K -1) P  (x? > c) (5.3.6)

i=0

where x f  denotes a random variate following a central chi squared distribution with i degrees of 

freedom (with xo defined as a point mass at 0 by convention), and Wi (C, V~x), i — 0 , . . . ,  K  are the 

associated weights, summing to one, which can be derived from the given cone C and the inverse 

covariance matrix V ~l . It is a challenging task to analytically derive these quantities for any closed 

and convex cone C. For detailed instructions on how to get Wi (C, V -1 ), i — 0 , . . . ,  K  for the cones C 

defined in Equation (5.3.1) I refer to Section 5 of Shapiro (1988).

From the above, it is obvious that letting ci_a be the (1 — f  )-quantile of the exact x 2-distribution 

of [Z(C, V ) ] 2 bounds the current overall coverage from below at 1 — '

To derive one-sided confidence intervals of the form

C I jj =  ^—o o , w T V  +  c 1/ 2a (w t V w ) 1</2~̂

note that V  — V 0 and V q — V  have the sam e distribution and thus this is also true for th e  distributions 

o f  Jmaxiygc < % * £ ] [m ax^ge • H ence, the sam e x 2-distribution and the sam e

critical values can be used as for C I l .

Given the two one-sided simultaneously 1 -  f  confidence intervals, a simultaneous two-sided 1 -  a  

confidence interval is given by

C l (w, V, c i _ | )  =  ^wTV  — (wTVw ) 1^ 2 ,w TV  +  (ur^Vtu) 1/,2j
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5.3.2 Simultaneous inference in weighted composite endpoint analyses based on 

X2-distribution

Using Shapiro’s method reviewed in the previous subsection for simultaneous inference under the 

framework discussed in Sections 5.1 - 5.2 is straightforward, except that the vector of differences 

in event type proportions T * ( t )  in Equation (5.2.1) only has a limiting normal distribution with a 

consistent covariance estimator V. In fact, Shapiro (2003) did relax the exact normality assumption 

by allowing V  to be known only up to a multiplicative factor a > 0 i.e. V = cW  if a consistent estimate 

for a is available. However for the current purpose this is still a stringent restriction. In view of this, I 

provided in Appendix B.2 a proof that enables the asymptotic counterparts of the results in Subsection

5.3.1, of which the most crucial one is that if V (r) follows an asymptotic normal distribution with
(v (t ) - V 0(t ) ) t  i 1 2 

m ax ^ c (wr v wy / * - has anan available consistent covariance estimator V, then \ z  (C, U)j = 

asymptotic ̂ -distribution. Moreover, the finite-sample performance of this asymptotic approximation 

is investigated later on in Section 5.4.

Once these asymptotic results have been established, for a given V(r) with the respective estimated 

(or exact) covariance matrix V, simultaneous two- and one-sided confidence intervals with an overall 

coverage probability of 1 -  a  and 1 — f , respectively, associated with T(w, r) =  w t V ( t ) for weight 

vectors w eC  (a closed and convex cone in R K) are

C l ^ w ,V , c i - ^  =  w t V ( t ) — c~x~̂  (wTVw^j ,w TV(r) (wTVw'j

C IL (w , V, ci_f )  =  [iwTV  -  c / \  (wTV w )1/2 , +oo) , or (5.3.8)

CIu (w ,V ,ci - f )  =  °o>wTV  +  (ur^Vu;)1̂  , respectively

Using the duality between hypothesis testing and confidence intervals, these simultaneous confidence 

intervals can also be used to derive associated tests which control the familywise type I error rate in the 

strong sense across the two-sided or one-sided null hypotheses Hq : w t T>(t )  =  0 or Ho : wTV{r) < 0, 

respectively, with weights fulfilling the desired constraints. Specifically, for any specific set of weights 

fulfilling the desired constraints, the associated hypothesis test can be tested by checking whether 0 

is contained in the associated simultaneous confidence interval. This leads to the following practical 

advantage. Those who agree on restricting the weight vector w to C may well still have varying 

preferences for an exact w. Each of them can then test and possibly reject the null hypothesis induced 

by their weight vectors of choice without worrying about inflating the overall type I error.

Finally, as previously mentioned in Subsection 5.2.1, forcing the weight vectors to have elements 

summing to one can assist with the interpretation of wTV(r). Strictly speaking there exists no cone

and (5.3.7)
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satisfying such a constraint. However, this constraint can simply be ignored in all of the above calcula

tions because any weight vector w can be normalised to w. which only scales the corresponding 

weighted statistic and its confidence interval by the same amount, and thus does not affect coverage 

probability.

5.4  Simulation studies

This section demonstrates the finite-sample performance of applying the simultaneous inference strategy 

proposed in Section 5.3 via a series of simulation scenarios. The simulation scenarios mimic an 

RCT with outcomes following an illness-death model, similar to what has been used for illustration 

throughout this chapter. In analogy to the previous sections, I will also refer to the transient state 

as M I  and the absorbing state as DE. More details about the simulation scenarios are given in the 

following subsection.

5.4.1 Scenarios

Each scenario has two groups of patients representing two treatment arms in an RCT whose maximum 

follow-up duration is set at time r  =  5 (years). Data in each treatment group were generated from the 

multistate model according to the “exhaustive” setting with the following states: state 0-M I~D E ~, 

state 1-M I+D E ~, state 2-M I~D E + and state 3-M I+D E +. For this simulation I used constant 

transition hazards Ars, rs E {01,02,13} whose chosen values are displayed in Table 5.1 for various 

treatment groups. The treatment arms are configured as follows: A  represents a common control 

treatment for all interventions, B  is a new intervention that has no effect i.e. has exactly the same 

transition hazards as A, C is a treatment reducing every transition hazard by 25%, and finally D  is a 

treatment that only reduces the transition hazard A0i by 25%. In total I examined 6 pairs of treatment 

arms corresponding to two different sets of transition hazards for the control treatment A  and the 

intervention effects as described above.

Besides employing scenarios with only administrative right-censoring at time r  =  5 as above, I also 

simulated additional scenarios which include both administrative right-censoring and independent 

right-censoring following an exponential distribution with rate A =  0.05. The resulting censoring 

probabilities caused by this extra censoring mechanism corresponding to each treatment arm are 

given in the bottom half of Table 5.1. In addition, this table also displays the “exhaustive” and the 

resulting “marginal” event type probabilities under each treatment arm and censoring scheme.

Finally I varied the sample size between 100 and 500 per group which together with the above 

factors led to 24 scenarios. Results for each of the 24 scenarios are based on 1000 simulated data sets.
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Figure 5.4.1: Multistate model for “exhaustive” setting.

[T) M I + D E -  — ----- [̂3] M I + D E +

[ o \ m i ~d e ~

[ | ]  M I ~ D E +

Table 5.1: Transition hazards (Ars) w.r.t. Figure 5.4.1 and resulting event type probabilities with and 
without right-censoring.

rs
Group

\ rs X 10'- 2

No right-censoring before r
Pek(r)* % Pmk(r )$ %

01 02 13 k M I + D E - M T D E + M I+ D E +  )t MI+ DE+

A i & 5 i 5.00 5.00. 30.00 9.6 19.7 10.1 19.7 29.8
C i 3.75 3.75 22.50 9.1 15.7 6.6 15.7 22.3
£>1 3.75 5.00 30.00 7.4 20.3 7.7 15.1 28.0

' A 2 & B 2 5.00 2.00 20.00 12.9 8.4 8.2 21.1 16.6
C2 3.75 1.50 15.00 11.4 6.6 5.1 16.5 11.7
d 2 3.75 2.00 20.00 10.1 8.7 6.2 16.3 14.9

Right-censoring before r @

A i 8c B\ 19.0$$ 8.9 17.6 8.6 17.5 26.2
Ci  - 29 7$$ 8.3 13.9 5.6 13.9 19.5
Di 19.2$$ 6.9 18.1 6.6 13.5 24.7

A 2 8c B 2 20.6$$ 11.8 7.5 7.0 18.8 14.5
c 2 2 i  1$$ 10.4 5.8 4.3 14.3 10.1
d 2 20.6$$ 9.2 7.8 5.4 14.6 13.2

*: “Exhaustive” setting, $: “Marginal” setting.
$$: Overall censoring probability (%) before t  — 5. 

the associated event probabilities display the average observed frequency of those event types, i.e. subjects 
censored before r were counted as not having an event for the purpose of this table.

5.4.2 Weight constraints and competing approaches

In all simulation scenarios I considered nonnegativity constraints i.e. all elements in a weight vector 

must be nonnegative, as well as the following ordering constraint for the current “exhaustive” settings

0  5: w m i + d e -  <  w m i - d e + <  w m i + d e +
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Since the “marginal” event type probabilities are readily available for each “exhaustive” setting, I also 

applied the same weight constraints to these probabilities for which the ordering constraint is

0 < w m i + — w d e +

For the setting of administrative censoring only, confidence intervals were based on observed pro

portions experiencing each event type and the asymptotic covariance matrix was based on the mul

tinomial distribution. For settings with censoring the Aalen-Johansen estimator and an associated 

Greenwood-type estimate of the covariance matrix was used as described in Subsection 5.2.3.

In addition to the method for constructing simultaneous confidence intervals based on the x 2- 

distribution (hereinafter abbreviated by x2-method) proposed in Subsection 5.3.2, I considered the 

following competing approaches: an asymptotic version of Scheffe’s method (Scheffe (1953)) (which 

guarantees simultaneous control across all weight vectors without any constraints) and unadjusted 

confidence intervals without any multiplicity adjustment.

5.4.3 Assessment methods

For each simulation scenario, I studied the performance of the competing methods for both the 

“exhaustive” and the associated “marginal” settings under the weight constraints mentioned above. 

Specifically the considered two-sided 95%-confidence intervals which, for the x2-method, Scheffe’s 

method and the unadjusted method, respectively, take the following forms:

C l  (w, y , c i_ a ^  =  ju>TX>(r) — (wTVw'j ,w t V (t) + c \ ^ ( w t Vw^ j and

C l  (w ,V , si_a) =  ju r^C r) -  s\^2a (wTVw^ , w t V ( t ) +  S i 2a  (wTVw^j J and

C l  (w, V, 9 i - f )  =  | w t P ( t )  -  g i _ a  , w t T>(t ) +  q i - ±  (wTV w j

Following the terminology of Subsections 5.3.2 and 5.2.1 ci_a is the 97.5% quantile of the x 2- 

distribution corresponding to the approximate covariance matrix and cone constraint, s i_Q is the 

95% quantile of the x 2-distribution (with 2 and 3 degrees of freedom for the “marginal” and “ex

haustive” settings, respectively) corresponding to an asymptotic Scheffe’s method, and qi-% (~  1.96) 

is the 97.5% quantile of the standard normal distribution required for the unadjusted method.

As the main goal of the proposed method is to maintain a nominal simultaneous coverage probab

ility of 95%, the first evaluation criterion is the Monte Carlo simultaneous coverage probability across 

all weight vectors in the cone defined by each constraint. However, there are an infinite number of
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points inside a cone. To approximate the true simultaneous coverage, I evaluated coverage across a 

grid of uniformly spaced points across the intersection of the cone with the hyperplane defined by the 

weight constraint 1 wi =  Specifically, I chose 2463 and 500 grid points for the “exhaustive” and 

“marginal” settings, respectively, under the nonnegativity contstraint. For the ordering constraint, I 

included the subset of the above grid points satisfying that additional constraint.

Second, a commonly known trade-off for controlling the simultaneous coverage is the loss of 

efficiency i.e. the resulting confidence intervals are more conservative (wider) than the associated 

unadjusted one. In view of this, I compared the x 2 -method and Scheffe’s method to the unadjusted
c \ i \  s1/2

one via two Monte Carlo relative efficiency type measures defined, respectively, as \  and . It

is easy to see that these quantities are the ratios of the relevant confidence interval widths.

5.4.4 Results

Simulation results for the “exhaustive” and “marginal” settings in each scenario are displayed in Tables 

5.2 and 5.3, respectively. Observed coverage for the x 2 -method was very close to the nominal 95%. 

Coverage was larger than 93% for all settings including those involving right-censoring. Coverage 

more than two Monte-Carlo standard errors below 95%, i.e. coverage below 93.6%, occurred for 

3/96 reported coverage probabilities, all of which involved intervention C\. As expected, Scheffe’s 

method yielded coverage beyond the nominal level whereas the unadjusted confidence intervals had 

simultaneous undercoverage.

Monte Carlo relative efficiency (first three result columns in Table 5.2) followed the anticipated 

pattern that relative to the unadjusted method the x2-method is more efficient than Scheffe’s method, 

especially under the more restrictive constraint as Scheffe’s method disregards these weight restric

tions. Compared to the unadjusted confidence intervals, confidence intervals for the x 2-method under 

an ordering constraint were approximately 22% wider for the exhaustive and 10% wider for the mar

ginal setting. In contrast, Scheffe’s method led to increases by 43% and 25%.
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Table 5.2: Simulation results for “exhaustive” settings.
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No right-censoring before r
Groups n ^  Re ât v̂e efficiency MC Simultaneous coverage %@

Weight constraints
x 2

R%
♦

< Scheffe8 x2*R3 <
Scheffe8 

R3 <
Unadjusted#
R3 <

A1&.B1
100 1.37 1.21 1.43 94.5 95.1 96.0 98.1 77.3 86.7
500 1.37 1.21 1.43 94.0 95.7 95.8 98.3 75.8 87.1

4i&Ci 100 1.36 1.22 1.43 93.7 94.2 95.0 97.5 73.8 84.6
500 1.36 1.22 1.43 93.5 93.3 96.0 98.1 75.1 83.7

Ai&Di 100 1.36 1.21 1.43 95.1 94.9 96.5 98.5 76.6 87.2
500 1.36 1.21 1.43 94.6 95.0 96.0 97.9 76.7 86.4

A2 &B2
100 1.36 1.21 1.43 95.4 95.5 96.6 98.4 76.7 88.1
500 1.36 1.21 1.43 94.8 96.2 96.3 98.5 73.4 85.7

A2&C2
100 1.35 1.22 1.43 93.7 93.8 95.3 97.5 76.0 86.7
500 1.36 1.22 1.43 94.4 94.0 95.6 98.3 76.8 87.5

A 1&D2
100 1.36 1.21 1.43 93.9 93.6 95.6 98.0 76.2 85.7
500 1.36 1.21 1.43 94.9 

Right-censoring before

95.0

T

96.3 98.3 , 78.9 88.3

A1&.B1
100 1.37 1.22 1.43 93.7 94.3 95.0 98.0 ..74.0 84.8
500 1.37 1.22 1.43 96.4 95.7 97.4 98.8 79.8 88.5

^i&Ci 100 1.36 1.22 1.43 95.1 95.4 96.3 97.8 77.8 87.8
500 1.36 1.22 1.43 94.1 94.2 95.7 97.7 76.6 86.6

A 1&.D1
100 1.36 1.22 1.43 94.5 95.1 95.5 98.3 75.1 87.2
500 1.36 1.22 1.43 95.4 95.3 96.6 98.5 .75.5 87.0

A2 &B2
100 1.36 1.21 1.43 94.8 94.0 96.5 97.8 78.2 87.5
500 1.36 1.22 1.43 94.9 95.6 96.2 98.2 78.3 86.7

A28cC2
100 1.36 1.22 1.43 95.2 95.4 96.6 98.3 76.8 86.4
500 1.36 1.22 1.43 95.6 95.5 96.6 98.0 77.1 87.0

A1&.D2
100 1.36 1.22 1.43 95.2 94.9 96.8 98.7 76.9 88.3
500 1.36 1.22 1.43 95.5 95.6 96.7 98.1 75.9 86.9
*: resulting from simultaneous confidence interval based on x2 method.

$: resulting from simultaneous confidence interval based on Scheffe’s method. 
#: resulting from unadjusted simultaneous confidence interval.

R+: nonnegativity constraint, <: ordering constraint.
Monte Carlo standard error ss 0.7%.
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Table 5.3: Simulation results for “marginal” settings.
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No right-censoring before r  
MC Relative efficiency MC Simultaneous coverage %@

Weight constraints
x 2

R%

*
< Scheffe8 x 2

R%

*

<
Scheffe8

R+ <
Unadjusted#
R+ <

A i& Bi 100
500

1.18
1.18

1.10
1.10

1.25
1.25

94.3
95.6

94.2
96.0

95.7
96.6

97.3
97.9

89.0
89.4

91.7
93.0

Ai& Ci 100
500

1.18
1.18

1.10
1.10

1.25
1.25

94.5
93.9

94.5
93.4

96.1
95.1

97.3
96.9

86.7
86.7

90.6
90.6

A 1 &.D1
100
500

1.18
1.18

1.10
1.10

1.25
1.25

95.2
94.8

95.0
94.8

96.6
95.9

97.8
97.1

89.6
88.4

92.5
91.6

A2 &B2
100
500

1.17
1.17

1.11
1.11

1.25
1.25

95.8
95.6

95.7
95.8

96.6
97.9

97.8
98.7

89.9
88.0

93.1
91.4

A2 &C2
100
500

1.17
1.17

1.11
1.11

1.25
1.25

93.2
93.9

93.7
94.5

94.8
96.1

95.9
97.3

88.1
89 .4

90 .7
91.8

A 1&D2
100
500

1.17
1.17

1.11
1.11

1.25
1.25

93.9
95.3

93.6
95.2

95.7
97.1

96.7
97.8

87.3
88.9

90.0
91.5

Right-censoring before T

A 1 &.B1
100
500

1.18
1.18

1.10
1 . 1 0

1.25
1.25

93.7
95.7

95.2
95.4

95.7
97.5

97.9
98.3

86.5
90.3

91.1
92.5

A1&C1 100
500

1.18
1.18

1.10
1.10

1.25
1.25

95.8
94.2

95.1
94.5

96.5
96.2

97 .4
97.9

89.3
87.9

92.7
91.5

Ai&JDi 100
500

1.18
1.18

1.10
1.10

1.25
1.25

94.1
95.2

94.6
95.5

96.2
96.6

97.8
97.4

88.5
89.8

92.8
92.4

A2&S2 100
500

1.17
1.17

1.11
1.11

1.25
1.25

94.1
95.5

94.2
95.5

96.2
96.6

97.3
97.5

88.7
89.7

91.1  
92.8 .

A 2 &.C2
100
500

1.18
1.18

1.11
1.11

1.25
1.25

95.9
95.6

95.2
95.3

97.2
96.9

97.8
97.9

88.6
88.8

91.7
91.8

A 1&.D2
100
500

1.17
1.18

1.11
1.11

1.25
1.25

95.4
95.3

95.4
95.4

96.6
96.5

97.1
97.4

.90.1
89.3

92.7
92.9

*: resulting from simultaneous confidence interval based on x 2 method.
$: resulting from simultaneous confidence interval based on Scheffe’s method. 

#: resulting from unadjusted simultaneous confidence interval.
R+: nonnegativity constraint, <: ordering constraint.

Monte Carlo standard error «  0.7%.

5.5 Applications

5.5.1 Design consideration for a cardiovascular trial

In this case study, I apply the proposed methods to the design of a hypothetical RCT in cardiology with 

a composite endpoint. This illustration is based on the work of Hong et al. (2011), who suggested 

to assign weights corresponding to standardized disability-adjusted life-years (DALY) to the follow

ing three common outcomes in vascular prevention trials: nonfatal stroke (ST), nonfatal myocardial
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infarction (M /) and vascular death (D E ). These authors only considered first events i.e. the “com

peting risks” setting (see Subsection 5.2.2), and reported the weights for three age categories which 

are reproduced in Table 5.4 below for convenience.

Table 5.4: DALY lost for first vascular events (according to Table 2 of Hong et al. (2011)).

age 50 age 60 age 70

Nonfatal Stroke (ST±st) 10.49 7.63 5.06
Nonfatal M I  ( M /+ t) 6.73 5.14 3.85

Vascular Death {DE^st) 16.79 11.59 7.24

For ease of later discussion let each column in Table 5.4 form the respective weight vectors ^ 50, w&o 

and W7 0 -1 further assume that the RCT is a 1:1 randomized trial and the assumed 3-year risks for the 

3 event types are provided in Table 5.5. Based on this information the aim is to calculate the sample 

size of the trial under the following varying sets of requirements:

1. 90% power to detect an effect on the composite endpoint (any of the first events) at the unadjus

ted (two-sided) 5% significance level. This corresponds to a conventional analysis and sample 

size calculation which assumes an absolute risk reduction of the composite endpoint from 30% 

to 20%.

2. 90% power to detect an effect on the composite endpoint at the multiplicity adjusted 5% signi

ficance level. Multiplicity adjustment to guarantee strong control of the family-wise type I error 

across all possible linear weight combinations, i.e. C2 =  K3.

3. 90% power to detect an effect on the composite endpoint at the multiplicity adjusted 5% signi

ficance level. Multiplicity adjustment to guarantee strong control of the family-wise type I error 

across all linear weight combinations with non-negative weights, i.e. C3

4. 90% power to detect an effect on the composite endpoint at the multiplicity adjusted 5% signi

ficance level. Multiplicity adjustment to guarantee strong control of the family-wise type I error 

across all non-negative weights following an ordering constraint, i.e.

C4 =  € R3 : wDE+t >  wST+t >  w M i + t }

5. A simultaneous power of 90% to detect an intervention effect for all weighted differences cor

responding to weights in the cone spanned by the DALY weight vectors (columns) given in Table 

5.4, i.e.

C5 =  {w  e  R3 : w =  a iw 50 +  a 2w60 +  a 3w7Q, V (a i, a 2, a 3) € M +}



CHAPTER 5. WEIGHTED ANALYSES OF COMPOSITE ENDPOINTS 151

and control of the familywise type I error at 5% across this cone.

Table 5.5: Assumed 3-year risks.

Requirement Control Intervention

Nonfatal Stroke (ST^st) 15% 10%
Nonfatal M I  (M7+t) 10% 7.5%

Vascular Death (D E ŝt) 5% 2.5%

The resulting sample sizes are reported in Table 5.6. For the first 4 requirements, sample size 

was calculated based on standard sample size formulas for 2-group comparisons. The correspond

ing critical values for settings 1 and 2 are 1.96 (the 97.5% quantile of the normal distribution) and 

2.79 (i.e. the square-root of the 95% quantile of a chi-squared distribution with 3 degrees of free

dom required for an asymptotic Scheffe-correction), respectively. For settings 3 and 4 the respective 

critical values were based on the relevant x2-distributions. For requirement 5 the sample size calcu

lation was based on repeated simulations with increasing sample sizes until the simultaneous power 

was achieved across a set of 918 normalised weight vectors w equally spaced across the cone under 

consideration as previously described in 5.4.3.

Table 5.6: Sample size result.

Requirement Sample size (per group) Relative efficiency*

1 392 1
2 621 1.43
3 519 1.25
4 488 1.19
5 381 1.02

Note: Bonferroni-correction for composite and component endpoints gives a critical value «  1.27 x 1.96. *:
compared to 1.96.

Table 5.6 exhibits the foreseen pattern that a larger sample size is required if multiplicity adjust

ment is required across larger sets of weights. This also shows how inefficient Scheffe’s method can 

be in cases of more restrictive constraints. For example, to fulfil the ordering constraint of C4 the x 2- 

method only increases the sample size by about 25% while Scheffe’s method would inflate the sample 

size by almost 60%. Of note, a simple Bonferroni correction which adjusts for multiplicity for only 

4 comparisons (e.g. an analysis of the composite endpoint and the 3 component outcomes), would 

lead to a critical value of 1.27x1.96. Accounting for such a Bonferroni adjustment would lead to 

a larger inflation in sample size than requirements 4 while formally only guaranteeing multiplicity 

control across a much smaller set of null hypotheses.

Interestingly, for the fifth requirement the x2- method requires a smaller sample size than the 

standard approach. This seemingly peculiar result can be explained by the following two factors.
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First the weight vectors w^q, weo and W7 0  all give lowest weight to nonfatal M I  whose assumed 

. intervention effect was smallest. Second, despite being quantitatively different these weight vectors 

span a “narrow” cone, hence requiring only minimal multiplicity adjustment.

5.5.2 Weighted analysis of a composite endpoint in a trial of uncomplicated enteric 

fever

This example illustrates the proposed method to data from a typhoid trial conducted at the Nepal site 

of OUCRU-VN that studied the efficacy of two antibiotic treatments for uncomplicated enteric fever: 

Gatifloxacin and Cefiximie (Pandit et al. (2007)). The outcome of interest here is the composite en

dpoint of overall treatment failure which was a secondary endpoint in the trial. Overall treatment 

failure was defined as acute treatment failure (severe complications, fever or other persistent symp

toms for more than 7 days, or requirement for rescue treatment), death or relapse (fever with a 

positive blood culture within a month of completing treatment). Only one death occurred and it was 

pooled with acute treatment failure for the sake of this example. By definition, subjects with an acute 

treatment failure were not evaluated for relapse, hence the event types are exclusive. Overall results 

for patients with culture-confirmed typhoid are displayed in Table 5.7.

Table 5.7: Frequencies of component outcomes in patients with culture-confirmed typhoid (based on 
Figure 1 in Pandit et al. (2007)).

Gatifloxacine (n=92) Cefixime (n=77)

Acute treatment failure or death 1 (1.09%) 20 (25.97%)*
Relapse 2 (2.17%) 6 (7.79%)

*: including one death.

From Table 5.7 it is clear that Gatifloxacine strongly reduced the risk of experiencing an acute 

treatment failure or death compared to Cefixime whereas the effect on relapse is much less pro

nounced. As it is unclear which of the two event types is more clinically relevant in general, I did 

not impose an ordering constraint but instead adjusted for multiplicity taking into account only the 

nonnegativity constraint. Figure 5.5.1 shows the weighted test statistic T { w , t ) and associated 95% 

confidence intervals (with and without multiplicity adjustment) depending on the weight assigned to 

“acute treatment failure or death” and assuming that the two weights are standardized to sum up to 

1.
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Figure 5.5.1: Weighted risk difference depending on the relative weight of “acute treatm ent failure or 
death”.
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According to Figure 5.5.1, across all weight choices the associated 95%-confidence intervals given 

by the y 2- method are marginally wider than the unadjusted ones. Moving from 0 to 1 on the relative 

weight horizon, the simultaneous 95%-confidence intervals based on the y 2- method begins to claim a 

significant difference in the weighted risks as soon as the relative weight of acute treatment failure or 

death is greater than 10%. As relative weights below 10% for this component outcome seem unreas

onable, the trial demonstrates superiority of Gatifloxacin over Cefixime with respect to the combined 

outcome simultaneously across all “clinically reasonable” weights. Moreover, in this illustration the 

cost for multiplicity adjustment using the y 2- method is only modest.

5.6 Discussions

In this chapter I developed a new approach to the weighted analysis of composite endpoints that can 

handle both binary and time-to-event data. The main idea is to consider the weighted risk differences 

of the component event types of interest where weights can be assigned to component event types 

in flexible ways. I further proposed to use Shapiro’s y 2-method (Shapiro (2003)) to construct sim

ultaneous confidence intervals for the true weighted differences and associated tests that protect the 

familywise type I error in the strong sense across all weights inside a chosen closed and convex cone. 

To my knowledge, this chapter is the first substantive application of Shapiro’s method to a practical 

problem where constraints naturally arise and the first evaluation of the method in a simulation study. 

I also extended the results of Shapiro (2003) to the case where the relevant random variables follow
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normal distributions only asymptotically which was not mentioned in his original work.

Basing the proposed weighted analysis framework on Shapiro’s %2-method allows to handle a

flexible class of weight constraints that can be expressed as a system of linear equality and inequality 

constraints. Such a class is rich enough for most practical purposes and thus addresses the problems 

in choosing exact weights as well as the general interpretation issue involving composite endpoints. 

Moreover, the efficiency loss in exchange for multiplicity adjustment induced by the proposed method

both simulations and applications. Of note, Shapiro (2003) and Shapiro (1988) also discussed more 

general cone constraints. However, it is unclear how to derive the exact x2-distributions in most other 

cases.

For composite events, it is usually sensible to assign nonnegative weights to all component out

comes as all of them are harmful. However there is no technical barrier that prevents using the 

developed framework for weighted analyses that trade off more general beneficial and harmful out

comes by employing weights of opposite signs. In addition, even though only effects on the absolute 

risk scale which is most relevant to clinical decision making were discussed, the proposed approach 

could also be applied to the joint analysis of any set of multiple endpoints (with treatment effects ex

pressed e.g. on the log-hazard ratio scale) as long they follow a joint asymptotic normal distribution.

A possible alternative approach to the analysis of composite time-to-event endpoints would be to 

use an integrated version of the test statistic proposed in Equation (5.2.1) which could be defined as:

matrix for T (w, r) is not straightforward with standard software.

Another possible extension of the proposed approach is to consider test statistics that adjust for 

covariates other than treatment assignment, where the simplest starting point is a stratified variant of 

the test statistic T(w, r).

Finally the current work focused on Wald-type confidence intervals which are known to be unre

liable if event probabilities and sample size are low even in simple settings (DasGupta et al. (2001)). 

Thus extensions of the current approach to likelihood-ratio- or score-based confidence intervals would 

be desirable and could be a potential area for future research.

is modest compared to the method based on Scheffe’s procedure (Scheffe (1953)) as demonstrated in

K

where h(-) is a deterministic function of time which can be used to emphasize on the importance of 

absolute risk difference over different time periods. I did not pursue this further because in clinical 

applications, justifying the exact choice of h(-) would often be difficult and obtaining a covariance



Chapter 6

Overview and outlook

This thesis made several methodological contributions to the analysis of competing risks data and 

composite endpoints. This final chapter briefly summarizes the contribution of my work to these 

fields and discusses some potential areas for future research.

6.1 Contributions

6.1.1 A flexible model for the estimation of cumulative incidence functions

The cumulative incidence function (CIF) describes how the absolute risk of experiencing a specific 

event type changes over time in the presence of other competing events and is one of the most im

portant quantities in competing risks.

In Chapter 3 I proposed a novel semi-nonparametric (SNP) method for CIF-estimation based on 

earlier work on SNP density estimation (Gallant & Nychka (1987) and Zhang & Davidian (2008)). 

I presented the relevant likelihood calculations, developed a greedy stepwise forward algorithm for 

estimation and model selection and implemented it in the statistical software R. The proposed method 

combines the strength of existing parametric and nonparametric approaches in the sense that it is ap

plicable under arbitrary censoring and truncation without imposing stringent parametric restrictions.

A rigorous justification for the asymptotic properties of the proposed model was not possible. 

However, I conducted an extensive simulation study which demonstrated that the proposed method 

compares favourably to competing parametric and nonparametric approaches in terms of accuracy 

and that confidence intervals based on ad-hoc asymptotic inference have the expected finite-sample 

coverage in many situations.

155
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6.1.2 A flexible model for CIF-based regression

In Chapter 4, I extended the model for CIF estimation to regression modelling aiming to estimate 

covariate-dependent CIF estimates. To my knowledge this is the first flexible regression model for 

competing risks that can handle interval-censored data. The accompanying simulation studies showed 

that this regression model is competitive compared to alternative approaches in terms of prediction 

accuracy but that for the validity of ad-hoc asymptotic inference a relatively large sample size is 

required. The model is based on a mixture factorization and shares limitations related to identifiability 

and interpretation with similar models which are discussed in detail. To assess the adequacy of a fitted 

model, I also proposed a method for regression diagnostics applicable to any competing risks models 

based on the mixture factorization.

6.1.3 Weighted analyses of composite endpoints

Composite endpoints are widely used in randomized controlled trials but the classical analysis of 

composite endpoints has several disadvantages including only considering the first occurring event 

and weighting all component outcomes equally despite the fact that they may differ in their clinical 

importance. In Chapter 5 ,1 present a unified framework for the weighted comparison of both binary 

and time-to-event composite endpoints between treatment groups. The proposed test statistic can be 

interpreted as a weighted average risk difference or, if weights correspond to costs, as an expected 

difference in costs. Exact weights are often difficult to obtain and I present a method for multiplicity 

control across sets of weight vectors which satisfy a flexible set of inequality and equality constraints. 

This generalized work on the ^-distribution by Shapiro (Shapiro (2003)) to the asymptotic setting, 

where test statistics only approximately follow a normal distribution, and applies it to a setting where 

such constraints naturally arise.

6.2 Outlook

6.2.1 Asymptotic properties of SNP methods

As described in Chapters 3 and 4, proofs of consistency and asymptotic normality of the proposed 

SNP estimators of the CIF and CIF-based regression models are still lacking. Of note, previous work 

on the usage of SNP densities in survival models also did not establish mathematical properties of 

the proposed estimators (Zhang & Davidian (2008)). If successfully established, an asymptotic theory 

for these SNP methods would provide a solid justification for the construction of confidence intervals 

and statistical tests. However, this is a challenging task as consistency and asymptotic normality for
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sieve maximum likelihood estimators, of which our model is a special case, are in general difficult 

to verify even in situations that are simpler than those considered in competing risks and survival 

analysis (Bierens (2014)).

Consistency has been established for the simpler case of SNP estimation of a density function 

(Fenton & Gallant (1996b)) based on the conditions given by Gallant & Nychka (1987). Accordingly, 

a possible strategy to attack the consistency problem is to extend the consistency results of Gallant & 

Nychka (1987) first to survival analysis (where censoring and the introduction of covariates provide 

challenges) and subsequently to competing risks. For die proposed competing risks model, this is 

further complicated by the fact that it is based on a mixture factorization which poses identifiability 

problems when the observed follow-up duration is limited.

Furthermore, to my knowledge, no publication has yet formally demonstrated the asymptotic nor

mality of estimators based on SNP densities. Hence such a proof would be even more challenging.

6.2.2 Faster estimation algorithm for SNP methods

The proposed algorithm for CIF estimation and CIF-based regression appeared to work reliably in the 

simulation studies in Chapters 3 and 4. However, despite utilising parallel computing empowered by 

package p a ra l le l  for the statistical software R, the algorithm requires substantial computing power. 

A faster algorithm would be highly desirable for several reasons: It would allow for more extensive 

simulation studies which could provide better understanding about the asymptotic performance of the 

SNP method and make the method more attractive for practical usage. It would also allow the fitting 

of models with higher SNP polynomial degrees which, as illustrated in Subsection 3.6.3, might lead 

to more accurate fits. Finally, it would allow for routine use of bootstrap-based inference which could 

potentially be more reliable.

6.2.3 Alternative competing risks models based on SNP densities

One limitation of the proposed competing risk regression model is that it relies on the mixture fac

torization and thus on the event status at time infinity which may be poorly identified based on the 

available data. In Section 4.4, I briefly described a potential alternative model which conditions on 

the event status at a finite follow-up time point instead. Developing this approach would require the 

flexible modelling of densities with bounded support. This could be achieved by using the SNP densit

ies with bounded support proposed by Kim (2007). All proposed competing risks models in this thesis 

focused on the CIF as the target of inference. However, competing risks models based on modelling 

the cause-specific hazards are also popular. One approach to apply SNP densities to cause-specific
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hazards models would be to extend the SNP Cox proportional hazards model developed by Zhang & 

Davidian (2008) to competing risks.

6.2.4 Weighted analyses of composite endpoints

The proposed methods for the weighted comparison of composite endpoints focused on Wald-type 

inference and two-group comparisons. This suggests two potential areas for future research: First, 

it would be interesting to extend the proposed multiplicity adjustment to score- and likelihood-ratio 

tests which are known to have better finite-sample properties if the sample size or event rates are 

low. Second, extensions of the proposed test statistics to more than two groups, stratified analyses, or 

covariate-adjusted analyses could be pursued. Finally, the usage and relevance of weighted test stat

istics and associated methods for multiplicity control could be explored for more general endpoints, 

e.g. the joint analysis of favourable and harmful events.
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Appendix

Throughout this appendix, the following notation is used (in addition to the notation introduced in 

Chapters 2 and 3):

• Pk  (z) denotes a polynomial on R. of degree K , Pk  {z , a) also refers to a polynomial of degree K  

but with specific coefficients a  =  (a0, a i , . . . ,  a x f  i.e. Pk {z, a) =  aiz%

• ip(z) and 3> denote the density and the cumulative distribution function of the standard normal 

distribution respectively

• e(z) denotes the density of the exponential distribution with rate equal to 1

• rp(z) denotes a (base) density e.g. p(z) or e(z)

• h,K (z] a) denotes a SNP density with polynomial Pk  {z , a) i.e. hk (z; a) =  P% (z, a )ii(z)

A.1 Application o f Lemma A.5 o f Gallant and Nychka

£
Lemma: Let p{z) =  (l +  z2) for some 6 > 0; and for some B > 0 let

V = j / :  f ( z )  = PK {z)yftp(z)‘, | |^ * (z)\/^ 0 O ||to2#| < B, AT =  0, 1, 2,

where <p(z) is a density function such that  ̂f  ^ip(u)duj y/<p{z) is a strictly positive density with a

moment generating function. Then V is dense in Wm, 2,n-

Proof: First let D = f  y/<p(z)dz. Because D~1^<p(z) is a strictly positive density function with a 

moment generating function,

v' = { /  : f ( z )  = P k W ' v ^ ) ;  K  = 0,1,2,...} = D ~ 1 x V

170
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is dense in Wmj2^  according to Lemma A.5 in Gallant & Nychka (1987), and so is V Q.E.D.

A. 2 Likelihood calculations for fixed SNP polynom ial degrees

This section reviews material presented in the Web appendix of Zhang & Davidian (2008) and details 

how to carry out the log-likelihood calculations in Sections 3.2 and 4.2 were carried out.

A.2.1 Spherical coordinates

Let W =  (l, Z , Z 2, . . . ,  Z K)1 be the random vector whose Z  has density ̂ (z) and w = (l, z, z2, . . ., z K)1. 

Then hk(z\ a) =  (XliLo61*2*) *K2) can be rewritten as a ^ ' a ^ z ) .  Thus, f  hk(z;a)dz = 1 means 

f a‘ww(a ip(z)dz =  1 or a(Aa  =  1, where A =  f w w tip(z)dz. For example when K  — 2

E* (.Z2) ^
E* (Z3)

Ei, (Z*) j

For xp(z) being the standard normal density function <p(z) or the exponential distribution with rate 

1 e(z), A is known and positive definite. Specifically, for ip(z) =  ip{z), (Z*) =  0 for odd i, and 

Ê p (Zl) = 2i/*li/2 )\ ôr even anc* ôr ^ (2) =  £(2) Erl> (Z1) — As A is positive definite, it can be 

decomposed as A  =  B lB  for some positive definite matrix B  e.g. by using Cholesky’s decomposition. 

Thus, a*Aa =  atB tBa, and if C(K) = B a =  (ci,. .. ,CK+if  then C{K)lC{K)  =  1. Hence, C (K ) lies 

on the unit sphere suggesting the spherical parametrization

ci =  sin ((pi)

c2 = cos(0 i)s in (^2)

(  i

ww =

and

A =

1 f  zip (z)dz f  z 2tp(z)dz

f  zip(z)dz J  z 2ip{z)dz J  z 3ip{z)dz

^ f  z 2tp(z)dz f  z 3ip(z)dz f  z4ip(z)dz y

 ̂ 1 E^{Z)

Ê p (Z) Eyj, (Z2) 

\ E xP(Z2) Ey (Z3)

cK =  cos (<pi )  cos {<p2 )  • • • cos { < p K - i) sin (<pK )

C K + l  =  COS ( ( p i )  COS (<p2 )  • • • COS ( < p K - 1) COS (<pK )



APPENDIX A  APPENDIX 172

where Pk = (4>i,4>2 , • • •, <PkY are the spherical coordinates with —7r/2 < 4>j < 7r/2, j  =  1 

Of note it is only required that the space of the <f> spans one half of the unit sphere as hk(z-, a) =  

a*ww*aij){z) are the same as hk(z; - a ) ;  and hence, the corresponding C(K)  and - C ( K )  also specify 

the same hk(z; a). Of note, the spherical parametrization in the Web appendix of Zhang & Davidian 

(2008) contains some typos (the specification of ck  and the given range for 4>k are are wrong) but 

they are correctly reported as above in the main text of that paper.

From now on, I use hk(z; 4*>k ) and Pk {z \ 4>k ) to refer to the SNP density and its polynomial whose 

coefficients are specified by the spherical coordinates <j)K.

A.2.2 SNP densities

In this section, I lay down the specific formulas used in the calculation of the density of a random 

survival T0 specified by log T0 — jx + crZ, n e  R, a > 0, with Z  having SNP distribution of degree 

I< with a standard normal base density or exp(Z) following a SNP distribution of degree K  with an 

exponential base density. For convenience, I refer to the former as the normal case and the latter 

as the exponential case. In both cases, let'the SNP density be specified by the spherical coordinates 

<f>K- Thus, the parameter vector of the whole model for To is 6 — ( f t ,  a, 4>k)- According to Zhang & 

Davidian (2008), for the normal case, the density of T0 is:

fo,K (f, e) =  ( t o ) -  P l  „  p ! t z £ )  -

while for the exponential case it is

fo,K (t;6) =  _1't W ’ - V p *  { (t/e")1̂  ;4>) e {( t / e»)}

Under the AFT model, where log T  =  X*/? +  log To =  X t/3 +  /x +  o Z  with f3 and X being the 

regression coefficient and covariate vector, respectively, the density of T is given by

fK  (t; 0, P, X) =  exp ( - X tp) (e~x ^ t a ^  P% — ~\4>k ^  V

and

/ k  (t; 0, P, X) = exp (-X*j8) ('aem/<t) U  ) P% j  ( e ' ^ ^ t / e ^  1 ; <£ J e { ( e ~ x t p t / e ^  }

respectively.
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A.2.3 SNP survival function

Under the same set-up of the previous subsection, in general the survival function of T0 is

cases, Pk (z 'Ak)  can be expanded to a polynomial of degree 2K: Ylk=o dkZk', hence So./r (t’,0) = 

J 2 k = o dk ( fc ° °  zk'lf;(z)dz)- Let I  (k, c) =  / c°° zk,ip(z)dz, k =  0 ,1 ,. . . ,  2K  and a recursion formula can be 

derived to compute I  (k, c) using integration by parts.

Specifically in the normal case, I  (k,c) = cfc-V(c) + (k -  l )I(k  -  2,c) for k > 2, and 1(0, c) = 

1 -  <3>(c), 1(1, c) = cp(c). For the exponential case, I(k,c) =  cke(c) + kl(k -  l,c) for k > 0, and 

1(0, c) =  e-c .

Under the AFT model, where log T  = X lf3 + fi + aZ,  the survival function becomes

A.3 M oment calculations

Equation (3.3.2) in Subsection 3.3.2 requires the moment of Z  in the normal and exponential cases. 

For the normal case, after expanding the SNP polynomial as in Subsection A.2.3, it is easy to see that

were explicitly given in Appendix A.2.1.

In the exponential case, we need to calculate E  (Z) and E  (Z2) if Z* =  exp(Z) has a SNP density of

the lower bound c is loĝ  ^ in the normal case and (£/e^)1/V in the exponential case. In both

E(Z) = T,iHo diEv (Zi+1) 

E ( Z 2) = E ? fo  diEv ( Z ^ )

where Ev (Zl) are the ith moment of the standard normal distribution which are well known and

degree A  given by fz* (z) — Hk (z) =  e 2 =  Yli=odiZle~z. For convenience, I calculate

the expectation of Y  =  — log Z* = —Z  first. Using a change of variable, we have

f r ( y ) =  exp (—y — e y)

Therefore,

E (Y ) = I-ooV ( l2 2i=0die yi)ex p  ( - y  -  e v)dy

= lu=odif-ooye~yiexp ( - y - e~y)dy
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Let 7(n) =  ye  yn exp (—y  — e y ) dy,  n  =  0,1,2,, 2K  . We have

/
O O

y e x p  ( - y  -  e~y) dy  =  7
-O O

Here 7 is the Euler constant. For n  >  1, using integration by parts, we have

/
OO

exp (—y n  — e~y) dy

■°o

where exp (—y n  -  e~y ) dy  = 1 for n  = 0 as exp (—e~y ) is the density of the standard Gumbel 

distribution, and again, using integration by parts yields

/ oo roo
exp (—yn  — e~ y) dy  = (n — 1) I exp (—y(n  — 1) — e~y) dy

-O O  J—OO

forn  > 1 and thus exp (-y n  — e~ y ) dy  = (n — 1)!. Hence,

/(n) = n l ( n  — 1) — (n — 1)!.

Thus, E ( Y ) = Y?i=odi I(n)  with 7(0) = 7  and /(n) = n l ( n  — 1) - (n — 1)!, n = 1,2,277. Finally, 

E (Z )  = - E ( Y ) .

Now, we calculate E  (Z2) =  f? (F 2) which is

2 /r «oo

E (y2) = / ?/2e_yt exP (~y -  e~y) dv
i= 0  J - ° °

Let H (n )  =  y 2 e~yn exp (—y  — e~y ) d y , n =  0,1,2,..., 277. We have

/
OO

y2 exp (-y - e~y ) dy  =  f3
-O O

where ft can be calculated using the moment generating function of the standard Gumbel distribution. 

For n > 1, using integration by parts, we have 77(n) = -21  (n -  1) + n77(n — 1).
To sum up, we have E  (log Z) =  -  (n ) { 0°g ̂ )2 } =  Z)2=o diH(n) with

7(0) =7

77(0)
7(n) = n7(n — 1) — (n — 1)!, n  > 1 
77(n) = — 27(n — 1) + n H ( n  — 1), n > 1
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A.4 Simulation o f univariate SNP random variables

This section gives a univariate interpretation of Section 3 in Gallant & Tauchen (1993) which shows 

how to simulate a random variable having density h(z) = (]CiLo aiz^j V’(2)- The rejection method 

requires an upper envelope b(z) with h(z) < b(z). To define this envelope, first expand the polynomial 

( Z Z o  aizt Ĵ t0 311 explicit polynomial of degree 2K  of the form o ^ zi- The envelope is then 

defined as b(z) = Y>i=o M*I \z \% ^ ( z )-

A.4.1 Review of the rejection method

The rejection method for sampling from a (multivariate) density h(z) depends on a non-negative, 

integrable function b(z) that dominates h{z) viz

0 < h{z) < b(z)

The domination function b(z) is called an upper envelope for h(z) or majorizing function. Derive a 

density g(v) from b(v) by putting

g(v) = b(v) (^J b{s)ds^

Using b(z) and g(z), a sample from h{z) is generated as follows. Generate the pair (u, v) by generating 

v from g(v) and u from the uniform distribution on [0,1]. If

u > h(v)/b(v)

reject the pair (it, v) and try again. Otherwise, accept z = v as a sample from h(z).

A.4.2 Simulation for standard normal base density

Define the envelope function as b{z) = \di\ |z|*) p(z)  =  -y— Y%=q Mil +  1, Ml). This

is a weighted sum of chi-densities x(i  +  1, \z\) =  \z\% e~z2/2 with i + 1 degrees of freedom.
r ( 2 )

The chi-density describes the distribution of the square root of a random variable with a chi-squared 

distribution. The weights are then Ui = 1, % =  0,2K.  Next we get normalized weights

as Wi =  ^ 2̂ — • Then the simulation proceeds as follows:2 ĵ=o U3
Step 1: Use the multinomial distribution with cell probabilities Wi’s to randomly select a number 

in ( 1,..., 2K + 1} as the degree of freedom.

Step 2: Get a chi-distributed number by taking the square-root of the corresponding chi-square 

distributed number having the above degree of freedom. Call this number z.
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Step 3: Randomly set the sign of z with probability of being negative equal to 0.5. Denote the 

new number by v.

Step 4: Generate u from the uniform distribution on [0,1]. If u > h(v)/b(v) return to step 1. 

Otherwise, accept v.

A.4.3 Simulation for standard exponential base density

Define the envelope function as b(z) =  |^;| z*) exp(-x) =  Y^=o M*l +  1)^(1, i  +  1, z). This

is a weighted sum of gamma densities G whose shape and scale parameters are, respectively, 1 and 

i  +  1. The weights are then ui  = \di\ F( i  +  1), i  =  0,2K .  Next we get the normalized weights as 

Wi =  ^ 27?— . Then the simulation proceeds as for the normal base density (Section A.4.2), except2_,j= 0 U3
that in step 2 we generate a Gamma-distributed random variable.
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B .l Proof for asymptotic normality o f Ctmax

To fix ideas, assume that we are interested in the first competing risk and without loss of general

ity, for simplicity I combine all competing events other than the first event type to form a “second” 

competing event. Let CIF\  (•) and C I F 2 (•) be the nonparametric estimator of, respectively CIF1 (•) 

and CIF2 (•); and C l  Fie (•) be the proposed parametric model for the true CIFi  (•). In addition, for a 

sample of n observations, the observed right-censored data are i.i.d. pairs j f i  =  min (Ti: C i) , , i —

1, n, where T* and Ci are the total survival time and censoring time for subject i, respectively, and 

Si is the corresponding event-status indicator. Define Y(t) = Yi(t), Nj(t) =  -Nji(f) and 

Mj(t) = T J l^ M jiit) ,  where Yi(t) =  I ( £  > t ) ,  N ^ t )  = I  ( l-  < t,Sj = j )  and M ^ t )  =  Njit{t) -  

/q Yi(u)Xj(u)du with Aj(-) being the cause-specific hazard of event type j .  Let Aj(t) = / 0* \j(u)du,  

the cumulative cause-specific hazard for event type j  whose corresponding nonparametric Aalen- 

Nelson estimator is Aj (t) = f* Y ~ 1(u)dNj(u). The nonparametric estimates of Mj(t) are Mj{t) =  

E?=i with Mji(t) =  Nji( t) -Aj(t ) .  From Section 6 of Gray (1988), Mji(t), j  — 1,2; i =  1,..., n

are orthogonal martingales. Then consider

max
c tm„  =  C I F -„2 (im„ )  /  C I F 1 (u)dCIFie («)

Jo

Next let

{
/ • f j n a x

C t ^ - C I F - *  (<m«)y C I F ^ d C I F ^ u ) ^

ptjnax * ^ ir—  v
=  CIF~e2 (tmax) yfc  { CIFi{u) -  CIFi(u)  i dCIFw {u)

177
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From Lin (1997), we have

^ { c i F ^ - C I F ^ t ) }  = V S  y ‘ 1 ~Y ^ j ~ — dMi(u) +  J *  CIy ^ )dM2(u)

1 dMi(u) + (IM2 (u—CIFi Ct) [Jo Y(u) ■
+  op(l)

where all integrals can be considered as Lebesgue-Stieltjes integrals which was informally discussed 

in Appendix B.2 of Kalbfleisch & Prentice (2002), and the integrands having Y(u)  are taken to be 0 if 

Y  (u) = 0. Accordingly,

■y/n -  CIF2(s)
~  CIF?e{tmax) { r i p -

ptmax I" f"

+  Jo [Jo
ptmax I" f*

- J o  C ,F H I o

Y(s)  
u CIF1(s) 

Y(s)

dMi(s) dCIFw {u)

dM2{s) dCIFie{u)

u dMi(s) + dM2(s)
Y(s)

dCIFw {u)

Following Bajorunaite & Klein (2007), after changing the order of integration (or using integration by 

parts), we have

y/n
CIF*e ( W )

C ptm ax J~ f^ m a x  |

\Jo Us
— C I F 2 (s )

- I

Y(s)
t m a x  f  r * m a x  C I F l ( u )

dCIFw (u)
f^m ax /‘tm ax T  EV (

dM1(s)+ /  /  — ±\J-dCIFie(u)
Jo Js  Y(s)

dM2(s)

Y(s)
dCIFie(u) [dMi(s) +  dM2(s>}

\ fn
CIFfe (t

{ f .

max
m a x ri  - c i f 2{s )

+

Y(s)
f t m a x  T J  E 1 ( / * t m a x  "I f t  m a x

I  I - y w L  dCIFl°(u)- W ) l  CIF^ dCIF^ \

/ t m a x  1 f t m a x

dCIFie(u) - y ^ J  CIFi(u)dCIFie(u) dM\  (s)

dM2{s)

As seen Itmax can be approximated by a sum of stochastic integrals involving predictable processes 

and orthogonal martingales. Thus / tmax can be approximated by a local square integrable martingale 

with the following predictable variation process, see Section 3.2 in Andersen et al. (1985)

(h
n

CIF^q (tmax)
tmax n  - C I F 2 (s ) 

0 L Y(s)

tmax TCIF/S) rt
+

/
tmax 1 ptmax

dCIFle(u) - y T ^ j  CIFi{u)dCIFio(u)

f t  m a x  X C T P J ^  pt-Taax  1 / * t m a x

Jo J W ) l  d C m M ~ W ) S s

y(s)dA i(s)

Y(s)dA2(s)
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Under the null hypothesis H0 : CIFi(-) = CIFie(-), CIFie{-) and CIFi  (•) can be used interchange

ably i.e. calculation of quantities involving CIFi  (•) can be done by substituting CIFie (•) for CIFi  (•). 

Nevertheless I keep using CIFi  (•) as it simplifies notation. In addition, we can replace CIF2(-), A2 (•) 

and M 2 (•) in I fmax and (Itmax) with their corresponding nonparametric estimates. Furthermore,

/
tmax

dCIFie(u) =  CIFi ( W )  -  CIFi(s)

and

/ t  m a x  1

CIFi{u)dCIFw (u) = -  {C IF i  (*»«) -  CIF?(s)} 

Thus, we have the following estimators of Itmax and {Itmax}

1 -  C I F 2(s)t   \/rc v
t m a x  j H o  ~  C I  F f e  ( t r a a x ) Y(s)

(CIFi (tmax) CIFi(s))

~ W ( T ) ( C I F * ( w ) "  C I p F ) )

+fJO

CIF1(s)CIF1 (fmax)

dMi(s) 

1
Y(s) 2 Y(s) {CIFi  (im ax ) -  CIFl(s)) dM2{s)

C I F * ( t m a x ) {jf”~ K1 ~ GIF2(s))(C/Fl (w) - CIFW )

- \ ( C I F 2 (tm̂ ) - C I F 2(s))
dki{s)
~ Y w

+ /Jo

2

CIFi(s)CIFi  (im„ )  -  -  (C IF i  ( W )  -  C 7f? « )
cL42(s)
" y > r

Therefore, as an application of the martingale central limit theorem, see Theorem 5.1 in Kalbfleisch & 

Prentice (2002), under mild conditions, we have asymptotically

^max.Ho V n {C tmax ~  \  ] AT(o, i) g.£.£>.

Alternatively, following Lin (1997) and Bajorunaite & Klein (2007) one can use direcdy the martingale 

representation of I tmax to derive p-value based on resampling by replacing dMj(•) with CjidNji(-),

j  =  1,2, where =  1,2; i =  1, ...,n  are independent standard normal variables. This means
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It Hn follows the same distribution as

yfn
CIF?„ ( W )  

” f
xE

i=1

l - C I F 2(s)
Y(s)

( C I F i  (t  max ) - c r F 1( s ) )

{CIFl’ (im“ ) "  C /F i (s))

+ /JO

CIFi(s)CIFi (tmax)

GudNuis) 

1
Y(s) 2Y(s) ( C I F i  (tmax)  —  C I F i ( s ) ) G2idN2i(s)

For a sample with observed event- or right-censoring times U, i = 1 , . . . ,  n, let h  and I2 be, respect

ively, the index sets of subjects observed to have event type 1 and 2. If there are no two subjects failing 

from the same event type at the same time, h max,H0> h max,H0 and ^ t raax,//0} can be re-expressed as

f  =  ^  xr̂aax>Ho /̂ »rZ?2 {+ \16 rmaxj

5 3  |  [l -  CIF2(U)] [CIFy (<„„) -  CIF^U)} -  i  [C /f?  ( W )  -  CIFl(t,)]  J  Y(t () - 1
ie/i

y/n
C IF le (tmax)

f ‘' { [l - 5 7 F 2(s)] [CIFi ( W )  -  CIFi(s)] -  i  [CIFi  ( W )  -  C /f? (s)] } (£)
S )

y/n

5 3  |  [l -  CIFtiti)] [CIFy (im» )  -  CIF^ti)]  -  i  [C IFi ((m a x ) -  CIFliti}} |  ^ g y
ie/i

+
y/n

C IF lB (tmax)

5 3  { c / f i f c ) C 7 f i  ( W )  -  5  [ c / ^ 1 2 ( w )  -  c i f H u )] |

[ ‘"“ [ ( l - C I F ^ i C I F y ^ - C m i s ) )
J o

- U c i F K t ^ ) -  CIFl(s))
dAi(s)
y ( s)

H-c / m  , x 53 IciFyitJCIFy (imax) -  i  (CIFi  ( tn°x)-CIFl(U))
iGl 2

n « i)
- 2
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B.2 Asymptotic x 2-distributions

This provides a proof that extends the exact distributional assumptions and results of Shapiro (2003) 

to the case where both assumptions and results are asymptotic, which is necessary for the discussion 

in Subsection 5.3.2. In detail, Shapiro (2003) considered the case of a /(-dimensional real-valued 

random vector X  following an exact multivariate normal distribution Af(0, V), where V  is a nonsin

gular covariance matrix. In the notation of Subsection 5.3.1 X  was D — Do. Then for a closed and 

convex cone C c  Rfc, let Z(C, V) =  maxw£c dien the random variate [Z(C, V )]2, according

to Shapiro (2003) can also be expressed as

X TV ~ 1X  -  inf (X -  w)TV ~ l {X -  w)
wGC

which has an exact x2-distribution.

In what follows I shall prove the aforementioned asymptotic extension of this result as stated in 

the following lemma.

Lemma

If X  e  RK is a statistic based on a sample of size n, e.g. in Subsection 5.3.2 X  — ( d ( t ) -  D0(r)j,  

following an asymptotic multivariate normal distribution J\f (0, V), where the nonsingular covariance 

matrix V  can be consistently estimated by nV. In formulas, these are

V n X  A  M  (0, V) and nV  A  F

D  Pwhere — > and — > denote convergence in distribution and convergence in probability, respectively. Moreover 

all convergence is in sample size n and with respect to the Euclidean norm in and some matrix norm 

in VK*K, the vector space of K  x K  real symmetric matrices. It is also further assumed that for all n, V  

is symmetric and positive definite with probability one. Then

X TV - xX  -  inf (X -  w)TV - 1 (X -  w) A  x 2u’SC

Proof

First assume that the function /  : (y, V") yTV ~ 1y -  mfw£C(y ~  w)TV ~1{y -  w) is continuous in 

(y, V)  with respect to a suitably chosen norm defined on x V KxK. Then according to Theorem
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2.7 in Van der Vaart (2000), y/nX  Af(0, V) and nV  V  imply i^/nX^nV^j (X , V), where

X  ~  M(0, V ). Thus, according to the continuous mapping theorem, we have

It can easily be seen that for all n, the left hand side of the above equation equals

X TV ~ 1X  -  inf (X -  w)TV - x{X -  w)
xv£C

where miW£c{y/nX  — w)T ^ - ( y / n X  — w) equals infU)€c(V — io)r Vr_1(V — w) due to the definition 

of the cone C. Asa  result we have

X TV ~1X  -  inf (X -  w f v - ' i x  -  w) A  *2
w&C

It remains to verify the continuity of /(• ,• )  as assumed earlier.

Let us continue by first specifying the appropriate norms for each variable. For y in' Rx  I use the 

normal Euclidean norm ||-||2, and for all V  e  VKxK, let H V ^  =  maxi<i,j,<K \Vij\- This matrix norm 

is chosen simply for ease of discussion and continuity of /  (-, •) once proven should hold regardless 

of the choice of matrix norm. Then the corresponding norm for (y, V, w) e RK x VKxK x is 

||(y, V, w )|| = ||y ||2 +  Halloo +  11̂ 112 - Moreover, I shall drop all subscripts when referring to a norm 

for simplicity and any topological statements involving a variable should be implicitly understood as 

being considered with respect to the topology generated by the norm defined for that variable. Then 

it is simple to prove that V ~ l is a continuous function of V  if V  is nonsingular and that yTVy  and 

(y — w)TV(y — w) are continuous in (y, V) and (y, V,w), respectively. Thus we are only left with

showing that infu,ec(y -  w)TV (y -  w) is continuous in (y, V).

For this, note that infwec(y -  w)TV(y -  w) is the projection of y onto a closed and convex set 

C with respect to the strictly convex norm ||y - w ; V || =  (y -  w)TV(y — w) (as long as V  is positive 

definite). Thus, according to Section 8.1 in Boyd & Vandenberghe (2004) for any positive definite 

matrix V € VKxK and any y e  there exists exacdy one wyy  in C such that (y — wyy ) TV(y — 

wy,v) — infu; ec ( y ~ w ) TV(y — w) i.e. the minimizer is uniquely attained. To this end, for simplicity

let g (y, V, w) = (y -  w)TV (y -  w) and h(y, V)  =  min^gc 9 (y, V, w).

For any (y0, Vo) 6 x y KxK and any sequence (yn, Vn] in x y KxK converging to (y0, Vo); 

for each n let wn =  argmmwGCg (yn, Vn,w) and w0 = argminweCy (y0, V0,w). If C is compact, we 

have that h (yn, Vn) converging to h (yo, V0) implies the continuity of h (•, •). However, a cone can

not be compact. The main idea of what follows is to show that the sequence {wn} is bounded.
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Thus there exists a closed, bounded and hence compact Co C C covering wq and {wn}. In such case, 

min^ec 9 (Vn, Vn,w )  = minweCo g  (yn , Vn, w ) for all n, and min^gc g (y0, V0, w)  = minw6Co 9 Q/o, V0, w) .  

Thus one can argue for the continuity of h (•, •) as in the case when C is compact.

Now assume the contrary that {wn} is unbounded. Thus there is a subsequence (wfcn) such that 

l im n _^oo \\wkn || =  oo. This means for large enough n, \\wkn \\ >  0 , and for such n  the sequence 

IK n ll"1} Q C (as C is a cone) is bounded and thus has its own subsequence that converges to 

w  ^  0  in C (due to C’s closedness). With a slight abuse of notation, let ||ttf/cn | | - 1 }  also denote 

this subsequence.

For all n, due to the definition of w n we have g  (yfcti, Vkn , Wkn) < g  (ykn, Vkn> wo)- Thus, 

y 9 (vkn,Vkn,wkn) < g(ykn,Vkn,wo)
inui2 - ik.ii2

^  lim < lim 9 ( V K , V ^ o)
oo \\wkJ Z 

lim g  (0, V q , w )  < 0

This means 0 is not the only minimizer of g (0, V0, w) in C which is a contradiction Q.E.D.


