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To m y  p a re n ts



"We are here fo r this - to make mistakes and to correct ourselves,
to stand the blows and to hand them out 

We must never feel disarmed: nature is immense and complex;
but it is not impermeable to the intelligence; 

we must circle around it, pierce and probe it, look fo r the opening or make i t "

The Period Table, Primo Levi
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Abstract

The voltage-gated sodium channel Nav1.7, encoded by SCN9A gene, is expressed in dorsal 

root ganglia (DRG) and in sympathetic ganglia and it is considered to be one of the major 

player in the regulation of pain perception. The linkage to several human pain disorders 

confirms its pivotal role in pain pathway. The gene contains an exon 5 pair, 5N and 5A, 

that are mutually exclusive spliced. These exons encode part of the voltage sensor of the 

channel; although the alternative splice variants differ by only two amino acids, they 

differentially affect the amplitude of the currents generated and the excitability of 

nociceptive neurons.

In this study I mapped some of the splicing regulatory elements that determine SCN9A 

exon 5 developmental^ regulated mutually exclusive splicing. In the first stages of 

development, characterized by a major inclusion of the neonatal form, ETR3 plays an 

essential role acting on both sides, favouring 5N and inhibiting 5A inclusion. For the 

switching towards a major inclusion of exon 5A some elements have been identified. Foxl 

helps the recognition of the weak 5A 5" splice site, interacting with four c/s-acting 

elements downstream of exon 5A. Furthermore an exonic splicing enhancer (ESE), bound 

by SRSF1 and SRSF6, improves the usage of 5A weak 3' splice site. At the same time 5N 

inclusion is inhibited by the presence of two silencers, one exonic recognized by PTB and 

one intronic close to 5N 5' splice site.

The duplication of this exon is well conserved in six out of nine voltage-gated sodium 

channel (VGSC) genes and some elements mapped for SCN9A gene display a great 

homology in other family members. The investigation of possible common factors reveals
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some interesting results: for example the ESE in the adult form is present in at least other 

three VGSCs.
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1. Introduction

1.1. Overview of pre-mRNA splicing.

In eukaryotic cells the primary RNA transcript (pre-mRNA), synthesized in the nucleus by 

RNA polymerase II (Pol II), undergoes several modifications before being transported into 

the cytoplasm, where translation takes place. These processing events occur both co- and 

post-transcriptionally and include for example the 5' end capping, the cleavage and the 

polyadenylation at the 3' end (Kornblihtt et al., 2004; Moore and Proudfoot, 2009). 

Furthermore, since the primary transcripts contain multiple non-coding intervening 

sequences (introns), which separate the coding sequences (exons), a central step of the 

mRNA maturation is the splicing reaction (Gilbert, 1978).

Introns must be precisely removed by the spliceosomal machinery in the nucleus before 

the mRNA can be transported to the cytoplasm. The major spliceosome, that excides the 

vast majority of introns, is characterized by the presence of U l, U2, U4/U6 and U5 small 

nuclear RNAs and at least 170 protein factors. In a subset of eukaryotes, some introns are 

spliced by a less frequent type of spliceosome, called minor spliceosome, formed by 

U11/U12 and U4atac/U6atac snRNPs. These members display comparable functions in 

respect to the components of the major one (Burge et al., 1998; Jurica and Moore, 2003). 

Spliceosome complex assembly is directed by consensus sequences that mark the intron- 

exon boundaries: the 5' splice site, the branch point, the polypyrimidine tract and the 3' 

splice site (Fig. 1.1A). The S' splice site (donor site) is a degenerate 9-nucleotide motif 

(C/A)AG/GURAGU (where R is A or G) at the exon-intron junction comprising the region 

from -3 to +6. The GU dinucleotide (in bold in Fig. 1.1A) is universally conserved, in fact a
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m utation o f one o f these tw o  residues com plete ly abolishes the splicing reaction (M onte ll 

and Berk, 1984). This c/'s-acting element is in itia lly  recognized by the U l snRNA 5' (Fig. 

1.IB). The 3' splice site is characterized by three elements: the polypyrim id ine trac t (PPT), 

a region w ith  an high percentage o f pyrim idines, the  branch point (BP), th a t contains the 

adenosine im portan t fo r the firs t trans-esterifica tion step o f the splicing reaction and 

generally located w ith in  18-40 nt o f the 3' splice site (Reed and Maniatis, 1988), and the 

3' splice site, acceptor site  (YAG, where Y is C or U). The degenerate BP sequence 

(YNYURAY) interacts w ith  U2 snRNP, while the U2 snRNP auxiliary factors (U2AF) bind the 

PPT and the 3’ splice site (Fig. 1.1B). The more conform  to  the consensus sequence is the 

S' splice site and the longer is the PPT, the more e ffic ien t is the splice site de fin ition  (Ast, 

2004).

Exon 1 Polypyrimidine
tract

Exon 2

GURAGU- ■YNYURAY Y10- 1 2 ' -YAG

5' splice site

SIQ IG TZ
Branch point 3' splice site

U l

GURAGU-

Figure 1.1. (A) Schematic representation of exon-intron boundaries and consensus sequences for 
5' and 3' splice sites and branch point. Polypyrimidine tract means region rich in pyrimidines. The 
A in red is the branch point. (B) Schematic representation of the direct interactions between U l 
snRNP with the 5' splice site, the U2 auxiliary factors, U2AF65 and U2AF35, with the 
polypyrimidine tract and the 3' splice site, respectively, and U2 snRNP with the branch point 
sequence.

U2AF

YNYURAY
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The spliceosomal assembly begins with the ATP-independent interaction of U l snRNP 

with the 5' splice site by base-pairing of U l snRNA with the consensus sequence of the 5' 

end. This earliest complex (E complex) is characterized also by the binding of SFl/mBBP 

protein and U2AF to the branch point and to the polypyrimidine tract and 3' splice site, 

respectively (Konarska, 1998; Wahl et al., 2009). Subsequently, U2 snRNP displaces 

SFl/mBBP and binds the branch point sequence in an ATP-dependent manner, leading to 

the formation of A complex. After that the pre-assembled U4/U6.U5 tri-snRNP is 

recruited, forming the inactive B complex. Several rearrangements activate the B complex 

into the B* complex, which catalyses the first trans-esterification reaction, forming the C 

complex. After the second catalytic step the spliceosome disassembles (Fig. 1.2) (Will and 

Luhrmann, 2011).

Intron removal occurs through two consecutive trans-e sterification reactions catalysed by 

the spliceosome; in the first step the adenosine 2'-hydroxyl group of the branch point 

attacks the phosphodiester bond at the 5' splice site, forming a free 5' exon and a lariat 

intermediate. The second trans-e sterification, in which the 3' splice site is attacked by the 

3'-hydroxyl group of the 5" exon, results in intron excision and exon ligation, producing 

the mRNA (Brow, 2002).
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5 'S S  BP 3 ' SS

3U----------A - A G

U1

.U1

Complex E

Pre-mRNA

U2

Complex A 

(Pre-spliceosome)

U1

U6 U4 

U5

Complex B 

(Pre-catalytic 
spliceosome)

U6 U4

U 4/U6.U5
tri-snRNP

U2
U1

U6 U2 

U5

Complex B acl 

(Activated)

Intron

U2

U6 U2U5

U5U6

mRNA

0
U6 U2 

U5

U6 U2

(2  
Complex B ‘ 

(Catalytically 
Activated)

Post-spliceosomal
Complex

1st step

/ 2nd step

Complex C 

(Catalytic step 1 
spliceosome)

Figure 1.2. Spliceosome assembly. In the earliest E spliceosomal complex, the U l snRNP is 
recruited to the 5'ss. In a subsequent step, the U2 snRNP stably associates with the branch point, 
forming the A complex. The U4/U6.U5 tri-snRNP is then recruited, generating the precatalytic B 
complex. Major rearrangements in RNA-RNA and RNA-protein interactions, leading to the 
destabilization of the U l and U4 snRNPs, give rise to the activated spliceosome (the B-act 
complex). Subsequent catalytic activation generates the B catalytically activated complex, which 
catalyses the first of the two steps of splicing. This yields the C complex, that in turn catalyses the 
second step (adapted from (Will and Luhrmann, 2011)).

This canonical cross-intron model has been studied principally using in v itro  analysis 

(Query et al., 1996), but when intron length exceeds 200 nucleotides, as in the  case o f the 

vast m ajority o f mammalian introns, it seems tha t splicing m achinery complexes more 

likely form  across the exons.
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In this model, called exon defin ition  model, U l snRNP base pairs w ith  the  5' splice site 

downstream o f an exon and prom otes the interaction o f U2AF w ith  the polypyrim id ine 

tra c t/3 ' splice site upstream o f it, leading to  the binding o f U2 snRNP to  the branch point; 

once assembled, the splicing factors can pair across the long introns, form ing the  active 

spliceosomal complex (Berget, 1995; Fox-Walsh et al., 2005).

Since in higher eukaryotes splice sites are degenerated, o ther auxiliary sequences play an 

im portan t role in the defin ition o f exons; these elements can be classified by the ir 

location and activ ity as exonic splicing enhancers (ESE) and silencers (ESS), in tron ic 

splicing enhancers (ISE) and silencers (ISS) (Fig. 1.3) (McManus and Graveley, 2011).

ISS ESE ESS ISE

Figure 1.3. An overview of the possible cis-acting elements: exonic splicing enhancers (ESE) and 
silencers (ESS), intronic splicing enhancers (ISE) and silencers (ISS).

Many studies have shown tha t exon recognition can also be affected by o the r factors. 

Among these, o f great in terest is the Pol II e longation rate, in fact variations in the  splicing 

pattern can be obtained using polymerases tha t transcribe at d iffe ren t speeds (de la Mata 

et al., 2003). M oreover, also RNA secondary structure can influence splicing: fo r example 

short hairpins or long interactions can modulate exon selection by altering the  function  o f 

some regulatory elements and proteins (Buratti and Baralle, 2004).
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1.2. Alternative splicing.

Pre-mRNA splicing can occur constitutively or alternative. In the first case the exon is 

always included in the mature mRNA, while in the second one multiple mRNAs can be 

obtained from the same pre-mRNA by differential joining of 5' and 3' splice sites. 

Alternative splicing is one of the main protagonists in regulation of tissue-specific gene 

expression, by generating different protein isoforms that can function in diverse cellular 

processes (Maniatis and Tasic, 2002).

An estimation of the frequency of alternative splicing in human genes has increased over 

the years from 5% to more than 95%, partially explaining the discrepancy between the 

24.000 estimated protein coding genes and about 100.000 different synthesized proteins 

(Keren et al., 2010).

Alternative splicing is prevalent only in multicellular eukaryotes and, in particular, it is 

highly extensive in mammalian nervous system in which it acts as an important spatial 

and temporal control that influences the synaptic function and the development of 

neuronal circuits (Grabowski, 2011). Neuron specific alternative splicing involves, for 

example, the SRC tyrosine kinase and SNAP25 pre-mRNAs. SRC is characterized by the 

presence of a neuronal specific cassette exon (N l), which is repressed in non-neuronal 

cells by the polypyrimidine binding protein (PTB); during neuronal differentiation, PTB is 

replaced by neural PTB (nPTB), which is less repressive than the other isoform, leading to 

the inclusion of N l exon (Chan and Black, 1997; Boutz et al., 2007). On the other hand, 

SNAP25 (synaptosomal-associated protein 25) has an important role in vesicle 

stabilization and neurotransmitter release and the alternative splicing of exon 5 creates 

two mRNAs, encoding different functional protein isoforms. In particular the SNAP-25a is 

more present in embryonic mouse brain, while SNAP25b becomes the most abundant
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isoform  in adult brain, supporting the im portan t period o f synaptogenesis (Sorensen et 

al., 2003).

Several d iffe ren t types o f a lternative splicing patterns exist (Fig. 1.4) through which exons 

can be included or skipped, extended or shortened, and introns can be removed or 

retained. Transcription, fo r example, can in itia te  at d iffe ren t prom oters, form ing 

a lternative 5 '-term ina l exons jo in ing  to  a common 3' exon, and also alternative 

polyadenylation sites can be used. When more than one splice site is present w ith in  an 

exon, the  exon length can vary due to  the use o f a lternative 5' and 3' splice sites. These 

tw o  types o f AS patterns are the  most abundant only a fte r the cassette exon: in th is case 

one exon can be included or excluded. O ther tw o  less common events are in tron 

re tention  and m utually exclusive splicing, which consists in a paired cassette exons where 

one exon or the  o ther is present in the m ature mRNA, but not both (M atlin  et al., 2005).

Alternative promoters

Alternative poly-A sites

Alternative 5' splice sites

Alternative 3' splice sites

Cassette exon

Mutually exclusive 
splicing

Intron retention

Figure 1.4. Typical types of alternative splicing are inclusion or skipping of one or more exons 
(cassette exons), mutual exclusion of two or more exons, retained introns and shortening or 
lengthening of an exon by alternative 5' and 3' splice site. Different promoters and different 
polyadenylation sites may specify alternative 5' and 3' terminal exons, respectively.
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1.2.1. Mutually exclusive splicing: "when two is a crowd".

Mutually exclusive (ME) splicing is a highly regulated mechanism, in which only one exon 

of a cluster of internal exons can be included in the final mRNA (Smith, 2005). This form of 

splicing modulates protein functionality, for example by changing biochemical and 

physical properties of the protein via the inclusion of the alternative exon. The most 

extreme and fascinating example of ME splicing, as a way of increasing protein diversity, 

is the Drosophila melanogaster Down Syndrome Cell Adhesion Molecule (Dscam) gene, 

that is involved in the development of neuronal circuits (Zipursky et al., 2006). It contains 

115 exons, 95 of which undergo alternative splicing, generating potentially 38,016 distinct 

mRNAs; these 95 exons are organized in four clusters and the exons within each cluster 

cannot be spliced to each other in a mutually exclusive manner (Schmucker et al., 2000). 

This type of alternative splicing is very common in the regulation of neuronal activity and 

development. One example is the N-type voltage gated calcium channels, that control 

neurotransmitter release at the synapse. The intracellular domain of this channel can be 

modified thanks to ME exons 37a and 37b: in nociceptors the mRNA containing exon 37a 

is the most abundant species, that is responsible for the large N-type currents of these 

particular neurons (Castiglioni et al., 2006).

Many studies have been performed to understand the mechanisms that direct this fine- 

tuned selection and several models have been identified. The first one is steric 

interference between splice sites, which occurs when the branch point of the 

downstream exon is too close to the upstream 5' splice site. In fact, if the distance is less 

than 50 nucleotides, U l and U2 snRNPs cannot bind in a productive manner and the 

paired exons cannot be spliced together. One example is a-tropomyosin ME exon 2 and 

exon 3 (Fig. 1.5A) (Smith and Nadal-Ginard, 1989). The second model, proposed for exons 

6a and 6b of the human c-Jun N-terminal kinase 2 gene (JNK2), is spliceosomal
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incom patib ility , regards the m ajor and m inor spliceosomes. The major spliceosome 

recognises the signals GU/AG and removes the vast m ajority o f the introns. However, a 

small percentage o f introns are spliced by the m inor spliceosome, which consists o f U l l ,  

U12, U4atac, U6atac and U5 snRNPs, tha t uses d iffe ren t splicing signals, AU/AC (Patel and 

Steitz, 2003). Introns containing 5' and 3' splice sites fo r the tw o  d iffe ren t spliceosomes 

can not be spliced toge ther (Sharp and Burge, 1997). For example in the  case o f exon 6a 

and 6b o f JNK2 gene, the in tron among the tw o  ME exons presents a U12-type 5' splice 

site and a U2-type 3" splice site (Fig. 1.5B). Spliceosomal incom patib ility  prevents them  

from  being included both in the final mRNA and also the skipping o f the  ME exons 

(Letunic et al., 2002).

A

Steric in terfe rence

B

Spliceosomal in com pa tib ility

Figure 1.5. (A) Steric interference occurs when the branch point (green dot) of the downstream 
ME exon is too close to the upstream 5' splice site. Mutually exclusive exons are shown in light 
and dark pink, constitutive exons in blue. (B) A model of spliceosomal incompatibility. The splice 
sites used by the "U1/U2" and "U11/U12" snRNP containing spliceosomes that have distinct 
consensus sequences and are incompatible.
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A third form of ME splicing control lies in the fact that in in some cases the choice of only 

one exon among a ME exons pair is directed by tissue specific trans-acting factors, as seen 

for a-actinin. This gene contains an exon pair, SM and NM exons. Exon SM is included 

only in smooth muscle while the exon NM is included only in non-muscle tissues. The SM 

inclusion is favoured by the presence of CUG-BP1 (CUG-binding protein 1) and ETR3 

(embryonically lethal abnormal vision-type RNA binding protein 3) proteins, that at the 

same time inhibit NM inclusion. SM exon is also inhibited by PTB, but this negative effect 

is counteracted by CUG-BP1, that directly antagonizes the binding of the PTB. In this case 

the mutually exclusive splicing pattern is directed by the combinatorial control of these 

proteins (Gromak et al., 2003).

Other mutually exclusive events are strictly regulated both by tissue specific factors and 

by the nonsense-mediated decay (NMD) pathway. This happens when the ME exons are 

not multiple of three nucleotides. One example is the alternative splicing of exon lllb and 

lllc of the fibroblast growth factor receptor 2  (FGFR2) gene. The transcripts including both 

the ME exons are produced but, due to a frameshift, a premature stop codon is 

introduced in exon lllc activating the NMD pathway to degrade the mRNA (Jones et al., 

2001).

The first direct evidence of the relevance of RNA secondary structure in ME splicing 

derived from the studies on Dscam gene. In 2005 Graveley and his group identified in the 

introns of Dscam exon 6 cluster two classes of conserved sequences: a sequence 

downstream of exon 5, called the docking site, and complementary elements upstream of 

each exon 6, called the selector sequences (Graveley, 2005). They described that one 

selector element can bind one docking stretch at a time: this RNA base-pairing 

competition drives the mutually exclusive selection of only one ME exon 6 (May et al., 

2011).
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1.3. Splicing regulatory elements and trans-acting factors.

Genome sequencing analyses have showed that the majority of splice sites do not 

precisely conform to the consensus sequence: for example less than 5% of 5' splice sites 

match perfectly the 9 nucleotide consensus stretch and more than 25% are characterized 

by three or more mismatches (Zhang et al., 2003). Since there are many cryptic splice 

sites that should be avoided and the 5' and 3' splice sites are so degenerate, other signals 

and interactions are necessary to enhance their correct use (Maniatis and Tasic, 2002). 

The need for these auxiliary signals is even more significant if we consider that the size of 

a human exon is comprised among 50-250 bps, much shorter respect to the intronic 

thousands residues: this means that the spliceosomal machinery has to identify small 

exons within vast intronic sequences (exon definition model), so the auxiliary splicing 

elements are very important in this early stage of spliceosomal assembly (Berget, 1995; 

Chen and Manley, 2009). These c/s-acting elements, as mentioned in section 1.1, are 

classified according to their effect and position as exonic splicing enhancers and silencers, 

intronic splicing enhancers and silencers. They do not only play an important role in the 

recognition of exons perse  in constitutive splicing, but also in alternative splicing, which is 

characterized by the presence of competing splice sites (Black, 2003).

1.3.1. Exonic and intronic splicing enhancers and their trans-acting factors.

In 1987 it was observed that an exonic sequence in EDA exon of the fibronectin gene was

involved in the definition of alternative splicing, representing the first evidence for

additional c/s-acting elements (Mardon et al., 1987). Although at the beginning splicing

enhancers were originally described as important players only in alternative splicing

events, it is known that they also play an essential role in constitutive splicing facilitating

the recognition of the splice sites (Schaal and Maniatis, 1999). One of the most well
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characterized exonic splicing enhancer (ESE), consisting of six copies of a 13-nucleotide 

consensus sequence, is involved in inclusion of female specific exon 4 in the doublesex 

gene in Drosophila. Exon 4 is not included in males due to its weak 3' splice site. In 

females the binding of the SR protein Rbpl and the SR-like protein Tra2 to the ESE, 

directed by Tra, a female specific protein, leads to exon 4 inclusion (Tian and Maniatis, 

1994; Lynch and Maniatis, 1995).

The vast majority of exonic enhancer elements (ESEs) contains purine-rich sequences, 

which are binding sites for serine/arginine-rich (SR) proteins. These proteins are involved 

in several steps of spliceosome assembly and act as both essential splicing factors and 

regulatory factors. SR proteins have a common structural organization, characterized by 

the presence of one or two RNA recognition motifs (RRM) at the N-terminal and the 

arginine/serine (RS) domain of at least 50 amino acids with an RS content higher than 

40% at the C-terminal: according to this definition, 12 SR proteins have been described in 

human (Table 1.1) (Tacke and Manley, 1999; Manley and Krainer, 2010).

These trans-acting factors are not equally present in all eukaryotes, for example there is 

no evidence of SR proteins in S. Cerevisiae, while S. Pombe has only two (Ram and Ast, 

2007). In addition to the canonical SR proteins, there are also several SR-related proteins, 

these include for example Tra2, SRm l60/300 and U1-70K (Table 1.2).
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mm
SRSFl RRMx2, RS

Constitutive and a lternative 
splicing activator

SRSF2 RRM, RS
Constitutive and alternative 

splicing activator

SRSF3 RRM, RS
Constitutive and a lternative 

splicing activator

SRSF4 RRMx2, RS
Constitutive and alternative 

splicing activator

SRSF5 RRMx2, RS
Constitutive and a lternative 

splicing activator

SRSF6 RRMx2, RS
Constitutive and a lternative 

splicing activator

SRSF7 RRM, RS, zinc finger
Constitutive and a lternative 

splicing regulator

SRSF8 RRM, RS
Constitutive and a lternative 

splicing regulator

SRSF9 RRMx2, RS
Constitutive and a lternative 

splicing regulator

SRSF10 RRM, RS Splicing repressor

SRSF11 RRM, RS Alternative splicing repressor

SRSF12 RRM, RS A lternative splicing repressor

Table 1.1. Classical SR proteins.

TRA2A RRM, RSx2 Splicing activator

RNPS1 RRM, RS
Constitutive and a lternative

splicing regula tor

U2AF1
RRM, RS, C 3H l-type 

zinc fingerx2
Constitutive splicing fac to r

U2AF2 RRMx3, RS Constitutive splicing facto r

SNRP70 RRM, RS Constitutive splicing facto r

SRRM1 RS, PWI
Constitutive and a lternative 

splicing co-activator

SFRS17A RRM, RS A lternative splicing regula tor

Table 1.2. Examples of SR-related proteins.
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SR proteins are predominantly located in the nucleus, in particular structures called 

speckles, that seem to act as sites of storage of these phosphoproteins together with 

other important splicing factors (Jimenez-Garcia and Spector, 1993; Caceres et al., 1998). 

However, these factors are not confined into the nucleus, where they are involved in the 

splicing regulation, but they shuttle between the nucleus and the cytoplasm at different 

dynamic rate: ASF/SF2, SRp20, 9G8 and SRp38 at higher rate respect to SRp75 and SRp55 

(Caceres et al., 1998; Sapra et al., 2009). Due to this shuttling, SR proteins can regulate 

several steps of mRNA metabolism, from the synthesis to the degradation, and also play a 

role in the translation (Twyffels et al., 2011). Moreover the expression of these trans­

acting factors varies in a tissue-specific manner, conditioning the splicing pattern within 

different cell lines (Hanamura et al., 1998). Complementation assays with cytoplasmic 

S100 splicing-deficient extract, lacking the SR proteins, showed that these members are 

interchangeable in exerting their activity (Zahler et al., 1992). However some differences 

in their ability to promote splicing have been shown in vivo, for example in mouse 

models: the SR null-mice for ASF/SF2 or SC35 display an early embryonic phenotype, 

indicating that the members of this family are not completely redundant (Moroy and 

Heyd, 2007).

Models based on protein-protein interactions have been proposed to explain the 

mechanisms through which SR proteins facilitate splice sites recognition. Due to their RS 

domains and depending on their phosphorylation state ASF/SF2 and SC35 can interact 

with each other, with U1-70K SR related proteins and with U2AF35, suggesting that they 

facilitate splicing by forming interactions across exons and introns (Fu, 1995; Graveley, 

2000). An alternative model for enhancer activity is based on bridging interactions 

between ESEs and spliceosomal components, through factors such as SRml60 and 

SRm300. These co-activators, which contain RS domains but lack RRM domains, can



generate multiprotein complex with snRNPs and SR proteins bound to the ESE sequence 

(Blencowe, 2000). In some cases the binding of the SR proteins can prevent or displace 

the recruitment of negative regulatory factors to silencers, such as hnRNP A l (Zhu et al., 

2001).

As previously mentioned splicing enhancers can also be found in introns (ISEs), although 

the number of positive intronic elements described in literature is very low respect to 

exonic ones. One example is the inclusion of exon 3 of the apolipoprotein A-ll gene, that is 

favoured by an ISE within the downstream intronic region and bound by SRp40 and SRp55 

(Mercado et al., 2005). Some other 5' splice sites are activated by a U-rich sequence, 

located immediately downstream: two examples are Fas exon 6 and K-SAM alternative 

exon of the fibroblast growth factor receptor 2. In both cases an U-rich ISE sequence is 

bound by T-cell restricted intracellular antigen 1 (TIA 1) to facilitate the recruitment of U1 

snRNP at the adjacent 5' splice site (Del Gatto-Konczak et al., 2000; Izquierdo et al., 2005). 

Another example of transcript regulated by ISE is the endothelial nitric oxide synthase 

(ieNOS): in this case the binding of the heterogeneous nuclear ribonucleoprotein L (hnRNP 

L) at a CA-repeat ISE determines the activation of a weak 5' splice site (Hui et al., 2003). 

Also RbFox family members are known to exert a positive effect by binding intronic motifs 

downstream of the target exon, but the mechanism of action of these proteins will be 

described in detail in section 1.3.3.1.

1.3.2. Exonic and intronic splicing silencers and their trans-acting factors.

In contrast to the positive action of exon inclusion of the splicing enhancer elements, 

there are also other c/'s-acting elements that regulate in a negative manner splice site 

choice or block spliceosomal activity. In particular the exonic splicing silencers (ESSs) are 

bound by heterogeneous nuclear ribonucleoproteins (hnRNPs), which are a set of
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prim arily nuclear proteins tha t bind pre-mRNA w ith o u t form ing stable association w ith  

o the r RNA-protein complexes. Twenty major proteins have been discovered and 

designated from  A l  to  U and a role in splicing regulation has been described fo r all o f 

them , except to  date fo r hnRNP U (Table 1.3) (Dreyfuss et al., 1993).

—
RBDx2, RGG Splicing, export, te lom ere biogenesis

RBDx2, RGG Splicing, localization

RBD Splicing, stab ility

RBDx2, RGG Splicing, stability, recom bination

KHx3 Splicing, stability, translation

RBDx3 Splicing

RBD, RGG Splicing

RBDx3 Splicing, polyadenylation

RBDx4 Splicing, localization, polyadenylation

KHx3, RGG Splicing, transcription, stability, translation

RBDx4 Splicing, export, stability, ribosw itch

RBDx4 Splicing

RBD Splicing, avid binding to  poly(A)

RBDx3, RGG Splicing, translation

RBD Splicing, s tab ility

RGG Nuclear re tention

Table 1.3. Major hnRNP proteins (Adapted from (Dreyfuss et al., 2002; Han et al., 2010)).

The vast m ajority o f the hnRNP proteins in teract w ith  the pre-mRNA through one or more 

RNA binding m otifs (RBM), w ith  some exceptions such as hnRNP K/J and hnRNP E1/E4, 

which use a KH domain (Dreyfuss et al., 1988; Burd and Dreyfuss, 1994; Chaudhury et al., 

2010).

M ost hnRNPs also contain an RGG box (a cluster o f Arg-Gly-Gly tripeptides) tha t could be 

in combination w ith  o ther RNA binding domains (RBD) or unique, as in hnRNP U (Kiledjian
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and Dreyfuss, 1992). Moreover, hnRNPs may contain other unstructured auxiliary 

domains such as glycine-rich or proline-rich domains, that are important in the 

localization of the proteins: for example one glycine-rich nuclear import/export domain 

(M9) is located at the C-terminal of hnRNP A l (Weighardt et al., 1995).

Regarding the localization of these trans-acting factors, although many of them are 

nuclear at the steady state, they can shuttle from the nucleus to the cytoplasm (Pinol- 

Roma and Dreyfuss, 1992), playing an essential role in nucleo-cytoplasmic transport of 

mRNA (Lee et al., 1996), in mRNA localization (Carson et al., 2001) and translation 

(Habelhah et al., 2001) and in mRNA stability (Xu et al., 2001). Within the nucleus hnRNPs 

take part in various processes such as transcriptional regulation (Miau et al., 1998), RNA 

splicing (Chan and Black, 1997; Chou et al., 1999; Mourelatos et al., 2001), telomere 

maintenance (Ford et al., 2002) and 3'-end processing (Kessler et al., 1997).

The mechanisms through which exonic and intronic silencers interfere with splicing are 

known only for a number of cases and they include inhibition of splice site recognition by 

sterically blocking the recruitment of snRNPs or positive regulatory factors, by masking of 

the splice sites through multimerization along the RNA and by looping out of an 

alternative exon by protein-protein interactions (Chen and Manley, 2009).

In the case of alternative splicing control by steric interference many studies have 

identified the repressive role of hnRNP A l affecting the recruitment of snRNPs, for 

example in the regulation of the removal of the second ta t intron in HIV transcript. In this 

case hnRNP A l binds to an intronic splicing silencer (ISS), that overlaps the branch point, 

leading to a physical block of the association of U2 snRNP (Tange et al., 2001). Another 

example is the mutually exclusive splicing of exons 2 and 3 of a-tropomyosin (alfa-TM ) 

transcript: in this case hnRNP H and hnRNP F directly compete with SRSF7 by sterically 

interfering the binding of the SR protein to the ESE (Crawford and Patton, 2006). Also
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some tissue specific trans-acting factors can block the recruitment of important splicing 

factors: for example both the RbFox proteins and ETR3 can prevent the binding to the 

branch point of SF1 and U2 snRNP, respectively. All these factors and their mechanisms 

will be discussed in sections 1.3.3.1 and 1.3.3.3.

The inhibitory effect sometimes is not the result of a simple bind and block effect. In 

some cases multimerization of the trans-acting factor along the RNA occurs to prevent 

the splice site usage. Examples of this mechanism has been observed with hnRNP A l and 

the polypyrimidine tract binding protein (PTB) (Blanchette and Chabot, 1999; Wagner and 

Garcia-Bianco, 2001; Zhu et al., 2001).

A further mechanism of action of silencers occurs through the formation of protein- 

protein interactions that loop out the alternative exon. For example hnRNP A l has been 

shown to bind to silencers in survival o f motor neuron 2 (SMN2) exon 7 and intron 7 and 

the interaction between them in these two separate positions results in the looping out 

of the exon, suppressing SMN2 exon 7 inclusion (Kashima et al., 2007).

One of the most studied repressor, that can exert its negative role using all the different 

mechanisms previously described, is hnRNP I (PTB). This trans-acting factor will be 

described more in detail in section 1.3.3.2.

1.3.3. Tissue-specific trans-acting factors.

A comparative analysis of 15 different human tissue and cell line transcriptomes revealed 

that more than 50% of the alternative splicing events are regulated in a diverse way 

between tissues, leading to a tissue-specific expression of alternative splicing isoforms 

(Wang et al., 2008). One level of control of regulation lies in the presence of tissue- 

specific and developmentally regulated expression of some trans-acting factors, such as
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PTB/nPTB, NOVA proteins, RbFox proteins and many others. In the next paragraphs some 

of these tissue-specific factors have been described more in detail.

I.3 .3 .I. RbFox protein family.

Trans-acting factors can be expressed in a temporal or tissue-specific manner to modulate 

precisely a defined set of transcripts. Among them RNA binding Fox (RbFox) family plays 

an important role in tissue-specific alternative splicing regulation (Fukumura et al., 2007). 

In mammals the RbFoxl family consists of three members: RbFoxl (Foxl or Ataxin2 

binding protein 1, A2BP1), RbFox2 (Fox2 or RNA binding motif 9, RBM9) and RbFox3 

(Fox3, hexaribonucleotide binding protein 3, HRNBP3 or NeuN). RbFoxl is expressed in 

neurons, in skeletal muscle and in heart, while RbFox3 is restricted to neurons (Jin et al., 

2003; McKee et al., 2005; Kim et al., 2009). RbFox2 is detected in brain, heart, ovary and 

also in embryo, hematopoietic and stem cells (Yeo et al., 2007; Gehman et al., 2012; 

Huang et al., 2012).

These protein isoforms share a single highly conserved RRM domain that is located in the 

middle of the protein: an intact RRM domain is required to ensure the activity as a 

splicing regulator (Damianov and Black, 2010). Furthermore, the deletion of the C- 

terminal abolishes the nuclear localization and also the activity as a splicing regulator (Lee 

et al., 2006; Kuroyanagi, 2009).

This group of proteins specifically recognizes (U)GCAUG stretches, which are 

phylogenetically and spatially conserved especially in the flanking introns of brain 

regulated exons (Jin et al., 2003; Minovitsky et al., 2005; Ponthier et al., 2006). The high 

affinity and specificity in the recognition of these c/s-acting elements by the RbFox protein 

family is mediated through the RRM, thanks to the typical p ia ip 2P3 a 2 P4 fold: the last UGU 

nucleotides are recognized by the four stranded p-sheets, while the first UGCA
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nucleotides are bound by tw o  loops independently from  the (3-sheet binding interface 

(Auweter et al., 2006).

RbFox proteins have been described to  act both as enhancers or silencers depending on 

the ir position respect to  the target exon: upstream binding sites are repressive, whereas 

downstream  RbFox sites generally act as enhancers (Fig. 1.6)(Underwood et al., 2005).

Figure 1.6. RbFox proteins repress exon inclusion by binding to (U)GCAUG element (the orange 
dot) in the upstream intronic flanking region, while they enhance exon inclusion by binding to the 
(U)GCAUG element in the downstream intronic flanking region.

Examples o f splicing regulation by RbFoxl fam ily members are prote in  4.1 R, 

colcitonin/CGRP and SCN8A gene. In the firs t one RbFox2 prom otes exon 16 inclusion 

binding to  a downstream in tron ic e lem ent: this in teraction improves the usage o f the 

weak 5' splice site by facilita ting  U l snRNP recru itm ent (Ponthier et al., 2006; Huang et 

al., 2012). Regarding the repression o f exon 4 in calcitonin/CGRP transcrip t it has been 

dem onstrated tha t RbFoxl and RbFox2 in teract w ith  an upstream in tron ic  e lem ent, 

preventing SF1 binding to  the branch point and repressing the E complex fo rm a tion ; the 

proteins also bind an UGCAUG in exon 4, in terfe ring  w ith  Tra2[3 and SRSF6 enhancer
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action and blocking spliceosomal E complex formation (Zhou and Lou, 2008). SCN8A 

transcript contains a pair of exons 18 that are mutually exclusively spliced; potential Fox 

binding sites are present downstream of exon 18A. Using a minigene system the 

mechanism of regulation of ME exons 18N and 18A has been investigated: in this case 

RbFox members enhance the inclusion of 18A (Zubovic et al., 2012). These results have 

been confirmed by in vivo studies using Rbfoxl+/ Rbfox2'/' mice: the cerebellum of these 

mutant mice is characterized by the presence of an altered splicing of both the two pairs 

of ME exons, in particular with the decrease inclusion of exon 18A from 80% to 40% 

(Gehman et al., 2012; Zubovic et al., 2012).

I.3.3.2. Polypyrimidine tract-binding protein.

One of the best characterized splicing repressor is hnRNP I, also known as polypyrimidine 

tract-binding protein (PTB). PTB is predominantly found in the nucleus where it exerts its 

role in splicing regulation, but it can shuttle from the nucleus to the cytoplasm being 

involved in many other steps of the RNA process such as transport, mRNA stabilization 

and translation (Romanelli et al., 2013). This protein is expressed in many but not all 

tissues. In fact in mammals there are two PTB paralogs that are characterized by a tissue- 

specific expression: the nPTB (PTBP2) and ROD1 (PTBP3). The former is predominantly 

expressed in adult brain, testis and muscle, while ROD1 is found in haematopoietic cells 

(Yamamoto et al., 1999; Polydorides et al., 2000; Spellman et al., 2007). PTB and nPTB 

expression is mutually exclusive, with PTB restricted in non-neuronal cells and nPTB in 

post-mitotic neurons. Of great importance in the regulation of alternative splicing during 

neuronal development seems to be the post-transcriptionally switch from the PTB to  

nPTB (Boutz et al., 2007). Although PTB and nPTB display a 74% of homology in the 

peptidic sequence, the effects on splicing regulation sometimes are different, with nPTB



exerting a weaker repressive effect respect to PTB, as shown for c-src exon N1 and Cav1.2 

calcium channel exon 8 (Markovtsov et al., 2000; Tang et al., 2011). There are also some 

exceptions as postsynaptic density protein 95 (PSD-95) exon 18, in which the two proteins 

show the same effect (Zheng et al., 2012).

PTB structure consists of four RNA recognition motifs (RRM) and the nuclear localization 

signals within the N-terminal region (Oberstrass et al., 2005). The optimal c/s-acting 

elements recognized by PTB are UCUUC and CUCUCU motifs in pyrimidine-rich contexts 

(Perez et al., 1997). PTB binding sites are often located in the polypyrimidine tract of the 

regulated exons, but there are also binding sites in other positions. Many models have 

been proposed to explain PTB splicing repression. One mechanism proposed is that PTB 

competes with the splicing factor U2AF65 for binding the polypyrimidine tract (Lin and 

Patton, 1995). Since most of the PTB regulated exons show the presence of many PTB 

binding sites both in intronic and/or exonic regions, other mechanisms of action involving 

the multimeric binding of PTB are also described (Wagner and Garcia-Bianco, 2001; 

Spellman and Smith, 2006) such as the propagation model. In this case PTB can 

oligomerize along the pre-mRNA by masking an exon. In other circumstances when PTB 

binding sites are upstream and downstream of the target exon, PTB-PTB interactions can 

induce the looping out of the target exon (Wagner and Garcia-Bianco, 2001).

Overall, although I have described a few general models of PTB repression, the reality is 

that many more exist. It appears that mechanisms are different depending on the exon 

context and also they appear to be more complex interfering with intron or exon 

definition. Two examples largely studied in literature are c-src N1 exon and Fas exon 6 

(Keppetipola et al., 2012).

The c-src N1 exon is included in neurons, while it is repressed in non-neuronal cells by 

high levels of PTB (Chou et al., 2000). The cell-specific splicing and the PTB repression
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were studied taking advantage of an in vitro splicing system using two different extracts 

from neuronal cells (WERI-1) and non-neuronal cells (HeLa) (Black, 1992). To understand 

the mechanism of inhibition exerted by PTB, Sharma et al. analysed spliceosome 

assembly on N1 exon in the presence of both extracts. Firstly, they demonstrated that the 

binding of U1 snRNP to exon N1 5' splice site is not affected by PTB bound to silencer 

elements flanking the exon. Instead, the binding of PTB to the pre-mRNA prevents the 

interaction between U1 snRNP and U2AF, inhibiting the formation of the E complex 

(Sharma et al., 2005).

If in the case of c-src N1 exon PTB inhibits intron definition, it counteracts exon definition 

in splicing of Fas exon, that is directed by the antagonistic action of TIA-1 protein and PTB. 

TIA-1 favours exon 6 inclusion by binding to an ISE downstream of the target exon, 

promoting U1 snRNP recruitment to the 5' splice site, that in turn stimulates U2AF65 

binding to the 3" splice site. In vitro analysis shows that, also in this case, PTB does not 

interfere with the binding of U1 snRNP, but it inhibits the activation of U2AF65 (Izquierdo 

et al., 2005).

Although the most well-studied role of PTB is as a splicing repressor, it has been published 

also that it can enhance the inclusion of some exons. One of the first examples described 

was CT/CGRP exon 4, in which PTB binds to an enhancer pyrimidine tract that is part of a 

pseudoexon, blocking the recognition of the pseudoexon and favouring inclusion of exon 

4. Moreover, exon 4 is the terminal exon so PTB could also affect the polyadenylation 

process (Lou et al., 1999). Recently, using a high-density Affymetrix microarray, the 

alternative splicing events affected by PTB/nPTB knockdown have been analysed. This 

analysis has shown that despite the majority of events are upregulated, confirming the 

important role of PTB as splicing repressor, a number of them are downregulated,



suggesting a positive role of this factor that has to be investigated more in detail (Llorian 

et al., 2010).

I.3.3.3. CELF family proteins.

The CELF (CUG-BP1 and ETR-3-like factors) family of RNA-binding proteins are found both 

in the cytoplasm and in the nucleus, where they regulate many processes such as 

alternative splicing, regulation of the polyadenylation and mRNA stability (Ladd, 2013).

In humans the family is composed of six members, that can be divided in two subgroups: 

CELF1-2 and CELF3-6. The former subfamily is characterized by a broad expression, 

including brain, heart, skeletal muscle and developing embryo. The latter family shows a 

more specific expression: CELF3 and CELF5 are especially expressed in nervous system, 

while CELF6 in testis, kidney and nervous system. The expression of CELF4 has not yet 

been precisely defined (Ladd et al., 2001; Ladd et al., 2004).

The structure, common for all the six proteins, consists of three RNA recognition motifs. 

Among the RRM2 and the RRM3 there is a divergent domain, that seems to have a role in 

directing RNA interactions, probably due to protein-protein interactions or ensuring a 

particular conformational state (Dasgupta and Ladd, 2012).

The binding preferences for these proteins are partially characterized: CELF1 (CUG-BP1) 

binds regions enriched in UGU, CELF2 (ETR3) prefers UG repeats and UGUU motifs, while 

the binding sites for the other CELF proteins are not well-characterized (Faustino and 

Cooper, 2005; Marquis et al., 2006). Alternative splicing is one of the processes influenced 

by this class of RNA binding proteins, that can act both as a splicing enhancers or 

silencers. Two examples of exons regulated by these proteins are cardiac troponin T 

(cTNT) exon 5 and N-methyi-D-aspartate receptor 1 (NMDA R l) exon 5 (Dasgupta and 

Ladd, 2012).
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The cTNT exon 5 is included in embryonic cardiac muscle and in skeletal muscle, but it is 

skipped in adult cardiac muscle, altering in this way the contractile features of the 

myofibrils. Exon 5 inclusion is favoured by two muscle-specific splicing enhancers, present 

in the intronic region downstream of exon 5, that are recognized by CELF1 and CELF2 

(Ladd et al., 2005). In particular the mechanism of action of CELF2 has been studied: this 

factor activates complex A formation, promoting the binding of U2 snRNP to the branch 

point and increasing cTNT exon 5 inclusion (Goo and Cooper, 2009).

The gene encoding NMDA R1 receptor contains two alternative spliced exons, exon 5, 

encoding the cassette N l, and exon 21, encoding the cassette C l, that are regulated in a 

neuron specific manner altering the receptor properties at the synapses. It has been 

shown that CELF2 inhibits N l inclusion, while it enhances C l inclusion (Zhang et al., 2002). 

The inhibitory role of CELF2 on the cassette N l has been studied more in detail. The 

factor recognizes specific binding sites surrounding the branch point and the negative role 

implies a direct antagonism of U2 snRNP recruitment at the branch point (Dembowski 

and Grabowski, 2009).

Several studies highlight the opposite effect exerted by CELF proteins and PTB such as in 

case of 6-tropomyosin, a-actinin and cTNT (Charlet et al., 2002; Gromak et al., 2003; 

Sureau et al., 2011). The 6-tropomyosin gene contains a pair of mutually exclusive exons 

6A and 6B that are regulated during myogenic differentiation. In fact exon 6A is 

predominantly included in non-muscle cells and in myoblasts, whereas the isoform 

containing exon 6B is found in striated muscle and myotubes. In this case it has been 

demonstrated that PTB inhibits 6B inclusion in myoblasts through the interaction with the 

branch point and the polypyrimidine tract. During muscle differentiation the level of PTB 

decreases, lowering also its inhibitory effect, while the level of CELF1 increases, exerting
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its positive role. So far the mechanism appears to be regulated by changes in trans-acting 

factor level rather than a direct antagonism (Sureau et al., 2011).

1.4. Voltage-gated sodium channels.

In nerve, muscles and heart the transmission of electrical impulse is mediated by the 

gating of membrane associated ion channels. Among them the voltage-gated sodium 

channels (VGSCs) play a critical role in the rising of the rapid depolarisation during the 

initial phase of action potential. This type of sodium channels respond to voltage 

differences on the two sides of the membrane where they are inserted, allowing a sodium 

influx and causing the depolarization of the cells. In particular this depolarization event in 

neurons leads to the propagation of the action potential, whereas in cardiac and skeletal 

muscle the action potential is important to induce a contraction (Catterall, 1992).

In mammals the voltage-gated sodium channel isoforms identified are divided in three 

groups: the Nav 1.x channels, that are largely characterized also in exogenous systems; 

the Nav 2.x group, that shares about 50% of homology to type 1; and a third group called 

Nav 3.x (Goldin, 1999).

Regarding the most studied Nav 1.x group, nine different isoforms have been identified in

mammals: nine distinct genes (SCN1A-5A, SCN8A-11A) encode the Nav 1.1 -1.9 channels

(Goldin et al., 2000; Catterall et al., 2005). Mammalian sodium channels, in addition to

differences in cellular and tissue expression, also change the expression pattern during

development, consistent with a distinct role of each of these in mammalian physiology. In

the central nervous system adult neurons show a combination of Nav 1.1, Nav 1.2 and Nav

1.6 (Trimmer and Rhodes, 2004), while in adult DRG sensory neurons there are

predominantly Nav 1.7, Nav 1.8 and Nav 1.9 sodium channels (Black et al., 1996). Nav 1.3 is

present in immature neurons and only at low levels in adult neurons. Nav 1.4 is
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prevalently expressed in skeletal muscle (Trimmer et al., 1989); Nav 1.5 is predom inantly 

expressed in cardiac muscle (Rogart et al., 1989), although it has also been detected in 

dorsal roo t ganglia neurons (Renganathan et al., 2002).

The voltage-gated sodium channels are composed o f one a subunit o f 260 KDa, which 

form s the core o f the channel and regulates the voltage dependent gating and ion 

perm eation, and it is typically associated w ith  auxiliary (3 subunits (Fig. 1.7). Four d iffe ren t 

(3 subunits have been found t ill now and it was proposed tha t they may contribu te  in the 

stabilization o f the a  subunit in the membrane and /or in the localization o f the  a subunit 

to  specific membrane domains (Isom, 2001).
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Figure 1.7. Schematic representation of the voltage-gated sodium channel a and p subunits. The 
a subunit is characterized by four domains each one formed by six transmembrane elements. The 
positively charged S4 segments constitute the voltage sensor of the channel. In the lower part a 
3D model of the voltage-gated channel a subunit is shown.
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The a  subunit consists of four homologous domains (DI-DIV), each one characterized by 

six transmembrane a-helix segments (S1-S6) that are connected by intracellular peptide 

linkers (Plummer and Meisler, 1999; Goldin et al., 2000). In response to the membrane 

potential the channels can switch between resting (closed), activated (open) and 

inactivated (closed) state. S4 segments of each domain act as the voltage sensor, due to a 

positive amino acid at every third position; all S5 and S6 segments and the P-loop 

between them form the pore (Stuhmer et al., 1989; Yang and Horn, 1995; Catterall, 

2000b; Catterall, 2000a). After membrane depolarization the positively charged residues 

contained in all S4 move towards the extracellular side; this movement induces a 

conformational change in the pore, opening the channel (Yang and Horn, 1995). The 

voltage-gated sodium channels allow only sodium entry thanks to a selectivity filter 

formed by four residues, one per P-loop. The filter, called also DEKA ring from the name 

of the residues (aspartic acid, glutamate, lysine and alanine), repulses negatively charged 

ions and the lysine residue plays a role in the specific selection of Na+ among other 

positively charged ions. In fact, substituting this residue elicits potassium and calcium 

entry (Heinemann et al., 1992; Favre et al., 1996; Koopmann et al., 2006).

The voltage-gated sodium channels display different biophysical features, such as the 

activation and inactivation kinetics, and also different pharmacological properties, for 

example Nav 1.1 - Nav 1.4, Nav 1.6 and Nav 1.7 are sensitive to the tetrodotoxin (TTX) 

block, while Nav 1.5, Nav 1.8 and Nav 1.9 are considered TTX-resistant, because they 

respond only to high concentrations of the drug (Diss et al., 2004).

To further increase the plasticity in the expression of the sodium channels there are other 

levels of regulation: the transcription can be modulated by several stimuli, such as growth 

factors and hormones (Tabb et al., 1994; Black et al., 1997). Many alternative splicing 

events affect the transcripts, resulting in the generation of multiple channels isoforms.
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Moreover, several levels of post-translational modifications may influence the activity of 

this protein family, such as glycosylation and phosphorylation (Bennett et al., 1997; 

Cantrell and Catterall, 2001).

1.4.1. Central nervous system sodium channels.

The most important isoforms present in the central nervous system (CNS) are Nav 1.1, Nav

1.2, Nav 1.3 and Nav 1.6. While Nav 1.1 and Nav 1.6 are also found in the peripheral 

nervous system, Nav 1.2 and Nav 1.3 are highly expressed only in CNS. All the isoforms 

have been amplified both in neurons and in glia cells. They are characterized by specific 

subcellular localization and a different expression during development. For example, Nav 

1.1 and Nav 1.3 are found predominantly in the neuronal soma, where they control 

neuronal excitability. The Nav 1.2 is distributed along unmyelinated axons, where it 

contributes to the action potential conduction. Several studies showed that after the 

myelination process this channel isoform is substituted by Nav 1.6 channels in the nodes 

of Ranvier (Smith, 2007).

Mutations on SCN1A gene, encoding Nav 1.1 channel, have been identified in patients 

affected by inherited forms of epilepsy, such as severe myoclonic epilepsy of infancy 

(SMEI) and generalized epilepsy with febrile seizures plus (GEFS+) (Escayg et al., 2000; 

Nabbout et al., 2003). The Nav 1.1 channel plays an important role in the GABAergic 

inhibitory neurons; mutations on the SCN1A gene impair the neuronal firing, creating an 

imbalance between the excitatory and inhibitory impulses in the brain, leading to epilepsy 

and seizures (Catterall et al., 2010). Mutations in the SCN2A gene, encoding Nav 1.2 

channel, are linked to several epilepsies: the major part of SCN2A mutations have been 

found in patients affected by benign familial neonatal-infantile seizures (BFNIS).
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Furthermore, mutations in this gene have been linked to SMEI and Dravet syndrome (Shi 

et al., 2012).

Regarding SCN3A gene, that encodes the Nav 1.3 channel, there was only one mutation 

described associated to epilepsy (Holland et al., 2008). However, recently, new mutations 

have being identified that change the activity of the channel increasing neuronal 

excitability and inducing focal epilepsy in children (Vanoye et al., 2014).

For SCN8A gene, that encodes the Nav 1.6 channel, one mutation, generating a truncated 

protein, has been found in humans leading to dystonia, ataxia and tremor (Trudeau et al., 

2006). Recently new mutations have been described in patients affected by epileptic 

encephalopathy and intellectual disability (O'Brien and Meisler, 2013).

1.4.2. Skeletal muscle and heart sodium channels.

Nav 1.4 and Nav 1.5 muscle channels are characterized by different tissue expression: the 

first one is predominantly found in skeletal muscle, while the second one is highly 

expressed in heart.

Mutations on SCN4A gene, encoding Nav 1.4, change the activity of the channel and, since 

one of the key step in muscle contraction is the flow of positively charged ions into the 

muscle cell, they determine the insurgence of several human neuromuscular diseases, 

such as hyperkalemic periodic paralysis (HYPP), potassium-aggravated myotonias (PAM) 

and paramyotonia congenita (PMC) (Koopmann et al., 2006).

The Nav 1.5, located on the membrane of cardiomyocytes and in Purkinje fibres, plays an 

important role in the upstroke of the cardiac action potential, ensuring the excitability 

and the velocity of impulse propagation (Tan, 2006). Mutations affecting SCN5A gene 

cause different arrhythmia syndromes confirming the essential role of Nav 1.5 in 

regulating normal cardiac activity. Some examples of diseases linked to SCN5A mutations
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are long QJ syndrome type 3 (LQ.T-3), Brugada syndrome (BrS), sudden infant death 

syndrome (SIDS) and dilated cardiomyopathy (DCM) (Amin et al., 2010).

1.4.3. Peripheral nervous system sodium channels.

Three channels are predominantly expressed in the peripheral nervous system: Nav 1.7 in 

sensory, sympathetic and myenteric neurons, Nav 1.8 in sensory neurons and Nav 1.9 in 

sensory and myenteric neurons. The expression of Nav 1.8 is limited to small diameter 

sensory neurons in dorsal root ganglia and in trigeminal ganglia, where it exerts an 

essential role in the action potential upstroke. Although the involvement of this channel 

in inflammatory and cold pain process is described in literature in rat and knockout mice 

(Dib-Hajj et al., 2010), few mutations causing pain diseases have been described. These 

mutations result in small-fibre neuropathy and increased neuronal excitability (Faber et 

al., 2012).

Mutations in the SCN11A gene, encoding Nav 1.9 channels, have been found in patients 

affected by familial episodic pain syndrome type III and also in this case the mutations 

determine an increase in neuron excitability (Bennett and Woods, 2014).

Nav 1.7 channel will be described more in detail in the next section.

1.4.4. Nav 1.7 channel: painless and painful channelopathies.

Nociception is the process through which thermal, mechanical or chemical stimuli are 

detected by a group of peripheral nerve fibres, called nociceptors. Their cell bodies are 

located in the dorsal root ganglia for the body and in trigeminal ganglion for the face 

(Julius and Basbaum, 2001).

The nociceptors, in response to stimuli, lead to the onset of an action potential, whose

genesis and propagation are dependent on voltage-gated sodium channels, that, for this
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reason, play an essential role in the regulation of neuronal excitability (Dib-Hajj et al.,

2010).

The voltage-gated sodium channel Nav 1.7, expressed in nociceptive and in sympathetic 

ganglion neurons, is considered to be the major player in the regulation of perception of 

peripheral pain due to its gating properties. Furthermore, the study of mutations 

associated to pain-diseases and behavioural tests performed in nociceptors-specific 

knockout mice have also emphasised this fact (Rush et al., 2007; Lampert et al., 2010). 

Regarding its gating properties this channel produces a fast-activating and inactivating 

current, but it is slow to recover from fast-inactivation, compared to other channels; it is 

able to generate a substantial inward current in response to small slow depolarizations, 

acting as a threshold channel (Cummins et al., 1998; Herzog et al., 2003).

Using animal models the involvement of this channel in inflammatory pain has been 

demonstrated. Indeed after inflammation induction using carrageenan, an increase in Nav

1.7 transcripts and proteins has being observed. Furthermore, its deletion only in 

nociceptive neurons blocked the insurgence of the inflammatory pain (Black et al., 2004; 

Nassar et al., 2004). The global SCN9A knockout in mice is lethal shortly after birth. 

However, this could be due to the loss of feeding. This channel is in fact also present in 

olfactory sensory neurons and it was observed that patients lacking the production of Nav

1.7 were anosmic, confirming the role of this channel in the sense of smell (Nassar et al., 

2004; Weiss et al., 2011).

Another important demonstration of the role of Nav 1.7 in human pain perception came 

from the discovery that mutations in SCN9A gene cause several human pain disorders: 

inherited erythromelalgia (IEM) (also called primary erythromelalgia, PE), paroxysmal 

extreme pain disorder (PEPD), small-fibre neuropathy (SFN) and congenital insensitivity to 

pain (CIP) (Lampert et al., 2010) (Fig. 1.8).
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Figure 1.8. Schematic representation of the Nav 1.7 voltage-gated sodium channel showing the 
location of known mutations causing CIP (green circles), IEM (red circles), PEPD (orange circles) 
and SFN (yellow circles)(Adapted from (Lampert et al., 2010; Dib-Hajj et al., 2013)).

IEM is an autosomal dom inant disorder tha t leads to  in te rm itten t burning, pain and 

redness in fee t and hands in response to  warm  stim uli. Interestingly, in some patients, 

a fte r the  early onset in childhood, the severity o f the associated pain increases w ith  the 

age (Drenth and Michiels, 1992; Dabby, 2012). Similar clinical symptoms are described in 

patients affected by SFN, such as the burning pain in the distal extrem ities, but SFN can 

be distinguished by IEM due to  particular features such as the general lack o f aggravation 

by w arm th or the  re lie f induced by cold (Hoeijmakers et al., 2012). A nother pain disorder 

associated w ith  gain o f function m utations in SCN9A gene is PEPD. It is a rare autosom al 

dom inant inherited disorder, characterized by flushing and pain in anorectal region and 

around eyes (Fertleman et al., 2006). CIP is associated w ith  loss o f function  m utations: in 

this case patients are unable to  feel pain from  b irth , although the  o the r sensory activities 

remain in tact (Cox et al., 2006; Cox et al., 2010).
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1.4.5. Alternative splicing in sodium channel transcripts.

The expression o f voltage-gated sodium channels is regulated at d iffe ren t levels such as 

transcription from  m ultip le  prom oters, several levels o f post-translational glycosylation 

and a lternative splicing o f transcripts (Diss et al.; 2004; Drews et al., 2005; Koopmann et 

al., 2006).

Several sodium channel transcripts undergo alternative splicing, fo r example SCN1A w ith  

extended exon 11, SCN3A w ith  d iffe ren t variants o f exon 12, SCN5A can be alternative 

spliced in exon 18, SCN9A undergoes a lternative splicing resulting in an extended exon 11, 

and SCN11A can result in an a lternative spliced isoform  lacking exon 16. Furtherm ore, 

exon 5 and exon 18 in several sodium channels show developm entally regulated splicing. 

An overview o f some o f the d iffe ren t types o f a lternative splicing in these channels can be 

found in table 1.4 (Schaller et al., 1992; Makielski et al., 2003; Raymond et al., 2004; 

Thimmapaya et al., 2005).

Variant 1 
Variant 2

Variant 1 contains extended exon 11

Neonatal isoform  Exon 5N 
Adult isoform Exon 5A

Neonatal isoform 
Adult isoform 
Splice variant

Exon 5N 
Exon 5A

This variant contains extended exon 12
Variant 1 w . . . . .
,, . „  Variant 1 contains one extra amino acid in exon 18 
Variant 2

Neonatal isoform 
Adult isoform 

Neonatal isoform 
Adult isoform 
Splice variant

Exon 5N 
Exon 5A 

Exon 18 N 
Exon 18A

This variant contains extended exon 12
Neonatal isoform Exon 5N 

Adult isoform Exon 5A

Splice variant A exon 16

Table 1.4. Examples of different splice variants of voltage-gated sodium channels (Adapted from 
(Koopmann et al., 2006)).
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1.4.5.1. Exon 5 mutually exclusive splicing.

One interesting example o f m utually exclusive splicing undergone by several members o f 

the fam ily is tha t o f exon 5. This exon is duplicated in six out o f nine VGSCs (Nav 1.1, Nav

1.2, Nav 1.3, Nav 1.5, Nav 1.6 and Nav 1.7) (exon 6 in the case o f Nav 1.5, SCN5A gene). 

These tw o  exons undergo tissue-specific and developm entally-regulated m utually 

exclusive splicing generating tw o  d iffe ren t structura lly and functiona lly  prote in isoforms 

(Lu and Brown, 1998; Heron et al., 2002; Raymond et al., 2004; Gazina et al., 2010). They 

encode a region o f the transm em brane helix S3 and all S4 in domain I, tha t is part o f the 

voltage sensor o f the channel, and they are distinguished by the  absence (neonatal or 5'- 

exon) o r the presence (adult or 3'-exon) o f an aspartate residue. The conservation o f this 

feature across the fam ily (Tab. 1.5) and species suggests an im portan t role o f this 

alternative splicing event which highlights the in terest o f studying the  functional 

significance o f this exon duplication in the d iffe ren t VGSCs (Diss et al., 2004; Drews et al., 

2005; Koopmann et al., 2006).

5N
5A

5N
5A

5N
5A

6a
6

5N
5A

5N
5A

Aminoacidic alignment Primary tissues

IT F A F V T E F V N L G N F S A L R T F R V L R A L K T IS V IP G L K T I
IT F A Y V T E F V D L G N V S A L R T F R V L R A L K T I S V I PGL K T I  Central nervous system

★ ★ ★  ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k i c ' k i e ' k ' k ' k ' k ' k ' k ' k ' k

IT F A Y V T E F V N L G N V S A L R T F R V L R A L K T IS V IP G L K T I
IT F A Y V T E F V D L G N V S A L R T F R V L R A L K T I S V I P G L K T I Central nervous system
' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  - k ' k ' k ' k ' k ' k ' k ' k ' k i e ' k ' k - k ' k ' k ' k i c ' k ' k i c - k ' k ' k - k ' k ' k ' k ' k

IV M A Y V T E F V S L G N V S A L R T F R V L R A L K T IS V IP G L K T I
IV M A Y V T E F V D LG N V S A LR T F R V LR A LK T I S V I  P G L K T I Central nervous system
• k ' k ' k ' k - k ' k ' k ' k ' k ' k  ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k

I IM A Y V S E N IK L G N L S A L R T F R V L R A L K T IS V IP G L K T I  
I IM A Y T T E F V D L G N V S A L R T F R V L R A L K T IS V IS G L K T I

H eart m uscle 
Skeletal m uscle

IM M AY IT E  F V N L G N V S A L R T F R V L R A L K T IS V IP G L K T I
IM M A Y V TE F V D LG N V S A LR TF R V LR A LK TI S V I  P G L K T I Centra l nervous system
* * * * *  * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IM M AY IT E  F V N L G N V S A L R T F R V L R A L K T IS V IP G L K T I
IM M AY V T E FV D LG N V S A LR T FR V LR A LK T I S V I PGL K T I  P eripheral nervous system

Table 1.5. Voltage-gated sodium channels containing exon 5/6 duplication.
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The principle subject of my thesis is to characterize the mechanism behind the mutually 

exclusive splicing of SCN9A exon 5N (neonatal) and exon 5A (adult). These two exons are 

92 bp in length and they encode part of segment S3 and all the segment S4 of domain I. 

During development there is an increase in 5A inclusion in dorsal root ganglia, starting 

from a 35% at the neonatal stage, reaching approximately a 50% in adulthood (Raymond 

et al., 2004; Choi et al., 2010). Recently it has been hypothesized that changes in Nav 1.7 

electrophysiology due to the different inclusion of exon 5N or 5A determine differences in 

the location of perceived pain and the age-onset (Chatelier et al., 2008; Choi et al., 2010). 

The 5A isoform contains a polar, negatively charged residue (aspartic acid) compared to 

the 5N isoform that retains a polar, non-charged asparagine: this substitution leads to an 

addition of a negative charge in the electrostatic field (Jarecki et al., 2009). Analyses of 

the electrophysiological differences between the two isoforms have shown that channels 

with exon 5A are slower to inactivate at negative potentials than the channels with 5N, 

leading to a delay in inactivation. This favours larger inward current amplitudes that 

might increase cell excitability and therefore increase pain sensitivity (Chatelier et al., 

2008). Moreover, in at least two cases of gain of function mutations, that lead to 

inherited erythromelalgia and paroxysmal extreme pain disorder, it has been 

demonstrated that the 5A variant alters the biophysical properties of the channel in an 

additive manner besides the effect of the mutation itself, with a possible impact on the 

disease phenotype, providing a basis for the delayed onset of the symptoms (Jarecki et 

al., 2009; Choi et al., 2010).

The elucidation of the molecular mechanism behind the alternative splicing of exon 5 in 

SCN9A may unravel in a common mechanism for the splicing of these duplicated exons 

also in the other channels. Indeed, the alternative exons 5 are conserved in six out of nine 

members of the family. In the case of the Nav 1.1 the biophysical features of the two
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alternative splice isoforms are known to be markedly different regarding the inactivation 

kinetics: the 5N variant recovers from inactivation more rapidly than the 5A form, 

suggesting an important role in the regulation of neuronal excitability (Fletcher et al.,

2011). In humans the polymorphism present in the SCN1A IVS5N +5 G->A strongly 

reduces exon 5N inclusion (the AA genotype only produces 0.7 % of neonatal mRNA 

transcripts in the temporal cortex, compared to 41% for the GG genotype). The decrease 

in 5N inclusion confers a 3-fold higher risk of febrile seizures in childhood. Furthermore, 

the treatment of the patients with the AA phenotype is more difficult because the  

isoform that includes the 5A exon is less sensitive to antiepileptic drugs and it has been 

associated with an altered dosage in several studies, highlighting the therapeutic 

potential of mutually exclusive splicing control (Heinzen et al., 2007; Thompson et al., 

2011; Sterjev et al., 2012).

In the case of Nav 1.2 channel, that is widely expressed in human brain, mutations in 

SCN2A gene have been linked to some epilepsy syndromes. Since the inclusion of exon 5A 

compared to the neonatal one makes neurons more excitable, this can presumably affect 

seizure susceptibility. Xu et al. analysed the impact of one missense mutation (L1563V), 

that leads to benign familial neonatal-infantile seizures (BFNIS), in both neonatal and 

adult backgrounds; the introduction of the mutation showed stronger changes in the 

electrophysiology of the channel in presence of exon 5N, providing an indication of the 

role of this developmentally regulated splicing event in the seizure susceptibility 

regulation (Xu et al., 2007).

In the SCN5A gene the alternatively spliced exon 6 (6a and 6) corresponds to the same 

region in the voltage sensor encoded by exon 5N and 5A, respectively. This gene codes for 

the Nav 1.5, the predominant channel in heart, that is essential for action potential 

initiation in atrial and ventricular cardiomyocytes including cardiomyocytes of the specific
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conduction system. Mutations in SCN5A gene can cause different cardiac disorders such 

as long QT syndrome type 3 (LQT3), Brugada syndrome (BrS) and cardiac conduction 

disease (CCD) (Amin et al., 2010). The differences between the two isoforms containing 

either exon 6a or 6 result in differences in the electrophysiological parameters of the 

channel with the neonatal form allowing an additional Na+ entry which may be important 

for pH regulation, activity of enzymes and Ca2+ homeostasis (Onkal et al., 2008; Schroeter 

et al., 2010). Furthermore, the amino acidic change resulting from the inclusion of either 

the alternative exons may affect the channel's response to extracellular chemical factors, 

such as some drugs as shown for the Nav 1.1 (Onkal et al., 2008; Fletcher et al., 2011). 

Pathophysiological implications of this alternative splicing event have also been 

described. In a case of foetal LOT syndrome, the identified mutations cause much more 

profound sodium channel dysfunction in the background of neonatal variant, providing a 

possible explanation for the severe presentation of intrauterine LQT syndrome (Murphy 

et al., 2012). Furthermore, alternative splicing of exon 6 has also been implicated in 

Brugada syndrome (Wahbi et al., 2013). In fact, in a patient affected by myotonic 

dystrophy type 1 with severe arrhythmias, abnormal splicing of SCN5A exon 6, 

characterized by the increase of the neonatal form in the human adult myocardial tissue, 

was observed indicating that this may also be an important player in conduction system 

disease, arrhythmias and Brugada pattern.

1.5. Splicing-modulating antisense approaches.

The aim of this project is to map the splicing regulatory elements that determine the 

developmental^ regulated mutually exclusive splicing of SCN9A exons 5. The rationale 

behind this is that knowing the molecular mechanism could facilitate the development of 

a strategy for the inclusion-exclusion of one or the other, providing a more specific
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therapeutic pathway for pain control. Moreover, since the duplication of exon 5 (or 6) is 

well conserved in other five genes of the same family, it is reasonable that this 

mechanism could be, at least in part, common in all of them. Considering the fact this ME 

event also affects the functionality of other channels (section 1.4.5.1), it would be 

possible to modulate the exon choice in the channels involved in cardiac function or in 

the central nervous transmission.

During the years a great interest has arisen in the generation of splicing-modulating 

antisense approaches as powerful therapeutic tools to reprogram splicing or knockdown 

gene expression. Antisense approaches include antisense oligonucleotides (AOs) or 

vectors expressing antisense RNA directly inside the cell. The first work reporting the use 

of an antisense molecule dates back to 1978. Zamecnik and Stephenson were able to 

inhibit viral replication in vitro by targeting a sequence of viral RNA using a short 

complementary oligodeoxynucleotide. These first single stranded oligonucleotides were 

characterized by short length and through base pairing with the target mRNA they 

induced the knockdown of gene expression due to ribonuclease H that degrades RNAs 

involved in RNA/DNA heteroduplexes (Zamecnik and Stephenson, 1978). In the following 

years a great effort was spent to improve the efficacy of these oligonucleotides especially 

through chemical modifications. One of the first chemical improvement consisted in the 

introduction a phosphorothioate linkage among the nucleotides: this modification 

protects the antisense molecule from the nucleases, maintaining the sensitivity to the 

degradation by RNase H (Kole et al., 2012). Taking advantage of other chemical 

modifications, such as the addition of 2/-0-modifications introduced in the 

phosphorothioates to induce RNase H resistance, it was possible to develop new 

molecules that could act through different mechanisms, without disrupting the  

transcripts, for example, via the modulation of pre-mRNA splicing by steric block or



inhibition of ribosome recruitment to avoid the translation (Crooke, 1999; Dias and Stein, 

2002).

Due to their role as splicing modulators, over the past few years there has been a growing 

interest in modified antisense oligonucleotides as a new therapeutic approach to 

modulate diseases-associated mutations that alter the splicing pattern. These antisense 

molecules can affect splicing by blocking the usage of cryptic 5' and 3' splice sites, by 

inducing exon skipping to eliminate a mutated exon or to restore the open reading frame 

containing a mutation, or by promoting exon inclusion or skipping to change the protein 

isoform encoded (Wood et al., 2007). The first application of an antisense molecule to 

restore the correct splicing pattern was shown by Dominski and Kole (Dominski and Kole, 

1993). They were able to inhibit the 6-globin pre-mRNA aberrant splicing induced by 

mutations in the first and second intron using 2'-0-methyl phosphorothioates. The same 

approach has been used to correct many other mutations on the 6-globin gene that 

create cryptic 5' and 3' splice sites and also in the case of the cystic fibrosis 

transmembrone conductance regulator (CFTR) gene (Friedman et al., 1999; Lacerra et al., 

2000).

In the case of the Duchenne muscular dystrophy (DMD) the antisense oligonucleotides 

have been largely investigated to induce exon skipping in order to restore the open 

reading frame. In fact the vast majority of the mutations are contained in the non- 

essential rod domain and they are out-of-frame mutations, blocking the production of 

dystrophin. However, as shown in the case of in frame deletions that lead to the 

insurgence of the less severe Becker muscular dystrophy, a protein lacking only a portion 

of the rod domain is still partially functional (Douglas and Wood, 2013). The antisense 

oligonucleotides represent a very promising therapeutic approach to induce the
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production of a truncated, but still active, dystrophin by inducing exon skipping of the 

mutated exon and restoring the correct reading frame (Fairclough et al., 2013).

Another mechanism of action of the AOs is the induction of exon inclusion. This 

mechanism has been exploited for splicing correction in spinal muscular atrophy (SMA). 

SMA is caused by homozygous or compound heterozygous mutations affecting the SMN1 

gene. Interestingly in humans there is an almost identical second copy of SMN  gene, 

called SMN2. This paralogus gene contains a synonymous change in exon 7 that causes 

the disruption of an ESE, weakening the definition of the 3' splice site and promoting 

exon skipping (Lefebvre et al., 1995; Monani et al., 1999; Cartegni and Krainer, 2002). The 

truncated proteins encoded by this transcript are very unstable and rapidly degraded 

(Lorson and Androphy, 2000). In general the total amount of full-length protein derives 

90% from SMN1 and the remaining 10% from SMN2. In patients, the 10% of transcripts 

derived from SMN2 gene are not sufficient to compensate for the loss of SMN protein 

caused by mutations on SMN1 gene (Gennarelli et al., 1995; Lefebvre et al., 1997). To 

increase the amount of exon 7 inclusion in the SMN2 mRNA, restoring levels of SMN 

protein, several antisense approaches have been developed. For example the AOs have 

been used to antagonize the binding of inhibitory factors to an ISS; also bifunctional 

oligonucleotides, characterized by an AO with a tail for the recruitment of an SR protein, 

have been used to increase exon 7 inclusion (Skordis et al., 2003; Hua et al., 2007; Hua et 

al., 2010).

To date, modified antisense oligonucleotides used to regulate splicing pattern include 2'- 

O-methyl phosphorothioates (2'OMe-PS), 2'-0-methoxyethyl phosphorothioates (2'MOE- 

PS), phosphorodiamidate morpholino (PMO), peptide nucleic acid (PNA) and locked 

nucleic acid (LNA) (Muntoni and Wood, 2011). The PMOs, respect to the other antisense 

molecules, combine important properties that make them a powerful tool for splicing
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modulation. They are RNase H resistant and they show high stability and water solubility 

and respect to the phosphorothioates they display a higher affinity for the RNA. 

Moreover, the lack of a charge on the backbone strongly diminishes the insurgence of 

"off-target effects". The delivery of these non-ionic compounds is improved by 

conjugation with cell penetrating peptides or addition of a guanidinium group, to form in 

vivo morpholino, extending the usage of the antisense strategy also in adult animals 

(Summerton, 2007; Moulton and Jiang, 2009).

One of the major limitation of all these antisense oligonucleotides is the maintenance of 

persistent effects to avoid the problem of repeated dosing. Modified derivatives of U7 

small nuclear RNA (snRNA) containing the antisense of the target sequence represent an 

alternative antisense strategy to confer high stability to the antisense RNA and to obtain 

long-term modulatory splicing effect. This approach allows also a nuclear accumulation of 

the antisense, a required feature for splicing modulators. This system has been used for 

several diseases such as SMA, thalassemia and Duchenne muscular dystrophy (Gorman et 

al., 1998)(Asparuhova 2004). Since U7 snRNA cassette is characterized by a small size, it 

can be easily introduced in gene therapy vectors such as lentiviral or adeno-associated 

viral vectors, as tried both in mice and in canine model of DMD (Goyenvalle et al., 2004; 

Vulin et al., 2012). U7 antisense derivatives can also be bifunctional by targeting a region 

through the antisense sequence and by recruiting for example SR proteins through the 

introduction of their binding sequence (Marquis et al., 2007).

55



2. Aim of the project

The aim of this project is to characterize the mechanism that directs the mutually 

exclusive splicing oiSCN9A exon 5, that encodes part of the voltage sensor of the voltage- 

gated sodium channel Nav 1.7. Understanding this splicing process represents a relevant 

achievement, since this exon duplication seems to exert an important role in defining the 

exact gain of the channel, confirmed also by the conservation in other members of the 

family, and since the Nav 1.7 is strongly involved in pain signalling pathway.

The data obtained from SCN9A pre-mRNA splicing analysis revealed that this mechanism 

is primarily regulated by a combinatorial control of different trans-acting factors, some of 

them tissue-specific and developmental^ regulated, as Foxl, PTB and ETR3, and others 

characterized by a broader expression, such as SR proteins and hnRNP proteins. 

According to the model, in the first stages of development, characterized by an high 

percentage of neonatal splice variant, ETR3 on one hand facilitates 5N inclusion and on 

the other hand it inhibits 5A inclusion. During development the increase of the adult form  

is directed by several factors: Foxl, acting on the binding sites downstream of exon 5A, 

and two SR proteins (SRSF1 and SRSF6), binding an ESE in exon 5A. At the same time the 

inclusion of the neonatal form is inhibited by two c/'s-acting element on exonic an one 

intronic.

Moreover, some of these regulatory elements seem to be common also for the regulation 

of exon 5 (or exon 6) mutually exclusive splicing of other voltage-gated sodium channels 

containing this exon duplication.
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3. Results

3.1. Creation of a minigene to study SCN9A exon 5N and exon 5A mutually 

exclusive splicing.

To investigate the molecular mechanism behind the tissue-specific and developmentally 

regulated mutually exclusive splicing observed for SCN9A exon 5N and exon 5A in dorsal 

root ganglia (DRGs), the entire genomic region from exon 4 to exon 6, encompassing both 

the two mutually exclusive exons 5N and 5A, was cloned into pcDNA3 vector, creating the 

minigene construct 9A w t (Fig. 3.1A).

The minigene system is a powerful tool for the study of the regulatory elements that 

direct an alternative splicing event. The first studies using this approach were interested 

in the identification of exonic splicing enhancers: in the late eighties for example a 

sequence in exon EDIIIA of the fibronectin gene was described as being important for the 

alternative splicing regulation thanks to a transient transfection in HeLa cells of alpha 

globin/fibronectin minigene hybrid (Mardon et al., 1987). A minigene is characterized by 

the presence of a genomic fragment from the gene of interest comprising the alternative 

spliced exons surrounded by their flanking intronic regions; in the majority of the cases 

300 nucleotides upstream and downstream should be enough and contain the most 

important regulatory elements (Cooper, 2005).

The minigenes can be transfected in different cell lines, the most common used are for 

example HeLa, COS and Hek293 cells, that are characterized by a high level of transfection 

efficiency. RNA is then extracted from the transfected cells and after retro-transcription 

the splicing pattern is commonly analysed by PCR, since this type of procedure is direct
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and offers great sensitivity. Interestingly this minigene system offers many possibilities 

such as the site-direct mutagenesis, to evaluate, for example, the effect on the splicing 

pattern of disease-causing mutations, and also these minigenes can be co-transfected 

with putative trans-acting factors to analyse the impact of these proteins in the splicing 

outcome (Stoss et al., 1999).

It is important to be aware of the limitations this approach has, so the data obtained from 

the minigene splicing assay must be interpreted carefully. For example, it has been shown 

that the flanking exons and the intronic regions can influence the rate of inclusion of an 

exon in a relevant way but sometimes it is not possible to include all the sequences into a 

minigene due to the large size, affecting the splicing pattern. Moreover, a c/s-acting 

element identified as an important regulatory element through the minigene can behave 

differently in the full length pre-mRNA context.

Although some caveats, this system represents a useful approach to investigate exon 5 

SCN9A ME splicing, since it has been largely exploited during the years to describe the 

mechanism behind many alternative splicing events and to discover how some disease- 

causing mutations affect the splicing outcome (Cooper, 2005; Dasgupta and Ladd, 2012). 

After transient transfection of 9A wt minigene in HeLa cells, I analysed the splicing 

pattern through RT-PCR using a forward primer specific for the vector and a reverse one 

on exon 6. Three PCR products were detected with the lower band on the agarose gel 

corresponding to a cDNA product lacking both ME exons 5N and 5A, the middle and 

major band corresponding to a cDNA product including either exon 5N or 5A, since the 

size of the two exons is identical, and the upper band representing double inclusion of 5N 

and 5A (Fig. 3.1B).

To identify which one of the two exons was included in the mRNA transcript an Ndel 

digestion was performed. Ndel only digests the amplicon containing exon 5A as this

58



restriction site is created by the  jo in ing o f exons 4 and 5A. A fte r Ndel digestion tw o  lower 

bands appear, tha t are derived from  the amplicon product containing only 5A (Fig. 3.1C). 

The minigene, aside the double inclusion and the double skipping which represent an 

artefact o f the system used, recapitulates the proportion o f splicing o f these exons found 

in neonatal DRGs. In fact, in DRGs from  neonatal rat (P2-P4) the level o f exon 5N inclusion 

is about 65% and o f exon 5A inclusion is 35% (Raymond et al., 2004; Choi et al., 2010). To 

fu rthe r confirm  the data already published in lite ra ture, the endogenous splicing pattern 

was analysed from  RNA extracted by embryonic rat DRGs a fte r tw o  weeks o f 

d iffe ren tia tion  in culture (Fig. 3 .ID ).
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Figure 3.1. (A) Schematic representation of pcDNA3 minigene containing SCN9A exons 4 (green) 
and 6 (pink), encompassing both the exons 5N (light blue) and 5A (dark blue). (B) Schematic 
representation of the bands on the agarose gel, on the left. The black arrow shows the unique 
Ndel restriction site. Agarose gel electrophoresis showing RT-PCR products after the transfection 
in HeLa cells of 9A wt minigene, on the right. Three products are seen on agarose gel 
electrophoresis with the lowest band representing a cDNA product lacking exons 5N and 5A, the 
middle and major band representing a cDNA product including exon 5N and the upper band 
representing a cDNA product including exon 5N and 5A. (C) Agarose gel electrophoresis showing 
Ndel digested RT-PCR products. Since the cDNA products containing either 5N or 5A are of 
identical size, to discriminate which exon was included the RT-PCR product had been digested 
with Ndel restriction enzyme, specific for only the spliced isoform containing exon 5A. The 
digested products of the fragment containing exon 5A are the two lower bands. Each product was 
quantified as a percentage of the total of double inclusion (Dl), 5N inclusion, double skipping (Sk) 
and 5A inclusion. (D) Agarose gel electrophoresis showing the endogenous splicing pattern of 
SCN9A (ex5A-Ndel) in DRGs. The upper band represents the neonatal form. The two lower bands 
derived from the digestion of the PCR product containing only adult exon. Each product was 
quantified as a percentage of the total of double inclusion (Dl), 5N inclusion, double skipping (Sk) 
and 5A inclusion.

3.2. The mutually exclusive pattern of SCN9A exon 5N and 5A is not driven 

by spliceosomal incompatibility and steric hindrance.

Mutually exclusive exons encode interchangeable peptidic fragments leading to 

differences in protein activity. To ensure the presence of only one of the ME exons in the 

mature transcript the process must be strictly regulated. Several mechanisms have been 

already described in section 1.2.1 that may be responsible for this type of alternative 

splicing event: spliceosomal incompatibility, steric hindrance between the splice sites, 

tissue-specific regulation by some trans-acting factors and RNA secondary structure 

(Smith and Nadal-Ginard, 1989; Jones et al., 2001; Letunic et al., 2002; Gromak et al., 

2003; Graveley, 2005; Hemani and Soller, 2012).

In some cases, for example, as for the human JNK1 exons 6 and 7, the mutually exclusive 

splicing pattern is determined by an incompatibility of the splicing signals. The splice sites 

for major or minor spliceosome can not be spliced together allowing the inclusion of only 

one of the two ME exons (Letunic et al., 2002). Simple examination of the splice sites of 

exon 5N and 5A shows that these are characterized by GU/AG signals, recognized by the
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m ajor spliceosome, thus excluding this possibility tha t this mechanism is behind the 

m utually exclusive splicing observed (Fig. 3.2).

S ' SPLICE SITE 

CONSENSUS SEQUENCE

iTGAGACAGGTAAGA

3 ' SPLICE SITE  

CONSENSUS SEQUENCE

Exon 5N Exon 5A

TTTAATTCTACAGGTATT ---------------------------------TCCCCTATTACAGj

Figure 3.2. Schematic representation of 5' and 3' splice consensus sequences for the major 
spliceosome and splice site sequences of both the mutually exclusive splicing exons 5N and 5A.

Another mechanism proposed to  explain a m utually exclusive choice among exon pair is 

steric hindrance: if  the distance between the 5' splice site and the  branch po in t is shorter 

than 50 nucleotides, the spliceosome assembly does not occur, preventing the  inclusion 

o f both the ME exons, as described fo r example fo r exons 2 and 3 o f a-tropom yosin  gene 

(Smith and Nadal-Ginard, 1989).

Since SCN9A exons 5N and 5A are separated by a quite small in tron, 115 bp long, I

investigated if also in this case the distance between the splicing signals could play a

relevant role in the splicing outcome. Taking in to  consideration the general sequence o f

the branch point (YNYURAY) and utilising ESE finder prediction program

(http://ru la i.csh l.edu/cgi-b in/tools/ESE3/esefinder.cg i) I hypothesised the  branch po in t to

be TCGTCAC, w ith  A residue in position -28 w ith in  in tron 5 as the  conserved one (Fig

3.3A). This was subsequently confirm ed by in troducing a point m utation in the  adenosine

(A->T) (Fig. 3.3A). Indeed, a fter transient transfection o f the  m inigene 9AmutBP,

containing the mutated branch point, RT-PCR and Ndel digestion, I observed th a t the

fragm ents containing exon 5A were com pletely absent, confirm ing the  A residue in
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position -28 as the conserved adenosine o f the branch point (Fig. 3.3B); m oreover no 

other branch po in t was recognized and used to  prom ote 5A inclusion.

A

 «  #   SN - 1  5A ■ 6 f f -S S S

gtaagaagtaattggtgtgaagcattaggccactcataactccaactatttgggagttgttctttgttcgtttgtgtgtgtgtcgtcActgtgtgtataaactcccctattacag

BP

9AmutBP ...ttgttcgtttgtgtgtgtgtcgtcXctgtgtgtataaactcccctat...

9A wt 9AmutBP

Figure 3.3. (A) Schematic representation of the minigene containing the putative branch point 
mutated (9AmutBP). The mutated residue is underlined. (B) Agarose gel electrophoresis showing 
Ndel digested RT-PCR products after the transfection in HeLa cells with the upper band 
representing a cDNA product including exon 5N and 5A, the second band representing 5N 
inclusion, the third one the skipping and the two lower bands derived from the digestion of the 
PCR product containing only 5A exon.

Having identified the branch point and in order to  investigate if steric hindrance was 

involved in the  m utually exclusive splicing, I created a m inigene in which a spacer 

upstream o f the branch point was inserted, to  increase the distance between the  5'ss o f 

exon 5N and in tron 5 branch site. In particular I chose a 303 bp fragm ent am plified from  

intron 31 o f NF1 gene. This fragm ent analysed w ith  SpliceAid 2 prediction program 

(h ttp ://193.206.120.249/sp iic ing tissue.htm l) was shown to  be poor in hypothetica l 

enhancer or silencer elements respect to  o ther in tron ic region analysed (Fig. 3.4A). 

Analysing the splicing pattern derived from  the transfection o f the m inigene containing 

the spacer in in tron 5 (9A in tN Fl), a fte r RT-PCR and Ndel digestion I did not detect an
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increase in double inclusion o f both ME exons, as would be expected if  the m utually 

exclusive outcom e was simply driven by steric interference among the 5'ss and the 

branch point. Intriguingly the 5N inclusion was drastically reduced, suggesting tha t some 

im portan t c/s-acting elements had been moved too  far from  the target exon 5N to  exert 

the ir effects (Fig. 3.4B).

A

pcDNA3

gtaagaagtaattggtgtgaagcattaggccactcataactccaactatttgggagttgttctttgttcgtttgtgtgtgtgtcgtcactgtgtgtataaactcccctattacag

9A w t 9AintNFl

Figure 3.4. (A) In the upper part, schematic representation of 9A wt minigene with the complete 
intronic sequence, in yellow Age! restriction site, used for the insertion of the spacer. In the lower 
part, schematic representation of 9AintNFl minigene with the insertion of the intronic spacer 
(yellow box). (B) Agarose gel electrophoresis showing Ndel digested RT-PCR products after the 
transfection in HeLa cells with the upper band representing a cDNA product including exon 5N 
and 5A, the second band representing 5N inclusion, the third one the skipping and the two lower 
bands derived from the digestion of the PCR product containing only 5A exon.
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3.3. Mutually exclusive splicing regulation by trans-acting factors.

Many mutually exclusive events have been described to be directed by tissue-specific and 

developmentally regulated trans-acting factors. One example is a-actinin exon SM and 

exon NM. The SM exon is expressed in smooth muscle and the NM exon in non-muscle 

tissue. The antagonistic regulation by two CELF proteins and PTB defines the mutually 

exclusive selection of one of the two exons, as described in section 1.2.1 (Gromak et al., 

2003).

From the results obtained in section 3.2 intronic c/'s-acting elements necessary for the 

inclusion of exon 5N appeared to be present in intron 5 suggesting the regulation of the 

mutually exclusive splicing of SCN9A exon 5 is directed by a combinatorial control of 

trans-acting factors.

3.3.1. Analysis of the intronic regions surrounding the mutually exclusive 

exons 5N and 5A.

To investigate the influence on the splicing outcome of the other intronic regions 

surrounding exons 5N and 5A and how exon inclusion was influenced by the position of 

the exons, I created a new minigene where exon 5N was placed in the position of exon 5A 

and vice versa (9A Exswap) (Fig. 3.5A). Interestingly analysis of the splicing pattern 

showed that when exon 5A, which was previously partially included, was placed in the  

intronic context of exon 5N, it was fully included whereas exon 5N, that was previously 

included to approximately 65%, when placed in the intronic context of 5A was fully 

skipped (Fig. 3.5B).

In order to see if the splicing outcome was drive by exons influencing each other I also

examined the splicing profile of the two ME exons independently, deleting each one,

obtaining respectively 9AExsw Del ex 5A and 9AExsw Del ex 5N. Transient transfection,

64



RT-PCR analysis and Ndel digestion o f these tw o  minigenes did not result in any 

differences compared to  when the tw o  ME exons were present in the m inigene 9A 

Exswap (Fig. 3.5B).

Together w ith  the results obtained in section 3.2, these experim ents suggest tha t c/'s- 

acting elements in the in tron ic sequences m ight play a significant role in the  inclusion or 

exclusion o f the ME exons 5N and 5A.

A

9AExswap  5 N ------------------------

9AExsw Del ex 5A —  4 ----------------------------- 5N   d ) --------

9AExsw Del ex 5N ■ I  4 5A 6

_ . _ 9AExsw 9AExsw
9AExswap ^ ,

Del ex 5A Del ex 5N

Figure 3.5. (A) Schematic representation of the minigenes containing the mutually exclusive exons 
swapped and the single deletions of the ME exons (9AExswap, 9AExsw Del ex 5A, 9AExsw Del ex 
5N). (B) Agarose gel electrophoresis showing Ndel digested RT-PCR products after the transfection 
in HeLa cells with the upper band representing a cDNA product including exon 5N and 5A, the 
second band representing 5N inclusion, the third one the skipping and the two lower bands 
derived from the digestion of the PCR product containing only 5A exon.
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3.3.1.1. TG repeats surrounding the branch point affect the inclusion of 

both the ME exons.

The insertion o f a spacer upstream o f the branch point led to  a decrease in exon 5N, 

probably due to  an increased distance between in tronic splicing regulatory elements and 

the target exon 5N (section 3.2).

To fu rthe r investigate this phenomena and the putative role o f c/s-acting elements w ith in  

in tron 5, the sequence o f the in tron was carefully analysed highlighting tha t the branch 

point was surrounded by several TG repetitions, 5 upstream and 3 downstream . The 

alignm ent o f the in tron 5 o f o the r species revealed tha t this TG-enrichment in tha t region 

is evolutionary conserved, suggesting the im portance o f this e lem ent in the regulation o f 

this m utually exclusive event (Tab. 3.1).

Mouse GTAAGAAGTGATTGGTGTGGAGCTTTAGACTGCTC--AACTCCAGCTGTTTGGGAGT------
Dog GTAAGGAGTGATTGGTGTGAAGCATTAGGCCACTCATAACTCCAACTATTTGGGAGTTGT
Human GTAAGAAGTAATTGGTGTGAAGCATTAGGCCACTCATAACTCCAACTATTTGGGAGTTGT
Rabbit GTAAGAAGTAATTGGTGTGAAGCATTAGGCCACTCATAACTCCAACTGTTTGGGAGTTGC

★ ★ ★ ★ ★  ★ ★ ★  • k ' k ' k ' k ' k ' k ' k ' k ' k  ★ ★ ★ ★  ie Jc ic -k -k k  k  Jc k  k  k  ★ ★  ★ ★ ★ ★ ★ ★ ★ ★ ★

Mous e --TTTCTTTGTCTGTGTGTGTGTTGTCACTGTGTCTGTGTATAAACT-CCCCTATTGCAG
Dog TCTTTGTTTGTGTGTGTGTGTGTTGTCACTGTGT-TGTGTGTGAACT--CCCTATTACAG
Human TCTTTGTTCGTTTGTGTGTGTGTCGTCACTG TGTGTATAAACT - CCCCTATTACAG
Rabbit TCTTTGTTTGTTTGTGTGTGTGTTGTCACCGTGTTTGTGTATAAACTCCCCCTATTACAG

★  ★ ★  * *  • k ' k J c - k ' k ' k - k ' k ' k ' k ' k  k  k  k  k  k

Table 3.1. Alignment of SCN9A intron 5 of four different species: mouse, dog, human, rabbit.

To assess the role o f these tw o  (TG)n stretches tw o  d iffe ren t approaches w ere utilised.

Using the minigene 9A in tN F l, in which by inserting the spacer I had distanced the  (TG)n

repeats (section 3.2), I recreated the (TG)n upstream o f the insert in o rder tha t th is

elem ent was again close to  exon 5N (Fig. 3.6A). A fte r transfection, RT-PCR and Ndel

digestion I observed tha t replacing this (TG)n stretch at a distance sim ilar to  the  w ild  type
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scenario respect to  exon 5N, rescued its inclusion as in the w ild type situation (Fig. 3.6B). 

This result confirmed the role o f these TG repeats in favouring 5N inclusion.

Considering the branch po in t is positioned in the m iddle o f the (TG)n stretches I also 

investigated a possible role o f th is regulatory elem ent on 5A inclusion.

Starting from  the minigene 9AintNFlTGup I m utated only the TG repeats downstream  o f 

the  spacer, creating the m inigene 9AintNFlTGup dow nm ut (Fig. 3.6A). A fte r transfection, 

RT-PCR and Ndel digestion I observed exon 5A inclusion was inh ib ited, whereas 5N 

inclusion was not affected. An explanation fo r th is observation is most likely tha t the 

effect o f the  (TG)n on exon 5N was still occurring due to  the TGs inserted upstream o f NF1 

in tron  (Fig. 3.6B).

4   5N *  ' 5A

gtaagaagtaattggtgtgaagcattaggccactcataactccaactatttgggagttgttctttgttcgtttgtgtgtgtgtcgtcactgtgtgtataaactcccctattacag

9 A in tN F l ---------------1 4 0 } ---------------  5N —  *  |  5A 6

— tH 0   5N « -!■§  mams  9 A in tN F l
T G up

9 A in tN F l
T G up

d o w n m u t
5N - •  - i  5A .................  6

o a  + OA- fM c i 9 A in tN F l9 A w t  9 A in tN F l T ^ n n  T G up
lo u p  d o w n m u t

5 N

5 A

Figure 3.6. (A) Schematic representation of 9A wt minigene with the complete intronic sequence, 
in yellow AgeI restriction site and in red the TG repeats. The last three schemes represent 
respectively 9AintNFl minigene, with the insertion of the intronic spacer (yellow part), 
9AintNFlTGup minigene, containing the TG repeats (red dot) also upstream of the spacer, 
9AintNFlTgup downmut minigene, characterized by mutated TG repeats downstream the intronic 
spacer. (B) Agarose gel electrophoresis showing Ndel digested RT-PCR products after the 
transfection in FleLa cells with the upper band representing a cDNA product including exon 5N 
and 5A, the second band representing 5N inclusion, the third one the skipping and the two lower 
bands derived from the digestion of the PCR product containing only 5A exon.
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To fu rthe r confirm  the  presence o f this regulatory elem ent and this double effect on both 

ME exons, using the 9A w t m inigene as backbone, I m utated the TG repetitions 

surrounding the branch po in t (Fig. 3.7A). The disruption o f the TG stretches dramatically 

impaired the splicing pattern leading to  almost double skipping, stressing the im portance 

o f this region (Fig. 3.7B).

A

4 § ----------  5N -Mte&A 6

gtaagaagtaattggtgtgaagcattaggccactcataactccaactatttgggagttgttctttgttcgtttgtgtgtgtgtcgtcactgtgtgtataaactcccctattacag 

9A TGmut ...ttettcgtttAtrtCtTCgAcgtcactCtTCgAataaactcccctat...

B
9Awt 9A TGmut

. ...... 5A

Figure 3.7. (A) Schematic representation of the minigene containing the TG repeats mutated (9A 
TGmut). In red the region of the TG repeats. The mutated residues are underlined. (B) Agarose gel 
electrophoresis showing Ndel digested RT-PCR products after the transfection in HeLa cells with 
the upper band representing a cDNA product including exon 5N and 5A, the second band 
representing 5N inclusion, the third one the skipping and the two lower bands derived from the 
digestion of the PCR product containing only 5A exon.
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3.3.1.1.1. ETR3 and TDP-43 can bind the TGs surrounding the branch point.

In literature at least two proteins have been described to bind TG repetitions, ETR3, one 

of the six members of CELF (CUG-BP1- and ETR-3-like factor) protein family and TDP-43, a 

heterogeneous nuclear ribonucleoprotein (Buratti and Baralle, 2001; Faustino and 

Cooper, 2005). It has been shown that ETR3 can act enhancing inclusion of some 

alternative exons, as in the case of cardiac troponin T exon 5, but also silencing others, 

antagonizing for example the binding of U2 snRNP to the branch point in NMDA R1 

receptor transcript (Dembowski and Grabowski, 2009; Ladd, 2013). TDP-43 can also act 

both as splicing activator or repressor, for example favouring exon 3 inclusion in the case 

of SKAR pre-mRNA or by promoting CFTR exon 9 skipping thanks to interactions with 

other hnRNPs such as hnRNP A l and hnRNP A2/B1 (Buratti and Baralle, 2001; Buratti et 

al., 2005; Fiesel et al., 2012). Both these proteins thus represent possible candidates as 

trans-acting factors binding the (TG)n repeats.

To look for a direct interaction between this region and these two RNA binding proteins I 

performed a pull down analysis using synthetic RNA encompassing both the TG stretches, 

covalently linked to adipic acid beads (Fig. 3.8A). This RNA was incubated with three 

different nuclear extracts (NE): one commercial from FleLa cells and two made in house 

from Flek293 cells and from FIEK293 cells where TDP-43 has been depleted. I chose to use 

these different NEs for two reasons. Firstly from the literature ETR3 seemed to be poorly 

expressed in FleLa cells, almost undetectable by western blot analysis, Flek293 on the 

other hand is known to express ETR3 (Dujardin et al., 2010). Secondly, since it was known 

from previous studies performed in the lab that the affinity of TDP-43 for the TG repeats 

was very high, I also decided to prepare a NE from Flek293 in which TDP-43 was depleted, 

to be sure that it did not prevent ETR3 recruitment. After incubation with nuclear extracts 

RNA-associated proteins were collected, then visualized through western blot.



The results from  the pull down dem onstrated tha t both ETR3 and TDP-43 were able to  

bind this c/'s-acting element. Even in HeLa cells where the signal fo r ETR3 is not detected 

in the input, a fte r pull down a slight band could be seen. Interestingly looking at the tw o  

samples incubated w ith  the tw o  Hek293 nuclear extracts, ETR3 binding was more 

pronounced in presence o f a low level o f TDP-43 (Fig. 3.8B).

RNA int TG repeats guuugugugugugucgucacuguguguaua

Pull down NE Input

A'

0C-ETR3

a-TDP-43

Figure 3.8. (A) Sequence of the synthetic RNA (RNA int TG repeats) used for the pull down assay. 
In red the TG repetitions. (B) Western blot for ETR3 and TDP-43 of the pull down assay performed 
using the RNA int TG repeats incubated with three different nuclear extracts: Hek NE with the 
depletion of TDP-43, Hek NE and HeLa NE.
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3.3.1.1.2. Comparison of the effects of ETR3 and TDP-43 on SCN9A exon 5 

splicing.

In the previous section it was observed tha t both ETR3 and TDP-43 could d irectly interact 

w ith  the TGs surrounding the branch point. I there fore  tested the effect o f the 

overexpression o f these proteins on the splicing pattern o f SCN9A w t exon 5. I co­

transfected the 9A w t minigene w ith  overexpression plasmids fo r ETR3 or TDP-43. 

Considering the fact tha t in HeLa cells ETR3 is poorly expressed, before overexpressing 

the tw o  proteins, I perform ed knockdown o f TDP-43, in order to  start from  a very low 

level o f both o f them  (Fig. 3.9C). A fte r the silencing o f TDP-43, I co-transfected increasing 

amounts o f ETR3 or siRNA-resistant TDP-43 overexpression plasmid, from  50 ng to  700 ng 

(Fig. 3.9B). TDP-43 seemed not to  affect the splicing pattern in a relevant way, whereas 

ETR3 clearly exerted a strong effect in enhancing the neonatal form  and in inh ib iting  5A 

inclusion (Fig. 3.9A).

+ ETR3

50 ng 100 ng 200 ng 400 ng 700 ng 

9 A  w t -------------------------------------------------------------------------

s iT D P -43

I I  Z I . . .  5A

c

9 A  w t

— ' - ♦ I
a -E TR 3 a -T D P -4 3

------------------- >

s iT D P -4 3 -

a -T D P -4 3

Figure 3.9. (A) Agarose gel electrophoresis showing Ndel digested RT-PCR products after the co­
transfection of 9A wt minigene with increasing concentrations of ETR3 or TDP-43 overexpression 
plasmids in HeLa cells with the upper band representing a cDNA product including exon 5N and
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5A, the second band representing 5N inclusion, the third one the skipping and the two lower 
bands derived from the digestion of the PCR product containing only 5A exon. Increasing amount 
of the two overexpression plasmids were transfected to evaluate the dose-effect relationship. (B) 
Western blot to check for ETR3 and TDP-43 expressions. (C) Western blot for TDP-43 to control 
the efficiency of TDP-43 silencing.

To continue the investigation o f the role o f these tw o  RNA binding proteins I silenced the 

expression o f both ETR3 and TDP43 e ither singly o r in com bination. As the level o f ETR3 

were d ifficu lt to  detect through western blot, in order to  see if  th is prote in was silenced I 

used Thermo Scientific SuperSignal West Femto Maximum Sensitivity Substrate, tha t 

enables detection o f low fem togram  o f proteins (Fig. 3.10B). ETR3 knockdown in HeLa 

cells led to  a decrease in 5N inclusion w ith  an increase o f the adult isoform ; silencing TDP- 

43 also resulted in a lower am ount o f the neonatal product, but in th is case I observed 

mostly an increase in skipping (Fig. 3.10A).

siETR3
siLu siETR3 siTDP-43

siTDP-43

9Awt ----------------------------------------------

B

Figure 3.10. (A) Agarose gel electrophoresis showing Ndel digested RT-PCR products after 
transfection analysing the effect of ETR3 and/or TDP-43 knockdown experiments in HeLa cells 
with the upper band representing a cDNA product including exon 5N and 5A, the second band 
representing 5N inclusion, the third one the skipping and the two lower bands derived from the 
digestion of the PCR product containing only 5A exon. (B) Western blot analysis of siRNA 
experiments, depleting ETR3 and /o r TDP-43. The specific band of p84 is marked with an arrow.
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3.3.1.1.3. ETR3 promotes 5N inclusion and 5A exclusion.

ETR3 regulates many alternative splicing events acting both as an enhancer or a silencer. 

For example on one hand it can function as an enhancer promoting the binding of U2 

snRNP to the upstream intron of cardiac troponin T (cTNT) exon 5 (Charlet et al., 2002; 

Ladd, 2013). On the other hand it inhibits NMDA R1 exon N1 by binding TG repeats 

surrounding the branch point, preventing U2 snRNP recruitment (Dembowski and 

Grabowski, 2009).

To better understand the role of this trans-acting factor in SCN9A splicing modulation I 

took advantage of all minigenes outlined in section 3.3.1.1. These minigenes carry the TG 

repeats at different distances from the two alternative exons (Fig. 3.11A). I co-transfected 

each one with ETR3 overexpression plasmid. As seen before (Fig. 3.9), after RT-PCR and 

Ndel digestion I observed that the overexpression of ETR3 in presence of the 9A w t 

minigene dramatically switched the pattern, favouring almost total inclusion of exon 5N. 

On the contrary ETR3 did not exert any positive effect on 5N when ETR3 overexpression 

plasmid was co-transfected with 9AintNFl, presumably due to the new position of the TG 

repeats located too far from the target exon (Fig. 3.11B). To test this hypothesis I also 

overexpressed the protein with the minigene in which I inserted the cis-acting element 

upstream of the spacer (9AintNFl TGup). In this case the same stronger effect of 5N 

enhancement was detected (Fig. 3.11B). This data confirmed a position dependent 

activity of ETR3 on promoting 5N inclusion.

Interestingly all the co-transfection experiments using 9A wt, 9AintNFl and 9AintNFl 

TGup minigenes showed a clearly significative decrease in 5A inclusion, suggesting ETR3 

as a negative regulator of exon 5A inclusion(Fig. 3.11B).

ETR3 overexpression in the presence of the minigene containing mutated TG repeats 

downstream of the spacer (9AintNFl TGup downmut) led to an increase in double
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inclusion o f both ME exons, confirm ing the negative role o f this protein (Fig. 3.11B). 

Considering tha t the  branch site was located in the m iddle o f the TG repetitions, I 

hypothesise tha t ETR3 inhibits exon 5A inclusion by masking the  branch point, as in the 

case o f NMDA R1 transcrip t (Dembowski and Grabowski, 2009).

9AintNFl 5N

9AintNFl
TGup

9AintNFl
TGup

downmut

4 5N

5N

B + ETR3 + ETR3

9A wt 9AintNFl 9AintNFl
TGup

ft

9A wt 9AintNFl 9AintNFl
TGup

9AintNFl
TGup

downmut

9AintNFl
TGup

downmut

<*
WkKKB - IM H P 1NMMP W H i

% Dl 13,10 3,11 20,21 10,96 2,50 16,97 4,81 31,39
% 5N 42,20 23,51 42,61 72,37 23,64 75,60 50,44 57,86
% Sk 21,18 43,01 22,15 11,66 61,14 5,93 42,26 8,49

c
23,53 30,38 15,03 5,01 12,73 1,51 2,49 2,27

5N

5A

CI-ETR3

Figure 3.11. (A) Schematic representation of respectively 9AintNFl minigene, with the insertion of 
the intronic spacer (yellow part), 9AintNFlTGup minigene, containing the TG repeats (red dot) 
also upstream of the spacer, 9AintNFlTgup downmut minigene, characterized by mutated TG 
repeats downstream the intronic spacer. (B) Agarose gel electrophoresis showing Ndel digested 
RT-PCR products after the co-transfection of the three minigenes with ETR3 overexpression 
plasmid in HeLa cells with the upper band representing a cDNA product including exon 5N and 5A, 
the second band representing 5N inclusion, the third one the skipping and the two lower bands 
derived from the digestion of the PCR product containing only 5A exon. Each product was 
quantified as a percentage of the total of double inclusion (Dl), 5N inclusion, double skipping (Sk) 
and 5A inclusion. (C) Western blot against ETR3 to monitor the level of the overexpressed protein.
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I also perform ed ETR3 overexpression experim ents w ith  the minigene in which the TGs 

are m utated (9ATGm ut) (Fig. 3.12A). The experim ent showed an increase in 5N but ETR3 

overexpression did not lead to  a com plete 5N inclusion (Fig. 3.12B; 3.13). This result 

suggested tha t this prote in m ight exert its positive effect on exon 5N also binding o ther 

c/'s-acting regulatory elements present in the minigene.

gtaagaagtaattggtgtgaagcattaggccactcataactccaactatttgggagttgttctttgttcgtttgtgtgtgtgtcgtcactgtgtgtataaactcccctattacag

9 A  T G m u t  . . . t t g t t c g t t t A t g t C t TCgA c g tc a c tC tTCgA a ta a a c tc c c c ta t . .

+ ETR3

9A wt 9A TGmut 9Aw t 9A TGmut

5N

5A

a-ETR3

Figure 3.12. (A) Schematic representation of the minigene containing the TG repeats mutated (9A 
TGmut). (B) Agarose gel electrophoresis showing Ndel digested RT-PCR products after the co­
transfection of 9A TGmut with ETR3 overexpression plasmid in HeLa cells with the upper band 
representing a cDNA product including exon 5N and 5A, the second band representing 5N 
inclusion, the third one the skipping and the two lower bands derived from the digestion of the 
PCR product containing only 5A exon. (C) Western blot against ETR3 to monitor the level of the 
overexpressed protein.
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Figure 3.13. Building up the model for the mechanism of SCN9A exon 5 mutually exclusive 
splicing. ETR3 promotes exon 5N inclusion and inhibits exon 5A inclusion by binding a TG-rich 
region within intron 5 (in red).

3.3.1.2. Intron 5 is necessary to maintain the mutually exclusive pattern.

The data so far collected highlighted the im portance o f c/'s-acting elements present in 

in tron 5, essential fo r the defin ition o f the  m utually exclusive splicing.

To fu rthe r support this hypothesis I decided to  substitute in tron 5 w ith  another in tron o f 

the same size from  the a-globin  gene, w ith o u t changing the firs t six nucleotides o f the 5' 

splice site o f exon 5N (Fig. 3.14A). A fte r transfection o f the m inigene 9AingGlo 5'ss(+6), 

RT-PCR and Ndel digestion, I observed tha t, in the  presence o f a d iffe ren t in tron, the 

splicing pattern lost com pletely the m utua lly exclusive feature as I could m ainly detect a 

double inclusion o f the tw o  ME exons (Fig. 3.14B).
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9 A w t  5 N t  BP # 5A

gtaagaagtaattggtgtgaagcattaggccactcataactccaactatttgggagttgttctttgttcgtttgtgtgtgtgtcgtcactgtgtgtataaactcccctattacag

9 A in tG lo  c m  
5 ’ss(+ 6) 5A

B
9 A in tG lo
5 'ss (+6 )

5N

5A

Figure 3.14. (A) Schematic representation of the minigene characterized by the substitution of 
intron 5 with an a-globin intron (in grey)(9AintGlo 5'ss(+6)). (B) Agarose gel electrophoresis 
showing Ndel digested RT-PCR products after the transfection in HeLa cells with the upper band 
representing a cDNA product including exon 5N and 5A, the second band representing 5N 
inclusion, the third one the skipping and the two lower bands derived from the digestion of the 
PCR product containing only 5A exon.

3.3.1.2.1. An intronic splicing silencer close to 5N 5' splice site inhibits 

exon 5N inclusion.

The strong increase in double inclusion a fte r the  substitu tion o f the in tron  5 could be 

justified  by the creation o f a strong 3' splice site o f exon 5A, indeed in silico prediction 

placed a score o f 13.67 opposed to  the w ild  type splice site tha t had a score o f 7.97 

(MAXENT) (h ttp ://genes.m it.edu/burgelab/m axent/Xm axentscanscoreseq_acc.htm l), 

and /o r by d iffe ren t cis-acting elements contained w ith in  the in tron ic region aside the  cis- 

acting elem ent characterised in section 3.3.1.1. To identify  fu rthe r puta tive cis-acting 

elements located in in tron 5, I used the minigene carrying the a-globin  in tron  and I 

re introduced cassettes o f the w ild type in tron ic region in the place o f the  heterologous 

in tron, creating fou r d iffe rent minigenes: 9AintGlo5'ss(+12), 9AintGlo5'ss(+20),
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9AintGlo5'ss(+47) and 9AintGlo5'ss(+72) (Fig. 3.15A). These were then transfected in 

HeLa cells and the splicing profile  analysed by RT-PCR. A fte r Ndel digestion, I detected an 

increase in 5A inclusion, tha t reached almost 100% inclusion o f exon 5A a fte r addition o f 

the w ild type in tron t ill position +20. The other tw o  minigenes 9AintGlo5'ss(+47) and 

9AintGlo5'ss(+72), did not show any evident changes in splicing w ith  respect to  the 

9AintGlo5'ss(+20) (Fig. 3.15B). The drastic change from  the double inclusion towards 

almost only 5A inclusion observed transfecting the 9AintGlo5'ss(+6) and 

9AintGlo5'ss(+20) could be explained by the presence o f an in tron ic splicing silencer (ISS) 

in the region from  +6 and +20 tha t inhibits 5N inclusion.

9AintGlo
5'ss(+12)

9AintGlo
5'ss(+20)

9AintGlo
5'ss(+47)

9AintGlo
5'ss(+72)

5N --------------------------------------------------------- 1 5A

5N ---------------------------------------------------------  5A

5 N ------------------------------------------------------------- 5A

5 N ---------------     1 5A

9AintGIo 9AintGlo 9AintGlo 9AintGlo 9AintGlo 
5'ss(+6) 5'ss(+12) 5'ss(+20) 5'ss(+47) 5'ss(+72)

5N

5A

Figure 3.15. (A) Schematic representation of the minigenes characterized by the introduction of 
different cassettes of the wild type intron 5 (9AintGlo 5'ss(+12), 9AintGlo 5'ss(+20), 9AintGlo 
5'ss(+47), 9AintGlo 5'ss(+72)). (B) Agarose gel electrophoresis showing Ndel digested RT-PCR 
products after the transfection in FleLa cells with the upper band representing a cDNA product 
including exon 5N and 5A, the second band representing 5N inclusion, the third one the skipping 
and the two lower bands derived from the digestion of the PCR product containing only 5A exon.
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This hypothesis was fu rthe r investigated by deleting the region containing the putative 

silencer e lem ent +6 - +20 from  the 9A w t m inigene (Fig. 3.16A). A fte r transfection, RT-PCR 

and Ndel digestion, I observed a strong increase in 5N inclusion (Fig. 3.16B). This result 

confirm ed the presence o f an in tron ic splicing silencer (ISS) close to  the  5' splice site o f 

exon 5N.

A

9Awt 5N _ _ — _____---------- - #BHS |  5a

(+̂ +2eo> 5N —  ------------------------------- •>**—

9A Del 
9A wt (+6/+20)

5N

5A

Figure 3.16. (A) Schematic representation of the 9A wt and the 9A Del(+6/+20) minigenes. (B) 
Agarose gel electrophoresis showing Ndel digested RT-PCR products after the transfection in HeLa 
cells with the upper band representing a cDNA product including exon 5N and 5A, the second 
band representing 5N inclusion, the third one the skipping and the two lower bands derived from 
the digestion of the PCR product containing only 5A exon.

3.3.1.2.1.1. Analysis of the trans-acting factors binding the intronic 

splicing silencer.

The negative splicing elem ent mapped in the above section was in close v ic in ity  to  exon 

5N 5' splice site and could play a role in the developm ental sw itching by partia lly  

inh ib iting  5' splice site usage.

To identify  the proteins tha t could in teract w ith  this ISS, I perform ed a pull down analysis. 

I used a synthetic RNA spanning the sequence downstream  o f exon 5N from  +3 to  +23. I
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decided to  slightly expand the  sequence to  ensure the recognition by trans-acting factors 

tha t m ight need a broader region to  bind the regulatory elem ent (Fig. 3.17A).

The RNA was incubated w ith  tw o  d iffe ren t nuclear extracts, the commercial HeLa NE and 

the Hek293 NE made in house.

W estern b lo t analysis o f the pull down showed tha t hnRNP H was strongly binding this 

e lem ent in both NEs. O ther proteins also bound th is region but to  a varying extents. For 

example, hnRNP A1 binding was pronounced using Hek293 NE but w ith  HeLa NE the 

signal was detected only a fte r a long exposure. As observed in section 3.3.1.1.1, ETR3 and 

TPD-43 were also observed to  bind and there  was a com petition among these tw o  

factors. In fact using Hek293 NE, the presence o f ETR3 strongly reduced TDP-43 binding, 

compared to  w hat was detected using HeLa NE, which is characterized by very low  level 

o f ETR3. Among the  proteins detected there was also TRA20, an SR-like prote in . The 

am ount o f the protein bound to  the cis-acting elem ent was higher w ith  incubation o f the 

RNA w ith  Hek293 NE (Fig. 3.17B).

A

-»  agaaguaauuggugugaagc

Pull down

a -ETR3 

a -T D P -4 3  

a-TRA2|5 

a -h n R N P A l 

a -h nR N P H

Figure 3.17. (A) Sequence of the synthetic RNA (RNA int(+6/+20)) spanning the region of intron 5 
from +3 to +23, used for the pull down assay. (B) Western blot of the pull down assay performed 
using the RNA int (+6/+20) incubated with two different nuclear extracts: Hek NE and HeLa NE. 
The control is derived from the beads without RNA, incubated with the nuclear extract.

RNA int(+6/+20)
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3.3.1.2.1.2. Assessing the role of hnRNP A1 and hnRNP H.

HnRNP A1 and hnRNP H represented good candidates in exerting the inhibitory effect on 

5N inclusion. Both these hnRNPs are known to be splicing repressors and it has been 

already published that they can alter 5" splice site selection in different ways: inhibiting 

U l snRNP binding or antagonizing the recruitment of positive regulatory elements, such 

as SR proteins (Yang et al., 1994; Buratti and Baralle, 2004).

In order to further investigate this possibility I co-transfected the 9A wt minigene with 

hnRNP A1 or hnRNP H overexpression plasmids. After RT-PCR and Ndel digestion I 

observed that the overexpression of either protein affected the splicing pattern. A 

decrease in 5N together with an increase in the skipping was observed with hnRNP A1 

overexpression. This decrease in 5N inclusion is in accordance to the result shown in 

figure 3.16, in which the deletion of this region led to an increase in 5N. A decrease in 

skipping was detected after hnRNP H overexpression, together with an increase in 5A 

product. The data obtained is in contrast with the one observed with the deletion of the 

region, since the level of 5N inclusion did not change in a relevant way (Fig. 3.18A). 

Knocking down of both trans-acting factors was also performed (Fig. 3.18C). However, in 

this case the splicing pattern seemed to be unaffected (Fig. 3.18B). This result might be 

explained by the presence of a residual amount of protein and/or by a certain 

redundancy of hnRNPs interacting with the ISS.

Further experiments are required to better define the trans-acting factor/s exerting a 

negative effect by binding this intronic region.
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Figure 3.18. (A) Agarose gel electrophoresis showing Ndel digested RT-PCR products after 
transfection analysing the effect of hnRNP A l and hnRNP H overexpression. (B) Agarose gel 
electrophoresis showing Ndel digested RT-PCR products after transfection analysing the effect of 
hnRNP A l and hnRNP H knockdown experiments in HeLa cells with the upper band representing a 
cDNA product including exon 5N and 5A, the second band representing 5N inclusion, the third one 
the skipping and the two lower bands derived from the digestion of the PCR product containing 
only 5A exon. (C) Western blot analysis of siRNA experiments, depleting hnRNP A l and hnRNP H.
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3.3.1.2.2. Identification of positive intronic regulatory elements flanking 

the intronic silencer.

The pull down analysis of the region +3 to +23 identified three other splicing regulatory 

factors aside hnRNP A l and hnRNP H: ETR3, TDP-43 and TRA2p. I had already analysed 

the effect of overexpressing and silencing ETR3 and TDP-43. Regarding ETR3, the 

overexpression experiments showed it exerted a strong effect in enhancing 5N inclusion, 

whereas TDP-43 did not affect 5N inclusion (section 3.3.1.1.2). A stretch rich in TG repeats 

was contained in the intronic sequence from +6 to +20. Assuming that this could be the 

region recognized by these proteins I mutated these TG repetitions, creating a new  

minigene, 9A(TG)5/ssmut (Fig. 3.19A). Interestingly after transfection, RT-PCR and Ndel 

digestion I observed that the absence of this stretch led to a decrease in 5N inclusion (Fig. 

3.19B). In order to evaluate if ETR3 exerted a role binding this region, I co-transfect both 

the 9A wt and the 9A(TG)5'ssmut with the overexpression plasmid for ETR3. After RT-PCR 

and Ndel digestion, ETR3 almost completely induced 5N inclusion when co-transfected 

with the 9A wt minigene. In contrast with the result seen with the 9A(TG)5'ssmut 

minigene, the skipping product was detected in this case, suggesting a positive role of 

ETR3 in 5N definition also by acting on this region (Fig. 3.19B).
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+ ETR3
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9 A w t  9 A w t

m u t5 s s  m u tS s s

5 N

5 A

Figure 3.19. (A) Schematic representation of the minigene containing the TG repeats mutated at 
the 5 'ss of exon 5N (9A(TG)mut5'ss). (B) Agarose gel electrophoresis showing Ndel digested RT- 
PCR products after the co-transfection of 9A(TG)mut5'ss with ETR3 overexpression plasmid in 
HeLa cells with the upper band representing a cDNA product including exon 5N and 5A, the 
second band representing 5N inclusion, the third one the skipping and the two lower bands 
derived from the digestion of the PCR product containing only 5A exon. (C) Western blot against 
ETR3 to monitor the level of the overexpressed protein.

From the lite ra ture  it is known tha t TRA20, an SR-like protein, acts in general as a 

enhancer, favouring exon inclusion via (A)GAA m otifs; however it  is reported tha t it could 

also induce exon skipping using d iffe ren t mechanisms tha t can require d irect interactions 

w ith  the RNA or it can exert an inh ib ito ry  effect through contact w ith  o the r proteins, 

w ithou t any d irect interaction w ith  the RNA (Tacke et al., 1998; Grellscheid et al., 2011). 

In order to  investigate the role o f this trans-acting facto r I perform ed both overexpression 

and silencing experiments. When I transfected the w ild type minigene in presence o f the 

TRA2[3 overexpression plasmid, a fter RT-PCR and Ndel digestion I detected an increase in
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5N inclusion and also a slight increase in double inclusion (Fig. 3.20A). The knocking down 

ofTRA20 did not induce evident changes in the  splicing outcom e (Fig. 3.20B).

To recapitulate, the deletion o f the region from  +6 to  +20 was indicative o f a silencer 

e lem ent tha t strongly inh ib ited 5N inclusion. Prelim inary experim ents have shown tha t 

hnRNP A l and hnRNP FI were able to  bind this ISS but the negative e ffect can not be 

ascribed only to  these tw o  factors. This negative regulatory e lem ent seemed to  be 

surrounded by o ther tw o  positive regions, bound by ETR3 and TRA2(3. The com petition 

among all the trans-acting factors could determ ine differences in splicing pattern. 

However, fu rthe r experiments are required to  specifically understand the contribu tion  o f 

each one.

A

+ TRA26

siLuc siTRA2|3

B
a-TRA2p

Figure 3.20. (A) Agarose gel electrophoresis showing Ndel digested RT-PCR products after 
transfection analysing the effect of TRA2(3 overexpression. (B) Agarose gel electrophoresis 
showing Ndel digested RT-PCR products after transfection analysing the effect of TRA2P 
knockdown experiments in HeLa cells with the upper band representing a cDNA product including 
exon 5N and 5A, the second band representing 5N inclusion, the third one the skipping and the 
two lower bands derived from the digestion of the PCR product containing only 5A exon. (C) 
Western blot analysis of siRNA experiments, depleting hnRNP A l and hnRNP H.

85



3.3.1.2.3. Identification of a new c/s-acting element upstream of the TGs 

surrounding the branch point.

The substitution of intron 5 completely disrupted the mutually exclusive splicing pattern 

(section 3.3.1.2). None of the elements identified so far could account for this switch, I 

therefore continued to investigate the region close to the 3' splice site of exon 5A, 

proceeding as in section 3.3.1.2.1 by substituting fragments of a-globin intron with wild 

type intronic sequences starting from two different minigenes, 9AintGlo5,ss(+6) and 

9AintGlo5'ss(+20), since they showed a completely different splicing pattern (Fig. 3.15B).

In the first part of the analysis I took advantage of the minigene 9AintGlo5'ss(+6): the 

splicing pattern given by this minigene was characterized by a high percentage of double 

inclusion (Fig. 3.15B). I initially reintroduced the wild type fragment that covered the 

region from -15 to -1 at the 3' splice site of exon 5A, creating the minigene 

9AintGlo5'ss(+6)3'ss(-15) (Fig. 3.21A). Transfection, RT-PCR and Ndel digestion, 

highlighted the fact that the reintroduction of this part of the 5A wild type acceptor site 

reduced the inclusion of the adult form, leading to an increase of the product containing 

only 5N (Fig. 3.21C). This result confirmed that 5A acceptor site was weaker than that 

created with the intronic portion of a-globin one, as previously hypothesised with the in 

silico prediction (section 3.3.1.2.1).

Subsequently I inserted two longer regions from the wild type intron 5. One containing

the branch point and the TG repeats downstream of it, and the other from position -43 to

-1, encompassing both TGs stretches and the branch point (Fig. 3.21A). The splicing

pattern obtained after transfection, RT-PCR and Ndel digestion of the

9AintGlo5'ss(+6)3'ss(-32) showed an increase of skipping of both the ME exons. This

maybe due to the introduction of the wild type branch point, probably less efficient than

the globin one. The result obtained using the minigene 9AintGlo5'ss(+6)3'ss(-43) showed

86



a lower level of skipping respect to the 9AintGlo5'ss(+6)3'ss(-32) (Fig. 3.21C). The 

difference among the two minigenes was that 9AintGlo5'ss(+6)3'ss(-43) contained both 

the TGs stretches surrounding the branch point. As shown in section 3.3.1.1.3 the TGs 

close to the branch point are important for the definition of the ME exons, so it could be 

that the decrease in skipping was due to the introduction of the entire region.

Despite the intronic cassettes so far inserted, in the minigene 9AintGlo5'ss(+6)3'ss(-43), a 

large amount of double inclusion was detected, indicating that regulatory elements were 

still missing from the sequence. Introducing the cassette from -70 to -1, the splicing 

outcome became more similar to the wild type one, with a strong reduction of double 

inclusion (Fig. 3.21C) compared to 9AintGlo5'ss(+6)3'ss(-43). A similar approach was also 

used starting from a different background in which only 5A was included in the final 

mRNA, using the minigene 9AintGlo5/ss(+20) (Fig. 3.15B). After the insertion of the first 

fragment I obtained the 9AintGlo5'ss(+20)3'ss(-15) minigene (Fig. 3.21B). Transfection, 

RT-PCR and Ndel digestion showed a completely different splicing pattern, characterized 

by almost total skipping of both the ME exons, with a slight increase in 5N inclusion (Fig. 

3.21C). After transfection of the minigene 9AintGlo5/ss(+20)3/ss(-32), containing the wild 

type sequence till position -32, RT-PCR and Ndel digestion, I detected a decrease in the  

product containing only 5N, that was not observed transfecting the minigene 

9AintGlo5,ss(+20)3,ss(-43), containing the wild type intronic region with both the TGs 

stretches and the branch point (Fig. 3.21B, 21C). However, the main cDNA product 

derived from the three constructs remained the skipping of both the ME exons, that could 

be explained on one hand by an inhibitory effect on 5N inclusion by the previously 

mapped intronic silencer, and on the other hand by the worsening of 5A 3' splice site 

strength as shown in section 3.3.1.2.1 (Fig. 3.21B, 21C).
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After transfection of the minigene 9AintGlo5'ss(+20)3'ss(-70), that encompassed the

whole region from  -70 to  -1, RT-PCR and Ndel digestion showed a splicing pattern tha t

resembled the w ild  type one, highlighting an im portan t role o f this in tron ic sequence and

the fact tha t it contains several splicing regulatory elements. (Fig. 3.21B, 21C).

A
9AintGlo
5'ss(+6)
3'ss(-15)

9AintGlo
5'ss(+6)

3'ss(-32)

9AintGlo
5'ss(+6)
3'ss(-43)

9AintGlo
5’ss(+6)
3'ss(-70)

B

9AintGlo
5'ss(+20)
3'ss(-15)

9AintGlo
5'ss(+20)
3'ss(-32)

9AintGlo
5'ss{+20)
3'ss(-43)

9AintGlo
5'ss(+20)
3'ss(-70)

5N

5N

5N

5N . 5A

5 A

■ SA 

|  SA 

5A

5N

5N

5N

5N

9AintGlo 9AintGlo 9AintGlo 9AintGlo 9AintGlo 9AintGlo 9AintGlo 9AintGlo
5'ss(+6) 5'ss(+6) 5'ss(+6) 5'ss(+6) 5'ss(+20) 5'ss{+20) 5'ss(+20) 5'ss(+20)
3'ss(-15) 3'ss(-32) 3'ss(-43) 3'ss(-70) 3'ss(-15) 3'ss(-32) 3'ss(-43) 3'ss(-70)

Figure 3.21. (A) Schematic representation of the minigenes characterized by the introduction of 
different cassettes of the wild type intron 5 (9AintGlo5'ss(+6)3'ss(-15), 9AintGlo5'ss(+6)3'ss(-32), 
9AintGlo5'ss(+6)3'ss(-43), 9AintGlo5'ss(+6)3'ss(-70), 9AintGlo5'ss(+20)3'ss(-15),
9AintGlo5'ss(+20)3'ss(-32), 9AintGlo5'ss(+20)3'ss(-43), 9AintGlo5'ss(+20)3'ss(-70)). (B) Agarose gel 
electrophoresis showing Ndel digested RT-PCR products after the transfection in HeLa cells with 
the upper band representing a cDNA product including exon 5N and 5A, the second band 
representing 5N inclusion, the third one the skipping and the two lower bands derived from the 
digestion of the PCR product containing only 5A exon.
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To fu rthe r confirm  the data obtained I deleted the elements so fa r mapped from  the w ild 

type minigene 9A w t. I in itia lly  perform ed one big deletion from  position -70 to  -43 (Fig. 

3.22A); a fte r transfection o f the m inigene 9A Del(-70/-43), RT-PCR and Ndel digestion the 

main product was skipping o f both the ME exons emphasising the role o f th is region and 

the c/'s-acting elements contained (Fig. 3.22B). Subsequently and in order to  perform  a 

fine r analysis I created o the r three minigenes, w ith  small overlapping deletions covering 

the entire sequence from  -70 to  -43: 9A Del(-70/-54), 9A Del(-60/-48) and 9A Del(-55/-43) 

(Fig. 3.22A). Looking at the data obtained a fte r transfection, RT-PCR and Ndel digestion o f 

these three minigenes, the region from  -60 to  -43 appeared to  be the most pertinen t fo r 

the  defin ition  o f the  splicing pattern (Fig. 3.22B).

A

9A wt 5N  ----------    - * * 5A

u e i
-7 0 /-4 3 ) 5N ------------------------------------------ C  • ------------- -%  5A
9A Del

9A Del 
(-7 0 /-5 4 ) 5 N

9ADd CM(-6 0 /-4 8 ) 5 N

9A Del 
(-5S /-43 ) 5N --------------------------------------- : J t—•  — |  5A

9A wt
9A Del 

(-7 0 /-4 3 )
9A Del 9A Del 9A Del 

(-7 0 /-5 4 ) (-6 0 /-4 8 ) (-5S /-43 )

5N

5A

Figure 3.22. (A) Schematic representation of 9A wt, 9A Del(-70/-43), 9A Del(-70/-54), 9A Del(-60/- 
48) and 9A Del(-55/-43) minigenes. (B) Agarose gel electrophoresis showing Ndel digested RT-PCR 
products after the transfection in HeLa cells with the upper band representing a cDNA product 
including exon 5N and 5A, the second band representing 5N inclusion, the third one the skipping 
and the two lower bands derived from the digestion of the PCR product containing only 5A exon.
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3.3.1.2.3.1. ETR3 binds a broader region upstream of the branch point 

enhancing 5N inclusion.

To identify  the trans-acting factors binding the region from  -60 to  -43 I perform ed a pull 

down analysis using tw o  d iffe ren t nuclear extracts, one from  HeLa cells and one from  

Hek293. I used a synthetic RNA spanning the region from  -60 to  -43 w ith  the addition o f 

o the r three residues upstream and downstream to  allow the binding o f all the factors 

(Fig. 3.23A).

I checked the binding o f several proteins, fo r example hnRNP A l,  hnRNP H, Tra2P did not 

in teract w ith  the RNA, whereas three proteins were able to  bind this elem ent: ETR3, TDP- 

43 and PTB (Fig. 3.23B). Regarding PTB I w ill discuss its role in the  next section, tha t w ill 

be entire ly  dedicated to  this factor. The o ther tw o  proteins and the ir role in the  m utually 

exclusive splicing o f exon 5 has been sustainably investigated in the previous sections and 

especially ETR3 has been shown to  be im portant in the defin ition  o f the splicing outcome.

RNA in t(-60 /-43) ggaguuguucuuuguucguuugu

Pull down

a-ETR3

a-TDP-43

a-PTB

Figure 3.23. (A) Sequence of the synthetic RNA (RNA int(-60/-43)) spanning the region of intron 5 
from -63 to -40, used for the pull down assay. (B) Western blot of the pull down assay performed 
using the RNA int (-60/-43) incubated with two different nuclear extracts: Hek NE and HeLa NE. 
The control is derived from the beads without RNA, incubated with the nuclear extract.
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I took advantage o f the previous minigene containing the  spacer in in tron 5 (9A intN Fl),

creating a new minigene 9A intN F linsertup  in which I inserted the  region o f in terest -60/-

43 upstream o f the spacer (Fig. 3.24A). A fte r transfection o f the 9A intN F linsertup, RT- 

PCR and Ndel digestion I detected a strong decrease in 5N inclusion, a splicing pattern 

sim ilar to  tha t one observed w ith  the 9A in tN F l minigene. The co-transfection o f 

9A in tN F linsertup  w ith  ETR3 overexpression plasmid showed a rescue in 5N inclusion, 

confirm ing the positive effect on 5N inclusion exerted by ETR3 binding to  this c/s-acting 

elem ent (Fig. 3.24B). Although I could detect an increase o f 5N (Fig. 3.24B), this was not 

so strong as the effect seen when I moved the TG repeats stretches upstream o f the 

spacer (minigene 9A in tN F l TGup) (Fig. 3.11B).

A

9Awt 5 N

9AintNFl 5 N

9AintNFl r * i
insertup

+ ETR3 + ETR3 + ETR3

9AintNFl
insertup-> 9AintNFl

Figure 3.24. (A) Schematic representation of respectively 9A wt, 9AintNFl and 9AintNFlinsertup 
minigenes. The yellow box represents the NF1 intronic spacer, the two red dots are the TG 
stretches surrounding the branch point and the red box represents the sequence under 
investigation from -60 to -43. (B) Agarose gel electrophoresis showing Ndel digested RT-PCR 
products after the co-transfection of the three minigenes with ETR3 overexpression plasmid in
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HeLa cells with the upper band representing a cDNA product including exon 5N and 5A, the 
second band representing 5N inclusion, the third one the skipping and the two lower bands 
derived from the digestion of the PCR product containing only 5A exon. (C) Western blot against 
ETR3 to monitor the level of the overexpressed protein.

The position o f this new mapped elem ent is exactly upstream o f the TGs surrounding the 

branch point, suggesting tha t ETR3 binding is not lim ited just at tha t region but it acts as a 

positive regulator o f 5N defin ition  binding a broader region (Fig. 3.25).

Figure 3.25. Building up the model for the mechanism of SCN9A exon 5 mutually exclusive 
splicing. The region of intron 5 comprised between +6 and +20 represents a composite regulatory 
element of splicing containing three regulatory elements: two of them favouring 5N inclusion 
(bound by ETR3 and TRA2(3) and one exerting a negative effect (in blue). ETR3 promotes exon 5N 
inclusion and inhibits exon 5A inclusion by binding a broader TG-rich region within intron 5 (in 
red).
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3.3.1.3. Investigation of the role of the other intronic regions in inclusion 

of exons 5N or 5A.

The previous results showed in section 3.3.1 highlighted the importance of the intronic 

sequences surrounding the two exons: the switching of the positions of the exons on one 

side altered the 5' and the 3' splice site sequence, affecting consequently their strength 

(section 1.1), on the other hand exon definition was influenced by different intronic cis- 

acting elements.

It is well know that alternative exons are generally characterized by weaker splice sites 

than constitutively ones and cis-acting elements become fundamental for the definition 

of the splicing outcome (Ast, 2004). Analysis of the donor sequences of the two ME exons 

highlighted that they differ in just one residue in position +3 (Fig. 3.26A). In particular the 

5' splice site of exon 5N, carrying an A residue, is more conform to the consensus 

sequence (C/A)AG/GURAGU (where R is A or G) than the 5A one, that carries a G residue. 

Using the 9A wt minigene as a backbone, I investigated the role played by the strength of 

the donor splice sites by creating minigenes in which the 5A 5'ss was changed to that of 

5N and vice versa, generating the minigenes 9A ex5A 5'ss mut and 9A ex5N 5'ss mut 

respectively (Fig. 3.26A).

Transfection of the minigene 9A ex5A 5'ss mut, followed by RT-PCR and Ndel digestion 

displayed a better definition of exon 5A; whereas the minigene carrying the mutation of 

5N 5'ss to make it identical to that of 5A led to a decrease in 5N inclusion, increasing the 

amount of skipping, without affecting the adult form (Fig. 3.26B). These results confirmed 

the hypothesis that 5A donor splice site is weaker than 5N one. In the minigene with the 

swapped exons (9A Exswap) the enhancement of 5A inclusion could be at least in part 

due to the acquisition of a stronger 5' splice site (Fig. 3.5).
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5' SPLICE SITE 
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9A wt

Exon 5N

CAGGTAAGA■

Exon 5A

CAGGTGAGA

9A ex5A 
5'ss mut

9A ex5N 
5'ss mut

Exon 5N

CAGGTAAGA

Exon 5N
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Exon 5A
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 ̂ 9Aex5A  
9A w t 5'ss mut

A 9A ex5N 
9A wt 5<ss mut

5N
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Figure 3.26. (A) In the upper part the 5' splice site consensus sequence is reported. In the lower 
part schematic representation of 9A wt, 9A ex5A 5'ssmut and 9A ex5N 5'ssmut minigenes. (B) 
Agarose gel electrophoresis showing Ndel digested RT-PCR products after the transfection in HeLa 
cells with the upper band representing a cDNA product including exon 5N and 5A, the second 
band representing 5N inclusion, the third one the skipping and the two lower bands derived from 
the digestion of the PCR product containing only 5A exon.
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3.3.1.3.1. Foxl binds intronic c/s-acting regulatory elements improving 5A 

inclusion.

During development, a better definition of the adult exon could be driven by cis-acting 

elements, that can improve the usage of the weak 5'splice site.

Temporal and tissue-specific regulation occurs through trans-acting factors that recognize 

cis-acting elements (Kalsotra and Cooper, 2011). Two examples of specific splicing 

regulators in the nervous system are Nova and RbFox proteins, for which preferred 

binding sequences are YCAY and (U)GCAUG elements, respectively. Both these elements, 

due to their sites and temporal expression patterns represented possible trans-acting 

factors that may aid in the inclusion the exon 5A. In fact, clusters of YCAY, recognized by 

Nova proteins, are involved in the regulation of alternative exons of genes implicated in 

the synaptic functions (Ule et al., 2005). RbFox family members role in neuronal 

development has been largely investigated, revealing that they are essential players in 

the proper cerebellar development and its mature functionality. They affect neuronal 

excitation and they also exert a key role in promoting differentiation of neuronal 

progenitors regulating specific alternative splicing events (Fogel et al., 2012; Gehman et 

al., 2012).

Four (U)GCAUG motifs were present in the intronic sequence downstream of exon 5A. In

order to analyse their putative role in the regulation of this mutually exclusive splicing

pattern and considering that RbFox proteins are present in a low amount in HeLa cells, I

co-transfected the 9A wt construct with an overexpression plasmid for RbFoxl (Foxl), a

neuronal-specific isoform (Underwood et al., 2005)(Underwood 2005). After RT-PCR and

Ndel digestion, the overexpression of Foxl strongly improved the inclusion of exon 5A

and decreased the skipping product (Fig. 3.27B). This mode of action of Foxl is in

accordance with the general mechanism described in literature and the protein acts as an
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enhancer by binding Fox binding sites (FBS) located downstream of the target exon (Jin et 

al., 2003). In order to identify which binding sites were important for the increase in exon 

5A inclusion, all FBS were disrupted either singly or in combination by introducing a point 

mutation in the motif, from (T)GCATG to (T)GCGTG (Fig. 3.27A). As expected, the splicing 

pattern of the mutant minigenes did not display strong differences respect to the wild 

type, due to the absence of endogenous Foxl in HeLa cells. Co-transfecting Foxl 

overexpression plasmid with 9A FBS lm  and 9A FBS 1.2m constructs showed that the 

disruption of only these two sites was not sufficient to block the effect on 5A inclusion. 

The results obtained by the co-transfection with 9A FBS 2.3m and 9A FBS 1.2.3.m 

gradually displayed a decrease in the positive effect exerted by Foxl followed by an 

increase of the skipping product. However to completely abolish the positive effect and 

restore the wild type level of skipping, all FBS had to be mutated (Fig. 3.27B). These 

results confirm that Foxl aids 5A inclusion through the binding to these motifs and 

indicate that even a single Fox binding site is sufficient for the enhancement effect on 

exon 5A inclusion by this trans-acting factor (Fig. 3.28).
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9AFBS 9AFBS 9A FBS 9A FBS 9A AIIFBS „ 9A FBS 9A FBS 9A FBS 9A FBS 9A AIIFBS
9A w t im  1.2m 2.3m 1.2.3m  d.m 9 A w t im 1.2m 2.3m  1.2.3m  d.m

10,69 11,22 11,68 11,95 12,26 7,91 17,61 18,01 17,66 16,91 16,16 15,27

42,87 46,72 40,43 37,84 38,28 41,61 31,35 36,64 35,22 39,32 41,41 42,02

23,52 24,54 23,53 27,00 27,16 30,59 8,32 9,97 11,01 16,61 18,21 24,28

22,92 17,52 24,37 23,21 22,31 19,89 42,72 35,38 36,11 27,17 24,21 18,42

a-Flag

Figure 3.27. (A) Schematic representation of 9A wt minigene and all the minigenes in which each 
of the putative Fox binding elements (orange dots) downstream of exon 5A are mutated either 
singly or in combination. The absence of one particular orange dot means that this Fox binding 
site is mutated. (B) Agarose gel electrophoresis showing Nde I digested RT-PCR products after the 
transfection in HeLa cells of all the constructs, with the upper band representing a cDNA product 
including exon 5N and 5A, the second band representing 5N inclusion, the third one the skipping 
and the two lower bands derived from the digestion of the PCR product containing only 5A exon. 
Each product was quantified as a percentage of the total of double inclusion (Dl), 5N inclusion, 
double skipping (Sk) and 5A inclusion. (C) Western blot using anti-flag to monitor the level of the 
overexpressed Foxl.
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Figure 3.28. Building up the model for the mechanism of SCN9A exon 5 mutually exclusive 
splicing. The region of intron 5 comprised between +6 and +20 represents a composite regulatory 
element of splicing containing three regulatory elements: two of them favouring 5N inclusion 
(bound by ETR3 and TRA2p) and one exerting a negative effect (in blue). ETR3 promotes exon 5N 
inclusion and inhibits exon 5A inclusion by binding a broader TG-rich region within intron 5 (in 
red). Foxl enhances exon 5A inclusion recognising four Fox binding sites downstream of exon 5A 
(in orange).

3.3.2. PTB protein binds in different exonic and intronic regions modulating 

the splicing pattern.

Several m utua lly exclusive events are regulated by a com petition between CELF proteins 

and the polypyrim idine tract binding protein (PTB) (Southby et al., 1999; Llorian et al., 

2010; Sureau et al., 2011; Tang et al., 2011).

Polypyrim idine trac t binding protein is a well-characterized repressive regulatory 

element, tha t recognizes U-rich regions, w ith  optim al binding sites UCUUC and CUCUCU 

(Perez et al., 1997). Mechanisms proposed to  explain how PTB inhibits exon inclusion 

include com petition w ith  the binding o f U2AF65, covering the  polypyrim id ine  tract, 

m ultim erization on m ultip le  PTB binding sites creating zone o f silencing. Sometimes there  

are PTB sites in both the introns flanking one exon, looping it out. The pro te in  can also
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interact with ESS blocking exon definition or with ISS blocking intron definition (Spellman 

and Smith, 2006)(Spellman R., 2006). However a recent study based on high-density 

Affymetrix microarray revealed that among 263 alternative splicing events affected by the 

knockdown of PTB, 67 events were downregulated confirming also a positive role of this 

protein previously shown in few works. In particular it has been shown that positive- 

regulated exon were characterized by PTB binding sites only on the downstream region 

(Llorian et al., 2010).

Analysing the entire sequence from exon 4 to exon 6 through a splicing factors prediction 

program (http://193.206.120.249/splicing tissue.html. SpliceAid 2), many optimal PTB 

binding sites were found in the intronic regions surrounding the ME exons and also one in 

exon 5N, so I decided to investigate the putative role of these multiple elements (scheme 

of the putative PTB binding sites in Fig. 3.33A, 9A wt).

3.3.2.1. Analysis of a putative PTB binding site in the middle of exon 5N.

The first putative PTB binding element that I investigated is located in the middle of exon 

5N, interestingly in a region that is not conserved among the two ME exons (Fig. 3.29A). I 

disrupted this putative optimal PTB binding site by changing the 5N residues with the 5A 

ones, both singly and in combination, without introducing any modification in the amino 

acidic sequence (Fig. 3.29B).

Transfections of the three minigenes 9APTB5Nmutl, 9APTB5Nmut2 and 9APTB5Nmut3, 

RT-PCR and Ndel digestion showed an increase in 5N inclusion suggesting that the 

mutations disrupted an exonic negative regulatory element (Fig. 3.29C). The 

9APTB5Nmutl was observed to show stronger enhancement in 5N inclusion respect to 

9APTB5Nmut3 minigene, in which I mutated all the three residues, possibly due to also a 

creation of a positive element (Fig. 3.29C).
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This hypothesis was supported by data obtained from  a b io in form atic  program, tha t 

predicted the lacking o f the  PTB binding site in all the three mutants, but SRp30 binding 

only fo r 9APTB5Nmutl, suggesting tha t the greater enhancement o f 5N inclusion m ight 

be not only due to  the  d isruption o f a silencer but also a creation o f an enhancer element 

(SpliceAid 2, http ://193.206.120.249/sp lic ing tissue.htm l).

SCTN9A exo n  SM, GTATTTAACAGAATTTGTAAACCTAGGCAATGTT;|CAGCTCTTCGAAC|TTCAGAGTATTGAGAGCTTTGAAAACTAnTCTGTAATCCCAG 
9CN9A g x o n  5 A ; ATATGTGACAGAGTTTCTCGACCTGGGCAATGTC1 rAGCATTGAGAAC TTCAGAGTTCTCCGAGCATTGAAAACAATTTCAGTCATTCCAG

9A wt .GCAATGTTTCAGCTCTTCGAACTTTCAGAGTA..

9APTB
5N m utl .GCAATGTTTCAGCACTTCGAACTTTCAGAGTA..

9APTB
5Nmut2 .GCAATGTTTCAGCTTTGCGAACTTTCAGAGTA..

9APTB
5Nmut3 ..GCAATGTTTCAGCATTGCGAACTTTCAGAGTA..

9A wt
9APTB 9APTB 9APTB 

5N m utl 5Nmut2 5Nmut3

5N

Figure 3.29. (A) Alignment of the two mutually exclusive exons. In the green box the region under 
investigation. (B) Schematic representation of respectively 9A wt, 9APTB5Nmutl, 9APTB5Nmut2 
and 9APTB5Nmut3 minigenes (in red the mutated residues). (C) Agarose gel electrophoresis 
showing Ndel digested RT-PCR products after the transfection of the minigenes in HeLa cells with 
the upper band representing a cDNA product including exon 5N and 5A, the second band 
representing 5N inclusion, the third one the skipping and the two lower bands derived from the 
digestion of the PCR product containing only 5A exon.
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To continue the investigation regarding this putative PTB binding site I perform ed a pull 

down analysis using tw o  RNAs, one corresponding to  the w ild type sequence o f exon 5N 

covering the region containing the putative PTB binding site, and the o ther one carrying 

the trip le  m utation on the PTB binding site. To evaluate the am ount o f RNA linked to  

beads I inserted in the primers fou r TG repeats, tha t w ill be bound by TDP-43, as an 

internal contro l (Fig. 3.30A).

The pull down analysis clearly showed tha t PTB could not bind the m utan t RNA w hile  it 

perfectly bound the w ild  type RNA sequence (Fig. 3.30B).

A

ta c g ta a ta c g a c tc a c ta ta g g G G C A A T G  I I IC A G C T C T T C G  A A C T T T C A G tttttTG TG TG TG  

ta c g ta a ta c g a c tc a c ta ta g g G G C A A T G  I I iC A G C A T T G C G A A C T T T C A G tttttT G T G T G T G

Pull down

Figure 3.30. (A) DNA sequences used for the in vitro transcription of 5Nwt and 5Nmut RNAs. The 
underlined sequence represents a tag for the recruitment of TDP-43 to normalize the pull down 
results. (B) Western blot against PTB of the pull down assay performed using 5Nwt and 5Nmut 
RNAs incubated with HeLa NE. The control is derived from the beads without RNA, incubated with 
the nuclear extract.
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I then tested the effect o f PTB overexpression on the splicing outcom e o f the w ild type 

and the three m utant constructs (Fig. 3.31A). The co-transfection w ith  the 9A w t led to  a 

decrease o f 5N inclusion, toge ther w ith  an increase in 5A. The same effect was also 

observed w ith  the 9APTB5Nmut2 and 9APTB5Nmut3 minigenes (Fig. 3.31B). These results 

suggested tha t PTB could bind o ther elements and play a positive regulatory role on 5A 

inclusion. The result a fter RT-PCR and Ndel digestion o f the co-transfection experim ent o f 

9APTB5Nm utl and PTB overexpression plasmid showed a high increase in double 

inclusion tha t could be explained by the positive effect on 5A inclusion by PTB and the 

positive effect on 5N inclusion by a positive elem ent probably introduced w ith  the 

m utation (Fig. 3.31B).

9A wt

9APTB
SNmutl

9APTB
5Nmut2

9APTB
5Nmut3

.GCAATGTTTCAGCT CTTCG AACTTT CAGAGTA..

.GCAATGTTTCAGCACTTCGAACTTTCAGAGTA..

.GCAATGTTTCAGCTTTGCGAACTTTCAGAGTA..

.g c a a t g tttc a g c a ttg c g a a c tttc a g a g ta ..

9A wt

+ PTB + PTB + PTB + PTB
t .. I x ( ....I . t » t f i

 .  9APTB ____ . 9APTB  . 9APTB  .
SNmutl 5Nmut2 5Nmut3

5N

5A

%DI 16,57 16,93 25,47 42,98 20,00 24,18 23,82 20,99
%5N 43,40 21,33 65,90 32,77 52,41 19,06 52,39 23,86
% Sk 21,22 5,13 4,36 1,40 7,23 2,14 8,77 2,71

m m 18,82 56,61 4,26 22,85 20,36 54,62 15,02 52,44

a-PTB
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Figure 3.31. (A) Schematic representation of respectively 9A wt, 9APTB5Nmutl, 9APTB5Nmut2 
and 9APTB5Nmut3 minigenes (in red the mutated residues). (B) Agarose gel electrophoresis 
showing Ndel digested RT-PCR products after the co-transfection of the minigenes with PTB 
overexpression plasmid in HeLa cells with the upper band representing a cDNA product including 
exon 5N and 5A, the second band representing 5N inclusion, the third one the skipping and the 
two lower bands derived from the digestion of the PCR product containing only 5A exon. Each 
product was quantified as a percentage of the total of double inclusion (Dl), 5N inclusion, double 
skipping (Sk) and 5A inclusion. (C) Western blot using anti-PTB to monitor the level of the 
overexpressed protein.

I also perform ed the silencing o f PTB toge ther w ith  neuronal PTB (nPTB), since the 

dow nregulation o f PTB led to  an increase in nPTB level, tha t could play a redundant e ffect 

on the  splicing regulation (Fig. 3.32B). A lthough both the  proteins were reduced 

significantly, I could not observe any effect on splicing pattern, probably because the 

remaining am ount o f prote in was suffic ient to  m aintain the normal splicing outcom e (Fig. 

3.32A).
9A wt

,nTn siPTB 
si Luc siPTB .

sinPTB

sipTBsiLuc . _.TD siPTB 
sinPTB

a-nPTB

Figure 3.32. (A) Agarose gel electrophoresis showing Ndel digested RT-PCR products after 
transfection analysing the effect of PTB and PTB/nPTB knockdown experiments in HeLa cells with 
the upper band representing a cDNA product including exon 5N and 5A, the second band 
representing 5N inclusion, the third one the skipping and the two lower bands derived from the 
digestion of the PCR product containing only 5A exon. (B) Western blot analysis of siRNA 
experiments, depleting PTB and PTB/nPTB.
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3.3.2.2. Evaluating the role of multiple intronic PTB binding sites.

In the intronic sequences surrounding the two ME exons there were other putative 

optimal PTB binding sites including one within intron 5 and several downstream of exon 

5A. Different minigenes were created trying to assess the role of these elements. Firstly I 

mutated six putative strong PTB binding sites downstream of exon 5A in the wild type 

minigene, to investigate if the positive effect on 5A inclusion could be caused by these, 

creating the minigene 9APTBmut intdo5A (Fig. 3.33A). After transfection, RT-PCR and 

Ndel digestion, I detected a decrease in skipping with an increase in double inclusion. 

Moreover, after the overexpression of PTB, the splicing pattern obtained from this new 

minigene was almost the same observed for the wild type after PTB overexpression, 

suggesting that the positive effect on 5A was not due to these putative PTB binding sites 

perse (Fig. 3.33B). To further investigate the role of these multiple binding sites I mutated 

them in combination with the PTB binding site in intron 5N or in exon 5N, creating 

respectively the minigenes 9APTBmut intdo5N intdo5A and 9APTBmut ex5N intdo5A (Fig. 

3.33A). After transfection, RT-PCR and Ndel digestion both the minigenes displayed the 

same splicing pattern characterized by an increase in 5A. Overexpressing PTB in presence 

of these two minigenes gave a strong increase in 5A inclusion, as observed for the 9A wt 

(Fig. 3.33B).

I also mutated in combination the PTB binding sites in exon 5N and in intron 5, obtaining 

the minigene 9APTBmut ex5N intdo5N (Fig. 3.33A). After transfection, RT-PCR and Ndel 

digestion I observed a strong increase in 5N inclusion, as previously seen in Fig. 3.29B, 

with the minigene 9APTB5Nmut3. PTB overexpression led to the same splicing outcome 

detected for all the other minigenes (Fig. 3.33B).



A

9A wt

9APTBmut
intdo5A

9APTBmut
intdo5N
intdo5A

9APTBmut
ex5N

intdo5N

9APTBmut
ex5N

intdo5A

4 ------------  |] 5N H  5A

4 '------------  5N *

5N

5N

5N

+ PTB + PTB + PTB + PTB + PTB

QADTRmi it 9APTBmut 9APTBmut 9APTBmut
9A wt ------->  intrinSA  >  intdo5N  >  ex5N  >  ex5N  >

iniaosM intdo5A intdo5N intdo5A

5N

5A

Figure 3.33. (A) Schematic representation of respectively 9A wt, 9APTBmut intdo5A, 9APTBmut 
intdo5N intdo5A, 9APTBmut ex5N intdo5N and 9APTBmut ex5N intdo5A minigenes (in green the 
PTB binding sites). The absence of one particular green dot or/and box means that the PTB 
binding site is mutated. (B) Agarose gel electrophoresis showing Ndel digested RT-PCR products 
after the co-transfection of the minigenes with PTB overexpression plasmid in HeLa cells with the 
upper band representing a cDNA product including exon 5N and 5A, the second band 
representing 5N inclusion, the third one the skipping and the two lower bands derived from the 
digestion of the PCR product containing only 5A exon. (C) Western blot using anti-PTB to monitor 
the level of the overexpressed protein.

In an a ttem pt to  understand the positive role o f PTB, I tried  also to  overexpress PTB in the 

presence o f the minigene 9AintGlo5'ss(+6), in which in tron 5 had been substitu ted w ith  a 

globin  in tron. This new minigene contained the PTB binding site in exon 5N and all the 

in tronic PTB binding sites downstream o f exon 5A (Fig. 3.34A). A fte r RT-PCR and Ndel 

digestion I observed tha t there was an increase in 5A inclusion (Fig. 3.34B). This 

enhancement in 5A inclusion could be due to  the inh ib ito ry  e ffect o f the  PTB on the
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exonic elem ent in exon 5N. To test this hypothesis I m utated the PTB binding site in exon 

5N creating the m inigene 9AintGlo5'ss(+6)PTBmutex5N (Fig. 3.34A). The co-transfection 

o f this m inigene w ith  PTB overexpression plasmid, RT-PCR and Ndel digestion did not 

showed any increase in 5A inclusion (Fig. 3.34B). So the increase showed w ith  the 

9AintGlo5'ss(+6) a fte r PTB overexpression was probably due to  the inh ib ito ry  e ffect on 

exon 5N. Furtherm ore this result suggested tha t in tron 5 could be necessary to  achieve 

the  positive effect on exon 5A (Fig. 3.35).

9AintGlo
5'ss(+6)

9AintGlo
5'ss(+6)

PTBmutexSN

+ PTB + PTB

9AintGlo ,  % ! 9 S ?
ssi+o) PTBmutex5N

5N

5A

a-PTB

Figure 3.34. (A) Schematic representation of respectively 9AintGlo 5'ss(+6) and 9AintGlo 5'ss(+6) 
PTBmutex5N (in green the PTB binding sites). The absence of one particular red dot or/and box 
means that the PTB binding site is mutated. (B) Agarose gel electrophoresis showing Ndel 
digested RT-PCR products after the co-transfection of the minigenes with PTB overexpression 
plasmid in HeLa cells with the upper band representing a cDNA product including exon 5N and 5A, 
the second band representing 5N inclusion, the third one the skipping and the two lower bands 
derived from the digestion of the PCR product containing only 5A exon. (C) Western blot using 
anti-PTB to monitor the level of the overexpressed protein.
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Figure 3.35. Building up the model for the mechanism of SCN9A exon 5 mutually exclusive 
splicing. The region of intron 5 comprised between +6 and +20 represents a composite regulatory 
element of splicing containing three regulatory elements: two of them favouring 5N inclusion 
(bound by ETR3 and TRA2p) and one exerting a negative effect (in blue). ETR3 promotes exon 5N 
inclusion and inhibits exon 5A inclusion by binding a broader TG-rich region within intron 5 (in 
red). Foxl enhances exon 5A inclusion recognising four Fox binding sites downstream of exon 5A 
(in orange). PTB inhibits 5N inclusion through an exonic silencer (in green).

3.3.3. Assessing the strength of 5A 3' splice site and its polypyrimidine 

tract.

During the mapping o f in tron 5 I noticed tha t the 3' splice site o f exon 5A was weaker 

than the one introduced by the a-globin  in tron (section 3.3.1.2.1). For th is reason I 

decided to  evaluate role o f the strength o f the 3' ss o f 5A in the  a lternative splicing by 

m utating the firs t base o f the exon from  A to  G in order to  make it more conform  to  the 

consensus sequence; moreover the G is also present in 5N 3' splice site (Fig. 3.36A, 36B). 

To study this region I generated a new minigene to  be used as a backbone as some o f the  

mutations, tha t I had planned to  do, disrupted the Ndel site. For th is reason I took 

advantage o f a minigene largely used in the lab, a human hybrid three-exon a -g lob in / 

fib ronectin  minigene, called pTB (Vibe-Pedersen et al., 1984). Firstly I m odified this 

construct by changing the fibronectin  cassette w ith  one derived from  SCN9A gene. This
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cassette comprised exon 4 and part o f the downstream intron and exon 6 w ith  a section 

o f its upstream in tronic region. In the  m iddle o f the hybrid in tronic region an Ndel site 

was introduced to  allow  the  insertion o f small sequences under investigation (Fig. 3.36C). 

Using th is new backbone I cloned in to  the Ndel site the exon 5A w ith  part o f its flanking 

in tron ic regions (Fig. 3.36C). A fte r transient transfection o f this minigene pTB5Awt and 

RT-PCR I observed tw o  PCR products, the upper amplicon representing exon 5A inclusion 

and the lower one representing exon 5A skipping. N otw ithstanding exon 5N was absent, 

exon 5A remained only partia lly included, suggesting tha t exon 5N was not d irectly 

influencing 5A inclusion (Fig. 3.36D).

The 3'ss o f exon 5A was m utated by changing the A w ith  a G in this new construct 

pTB5Awt (Fig. 3.36C). A fte r transfection o f the pTB5Amut3'ss and RT-PCR I could observe 

clear increase in 5A inclusion (Fig. 3.36D), suggesting tha t 5A 3' splice site is weaker than 

the 5N one.

A

3 'SPLICE SITE 
CONSENSUS SEQUENCE

B

Exon 5N  3'ss Exon 5A 3'ss

TTTAATTCTACAGGTATT TCCCCTATTACAG

C

pTB

lOObp 150bp

Ndel

j—

pTB5Awt ...t c c c c t a t t a c a g A T A T G .. .

pTB5A
mut3'ss ...t c c c c t a t t a c a g G T A T G ...

D

pTB5A pTB5A
w t mut3'ss



Figure 3.36. (A) 3' splice site consensus sequence. (B) Schematic representation of 3' splice sites 
of the two mutually exclusive exon. (C) Schematic representation of pTB5Awt and pTB5Amut3'ss 
minigenes. (D) Agarose gel electrophoresis showing RT-PCR products after the transfection in 
HeLa cells with the upper band representing a cDNA product including exon 5A and the lower 
band representing the skipping.

I also analysed the putative polypyrim id ine trac t o f in tron 5 (Fig. 3.37A). I m utated fou r A 

residues in to  T to  extend the  sequence o f pyrim idines downstream  the branch point 

already mapped (Fig. 3.37B). The transfection o f the  minigene 9Amut4A, the RT-PCR and 

Ndel digestion led to  a com plete inclusion o f exon 5A, most likely because the  m utations 

enforced the polypyrim idine tract (Fig. 3.37C).

A

4 !----------   5N -» i 5A 6

gtaagaagtaattggtgtgaagcattaggccactcataactccaactatttgggagttgttctttgttcgtttgtgtgtgtgtcgtcActgtgtgtataaactcccctattacag

J tk .
B

9AmutBP ...ttgttcgtttgtgtgtgtgtcgtclctgtgtgtataaactcccctat...

9Am ut4A ...ttgttcgtttgtgtgtgtgtcgtcActgtgtgtTtLLLctcccctat...

C
9A wt 9AmutBP 9Amut4A

Figure 3.37. (A) Schematic representation of intron 5 of the 9A wt minigene. (B) Schematic 
representation of the minigenes containing respectively the branch point mutated (9AmutBP) and 
the polypyrimidine tract enforced (9Amut4A). (B) Agarose gel electrophoresis showing Ndel 
digested RT-PCR products after the transfection in HeLa cells with the upper band representing a 
cDNA product including exon 5N and 5A, the second band representing 5N inclusion, the third one 
the skipping and the two lower bands derived from the digestion of the PCR product containing 
only 5A exon.
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3.3.3.1. An exonic splicing enhancer aids 5A inclusion.

Since both the 3' splice site and the polypyrimidine tract of exon 5A are quite weak, it was 

reasonable to hypothesize that other elements could help its definition, similar to the 

scenario demonstrated for its 5' splice site (section 3.3.1.3.1). Interestingly the two 

mutually exclusive exons 5N and 5A encode two peptidic fragments that differ by only 

two amino acids, that are located close to the 3' splice site (Fig. 3.38A) (Jarecki et al., 

2009) (Chatelier et al., 2008). Since this feature is well conserved also in other genes of 

the same family (section 1.4.5.1, Tab. 1.5), I decided to investigate if this region could 

contain important splicing regulatory elements present in exon 5A and absent in exon 5N. 

The alignment of the two exons showed that differences in three nucleotidic differences 

were responsible for the aminoacidic changes (Fig. 3.38B). I started the analysis of the 

residues involved in the amino acidic changes by inserting the corresponding nucleotides 

present in exon 5N into exon 5A both singly or in combination, creating the minigenes 

pTB5AmutVD, pTB5AmutVDNdel, pTBmutV and pTBmutD (Fig. 3.38C). As the mutation in 

fifth exonic base would disrupt the Ndel restriction site used to distinguish which of the 

two exons is included, this experiment was initially performed using the hybrid minigene 

pTB5Awt (section 3.3.3). After transfection and RT-PCR of the minigene pTB5AmutVD, 

that contained the three residues mutated into those present in exon 5N, I observed that 

5A inclusion was almost completely abolished (Fig. 3.38C, 38D). An increase in skipping 

was detected also for all the other minigenes with a more pronounced effect observed 

using the minigene with a mutation on the residue encoding for the aspartic acid 

(pTB5AmutVDA/c/e/ and pTB5AmutD)(Fig. 3.38C, 3.38D). These results suggested the 

presence of a putative exonic splicing enhancer (ESE) in the region that enhances the 

inclusion of the exon.
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A

Exon 5: N 200 YLTEFVNLGNVS 
A 200 YVTEFVDLGNVS

SCN9A e x o n  5N : GTA1T A,«CAGAATTTGT;JUCCTAGGCAATGTrrCAGCrCTTCGAACTrrCAGAGTATTGAGAGCTTTGAAAACTATrTCTGTAATCCCAG 
SCM9A e x o n  5A . ATATG axCAGAGTTTGKG/iCCTGGGCAATGTCTCAGCATTGAGAACATTCAGAGTTCTCCGAGCATTGAAAACAATTTCAGTCATTCCAG

Ndel

lOObp ISObp

I  *

pTB5Awt

pTB5A
mutVD

pTB5A
mutVDA/cfe/

pTB5A
mutV

pTB5A
mutD

..ATATGTGACAGAGTTTGTGG...

...ATATTTAACAGAGTTTGTGA...

..ATATGTAACAGAGTTTGTGA...

..ATATGTAACAGAGTTTGTGG...

..ATATGTGACAGAGTTTGTGA...

pTB5A pTB5A pTBSA pTB5A 
p d d A w t  mutvD mutVDNdel mutV mutD

5A

Skip

Figure 3.38. (A) Alignment of aminoacidic sequences encoded by exon 5N and exon 5A; the two 
aminoacidic differences are highlighted in yellow boxes. (B) Alignment of exon 5N and exon 5A 
DNA sequences; the three residues marked in yellow are important for the amino acidic changes. 
(C) Schematic representation of pTB5Awt; pTB5AmutVD, pTB5AmutVDA/cfe/, pTB5AmutV and 
pTB5AmutD minigenes. In red the residues mutated. (D) Agarose gel electrophoresis showing RT- 
PCR products after the transfection in HeLa cells with the upper band representing a cDNA 
product including exon 5A and the lower band representing the skipping.

At this point it was o f interest to  confirm  if  the lack o f exon 5A defin ition  would  also occur 

upon disruption o f the putative ESE in a context tha t contained both m utua lly  exclusive 

exons. Using the minigene 9A w t as a backbone I introduced only the  m utations th a t did 

not affect the form ation  o f the Ndel site. The Ndel site is form ed by the  last residue o f
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exon 4 and the firs t five residues o f exon 5A, precisely in the junction  between exon 4 and 

5A. For this reason the m utation in position +5 (G->T) in exon 5A can not be introduced in 

the  9A w t minigene w ith o u t losing the restriction site used to  discrim inate the tw o  ME 

exons (Fig. 3.39A).

As previously shown in the  hybrid minigenes derived from  pTB5A (Fig. 3.38), all three 

minigenes 9AmutVD/\/c/e/, 9Am utV and 9AmutD, a fter RT-PCR and Ndel digestion, 

h ighlighted strong differences in the splicing pattern w ith  respect to  the  w ild type 

minigene, characterized by a strong decrease in 5A inclusion (Fig. 3.39B), confirm ing the 

presence o f a positive splicing regulatory elem ent in this region.

5N

9Awt

9AmutVD/Vc/e/

9AmutV

9AmutD

...ATATGTGACAGAGTTTGTGG...

...ATATGTAACAGAGTTTGTGA...

...ATATGTAACAGAGTTTGTGG...

...ATATGTGACAGAGTTTGTGA...

9Awt 9A /̂1cyJJ/VD 9AmutV 9AmutD

% Dl 18,46 9,30 18,07 13,90
% 5N 34,20 61,43 50,71 55,97
% Sk 20,09 26,43 23,00 25,00

27,25 2,84 8,22 5,13

Figure 3.39. (A) Schematic representation of 9A wt, 9AmutVDA/de/, 9AmutV and 9AmutD 
minigenes. The yellow box marked the region of the ESE. (B) Agarose gel electrophoresis showing 
Ndel digested RT-PCR products after the transfection in HeLa cells with the upper band 
representing a cDNA product including exon 5N and 5A, the second band representing 5N 
inclusion, the third one the skipping and the two lower bands derived from the digestion of the 
PCR product containing only 5A exon. Each product was quantified as a percentage of the total of 
double inclusion (Dl), 5N inclusion, double skipping (Sk) and 5A inclusion.
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To fu rthe r study the role o f this putative enhancer I perform ed the  reverse experim ent 

inserting the residues o f 5A into 5N, focusing my a tten tion  on the region encoding fo r the 

aspartic acid, tha t seemed to  be the most critical one, creating tw o  minigenes 

9AintroESE5N and 9AintroESE5Nd.m. In the form er, a point m utation, in position +20 o f 

exon 5N changes the tr ip le t encoding fo r the asparagine to  aspartic as present in exon 5A. 

In the la tte r (9AintroESE5Nd.m.) tw o  m utations +19 and +20 were introduced a ltering the 

region tha t was not conserved among the tw o  ME exons (Fig. 3.40A, 3.40B). A fte r 

transfection, RT-PCR and Ndel digestion, the minigene 9AintroESE5N displayed a splicing 

pattern sim ilar to  tha t observed fo r the w ild type minigene, while  the m inigene w ith  the 

double m utation (9AintroESE5Nd.m.) led to  almost 100% o f 5N inclusion, underlin ing the 

positive role o f this cis-acting element, also when introduced in to  another context (Fig. 

3.40C).

...GTATTTAACAGAATTTGTAA...

...GTATTTAACAGAATTTGTAG... ESE5N°

...GTATTTAACAG AATTTGT GG... ESESNd.rn.

Q 9Aintro 9Aintro 
ESE5N ESE5Nd.m.

5N

5A

Figure 3.40. (A) Alignment of exon 5N and exon 5A DNA sequences; the three residues marked in 
yellow are important for the aminoacidic changes. (B) Schematic representation of 9A wt, 
9AintroESE5N and 9AintroESE5Nd.m minigenes. The yellow box marked the region of the ESE. (C) 
Agarose gel electrophoresis showing Ndel digested RT-PCR products after the transfection in HeLa 
cells with the upper band representing a cDNA product including exon 5N and 5A, the second 
band representing 5N inclusion, the third one the skipping and the two lower bands derived from 
the digestion of the PCR product containing only 5A exon.
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3.3.3.2. SRSF6 and SRSF1 bind an exonic splicing enhancer in exon 5A.

To identify the trans-acting factor(s) binding the ESE region in exon 5A I performed a pull 

down analysis using two synthetic RNAs. The two RNAs covered the region encoding for 

the aspartic acid, that seemed to be the most relevant in splicing regulation. In particular, 

the two RNAs were composed of the wild type sequence of exon 5A from +14 to +26 and 

the second carried the nucleotide difference in position +20 that changed the amino acid 

from aspartic acid to asparagine. Both RNAs also carried in four UG repeats, that would 

be bound by TDP-43, allowing this to be used as a normalisation control (Fig. 3.41A). 

Following the standard protocol (section 6.28), I divided the proteins bound to the RNAs 

in two different fractions. One fraction was visualized by coomassie blue staining after 

polyacrylamide electrophoresis, and with the other fraction I performed a western blot 

analysis using a battery of antibodies for the most common SR proteins.

The coomassie staining highlighted one protein band that was present only using the wild 

type RNA. This band was excised from the gel, together with the corresponding region 

from the mutated RNA, trypsin digested and analysed by mass-spectrometry (Fig. 3.41B). 

From this analysis I could not identify any proteins that could match exactly with the 

molecular weight respect to the size suggested by the marker.

Western blot analysis of the pull down experiments against the most common SR proteins 

was initially performed using the 1H4 antibody, that recognizes a series of different SR 

proteins: SRSF4 (SRp75), SRSF6 (SRp55), SRSF5 (SRp40), SRSF1 (ASF/SF2), SRSF2 (SC35) 

and SRSF3 (SRp20). Two SRs proteins, SRSF1 and SRSF6 were observed to bind the w t RNA 

but not the mutant RNA. The binding of SRSF1 was also confirmed using a specific 

antibody against SRSF1 (Fig. 3.41C).

These experiments highlighted the presence of an exonic splicing enhancer in the region 

of the aspartic acid in exon 5A, recognized by at least two SR proteins, SRSF1 and SRSF6.
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A

RNA 5A w t u g u g u g u g u u u u u UUUGUGGACCUGG

u g u g u g u g u u u u u UUUG UG AACCU G G

Pull down Pull down

a -lH 4

Figure 3.41. (A) Sequence of the synthetic 5Awt and 5Amut RNAs spanning the region of the ESE, 
used for the pull down assay. The underlined sequence represents a tag for the recruitment of 
TDP-43 to normalize the pull down results. (B) Coomassie stained gel (the analised region is 
marked with a blue box) and (C) western blot of the pull down assay performed using 5Awt and 
5Amut RNAs incubated with HeLa NE. The control is derived from the beads without RNA, 
incubated with the nuclear extract.

3.3.3.3. SRs recruitment on the exonic splicing enhancer favours 5A 

inclusion.

To fu rthe r assess the role o f these trons-acting factors, I perform ed co-transfection

experiments w ith  plasmids tha t overexpressed e ither SRSF1 or SRSF6 w ith  the  9A w t

minigene. A fte r RT-PCR and Ndel digestion, the co-transfection experim ents o f both

SRSF1 or SRSF6 overexpression plasmids w ith  the 9A w t minigene led to  an increased

115



skipping, w ith  also a reduction in 5A inclusion upon overexpression o f SRSF6 (Fig. 3.42). 

These data are d ifficu lt to  in te rpre t. They most likely are due to  the effects o f the SRs 

overexpression in o ther areas o f the minigene. For th is reason I decided to  selectively 

inh ib it the binding o f the tw o  SRs to  the ESE. This approach has been already used to  

m odulate the m utually exclusive splicing pattern o f pyruvate kinase M exon 9 and 10 

(Wang et al., 2012)

9Awt --------------------------->

SRSF1 SRSF6

Figure 3.42. Agarose gel electrophoresis showing Ndel digested RT-PCR products after 
transfection analysing the effect of SRSF1 and SRSF6 overexpression. The upper band 
representing a cDNA product including exon 5N and 5A, the second band representing 5N 
inclusion, the third one the skipping and the two lower bands derived from the digestion of the 
PCR product containing only 5A exon.

I tested tw o  d iffe ren t antisense techniques to  block the  access to  the  enhancer by the 

trans-acting factors, namely a m odified U7 snRNA containing a sequence antisense to  the 

ESE in exon 5A, from  position +13 to  +34, and a m orpholino targeting the  region from  

position +13 to  +36. I decided to  target a longer region in the  case o f the  m orpholino  

since a 24-mer sequence has been reported to  have bette r activ ity (about 70%) and to  

reach a correct GC content.

To create the modified U7 snRNA I started from  the original vector U7 SmOPT, tha t 

contains the murine U7 gene and the U7 Sm binding site optim ized to  increase the  

accumulation into the nucleus (Gorman et al., 1998). I substituted the  histone antisense 

sequence w ith  the antisense sequence fo r the  exonic splicing enhancer on 5A exon (Fig. 

3.43A). This m odified construct was then co-transfected w ith  the  9A w t m inigene in HeLa
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cells and 24 hours a fter transfection, I extracted the RNA and perform ed RT-PCR and Ndel 

digestion to  analyse the splicing pattern. As contro l I co-transfected the 9A w t minigene 

and the  em pty vector or one containing an unrelated sequence (U7x8Asn). As shown in 

figure 3.43B I observed tha t the U7 (U7ese5A) directed against the region containing the 

ESE was able to  com pletely block 5A inclusion.

The m orpholino was synthesised to  target the same region o f the m odified U7ese5A. I 

transfected the  cells w ith  the 9A w t and three d iffe ren t concentrations o f m orpholino. 

A fte r 24 hours I collected the cells and the mRNA processing o f the  m inigene was 

analysed by RT-PCR and Ndel digestion. Using the m orpholino at the concentration o f 10 

pM 5A inclusion was com pletely abolished (Fig. 3.43C).

A

GTTTGTGGACCTGGGCAATGTC

GTTTGTGGACCTGGGCAATGTCTC

9Awt

U7 U7 
smOPT x8Asn

U7
ese5A

% Dl 14,10 21,42 22,10 6,40
% 5N 43,47 35,36 34,80 62,11

% Sk 16,75 11,92 9,44 27,95
25,67 31,31 33,65 3,53

9Awt

+EP +MO 
1 |iM

+MO 
5 pM

+MO 
10 pM

" ■ — —

% Dl 6,76 8,41 6,29 8,63 0,78

% 5 N 47,94 53,55 55,88 55,14 61,59

% S k 19,82 15,94 21,87 26,37 36,17

25,48 22,09 15,96 9,86 1,46
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Figure 3.43. (A) Target sequences of the U7ese5A and of the morpholino. (B) Agarose gel 
electrophoresis showing Ndel digested RT-PCR products after the co-transfection in HeLa cells of 
the 9A wt minigene with three different U7 vectors: the empty one, one containing one unrelated 
sequence and the third one with the antisense sequence. The upper band representing a cDNA 
product including exon 5N and 5A, the second band representing 5N inclusion, the third one the 
skipping and the two lower bands derived from the digestion of the PCR product containing only 
5A exon. Each product was quantified as a percentage of the total of double inclusion (Dl), 5N 
inclusion, double skipping (Sk) and 5A inclusion. (C) Agarose gel electrophoresis showing Ndel 
digested RT-PCR products after the transfection in HeLa cells of the 9A wt minigene followed by 
morpholino treatment, using three different concentrations. EP: endo porter, the reagent for the 
delivery system. The upper band representing a cDNA product including exon 5N and 5A, the 
second band representing 5N inclusion, the third one the skipping and the two lower bands 
derived from the digestion of the PCR product containing only 5A exon. Each product was 
quantified as a percentage of the total of double inclusion (Dl), 5N inclusion, double skipping (Sk) 
and 5A inclusion.

In conclusion both approaches were able to  block the  binding o f the SR proteins to  the 

exonic splicing enhancer present in exon 5A; w ith o u t the positive effect exerted by these 

trans-acting factors, 5A inclusion was strongly inh ibited (Fig. 3.44).

Figure 3.44. Building up the model for the mechanism of SCN9A exon 5 mutually exclusive 
splicing. The region of intron 5 comprised between +6 and +20 represents a composite regulatory 
element of splicing containing three regulatory elements: two of them favouring 5N inclusion 
(bound by ETR3 and TRA20) and one exerting a negative effect (in blue). ETR3 promotes exon 5N 
inclusion and inhibits exon 5A inclusion by binding a broader TG-rich region within intron 5 (in 
red). Foxl enhances exon 5A inclusion recognising four Fox binding sites downstream of exon 5A 
(in orange). The definition of exon 5A is also controlled by two SR proteins that bind the ESE in the 
adult exon (in yellow). PTB inhibits 5N inclusion through an exonic silencer (in green).
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3.4. The exonic splicing enhancer in the adult exon is conserved in other

voltage-gated sodium channels.

In higher vertebrates nine voltage-gated sodium channels have been described; the 

duplication o f the exon encoding part o f segment S3 and S4 in dom ain I is largely 

conserved among the fam ily, in particular in six out o f nine genes (Diss et al., 2004). 

Interestingly in all these channels the adult form  contains an aspartic acid, negatively 

charged w ith  respect to  a positively or non-charged amino acid in the neonatal form  (Tab. 

3.2).

Channel Aminoacidic alignment

f IT F A F V T E F W L G N F S A L R T F R V L R A L K T IS V IP G L K T I 
IT F A Y V T E F V D LG N V S A L R T F R V LR A LK T IS V IP G L K T I  
* * * *  * * * * *  * * *  * * * * * * * * * * * * * * * * * * * * * * * *

I IT F A Y V T E F V N LG N V S A L R T F R V LR A LK T IS V IP G L K T I  
B J R S  IT F A Y V T E F V D L G N V S A L R T F R V L R A L K T IS V I PGL K T I

IV M A Y V T E F V S L G N V S A LR T F R V L R A LK T I S V I P G L K T I 
IV M A Y V T E F V D LG N V S A LR T F R V LR A LK T I S V I PGL K T I  
* * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * *

I I IM A Y V S E N IK L G N L S A L R T F R V L R A L K T IS V IP G L K T I  
I IM A Y T T E F V D L G N V S A L R T F R V L R A L K T IS V IS G L K T I  
* * * * *  *  * * *  * * * * * * * * * * * * * * * * * *  * * * * *

^ T g ^ B  IM M AY IT E F V N L G N V S A L R T F R V L R A L K T I S V I PGL K T I  
| IM M AY V T E F V D LG N V S A L R T F R V LR A LK T IS V IP G L K T I

★ ' k ' k ' k ' k ' k r k ' k ' k ' k ' k ' k ' k - k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k

I IM M AY IT E F V N L G N V S A L R T F R V L R A L K T IS V IP G L K T I  
IM M AY V T E FV D LG N V S A LR T F R V LR A LK T I S V I PGL K T I  
* * * * *  * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Table 3.2. Aminoacidic alignment of the peptidic fragments encoded by the two mutually 
exclusive exons of all the six channels containing the exon duplication. The star marked the 
conservation of the amino acid.

As dem onstrated in the previous section, the sequence encoding th is residue is part o f an 

exonic splicing enhancer tha t helps SCN9A exon 5A defin ition. Inspection o f the  alignm ent 

o f the regions encoding the aspartic acid in the adult exon o f all the  VGSC genes
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highlighted a high conservation in the nucleotidic sequences (Tab. 3.3), raising the 

possibility o f the presence o f a common ESE elem ent im portant fo r the defin ition  o f the 

adult form  in all these genes.

GTTTGTGGACCTGGGCAATGTCTC
' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k i e ' k ' k ' k ' k ' k ' k ' k ' k ' k i c

GTTTGTGGACCTGGGCAATGTCTC
' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k

GTTTGTGGACCTGGGCAATGTCTC
- k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k

ATTTGTGGACCTGGGCAATGTCTC

GTTTGTGGACCTGGGCAATGTCTC
* * * * * * * * * * * * * * * * * * * * * * * *

GTTTGTGGACCTGGGCAATGTCTC
* * * * * * * * * * * * * * * * * * * * * * * *

Table 3.3. Alignment of the ESE region of all the six channels containing the exon duplication. The 
star marked the conservation of the residue.

Unlike SCN9A gene, in which the transcrip t containing exon 5A is expressed 

predom inantly in dorsal roo t ganglia and in sympathetic ganglia neurons, the  adult form  

o f exon 5 (or 6) o f o ther VGSCs are more broadly expressed. This fact allowed me to  

evaluate the presence o f the ESE directly looking at the endogenous splicing pattern by 

using cell lines where channels are expressed.

A fte r a screen o f possible cell lines expressing the VGSCs o f in terest I chose tw o  d iffe ren t 

type o f cells to  m on ito r d irectly the endogenous splicing pattern o f three  voltage-gated 

sodium channels: SCN3A and SCN8A transcripts were analysed in the  neuroblastom e cell 

line SH-SY5Y and SCN5A transcrip t in prim ary cardiomyocytes.
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Both cell lines were treated w ith  the higher dose o f m orpholino, fo llow ing the same 

protocol and the same delivery system reagent used fo r HeLa cells. A fte r RT-PCR and 

enzymatic digestion the splicing pattern o f all the three channels reverted tow ards a 

m ajor inclusion o f the neonatal form  upon m orpholino trea tm en t (Fig. 3.45). This data 

highlighted the conservation o f the exonic splicing enhancer in the  adult exon in at least 

three o ther members o f the  fam ily.

SCN5A SCN3A SCN8A

MO MO - MO

Adult

Figure 3.45. Agarose gel electrophoresis showing the changes in the endogenous splicing pattern 
due to morpholino treatment of three other voltage-gated sodium channels: SCN5A in adult 
cardiomyocytes (ex6-Apal digested), SCN3A (ex5A-Avail) and SCN8A (ex5A-Ndel) in SH-SY5Y cells. 
The upper band in all the lanes represents the neonatal form. The two lower bands derived from 
the digestion of the PCR product containing only adult exon.

3.4.1. Inhibition of SCN5A adult exon inclusion due to morpholino 

treatment in vivo.

The Nav 1.5 channel, as discussed in the in troduction, is the m ajor channel expressed in 

heart and it plays an im portant role in the insurgence o f the cardiac action potentia l both 

in cardiomyocytes and in Purkinje fibres (Tan, 2006). As described fo r the  o the r channels, 

SCN5A contains an exon duplication (6a and 6) in the region encoding part o f the voltage 

sensor o f the channel and the tw o  splice variants are characterized by d iffe ren t 

electrophysiological parameters w ith  the neonatal form  allow ing an additional Na+ entry 

which may be im portant fo r cardiac function, pH regulation, activ ity o f enzymes and Ca2+ 

homeostasis (Onkal et al., 2008; Schroeter et al., 2010).
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It was then of interest to use the ability of the morpholino to block the inclusion of the 

adult exon in vivo. In this way it would eventually be possible to study the difference of 

the two channels in a physiological setting. These experiments were performed in mice in 

collaboration with Serena Zacchigna from the Molecular Medicine Group taking 

advantage of the equipment present in the institute.

For the treatment of the mice a vivo-morpholino was used, that consists of the 

morpholino oligo, targeting the ESE, coupled with eight guanidinium groups on dendrimer 

scaffold. This modification increases the stability and also the delivery efficiency in a wide 

range of tissues. Two different delivery approaches were used: the first one through 

direct injection in the left ventricle of the heart and the second one through intrajugular 

injection, to achieve a systemic release.

The vivo-morpholino was first injected at 12 mg/Kg dose directly in the left ventricle of 

the heart of an adult mouse. The control mouse underwent the same operation with the 

injection of the same volume of PBS. After 48 hours the heart was collected and the RNA 

was extracted from three different parts (left ventricle, right ventricle and the rest of the 

heart) and then the splicing pattern was analysed through RT-PCR. The inhibition of exon 

6 (the adult form)(Tab. 1.5) inclusion following the antisense treatm ent was clearly 

evident in the left ventricle of the treated mouse. However the compound did not spread 

properly to rest of the heart (Fig. 3.46A). From the literature, especially from the 

numerous studies on Duchenne muscular dystrophy, it is known that this organ is one of 

the most difficult to target (Moulton and Jiang, 2009).

Regarding the second approach the vivo-morpholino was injected in the jugular vein at 10 

mg/Kg concentration for three days. The heart together with other organs were collected 

at day four. The control mouse was treated exactly as the treated mouse and injected 

with the same amount of PBS. After RNA extraction and RT-PCR I noticed that the
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inh ib ito ry  effect on the adult form  was still detectable in heart, although not as strong as 

obtained through direct in jection. Interestingly SCN5A is expressed also in o the r organs 

and an effect on splicing due to  the m orpholino was also observed in muscle, spleen, 

diaphragm and kidney, but not fo r example in lung (Fig. 3.46B).

LV RV res t

+ - + - + -

IM m xm ®

mmwm wm *"*

m m

2

% 6 ^  \ 4 5 ,7 2  

|  54 ,2 8

11,01 17,60 10,90 21,69 10 ,17

88 ,99 82 ,40 8 9 ,1 0 78 ,31 89 ,83

H M Sp

27,34 10,12 39,06 9,49 50,64 30,01
72,66 89,88 60,94 90,51 49,36 69,99

D Lu

6a | 79,12 33,93 26,26 21,72 94,50 55,51
20,88 66,07 73,74 78,28 5,50 44,49

Figure 3.46. (A) Agarose gel electrophoresis showing the changes in SCN5A endogenous splicing 
pattern due to vivo-morpholino treatment (12 mg/Kg concentration) in mice through direct 
injection in heart (ex6-Apal digested). The upper band in all the lanes represents the neonatal 
form. The two lower bands derived from the digestion of the PCR product containing only adult 
exon. LV: left ventricle, RV: right ventricle, rest: the rest of the heart. Each product was quantified 
as a percentage of the total of double inclusion (Dl), 5N inclusion, double skipping (Sk) and 5A 
inclusion. (B) Agarose gel electrophoresis showing the changes in SCN5A endogenous splicing 
pattern due to vivo-morpholino treatment (3 x 10 mg/Kg) in mice through intrajugular injection 
(ex6-Apol digested). The upper band in all the lanes represents the neonatal form. The two lower 
bands derived from the digestion of the PCR product containing only adult exon. H: heart, M: 
muscle, Sp: spleen, D: diaphragm, Lu: lung, K: kidney. Each product was quantified as a 
percentage of the total of double inclusion (Dl), 5N inclusion, double skipping (Sk) and 5A 
inclusion.
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Taking together these preliminary results obtained in vivo, further confirm the important 

role of the ESE present in SCN5A exon 6 for definition and inclusion of the adult form. 

From the literature it is known that the differences between the two isoforms result in 

differences in the electrophysiological parameters with the neonatal form allowing an 

additional Na+ entry which may be important for pH regulation, activity of enzymes and 

Ca2+ homeostasis (Onkal et al., 2008; Schroeter et al., 2010). Other experiments were 

necessary to improve the efficiency of delivery of the antisense molecule in heart and to 

understand the impact of the splicing pattern change on heart activity.

3.5. Investigation of common splicing regulatory elements in SCN9A, SCN3A 

and SCN8A exon 5 mutually exclusive splicing.

The conservation of exon duplication together with the spatial and temporal control of 

their splicing in the family of voltage-gated sodium channels raised the intriguing 

possibility that some of the mapped elements, aside the splicing enhancer, may be 

common.

Alignment of intron 5 of SCN9A, SCN3A and SCN8A showed that the TG-rich regions 

displayed a high level of conservation (Tab. 3.4) I initially tested if this region may be 

important in other channels by performing the knockdown of ETR3 in SH-SY5Y cell. After 

RT-PCR and Ndel digestion in the case of SCN3A the silencing of ETR3 increased the level 

of the adult form in a significative way (Fig. 3.47A). The effect on SCN8A splicing outcome 

was not so strong, but there was a slight increase in 5A and in double inclusion (Fig. 

3.47B). In both cases this trans-acting factor appeared to exert a positive effect on the 

neonatal inclusion, proposing it as a second common regulatory element.
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SCN3A 
3 CM 9 A 
SCN3A

SCM3A
SCN9A
SCN3A

SCN8A
SCN9A
SCN3A

CAG GTAAGATGGT C C GGG GTTGGTGTTA GGTGTTGGGATAGGG C C CTGA C GTGA C GTATT
CAG GTAAGA AGTA ATTGGTGTGAAGCAT TAGGC CAC--------------------------TC
CAGGTAAGA AGAA ACTGGTGTAA GGTAG TAGGC CCC--------------------------T T

GT ACTTTTTGTTTTGTTGTGGTTTTGTTTTTTCCTTTGGTGTTTGTGTTTGTGT CTGTGT
AT AACTC CAACTATTTGG GAGTT GTTCTTTGTT-------------C GTTT GTGTGTGTGT C---------
AT ATCTC CAACTTTTCT------------------------------------------------TGTGT GTTATTGTGTT---------

TTGTCACTTGTGTCTGTGTGTGACCTCCCTTACTACAGATATG
- -  GTCACTG---------- TGTGTATAAACTCC CCTATTAC AG ATATG

-TGTGTGTGAACTCC CCTATTACAGATATG

Table 3.4. Alignment of intron 5 of three VGSC genes: SCN8A, SCN9A and SCN3A. The star marked 
the conservation of the residue.

I then tested the effect o f the double knockdown o f PTB and nPTB and the changes in the 

splicing pattern differed in the tw o  genes: SCN3A showed a decrease in 5N inclusion (Fig. 

3.47A), whereas regarding SCN8A the  double silencing induced an increase in skipping o f 

both ME exons (Fig. 3.47B).

SCN3A

. _ DO siPTB siLuc siETR3 .
sinPTB

SCN8A

.CTO- siPTB siLuc siETR3 .
sinPTB

Figure 3.47. Agarose gel electrophoresis showing the changes in the endogenous splicing pattern 
due to ETR3 and PTB/nPTB knockdown of two voltage-gated sodium channels: SCN3A (ex5A-Avail) 
and SCN8A (ex5A-Ndel) in SH-SY5Y cells. The upper band in all the lanes represents the neonatal 
form. The two lower bands derived from the digestion of the PCR product containing only adult 
exon.
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Analysing the sequence of the two genes, I noticed that the putative exonic PTB binding 

site in exon 5N and the intronic one were absent in the SCN8A gene: this might expain the 

different impact of the knockdown of this trans-acting factor between the two genes. 

Other experiments are necessary to better investigate the role of these regulatory 

elements and also of the others as RbFox proteins. Regarding the role of the RbFox 

proteins it has already been published that they control the mutually exclusive splicing of 

SCN8A exon 5 confirmed by in vivo studies using Rbfoxl^ RbfoxZ'^ mice (Gehman et al., 

2012).

3.6. Mutations mapped in SCN9A exon 5N causing Nav 1.7-related pain 

disorders.

The Fluman Gene Mutation Database (http://www.hgmd.org) reported three mutations 

in exon 5N of SCN9A (631T>C S211P, 647T>C F216S and 6 8 4 0 G  I228M), two of them  

related to insurgence of inherited erythromelalgia (IEM) and one to idiopathic small fiber 

neuropathy. All affected residues, that are part of the voltage sensor of the channel, 

display a high rate of conservation among the members of the VGSCs family. Therefore 

the studies hypothesised that the mutations most probably introduce changes in amino 

acids essential for protein function (Drenth et al., 2005; Drenth and Waxman, 2007; 

Estacion et al., 2010; Dib-Hajj et al., 2013).

An alternative hypothesis considering their position is that these mutations may affect 

the inclusion of exon 5N normally expressed 50% in adults. Indeed analysing the position 

in exon 5N of the mutations S211P and F216S, I observed that they are exactly upstream 

and downstream of the exonic PTB site, the silencer element that inhibits 5N inclusion.
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Taking advantage o f the  9A w t construct I decided to  check fo r a possible effect o f the 

m utations on the splicing pattern, creating three minigenes each one carrying each one o f 

these po in t m utations: 9AS211P, 9AF216S and 9AI228M (Fig. 3.48A).

I transfected the minigenes in to HeLa cells and after RT-PCR and Ndel digestion I analysed 

the splicing outcom e: interestingly, the m utations S211P and F216S m arkedly altered the 

pattern abolishing skipping and adult form , while the I228M did not introduce evident 

changes (Fig. 3.48B).

Since both S211P and F216S led to  a strong increase in 5N inclusion, they could disrupt 

o ther silencer elements flanking the mapped one or in terfere in some way w ith  the 

negative effect exerted by this element.

A

  4 I t ----------  5N -  5A 6

GGCAATGTTCCAGCTCTTC 9AS211P 631T>C

TTCGAACTTCCAGAGTATT 9A F216S 647T>C

ACTATTTCTGTAATGCCAG 9A I228M 684C>G

B

9A wt 9AS211P 9AF216S 9AI228M

5 N

-   5 A

Figure 3.48. (A) Schematic representation of respectively 9A wt, 9AS211P, 9AF216S and 9AI228M 
minigenes (in red the mutated residues). (C) Agarose gel electrophoresis showing Ndel digested 
RT-PCR products after the transfection of the minigenes in HeLa cells with the upper band 
representing a cDNA product including exon 5N and 5A, the second band representing 5N 
inclusion, the third one the skipping and the two lower bands derived from the digestion of the 
PCR product containing only 5A exon.
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To fu rthe r investigate the effect o f the  m utations I perform ed a pull down analysis to  

identify  the putative proteins involved in this a lteration o f splicing pattern. The RNA- 

interacting proteins collected were divided in tw o  parts, one fo r coomassie staining and 

the o ther one fo r a screening o f d iffe ren t antibodies through western blot. Comparison o f 

w ild type RNA w ith  tha t one carrying the  m utation (S211P) did not result in evident 

differences through the coomassie staining (Fig. 3.49B). However, western b lo t analysis 

showed tha t the m utant RNA was strongly bound by one SR protein recognized by 1H4 

antibody, considering the size, probably SRSF2 (SC35). M oreover it also displayed a 

decrease in hnRNP A2/B1 binding (Fig. 3.49C).

Pull down

a -h n R N P A 2 /B l

Figure 3.49. (A) Sequence of the synthetic Ex5Nwt211 and Ex5Nmut211 RNAs spanning the region 
of the mutation S211P (underlined), used for the pull down assay. Both the RNAs contain a tag for 
the recruitment of TDP-43 to normalize the pull down results. In red the mutated residue. (B) 
Coomassie stained gel and (C) western blot of the pull down assay performed using Ex5Nwt211 
and Ex5Nmut211 RNAs incubated with HeLa NE. The control is derived from the beads without 
RNA, incubated with the nuclear extract.
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The m utation F216S showed some differences at the  coomassie stained gel when 

compared to  the w ild type RNA. Three bands both from  the w ild  type and the m utant 

RNAs were analysed by mass-spectrometry by the Protein Networks group. The most 

interesting predictions obtained from  this analysis were fo r band l.m u t tha t could be 

SRSF2 (SC35), and fo r band 2.m ut and 3.m ut tha t could represent SRSF3 (SRp20)(Fig. 

3.50B). Through western b lo t I tried  to  confirm  these results but using the 1H4 antibody 

neither the w ild type nor the m utant RNA bound these SR proteins. However I detected 

both a decrease in PTB and hnRNPA2/Bl binding in the m utant RNA (Fig. 3.50C).

UGUGUGUGUUUUUCGAACUUUCAGAGU

UGUGUGUGUUUUUCGAACUUCCAGAGU

Pull down Pull down

TV

L u
a-hnRNPA2/Bl

a-PTB

a-TDP-43

l.wt l.mut

2,wt
3,wt

2.mut
3.mut

Figure 3.50. (A) Sequence of the synthetic Ex5Nwt216 and Ex5Nmut216 RNAs spanning the region 
of the mutation F216S (underlined), used for the pull down assay. Both the RNAs contain a tag for 
the recruitment of TDP-43 to normalize the pull down results. In red the mutated residue. (B) 
Coomassie stained gel and (C) western blot of the pull down assay performed using Ex5Nwt216 
and Ex5Nmut216 RNAs incubated with HeLa NE. The control is derived from the beads without 
RNA, incubated with the nuclear extract. The bands of the coomassie gel analysed by mass- 
spectrometry are marked by arrows.
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Since the two mutations are very close one to each other and also to the silencer 

previously mapped (section 3.3.2.1) I performed a pull down analysis using a longer RNA 

encompassing all the three elements (Fig. 3.51A). The RNA containing the mutation in 

position 211 was bound, also in this case, by an SR protein that did not recognize the wild 

type RNA. The other differences given by 1H4 antibody present in the picture were not 

reproducible. As shown before with the small RNAs, there was a decrease in hnRNP 

A2/B1 binding for both the mutations and also a slight decrease in the biding of PTB (Fig. 

3.51B).

Summarizing, both mutations analysed led to a strong increase in 5N inclusion, most likely 

due to the fact that they mutate a region characterized by the presence of negative c/'s- 

acting elements. Regarding the mutation S211P it was also evident that it introduced an 

enhancer bound by an SR protein in exon 5N probably counteracting the other silencer 

elements.
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Figure 3.51. (A) Sequence of the synthetic Ex5Nwtlong, Ex5NS211P, Ex5NF216S and 
EX5NPTBmutlong RNAs spanning a larger exonic region of 5N, used for the pull down assay. The 
RNAs contain a tag for the recruitment of TDP-43 to normalize the pull down results. In red the 
mutated residue. The regions of disease-related mutations are underlined in black. The region of 
the PTB binding site is underlined in green. (B) Western blot of the pull down assay performed 
using Ex5Nwtlong, Ex5NS211P, Ex5NF216S and EX5NPTBmutlong RNAs incubated with HeLa NE. 
The control is derived from the beads without RNA, incubated with the nuclear extract.
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4. Discussion

The excitability of mature neurons is dependent on the activity of voltage-gated ion 

channels. To increase neuronal plasticity, these channels are under the control of several 

forms of regulation, such as transcriptional control of gene expression, post-translational 

modifications and alternative splicing of transcripts. All these events can influence 

channel kinetics and properties (Schulz et al., 2008).

In particular, the voltage-gated sodium channels (VGSCs) are responsible for the

depolarization and the insurgence of the action potential in many electrically active cells

such as neurons, cardiac and skeletal muscle cells (Goldin, 1999). To date nine different

channels have been described. These proteins, derived from gene duplication during the

evolution (Widmark et al., 2011), are characterized by different tissue distribution and

biophysical properties. Interestingly, the voltage-gated sodium channel family shares an

aminoacidic homology of at least 75%, with some conserved regions also at the

nucleotidic level (Yu and Catterall, 2003)(Tab. 3.3, Tab. 3.4). Six out of nine genes of the

voltage-gated sodium channels family contain the duplication of an exon in the region of

the domain I encoding part of the voltage sensor of the channel (exon 5 or 6 in the case of

SCN5A gene) (Tab. 3.3). Alternative splicing is a largely exploited level of regulation in the

nervous system, allowing the production of specialized proteins that increase the specific

properties of the different neurons, producing different structurally and functionally

protein isoforms from a single gene (Koopmann et al., 2006). In this specific case,

mutually exclusive splicing of the duplicated exon 5, that encodes part of the voltage

sensor of the channel, allows a fine-tuned regulation of the electrophysiological activity
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(Chatelier et al., 2008; Onkal et al., 2008; Schroeter et al., 2010; Fletcher et al., 2011). 

Notably, it has been shown that some pathogenic mutations in genes encoding for these 

channels could have a different impact on the disease depending on the two 

backgrounds, the neonatal or adult splice variants (Jarecki et al., 2009; Choi et al., 2010). 

Moreover the two variants could also change the sensitivity to some compounds, such as 

antiepileptic drugs (Heinzen et al., 2007). The conservation of this feature across the 

VGSC genes and across species might have an adaptive significance, probably exerting an 

important role in the precise regulation of the gating characteristics of the channels 

(Copley, 2004). Despite the important role of this splicing event in modifying channel 

activity, to date it has been scarcely investigated.

The work performed in this thesis was focused on the characterization of the mechanism 

directing the mutually exclusive splicing of SCN9A exon 5. This gene is predominantly 

expressed in the dorsal root ganglia and encodes the Nav 1.7 channel (Rush et al., 2007). 

Several studies have demonstrated that this channel is involved in the regulation of 

sensory neuron excitability, setting the gain of nociceptors, and mutations in the SCN9A 

gene are implicated in various human genetic pain disorders (Dib-Hajj et al., 2013; 

Waxman and Zamponi, 2014).

To date the literature describes four general mechanisms to control mutually exclusive 

patterns: spliceosomal incompatibility, steric hindrance, tissue-specific regulation by 

trans-acting factors and RNA secondary structure. In the case of SCN9A exon 5, 

spliceosomal incompatibility as the driving mechanism behind the mutually exclusive 

splicing was excluded, since the two SCN9A ME exons 5 are characterized by the presence 

of classical GU/AG signals, recognized by the major spliceosome. Furthermore I also 

excluded steric interference, that inhibits spliceosomal formation, by distancing the two  

exons (section 3.2). Moreover, the substitution of intron 5 with another intron of the
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same size resulted in complete loss o f mutually exclusivity feature, leading to a strong 

increase in double inclusion. This data underlined the relevant role of the intronic region 

among the two ME exons in the regulation of the mutually exclusive splicing event. 

Considering this and also that the swapping of the two ME exons dramatically changes 

the splicing pattern towards a tota l inclusion o f exon 5A, the regulation of SCN9A exon 5 

mutually exclusive splicing appeared to be principally directed by trans-acting factors. 

Indeed, subsequent work (section 3.3) showed that the mechanism involved in the 

mutually exclusive splicing o f exons 5N and 5A of SCN9A gene is regulated by specific cis- 

acting elements and relative trans-acting factors, that bind to  them. The precise selection 

of one isoform, highly regulated during development and also in a tissue-specific manner, 

is directed both by tissue-specific factors, that are characterized by a well-defined 

expression, and also by alteration o f the abundance of constitutive splicing factors such as 

members o f the SR or hnRNP proteins families.

PTB^'W SR

Ex 5N Ex 5A

Ex 5N

SR

Ex 5N Ex 5A

Ex 5A

Fig. 4.1. Proposed model for the mechanism of SCN9A exon 5 mutually exclusive splicing. 
Left panel: exon 5N inclusion is directed by ETR3, that promotes exon 5N inclusion 
binding TG repeats surrounding the branch point (in red) and a region close to  5N 5' splice 
site (blue dot). At the same time, ETR3 inhibits exon 5A inclusion, masking the branch 
point, through the binding to the TG repeats (in red). Right panel: the definition of exon 
5A is controlled by two SR proteins, that bind the ESE in the adult exon (in yellow) and by 
Foxl, that enhances 5A inclusion recognising Fox binding sites downstream o f exon 5A (in 
orange). Neonatal inclusion is inhibited by an exonic silencer bound by PTB (in green) and 
a negative regulatory element in the region of intron 5 comprised between +6 and +20 
(blue dot).
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In the first stages of development the major form of SCN9A transcript contains the 

neonatal form of exon 5 (Raymond et al., 2004; Choi et al., 2010). My results have 

allowed a model to be postulated of how this occurs (Fig. 4.1, left panel). The 

experimental data in sections 3.3.1.1 and 3.3.1.2 indicate that the binding of ETR3 (CELF2) 

to a TG-rich region in intron 5 improves exon 5N definition. Furthermore, this protein 

recognizes an intronic region close to the 5' splice site of exon 5N and also in this case it 

enhances 5N inclusion (section 3.3.1.2.3.1). The expression of ETR3, is to a certain extent, 

in accordance with this hypothesis as the expression of this trons-acting factor is highly 

regulated during development in a tissue-specific manner. In many tissues, such as liver, 

thigh, stomach, lung and heart, ETR3 is down-regulated during development. In brain 

however, the amount of protein does not change (Ladd et al., 2005). Regarding the level 

of ETR3 in dorsal root ganglia, the tissue in which SCN9A is expressed, few data are 

available. Flowever in mice high levels of its transcripts have been observed at embryonic 

stage, supporting the model previously described (Blech-Flermoni et al., 2013).

During development there is an increase in 5A inclusion in dorsal root ganglia, starting 

from a 35% at the neonatal stage, reaching approximately a 50% in adulthood (Raymond 

et al., 2004; Choi et al., 2010). In the first stages of development the adult exon is 

inhibited by ETR3 (section 3.3.1.1.3), that exerts a negative effect on 5A inclusion most 

likely is due to the masking of the branch point, directly antagonising U2AF65 or U2 

snRNP recruitment (Dembowski and Grabowski, 2009). The higher percentage of 

inclusion of the adult exon during development is promoted by several auxiliary 

regulatory elements that enhance the usage of 3' and the 5' splice sites of exon 5A, which 

are weaker compared to the 5N ones, as shown in section 3.3.1.3 and 3.3.3. From my 

studies two principal c/s-acting elements emerged that help exon 5A definition. The first
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was a series of (T)GCATG motifs downstream of exon 5A that functioned through the 

binding of Foxl. Indeed, overexpression of the protein increased inclusion of exon 5A and 

this affect was abolished when the (T)GCATG motifs were mutated (section 3.3.1.3.1). 

RbFox proteins are known to be important players during neural development and 

differentiation in the regulation of many neuronal transcripts (Jin et al., 2003; Underwood 

et al., 2005). In mammals three main family members have been described Foxl, Fox2 

and Fox3 (Kuroyanagi, 2009). To test the role of the four (T)GCATG motifs downstream of 

exon 5A, the wild type construct was co-transfected with Foxl overexpression plasmid, 

since in HeLa cells this splicing factor is not detectable (Underwood et al., 2005). The 

choice of overexpressing Foxl was determined taking into consideration that the role of 

this member in neuronal development has already largely been studied. Moreover in the 

knockout mice this protein was seen to increase the inclusion of the adult form of SCN8A 

exon 5, that encodes the Nav 1.6 channel, widely expressed in the nervous system 

(Gehman et al., 2011; Fogel et al., 2012). This positive effect exerted by the binding of 

Foxl to the downstream Fox binding sites agrees with the general mechanism described 

in literature (Kuroyanagi, 2009). Moreover, this family of proteins is characterized by 

tissue specificity and the expression of each isoform is highly regulated during 

development depending on the tissue in analysis (Kuroyanagi, 2009). For example Foxl is 

known to be upregulated postnatally during adult heart development (Kalsotra et al., 

2008). In the chick neural tube there is an increase in Fox3 level, that is necessary for the 

late spinal neuronal development (Kim et al., 2013). The Fox proteins are characterized by 

temporally different expression pattern also during cerebellar development, with an 

increased level of Foxl in the later stages (Gehman et al., 2012). To date the levels of 

these trans-acting factors in DRGs have not yet been assessed, indeed further
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experiments are needed to evaluate changes on the amount of these proteins during 

development in these particular neurons.

A second regulatory element responsible for the inclusion of the adult form was mapped 

in exon 5A, that favours the definition of its weak 3' splice site. This exonic splicing 

enhancer (ESE) is bound at least by two SR proteins: SRSF1 (ASF/SF2) and SRSF6 (SRp55) 

(section 3.3). It spans the region encoding the only two amino acids that differ between 

the neonatal and the adult isoforms. Despite this small difference, these changes affect 

the electrophysiological properties of the channel, in particular, the inclusion of the adult 

form increases neuron excitability (Chatelier et al., 2008).

Considering SR proteins can substitute each other (Zahler et al., 1992), this element was 

further studied through two different antisense approaches U7smOPT vector, carrying 

the antisense target sequence, and a morpholino. Both the approaches completely 

abolished the inclusion of the adult form highlighting the important role of this c/s-acting 

element in the definition of exon 5A (section 3.3.3.3).

The developmental switch towards a major inclusion of the adult form is controlled not 

only by the presence of positive elements acting on 5A, but also by negative elements 

inhibiting 5N inclusion. Indeed, I have identified an exonic splicing silencer (ESS) in exon 

5N that is bound by PTB. Inserting point mutations on the binding site of this factor the 

splicing pattern shows drastic changes, characterized by almost total inclusion of exon 5N, 

confirming the presence of this inhibitory region. However, the result of PTB 

overexpression experiments suggests also a positive role on 5A inclusion probably due to 

the presence of other PTB binding sites located in the intronic regions surrounding the 

ME exons, but so far it has not been possible to understand in detail the role of this trans- 

acting factor in exerting a positive role on the adult form.
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From the fine mapping of intron 5, another negative c/s-acting element was identified 

close to the 5' splice site of exon 5N, from position +6 to position +20. The deletion of this 

intronic region led to an increase in 5N inclusion, suggesting the presence of another 

silencer element in this region. I identified trans-acting factors, such as hnRNP A l and 

hnRNP H, that could bind this region. However, further experimentation, performed to 

study the effect of them through overexpression and silencing experiments, did not 

confirm these as the main players acting through this element.

The mutually exclusive splicing of exon 5 is a very well conserved event, being present in 

six out of nine genes of the family. This raised the possibility that the mechanism behind 

the mutually exclusive splicing described above for SCN9A exon 5 splicing could be 

common for the other voltage-gated sodium channels containing exon 5 (or 6 in SCN5A 

gene) duplication. Indeed, the ESE element in the adult exon, fundamental for its 

inclusion, is located in the region encoding the aspartic acid. This negatively charged 

residue in the adult exon is widely conserved in all the voltage-gated sodium channels 

containing the exon duplication, suggesting an essential role in the functionality of the 

channel (Diss et al., 2004). Furthermore, the nucleotidic alignment of this region showed 

a 100% conservation in all the VGSCs (Tab. 3.3). Taking into consideration the high level of 

conservation, the morpholino previously used to block this element in SCN9A was tested 

in SCN3A, SCN8A and SCN5A. The antisense treatment was able to inhibit the inclusion of 

the adult exon in all the three channels, confirming the functional importance of this ESE 

element. I also tested the possibility to modulate in vivo the splicing pattern of SCN5A 

transcript using mice. To do so, I used a vivo-morpholino that was either directly injected 

in heart or intra-jugularly administrated. The preliminary results obtained are promising 

since a decrease in the adult form is clearly detectable in heart, but also in other organs in



the case of the systemic delivery. Further experiments are required to better set up the 

antisense treatment in order to obtain a stronger inhibitory effect; at that point it will be 

also interesting to monitor the cardiac function after the splicing pattern alteration. 

Furthermore, to investigate the effect in the other channels expressed in the central 

nervous system, it will be necessary to study a different delivery approach to overcome 

the problem of the blood brain barrier.

The other elements that had a prominent role in the choice of exon included in the final 

transcript were the TG repeats functioning through ETR3, Foxl binding to (T)GCATG 

motifs and PTB binding to TCTT site. Regarding the TG repetitions I observed that these 

were conserved, as shown for example in table 3.4 from SCN3A and SCN8A intron 5 

alignment. The silencing of ETR3 resulted in a decrease in 5N inclusion with a consequent 

increase in 5A inclusion, highlighting this element and protein as another common 

element for mutually exclusive splicing of exon 5 in the voltage-gated sodium channels 

that contain this particular exon duplication. Analysing the intronic sequence downstream  

of the adult exon Fox binding sites have been found in the other family genes. To date I 

have not yet unravelled if Fox proteins play an active role in the definition of the adult 

exon in all the channels, but from the literature it is known that this protein family exerts 

an important role in promoting SCN8A 5A exon thanks to in vivo studies using Rbfoxl+/' 

Rbfox2_/" mice (Gehman et al., 2012). The PTB binding sites are not so well conserved 

among the different family members so a more accurate study is necessary to assess the  

putative role of this regulatory element on the definition of the mutually exclusive 

splicing pattern.

The work performed in this thesis has revealed the existence of new splicing regulatory 

elements in the SCN9A gene. Over the last decades the presence of splicing elements has

139



being the study of many mutations, whose previous effect in disease pathology was often 

unknown or misdiagnosed. In fact, a mutation can affect the amino acid and result in 

disease, but this may also affect splicing. Indeed, possibly the most significant conceptual 

shift in recent years is that even translationally silent sequence variations should raise 

suspicion and be seriously considered as being responsible for the pathology observed in 

the patient. For this reason, I decided to analyse mutations identified in SCN9A exon 5N 

for their effect on splicing. To date three mutations have been reported in literature: 

c.631T>C (p.Ser211Pro) and c.647T>C (p.Phe216Ser), related to insurgence of inherited 

erythromelalgia (IEM), and c.684C>G (p.lle228Met), generating idiopathic small-fibre 

neuropathy. These are gain of function mutations that produce an increase in neuron 

excitability. Patients suffer intermittent burning and redness in the extremities, such as 

feet and hands.

All the three mutations are located in the segment S4 of the domain I, that is 

characterized by the presence of positively charged amino acid at every third position 

(Catterall et al., 2005). S211P and F216S determine a change in the activation phase, 

making easier the opening of the mutant channel, due to the different feature of the 

amino acid substituted. The mutation I228M does not introduce a dramatic change, since 

both isoleucine and methionine are neutral, non polar amino acids. In theory, as reported 

in literature, this event might not introduce a functional effect, but I228M is known to 

produce hyperexcitability in neurons. The hypothesis is that the local structure of the 

helix could be affected by the diverse side chain of the amino acid, altering the slow 

inactivation of the channel (Drenth et al., 2005; Drenth and Waxman, 2007; Estacion et 

al., 2010; Dib-Hajj et al., 2013). However, in all three cases the 5N variant of the channel 

should decrease during development, diminishing the level of the affected protein, that, 

at least theoretically, should also decrease the severity of the disease.
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To understand more about these disease-causing mutations I tested if they could have an 

impact on the splicing pattern of exon 5. The mutations at positions 211 and 216 

drastically altered the splicing pattern, blocking 5A inclusion and leading to an high 

increase in 5N inclusion (section 3.6). These results can explain why the symptoms are not 

relieved in adulthood, since the developmental switch toward a major inclusion of the 

adult isoform seems to be abolished. The mutation I228M instead does not affect the 

splicing outcome, so other experiments are necessary to better understand what happens 

in patients.

It is of interest that the mutations at positions 211 and 216 are located exactly upstream 

and downstream of the exonic splicing silencer mapped in exon 5N bound by PTB, 

suggesting the possibility of a wider complex inhibitory region in the middle of the 

neonatal exon. Both the mutations impair the binding of hnRNP A2/B1 confirming the 

hypothesis of two other exonic silencer elements. Altogether these three negative 

elements form a wide region important for the inhibition of the neonatal exon. 

Furthermore the S211P introduces an exonic enhancer element recognized by an SR 

protein, probably SRSF2.
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5. Conclusions

The duplication of exon 5 (or 6), encoding part of the voltage sensor of voltage gated 

sodium channels, is a feature conserved in six out of nine VGSCs. Although the two splice 

variants differentially affect the protein function, covering an important role in setting the 

exact activity of the channel, the mechanism behind the mutually exclusive splicing choice 

of only one of two ME exons has not yet been described in literature. In this project the 

mutually exclusive splicing of SCN9A exon 5 was characterised and a model has been 

proposed.

Although the two peptidic fragments derived from exon 5N and 5A differ by only two 

amino acids, the two splice variants differentially affect protein function. In particular, 

neurons containing the 5A variant of the channel are more excitable respect to neurons 

containing the 5N one. From studies performed on rat dorsal root ganglia, during 

development there is a change in the inclusion of the two exons, characterised by an 

increase in 5A inclusion, increasing neuron excitability. In particular at the neonatal stage 

5A is included at 35%, reaching about a 50% of inclusion in adulthood (Raymond et al., 

2004; Choi et al., 2010). Since the choice of one among the two ME exons has to be 

strictly regulated to ensure the proper functionality of the voltage-gated sodium channel, 

the precise selection of one isoform, highly regulated during development and also in a 

tissue-specific manner, is directed by a combinatorial control of different trans-acting 

factors. These are both tissue-specific factors, that are characterized by a well-defined 

expression, such as ETR3 and Foxl, and also by alteration of the abundance of 

constitutive splicing factors such as the SR proteins. During the early stage of
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development the inclusion of the neonatal exon is controlled in particular by the positive 

effect exerted by ETR3 that at the same time represses exon 5A. To ensure the increase of 

the inclusion of the adult form later during development, the decrease of ETR3 levels may 

occur, eliminating its negative effect, combined with presence of several trans-acting 

factors, necessary to better define the weaker 3' and 5' splice sites of this exon: Foxl 

enhancing 5" splice site usage and SRFS1 and SRSF6 helping the definition of the 3' splice 

site. Furthermore in the adult stage PTB exerts an inhibitory effect on 5N inclusion by 

binding an ESS, favouring even more high level of inclusion of the adult form.

From preliminary data, this mutually exclusive splicing mechanism regulated by tissue- 

specific and developmentally regulated trans-acting factors seems to be partially 

conserved also in other voltage gated sodium channels containing this exon duplication. 

Although further experiments are required to better understand the single role of each 

factor, for example the ESE region in the adult exon displays 100% conservation among all 

the six channels. This suggests an essential role of this element in adult definition, 

confirmed by my preliminary data in three channels (SCN3A, SCN5A and SCN8A). This 

splicing regulatory element appears to be an interesting target to revert the splicing 

pattern toward a neonatal background. For example in the case of SCN1A gene a 

decrease in 5N inclusion due to a polymorphism led to an higher risk of febrile seizures 

and also less sensitiveness to the antiepileptic drugs. In this case it could be interesting to 

study the effect of a reversion towards a major inclusion of the neonatal form (Heinzen et 

al., 2007; Thompson et al., 2011; Sterjev et al., 2012).

The last part of the project was focused on the characterization of the effect on the 

splicing outcome of three mutations occurring on SCN9A exon 5N, leading to gain of 

function of the channel. The mutations S211P and F216S affect the splicing pattern in a 

significant manner, strongly increasing 5N inclusion. The hypothesis, emerged from the
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obtained data, is that the two mutations destroy two exonic splicing silencer bound by 

hnRNP A2/B1, flanking the other negative element present in exon 5N, the PTB binding 

site. Moreover the S211P, in addition to eliminate a silencer, introduces an exonic splicing 

enhancer bound by an SR protein, that might be SRSF2.

144



6. Materials and methods

6.1. Chemical reagents.

Chemical reagents were purchased from Sigma Chemical Co., Merek, Gibco BRL, 

Boehringer Mannheim, Carlo Erba and Serva.

6.2. Commonly used solutions.

•  PBS: 137 mM NaCI, 2,7 mM KCI, 10 mM Na2HP04, 1.8 mM KH2P04, pH=7.4

•  IPX TBE: 108 g/l TRIS, 55 g/l Boric Acid, 9.5 g/l EDTA

•  5X DNA sample buffer: 0.5 g/ml Sucrose, 0.24 g /m l Urea, 0.5 ml TBE 10X, 0.01 ml 

1% bromophenol blue

•  5X SDS protein sample buffer: 250 mM Tris/HCI pH=6.8, 10% w /v  SDS, 30% v/v  

Glycerol, 5% v/v p-mercaptoethanol, 0.002% v/v bromophenol blue

•  IPX Transfer buffer: 30.3 g/l TRIS, 144 g/l Glycine

•  IX  SDS-PAGE running buffer: 50m M TRIS, 0.38 Glycine, 0.1% w /v  SDS

6.3. Synthetic oligonucleotides.

Synthetic DNA oligonucleotides were purchased from Sigma-Aldrich and Integrated DNA 

Technologies (IDT).

6.4. Bacterial culture.

The E. coli K12 strain DH5a was always used to perform transformation with the plasmid

of interest and its amplification. Bacterial colonies were maintained at +4°C on agar plates
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containing the proper antibiotic. When necessary, an overnight culture of bacteria was 

grown in Luria-Bertani medium (LB) made of 10 g/l Difco Bactotryptone, 5 g/l Oxoid yest 

extract, 10 g/l NaCI, pH=7.5. The appropriate antibiotic was added to LB medium to allow 

selected bacterial growth at a final concentration of 100 pg/ml.

6.5. Preparation of bacterial competent cells.

For bacterial competent cells preparation, E. coli strains were grown overnight at 37°C in 

10 ml of LB. The day after, the pre-inoculum was transferred to 300 ml of fresh LB 

medium (kept at room temperature) and cells were grown at 37°C for about 4-5 hours 

until OD6oo was 0.3-0.4.

Cell growth was then arrested by putting them on ice and then centrifuged at +4°C for 10 

minutes at 1000 rpm dividing the 300 ml in 6 50 ml tubes. The pellet of each 50 ml tube 

was resuspended in 5 ml of cold TSS solution (10% w /v  PEG, 5% v/v DMSO, 35m M MgCI2, 

pH=6.5 in LB medium). Cells were aliquoted, rapidly frozen in liquid nitrogen and stored 

at -80°C. Competition was checked by transformation with 0.1 ng of pUC19 and it was 

considered satisfactory if more than 100 colonies grew.

6.6. Bacteria transformation.

Transformation of ligation was carried out using % of the reaction volume. 

Transformation of clones was performed using 20 ng of plasmid DNA. DNA was incubated 

with 60 pi of competent cells for 20 minutes on ice, then a heat shock at 42°C was 

performed for 1.5 minutes. After another 2 minutes of incubation on ice, 60 pJ of LB were 

added and the bacteria allowed to recover for 20 minutes at 37°C. Cells were then spread 

on agar plates containing the appropriate antibiotic and the plates were incubated for 

about 12 hours at 37°C.
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6.7. Small scale preparation of plasmid DNA from bacterial cultures.

Quick DNA extraction from bacteria was performed using the Wizard plus SV minipreps 

DNA purification system (Promega) according to the manufacturer's instructions. An 

inoculation of a single colony was grown in 4 ml of LB medium in the presence of the 

proper antibiotic, overnight at 37°C.

6.8. Large scale preparation of plasmid DNA from bacterial cultures.

After an overnight inoculation of a single colony in 50 ml LB medium at 37°C with the 

proper antibiotic, the JetStar purification kit (Genomed) was used for DNA extraction, 

according to manufacturer's instructions.

6.9. Quantification of nucleic acid concentration.

An optical density of 1.0 at 260 nm is usually considered equivalent to a concentration of 

50 pg/ml for double stranded DNA and 40 jxg/ml for single stranded DNA and RNA. The 

ratio of values measured at 260 nm and 280 nm indicates purity of the samples. A value 

of 1.8 for DNA and 2 for RNA is indicator of pureness.

6.10. Enzymatic DNA modifications.

6.10.1. Restriction enzymes.

Restriction enzymes were purchased from Promega or New England Biolabs, Inc., 

together with Klenow fragment of E. coli DNA polymerase I and T4 polynucleotide kinase. 

Taq polymerase and T4 DNA ligase were obtained from Roche Diagnostic. All enzymes 

were used according to the manufacturer's instructions.
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6.10.2. Plasmidic DNA digestion.

DNA digestion was performed using the appropriate digestion buffer specifically created 

by the same company for each restriction enzyme. In general, analytical digestion was 

performed by digesting 100-500 ng of DNA in a final volume of 50 pi containing 5 units of 

the restriction enzyme of interest. A 2-3 hours incubation was performed at the optimal 

temperature indicated by the manufacturer. A preparative digestion was instead made 

using 3-5 pg of DNA in the previously mentioned condition, in a final reaction volume of 

100 pi.

6.10.3. Large fragment of E. Coli polymerase I, T4 polynucleotide kinase 

and alkaline phosphatase, calf intestinal.

The large fragment of DNA polymerase I (Klenow) is a proteolytic product of E. coli DNA 

polymerase I. It is characterized by polymerization and 3'->5' exonuclease activities, but 

has lost 5'->3' exonuclease activity. This enzyme was used to generate compatible ends 

for blunt ligations thanks to its ability to digest specific residues added by Taq DNA 

polymerase at the 3' terminus. To perform Klenow reaction, 2.5U of enzyme were added 

to 30 pi of initial product, together with the appropriate buffer at the final concentration 

IX  and dNTPs 5mM. After 15 minutes incubation at 25°C, the reaction was blocked by 

adding EDTA to a final concentration of lOmM. Klenow heating inactivation was 

performed at 75°C for 15 minutes.

Phosphorylation of the 5'-hydroxyl terminus of polynucleotides was achieved by adding 

10U of T4 polynucleotide kinase, ATP to a final concentration of Im M  and the proper 

quantity of kinase buffer. Following 30 minutes incubation at 37°C the samples were 

stored at -20°C for further use.
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Alkaline Phosphatase, Calf Intestinal (CIP) catalyses in a non-specific manner the 

dephosphorylation of 5' and 3' ends of DNA and RNA phosphomonoesters. In cloning, 

dephosphorylation prevents religation of linearized plasmid DNA. The enzyme acts on 5' 

protruding, 5' recessed and blunt ends. The standard protocol used for the 

dephosphorylation of the 1 pg of vector (25 pi) consisted in adding 5X OPA (one for all) 

buffer, 4 pi of a dilution of the CIP 1:100 in final volume of 50 pi. Following 60 minutes 

incubation at 37°C, CIP heating inactivation was performed at 80°C for 15 minutes.

6.10.4. T4 DNA ligase.

T4 DNA ligase is the enzyme used to join double stranded DNA fragments having 

compatible sticky or blunt ends. To perform this reaction, 20 ng of digested vector were 

ligated with a 5-10 fold molar excess of digested insert in a total volume of 30 pi 

containing IX  ligase buffer and 1U of T4 DNA ligase. Reaction was carried out at room 

temperature for 4-12 hours.

6.11. Agarose gel electrophoresis of DNA.

Size fractionation of DNA samples was performed through electrophoresis in agarose gel 

having an agarose concentration ranging from 1% (large and medium size fragments) to 

2% (small fragments) in TBE1X buffer. The gels containing ethidium bromide (0.5 pg/ml) 

were loaded with samples of interest in DNA loading buffer at a final concentration of IX . 

Gels were electrophoresed at 80mA in IX  TBE running buffer. DNA was finally visualized 

by UV transillumination and the result recorded by digital photography.
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6.12. Purification of DNA fragments from agarose gel.

After agarose gel electrophoresis, DNA bands were excised from the gel under UV light. 

DNA extraction was performed using the EuroGold gel extraction kit (Euroclone) 

according to the manufacturer's instructions.

6.13. Amplification of selected DNA fragments.

The Roche Diagnostic Taq DNA Polymerase protocol was exploited to perform the 

polymerase chain reaction (PCR). A final volume of 50 pi was used to obtain a mix of 

reaction constituted by IX  Taq buffer, dNTPs mix 5mM each, oligonucleotide primers 1 

nM each, Taq DNA polymerase 2.5U. As template, 0.1 ng of plasmid or 100-500 ng of 

genomic DNA were used for amplification.

6.14. DNA sequencing.

Sequence analysis was performed by sending 2 pg of plasmid DNA preparation to 

Macrogen Inc. company. Own primers were sent at concentration of 5 pmol/pl in 

deionized water, 2 pi per each run.

6.15. Generation of minigenes.

In this thesis two different minigene backbones have been utilised to the analysis of the 

splicing regulation. The first one consists in an homologous minigene containing the 

whole region under investigation cloned into the commercial vector pcDNA3, that carries 

a CMV promoter and the appropriate stop signals of transcription. The second minigene 

used is a modified version of the hybrid construct containing exons from the a-globin and 

fibronectin, under the control of the a-globin promoter, called pTB. The intronic region
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among the fibronectin exons contains a unique Ndel site in which an exon and its flanking 

regions can be inserted.

In this thesis the most largely used minigene, as starting point to introduce mutations, 

deletions or insertions, is the 9A wt minigene. To generate this construct the DNA 

comprising the entire region from SCN9A exon 4 and 6 was amplified from genomic DNA 

using oligonucleotides with two different restriction sites inserted in the extremities. The 

obtained DNA insert was digested with the BamHI and Xhol enzymes (New England 

Biolabs), gel extracted (section 6.12) and ligated with T4 DNA ligase (section 6.10) into the 

pcDNA3 plasmid using the BamHI and Xhol restriction sites.

Regarding the pTB vector, firstly it has been modified by substituting the fibronectin 

cassette containing the fibronectin exons and the intronic region with the unique Ndel 

site with a new cassette taking advantage of two Bstell restriction sites . The new cassette 

contains part of SCN9A exon 4 and SCN9A exon 6 within an hybrid intronic region 

composed of partial intronic region downstream and upstream respectively to exon 4 and 

6; also in this case the intronic region is characterised by the presence of an unique Ndel 

site. In particular the pTB vector was digested with Bstell enzyme (New England Biolabs) 

and the CIP treatment was performed on both the two fragments obtained. Then the new 

cassette digested with the Bstell enzyme (New England Biolabs) was ligated with T4 DNA 

ligase into the digested and dephosphorylated vector (section 6.10). This new construct 

was called pTBmod4-6.

The DNA fragment containing exon 5A and part of its intronic regions was amplified and 

then cloned into the pTBmod4-6 using the unique Ndel restriction site. In the generation 

of the minigenes the orientation of the inserted fragment was checked through colony 

PCR using one of oligonucleotides used for the amplification of the insert and one 

universal primer that recognizes the vector: the amplification product could be detected
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only in the case of correct orientation. The positive clones were then controlled through

sequencing.

Minigene: 9A w t

For9ABamHI
Rev9AXhol

5' - CG G G AT CCCG ATT AC ACTTTT ACTG G A AT AT AT AC - 3'
5' - G G CG AG CTCG CCCTATTCT AAAGTCTTCTTCACTCTCA - 3'

M inigene: pTBmod4-6

For4PTB-8stEII
Rev4PTB
For6PTB
Rev6PTB-BstEII

M inigene: pTB5Awt

5' - GCGGTGACCAAGAGGCTTCTGTGTAGGAGAATTC - 3' 
5' - AGTG AC ACCC AG C AG GTAG C AG AT G G A ACT G - 3'

5' - ACCTGCTGGGTGTCACTATATGCTGTAATT - 3'
5' - GCGGTCACCATGAACAGCTGTAGTCCAATTAG - 3'

For9ApTBA
Rev9ApTBA

5' - GGAATTCCATATGGAATATTTGGGAGTTGTTCTTTG - 3' 
5' - TT CC AT AT G G A ATT CC AG CC AAGT AGTC AT CCT CAT - 3'

Universal primers

Up
Rp
T7
Sp6

5, _ GTTTTCCCAG | CACGAC - 3'

5' - GGAAACAGCTATGACCATG - 3'
5' - TAATACGACTCACTATAGGG - 3' 

5' - ATTTAGGTGACACTATAGAATA - 3'

6.15.1. QuickChange mutagenesis PCR method.

Mutagenesis, insertions and deletions were obtained using the QuickChange site-directed 

methodology. Oligonucleotide primers, each complementary to opposite strands o f the 

area of interest and carrying the proper modifications, were designed and utilized during 

temperature cycling by PfuTurbo DNA polymerase (Promega). Incorporation o f the 

oligonucleotide primers generated a mutated plasmid containing staggered nicks.
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The mix of reaction was made in a final volume of 50 pi containing 1 pi of PfuTurbo DNA 

polymerase, PfuTurbo Buffer at IX  final concentration, 125 ng of each forward and 

reverse primers (detailed sequence of each primer used is described hereinafter), dNTP 

mix 5mM each and 50 ng of the desired template to be modified. The amplification 

conditions were the following:

•  95°C 30 seconds

•  95°C 30 seconds

•  55°C 1 minute

•  68°C 1 minute/Kb of vector used

•  72°C 7 minutes

Amplification reaction was repeated for 18 cycles.

Following QC PCR, the product was treated with 1 pi of Dpnl enzyme, an endonuclease 

(target sequence: 5'-Gm6ATC-3') specific for methylated and hemimethylated DNA used 

to digest the parental DNA template and to select for mutation-containing synthesized 

DNA. After at last one hour at 37°C of Dpnl digestion, 10 pi of the nicked vector DNA 

containing the desired modifications were transformed into DH5a competent cells and 

the clones were then controlled through sequencing.

6.15.2. Complete list of constructs and primers used in section 3.

Miniaenes section 3.2

QuickChange site directed mutagenesis PCR technique has been used for generating the 

9AmutBP minigene using 9A wt construct as a template and these primers:
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Minigene: 9AmutBP

For 9Aint branch po in t 5' - GTTTGTGTGTGTGTCGTCTCTGTGTGTATAAACTCCCC - 3'
Rev 9Aint branch point [_ 5' - G G G G AGTTT ATAC AC AC AG AG ACG AC AC AC AC AC A A AC - 3'

To create the minigene 9A intN F l, firs tly  an Age I site was in troduced in in tron 5 through 

QuickChange site directed mutagenesis PCR technique, using the 9A w t as a tem plate, 

obtain ing the 9A w t Agel construct. Then the am plification o f the  fragm ent from  one 

in tron o f NF1 gene has been done using oligonucleotides carrying Agel restriction sites in 

order to  d irect clone the fragm ent in to  the  9A w t Agel m inigene (see section 6.15 fo r 

general protocol).

M inigene: 9A w t Agel

For Agel 
Rev Agel

5' - GGTGTGAAGCATTAGACCGGTCATAACTCCAAC - 3' 
S' - GTTGGAGTTATGACCGGTCTAATGCTTCACACC - 3'

M inigene: 9AintNFl

For NF1 int31 Agel '  5' - TATATAACCGGTGAGATAGGGTTTTGCCATGTTGC - 3’
Rev NF1 int31 Agel S’ - T AT AT A ACCG GTTAC A ATTT ATT AT AAA AT AT C - 3’

Minigenes section 3.3.1

To create the minigene 9AExswap, firs tly  tw o  Sacll sites were introduced in the  in tron ic  

regions upstream and downstream o f the  tw o  ME exons through QuickChange site 

directed mutagenesis PCR technique, using the 9A w t as a tem plate, obta in ing  the  9A w t 

SacUpDown construct. A fte r Sacll digestion the entire  region contain ing the  tw o  ME 

among the tw o  Sacll sites was removed and substituted w ith  a synthetic fragm ent 

(produced by GenScript) o f the same region but w ith  the tw o  ME exons swapped, 

obtain ing 9AExSwap minigene (see section 6.15 fo r general protocol).
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Minigene: 9A w t SacllpDown

For Sacll up 5' - ACCTT G ACT AA AG G CCG CG GT AAGT AT CAT AG - 3'
Rev Sacll up 5' - CT AT G AT ACTT ACCG CG G CCTTT AGT C A AG GT - 3'
For Sacll down 5' - G G G GTTA A AC ACCG CG G CT G ACTTT G ATC - 3'
Rev Sacll down 5' - GATCAAAGTCAGCCGCGGTGTTTAACCCC - 3'

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9AExSw Del ex 5A and 9AExSw Del ex 5N minigenes using 9AExSwap construct as a 

tem plate  and these primers:

M inigene: 9AExSw Del ex 5A

For del e x l 5' - T A ATT CT G ATTT A ATT CT AC A AG A AGTA ATT G GTGTG A AG - 3'
Rev del e x l 5' - CTT C AC ACC A ATT ACTT CTT GTAG A ATT A A AT C AG A ATT A - 3'

M inigene: 9AExSw Del ex 5N

For del ex2 5' - GTGTAT A A ACT CCCCT ATT ACG AG AGTG G G GTT A A AC ACC AG G - 3'
Rev del ex2 5' - CCTGGTGTTTAACCCCACTCTCGTAATAGGGGAGTTTATACAC - 3'

Minigenes section 3.3.1.1

To create the minigene 9AintNFlTGup, I used the 9A w t Agel construct previously 

described. Then the am plification o f the  fragm ent from  one in tron  o f NF1 gene has been 

done using oligonucleotides carrying the region containing the  TG repeats to  insert and 

Agel restriction sites in order to  d irect clone the fragm ent in to  the 9A w t Agel m inigene 

(see section 6.15 fo r general protocol).

M inigene: 9AintNFlTGup

For NF1 int31 TG Agel 

Rev NF1 int31 Agel

5' - TATATAACCGGTTTTGTGTGTGTGTCGTC 
ACTGTGTGTATGAGATAGGGTTTTGCCATG- 3'

S' - T AT AT A AC CG G TT AC A ATTT ATT AT A A A AT AT C - 3'
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QuickChange site directed mutagenesis PCR technique has been used for generating the

9AintNFlTGup downmut and 9A TGmut minigenes using respectively 9AintNFlTGup and

9A wt construct as templates and these primers:

Minigene: 9AintNFlTGup downmut; 9A TGmut

For 9A in tronic 
tgm ut
Rev 9A in tronic 
tgm ut

5' - GTTGTTCTTTGTTCGTTTATGTCTTCG ACG 
T C ACT CTT CG A AT AA ACT CCCCT ATT AC AG - 3' 

5' - CTGTAATAGGGGAGTTTATTCGAAGAGTGA 
CGTCG A AG AC AT A A ACG A AC A A AG A AC A AC - 3'

Minigene section 3.3.1.2

To create the minigene 9AintGlo 5'ss(+6), I used the 9A w t SacUpDown construct 

described previously. A fte r Sacll digestion the entire region containing the tw o  ME among 

the tw o  Sacll sites was removed and substituted w ith  a synthetic fragm ent (produced by 

GenScript) o f the same region but w ith  the in tron 5 substituted by the  a-globin in tron 

(see section 6.15 fo r general protocol).

Minigenes section 3.3.1.2.1

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9AintGlo5'ss(+12), 9AintGlo5'ss(+20), 9AintGlo5'ss(+47) and 9AintG lo5/ss(+70) minigenes 

using respectively 9A w t, 9AintGlo5'ss(+12), 9AintG lo5/ss(+20)/ 9AintGlo5'ss(+47) 

constructs as a tem plate  and these primers:

M inigene: 9AintGlo5'ss(+12)

For 5ssmut(+12) 9AintGlo

Rev 5ssmut(+12) 9AintGlo

5' - CT ATTT CTGT AAT CCC AG GT A AG A AG 
TAATCCCCTGCTCCGACCCGGGCTCC - 3' 
5' - GGAGCCCGGGTCGGAGCAGGGGATT 
ACTTCTTACCTGGGATTACAGAAATAG - 3'
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Minigene: 9AintGlo5/ss(+20)

For 5ssmut 9AintGlo 

Rev 5ssmut 9AintGlo

5' - ATTT CT GT AAT CCCAG GTAAG AAGT AATT G 
GTGTGACCGACCCGGGCTCCTCGCCCGCCC - 3' 
5' - GGGCGGGCGAGGAGCCCGGGTCGGTCACA 
CCA ATT ACTT CTT ACCTG G G ATT AC AG AA AT - 3'

M inigene: 9AintGlo5'ss(+47)

5' - GTAAGAAGTAATTGGTGTGAAGCATTAGGCCAC 
TCATAACTCCAACTCCCACAGGCCACCCTCAACCG - 3' 
5' - CGGTTGAGGGTGGCCTGTGGGAGTTGGAGTTAT 
GAGTGGCCT AAT G CTT C AC ACC A ATT ACTT CTT AC- 3'

For 5ssmut(+47) 9AintGlo 

Rev 5ssmut(+47) 9AintGlo

M inigene: 9AintGlo5/ss(+72)

For 5ssmut(+72) 9AintGlo

Rev 5ssmut(+72) 9AintGlo

5' - GGCCACTCATAACTCCAACTATTTGGGAGTTGTT 
CTTTGTTCGTTGGCCCCG GACCCAAACCCCACCC - 3' 

5' - GGGTGGGGTTTGGGTCCGGGGCCAACGAACAAA 
G A AC A ACT CCC A A AT AGTTGGAGTTATGAGTGGCC - 3'

QuickChange site directed mutagenesis PCR technique has been used fo r generating the

9A Del(+6/+20) minigene using 9A w t construct as a tem plate  and these primers:

M inigene: 9A Del(+6/+20)

For 9A Del(+6/+20) 

Rev 9A Del(+6/20)

5' - CT ATTT CTGT AAT CCCAG GT A AG 
A AG C ATT AG G CC ACT CAT A ACTCC - 3' 
5' - GGAGTTATGAGTGGCCTAATGCT 

T CTT ACCTG G G ATT AC AG A A AT AG - 3'

Minigene section 3.3.1.2.2

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9A(TG)5'ssmut minigene using 9A w t construct as a tem plate  and these primers:
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Minigene: 9A(TG)5'ssmut

For TG m ut at 5ss ex5N 

Rev TG m ut at 5ss ex5N

5' - GTAATCCCAGGTAAGAAGTAATTA 
GT CTT A AG C ATT AG G CC ACT CAT A AC - 3' 

5' - GTTATGAGTGGCCT AAT G CTT A AG 
ACTAATTACTTCTTACCTGGGATTAC - 3'

Minigenes section 3.3.1.2.3

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9AintGlo5'ss(+6)3'ss(-15), 9AintGlo5'ss(+6)3'ss(-32), 9AintG lo5/ss(+6)3,ss(-43) and

9AintGlo5'ss(+6)3'ss(-70), 9AintGlo5'ss(+20)3'ss(-15), 9AintGlo5'ss(+20)3'ss(-32),

9AintGlo5'ss(+20)3'ss(-43) and 9AintGlo5'ss(+20)3'ss(-70) minigenes using respectively 

9AintG lo5,ss(+6), 9AintGlo5'ss(+6)3'ss(-15), 9AintG lo5/ss(+6)3/ss(-32),

9AintGlo5'ss(+6)3'ss(-43), 9AintG lo5/ss(+20)/ 9AintGlo5'ss(+20)3'ss(-15),

9AintGlo5'ss(+20)3'ss(-32) and 9AintGlo5'ss(+20)3'ss(-43) constructs as a tem pla te  and 

these primers:

Minigene: 9AintGlo5'ss(+6)3'ss(-15); 9AintGlo5'ss(+20)3'ss(-15)

For 3ssmut 9AintGlo

Rev 3ssmut 9AintGlo

5' - GGACCCAAACCCCACCCCTCACTCACTCC 
CCTATTACAGATATGTGACAGAGTTTGTGG - 3' 
5' - CC AC AAACT CT GTCACAT AT CTGTAAT AG G 

GGAGTGAGTGAGGGGTGGGGTTTGGGTCC - 3'

M inigene: 9AintGlo5'ss(+6)3'ss(-32); 9AintGlo5'ss(+20)3'ss(-32)

For 3ssmut(-32) 9AintGlo

Rev 3ssmut(-32) 9AintGlo

5' - CCGT CCTGGCCCCGG ACCCACGT CACT GT 
GTGT ATA A ACT CCCCTATTACAG AT ATGTG - 3’ 
3’ - CACATATCTGTAATAGGGGAGTTTATACAC 
ACAGTGACGTGGGTCCGGGGCCAGGACGG - 3'

M inigene: 9AintGlo5'ss(+6)3'ss(-43); 9AintGlo5'ss(+20)3'ss(-43)

For 3ssmut(-43) 9AintGlo

Rev 3ssmut(-43) 9AintGlo

5' - GGCCACCCTCAACCGTCCTGGTGTGTGTGTGTCGT 
CACTGTGTGTATAAACTCCCCTATTACAGATATGTG - 3' 
5' - C AC AT ATCTGT AAT AG G G G AGTTTAT AC AC AC AG T G 
ACGACACACACACACCAGGACGGTTGAGGGTGGCC - 3'
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Minigene: 9AintGlo5'ss(+6)3'ss(-70); 9AintGlo5'ss(+20)3'ss(-70)

For 3ssmut(-70) 9AintGlo 

Rev 3ssmut(-70) 9AintGlo

5' - GGGCTCCTCGCCCGCCCGGACTATTTGGGAGT 
TGTTCTTTGTTCGTTTGTGTGTGTGTCGTCACTG- 3' 

5' - CAGTGACGACACACACACAAACGAACAAAGAAC 
AACTCCCAAATAGTCCGGGCGGGCGAGGAGCCC - 3'

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9A Del(-70/-43), 9A Del(-70/-54), 9A Del(-60/-48) and 9A Del(-55/-43) minigenes using 9A 

w t construct as a tem plate  and these primers:

M inigene: 9A Del(-70/-43)

For 9A Del(-70/-43) 

Rev 9A Del(-70/-43)

5' - C ATT AG G CC ACT CAT AACT CCA AT 
GTGTGTGTGTCGTCACTGTGTGTAT- 3' 
5' - ATACACACAGTGACGACACACACAC 
ATTGGAGTTATGAGTGGCCTAATG - 3'

M inigene: 9A Del(-70/-54)

For 9A Del(-70/-54)

Rev 9A Del(-70/-54)

M inigene: 9A Del(-60/-48)

5' - G C ATT AG G CC ACT CAT AACT CCA 
ACTTTGTTCGTTTGTGTGTGTGTCG- 3' 
5' - CGACACACACACAAACGAACAAA 

GTTGGAGTTATGAGTGGCCTAATGC- 3'

For 9A Del(-60/-48) 

Rev 9A Del(-60/-48)

5' - CT CAT AACT CC AACT ATTT G G G A 
TCGTTTGTGTGTGTGTCGTCACTG - 3' 
5' - CAGTGACGACACACACACAAACG 
ATCCCAAATAGTTGGAGTTATGAG - 3'

M inigene: 9A Del(-55/-43)

For 9A Del(-55/-43) 

Rev 9A Del(-55/-43)

5' - CAT AACT CCA ACT ATTTGG G AGTT 
GTTGTGTGTGTGTCGTCACTGTGTG - 3' 
5' - CACACAGTGACGACACACACACAA 
CAACTCCCAAATAGTTGGAGTTATG - 3'
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Minigene section 3.3.1.2.3.1

QuickChange site directed mutagenesis PCR technique has been used for generating the

9AintNFlinsertup minigene using 9AintNFl construct as a template and these primers:

Minigene: 9AintNFlinsertup

For 9A Insert (-60)(-43) 5' - GGTGTGAAGCATTAGACCGGTGTTGTTCTT
up spacer TGTTCGTTGAGATAGGGTTTTGCCATGTTG - 3'
Rev 9A Insert (-60)(-43) 5' - C A AC AT G G C A A A ACCCT AT CT C AACG A AC A
up spacer AAG A AC A AC ACCG GT CT AAT G CTT C AC ACC - 3'

Minigenes section 3.3.1.3

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9A ex5A 5'ss m ut and 9A ex5N 5'ss m ut minigenes using 9A w t construct as a tem plate  

and these primers:

Minigene: 9A ex5A 5'ss mut

For mod 5'ss 5A 
Rev mod 5'ss 5A

5' - CAATTTCAGTCATTCCAGGTAAGAGTGGGGTTAAACACCAG - 3' 
5' - CTGGTGTTTAACCCCACTCTTACCTGGAATGACTGAAATTG - 3'

M inigene: 9A ex5N 5'ss mut

For mod 5'ss 5N 
Rev mod 5'ss 5N

5' - CTGTAATCCCAG GTG AG AAGTAATTG GTG - 3' 
5' - CACCAATTACTTCTCACCTGGGATTACAG - 3'

Minigenes section 3.3.1.3.1

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

all the mutants o f the Fox binding sites using 9A w t construct as a tem pla te  o r one o f the 

minigene obtained already carrying a m utation in some Fox binding sites to  create 

d iffe ren t combinations, and these primers:
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Minigene: 9A FBSlm; 9A FBS1.2m; 9A FBS2.3m; 9A FBS1.2.3m; 9A AllFBSd.m

For 9DFM1 5' - TAATCAATTGCGTGGGTCTTTAGGATGAGGATGACTA - 3'
Rev 9DFM1 5' - CATCCTAAAGACCCACGCAATTGATTAAACTCAAAG- 3'
For 9DFM2 5' - GATCATAAATATCAGCGTGGGGATATTGCA - 3'
Rev 9DFM2 S' - TGCAATATCCCCACGCTGATATTTATGATC - 3'

For 9DM2.3
5' -TCATAAATATCAGCGTGGGGATATTG

CG TG AC ATT G TTTTTT AT T 1 TT T CTC AG C - 3'

Rev 9DM2.3
5' -TAAAAAACAATGTCACGCAATATCC
CCACGCTGATATTTATGATCTCCTTTC - 3’

ForIVFBS9A 5' - ATTGATTTGATATAATGCGTGACTTTCTAGGAAAGCTTGTG- 3'
RevIVFBS9A 5' - G CTTT CCT AG A A AGTC ACG C ATT AT AT C A A AT C A AT G ACCTT A AG - 3'

Minigenes section 3.3.2.1

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9APTB5Nmutl, 9APTB5Nmut2 and 9APTB5Nmut3 minigenes using 9A w t construct as a 

tem plate  and these primers:

M inigene: 9APTB5Nmutl

For 9A PTBbs ex 
m u t l in 5N 
Rev 9A PTBbs ex 
m u t l in 5N

5' - AACCT AGG CAAT GTTT C AG C ACTT CG AACTTT C AG AGTATT G A - 3' 

5' - T CAAT ACT CTG AAAGTT CG AAGT G CTG AAACATT G CCT AG GTT - 3'

M inigene: 9APTB5Nmut2

For 9A PTBbs ex 
m ut2 in 5N 
Rev 9A PTBbs ex 
m ut2 in 5N

Minigene: 9APTB5N

5' - AACCT AG G CAAT GTTTCAG CTTT G CG AACTTT CAG AGTATTG A - 3' 

5' - T CAAT ACTCTG AAAGTT CG CAAAG CT G AAACATT G CCTAG GTT - 3'

mut3

For 9A PTBbs ex 
mut3 in 5N 
Rev 9A PTBbs ex 
m ut3 in 5N

5' - AACCTAGGCAATGTTTCAGCATTGCGAACTTTCAGAGTATTGA - 3' 

5' - T C A AT ACTCTG A A AGTT CG C A AT G CTG A A AC ATT G CCTAG G TT - 3'
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Minigenes section 3.3.2.2

To create the m inigene 9APTBmut intdo5A, firs tly  tw o  Socll sites were introduced in the 

in tron ic regions downstream o f exon 5A through QuickChange site directed mutagenesis 

PCR technique, using the 9A w t as a tem plate , obtaining the 9A w t SacDown construct. 

A fte r Sacll digestion the entire in tronic region among the tw o  Sacll sites was removed and 

substituted w ith  a synthetic fragm ent (produced by GenScript) o f the same region but 

w ith  six putative strong PTB binding sites m utated (from TCTT to  TGTT), obtain ing 

9APTBmut intdo5A minigene (see section 6.15 fo r general protocol).

M inigene: 9A w t SacDown

For Sacll down 
Rev Sacll down 
For Sacll down2 
Rev Sacll down2

5' - GGGGTTAAACACCGCGGCTGACTTTGATC - 3'
5' - GATCAAAGTCAGCCGCGGTGTTTAACCCC - 3'

5' - GTT C ATTTT G AC AACCG CG G T ATT CTTT G AG A AT AT G - 3' 
5' - CAT ATT CT CAAAG AAT ACCG CG GTTGT CAAAAT G AAC - 3'

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9APTBmut intdo5N intdo5A, 9APTBmut ex5N intdo5N, 9APTBmut ex5N intdo5A and 

9AintG lo5,ss(+6)PTBmutex5N minigenes using respectively 9APTBmut intdo5A, 

9APTB5Nmut3, 9APTBmut intdo5A and 9AintGlo5'ss(+6) constructs as a tem pla te  and 

these primers:

Minigene: 9APTBmut intdoSN intdo5A

For mod 5N in t PTB bs 5' - TTTGGGAGTTGTTGTTTGTTCGTTTG - 3'
Rev mod 5N int PTB bs 5' - CAAACGAACAAACAACAACTCCCAAA - 3'

M inigene: 9APTBmut ex5N intdoSN

For mod 5N in t PTB bs 5' - TTTGGGAGTTGTTGTTTGTTCGTTTG - 3'
Rev mod 5N in t PTB bs 5' - CAAACGAACAAACAACAACTCCCAAA - 3'
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Minigene: 9APTBmut ex5N intdo5A

For 9A PTBbs ex 
mut3 in 5N 
Rev 9A PTBbs ex 
mut3 in 5N

5' - A ACCT AG G CAAT G TTT C AG C ATT G CG AACTTT C AG AG T ATT G A - 3' 

5' - T CAAT ACT CT G AAAGTT CG CAAT G CTG AAACATT G CCTAG GTT - 3'

M inigene: 9AintGlo(+6)PTBmutex5N

For 9A PTBbs ex 
m ut3 in 5N 
Rev 9A PTBbs ex 
m ut3 in 5N

5' - AACCT AG G CAAT GTTT C AG C ATT G CG AACTTT C AG AGT ATT G A - 3'

5' - T CAAT ACT CT G AAAGTT CG CAAT G CTG AAACATT G CCTAG GTT - 3'

Minigenes section 3.3.3

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

pTB5Amut3/ss minigene using pTB5Awt construct as a tem plate  and these primers:

M inigene: pTB5Amut3'ss

For M u t 3'ss 5A 5' - ACT CCCCT ATT ACAG GT AT GTG ACAG AGTTT GTG G - 3'
Rev M ut 3'ss 5A 5' - CC AC AAACT CTGTC ACAT ACCTGTAAT AG G G G AGT - 3 '_____

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9Amut4A minigene using 9A w t construct as a tem plate  and these primers:

M inigene: 9Amut4A

For mut4A 
downTG 
Rev mut4A 
downTG

5' - TGTGTGTCGTCACTGTGTGTTTTTTCTCCCCTATTACAGATATG - 3'

S' - CAT AT CTGT A AT AG G G G AG A A A A A AC AC AC AGT G ACG AC AC AC A - 3'
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Minigenes section 3.3.3.1

QuickChange site directed mutagenesis PCR technique has been used for generating the

pTB5AmutVD, pTB5AmutVD/Vcfe/, pTB5AmutV and pTB5AmutD minigenes using pTB5Awt

construct as a template and these primers:

Minigene: pTBSAmutVD

For mod VD 5A 5' - CTCCCCTATT AC AG AT ATTT A AC AG AGTTT GTGAACCTGGGC - 3'
Rev mod VD 5A 5' - G CCC AG GTT C AC AAACT CTGTTA AAT ATCTGT AAT AG G G G AG - 3'

M inigene: pTB5AmutVDA/de/

Fo7  mod VD Ndel 5A 5' - CT CCCCT ATT ACAG AT AT GTA AC AG AGTTT GTG AACCT G G G C - 3'
Rev mod VD Ndel 5A 5' - G C CC AG G TT C AC A A ACT CTG TT AC AT ATCTG T AAT AG G G G AG - 3'

Minigene: pTB5AmutV

For mod V Ndel5A 5' - CTCCCCTATTACAGATATGTAACAGAGTTTGTGGACCTGGGC - 3'
Rev mod V Ndel 5A 5' - G CCCAG GT CC AC AAACT CTGTTAC AT ATCTGT AAT AG G G G AG - 3'

M inigene: pTB5AmutD

For mod D Ndel 5A 
Rev mod D Ndel 5A

5' - CTCCCCT ATT ACAG AT AT GTG AC AG AGTTTGTG AACCT G G G C - 3' 
5' - G CCC AG GTTC AC A A ACT CTGT C AC AT AT CTGTA AT AG G G G AG - 3’

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9AmutVD/Vc/e/, 9AmutV and 9AmutD minigenes using 9A w t construct as a tem p la te  and 

these primers:

M inigene: 9AmutVDA/c/e/

For mod VD Ndel 5A 5' - CT CCCCT ATT ACAG AT ATGTAAC AG AGTTT GTG AACCT G G G C - 3'
Rev mod VD Ndel 5A 5' - GCCCAGGTTCACAAACTCTGTTACATATCTGTAATAGGGGAG - 3'
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Minigene: 9AmutV

For mod V Ndel5A 
Rev mod V Ndel 5A

5' - CTCCCCTATTACAGATATGTAACAGAGTTTGTGGACCTGGGC - 3' 
5' - GCCCAGGTCCACAAACTCTGTTACATATCTGTAATAGGGGAG - 3'

M inigene: 9AmutD

For mod D Ndel 5A 
Rev mod D Ndel 5A

5' - CTCCCCTATTACAG ATATGTG ACAG AGTTTGTGAACCTGGGC - 3' 
5' - GCCCAGGTTCACAAACTCTGTCACATATCTGTAATAGGGGAG - 3'

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9AintroESE5N and 9AintroESE5Nd.m. minigenes using 9A w t construct as a tem plate  and 

these primers:

M inigene: 9AintroESE5N

For introESE 5N 
Rev introESE 5N

5' - CTACAGGTATTTAACAGAATTTGTAGACCTAGGCAATGTT - 3' 
5' - AAC ATT G CCT AG GTCT ACAAATT CTGTTAAAT ACCTGTAG - 3'

M inigene: 9AintroESE5Nd.m.

For introESE 5Ndoum ut 
Rev introESE 5Ndoum ut

5' - CT ACAG GT ATTT A AC AG A ATTT GTG G ACCTAG G CAAT G TT - 3' 
5' - AACATT G CCT AG GTCCACAAATT CTGTTAAAT ACCTGTAG - 3'

Minigenes section 3.6

QuickChange site directed mutagenesis PCR technique has been used fo r generating the 

9AS211P, 9AF216S and 9AI228M minigenes using 9A w t construct as a tem p la te  and

these primers:

M inigene: 9AS211P

For 9A m ut S211P 5' - AAACCTAGGCAATGTTCCAGCTCTTCGAACTTTCAGAGTATTGA - 3'
Rev 9A m ut S211P 5' - T CAAT ACT CTG AAAGTT CG AAG AG CTGG AACATT G CCT AGGTTT - 3'
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Minigene: 9AF216S

For 9A m ut F216S 
Rev 9A m ut F216S

5' - TTC AG CT CTT CG A ACTT C C AG AG T ATT G AG AG CT - 3' 
5' - AG CTCT CAAT ACTCTG G A AG TTCG A AG AG CTG A A - 3'

M inigene: 9AI228M

For I228M 5N 

Rev I228M 5N

5' - TATTGAGAGCTTTGAAAACTATTTCTGT 
AATGCCAGGTAAGAAGTAATTGGTGTG - 3' 

5' - G AGTGG CCT AAT G CTT CACACCAAT 
T ACTT CTT ACCTG G C ATT AC AG A A AT A - 3'

6.16. Cell culture.

The cell lines used fo r the experiments were:

•  HeLa cells, an im m orta l cell line derived from  cervical cancer cells

•  Hek293, transform ed human em bryonic kidney cells

•  SH-SY5Y, a neuroblastome cell line

•  prim ary rat dorsal roo t ganglia.

6.17. Maintenance and analysis of cells in culture.

D ifferent cell lines were used during the entire project. HeLa, Hek293, SH-SY5Y and F l l  

cell lines used were cultured in Dulbecco's Mem w ith  Glutamax I (Gibco) (Dulbecco's 

m odified Eagle's medium w ith  glutam ine, sodium pyruvate, pyridoxine and 4.5 g /l 

glucose), supplemented w ith  10% foeta l bovine serum (FBS) (Euroclone) and 

antib io tic /an tim yco tic  (Sigma) according to  the m anufacturer's instructions.

For cell seeding, dishes containing a confluent monolayer o f cells were washed w ith  PBS 

solution, treated w ith  1-2 ml o f PBS/EDTA/trypsin solution (PBS conta in ing 0.04% w /v  

EDTA and 0.1% w /v  trypsin) at 37°C fo r 30 seconds or until cells were dislodged. Then
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cells were collected and trypsin was inactivated by adding DMEM in a volume 

corresponding to 3 times of trypsin volume used. Cells were pelleted by centrifugation for 

5 minutes at 1000 rpm at room temperature and then cells were resuspended in 10 ml of 

DMEM and 1 ml was used to seed cells in a new dish together with 9 ml of medium. A 

gentle mixture was done before incubation.

6.18. Rat dorsal root ganglia preparation.

Preparation of matrieel coated coverslips

The coverslips were incubated in 1M hydrochloric acid for a minimum of 4 hours to 

overnight 50-60°C and then were rinsed properly in sterile water. The coverslips were 

rinsed in 70% ethanol transferred to dishes and let dry. Poly-D-Lysine (PDL, Sigma) stock 

50 pL (stock 2 mg/mL) was diluted into 20-40 mL sterile water (final 5-10 pL/mL) and 0.5 

ml was added per coverslip. Then after three washes with sterile water the dishes were 

dried under the hood. 0.5 ml of the diluted matrigel (BD biosciences) was added per 

coverslip and after incubation at 37°C for 2-3 hours and one wash with water, the dishes 

were dried before adding the DRGs.

DRGs dissection from E15/E16 pregnant SD rat

Four petri dishes with MEM and a 15 ml Falcon tube with 13 ml MEM were prepared and 

kept on ice as much as possible when not under the dissecting microscope. After the 

removal of the embryos from the adult rat, they were decapitated and the organs and tail 

were removed. After cutting through the vertebrae the spinal cord intact was taken out 

by pulling from the rostral (neck) end and transferred to a fresh dish with MEM. The 

ganglia were then plucked off and collected into a 15 ml tube with fresh MEM.
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Dissociating DRG cultures

The papain digestion mix was prepared as follow: 1 ml MEM, 40 pi papain (Worthington), 

25 pi L-cysteine solution (final 0.24 mg/ml, Sigma) and 25 pi DNasel type IV (final 40 

pg/ml, Sigma). In the meanwhile DRGs were centrifuged at 1000 rpm, 5 minutes and then 

the excess media were removed such that total volume was less than 2 ml. Papain 

solution was filtered through 0.22 pM  syringe onto the 15 ml tube containing DRGs and, 

after an incubation of 50-70 minutes at 37°C in incubator, the media (DMEM (4.5 g/l 

glucose DMEM + 1% Pen/Strep+ 10% FBS) was added to tube to quench enzyme action. 

After a centrifugation at 1000 rpm for 5 minutes, medium was aspirated and the DRGs 

were resuspended and triturated with 1ml pipette tip or with 21 gauge needle to help 

break apart cells, that finally were counted and ready to seed.

Next morning- Flood wells & Culture for 21 days

The cells were kept in culture in DMEM + 10% FBS +1% Pen/Strep + NGF (Serotec) and the  

media was changed every 2-3 days and alternated with the addition of FdU (5-Fluoro-2'- 

deoxyuridine, Sigma) for a total of 3 FdU pulses.

6.19. Transfection and co-transfection.

Liposome-mediated transfections of 2.5 x 105 FleLa cells were performed using Effectene

reagent (Qiagen). 0.5 pg of construct DNA was mixed with 4 pi of Enhancer for each

transfection and the mixture was incubated at room temperature for 5 minutes to allow

the condensation of the DNA. Then 5 pi of Effectene were added to the mixture and an

incubation of 10 minutes has been performed. After the addition of 500 pi of complete

culture medium the mixture was added to the cells in 1.5 ml of the same medium and
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incubated at 37°C. After 12 hours later the cells were harvested. In co-transfection 

experiments, cells were transfected with 0.5 pg of the minigene of interest and 0.5 pg or 

1 pg of the overexpression plasmids. Each transfection experiment has been repeated five 

times.

6.20. RNA extraction.

To perform RNA extraction, cultured cells were washed with PBS once and then collected 

with Trizol reagent purchased from Invitrogen Inc.. RNA extraction was performed by 

adding chloroform to each sample and after 5 minutes incubation at room temperature, 

samples were centrifuged for 15 minutes at 12000 rpm at +4°C. The upper phase, 

containing RNA was transferred in a new tube and RNA was precipitated by adding an 

equal volume of isopropanol. After 10 minutes incubation at room temperature, a 10 

minutes centrifugation at 12000 rpm at +4°C was done. RNA pellet was therefore washed 

with 70% ethanol and then resuspended in ddH20.

6.21. mRNA analysis by RT-PCR.

6.21.1. cDNA synthesis.

For cDNA synthesis, 1 pg of total extracted RNA was mixed with random primers 

(Pharmacia) in a 20 pi final volume. RNA denaturation was carried out at 94°C for 5 

minutes and therefore 1 hour incubation at 37°C was performed by adding to the 

reaction mix IX  first strand buffer (Invitrogen), lOmM DTT, 5mM dNTPs each and the 

Moloney murine leukemia virus reverse transcriptase 100U (Invitrogen). For PCR analysis 

1 pi of cDNA was used.
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6.21.2. cDNA analysis.

PCR analysis o f cDNA was carried out fo r 35 cycles (95°C 5 m inutes, 95°C 30 seconds, 56°C 

1 m inute, 72°C 1 m inute, 72°C 7 minutes) in 50 pi o f final volum e using specific 

oligonucleotides described below case by case.

Oligonucleotides used for minigenes in pcDNA3 vector

T7
Rev9AXhol

5' - T AAT ACG ACTC ACT ATAG G G - 3'
5' - G G CG AG CTCG CCCT ATT CT A A AGT CTT CTT CACT CT C A - 3'

Oligonucleotides used for minigene in pTB vector

Alfa2,3
Rev9ApTBA

5' - C A ACTT C A ACT CCT AAG CC ACTG C - 3'
5' - TT C CAT ATG G A ATT CC AG C C A AG T AGT CAT CCT CAT - 3'

Oligonucleotides used for endogenous human SCN3A transcript

ForSCN3A
RevSCN3A

5' - C A ACTT C A ACT CCT AAG CC ACT G C - 3'
5' - TT CC AT ATGG AATT CCAG CCAAGTAGT CAT CCT CAT - 3'

Oligonucleotides used for endogenous rat/mouse SCN5A transcript

ForSCN5A
RevSCN5A

5' - C A ACTT C A ACT CCT AAG CC ACTG C - 3'
5' - TT CCAT AT G G AATT CCAG CCAAGTAGT CAT CCT CAT - 3'

Oligonucleotides used for endogenous human SCN8A transcript

ForSCN8A
RevSCN8A

Oligonucleotides usei

5' - C AACTT C A ACT CCT AAG CC ACT G C - 3'
5' - TT CCAT AT G G AATT CCAG CCAAGTAGT CAT CCT CAT - 3'

d for endogenous rat/mouse SCN9A transcript

ForSCN9A
RevSCN9A

5' - C A ACTT C A ACT CCT A AG CC ACT G C - 3' 
5' - TTTT C A ATT CTT CTT CACT CT C A - 3'
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The PCR products were digested 4 hours with Ndel and then separated by electrophoresis 

in 2% agarose gels in the presence of ethidium bromide. The quantification of band 

intensities was performed using the lmageJ64 software. Each product was quantified as a 

percentage of the total of double inclusion, 5N inclusion, double skipping and 5A 

inclusion. Alternatively, another approach could be used to quantify the splicing pattern, 

that consists in performing a radioactive PCR. The digested products should be analyzed 

on a 5% native polyacrylamide gel, visualized by autoradiography and then quantified via 

phosphorimager.

6.22. Small interfering RNA (siRNA) transfections.

The siRNA sequences used for depletion are:

Human hnRNPAl 5' - CAGCUGAGGAAGCUCUUCA - 3' (Sigma)

Human hnRNPH 5' - GGAAAUAGCUGAAAAGGCU - 3' (Sigma)

Human PTB P I 5' - AACUUCCAUCAUUCCAGAGAA - 3' (Sigma)

Human nPTB N1 5' - GAGAGGAUCUGACGAACUA - 37 (Sigma)

Human TDP-43 5' - GCAAAGCCAAGAUGAGCCU - 3' (Sigma)

Human/Mouse ETR3 5' - UCGGCAUGAAACGCUUGAA - 3' (Sigma)

Luciferase 5' - GCCAUUCUAUCCUCUAGAGGAUG - 3' (Darmacon)

In HeLa cells:

siRNA transfections were performed in cells using Oligofectamine Reagent (Invitrogen) 

according to the manufactures instructions. Briefly, 40-50% confluent 35 mm well plates 

were prepared. 3 pJ of 40 p,M siRNA were mixed with 175 pi of Opti-MEM medium and, 

separately, 5 pi Oligofectamine with 15 pi of Opti-MEM medium.
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The samples were incubated for 7 min at room temperature. Then the Oligofectamine 

mix was added to precomplexed siRNA mix and incubated for 20 min at room 

temperature. Finally, the mix was dropped onto the cells maintained in 800pl of Opti- 

MEM without antibiotics and FBS. After 24h, a second siRNA transfection was performed 

as described above, followed by the transfection with the different minigenes.

The following day, cells were harvested for RNA extractions, RT-PCR analyses and 

Western blots. Particularly, western blot was performed in order to check the depletion 

of each protein.

In SH-SY5Y cells:

siRNA transfections were performed in cells using HiPerFect Reagent (Qiagen) according 

to the manufactures instructions. In the first day of silencing, 4 pi of 40 pM  siRNA were 

mixed with 94 pi of Opti-MEM medium. After 5 min at room temperature, 6 pi HiPerFect 

were added and incubated for 10 min at room temperature. In the meanwhile about 

500,000 cells were seeded in complete DMEM. Passed the 10 min of incubation, the mix 

was added drop by drop onto the cells. After the second day of rest, the third day the 

cells were washed once with PBS solution and then they were incubated with 500 pi of 

PBS/EDTA/trypsin solution (PBS containing 0.04% w /v  EDTA and 0.1% w /v  trypsin) at 37°C 

for 3 min or until cells were dislodged. In the meanwhile 4 pi of 40 pM  siRNA were mixed 

with 94 pi of Opti-MEM medium and after 5 min at room temperature, 6 pi HiPerFect 

were added and incubated for 10 min at room temperature.Then cells were collected and 

trypsin was inactivated by adding DMEM in a volume corresponding to 3 times of trypsin 

volume used. Cells were pelleted by centrifugation for 5 minutes at 1000 rpm at room 

temperature and then cells were resuspended in 2 ml of DMEM and they were seeded. 

Finally the mix was added drop by drop onto the cells.
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The following day, cells were harvested for RNA extractions, RT-PCR analyses and 

Western blots. Particularly, western blot was performed in order to check the depletion 

of each protein.

6.23. Antisense derivative of U7 small nuclear RNA.

The U7 snRNP is a ribonucleoprotein complex specialized in 3' end processing of histone 

pre-mRNA. It contains a sequence complementary to a conserved histone downstream 

element located 3' of the histone pre-mRNA cleavage site. The Sm binding sequence of 

U7 snRNA deviates from the consensus 5'-(A/G)AUUU(G/U)UG(G/A)-3' found in 

spliceosomal snRNAs. It associates with five Sm proteins also found in spliceosomal 

snRNPs and two U7-specific Sm-like proteins, termed LsmlO and Lsm ll, which are 

essential for histone RNA processing. The U7 Sm OPT plasmid is obtained converting the 

U7-specific Sm binding sequence to the consensus found in spliceosomal snRNAs, which 

binds all seven Sm proteins found in spliceosomal snRNAs. This particle can no longer 

induce the cleavage of the histone pre-mRNAs, but can still bind to them by RNA:RNA 

base pairing. Another consequence is that the U7 Sm OPT RNA accumulates as nuclear 

snRNP about three times more efficiently than its wild type counterpart. The natural 

sequence binding to histone pre-mRNA can be exchanged with one directed against the 

interested target, converting the U7 Sm OPT into a sequence-specific competitor for 

components of the splicing machinery or make it bind any RNA molecule found in the 

nucleoplasm.

To introduce the antisense sequence against the ESE present in exon 5A, QuickChange 

site directed mutagenesis PCR technique has been used for generating the U7ese5A 

plasmid (section 33.3.3)  using U7 Sm OPT original plasmid as a template and these 

primers:
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Oligonucleotides used for U7ese5A

FOR mutagenic Primer U7

REV mutagenic Primer U7

5' -  G CT CG CT AC AG AG G CCTTT CCG C AAG AC ATT G CCC 
AG GT CC AC A A AC AATTTTT G G AG C AG GTTTT CTG AC - 3' 
5' - GTC AG AAAACCT G CT CC AAAAATT GTTT GT G G ACCT 
GGGCAATGTCTTGCGGAAAGGCCTCTGTAGCGAGC - 3'

The co-transfection experim ents w ith  the 9A w t minigene are perform ed as described in

section 6.18.

6.24. Morpholino and Vivo-Morpholino treatments.

The M orpholino and the V ivo-M orpholino were purchased from  Gene Tool, LLC. The 

M orpholino was resuspended in sterile w ater to  obtain a 500 (LiM oligo stock. The aliquots 

were stored at -20°C. The V ivo-M orpholino arrived in solution ready fo r the  injections.

For best delivery o f the M orpholino, cells should be 80% confluent. A fte r replacing the 

medium w ith  fresh complete DMEM, M orpholino stock solution was added in d iffe ren t 

am ount to  reach the final concentration o f 1, 5 and 10 pM and swirl well to  mix. Then 6 pi 

o f Endo-Porter were added fo r every 1ml media and im m ediately swirl to  mix. This 

provided a final Endo-Porter concentration o f 6 pM. Cells can be collected and assayed as 

soon as 16 hours a fte r trea tm en t and Endo-Porter can be le ft in the medium up to  72 

hours w ith o u t damage to  your cells.

For a typical 20 g mouse, the V ivo-M orpholino was d irectly injected at 12.5 m g/kg in the  

le ft ventricle o f the heart. The organ was collected a fte r 48 hours a fte r tre a tm e n t and 

RNA extraction was perform ed fo llow ing the protocol used fo r the  cells. Regarding the 

systemic injection protocols, the mice were treated via in tra jugular th ree  tim es w ith  the 

V ivo-M orpholino at 10 mg/kg fo r three consecutive days. At the fou rth  day the  organs 

were collected and analysed.
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6.25. Protein extraction.

For cellular protein analysis, confluent cultured cells were harvested and lysed with lysis 

buffer (15mM Hepes pH=7.5, 250mM NaCI, 0.5% NP-40, 10% Glycerol), unless differently 

specified, supplemented with protease inhibitor (Roche cocktail) and phosphatases 

inhibitors (lOm M NaF, Im M  P-glycerolphosphate, Im M  Na3V 0 4). Cells were sonicated 

with 10 pulses (30% of pulse) at 50% of power and then centrifuged at 700xg for 10 

minutes at +4°C. Pellet was discarded and total cell lysate was quantified by Bradford 

analysis using Biorad reagent (Bio-Rad Laboratories GmbH). For protein analysis, 50 jig of 

lysate were used to run an acrylamide gel.

6.26. SDS-page gel electrophoresis.

Protein samples were mixed with protein sample buffer 5X at a final concentration of IX . 

SDS-PAGE was performed in vertical gels with the appropriate percentage of 

polyacrylamide (37.5:1 acrylamide-bis-acrylamide, ProtoGel, National Diagnostic), 

depending on the case. The gels were run at 25-30 mA in IX  SDS running buffer. After 

running gels were stained with Fixing (10% EtOH, 7% Acetic Acid in H20  for 1 hour at 

room temperature) and Coomassie Blue solution (Ammonium sulfate 100 g/l, Phosphoric 

acid 85% 70 ml/l, Coomassie G-250 (SERVA) 2.5 g/l, MetOH 200 ml, H20  up to II)  or 

western blot was performed.

6.27. Western blot and antibodies.

SDS-PAGE gels were blotted on standard nitrocellulose membrane (Whatman PROTRAN)

and incubated in blocking solution (PBS, 0.1% Tween, 5% milk) over night. Primary

antibodies were incubated with the membrane in PBS 0.1% Tween, 2% milk for 2 hours.

Afterwards, the membrane was washed three times in washing solution (PBS, 0.1%
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Tween), incubated with the proper HRP-secondary antibodies (anti-mouse or anti-rabbit, 

Dako) in PBS 0.1% Tween, 2% milk, for 1 hour, washed three times (PBS, 0.1% Tween) 

and stained with ECL reagent (Thermo Scientific). Finally, an autoradiography was taken 

on Kodak Biomax XAR films. I used Roche western blocking solution in the place of the 

milk containing blocking solution and also to prepare all the SR antibodies.

The primary antibodies used in this study are:

•  a-hnRNPAl: donated by E. Buratti

•  a-hnRNPA2/Bl: donated by E. Buratti

•  a-hnRNPH: donated by E. Buratti

•  a-PTB: donated by C.W.J Smith

•  a-nPTB: donated by A. Willis

•  a -lH 2  (ETR3): donated by T. Cooper

•  a-ASF/SF2: Invitrogen

•  a -lH 4  (SRp75, SRp55, SRp40, SRp30a/b and SRp20): Invitrogen

•  a-flag epitope: Sigma

•  a-TDP-43: donated by E. Buratti

•  a-Tra2P: Abeam

•  a-p84: Abeam

6.28. RNA preparation for pull down analysis.

Starting from 1 pg of DNA (annealed oligos), it was transcribed using T7 RNA Polymerase 

(Stratagene). The mix contained 8 pi of transcription buffer 5X (Stratagene), 4 pi of NTPs 

15mM, 4 pi of DTT lOOmM and 1 pi of T7 Polymerase (Stratagene) and FI2 O to reach the 

final volume of 40 pi. For the pull down I prepared three times mix of transcription (final



volume 120 \i\). Following incubation for 2 h at 37 °C, DNase treatm ent was performed 

incubated the mix for 15 min at 37°C. Then RNA was purified. 380 pi of water were added 

to reach the final volume of 500 pi. 500 pi of acid phenol were added and the sample was 

mixed vigorously using vortex for 10 sec, followed by a centrifugation at 13000 rpm for 5 

min at 4°C. After collecting the upper phase, added 500 pi of chloroform, vortex and a 

centrifugation at 13000 rpm, 5 min at 4°C was performed. Then the RNA was precipitated 

using 1 ml of EtOH 100% and 50 pi of NaOAc 3M pH 5.2, keeping the sample in dry ice for 

20 min. After a centrifugation at 13000 rpm for 10 min at 4°C the supernatant was 

removed and one wash with EtOH 70% was performed. The RNA was finally resuspended 

in 40 pi of sterile water.

6.29. Pull down analysis.

To each sample, 360 pi of a 5 mM Sodium m-Periodate (Sigma) solution in 0.1 mM NaOAc 

pH=5.0 were added. This 400 pi reaction mix was incubated for 1 hour in the dark (each 

test tube wrapped in aluminium foil) at room temperature in a rotator wheel. Each RNA 

was then ethanol precipitated according to standard protocols, washed once with EtOH 

70%, and resuspended in 100 pi of 0.1 M NaOAC, pH 5.0. In the meantime, 100 pi of 

adipic acid dehydrazide agarose bead 50% slurry (Sigma) for each RNA sample to be 

conjugated were taken and placed in a 15 ml tube. The beads was washed two times with 

10 ml of 0.1 M NaOAc pH 5.0. Each time spinning down at 3000 rpm for 5 minutes in a 

clinical centrifuge. After the final wash, the beads pellet was resuspended calculated 300 

pi of 0,1 M NaOAc pH= 5.0 for each RNA sample. After mixing well, 300 pi aliquots were 

added to the 100 pi of periodate-treated RNA. Then the mix was incubate overnight in the 

dark at 4°C on a rotator (each test tube wrapped in aluminium foil).
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Pull down the beads incubated overnight were then centrifuged at 4000 rpm for 5 min. 

The supernatant was threw out and the RNA loaded beads were washed twice with NaCI 

2M , then, spin down at 4000 rpm for 5 min. The beads were washed three times with 1.0 

ml of SolD IX  (20 mM Hepes pH=7.9, 100 mM KCI, 0.2 mM EDTA pH=8.0, 100 mM DTT, 

6% v/v Glycerol), spinning down at 4000 rpm for 5 min and discarding supernatant each 

time. During the last spin down, 500 pi mix for each RNA sample was prepared: 50 pi SolD 

10X (200 mM Hepes pH=7.9, 2 mM EDTA pH=8.0, 1M DTT, 60% v/v Glycerol), 50 pi KCI 

1M, 100 pi NE (approx. 10-15 pg/pl), 300 pi H20 , Heparin (200 pg/pl stock) to desired 

final concentration (0.5-2.5-5.0 pg/pl of the final volume). 500 pi Nuclear Extract mix 

were added to the individual samples and mixed gently by manually shaking the tube. The 

samples were incubated on a rotor for 30 min at room temperature.

After a centrifugation at 4000 rpm the supernatant was removed as much as possible. 

The beads were washed 4 times with 1.5 ml of SolD IX  by incubating them each time for 

5 min on a rotating wheel at room temperature, each time spinning them down with a 

centrifugation at 4000 rpm to remove the supernatant. Finally 50 pi of SDS loading buffer 

were added and after denaturation the samples can be loaded on a SDS-PAGE gel.

6.30. In gel digestion and peptide extraction.

In order to address protein identity from SDS-PAGE, bands were cut out from the gel and

reduced into small pieces of about 1mm3. Gel pieces were washed with 500pl of lOOmM

filtered EDTA and then shaken for 15 minutes at room temperature. Gel pieces were

therefore dehydrated by adding about 50pl of filtered 100% MetOH and mixed for 5

minutes at room temperature. After removal of 100% MetOH, gel was rehydrated by

adding 90pl of 30% MetOH to cover all the pieces and left at room temperature for 5

minutes shaking. At this point, 30% MetOH was removed and gel washed twice with 1ml
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of ultra pure water for 10 minutes on a mixer. In the next step gel pieces were washed 4- 

6 times for 20-30 minutes each with 1ml of 50% MetOH containing 20mM TEAB. 

Afterwards, a 10 minutes wash with 1ml ultra pure water was performed and gels were 

finally dried in a SpeedVac for 15-30 minutes at medium temperature. An overnight 

incubation at 37°C was then carried out by adding to the gel pieces a trypsin solution 

made up by diluting 2|il Trypsin 0,5pg/ml in 98pl 20mM TEAB. The day after, the 

supernatants were removed and put in a new tube. Then, a little amount of 5% formic 

acid was added just to cover gel pieces and perform sonication extraction. Both the 

supernatants were finally combined and completely dried in a SpeedVac. Protein 

extracted were identified in Myers' Laboratory through mass spectrometry analysis.
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