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Abstract

Many of the molecules in interstellar space are in the solid state, in so-called interstellar 

ices. The research in this thesis is focused around two key astronomical questions; 

How is ice distributed in star forming regions? How is ice affected by -  or affecting -  

star formation processes? I provide answers to these questions through the analysis of 

submillimeter and near-infrared observations,

The observations analysed in this thesis consist of (partially published) archival 

data acquired mainly with the AKARI and Herschel space telescopes, and the ground- 

based ESO/VLT. To facilitate the reduction and analysis of some of this data two major 

software packages (ARF2 and O m n if it ) were created with the P y t h o n  program

ming language The operation of both packages is fully documented in the thesis ap

pendix.

The study of methanol ice prevalence in star-forming regions found that methanol 

ice can be found towards many more lines of sight than previously reported, and that its 

abundance relative to water ice can vary between a few to ~40%. I also confirm that 

methanol very likely exists mixed in a water-rich ice component, a result consistent 

with our current understanding of methanol ice formation.

Proof was found of high-temperature chemistry forming water in the warm post

shock gas of YSOs. In this same region it was found that up to 99% of the methanol is 

being destroyed as it is sputtered from the surfaces of dust grains into the gas phase.

A novel analysis technique of slitless AKARI near-infrared spectroscopy yields 

an unprecedented number of water ice column density estimates towards background 

star lines of sight covering 1 2  separate 1 0 ' x 1 0 ' fields of view in as many molecular 

clouds. A moderate correlation is found between water ice column density and dust 

optical depth at 250 microns, with the correlation potentially varying from cloud to 

cloud.
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Chapter 1

Introduction

In the interstellar medium -the space between the stars- a significant fraction of mo

lecules are formed in the solid-state, on and in interstellar ices. Given that these 

molecules are used as both the tracers and probes of the prevailing physical condi

tions in the interstellar medium, understanding the origin, distribution, and evolution 

of interstellar ices is a vital component in our understanding of the star and planet 

formation process.

This thesis addresses these key astronomical questions:

How is ice distributed in star forming regions?

How is ice affected by or affecting star formation processes?

1.1 The interstellar medium

The interstellar medium (ISM) is the matter that exists between the stars, both in the 

temporal and the spatial sense. As is illustrated in Figure 1.1, material in the Universe 

follows the constant cycle of interstellar material accreting together to form new stars. 

At the end of their lives, these stars eject much of their surface material into interstellar 

space, which then eventually repeats the cycle. Consequently the ISM has very similar 

relative abundances of elements as the stars from which it originates; by mass the gas in 

the ISM is composed of about 70% hydrogen (both atomic and molecular), 28% helium
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PROTOSTAR 
WITH OUTFLOW

DENSE
CLOUD

DIFFUSE
CLOUD

Figure 1.1: The stellar life cycle, where material is cycled between star systems and 
the interstellar medium. Figure reproduced from van Dishoeck (2014).

with the rest being heavier elements, which are often called "metals" in astronomers’ 

nomenclature.

As is summarised in Table 1.1, the physical conditions in the ISM vary across a 

large range of densities and temperatures. The number density of the gas can range 

between 10~4 particles cm-3 and 108 particles cm-3 and the temperature between 10 

and 106 K (e.g. van Dishoeck, 2014), with the low-density and high-temperature gas 

being classified as part of the diffuse ISM, while the high-density and low-temperature 

material is concentrated into interstellar clouds. The diffuse ISM consists mostly of 

atomic or ionised gas, while interstellar clouds are dominated by molecular material, 

both in the gas phase and even in the solid state, frozen on top of grains of dust.

Regardless of where it can be found, almost all the matter in the ISM will ulti

mately share the same fate: to be incorporated into the process of the creation of new 

stars. At some point, in a sufficiently dense and massive region of an interstellar cloud,
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Table 1.1: A broad categorisation of the components of the ISM. This thesis predomi
nantly concerns itself with molecular cloud regions. Reproduced from Ferriere (2001, 
and references therein)_________________________

Component Typical temperature
[K]

Typical density 
[particles/cm3]

Molecular 1 0 - 2 0 102 - 1 0 6
Cold atomic 5 0 - 1 0 0 2 0 - 5 0
Warm atomic 6 0 0 0 -1 0 0 0 0 0 . 2 - 0 . 5
Warm ionized ~  8000 0 . 2 - 0 . 5
Hot ionized ~  106 ~  0.0065

the delicate balance between the forces that try to make the cloud break apart (such as 

gas pressure, turbulence and magnetic forces) and forces that try to make it collapse 

(gravity) will be tipped on the side of collapse by e.g. the shock wave coming from 

a nearby supernova or through random statistical fluctuations in local density. The 

details (e.g. Ward-Thompson and Whitworth, 2011) of how the collapse happens and 

what the physical conditions of the cloud are during the collapse define the type of star 

system produced at the end of it. Low-mass stars (stars with a mass lower than ~  3 

times the mass of the Sun, M0 ), which are extensively discussed in this thesis, tend 

to result from a molecular cloud fragmenting -through statistical density fluctuations- 

into clumps whose mass and size are defined by the Jeans mass and Jeans length; mea

sures of the smallest mass and and size of clump in the ISM which can condense into a 

star through self-gravity. High-mass stars (stars with a mass higher than ~  3M0 ) form 

in very dense and very massive dark molecular clouds, although the exact formation 

process is still not fully understood. The formation mechanism of star systems with 

multiple stars is similarly an open question, but is believed to be related to further frag

mentation (through e.g. high turbulence) of the collapsing pre-stellar core. This thesis 

does not concern itself with high-mass stars or multiple systems, however, and thus 

they will not be discussed further.

Regardless of the type of star being formed, its birth is always marked by the be

ginning of nuclear fusion at the centre of the collapsing cloud core. Even after this the 

collapse of the surrounding material continues, but a significant fraction will not end 

up in the star itself but is either accreted into a protoplanetary disc around the star, or
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10 Iv lOjOflO U

| t = 1Q(’-10>

★

________I
100 AU

1 t = 10-j-lU'r>71

i____________________________ i

10,000 AI

Figure 1.2: The process of star formation, (a) Molecular cores form within dense 
clumpy regions of the ISM, incorporating material originally in the diffuse ISM. (b) 
Core collapse is triggered by the density of the core becoming so high that gravity 
overcomes the forces preventing collapse, (c) A Young Stellar Object (YSO) forms in 
the center of the collapsing core while material is falling from the surrounding cloud 
into a circumstellar disc; bipolar outflows from the newly forming star sweep and com
press material out of the inflated disk edges, compressing the disc in one dimension, 
(d) The star is fully formed, as is the circumstellar disc. The outflows have ceased, (e) 
Protoplanets start forming in the protoplanetary disc, cleaning their orbits of material, 
(f) After most of the material in the disc is incorporated into planets, a planetary system 
is established around the star. Figure reproduced from Visser (2009).

is launched back into the ISM through bipolar outflows along the rotation axis of the 

system. The protoplanetary disc is formed through the redistribution of the angular 

momentum of the material in the rotating protostellar core in such a way that a thick 

disc of matter is formed around the rotation axis of the system. The exact mecha

nism of how this redistribution happens is poorly understood, but the flow of material 

is believed to be guided through a combination of magnetic and gravitational torques 

combined with the viscosity of the accreting material. The exact mechanisms driving 

the outflows around protostars are similarly not well understood, but the outflowing 

material is believed to have originated from infalling material in the protoplanetary



1.2. Chemistry in the interstellar medium 5

disc being guided by the magnetic field lines of the star into its poles, from where it is 

launched at very high velocities (tens to hundreds of km/s) away from the system. This 

material often sweeps along with it material from the surrounding ISM, cleaning the 

immediate surroundings of the young stellar system of its disc of material, and forming 

distinctive outflow cones around the protostar. At later stages in the life of the young 

stellar object, the protoplanetary disc around it will fragment, and condense and aggre

gate to form planetesimals which will eventually clump together to form a planetary 

system around the young star. This physical process of star formation is summarised 

in Figure 1.2.

Of particular interest for this thesis are Figure 1.2 parts (c) and (d), which comprise 

the "young stellar object" (YSO) phases of the early life of the star. YSOs are classified 

as classes 0, 1, and 2 based on the shape of the spectral energy distribution (SED) 

of the object. Class 0 and 1 stages are best represented by Figure 1.2 (c), the key 

difference between the two stages being that class 0 YSOs are still heavily embedded 

and obscured within the core envelope, with almost no flattening of the disk; in class 

1 objects the outflow cavity is significantly cleared, making the protostellar emission 

more prominent in the SED of the object. The transition to class 2 YSOs occurs in 

Figure 1.2 (d), once the circumstellar envelope has dissipated. The research and results 

presented in Chapters 3 ,4 , and 5 of this thesis span these evolutionary stages of YSOs, 

focused particularly in Chapter 4 on the interactions between the bipolar jets and the 

circumstellar envelope material. Chapters 3 and 5, whilst touching on YSO regions 

also reach back to earlier evolutionary stages, namely pre-stellar cores. These are 

illustrated in Figure 1.2 (a) and (b), and are sites of rich chemistry, primarily because 

of the high densities found there (see Table 1.1). It is during these stages in particular 

that the chemistry occurs which forms interstellar ices, and it is this broader chemistry 

that I outline in the next section.
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Table 1.2: Molecules found in the ISM as of March 2Q15.(a)’(b)
2 atoms 3 atoms 4 atoms 5 atoms 6-7 atoms 8+ atoms
h 2 C3* c — C3H C5* c 5h c h 3c 3n
A1F C2H i - c 3h c 4h i - h 2c4 h c (o )o c h 3
A1C1 C20 c 3n C4Si C2H4* c h 3c o o h
c2** C2S C30 i - c 3h 2 c h 3c n c7h
CH CH2 C3S c — C3H2 c h 3n c c 6h 2
CH+ HCN C2H2* h 2c c n c h 3o h c h 2o h c h o
CN HCO n h 3 ca** c h 3sh i - h c 6h *
CO HCO+ HCCN h c 3n h c 3n h + c h 2c h c h o ?
CO+ HCS+ HCNH+ h c 2n c h c 2c h o c h 2c c h c n
CP HOC+ HNCO HCOOH n h 2c h o h 2n c h 2cn
SiC h 2o HNCS h 2c n h c5n c h 3c h n h
HC1 h 2s HOCO+ h 2c 2o i - h c 4h * c h 3c4h
KC1 HNC h 2co h 2n c n i - h c 4n c h 3c h 2cn
NH HNO h 2c n h n c 3 c — H2C30 (c h 3)2o
NO MgCN h 2cs SiH4* h 2c c n h ? c h 3c h 2o h
NS MgNC h 3o + h 2c o h + c 5n - h c 7n
NaCl n 2h + c — SiC3 c4h - HNCHCN c 8h
OH n 2o CH3* HC(0)CN c6h CH3C(0)NH2
PN NaCN c 3n - HNCNH c h 2c h c n c 8h -
SO OCS p h 3 c h 3o c h 3c2h c 3h 6
SO+ so2 HCNO NH+ h c 5n c h 3c h 2s h ?
SiN c — SiC2 HOCN H2NCO+? c h 3c h o c h 3c 5n
SiO co2* HSCN c h 3n h 2 (c h 3)2co
SiS n h 2 h 2o 2 c — C2H40 (CH2OH)2
CS h 3+* c 3h + h 2c c h o h c h 3c h 2ch o
HF SiCN HMgNC c6h - h c 9n
HD A1NC c h 3c 6h
FeO? SiNC c2h 5o c h o
o2 HCP c h 3o c (o )c h 3
CF+ CCP c — C6H6*
SiH? AlOH c2h 5o c h 3?
PO h 2o + n — C3H7CN
AlO h 2ci+ i — C3H7CN
OH+ KCN HCnN
CN~ FeCN C60*
SH+ h o 2 C.70*
SH Ti02
HC1+ C2N
TiO
ArH+
NO+?
(a)List created based on h ttp : / / www.astro .uni-koeln. de/cdms/molecules.

All molecules have been detected (also) by rotational spectroscopy in the radio frequency to 
far-infrared regions unless indicated otherwise. * indicates molecules that have been detected 
only by their ro-vibrational spectrum, ** those detected by electronic spectroscopy only. 
Tentative and uncertain detections are indicated by "?".

http://www.astro
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1.2 Chemistry in the interstellar medium

While nuclear fusion processes in the hearts of stars and the addition of fission pro

cesses in supernovae are responsible for the creation of the elemental richness of the 

universe, it is in chemical processes largely inside of molecular clouds where the ma

jority of the 180 or more molecules found in the ISM are formed (as of March 2015; 

see Table 1.2). The first one of these to be detected in the ISM was CH, which was 

originally observed towards £ Ophiuchi by Adams (1941).

a) radiative association reverse reaction - photo dissociation

® +  (D _ ( a b )  +  hv°r +  (a b )  _ > ( § ) + ( £ >

b) three-body reactions reverse reaction -  collisional dissociation

®  +  (D + @  — >  ( a b )  + <g) or <g)_|_ ( a b )  — >  @1+ (D+ (A)

c) neutral exchanges

( a b ) +  ®  —»  ©  +  ®

d) ion molecule reactions

( a b )  +  ®  — » < 3 ^  +  ®  ■

or charge transfer reactions

@  +  ®  — >  © + ®

e) recombination reactions

el) radiative recombination (atomic)

© +  0  — > a )+  hv
e2) radiative association

£ T + ®  +  ® ) — +

£ ~ + ® - » ©
e3) dissociative recombination (molecular)

( a b )  +  £ ~ — >  ® + ®

©  +  £ T — »  ®  +

f) negative ion reactions

®  +  (S) ---^  (v +  0

® +  ®  —^  ( a b )  +  0

g) condensation reactions 

( a b  ) (gas phase)---^  ( AB) (solid)

Figure 1.3: The chemical reactions dominating the gas-phase ISM. Figure adapted 
from Fraser, McCoustra, and Williams (2002).

The key reactions in the gas-phase ISM -leading to the formation of most of these 

180+ molecules and ions- are summarised in Figure 1.3 Even in the relatively dense
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environment of molecular clouds (in comparison with the diffuse ISM), number den

sities of the ISM gas are diminutive when compared with the number densities of e.g. 

Earth’s atmosphere or even the best human-constructed vacuums. The chemistry in the 

gaseous ISM happens exclusively through two-body interactions, since the low densi

ties make multi-body collisions -o f  the type shown in Figure 1.3b- vanishingly rare. 

Consequently, without a third body available to carry away excess energy from the re

action site, reactions are dominated by exothermic, barrierless processes, such as those 

shown in Figures 1.3d to 1.3f. Such reactions dominate in the cold (T < 200 K) ISM 

gas. The synergy between the gas and solid phase begins with the condensation (or 

freeze-out) processes summarised in Figure 1.3g.

The three of most abundant elements in the Universe, hydrogen (H) carbon (C) and 

oxygen (O), dominate the reactive chemistry of the ISM. Helium (He) is abundant, 

but as a noble gas, mostly unreactive. Of the thousands of reactions leading to the 

formation of hundreds of molecules in the ISM, of greatest interest to this thesis are 

the formation of water (H2 O), carbon monoxide (CO), and methanol (CH3 OH). The 

first two of these can be formed in the interstellar gas.

The formation of CO (carbon monoxide) -a  molecule which is ubiquitous in dense 

ISM environments- occurs exclusively in the gas phase. One of the dominant reaction 

schemes (e.g. Langer, 1976) of producing CO relies on the presence of C+, which is in 

molecular clouds produced mostly through cosmic ray ionization of C. The formation 

of CO from C+ relies on repeated hydrogenation to form CH3 + :

C (1.1)

C H j can then follow a reaction chain starting with oxygen, followed by a dissociative 

recombination reaction:
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H3" is formed through cosmic ray ionization:

(1.3)

The H j  generated by this process plays a vital role not just in the formation of CO but 

drives a significant number of chemical reactions in dense molecular cores, particular 

the ion-molecule and deuteration chemistries. Yet another reaction scheme for forming 

CO is for C+ to react with O to produce CO+ . This can then react (e.g. Petuchowski 

et al., 1989) with a stray electron to either dissociate into C and O, or sometimes 

recombine into CO.

In warmer gas (T > 200K) endothermic reactions such as the gas-phase formation 

of water (e.g. Bergin, Neufeld, and Melnick, 1999; Draine, Roberge, and Dalgamo, 

1983; Glassgold, Meijerink, and Najita, 2009; Hollenbach and McKee, 1989; Tielens, 

2005, also see Chapter 4) are made possible:

However, water can also be found in cold dense ISM regions, where its origins 

are certainly not via reactions in hot gas, but surface chemistry on interstellar dust. 

The first solid-state detections of water actually pre-date its first gas-phase detections. 

Before Pilbratt et al. (2010) found gas-phase water with the Herschel Space Telescope, 

only upper limits for its abundances had been defined towards molecular cores with 

the Submillimeter Wave Astronomy Satellite (SWAS; Bergin and Snell, 2002) and the 

Odin satellite (Klotz et al., 2008). Over two decades prior to either of these studies, 

Gillett and Forrest (1973) had found frozen water in the dusty ISM.

1.3 Interstellar dust and ice

The ISM contains a small amount (~1%  of total mass) of dust in addition to the gas. 

This dust consists of tiny chunks -from  a few nanometres to a few microns (Williams

O OH %  H20 . (1.4)
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a
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\
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•

Figure 1.4: The three main mechanisms by which atoms can encounter each other 
on the surfaces of dust grains when grain-surface chemistry happens. In all cases 
the green atom adsorbs onto the grain first, (a) Langmuir-Hinshelwood. The second 
(purple) atom adsorbs in close proximity to the site occupied by the green atom. The 
two atoms diffuse on the surface until eventually meeting each other, (b) Eley-Rideal. 
The purple atom collides with the green atom, (c) Harris-Kasemo or "hot atom" effect. 
The purple atom lands on a site well-separated from the green atom with significant 
excess energy and is not accommodated to the surface. It then hops along the surface 
several times before encountering the green atom and forming a new molecule. Figure 
reproduced from Noble (2011).

and Herbst, 2002)- of mostly silicaceous and carbonaceous material often coated in a 

thin mantle of ice.

Despite its relatively low mass-fraction (in comparison to ISM gas), dust serves 

many important roles in both the physics and chemistry of the ISM. Most relevant to 

this thesis, it provides a surface upon which many molecules can freeze out, depleting 

gas-phase abundances of certain molecules when the freeze-out conditions are met. 

The most notable example of molecular depletion comes from CO, which freezes out 

onto grain surfaces at temperatures below ~20 K (e.g. Duley, 1974) and/or H2 densities 

above ~  104cm~3 (Bergin and Langer, 1997). Of possibly even greater importance for 

this thesis, the dust provides a platform for atoms and molecules to be brought in close 

proximity of each other (a process unlikely to happen at ISM gas phase densities), 

and consequently the dust can facilitate chemical reactions that form molecules whose
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presence in the ISM could otherwise not be explained. Three of the key chemical 

mechanisms by which surface reactions are facilitated are illustrated in Figure 1.4. 

Some of the most important molecules formed by this route are H2 , CH3 OH, and H2 O 

-  with the latter two being the focus of this thesis. The formation of CH3 OH on grain 

surfaces happens via the repeated hydrogenation of CO (e.g. Tielens, 2005; Tielens 

and Hagen, 1982):

CO HCO A -C H 3 O C H 3 OH. (1.5)

The grain-surface formation of H2 O is a more complicated matter (e.g. Ioppolo et al., 

2008; Lamberts et al., 2013), but will generally involve the repeated hydrogenation of 

oxygen-bearing species such as O, OH, and O2  (Tielens and Hagen, 1982).

When gas-phase atoms or molecules interact with the surface of a bare dust grain, 

they can adsorb in two different ways: via chemisorption and physisorption. When an 

atom or a molecule chemisorbs on a dust grain, it forms a strong chemical bond with 

the surface, usually a covalent or ionic bond. This strong bond can have energies in the 

order of a single electron volt or more, but requires that the adsorbing atom or molecule 

first overcomes a significant adsorption energy barrier with its kinetic or internal en

ergy. The atoms or molecules in the cold ISM do not usually have enough kinetic 

energy to overcome this activation barrier on bare dust surfaces. Consequently, most 

atoms and molecules "frozen out" on cold ISM dust are physisorbed. A physisorbed 

atom or molecule has only a weak Van der Waals bond with the surface, with binding 

energies ranging from only 0.01 to 0.2 eV. This type of adsorption is either barrierless 

or has a veiy low energy barrier compared to chemisorption, and thus physisorption 

dominates in the dense ISM. Chemisorption has been postulated to occur in hotter re

gions of the ISM, for example diffuse ISM where H2  formation is still known to be 

surface mediated, perhaps on the surfaces of carbonaceous dust, where chemisorption 

is a possibility (e.g. Balog et al., 2009; Cazaux and Tielens, 2004). These are not 

regions or mechanisms of most relevance to this thesis so henceforth I concern my 

discussion only with physisorption.
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As atom-atom and atom-molecule reactions between physisorbed species lead to 

the formation of molecules at the grain surface, a so-called "interstellar ice" builds up. 

Comprised of adsorbed molecular material, these ice mantles are highly porous and 

amorphous, which leads to a rapidly increasing surface area, coupled with a highly 

non-uniform range of binding sites, such that adsorbates have a potentially wider 

range of physisorption biding sites to occupy (e.g. Gavilan, Lemaire, and Vidali, 2012; 

Homekaer et al., 2003; Kristensen et al., 2011). Some of these new sites can have 

much lower adsorption barriers than those of the bare dust grain, thereby increasing 

the chances of atomic or molecular adsorption from the ISM gas occurring and also 

the likelihood of retention of larger molecules (rather than their desorption) as they are 

formed.

Once formed, the ice layer can be further processed through chemical reactions (ei-

thfvr harrip.rlp.SK nr tri acrp.rp.rl h v  tTiprmnl h p a tin o  IIV  n hn tn nc nr hiffh-enerov electrons!-------------   o c , -------------------- J     O’ “  ' “ '6 “  OJ

occurring between the ice constituents, forming new molecules. This cycle of ice for

mation and processing is illustrated in Figure 1.5. Many molecules (such as CH3 OH) 

which do not easily form in the gas phase can be formed through such reactions.

Regardless of where or how it forms, or whether it is in the gas phase or solid state, 

all molecular and atomic material in the ISM is detected in the same manner: through 

spectroscopic observations.

1.4 The origins of spectral features

Whether in the gas phase or frozen on top of grain surfaces, atoms and molecules 

in the ISM are detected via the tell-tale "signs" they leave in the energy distributions 

of electromagnetic radiation reaching our telescopes. In general, gaseous species are 

observed in emission -w ith an excess of flux against the background light-, and dust 

and ice predominantly observed in absorption; a lack of flux in the spectral energy 

distribution.

The purpose of this section is to summarise the basic principles of how absorption
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H2 # .•O oH + H

CO c *

-> OH 
OH + H

-> h 2o

b) An icy grain of interstellar dust 
After some time a 'crust' of ice covers 

the dust grain.
Dominated by H20, the ice 

contains many different chemicals -  the 
least volatile molecules in the top layers

H, 0

NH

a) Forming interstellar ice 
Atoms and molecules stick 

onto the cold dust, 
reacting to form H2 and H20 

or freezing to form solid-state 
material.

UV photons

C H ? 0CO +  O

H-.CO

CO +  H
CO + N 

OCN

desorption
c) Processing interstellar ice 

Atoms and molecules react at the ice 
surface to form new, more complex 

molecules. UV photons and electrons from 
cosmic rays also "kick start" chemical 

reactions in the ice. When the ice is 
heated, many molecules are desorbed.

Figure 1.5: The formation and processing of ice upon dust grains.
(a) The initial formation of an ice layer, with simple gas-phase molecules and atoms 
adsorbing on the surface and sometimes reacting to form new molecules. Some of 
these molecules -such as H2O - remain on the surface after their formation, while 
others -such as H2-  desorb almost immediately after forming, (b) A fully formed layer 
of ice is dominated by H2O. (c) Additional processing of the ice produces molecules 
such as CH3OH and H2CO.
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Figure 1.6: An illustration showing the basic principles behind energy level transi
tions. The upper and lower level represent two (of many) energy levels in an atom 
or molecule. The arrows represent a transition between the two levels, with excita
tion promoting the e.g. molecule to a higher energy level while relaxation returns the 
molecule to a lower energy level. The energy difference between the two levels de
termines the energy (and thus the frequency) of the absorbed/emitted photon, which is 
specific to the transition.

and emission lines emerge, followed by a slightly more detailed explanation pertaining 

to the gas-phase rotational spectroscopy of methanol (one of the molecules studied in 

this thesis), linking its complex spectral features to the basic physics principles and 

quantum mechanics explained below. I then compare and contrast the principles of 

gas-phase emission spectroscopy (required for Chapter 4 of this thesis) with those of 

solid-state adsorption spectroscopy, which is the basis of the interstellar ice studies in 

Chapters 3 and 5.

1.4.1 Basic principles

In describing the photoelectric effect Einstein (1905) showed that the energy of light 

can be quantized, namely that the energy of a photon E  is proportional to its frequency 

v via a constant of proportionality given by the Planck constant h:

E =  hv (1.6)
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This equation is the basis from which astronomical spectra ranging from Fraunhofer 

lines (von Fraunhofer, 1814; Wollaston, 1802) in the optical wavelengths to CH masers 

(Rydbeck, Ellder, and Irvine, 1973) in radio frequencies can be understood.

Such lines are the result of the excitation (producing absorption lines) or relaxati- 

on/de-excitation (producing emission) of atomic and molecular material as it interacts 

with electromagnetic radiation. Basically, with the exclusion of their translation mo

tion, all atoms and molecules are quantised entities, that is, they cannot possess just 

any energy, but exist in specific energetic state -in  atoms the dominant energy levels 

are electronic states, associated with the arrangement of electrons around the nucleus- 

in molecules three key quantised energies come into play, electronic energy levels, 

associated with the arrangement of electrons in the bonds between the atoms of the 

molecule, rotational energy levels, associated with the rotation of the molecule about 

its key symmetry axes in the x y and z directions, and vibrational energy levels, as

sociated with the perpetual oscillations of the bonds between atoms in the molecule 

(relative to each other) at temperatures above absolute zero.

Since my thesis is based in molecular spectroscopy I concern myself from here on 

with molecular transitions. These energy states are called quantised as they can only 

have certain specific energy values, and in molecules the Bohr-Oppenheimer approx

imation (Born and Oppenheimer, 1927) is valid -  electronic transitions occur without 

changing the vibrational energy state of a molecule. However, rotational and vibra

tional energy states are strongly coupled. Given the complexity of all these aspects, 

and as a result of quantum mechanics, each energy state of the molecule is described 

by a set of quantum numbers, which are associated with the specific electronic, vi

brational and rotational energy levels the molecule may occupy, and can be used to 

describe the detailed energy state of the molecule before and after a transition. When 

a molecule is excited (AE  >  0 ), it absorbs electromagnetic radiation and is promoted 

from a lower to higher energy state (producing absorption lines). When a molecule is 

de-excited/relaxed (AE <  0), it emits radiation and falls back from a higher to a lower 

energy state. These basic processes are illustrated in Figure 1.6.
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There are two key final points to mention in understanding spectroscopy and its 

association with the picture of quantised energy levels in a molecule. First, by the 

principles of Heisenberg’s Uncertainty Principle (Heisenberg, 1927), the energy and 

lifetime of an excited state of a molecule can never both be known precisely at the 

same time. Consequently in any excitation/relaxation, the precise energy of the emit

ted photon can vary by a small factor, associated with the uncertainty in the energy of 

the upper and lower energy states (which itself is related to the precision with which 

the lifetime of these states is known). This results in spectral features not as single 

lines at a single frequency, but gives the characteristic natural line shape, described 

by a Lorentzian curve, with a peak at the expected frequency associated with the en

ergy gap of the transition, and Tine wings’ associated with those photons emitted at 

slightly different frequencies to the natural frequency. The second issue is that whilst 

molecules may posses a plethora of electronic, vibrational and rotational energy levels, 

a transition cannot occur for any one particular energy level to another one regardless.

The transitions are governed by a set of selection rules, which are deeply embedded 

into the quantum mechanics which also give rise to the quantum numbers. Typically 

selection rules are expressed in terms of the allowed changes to quantum number dur

ing a transition, and may be further constrained if rotational and vibrations energy of a 

molecule change concurrently.

All of this is difficult to illustrate abstractly, so in the next section a specific example 

is described.

1.4.2 The rotational spectroscopy of gas-phase C H 3O H

The spectroscopy of methanol is far from trivial, but since it is a molecule that appears 

in Chapters 3 and 4 of this thesis, it serves as an example to describe the origins of 

spectral features, with specific reference in this case to the gas-phase rotational spec

troscopy of CH3 OH. Molecular spectroscopy is a specialised field, and those with an 

interested in obtaining a deeper understanding are directed towards general senior-
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Figure 1.7: The 3-dimensional structure of the methanol molecule. The red sphere 
represent an oxygen atom, the gray one a carbon atom and the white spheres represent 
hydrogen atoms. Also shown are the symmetry axes of the molecule. This structure 
can be further split into the hydroxyl group (OH) and the methyl group (CH3), with the 
main symmetry axis A being defined by the axis linking the carbon and oxygen atoms.

undergraduate level texts on the subject, such as Hollas (1992).

The CH3OH spectral observations exploited for the research in Chapter 4 were 

measured in the sub-mm frequency range, a region of the electromagnetic spectrum 

associated with rotational energy changes in molecules. Rotational spectra depend on 

molecular shapes and the moments of inertia of the molecule when it rotates about 3 

"imaginary" orthogonal axes which pass through the centre of mass of the molecule. 

Notation dictates that symmetrical tops are molecules with two rotational axes that 

have the same inertia (called b- and c- axes), and one unique rotational axis with a 

different inertia (called the a-axis). Symmetrical tops can be further divided into two 

categories. If the unique a-axis has a greater inertia than the degenerate b- and c- 

axes (i.e. 7a >  /b =  7C), the molecule is called an oblate symmetrical top and tends to 

resemble a Frisbee in shape. If the unique rotational axis has a lower inertia than the 

degenerate axes (i.e. 7a <  4  =  7C), the molecule is called a prolate symmetrical top, 

and somewhat resembles a rugby ball in shape. In reality most molecules are neither 

of these, but are in fact asymmetric rotors, which means the moments of inertia are not



18 Chapter 1. Introduction

equal along the three axes (i.e. 7a + /b =£ /c)- The 3-dimensional shape of the CH3 OH 

molecule (illustrated in Figure 1.7) places it in the asymmetric rotor category.

Although CH3 OH is an asymmetric rotor, it is actually close to a prolate symmetric 

top molecule. The unique rotational axis (the a-axis) in CH3 OH is that of highest sym

metry, which is defined by the axis linking the carbon and oxygen in the C -0  of the 

molecule. This axis is known as a "three fold symmetry axis" or C3 , since each time 

the molecule is rotated through 120 degrees its methyl group (the CH3 part of CH3 OH) 

re-produces a molecular orientation in space indistinguishable from the previous ori

entation 120 degree before. Had the hydroxyl group (the OH part of CH3 OH) of the 

molecule been linearly orientated with the C -0 bond, methanol would be classifiable 

as a "proper" prolate symmetric top molecule. But, the OH (as Figure 1.7 illustrates) is 

angled with respect to the C -0 bond, which causes the b and c axes to not have equal 

moments of inertia as required of a prolate symmetric top. However for the purposes 

of the simple spectroscopic picture here it is sufficient to understand that as the internal 

rotor (the hydroxyl group) is in perpetual motion, to a first approximation the b- and 

c-axes are degenerate in methanol. In reality there are actually 3 minima in the tor

sional potential energy surface, so many researchers in fact view the CH3 OH molecule 

from an alternate frame of reference, namely that the OH bond orientation is always 

fixed relative to the C -0  bond, but that the methyl group (CH3 ) provides the free rotor 

within the molecule.

As a consequence the rotational motion of CH3 OH is described by two quantum 

numbers, J  and K, and any one rotational state is written with the notation Jr . The 

rotational quantum number J  relates to the magnitude of the (quantized) angular mo

mentum of the rotating molecule about the unique a-axis. This quantum number can 

take any non-negative integer value, as well as zero. As J  increases, so does the rota

tional energy of the molecule, and energy levels associated with progressively higher J  

values become further separated from the previous levels. The selection rule AJ =  d=l 

-imposed by the conservation of angular momentum- applies for transitions between 

rotational states described by the rotational number J.
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It is unlikely that the CH3 OH molecule will in reality be rotating about one axis 

in space, or that the axis it is rotating around will be aligned with the a-axis of the 

molecule. Rather the rotational motion will be some combination of rotations about 

each of the (defined) orthogonal molecular rotational axes. K  is the quantum number 

representing the projections of the principle quantum number J  onto the two other 

rotational axes b and c. When the moments of inertia around b and c are equal, typically 

there are 2J+  1 K  levels for any value of / ,  with K  having possible values in the range 

/ . .  .0 . . .  +  / .  The selection rule is AK =  0. In asymmetric molecules there would be 

two K  values, neither of which would be "proper" quantum numbers as they could not 

be conserved as the molecule rotates. However, for the low-lying rotational states of 

interest in this thesis (see Chapter 4) the "averaging" effect of the torsional motion of 

the methyl group (internal rotation) means that one K  value is sufficient to describe 

the rotational motion of the molecule. Consequently the selection rules on K  change a 

little, and AK — ± 1  are also allowed transitions.

The final vital component for describing the rotational energy levels of CH3 OH 

relates to the spin states of the hydrogen atoms in the methyl (CH3 ) group in methanol. 

Hydrogen contains one electron and one proton both of which have intrinsic spins, 

which can be spin up or down, or have opposing spins. The spin of the proton is most 

relevant here. Consequently the three H-atoms in the CH3 group might statistically 

exist with all three H proton spins aligned, or two of the protons with opposing spins 

to the third H proton. This gives rise to two states, the ground symmetrical state A- 

CH3 OH (as defined by the Pauli exclusion principle) and the doubly degenerate E- 

CH3 OH state. As a consequence of the coupling between the proton spins and the 

rotational energy the arrangement of the J  and K  states in each of these isomers are 

not identical, even in the ground state, and therefore give rise to distinct spectroscopic 

features. This is also illustrated in Figure 1.8 where it is clear to see the ground state 

rotation energy level in A-CH3 OH is J  =  0 K  =  0, whereas the ground state level in 

E-CH3 OH is J  = \ K  = - l .

In reality, the true rotational spectra of methanol have been determined through
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Figure 1.8: An energy level diagram for (a) E-CH3 OH and (b) A-CH3 OH. The number 
on top of each line is the J  quantum number for the level, and the location of the line 
along the x axis describes its K  quantum number. It is important to note that the energy 
levels are not arranged identically in the A and E states nor do they have the same 
rotational ground states. The arrows indicate the main CH3 OH transitions of interest 
to Chapter 4. Figure adapted from Leurini et al. (2004).

a complex set of experimental measurements and computational calculations which 

reproduce effects such as level crossings, perturbation by low lying vibrational states 

and torsional motion (which dominates over the K  quantum number at K  > 7), all of 

which makes the CH3 OH gas-phase spectrum in the sub-mm exceptionally complex. 

Further details are discussed widely in the literature (e.g. Pei, Gou, and Zeng, 1988; 

Pottage, Flower, and Davis, 2001; Sutton and Herbst, 1988). Data for such energy 

levels for methanol and other complex molecules are available from data repositories 

such as the Cologne Database for Molecular Spectroscopy (h t tp  : //www . a s t r o  . 

u n i-k o e ln .d e /c d m s /;  MUlleret al., 2001; Muller et al., 2005).

In additional to understanding the origins of the rotational spectroscopy of a mole

cule when observing its transitions through observations, it is also important to under



1.4. The origins of spectral features 21

stand two other physical concepts in order to extract additional information about the 

ISM from the spectroscopy itself.

The strength of the line -pertaining to a specific energy transition- depends not 

only on the abundance of the material and the probability of the transition occurring 

between the two energy states in question, but is also subject to a multitude of physical 

processes which balance the excitation and relaxation/de-excitation between energy 

levels in interstellar matter, given that the ISM gas is not typically in local thermo

dynamic equilibrium (LTE) i.e. the energy levels are not simply populated according 

to Boltzmann’s distribution. This is the domain of radiative transfer -which seeks to 

explain how specific physical conditions give rise to specific observed atomic or molec

ular line intensities and vice versa- and will be elaborated upon further in Chapter 4 

where it is key to interpreting the results in the chapter.

Beyond the quantum mechanical effects described before, the shape of the line it

self is also a tracer of physical conditions. In an astronomical context the line width 

and detected frequency of a spectral line traces primarily (but not only) the kinematics 

and temperature of the gas. Doppler effects can and will shift the line centre from its 

rest frequency (i.e. where the transition is measured in the laboratory or predicted by 

quantum mechanics) to a blue- or redshifted frequency determined by the velocity with 

which the object (cloud) being observed is moving relative to the Earth. Superimposed 

doppler effects are also be responsible for broadening of the spectral lines as a result 

of the emission arising from gas with molecules at a range of temperatures, velocity 

components and subject to turbulence. As a result of how closely the observed fre

quency and width of gas-phase spectral features is tied to the velocity of the emitting 

matter, published spectra of gas-phase lines (such as those shown in Chapter 4) are 

often plotted as intensity against a doppler-shifted velocity scale instead of intensity 

against e.g. observed frequency.

Interestingly, all this molecular rotational information is lost once (or whilst) the 

molecules are frozen out in the solid-state i.e. as ices on interstellar grains. In the solid 

state the rotational motion is hindered by the restrictive nature of the 2 -dimensional
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H20, HCOOH, HCOO"?

W a v e l e n g t h  /  f i m

Figure 1.9: Near-to-mid infrared spectra of three protostars (W33A, HH46, L1014 
IRS) showcasing the absorption signatures produced by various interstellar ices. The 
red bars at the top indicate the approximate wavelength ranges at which more than 
50% of the incoming radiation is blocked by Earth’s atmosphere, when performing 
ground-based observations. Figure adapted from Oberg et al. 201 la, and references 
therein.

nature of the surface. Given that molecules are bound to other molecules they are 

never free to rotate. Since solid-state molecular spectroscopy plays such a vital role in 

Chapters 3 and 5 of this thesis, I explore it further in the next section.

1.4.3 The spectroscopy of solid-state molecules

The features of interstellar ices (which always appear in absorption, requiring the pres

ence of a bright infra-red (IR) background source for ice to be observed in any partic

ular line of sight) are attributable to the vibrational modes of "functional groups" i.e. 

specific types of atoms, bonded together in specific ways within molecules in the ice 

(e.g. Hagen, Allamandola, and Greenberg, 1980; Nakanishi, 1962). The vibrations are 

observed in the IR region of the electromagnetic spectrum, and are characteristically
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broad and featureless in comparison to the ro-vibrational transitions of warm gas-phase 

molecules whose transitions are observed in the same region (e.g. Pontoppidan et al., 

2003a). For example all interstellar ices exhibit an O-H stretching mode absorption 

feature at a wavelength of approximately 3.1 jUm, which is usually indicative of H2 O 

and possibly CH3 OH ice, but also could be associated with any molecule containing 

an O-H bond, i.e. the OH functional group. The O-H stretch feature arises from both 

the symmetric and asymmetric lengthening and shortening of the two O-H bond in the 

H2 O molecule, relative to each other. The exact frequency of the vibration v is propor

tional to the square root of the force constant of the bond k, and inversely proportional 

to the square root of the reduced mass of the bond jU.

VOC y/k/J i. (1.7)

In other words, if the bond strength between the atoms in the functional group in

creases the OH stretching vibration appears at higher frequency and vice versa. Like

wise if the reduced mass of the bond increases the frequency decreases, i.e replacing 

the H in the OH bond with i.e. deuterium (D) shifts the vibrational frequency from 

about 3 to about 3.5 microns. Tables 1.3 and 1.4 shows the frequencies at which typi

cal functional groups oscillate in the solid state, for stretching and bending vibrations 

respectively. These tables -as do many other tables and plots related to ices in this 

thesis- make use of a frequency unit which is somewhat uncommon in astronomical 

(but not chemistry-focused) spectroscopy: reciprocal wave numbers. This unit is often 

used interchangeably with wavelength units, and the formula for converting between 

microns and cm - 1  is
1 0 4

= —------ p- ( 1 .8 )
v[cm_1]

Since rotational motion in the solid state is hindered, the wide-ranging rotational struc

ture of any vibrational transition "collapses" making the wavelength span of a solid- 

state line narrower than the total span of the corresponding ro-vibrational gas-phase 

transitions, but much wider than any of the individual transitions. Of additional note is
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Table 1.3: Typical infrared ice absorption features caused by stretching vibrations. 
Adapted from h t t p : / / b i t . ly /ltS d L 5 R _____________________________________

Functional Class Range (cm 1) Assignment
Alkanes 28 5 0 -3 0 0 0 CH3, CH2  & CH 

2 or 3 bands
Alkenes 30 2 0 -3100

1630-1680
1900-2000

=C-H & =CH2  (usually sharp) 
C=C (symmetry reduces intensity) 
C=C asymmetric stretch

Alkynes 3300
21 0 0 -2 2 5 0

C-H (usually sharp)
C=C (symmetry reduces intensity)

Arenes 3030
1600&1500

C-H (may be several bands) 
C=C (in ring) (2 bands)
(3 if conjugated)

Alcohols & Phenols 3 5 8 0 -3650
3 200-3550
9 7 0 -1 2 5 0

O-H (free), usually sharp 
O-H (H-bonded), usually broad 
C -0

Amines 34 0 0 -3500
3300 -3 4 0 0
1000-1250

N-H (l°-amines), 2 bands 
N-H (2°-amines)
C-N

Aldehydes & Ketones 2690 -2 8 4 0
1720-1740
1710-1720
1690
1675
1745
1780

C-H (aldehyde C-H)
C =0 (saturated aldehyde) 
C =0 (saturated ketone) 
aryl ketone 
a ,  p -unsaturation 
cyclopentanone 
cyclobutanone

Carboxylic Acids 
& Derivatives

25 0 0 -3 3 0 0
1705-1720
1210-1320
1 7 8 5 - 1815
1750&1820
1040-1100
1735-1750
1000-1300
1630-1695

O-H (very broad)
C =0 (H-bonded)
O-C (sometimes 2-peaks) 
C =0
C =0 (2-bands)
O-C
c = o
O-C (2-bands)
C =0 (amide I band)

Nitriles 2 2 4 0 -2 2 6 0 C =N  (sharp)
Isocyanates,Isothiocyanates, 
Diimides, Azides & Ketenes

2100 -2 2 7 0 -N=C=0, -N=C=S 
-N=C=N-, -N3, C=C=0
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Table 1.4: Typical infrared ice absorption features caused by bending vibrations. 
Adapted from h t t p : / / b i t . ly /ltS d L 5 R __________________________________

Functional Class Range (cm 1) Assignment
Alkanes 1350-1470

1370-1390
7 2 0 -7 2 5

CH2  & CH3 deformation 
CH3 deformation 
CH2  rocking

Alkenes 8 8 0 -9 9 5
7 8 0 -8 5 0
6 7 5 -7 3 0

=C-H & =CH2 

(out-of-plane bending) 
cis-RCH=CHR

Alkynes 6 0 0 -7 0 0 C-H deformation
Arenes 6 9 0 -9 0 0 C-H bending & 

ring puckering
Alcohols & Phenols 1330-1430

6 5 0 -7 7 0
O-H bending (in-plane) 
O-H bend (out-of-plane)

Amines 1550-1650
6 6 0 -9 0 0

NH2  scissoring (l°-amines) 
NH2  & N-H wagging 
(shifts on H-bonding)

Aldehydes & Ketones 1 3 5 0 - 1360 
1400-1450  
1 1 0 0

GC-CH3 bending 
0 C-CH2  bending 
C-C-C bending

Carboxylic Acids & Derivatives 1395-1440 C-O-H bending
Nitriles 1590-1650 N-H (1 j -amide) II band
Isocyanates,Isothiocyanates, 
Diimides, Azides & Ketenes

1500-1560 N-H (2j -amide) II band

the effect of ice structure on the line width: crystalline ices where molecules are in a 

limited range of orientations and environments have much narrower solid state features 

than amorphous materials, where again the molecular environments are broad and also 

wide ranging. As a result, solid-state lines are much broader than gas-phase lines, and 

in some cases they are broader than even many dust absorption and emission features 

from e.g. silicates, SiC, PAH and fullerenes.

When combined with observations, the information in Tables 1.3 and 1.4 have al

lowed us to identify a number of solid state ice species unequivocally i.e. CO, CO2 

H2 O CH3 OH NH3 CH4 , 1 3CO, and 1 3 C0 2 - We have also been able to make reasonable 

(but still being debated) assumptions about others such as HCOOH, N H ^, and OCN-  

on lines of sight towards high-mass, low-mass, and intermediate mass stars, as shown 

in Figure 1.9. What is obvious from this figure is that ice spectra appear remarkably
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similar despite observations spanning over 4-5 orders of magnitude in flux. It is un

likely, perhaps with the exception of HDO, D2 O, and OCS (if such ices exist) that any 

other ice species will be unequivocally identified, simply because their concentrations 

in the solid state are so low as to preclude detection.

Determining the column density of ice from an observed spectrum also happens in 

a way that is very different from gas-phase. While gas-phase column density deter

minations rely heavily on radiative transfer computations and the (mostly) theoretical 

data required by it, the derivation of ice column densities from observations makes 

use of comparisons with largely experimental data. As ice column densities are funda

mental to the research in Chapters 3 and 5 ,1 will take some time here to discuss their 

derivation, and the nuances in the calculation between observational spectra and the 

extracted column density number.

The most common method of determining ice column densities starts by calculat

ing the optical depth spectrum of an observation containing ice features by fitting a 

continuum to the detected flux around the feature itself, then taking the ratio of the 

two, using:

where T is the optical depth spectrum, i^bs is the observed flux spectrum, and Fcont is 

the continuum spectrum. When determining the optical depths of ices, a few different 

methods exist for the continuum baseline fits. The most commonly used method (e.g. 

Aikawa et al., 2012a; Gibb et al., 2004; Oberg et al., 2011a) fits a (usually) 2nd or

der polynomial around the ice feature of interest, sometimes (e.g. Pontoppidan et al., 

2003b) making use of non-spectroscopic continuum data (i.e. an SED) in addition to 

the spectrum itself. More recent studies (e.g. Boogert et al., 2013; Noble et al., 2013) 

have made use of photometry towards the sources of interest to construct and redden a 

synthetic model SED for the background source, and use it as a local continuum. The 

optical depth fitting done in this thesis makes use of local polynomial fits around the 

features, since the supplementary data required for more sophisticated models was not

(1.9)
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available towards most of the sources I am analysing.

Once the optical depth spectrum has been generated, there are a number of alter

native methods to extract the ice column density. The first studies of ices (e.g. Whittet 

et al., 1988) did not report a column density for the ice at all, but instead simply re

ported the peak optical depth of the ice feature of interest at a wavelength where the 

absorption peak is predicted to be by a combination of laboratory experiments and 

computational models. The simplest method for calculating a column density from 

this makes use of the following equation (e.g. Murakawa, Tamura, and Nagata, 2000):

Av
A(ice) =  Tice— , ( 1 -1 0 )

where Tjce is the peak optical depth of the ice absorption feature, Av is its FWHM (usu

ally in cm-1), and A  is the band strength or "A-factor" (usually in cm/molecule) for 

the ice feature (e.g. Gerakines et al., 1995; Hudgins et al., 1993). The above equation 

is an approximation of the integrated form of calculating ice column density, expressed 

as:

» (ice) =  / ^ .  ( 1 .1 1 )

While it would be possible to simply integrate over the optical depth feature of interest 

and divide the integral by the A-factor, this is not entirely physical for a number of 

reasons:

1. In some cases -such as the 3-micron O-H stretching feature- the peak of the 

absorption feature is saturated and not linearly representative of the true column 

of ice producing it.

2. The A-factors published in the literature are estimated from ices grown in labo

ratory conditions onto a slab-shaped surface. The ices grown in laboratory con

ditions are usually hundreds of microns thick, while on interstellar dust grains 

they usually consist of a few nanometers layer of ice on a grain rarely larger 

than about a micron in diameter. Since the grain sizes are smaller than the wave
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length of photons relating to ice features, the grain and electromagnetic field 

interact with each other in a manner which polarizes the grain, which in turn 

affects spectral line shapes and positions. It is thus vital to take these grain shape 

effects into account when determining the column density of ice constituents. 

Since these grain-shape effects modify the shape of the spectrum, its integrated 

area is modified as well and thus a new "effective" A-factor (usually labelled A') 

must be calculated for the column density estimates to be accurate. If these ef

fects are not appropriately accounted for, applying an experimentally determined 

A-factor to Equation 1.11 will not result in a good ice column density estimate.

The first complication can be dealt with by first fitting a laboratory ice spectrum (which 

has first been modified to better approximate interstellar ices; see below) to the non

saturated part of the observed spectrum, and integrating over the fitted spectrum instead 

of observed spectrum. This method has been applied in e.g. Shimonishi et al. (2010). 

A step further (e.g. Boogert, Hogerheijde, and Blake, 2002; Noble et al., 2013; Pon- 

toppidan et al., 2003b) is to simultaneously fit multiple laboratory spectra to the same 

feature, in an attempt to decompose the contribution of different ices to the observed 

absorption. This multi-component fitting methodology will be the focus of Chapter 3.

The second complications means that before the laboratory spectra can be properly 

fitted or before an accurate column density can be calculated from the result, the grain 

shape effects should be taken into account. A number of different methods are applica

ble in modelling the interaction between the EM field and the coated dust grain. Two 

such methods are called the "Mathis, Rumpl and Nordsieck" (MRN; Mathis, Rumpl, 

and Nordsieck, 1977) method and the "Continuous Distribution of Ellipsoids" (CDE; 

cf. Bohren and Huffman, 1983) method. The latter of these has been successfully ap

plied to ice column density estimate calculations several times in the past (e.g. Ehren- 

freund et al., 1997; Noble et al., 2013; Pontoppidan et al., 2003a; Tielens et al., 1991), 

and thus it is the method I will also make use of in Chapters 3 and 5. For this reason I 

will now elaborate on how CDE-correction works.

The first step leading to CDE-correction is to derive the complex optical constant
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m  =  n +  ik as a function of frequency for the laboratory ice which is being fitted to 

observations. This can be done by utilising the Kramers-Kronig analysis (e.g. Bohren 

and Huffman, 1983; Ehrenfreund et al., 1997; Hudgins et al., 1993) to the observed 

absorbance of the laboratory data. To calculate n and A; as a function of frequency v, 

the following equations can be utilised:

n(v )  =  1 + i f f ^ l d v ' ( U 2 )

«v) =  £ .  (1.13)

In these equations c is the speed of light, and a  is the Lambert absorption coefficient. 

a  can also be expressed (Ehrenfreund et al., 1997) in the form

1

a ~ h
T (v )+ ln to itl2 /to 2

1 +  roi r i 2  exp (4 inhm /X )
(1.14)

where r pq and tpq are the complex reflection and transmission coefficients at the bound- 

ary pq  (the boundary between the materials through which the radiation is passing), 

and h is the thickness of the ice measured in the laboratory while t(v )  is its optical 

depth as a function of frequency.

Application of Equation 1.12 in a real-world situation is problematic, because no 

spectra of an infinite frequency range exist to integrate over. However, in a near- 

infrared setting it is possible to approximate such an integration by expressing Equation 

1 . 1 2  in the form

” (V) “  ”0 +  2 ^ I m (v12 -  l 2) dV'' (L15)

where no is the real part of the refractive index at high frequencies relative to the band 

being examined.

With Equations 1.12-1.15 it is possible to solve the complex refractive index of the 

ice starting from T, but not in an analytical fashion; an iterative approach is required. 

An iterative solution to the Kramers-Kronig relation was presented in the form of a
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FORTRAN77 program in Bohren and Huffman (1 9 8 3 ). I adapted this program to my 

needs, and used it to calculate m  for the laboratory ice used in Chapters 3 and 5 of this 

thesis.

With the optical constants at hand, it is now possible to perform the CDE correction 

itself by calculating a CDE-corrected version of the ice optical depth. In the infrared 

regime, the absorption cross section of the ice -C abs~ on a hypothetical ellipsoidal dust 

grain normalised by the volume of the dust grain - V -  can be expressed in the form 

(e.g. Bohren and Huffman, 1983; Ehrenfreund et al., 1997):

Cabs _  y i 2 nk/L f
V ~  3X “  (1/E/ -  1 + h 2  +  £ 2 ) 2  +  ( 2 nk)2 ’ U '

where X is wavelength and Li describes the geometry of the ellipsoid along all of its 3
3

axes, as constrained by 0 <  L/ <  1 and £  L/ =  1. For example, for a sphere L; =  1/3
i — 1

for all axes, while an ellipsoid which is elongated along one axis would have Li >  1/3
3

for that axis, while U <  1/3 for the other two axes, in such a way that £  Lt =  1 still
/= l

applies. With the CDE correction all ellipsoid geometries are made equally probable, 

and Equation 1.16 simplifies to

Cabs 47T /  m 2 \

T  I  ( m ^ T  J '  (U 7 )

^  is equivalent to t (henceforth called Tcde) for spectrum fitting purposes, and thus 

the above equation can be used to describe a CDE-corrected laboratory spectrum ready 

for fitting to observations.

However, a CDE-corrected spectrum alone is not enough to help with calculating 

the ice column density; a CDE-corrected A-factor {A') is still needed. A' is defined 

with

(US)AnoCDE(lCe)

where the nominator contains the integrated area of the CDE-corrected ice feature,

while the denominator contains the column density of the ice calculated with the non-
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CDE-corrected A. With this equation A' can be calculated, and then the true A(ice) 

can finally be calculated.

Despite the challenges of observational ice spectroscopy, astronomical ices have 

been found to be critical in understanding the synergies between gas and dust in inter

stellar chemistry. This has motivated their study for several decades, often requiring 

close interaction between observers, experimentalists, and modellers.

1.5 The history of interstellar ice observations

Ever since frozen water was first detected (Gillett and Forrest, 1973) in the interstellar 

medium, interstellar ice has been a subject of keen study. Early near-to-mid-infrared 

observations (e.g. Capps, Gillett, and Knacke, 1978; Geballe, 1986; Grim et al., 1991; 

Leger et al., 1979; Merrill, Russell, and Soifer, 1976; Soifer et al., 1979) of ices in 

the ISM were combined with experimental and theoretical studies (e.g D ’Hendecourt 

and Allamandola, 1986; Hagen, Allamandola, and Greenberg, 1979, 1980; Hagen, 

Tielens, and Greenberg, 1981; Kitta and Kraetschmer, 1983; Sandford et al., 1988) to 

show that water ice is highly abundant in the ISM, with the column density of water 

ice dominating over other detected ice species. The other major molecules observed 

easily in ISM ices are are CO and CO2 . Typical relative abundances of these and other 

common ices are in the ISM are summarised in Table 1.5.

As explained in the previous section, ice spectroscopy is limited to lines of sight 

with sources sufficiently bright at infrared wavelengths for ice absorption features to 

be observed against the IR black-body emission of the source. This limits the detec

tion of ices into narrow "pencil beams" along the line of sight directly in-between the 

observer and the source. Furthermore, such spectroscopic observations historically 

were conducted one target at a time. As a result the total number of ice observations 

in the literature1 is estimated at approximately two hundred individual lines of sight.

*e.g. Aikawa et al., 2012a; Boogert et al., 2008, 2011; Brooke, Sellgren, and Geballe, 1999; Chiar, 
Adamson, and Whittet, 1996; Gibb et al., 2004; Murakawa, Tamura, and Nagata, 2000; Noble et al., 
2013; Oberg et al., 201 lb,a; Oliveira et al., 2009; Pontoppidan, van Dishoeck, and Dartois, 2004;
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Table 1.5: Typically detected abundances of some of the more common ices around 
low- and high-mass YSOs and molecular clouds, as reproduced from Oberg et al. 
(2011a). The reported number is the ice column density as a percentage relative to 
iV(H2 0 ). "XCN" refers to the ices detectable from the C =  N stretching feature at 
~  2165 cm- 1, most notably OCN“ .

Molecule Molecular cloud Low-mass YSO High-mass YSO
H20 100 100 100
CO 31 29 13
c o 2 38 29 13
CH3OH 4 3 4
n h 3 — 5 5
c h 4 — 5 2

XCN — 0.3 0.6

Most of these lines of sight are from the large surveys by Murakawa, Tamura, and 

Nagata 2000(taken with several telescopes), Pontoppidan et al. 2003a (taken with the 

Very Large Telescope VLT) Gibb et al. 2004 (taken with the Infrared Space Observa

tory ISO), Oberg et al. 201 la, and references therein (Spitzer), and Noble et al. 2013 

(AKARI). Furthermore almost all of these lines of sight are towards young stellar ob

jects, which have strong spectra in the near-IR spectral range and are thus are among 

the easiest sources to use for estimating ice abundances. Few (e.g. Imanishi and Mal

oney, 2003; Oliveira et al., 2009; Shimonishi et al., 2008, 2010; Spoon et al., 2001, 

2004; van Loon et al., 2005; Yamagishi et al., 2011, 2012, 2013) studies have been 

made of extragalactic ices, with even fewer of them have reached out further out than 

the Large Magellanic Cloud.

In examining the ice in our galaxy, several studies (Eiroa and Hodapp, 1989; Mu

rakawa, Tamura, and Nagata, 2000; Noble et al., 2013; Whittet et al., 1988) have found 

a positive correlation between the column density of water ice V(H 2 0 , solid) and vi

sual extinction Ay. This has lead to the idea of an "extinction threshold" below which 

no water ice seems to be detectable. Depending on study this threshold can take values 

between a somewhat wide range of 2 and 6 . The concept of an extinction threshold 

will be further studied in Chapter 5.

Pontoppidan et al., 2003b,a, 2005, 2008; Shimonishi et al., 2008, 2010, 2013; van Loon et al., 2005; 
Whittet et al., 1988; Yamagishi et al., 2011, and even more cited in the upcoming text.
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The Spitzer c2d ice legacy survey (Oberg et al., 2011a, and references therein) 

detailed the solid-state abundances of CO2  (Pontoppidan et al., 2008), H2 O (Boogert 

et al., 2008), CH4  (Oberg et al., 2008), and NH3 (Bottinelli et al., 2010), towards 

approximately 50 low-mass YSOs and a small number of supplementary data towards 

background stars. From this large dataset it was concluded that there is generally 

little variation (with the exception of Taurus, which was found to have different ice 

distributions compared to other clouds) between the ice abundances of young stellar 

objects in different clouds. It was also concluded that there is little difference in the 

ice compositions of YSOs compared to background stars, with the exception of ice 

components associated with ice heating and segregation (such as pure CO2 ) being 

more prevalent towards YSOs. On a similar note Noble et al. (2013) found that the 

3-micron absorption feature primarily associated with water ice seems to vary in shape 

depending on the evolutionary stage of the material being probed.

The Infrared Space Observatory (ISO) legacy survey of interstellar ices (Gibb et 

al., 2004) has highlighted that while the presence of many solid-state molecules -such 

as H2 O, CO, CO2 , CH3 OH, and CH4 -  can be well-characterised towards many lines 

of sight, a high degree of ambiguity and controversy still exists in fully understanding 

the origins of certain ice absorption features, such as the 3-micron "red wing" which 

will also be discussed in Chapter 3.

The sparse sampling caused by the pencil beam observations of ices means that 

almost all spatial mapping (a common practice with gas-phase molecules) efforts of 

ice to date (Murakawa, Tamura, and Nagata, 2000; Noble, 2011; Pontoppidan, 2006; 

Pontoppidan, van Dishoeck, and Dartois, 2004; Yamagishi et al., 2011, 2013, Noble 

et al. in prep.) rely heavily on interpolation between small numbers of individual lines 

of sight, and tend to cover very small (less than V x 1') patches of the sky. Examples 

of two such maps are presented in Figures 1.10 and 1.11. Both of these studies have 

found the abundance of water ice to sometimes vary significantly at fairly short angular 

distances.

One notable exception is the ice map presented in Sonnentrucker et al. (2008),
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Figure 1.10: An interpolated map of water ice abundance (relative to H2) towards SVS 
4. The white markers and text indicate the lines of sight based on which the remainder 
of the map is constructed via interpolation, as described in Pontoppidan, van Dishoeck, 
and Dartois (2004), from which the figure is reproduced.

which serendipitously detected ice absorption against the broad IR emission of a HII 

region towards Cepheus A. They were then able to exploit the spectroscopic mapping 

capability of Spitzer to construct fully sampled maps of H2O and CO2 ice column den

sity (calculated from peak optical depths at 6  and 15 microns) in a 50" x 50" patch of 

the sky. These ice maps are presented in Figure 1.12. The maps of Sonnentrucker re

port a correlation between N(H2O. solid) and N(Htot)» and that the solid state features 

peak at approximately the same location as gas-phase (1,1) emission from NH3 does.

It is findings such as the ones summarised above which stand as testament to the 

capability of ice absorption features in probing more than the abundances of solid-state 

molecules.
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Figure 1.11: Water ice maps of molecular cores B 35A, DC 274.2-00.4, BHR 59, 
DC 300.7-01.0, as produced from data acquired by the AKARI space telescope. The 
size of each window is approximately l ' x  1'. Objects marked in orange yielded only 
upper limits on column densities. In the first row objects are marked with ★ for YSOs, 
or • for background stars, while on the second row these symbols are replaced by x and 
+ , respectively. For the second row ice maps, the area of the black circle corresponds 
to the quantity being mapped, according to the scale on the right hand side. The first 
row is an imaging frame from AKARI, and the second row is the column density of 
H2O ice. Adapted from Noble (2011) and Noble et al. (in prep.).

1.6 The structure and evolution of interstellar ices

The spectral signatures of interstellar ices reveal not only information about the abun

dances of ices towards the observed lines of sight, but also on their structure and com

position.

One example of such effects can be illustrated with water ice, which in its crys

talline form has a very differently shaped 3-micron feature compared to amorphous 

solid water (e.g. Mastrapa et al., 2009; Watanabe and Kouchi, 2008), with ice temper

ature also playing a role (e.g. Mastrapa et al., 2009) in the shape of the feature. These 

differences arise from a different distribution of available binding energies in the ice 

matrix, as was discussed in Section 1.4.3. Furthermore, mixed ices (where the ice 

matrix is constructed of multiple different molecules in close proximity to each other) 

both introduce new absorption features (e.g. Al-Halabi et al., 2004; Fraser et al., 2004) 

and/or modify existing features (e.g. Cuppen et al., 2011; Dartois et al., 2003, Dawes 

et al in prep.) in ways that are not explicable as a linear combination of the spectra of
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Figure 1.12: The column density of (left) CO2 and (right) H2O ice towards Cepheus 
A. The contours represent NH3( 1, 1) emission. Figure reproduced from Sonnentrucker 
et al. (2008).

pure ices. Finally, even the structure of the dust itself is known to affect the absorption 

features of the ices growing on it, as was discussed in the context of CDE correction 

in Section 1.4.3.

Based on studies of the spectral profiles of ices observed in the ISM, solid state 

materials are generally thought to have a two-layer structure consisting of a water- 

rich (also called polar, owing to the polar nature of water molecules) and a water-poor 

(also called apolar2) layer. This belief is largely based on studies of the shape of the 

absorption profile of frozen CO (e.g. Cuppen et al., 2011; Pontoppidan et al., 2003b; 

Tielens et al., 1991) and C0 2 (e.g. Pontoppidan et al., 2008), both of which require 

at least two components (of a water-rich and water-poor mixture) in order to match 

observations. This two-layer scheme of interstellar ices is also supported by modelling 

results of ice formation (e.g. Cuppen and Herbst, 2007; Cuppen et al., 2009; Herbst and 

Cuppen, 2006). The water-rich layer contains ices such as H2O, NH3 , CO2 , and CH4 . 

The water-poor layer contains mainly CO, which through hydrogenation can react to

2Referring to the water-poor layer as an apolar one may be a misleading, since in light o f recent 
findings about spontaneous polarization by Plekan et al. (2011) it may actually also behave as a polar 
layer. Many works in the literature, however, still call the water-poor ice layer an apolar layer.
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Figure 1.13: The proposed evolution of ices during star formation. Pink indicates 
water-rich ice and blue indicates water-poor ice. Small amounts of ice desorb through 
non-thermal mechanisms at all stages. Molecules marked with red text are produced 
through energetic processing, (a) At an early stage an H2O rich ice forms through 
chemical reactions on the grain surface, (b) After the critical temperature and density 
is reached, the CO in the gas phase very rapidly freeze out onto the dust grains, (c) Far 
from the protostar but in areas exposed to its UV flux, photoprocessing of the water- 
poor ice layer produces complex organics such as HCOOCH3 . Additionally heating 
effects from IR photons which penetrate into the icy envelope lead to the mixing, mi
gration, and occasionally separation of the ices. Consequently species such as CH3OH 
and CO -which were initially part of the water-poor ice layer- may now be found 
"mixed" in the porous H2O ices, (d) Closer to the protostar a majority (with some of 
it remaining trapped in the pores of the H2O ice) of the CO ice layer has sublimated, 
enriching the gas phase with especially CO and CH3OH. Photoprocessing produces 
e.g. NH2CH2OH in the polar ice envelope, (e) Very close to the protostar the dust 
temperature becomes so high that the ice mantle is fully sublimated into the gas phase, 
leaving the dust grains bare. Reproduced from Oberg et al. (2010a).

form to CH3OH (e.g. Cuppen et al., 2009; Fuchs et al., 2009; Watanabe and Kouchi, 

2002; Watanabe et al., 2004), and if subjected to energetic processing it can react even 

further to turn into molecules such as HCOOCH3 and CH3CHO, which belong to a 

family of molecules sometimes referred to as "complex organic molecules" or COMs 

(e.g. Belloche et al., 2014; Fedoseev et al., 2015).

As is illustrated in Figure 1.13, the formation of these two distinct ice layers are 

closely related to the anticipated formation mechanisms of interstellar ices and their 

evolution through star formation. In dense molecular cores the onset of ice formation

1",0
HjO

\  HCOOCHi 
NH,
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occurs when atoms accrete from the gas phase, leading predominantly through hydro

genation reactions to the formation of H2 O rich ice layers. The H2 O is porous and 

amorphous, and may contain additional "impurities" such as NH3 , CO2 , and possibly 

CH4 . As the densities increase CO critically freezes out, forming a hydrogen-bond 

poor upper layer to the H2 0 -rich ice. This layer will also generate some CO2  and 

significant amounts of CH3 OH as hydrogenation, oxidation, and OH radical reactions 

lead to the formation of larger molecules. These are the most likely scenarios to be ob

served in pre-stellar cores with lines of sight towards background stars. Even in these 

regions ice growth is not "catastrophic" -  some CO remains in the gas phase and as 

recent observations show, cosmic ray and UV induced photodesorption replenish the 

gas phase with some of the ice molecules (e.g. Caselli et al., 2012). In protostellar re

gions ices are then further processed. This is a complex process which depends on the 

distance of the icy grain from the protostar, the degree to which the disk is turbulently 

mixed, and the temperature and density gradients within the disk (e.g. Visser et al., 

2009). Nevertheless, as Figure 1.13 summarises, the evolution of ices can be basically 

split into two regimes here, far from the protostar where grain temperatures are still 

below 20 K, IR and UV photons penetrating the cold envelope have a significant ef

fect. First the IR photons promote migration of molecules (without desorption) leading 

to mixing and segregation of the ice constituents in complex processes studies in the 

laboratory (e.g. Bisschop et al., 2006; Fayolle et al., 2011a). This can lead to small 

molecules such as CO and CH3 OH being trapped in the H2 O ice, so that they cannot 

desorb at the temperatures they would normally be expected to desorb at. Concur

rently UV photons promote a complex photodissocation and photodesorption driven 

chemistry generating more complex species, especially in the CO ices. However, the 

CO desorption here can be promoted by cosmic rays (Bergin, Langer, and Goldsmith, 

1995; Willacy and Williams, 1993), which happens faster than CO can adsorb onto 

dust grains at H2  densities below a "critical density", which is ~  105 cm - 3  (Caselli 

et al., 1999). It is because of this that the earliest stages of ice mantle formation are 

dominated by the chemical reactions which produce H2 O on grain surfaces. The oxy
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gen required for this chemistry is depleted from the cloud before CO has a chance to 

adsorb and stay on the grain surface in any significant quantity. Closer to the protostar 

where grain temperature is greater than 20 K, the pure CO ice component partially 

sublimates, with the remaining of the CO, CH3 OH and other species in the water-poor 

ice layer migrate into the pores in the water-rich layer below, resulting in trapping. 

Eventually (at temperatures in excess of 100 - 110 K; Fraser et al., 2001) the water ice 

itself sublimates, leaving the dust grain bare of all but the heaviest molecules. Exam

ples of molecules which may survive beyond this phase are NH2 OH (Ioppolo et al., 

2014), and possibly even sugars and aldehydes (de Marcellus et al., 2015).

1.7 This thesis

This thesis looks at both the formation and destruction of ice mantles, using spectro

scopic observations of both ice and gas to try and understand the initial formation of 

ice layers, and what can be found in the gas phase after both layers have desorbed in 

the violent outflow environment of YSOs. This is achieved through the use of archival 

data from primarily the AKARI and Herschel space telescopes supplemented with data 

from other astronomical databases.

This chapter has served as an overview to the wider field within which my research 

is applicable, and has given an overview of the historical literature, current under

standing and key theoretical aspects associated with this work. In Chapter 2 I detail 

the telescopes, instruments, and observations which are the basis of scientific work in 

my thesis. In particular Chapter 2 is focused on AKARI and Herschel.

At the end of the thesis, in an appendix so as not to disrupt the scientific flow, I 

have documented the two major pieces of software that were written by me during this 

PhD: ARF2 and OMNIFIT. The appendix serves two purposes: first to detail some 

of the technical programming aspects of the data reduction and analysis undertaken to 

achieve the science in Chapters 3 and 5, and second as basic documentation for future 

users of the software. The intention is to make this code publicly accessible, in order to
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make the methods presented in this thesis universally available to the wider astronomy 

community.

My three major results chapters follow the introduction and observations chapters. 

In Chapter 3 I analyse a wide array of near-infrared spectra towards both young stellar 

objects embedded in star-forming regions and background stars behind them. This 

analysis will provide answers to two questions:

How much methanol is in interstellar ices, and where is it, in the water- or CO- 

rich layers?

What are the scientific merits o f undertaking concurrent analysis o f multiple ice 

absorption features on a single line o f sight, as opposed to drawing conclusions 

one species at a time?

In Chapter 4 I shift my gaze towards the gas-pnase. By exploiting sub-millimetre 

observations of water and methanol towards the outflow environments of young stellar 

objects I seek to answer two questions related to the fate of water and methanol:

Is desorbed ice the only source o f water in the post-shocked gas-phase in the 

outflows o f YSOs or can water also be formed in high temperature gas phase 

reactions in the post-shock gas?

What happens to the methanol as it desorbs from the grains into the gas phase?

In Chapter 5 I return to the ice phase, first in a deeply technical discussion, lead

ing to some scientific conclusions, where I detail the novel ice mapping technique I 

have applied on the slitless spectroscopic data from the near-infrared space telescope 

AKARI. It produces an unprecedented number of new water ice detections towards a 

total of 12 star-forming regions. In doing so, it will answer a single question:

Where is the water ice?

Finally in Chapter 6 1 reiterate the general conclusions of the results chapters, and 

pull the ideas back together, returning to the two key scientific questions of this thesis:
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How is ice distributed in star forming regions?

How is ice affected by or affecting star formation processes?

In reaching these conclusions it is clear that there are other paths and ideas that could 

be pursued. The beginnings of some of these new ideas, together with potential future 

work is therefore briefly addressed at the end of Chapter 6 .



Chapter 2

Observations

Archival observational data from a number of telescopes form the cornerstone of this 

thesis. The two telescopes which play the most prominent roles in this thesis -AKARI 

and Herschel- are both space observatories which reached the end of their operational 

lifespan. In this chapter the operations and instrumentation of both these telescopes 

are detailed in their own sections. Additional archival data was acquired and exploited 

from the retired ISAAC spectrometer of the Very Large Telescope (VLT; a ground- 

based telescope located in Chile), and from the the JxA and JxB (both also retired) 

instruments of the James Clerk Maxwell Telescope (JCMT; Hawaii). A number of 

other archival datasets appear sporadically in other results chapters, such as data from 

the Spitzer and the Wide Infrared Survey Explorer (WISE) space telescopes. The main 

purpose of this chapter is to give the reader a brief overview of the methods of data 

acquisition and additionally the rationale for the observations which provide the basis 

of my thesis work.

42
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Figure 2.1: A schematic view of the AKARI space telescope. The numeric scales are 
in millimetres. This figure has been reproduced from ASTRO-F User Support Team 
(2005) Figure 2.2.1.

2.1 The AKARI space telescope

I exploit AKARI data in Chapters 3 and 5 of this thesis. Furthermore, I developed the 

pipeline ARF2 -documented in Appendix A at the end of the thesis- specifically to 

reduce AKARI spectroscopic data.

2.1.1 Mission summary

AKARI (previously known as ASTRO-F and before that as IRIS) was a space tele

scope operated by the Institute of Space and Astronautical Science of the Japanese
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Aerospace Exploration Agency (ISAS/JAXA) in collaboration with European and Ko

rean institutes with the primary goal of performing an all-sky survey in the mid- and 

far- infrared. The main equipment onboard AKARI consisted of a 68.5 cm primary 

mirror and two instruments: the Far-Infrared Surveyor (FIS) and the InfraRed Camera 

(IRC) (ASTRO-F User Support Team, 2005). Both instruments had both imaging and 

spectroscopic capabilities, although the available observing modes were primarily de

veloped for imaging. The primary mirror and instruments of AKARI were cooled to 

cryogenic temperatures using onboard reserves of liquid helium.

AKARI was launched on the 21st Febrary 20061 into a polar orbit around Earth, 

at a height of ~745 km. The lifetime operational stages of AKARI consisted of three 

phases preceded by a performance verification phase. Following the eponymous per

formance verification (PV) phase, phase 1 consisted of performing the all-sky survey, 

which was the primary mission of AKARI. The PV phase lasted for 2 months and 

phase 1 lasted for another 6  months, with phase 2 observations starting in November 

2006. Phase 2 observations consisted of additional all-sky survey observations but also 

of other pointed observations carried out as part of AKARI’s open-time programme. 

Phase 2 lasted until August 2007 when AKARI ran out of liquid coolant, marking the 

end of phase 2 and the beginning of phase 3. Phase 3 consisted of additional open

time pointed observations, but with only the near-infrared (NIR) capabilities of the 

IRC being used due to both FIS and the mid-infrared (MIR) components of IRC being 

rendered virtually useless by the increased temperature of AKARI. Phase 3 lasted until 

June 2011, following a power-supply malfunction which happened in May 2011. The 

transmitters aboard AKARI were turned off on November 24th 2011, marking the end

of the AKARI mission2.

!h ttp ://w ww.ir. i s a s . j axa. jp/ASTR0-F/0bservation/Newsletter/afnl_e_Q14. tx t
2http://w w w .isas. jaxa. jp /e/top ics/2Q ll/1124_akari. shtml

http://www.ir.isas.j
http://www.isas.jaxa.jp/e/topics/2Qll/1124_akari.shtml
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2.1.2 Instrument overview

The AKARI spacecraft carried two instruments: the Far-Infrared Surveyor (FIS) and 

the InfraRed Camera (IRC).

2.1.2.1 the Far-Infrared Surveyor -  FIS

The Far-Infrared Surveyor (Verdugo et al., 2007) was the instrument aboard AKARI 

which specialized in observing at a far-infrared wavelength range of 50 to 180 microns. 

The instrument was capable of performing photometric observations at four distinct 

bands, and could use a Martin-Puplett Fourier transform spectrometer to perform high- 

spectral-resolution spectroscopy in two separate bands.

The FIS holds no direct relevance to this thesis, and thus will not be discussed 

further. For more information on the instrument, see Verdugo et al. (2007).

2.1.2.2 The InfraRed Camera -  IRC

The InfraRed Camera (Lorente et al., 2007; Ohyama et al., 2007) was the second 

instrument aboard AKARI, and it specialized in the observing in the near- and mid- 

infrared wavelength ranges, between 1.8 and 26.5 microns. As shown in the schematic 

view of the instrument in Figure 2.2, it consisted of three separate detectors: one for the 

near-infrared (NIR; 1.8 . . .  5.3 jum) and two for the mid-infrared (MIR), split between 

"short'' (MIR-S; 5 .4 ... 13.1 jLtm) and "long" (MIR-L; 12.6... 26.5 jum) MIR. Each de

tector was capable of both imaging and multi-object spectroscopy observations in a 

field of view roughly 1 0 ' x 1 0 ' in size, with the exact size of the field of view varying 

between detector and filter, as illustrated in Figure 2.3. For the sake of simplicity, all 

further references to the large (~  1 0 ' x 1 0 ') field of view in this thesis will be called the 

1 0 ' x 1 0 ' field of view, despite the precise size of the frame not being this in any detec

tor/filter combination. In addition to the 10' x 10' field of view, the AKARI detector 

also contained three slits, as also illustrated in Figure 2.3. From smallest to largest, 

these slits are often referred to as the short slit, long slit and square slit. The square slit
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Figure 2.2: A schematic view of the AKARI IRC instrument. This figure has been 
reproduced from Lorente et al. (2007) Figure 2.0.1.
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Figure 2.3: An illustration showing the sizes (in sexagecimal degrees) of the field of 
views observable with the three different IRC detectors. This figure has been repro
duced from Lorente et al. (2007) Figure 2.0.2.

is also sometimes called the 1 ' x 1 ' field of view, as it is essentially a miniature version 

of the ~  10' x 10' FoV.

The imaging mode observations with each detector had a choice of 3 different fil

ters, limiting the wavelength range to a narrower subset of the full detector range. The 

multi-object spectroscopic capability was capable of dispersing the light of all stars in 

these fields of view with the help of a grism or (in the NIR detector) a prism disper

sion element. The main practical difference between the grism and prism dispersion 

was that the grism dispersion gave much higher resolution (R «  120 at A =  3.6jUm) 

compared to the prism (R «  12 at A =  3.5 /im), but suffers from much more severe 

"confusion" (the overlap of dispersion from nearby objects) in the 1 0 ' x 1 0 ' field of 

view. The properties of the various imaging and spectroscopic modes available to the 

IRC are summarised in Table 2.1. The imaging filters and dispersion elements are 

mounted on independent filter wheel for each channel, and are selected during obser

vations through rotation of the filter wheel.

NIR observations could be done simultaneously with MIR-S observations because 

of the way the IRC was constructed, and thus all observations taken in either channel
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Table 2.1: A summary of the capabilities of the AKARI InfraRed Camera, in its various 
imaging and spectroscopic modes. Table adapted from Lorente et al. (2007) Table 
2.0 . 1. ____________________________________________________________________

Detector Filter Wavelength Dispersion
channel name type range [jum] [jUm/pix]

N2 imaging VO 1 to 00 N/A
N3(a) imaging 2 .7 -3 .8 N/A

NIR N4 imaging 3.6 —5.3 N/A
Np(a) prism 1 . 8  —5.2 0.06@3.5jum
NG(b) grism 2 .5 -5 .0 0.0097

S7 imaging Ui VO 1 00 4̂ N/A
S9W imaging 6 .7 -1 1 .6 N/A

MIR-S S ll imaging 8 .5 -1 3 .1 N/A
SGI grism L

t\ 4̂ 1 00 4̂ 0.057
SG2 grism 7 .5 -1 2 .9 0.099
L15 imaging 1 2 .6 -1 9 .4 N/A

L18W imaging 1 3 .9 -2 5 .6 N/A
MIR-L L24 imaging 2 0 .3 -2 6 .5 N/A

LG2 grism 1 7 .5 -2 5 .7 0.175
(a)Data involving these filters will be discussed in Chapter 5.
(b)Data involving this filter will be discussed in Chapter 3.

automatically contain data from the other channel as well.

The AKARI data exploited in this thesis was gathered with the near-IR capabili

ties of the IRC during phase 2. Although MIR-S data for each observation was also 

available, it was not analysed for this thesis because to do so would have required the 

construction of a separate new pipeline specialized for the analysis of AKARI MIR 

with its own complications (such as having to contend with the strong zodiacal back

ground light observed in the MIR).

2.1.3 Observing with the IR C

Observations with the IRC were required to use exposure patterns ordered in a number 

of "astronomical observation templates" or AOTs. These AOTs cover a range of likely 

patterns to be useful in either imaging or spectroscopic observations, and operate as a 

mixture of exposure cycles, filter wheel rotations and micro-scan operations. Of these 

patterns, the one called AOT04 is the only spectroscopic exposure cycle, and was thus
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Figure 2.4: The progression of the AKARI spectroscopic observing cycle AOT4 from 
left to right, top row to bottom row. Each exposure takes approximately 63 seconds, 
with the entire observing cycle (including overheads) lasting about 10 minutes. The 
telescope is liable to maneuver during the last two exposure cycles, making the scien
tific usefulness of the data contained in the last disperser exposure suspect. This figure 
has been adapted from Lorente et al. (2007) Figure 2.2.6.

used for the observations exploited in this thesis. The progression of this exposure 

cycle is illustrated in Figure 2.4.

AOT04 produces a total of 8 frames of dispersed images and one frame taken with 

an imaging filter. Each AOT04 cycle also takes two dark exposures, both at the be

ginning and end of the cycle. Because of the way the observations are handled in 

conjunction with telescope attitude control, the end of AOT04 (and every other expo

sure cycle of AKARI) also had a chance of the telescope manoeuvring in the middle 

of exposure. When it happens, the last exposures become useless for scientific pur

poses, and should be ignored during data reduction. In AOT04 is the dispersed frames 

were taken either with the prism (NP) or grism (NG) dispersers, and the imaging frame 

taken in the middle of these observations was taken with the N3 filter. These observa

tions are split into individual "pointings", each representing a single AOT observation 

and indicated by a 7-digit numerical code e.g. 4120021. Several pointings were re

peated, and in such cases designated by an additional numeral preceded by a hyphen 

e.g. 4120021-001 and 4120021-002 for two repeated pointings. In this thesis I refer to 

such repeated pointings as "sub-pointings".
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Figure 2.5: An illustration of how spectral confusion happens with AKARI observa
tions, and how confused sources may be partially deconvolved from each other in an 
ideal situation. The first observation (shown in the left picture) is made with such a roll 
angle of the telescope that the top of the frame is aligned with north. In this case the 
red end of the spectrum from source A is confused with the blue end of the spectrum 
for source B, while the spectrum of C is not confused at all. The right picture shows 
the second observation of the same field of view but with such a roll angle of the tele
scope that north points towards the right instead. In this case the spectrum of B is no 
longer confused, while the blue end of the spectrum of A is confused with the red end 
of the spectrum of C. If both observations had been made, the full spectrum of C and 
B could be recovered from the first and second observations, respectively, and most of 
the spectrum of A could be recovered by taking its blue end from the first and its red 
end from the second observation.

2.1.4 Why A K ARI?

The observations analysed in Chapters 3 and 5 of this thesis were partially or com

pletely acquired as part of the AKARI IMAPE (PI: Helen Fraser) ice mapping pro

gramme, which sought to determine the abundance of H2O, CO and CO2 ice towards 

several molecular cores. The target listing for the IMAPE programme is presented 

in Table 2.2. These targets were selected on the basis of having been previously ob

served as part of the Spitzer legacy survey "cores to disks" (C2D; Evans et al., 2003) 

and would thus have much valuable supplementary data available to cross-correlate 

against the results of IMAPE.

AKARI was first and foremost designed to operate as an imaging telescope and 

its spectroscopic capabilities were pushed to their limits with the IMAPE programme. 

To avoid confusion between observed spectra, the spectroscopic mode of AKARI was 

intended to be used primarily through either one of the three slits of the AKARI frame
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Table 2.2: The basic target information of the AKARI ice mapping programme
IM APE.________   .__________ ,

Pointing Core Disperser «J2000 <5j2000
identifier name used [deg.] [deg.]
4120002W BHR59 NG 166.779 -62.097
4120004(b) CB188 NP 290.067 +11.605
4120006<b) DC274.2-00.4 NP 142.196 -51.612
4120007<a) DC274.2-00.4 NG 142.196 -51.612
4120008(b) DC275.9+01.9 NP 146.712 -51.107
4120009W DC275.9+01.9 NG 146.712 -51.107
4120010<b) DC291.0-03.5 NP 164.979 -63.738
412001 l<b> DC300.7-01.0 NP 187.871 -63.747
4120012W DC346.0+07.8 NP 249.208 -35.618
4120018(a) Mu8 NG 187.4024 -71.1775
412002l(b) B35A NP 086.1242 +09.1483
4120022<a) B35A NG 086.1242 +09.1483
4120023(a) DC291.0-03.5 NG 164.979 -63.738
4120024(a) DC300.7-01.0 NG 187.871 -63.747
4120034(b) LI 165 NP 331.7113 +59.0464
4120042(b) DC269.4+03.0 NP 140.579 -45.815
4120043(a> DC269.4+03.0 NG 140.579 -45.815
4121001<h) BHR59 NP 166.779 -62.097
4121017(h) Mu8 NP 187.4024 -71.1775
4121024<a) DC300.7-01.0 NG 187.871 -63.747
4121035(a) LI 165 NG 331.7113 +59.0464
4121040(°) BHR78 NP 189.079 -63.210
4121041 (a) BHR78 NG 189.079 -63.210
4121043(a) DC269.4+03.0 NG 140.579 -45.815
4121044(b) DC300.2-03.5 NP 186.054 -66.178
4121045(a) DC300.2-03.5 NG 186.054 -66.178

Analysed in Chapter 3.
^Analysed in Chapter 5.

Analysed in Chapter 5, but no useful data could be extracted.
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or with lone or well-separated sources observed in the "slitless" 1 0 ' x 1 0 ' field of view. 

As will be shown in Chapter 5, however, the molecular clouds observed as part of the 

IMAPE programme had tens if not hundreds of bright sources occupying the 10' x 10' 

field of view, making spectral confusion inevitable. The observing programme of 

IMAPE had predicted this and tried to plan around it by requesting that repeated point

ings of the same cloud be made in such a way that a large amount of time would pass 

between two observations of the same cloud. If the observations were made in such a 

way, AKARI would have a different roll angle (which could not otherwise be manually 

adjusted by the observers) when observing the same cloud, and deconvolving confused 

spectra would be made significantly easier. The principle behind this idea is illustrated 

in Figure 2.5. The limitations of AKARI observing time allocation, however, caused 

these repeated pointings to be taken on subsequent orbits of the space telescope. This 

resulted in the telescope having practically the same roll angle on both observations 

and thus greatly hindered the effective deconvolution of most of the confused spectra.

Despite the difficulties first expected and then experienced in the data acquisition 

and reduction of its spectroscopic data, the AKARI space telescope is still the best 

instrument to have been available for the task of the type of ice mapping I am doing in 

this thesis. The reason for using AKARI for ice mapping is that it was the only tele

scope capable of concurrent observations of multiple lines of sight in the 2 to 5 micron 

wavelength range. As was illustrated in Figure 1.9 of the previous chapter, Earth’s 

atmosphere either severely hinders (as is the case for the 3-micron water ice feature) or 

outright prevents (CO2  at ^  4.3 microns, although the IMAPE data relevant to this has 

already been analysed by Noble 2011 and Noble et al. 2013) the observation of several 

important ISM ice absorption features and thus makes ground-based observatories in

capable of what the IMAPE programme sought to achieve. The only other telescopes 

which would have been capable of similar observations were the Infrared Space Ob

servatory (ISO) and Spitzer, but ISO has been inoperational since 1998 and Spitzer 

is no longer capable of spectroscopy due to having run out coolant. Furthermore, no 

other observatory to date has been capable of simultaneous multi-object near-infrared
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Figure 2.6: The Herschel space telescope. The left image shows the "warm" side of 
the telescope, and the right image shows the "cold" side. The middle image highlights 
the major components of the spacecraft. This figure has been reproduced from the 
Herschel observer’s manual4 Figure 2.1.

spectroscopy with a field of view as large as 10 by 10 arc minutes. In the future the 

James Webb Telescope (JWST) is set to be capable of similar feats and more relative 

to what AKARI was capable of, but it is not scheduled to become operational until 

sometime after 2018.

2.2 The Herschel space observatory

The data analysed in Chapter 4 has been partially acquired from Herschel, and public 

pre-reduced SPIRE data has been made use of in the analysis in Chapter 5.

2.2.1 Mission summary

The Herschel space observatory (formerly known as FIRST) was a mission operated 

by the European Space Agency (ESA) that performed imaging and photometry in 

the far-infrared and submillimeter parts of the spectrum. Its key science goals objec

tives included shedding light on the inter-relation between star and galaxy formation, 

the physics of the interstellar medium, astrochemistry, and planetary science studies. 

Herschel carried three science instruments: the two cameras/medium resolution spec

trometers PACS and SPIRE, and a very high resolution heterodyne spectrometer HIFI.

4http://herschel.esac.esa.int/Docs/Herschel/pdf/observatory.pdf

http://herschel.esac.esa.int/Docs/Herschel/pdf/observatory.pdf
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These instruments received their light from a 3.5-metre main mirror (Pilbratt, 2008).

Herschel launched on 14th May 2009, entering the Sun-Earth L2 point and begin

ning commissioning operations. The performance verification and science demonstra

tion phases started soon after the commissioning operations, and the first routine ob

servations were executed on 18th October 2009. Herschel observations were generally 

split between priority 1 (OT1) and priority 2 (OT2) observations, with OT1 observa

tions taking precedence over OT2. The operational lifetime of Herschel was limited by 

the supply of onboard liquid helium, which was used for cooling the telescope. After 

helium "boil off", the telescope would rapidly heat up to temperatures where observa

tions in Herschel’s sensitivity range were obscured by noise. This point was reached 

by the 29th April 2013, and Herschel was sent to its final resting orbit around the Sun 

on the 17th June 2013, marking the end of the mission.

2.2.2 Instrument overview

Herschel carried three instruments: the Photodetector Array Camera and Spectrometer 

(PACS), the Spectral and Photometric Imaging REceiver (SPIRE), and the Heterodyne 

Instrument for the Far Infrared (HIFI). Of these three, SPIRE and HIFI are relevant to 

this thesis.

2.2.3 SPIRE

The Spectral and Photometric Imaging REceiver (SPIRE) had both photometric and 

spectroscopic capabilities, but unlike PACS it operated at much longer wavelengths 

and could only (in spectrometer mode) produce sparsely sampled spectral maps within 

a 2 ' field of view.

The photometer had an option of three different bands to observe. They were cen

tred at 250, 350, and 500 microns, and were called PSW, PMW and PLW, respectively. 

The spectrometer had two choices of wavelength ranges: SSW which scanned between 

194 and 313 microns, and SLW which scanned between 303 and 671 microns. The
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Table 2.3: A summary of the capabilities of the SPIRE instrument of Herschel, in its 
various photometric and spectroscopic modes. Table adapted from the SPIRE hand
book Table 2.1.____________________________________________________________

Sub-instrum ent Photom eter Spectrom eter
A rray P S W ^ PM W PLW SSW SLW
Band [jUm] 250 350 500 194-313 303-671
Resolution (A/AA) 3.3 3.4 2.5 - 4 0 - 1 C )00 @ 250 jUm (variable)
Unvignetted FoV

00X 2' (diameter)
Beam FWHM ["] 17.6 23.9 35.2 17-21 29-42

Archive data acquired with this mode will be used in Chapter 5.

spectrometer could produce spectra at three different spectral resolutions, compromis

ing sensitivity for sharper spectra, although in practise the highest spectral resolution 

mode was almost always used. The different observing modes of SPIRE are summa

rized in Table 2.3.

Additional information about this instrument can be found from the SPIRE hand

book5.

2.2.3.1 HIFI

The Heterodyne Instrument for the Far Infrared (HIFI) was -unlike PACS and SPIRE- 

an instrument built for the sole purpose of producing high-resolution spectra. It could 

cover the frequency ranges of 480 to 1250 GHz (625 — 240 fim) and 1410 to 1910 GHz 

((625 — 240 jUm) and was capable of observing in four different modes where could 

can trade spectral resolution for spectral coverage. At its highest resolution HIFI was 

capable of producing spectra at a resolution of 125 kHz, covering a frequency range 

of 230 MHz. The wide-band mode of HIFI covered a frequency range of 4 GHz, at a 

spectral resolution of 1 MHz. An example of a wide-band HIFI spectrum is presented 

in Figure 2.7.

The observable frequency range was split into several bands, and one of these must 

be selected when preparing the observation. Each band had a different effective beam

5h ttp ://h e r sc h e l. e sa c . e sa . int/Docs/SPIRE/spire_handbook.pdf
7h ttp ://h e r sc h e l. e sa c . e sa . int/Docs/H IFI/pdf/hifi_om .pdf

http://herschel.esac.esa.int/Docs/SPIRE/spire_handbook.pdf
http://herschel.esac.esa.int/Docs/HIFI/pdf/hifi_om.pdf
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Figure 2.7: A famous spectrum acquired with HIFI during the early science demon
stration phase of Herschel. The spectrum highlights several features of gas-phase water 
and organic molecules towards the Orion Nebula. ©ESA, HEXOS and the HIFI con
sortium. Image reproduced from the HIFI observer’s manual7.

size, and the highest-frequency bands had a maximum allowable frequency range of 

2.4 GHz. Information about the different bands are summarized in Table 2.4.

2.2.4 Why Herschel?

Much like AKARI was the only telescope available at the time (or in the near future) to 

conduct the kind of science goals laid out by IMAPE, Herschel was the only telescope 

9http://herschel.esac.esa.int/Docs/HIFI/pdf/hifi_om.pdf

Table 2.4: A summary of the frequency coverage and effective beam sizes and max
imum bandwidths of the HIFI instrument of Herschel, in its available bands. Table 
adapted from the HIFI observer’s manual9 Table 3.1.

Band Frequency coverage [GHz Beam size (HPBW) Max. bandwidth
1 488.1 -6 2 8 .4 39" 4 GHz
2 642.1 -7 9 3 .9 30" 4 GHz
3 807.1 -9 5 2 .9 25" 4 GHz
4 (a) 957 .2-1113.8 2 1 " 4 GHz
5 (a) 1116.2-1271.8 19" 4 GHz
6+7 1430.2-1901.8 13" 2.4 GHz
(a)The HIFI data exploited in Chapter 4 was acquired with these bands.

http://herschel.esac.esa.int/Docs/HIFI/pdf/hifi_om.pdf
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capable of observing the gas-phase water sought in the Herschel key program WISH 

(Water In Star-forming regions with Herschel; van Dishoeck et al., 2011). Having 

observed a total of approximately 80 objects and having taken up 425 hours of Her- 

schel’s observing time, the many objectives of WISH revolved around understanding 

the formation and processing of gas-phase (and indirectly solid-state) water towards 

several star-forming regions. WISH achieved this by observing (among several other 

species; most notably CO and OH) H2 O emission and absorption in its various transi

tions ranging between J  =  1 and J  — 9. Many of these transitions have been completely 

unobservable by any other telescope before Herschel.

While not directly involved in the WISH project, the research presented in Chapter 

4 makes extensive use of WISH data (for two H2 O and one CO gas-phase line) in its 

analysis. Thus it would not have been possible to make the discoveries of that chapter 

without the data available only from Herschel.

2.3 Other observatories

This thesis makes use of data acquired from a number of other observatories in addition 

to AKARI and Herschel. The other observatories do not provide data with a major role 

in this thesis. For this reason they do not have a lengthy description in their own 

sections, but all of them will be given a short introduction here, so they need not be 

reintroduced in later chapters and thus detract from the scientific narrative.

2.3.1 The James Clerk Maxwell Telescope (JC M T)

The James Clerk Maxwell Telescope (JCMT) is a ground-based single-dish telescope 

operating in the submillimetre wavelength regime. Having observed its first light in 

1987, JCMT is located on top of Mauna Kea in Hawaii, and as of 2015 is operated by 

the East Asian Observatory.

The JCMT has been host to a number of instruments dedicated to both imaging 

and spectroscopy. Most notably regarding this thesis, some of the data analysed in
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Chapter 4 was acquired from the JCMT using its RxA and RxB receivers. Of these 

two, RxB (comprising a part of the RxW receiver) is no longer operational. Both RxA 

and RxB are dual sideband heterodyne receivers. The frequency window of RxA is 

211 — 276 GHz and its beam has HPBW of 20". RxB covered the frequency window 

325 -  375 GHz and its beam had HPBW of 14".

2.3.2 The Very Large Telescope (V LT)

The Very Large Telescope (VLT) is an optical interferometer consisting of four 8.2 

meter main telescopes and a four 1.8 meter auxiliary telescopes. In addition to its in- 

terferometric capabilities, the telescopes comprising VLT can be operated individually, 

and house a number of instruments suited for single-dish purposes. VLT is operated 

by the European Southern Observatory (ESO) and is situated at Cerro Paranal in Chile. 

The first of the VLT main telescopes received its first light in 1998.

Of the many instruments that are or have been used on the VLT, the now-decom

missioned ISAAC (Infrared Spectrometer And Array Camera; Moorwood et al., 1998) 

spectrometer is the one of relevance to this thesis. Some of the spectroscopic data 

analysed in Chapter 3 was acquired using the 2.55 — 5.1 micron detection capabilities 

of ISAAC. ISAAC was also capable of observing in the wavelength range 0.98 — 2.5 

microns. The instrument was mounted on the telescope UT3 (Melipal) and had both a 

low and medium resolution grating to be used in spectroscopy. Depending on selected 

slit size, the low resolution grating could produce spectra with a resolution ranging 

from R = 180 to R =  1800, and the medium resolution grating could produce spectra 

with R  =  1000 to R =  11500.

2.3.3 The Spitzer Space Telescope

The Spitzer Space Telescope was an infrared space observatory which was operated 

by the National Aeronautics and Space Administration (NASA) and was launched in 

2003. Before its supply of liquid helium was depleted in 2009, it was capable of both
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imaging and spectroscopy in the near to far infrared 3 — 180 jtim) using its three 

onboard instruments IRAC (InraRed Array Camera), IRS (InfraRed Spectrograph), 

and MIPS (Multiband Imaging Photometer for Spitzer). In its current state (the Spitzer 

Warm Mission) only IRAC remains useful, and is capable of simultaneously observing 

at 3.6 and 4.5 microns. Chapter 5 of this thesis makes use of 8  micron maps obtained 

with IRAC when it was still capable of observing at that waveband. Furthermore, the 

C2D catalogue (Evans et al., 2003) which was made use of in the same chapter was 

compiled using all four bands of IRAC (3.6,4.5, 5.8 and 8.0 jim).

2.4 Concluding remarks

What was presented above is merely the description of the telescopes. The data itself 

acquired from the telescopes will be discussed in their respective chapters. Some of 

this data -such as the previously published AKARI and VLT data discussed in Chapter 

3 -  has already been reduced by others, and little extra work is needed to make it use

ful for the purposes of this thesis. Other data -like the JCMT CH3 OH data presented 

in Chapter 4 -  was non-reduced, but its reduction was a fairly straightforward process 

using well-established methods. The prism-dispersed slitless spectroscopy data from 

AKARI, however, is something which was both non-reduced and on which established 

methods could not be applied. For this reason a large part of Chapter 5 will be dedi

cated to describing the reduction process itself.

Obviously in exploiting archival data it is vital to undertake something new and 

different with the data being used. Prior to my research only the datasets from the 

AKARI l ' x  1; NG ice spectra, and some of the data from the VLT/ISAAC observa

tions had been discussed in previous publications (Noble et al., 2013; Pontoppidan et 

al., 2003a), although the same data had never been utilised for the purpose to which I 

exploit it in Chapter 3. The AKARI NP data which form the basis of Chapter 5 and 

JCMT and Herschel data which form the basis of Chapter 4 had also not been previ

ously published or analysed, with the exception of the Herschel H2 O and CO spectra in
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Chapter 4 which had previously been described in Kristensen et al. (2010a) and Yildiz 

et al. (2013), respectively. Nevertheless, all the research in Chapters 3-5 of this thesis 

is unique.

The information presented in this chapter is gathered mostly from various manuals, 

press releases, and newsletters presented on the official websites of their respective 

telescopes. For further information on the telescopes, the reader is directed to their 

websites and especially the manuals contained therein.



Chapter 3 

Methanol Ice in Star-Forming 

Regions1

The study detailed in this Chapter seeks to disentangle some of the degeneracies in 

ice abundance measurements from near-infrared spectra while testing in a novel way a 

hypothesis presented in Cuppen et al. (2011), which postulated that CO in interstellar 

ices resides in a methanol-rich environment. The hypothesis is tested by making use 

of the fitting library for which documentation (not relevant to detailing the study pre

sented in this chapter, but important for making use of the library itself) is provided in 

the appendix at the end of the thesis. Several different combinations of ice mixtures 

are fitted against both AKARI and VLT near-IR spectra, and the best combination is 

chosen by comparing it against previous similar studies found from the literature, and 

by discussing how much they make sense in light of our current understanding of ice 

growth and composition in the ISM. At the end, the hypothesis of Cuppen et al is 

verified, and a scenario of ice growth which best fits the modeling results is proposed.

lrThis chapter is based on a paper in an advanced stage of preparation, which is planned to be sub
mitted to MNRAS in the near future with the author list: A. N. Suutarinen (me), A. Dawes, J. A. Noble, 
H. M. Cuppen, K. Isokoski, H. Linnartz, and H. J. Fraser

61
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3.1 Introduction

Grain surfaces play a critical role in the broader picture of star formation, by acting 

as a formation platform and reservoir for several molecules, such as water (H2 O) and 

methanol (CH3 OH). As star formation progresses, molecules that have been formed or 

frozen-out in the solid-state are desorbed, either by thermal processes (as the grains are 

heated; Brown and Bolina, 2007; Codings et al., 2004; Viti et al., 2004) or non-thermal 

processes such as photo-desorption (Fayolle et al., 201 lb, 2013; Oberg, van Dishoeck, 

and Linnartz, 2009; Oberg et al., 2009), sputtering (by energetic electrons or protons; 

e.g. Johnson, 1990, 1998) or as a by-product of further exothermic chemical reactions 

at the ice surface (Dulieu et al., 2013; Garrod, Wakelam, and Herbst, 2007).

The emission spectra detected from these desorbed molecules across a range of 

star-forming epochs, from pre-stellar to protoplanetary regions, are vital diagnostic 

tools to determine the prevailing physical conditions (such as temperature, density or 

ionisation fraction) in the local environment (e.g. Shematovich, 2012; van Dishoeck 

and Blake, 1998). When coupled with astrochemical models, the links between spe

cific gas-phase species (and their solid-state precursors) may be ascertained, and chem

ical reactivity invoked as a clock by which to establish evolutionary star-formation 

sequences (e.g. Aikawa, 2013). For example, Caselli et al. (2012) proved that photo

desorption of H2 O ices could account for the (initially unexpected) Herschel HIFI 

detections of very cold, gas-phase H2 O towards the dense central core of LI 544. Fur

thermore, Oberg, Lauck, and Graninger (2014) have recently shown that a number of 

complex organic molecules (COMs) have moderate gas-phase abundances (1 - 10 % 

of CH3 OH gas), even at the earliest stages of star-formation, on lines of sight towards 

Young Stellar Objects (YSOs) where CH3 OH ice was previously detected, corrobo

rating earlier reports of a tentative correlation between ice and gas abundances due to 

non-thermal desorption processes in cold-envelope conditions (Oberg, Bottinelli, and 

van Dishoeck, 2009).

It is therefore increasingly important to constrain solid-state molecular abundances
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in a variety of star-forming environments, particularly for those species which form 

direct bridges between gas-phase and solid-state chemistry. This both enables obser

vational astronomers to continue utilising the gas-phase as an indirect tracer of ice, 

and acts as a basis for subsequent laboratory experiments to determine which reactions 

and non-thermal desorption processes should be included in our astrochemical models, 

linking gas-phase and solid-state chemistry to explain complex chemical evolution.

The abundances of the solid-state molecules can be readily estimated by observing 

infrared absorption features which arise from the functional groups of individual pairs 

of atoms on the icy surfaces of the interstellar dust grains being observed. For example, 

carbon monoxide is visible through the C -0  stretching mode functional group at 4.7 

fim  (~  2130 cm-1 ), and both water and methanol contribute to the wide O-H and 

(in the case of methanol) C-H stretching mode features observable at around 3 jUm 

(~  3300 cm-1 ; observable from the ground).

As will be elaborated upon in Section 3.2, methanol is an ideal "bridging" candi

date, and constraining its solid-state abundance is the primary motivation behind this 

chapter. The greatest challenge in determining interstellar methanol ice abundances 

is unequivocally detecting the CH3 OH ice itself. The strong features in methanol ice 

always coincide with other interstellar solid-state spectral lines. The X-OH bending 

modes of H2 O and CH3 OH almost entirely overlap between ~  5 and ~  8 jum, in a 

dense region of the interstellar solid-state spectrum which is notorious (e.g. Boogert 

et al., 2008) for how difficult it is to decompose these spectra into their contributory 

components. A second commonly looked at CH3 OH ice tracer, detectable in the past 

with SPITZER/ISO observations is the ’9-micron’ feature. This V4 C -0 stretching 

mode of CH3 OH at ~  9.7jum lies on the wing of the interstellar silicate dust feature at 

10 microns, as shown by Bottinelli et al. (2010).

The stretching vibrations of the O-H functional group contribute to a broad absorp

tion feature common to both H2 O and CH3 OH. Close to this feature -as is illustrated 

in Figure 3.1- the C-H functional group stretching modes give rise to a number of ad

ditional features in the CH3 OH spectrum, with the "primary" feature being located at



64 Chapter 3. Methanol Ice in Star-Forming Regions

1.0

0.8

0.6

h  0.4

0.2

0.0

- 0.2

v [cm 1 
3500 3200 2900 2600

O-H stretch C-H
stretches
Red wing

3.0 3.3
A [pm]

3.6 3.9

Figure 3.1: An illustration depicting the approximate wavelength ranges occupied by 
the various relevant (to this study) sub-features of the 3-micron ice absorption feature. 
The black line is one of the optical depth spectra from the VLT observations (see Sec
tion 3.3) analysed in this chapter. The rectangles show the wavelength ranges occupied 
by the features indicated in their respective annotations. In the context of this chapter, 
the O-H stretch is the feature associated with the presence of both H2O and CH3OH 
ices, while the C-H stretches are associated with only CH3OH ice. The parts of the 
red wing not covered by any other feature are of a largely unknown origin (see Section 
3.4.2.4), and introduce a degeneracy into the analysis of especially the C-H stretches. 
The blue wing has relevance in ice spectrum fitting, as will be discussed in Section 3.3.
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3.47jUm (e.g. Brooke, Sellgren, and Geballe, 1999; Pontoppidan, van Dishoeck, and 

Dartois, 2004). They are also often masked in observations by the strongly scattered 

’red wing’ or ’red shoulder’ of H2 O (e.g. Tanaka et al., 1990), stretching from the 

O-H stretch peak at ~  3jum as far as ~  3.9jitm. No physical model currently exists 

which is capable of fully explaining the nature of the red wing, although it has been 

suggested that it may be the result of scattering and/or ice thickness effects (e.g. Dar

tois et al., 2002; Smith, Sellgren, and Tokunaga, 1989; Thi et al., 2006). Features 

such as the 3.47-micron C-H stretch are sometimes detectable as a slight bump on top 

of the red wing, and can be at least partially decomposed from the red wing using 

e.g. the "Brooke method"(Brooke, Sellgren, and Geballe, 1999; Grim et al., 1991), in 

which a polynomial is fitted to the red wing and the optical depth of the residual is 

examined. This method has been used to detect CH3 OH ice towards high mass stars 

(Brooke, Sellgren, and Geballe, 1999), low mass stars, (Oberg et al., 201 la; Pontopp

idan, van Dishoeck, and Dartois, 2004; Pontoppidan et al., 2003a, 2005) background 

stars (Chiar, Adamson, and Whittet, 1996; Grim et al., 1991) and even in extragalactic 

sources (Shimonishi et al., 2010, 2013; van Loon et al., 2005).

From all this we can see that, whichever wavelength region is employed, degen

eracy in the relevant features interfere with determining methanol ice abundances in 

the ISM. Obviously it would be ideal -as Boogert et al. (2008) and Bottinelli et al. 

(2010) show- to simultaneously analyse both the 9.75 and 3.53 (im  methanol features, 

but observational wavelength coverage, required ground-based observing time, and in

strument sensitivity, have precluded this in all bar the 16 exceptional cases reported 

by Boogert et al. (2008) and Bottinelli et al. (2010). While the James Webb Space 

Telescope with its MIRI and NIRSPEC instruments is set to open up simultaneous ob

servations of both the 3 and 9 micron bands, our only other option in advance of that 

is to try and cross-check and co-determine methanol ice abundances against multiple 

ice features fitting in a range narrow enough to be detectable in a reasonable time with 

a single telescope.

A fairly recent result presented in Cuppen et al. (2011) opens up this avenue for
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Figure 3.2: An illustration depicting the approximate wavelength ranges occupied by 
the two relevant (to this study) sub-features in the C -0 stretch ice absorption feature. 
The black line is one of the optical depth spectra from the VLT observations (see Sec
tion 3.3) analysed in this chapter. The rectangles show the wavelength ranges occupied 
by the features indicated in their respective annotations. In the context of this chapter, 
the middle component is covered by pure CO ice. The red component (not to be con
fused with the red wing of the O-H stretch) is covered by a mixed CO ice such as the 
COiCH^OH mixture presented in Cuppen et al. (2011).
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us, by showing that a COiCHsOH mixture can explain the "red component" (not to 

be confused with the 3-micron red wing) often found as part of the 4.67 micron C-0 

stretching feature. See Figure 3.2 for an illustration of the two C-O stretch components 

relevant to this chapter. Most of the C -0  stretching mode absorption peak traces pure 

carbon monoxide (CO) ice, but the feature often shows a slight shoulder on the red 

side of the main peak. The mixture used by Cuppen et al. (2011) provided a possible 

explanation for a previous problem (e.g. Fraser et al., 2004) pertaining to reproducing 

the red component without producing an additional feature around 2152 cm - 1  never 

detected in astronomical spectra. The red component has historically been thought to 

be produced by a CCkF^O ice mixture, which produces in addition to the red compo

nent the un-observed feature at 2152cm-1 . The results of Cuppen suggest that CO in 

interstellar ices resides instead of a water-rich environment in a methanol-rich environ

ment, where CH3 OH forms mainly as a result of grain surface reactions involving CO 

instead of e.g. from UV processing of H2 O. This is in line with laboratory experiments 

on CO hydrogenation (Fuchs et al., 2009; Hiraoka et al., 2002; Watanabe and Kouchi, 

2002).

Furthermore -although Cuppen did not test this- any CO.CH3 OH mixture fitted to 

the the 4.7 jLtrn region is also expected to show in the 3 micron region, now providing 

us with two "measuring sticks" in determining CH3 OH abundances. Making use of 

previously published AKARI and VLT observational data of both the 3 and 4.7 micron 

regions, the first objective o f this chapter is to study what the effects o f the CO.CH^OH 

mixtures o f Cuppen et al. are on ice fits done to the 3 micron absorption features.

In addition to producing features in the C-H stretches looked at by the Brooke 

method, methanol also contributes absorption to the 3-micron O-H stretching modes. 

This is often overlooked by studies making use of the Brooke method, despite the 

O-H stretch contribution of methanol necessarily replacing some of the absorption of 

water; the main contributor to the O-H stretch. An improvement to this would be 

to simultaneously consider the contribution of water to the 3-micron features while 

fitting them with the CO:CH3 0 H mixture. Thus, the second objective o f this chapter



68 Chapter 3. Methanol Ice in Star-Forming Regions

is to attempt a simultaneous fit o f multiple ice components to the 3-micron features, in 

order to reproduce as much o f the observed absorption as possible.

This chapter is structured as follows. Section 3.2 presents further background in

formation about the role of methanol as a bridge between the chemistry of the solid 

state and gas phase. In Section 3.3 I discuss the observational data set and spectrum 

fitting scheme used for the rest of the chapter. In Section 3 .4 1 present the results of the 

fit and in Section 3.5 I discuss these results, by examining the quality of the fits and 

comparing them to previous studies. Finally, I summarise the outcome of the study 

and present my conclusions and their astronomical relevance in Section 3.6.

3.2 Methanol as a bridge between the solid state and 

gas phase

Methanol is an ideal candidate molecule to link gas-grain processes. It has been de

tected in both the gas-phase and solid-state in star-forming regions, and (at least in low 

temperature cold-gas environments) there is no viable formation route in the gas-phase 

(Turner, 1998). Laboratory experiments (Fuchs et al., 2009; Watanabe and Kouchi, 

2002), coupled with models (Cuppen et al., 2009; Fuchs et al., 2009) prove that 

CH3 OH formation is dominated by the hydrogenation of CO-ice through HCO and 

H2 CO intermediates to form CH3 OH. The laboratory yields from such experiments 

feasibly account for the abundances of CH3 OH ice reported from observations of cold- 

envelopes towards low-mass YSOs. Both models and laboratory studies therefore point 

towards scenarios where methanol will form ices which are either rich the methanol 

itself, or dominated by CO:CH3 0 H ice mixtures on top of a water-dominated ice layer. 

Furthermore, temperature programmed desorption studies show that the methanol rich 

ice layer has a porous amorphous structure that can trap more volatile species (e.g. 

Fraser et al., 2004) much like water ice (e.g. Burke and Brown, 2010; Collings et al., 

2003a, 2004; Viti et al., 2004), although once the methanol starts mixing directly with
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water ice some volatiles are actually trapped less effectively and released sooner to the 

gas-phase (Burke and Brown, 2015). All this leads to the picture of ice evolution illus

trated in the top row of Figure 3.3, depicting the evolution of these three constituents 

(CO, H 2 O, and CH 3 OH) of ISM ices during the pre-stellar and early YSO phases.

This cartoon is a simplification of the true ISM situation, but it serves as an excel

lent benchmark for both the methodology and the discussions in the remainder of this 

chapter. It is important to note that this figure illustrates the picture built up currently 

from astrochemical modelling and laboratory experimental viewpoints. Starting with 

ice formation on a bare grain:

(a) Initially H2 O ice formation dominates on the dust. At this stage, although we 

know that other reactions may occur, they are neglected since their products are 

not traced by the data considered in this study. The water ice formed here is both 

porous and amorphous. We assume, that CO hydrogenation will be competing 

with H2 O formation, and consequently any CO molecules that might accrete at 

this stage are most likely to react and form CO2  (via HCO + OH) rather than 

CH3 OH, as suggested by laboratory experiments where the relative rates of wa

ter, CO2  and methanol formation have been measured (e.g. Ioppolo et al., 2 0 1 1 ; 

Noble et al., 2012). A very small fraction of methanol may form at this stage, 

embedded in the water ice at very low concentrations, this methanol is not ex

pected to be detectable in observations.

(b) As the oxygen atoms become depleted (and therefore no longer available to re

act to form H2 O, OH, or CO2 ), densities are also increasing while temperatures 

decreasing. As the densities approach the critical freezeout density of CO, in

creasing quantities of CO accrete to the H2 O ice surface. If these CO molecules 

are hydrogenated, we will start to form a thin layer of CH3 OH -  this methanol 

can most likely be considered to be mixed with CO or possibly H2 O. As in the 

previous step, these small quantities of CH3 OH are most likely undetectable via 

observations.



70 Chapter 3. Methanol Ice in Star-Forming Regions

Before critical 
freezeout

After critical 
freezeout

After energetic 
processing

After 
ice heating

CO + ch3oh -
H20 + ChUOH

i k ' d  <jk ty

CH3OH M y

h2o t r ^ a C k h2o r y ^ ^ C k h2o r y ^ a C k h2o r y ^ n C k

i *  CH3OH M y
H20 + CH3OH
“ * J k

h20  r y ^  Q C k h2o r y ^ ^ C kh2o r y ^ ^ ( % h2o Cfe

Figure 3.3: A cartoon diagram illustrating the evolution of the ice mantle on a dust 
grain at four key points during early star formation. The top row shows a scenario 
based on a combination of modelling and laboratory results in the literature, and the 
bottom row shows a scenario based on observations of methanol ice, as discussed in 
Section 3.2. The leftmost column shows the state of the ice before critical freeze
out of CO has happened, followed by the scenario immediately after freezeout in the 
second column. The third column shows the situation following dust and ice heating 
following the ignition of the YSO. The fourth column shows the situation following 
energetic processing by UV radiation from the protostar. Only ice components con
taining the ices of interest to this study (CO, CH3OH, and H2O) are shown, even in 
situations where other ices (most notably CO2 and various COMs) are expected to be 
present. The relative thicknesses of the ice layers illustrated here are not representative 
of the expected relative abundances of their respective ice components; the layers only 
indicate the potentially detectable presence of the ice.
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(c) As densities continue to increase, CO critically freezes out forming the "classi

cal" ISM ice of a H2 O bottom layer with CO ice on top. Sandwiched between 

these layers is the very thin layer of CH3 0 H:H2 0  or C0 :CH3 0 H mixed ice 

(formed in the previous step), but at most likely undetectable concentrations.

(d) The thick CO ice layer formed as a result of critical freezeout in the previous 

step is hydrogenated throughout the process, producing mixed C0 :CH3 0 H ices 

which account for most of the CH3 OH observed in the ISM.

(e) The CO ice continues to accrete, but the surrounding gas-phase medium will run 

out of atomic hydrogen before it runs out of CO, and hydrogenation of the CO 

ice ends. This leads to a "pure" CO ice layer on top of a CO.CH3 OH ice layer, 

and the (unchanged) layers beneath it.

(f) As the cloud core continues collapsing, it heats up as the YSO in the center is 

ignited. This heating causes some CO to desorb, but some migrates into the 

porous water ice (and the CH3 OH layer) where it eventually becomes trapped 

(e.g. Burke and Brown, 2010, 2015; Codings et al., 2003b,a; Fraser and van 

Dishoeck, 2004). Consequently the pure CO ice layer disappears, leaving a 

COiCHsOH layer, and a CO:H2 0  layer. These processes eventually lead to a 

complex morphology, but in simple terms it can be represented by four layered 

ice components: H2 O, H2 0 :CO, H2 0 :CH3 0 H, and CH3 0 H:CO.

(g) The ices are next energetically processed by mainly UV radiation and electrons, 

leading to additional CH3 OH formation from reactions between the trapped CO 

and the H2 O ice matrix (e.g. Palumbo, Castorina, and Strazzulla, 1999; Palumbo 

et al., 2008), as well as processing of the CH3 0 H:CO layer to potentially pro

duce radicals and COMs. These processes compete with thermal processing and 

thermal/non-thermal desorption mechanisms so that both the ice and gas phase 

end up having very rich chemistry.

(h) Eventually the various desorption mechanisms release all the remaining ice con
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stituents to the gas phase.

Of the steps outlined above, (a)-(e) apply to the pre-YSO stages shown in Figure 3.3, 

while steps (f) and (g) apply to the post-YSO stages in it.

Once formed, CH3 OH is purported to be the ’seed’ molecule for COMs (Aikawa 

et al., 2012b; Garrod, 2013; Garrod and Herbst, 2006; Garrod, Weaver, and Herbst, 

2008), either directly, via the desorption of products from energetic surface reactions, 

as illustrated by laboratory experiments (e.g. Hudson and Moore, 1999; Palumbo, Cas- 

torina, and Strazzulla, 1999), or via methanol desorption, followed by its gas-phase 

photo-dissociation and subsequent gas-phase reactions of the photo-products (e.g. Gar

rod, Weaver, and Herbst, 2008; Geppert and Larsson, 2008). Very recent experiments 

(Fedoseev et al., submitted) hint for COM formation also in atom addition schemes. 

Without methanol ice, current astrochemical models fail to generate most of the gas- 

phase COMs observed in star-forming regions. To generate sufficient COMs to match 

model and observational abundances, the same chemical reaction schemes then sig

nificantly overestimate both the gas- and solid-phase CH3 OH abundances (Garrod, 

Weaver, and Herbst, 2008). As recent models (Drozdovskaya et al., 2014) show, 

methanol chemistry (and abundance) is very sensitive to the local prevailing physical 

conditions. So, have we "missed" some of the CH3 OH ice in our abundance determi

nations, or not yet fully understood all the chemical mechanisms that link solid-state 

CH3 OH formation to the plethora of processes that eventually lead to the detection of 

gas-phase COMs in star-forming regions (e.g. Hocuk, Cazaux, and Spaans, 2014)?

Both options probably contain a grain of truth; it is known that CH3 OH can also 

be generated in the solid-state by energetic processing (by UV photons, ions, elec

trons or X-Rays) of ices containing (some combination of) H2 O, CH4 , CO and CO2  

(e.g. Hudson and Moore, 1999; Palumbo, Castorina, and Strazzulla, 1999; Pearce et 

al., 2012; Wada, Mochizuki, and Hiraoka, 2006), which in certain star-forming envi

ronments could enhance methanol ice abundances. However, the observed gas-phase 

and solid-state abundances of CH3 OH can vary by many orders of magnitude (>4-
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6 ), depending on the spatial resolution of the observations (e.g. Aikawa et al., 2012b; 

Suutarinen et al., 2014; van Kempen et al., 2014). Without exception, gas-phase abun

dances are determined from emission spectra of CH3 OH tracing relatively small spatial 

scales and a much wider range of physical conditions than those that can be inferred 

from ice observations, where features are detected in absorption, across an entire star- 

forming envelope. The abundances of ice molecules can be reliably estimated from the 

observed infrared absorption features which arise from vibrations associated with the 

functional groups in molecules that comprise the icy surfaces of the interstellar dust 

grains. However, the process is complicated by the fact that the precise shape of the 

observed spectral lines depends on both the chemical (ice mixture, processing history 

and morphology) and physical (temperature, porosity, dust scattering and grain-shape 

effects) attributes of the observed granular medium. Without exception, gas-phase 

abundances are determined from emission spectra of CH3 OH tracing relatively small 

spatial scales and a much wider range of physical conditions (which are usually much 

better constrained) than those that can be inferred from ice observations, where fea

tures are detected across an entire star-forming envelope. It is difficult to compare 

these two different scales of spatial resolution, and perhaps this is where some of the 

conflicts between our picture of methanol ice environments built from the laboratory 

and astrochemical models, versus the picture from observational data arise.

Observational studies of methanol ice (e.g. Bottinelli et al., 2010; Dartois et al., 

1999; Pontoppidan et al., 2003b; Shimonishi et al., 2010; Sonnentrucker et al., 2008) 

suggest a somewhat different morphology and environment for CH3 OH compared to 

the modelling/laboratory based picture painted above. It seems from observational 

data to date that most of the CH3 OH ice is in either a "pure" segregated ice layer or 

mixed with CO and CO2  in the so-called apolar ice environment, with a relatively 

small fraction (if any) mixed with water ice. Furthermore, since all of these studies, 

when analysing the methanol ice environment, have excluded the Cuppen et al. (2011) 

result pertaining to the CO:CH3 0 H-ice environment, they have therefore assumed the 

CO also exists in two key component environments -  one water rich, another water
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poor. There is already a disconnect between our analysis of ice environments from 

observational data of different ice components, as well as a disconnect between the 

modelling/laboratory and observational picture. The second row of cartoons of Figure

3.3 shows how the observational picture differs from the modelling/laboratory one. In 

this picture the pre-YSO phases of ice evolution (as far as CO, CH3 OH and H2 O are 

concerned) are functionally identical, but in the post-YSO phases the picture is dif

ferent. With the heating of the dust grain, instead of forming an intermingled "goo" 

where everything is effectively mixed with everything, CH3 OH is considered to seg

regate into its own layer, while the CO mixes with the water layer, leaving us with a 

pure CH3 OH layer, a H2 0 :C0  layer, and a pure H2 O layer. The energetic processing 

phase of ice evolution would cause some of the H2 0 :CO mixture to react with itself, 

forming CH3 OH and thus causing the formation of what is effectively a H2 0 :CH3 0 H 

layer. While the structure of the ice would be different, it would still contain the same 

layers as those predicted by modelling and laboratory experiments.

The aim of the remainder of this chapter is to use these two scenarios as the basis 

of an exploration of numerous different ice models which will be tested against obser

vational data, and build a complete picture of CH3 OH formation and evolution prior 

to complex organic chemistry, i.e. up to before the energetic processing phase of ice 

evolution. The range of abundances, ice environments and distribution of methanol 

ice, together with other common ice species, such as CO and H2 O, can be inferred 

by combining observational and laboratory spectra, if the statistical sample of ice ob

servations is large enough. Here I add 23 new methanol ice estimates (some of them 

upper limits) to the data already existing in the literature, on lines of sight towards both 

low-mass YSOs and background stars.
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3.3 Methodology

3.3.1 Observations

The observational data used for this study consists of AKARI near-IR spectra, which 

have been previously published in Noble et al., 2013, and of VLT-ISAAC spectra par

tially published in Pontoppidan et al., 2003a. The total number of sources in these data 

sets is 52, with 23 of them being from AKARI and 29 from VLT. The lists of exam

ined AKARI and VLT sources are presented in Tables 3.1 and 3.2, respectively. All 

the AKARI data used is pre-reduced in the study presented in Noble et al. (2013), in

cluding the continuum fits used in determining the optical depths. Some of the sources 

presented in Noble et al. were not analysed with the methodology used in this study 

because of missing or very poor quality data in either the C -0 stretch or 3-micron fea

tures since, as will be elaborated on in the upcoming sections, data from both features 

is required. The VLT data I used is pre-reduced for the study presented in Pontopp

idan et al. (2003a), but the continuum baseline to that data was reconstructed in this 

study, using polynomial fits with fitting ranges manually designated for each source in 

order to best avoid interference from gas phase emission lines and other artefacts left 

in the spectra. Only the VLT data which contained both the C -0 stretch and 3-micron 

features were included in this study.
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Fitting a continuum baseline to the VLT data in the O-H stretch region also re

quired extrapolation of the observed flux into wavelength ranges blocked by Earth’s 

atmosphere and beyond the spectral coverage of the VLT-ISAAC detector. This is 

detailed in the following subsection.

3.3.2 Extrapolation of O H  stretch blue wing in V LT

Features originating from atmospheric water prevent acquisition of useful spectro

scopic data below ~  2.8 /im  (> 3550 cm-1 ) in the VLT observations of the 3-micron 

features. The lack of data points beyond the blue wing of the O-H stretch absorption 

feature (see Figure 3.1) results in uncertainty of fitting an accurate continuum baseline 

to the observed spectra and thus affects the derived optical depths.

My method (illustrated as a flowchart in Figure 3.4) for estimating the baseline 

around and thus the optical depth of the OH stretch relies on making a reasoned esti

mate of the source flux at 2.7 jim , where I expect the optical depth (t)  to be zero in all 

cases. I tested the quality of this estimate by fitting a baseline in the form of a 3rd order 

polynomial to the observed spectrum between 3.70 and 3.95 jum, and by also forcing 

the fit to pass through the extrapolated point at 2.7 jim . Using the baseline fitted in this 

way I calculated the optical depth of the OH stretch feature, and attempted to fit a pure 

water ice laboratory spectrum (more details will be presented in Section 3.4.2.1) to a 

narrow part of the blue wing of the OH stretch, between 2.80 and 2.95 jLim. I assumed 

that the best possible fit of the laboratory water spectrum to this stretch of the blue 

wing corresponds to the best possible baseline fit, and with this assumption in mind set 

the extrapolated flux at 2.7 jim  to be the one which provides the best fit for pure H2 O 

at the blue wing.

The extrapolation method relies on several assumptions and it is thus prudent to 

examine the uncertainties associated with it. I compared two border cases of extrapo

lated 2.7 jim  fluxes: one where the flux equals zero and one where it equals the flux of 

the same spectrum at 3.7 jUm, where t  =  0 on the red side of the 3-micron feature. An
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Table 3.2: Information about the VLT sources which are used in this study. Reproduced 
mostly based on Pontoppidan et al. (2003a). These sources are all YSOs.__________

VLT Simbad «J2000 <5j2000 H
name name (degrees) (degrees) (mJy)
CRBR 2422 CRBR 2422.8-3423 246.852554 -24.684281 ?
EC 82 CK 3 277.487029 01.246222 49.694*
EC 90A [B96] Serpens 7 277.490571 01.234914 205.826*
EC 90B [B96] Serpens 7 277.490571 01.234914 205.826*
Elias 32 [B96] OphB2 5 246.868525 -24.455842 12.198*
GSS 30 IRS 1 BKLT J 162621-242306 246.589250 -24.385110 47.676i
HH 100 V* V710 CrA 285.461158 -36.969336 36.199°
HH 46 HH 46 126.43271 -51.00908 ?
IRAS 08375 [LLN92] IRS 13 129.8350 -41.33140 ?
IRAS 08448 [LLN92] IRS 17 131.6408 -43.90920 ?
IRAS 08470 [LLN92] IRS 19 132.2008 -43.54030 7

IRS 42 BKLT J 162721-244142 246.839454 -24.695297 32.501*
IRS 43 BKLT J 162726-244051 246.862233 -24.680783 4.006*
IRS 44 BBRCG 49 246.866779 -24.659308 3.460*
IRS 46 BBRCG 52 246.872646 -24.654497 9.026*
IRS 48 BKLT J 162737-243035 246.904958 -24.509731 305.000*
IRS 51 BKLT J 162739-244316 246.915950 -24.720853 14.371*
IRS 54 BKLT J 162751 -243145 246.965854 -24.529314 34.253*
IRS 63 GWAYL 4 247.89854 -24.02481 14.135*
L 1489 [BBM92] 8 061.179462 +26,315664 6.642d
R Cra IRS 5A [B87] 7 285.450233 -36.956097 3.298*
R Cra IRS 5B [B87] 7 285.450233 -36.956097 3.298*
Reipurth 50 HBC 494 085.114376 -07.458349 ?
SVS 4-5 [EC89] SVS 4-5 277.48996 +01.21683 ?
SVS 4-9 [EC89] SVS 4-9 277.491075 +01.214278 10.624*
TPSC 78 TPSC 78 083.807423 -05.394442 ?
VSSG 1 ISO-Oph 24 246.578625 -24.472136 108.918*
VSSG 17 [B96] OphB2 6 246.875750 -24.462047 25.369*
WL 12 BBRCG 4 246.684146 -24.580097 3.208*
(a1 Cutri (2003) ^  Barsony, Ressler, and Marsh (2005) Beckford et al. (2008) 
^  Connelley, Reipurth, and Tokunaga (2008) (*) Haas et al. (2008)
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Figure 3.4: A flowchart describing the OH stretch optical depth estimation process for 
VLT data. The process is split into separate "inner" and "outer" fits. The outer fit loop 
attempts to find a best-fit solution to a single extrapolated point of flux at 2.7 /im, where 
I assume t  =  0. It does this by starting with a reasoned estimate of the extrapolated 
flux, fitting a 3rd order polynomial to the observed flux while forcing the fit to pass 
through the extrapolated point, and then calculating an optical depth spectrum from 
the continuum fit. It then feeds the optical depth spectrum to the inner fit loop, which 
attempts fitting a pure H2O laboratory spectrum to a narrow part of the blue wing of 
the 3-micron absorption feature. After finding the best fit, the best-fit parameters are 
returned to the outer fit loop. A x 2 value is calculated from the best-fit parameters, and 
the process is iterated by varying the 2.7 jim  flux until the lowest x 2 is found. I assume 
this extrapolated flux to be the best estimate of the real flux at that point, and calculate 
the final optical depth from it. This optical depth is used in all further analysis.



80 Chapter 3. Methanol Ice in Star-Forming Regions

1 . 0

0 . 8

0 . 6

0 . 2

0 . 0

- 0 3.0 3.43.2 3.6 3.8 4.0 4.2
A [/an]

Figure 3.5: An example of the variation introduced to the optical depth of one of the 
VLT sources (EC 90A) when using either the maximum (red) or minimum (blue) con
straint of the extrapolation method discussed in Section 3.3.2. The black line shows the 
best-fit extrapolated optical depth spectrum, which was used for the analysis conducted 
in all later sections of this study.

example of the potential range of variations in the derived optical depth in this range 

is show in Figure 3.5. The typical maximum possible systematic deviation in derived 

optical depths caused by this extrapolation method is approximately 50 %.

3.3.3 Fitting scheme

To answer the questions posed in the beginning of this chapter, and to gain a better 

understanding of the chemical evolution scenarios discussed in Section 3.2, the obser

vational data discussed above is fitted with a combination of analytical and laboratory 

spectra. All fitting methods described in this chapter -with the exception of my im

plementation of the CH3OH fitting method of Brooke, Sellgren, and Geballe (1999), 

which will be discussed separately- follow the same general scheme. The only changes 

between tested models are the specific components being fitted to the 3-micron region
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of the observed spectra. Furthermore, each fitting method is applied in an identical 

"one size fits all" fashion to each object that is being examined, with the same (for 

each object) pre-fitting procedures being followed prior to minimization and the re

sults of the minimization being analysed using identical methods.

In my fits I make use of my custom-built ice spectroscopy fitting library, written 

in P y t h o n  and utilizing the constrained least-squares fitting library LMFIT. This soft

ware is fully documented at the end of this thesis, in Chapter A. As most of my fitted 

spectra have been acquired from laboratory data, I follow laboratory astrochemistry 

standards in presenting the results and thus in most places use reciprocal wavenumbers 

(in units of cm-1 ) instead of wavelengths when discussing the x axis. When perform

ing a fit, the target spectrum under scrutiny is fed into the library and a fitting range is 

selected.

In many cases -such as the C-O stretching mode absorptions- the entire feature is 

included in the fitting range, but the O-H stretching mode that comprises a major part 

of the 3-micron feature is often saturated and thus including its peak in the fitting range 

would provide unrealistic fitting results. With this in mind I chose the range of the C- 

O stretching mode fits to be 2040 — 2250 cm - 1  (4.45 — 4.90 jUm), fully covering any 

features I wish to fit to the C -0  stretch. For the O-H and C-H stretching mode fits I 

chose the fitting ranges to be 2820 — 2845 cm - 1 and 3400 — 3600 cm- 1, respectively. A 

C-H stretching mode between 2820 and 2845 cm - 1  was included in the fitting regions 

because this feature was noticed to be the constraining factor for fitting CH3 OH data 

into the red wing. Choosing the entirety of the red wing as a fitting range produced 

poor-quality fits because no published physical model is capable of reproducing the 

full range of observed absorption features in the red wing. The second range -between 

3400 and 3600cm-1 - is the blue wing of the O-H stretch illustrated in Figure 3.1. 

The frequency range between the two fitting ranges is considered to be a part of the 

saturated peak of the O-H stretch or a part of the unknown red wing, and is ignored in 

the fitting models.

Generally speaking, the models being fitted to observed spectra are a sum of one
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or more analytical and laboratory spectra. The analytical and laboratory spectra are 

all interpolated and convolved to match the resolution and PSF (point spread function) 

of the observed spectrum. The fitting parameters are constrained to prevent the fitting 

of non-physical (i.e. with negative ice absorption) spectra to the observations. The 

spectra also have a CDE (continuously distributed ellipsoids; e.g. Tielens et al., 1991) 

grain-shape correction applied to them, in order to better approximate the properties 

of interstellar dust grains and their ice coating. The finer points of the methodology 

behind CDE correction were discussed in greater detail in Chapter 1 Section 1.4.3, and 

thus will not be reiterated here.

The C -0 stretching mode fit in all cases consists of two individual components, 

the approximate locations of which on an observed ice spectrum are illustrated on 

Figure 3.2. The first component is a CDE-corrected Lorentzian, which describes the 

contribution of pure CO ice to the "middle component" (Pontoppidan et al., 2003a) of 

the C -0  stretch. The function is presented in the form

t ( v )  =  h ‘ V -  3 2 e ( v ) . l£ g £ M
£ ( v ) - l

(3.1)

where h is the peak height of the function, v is the frequency (in cm-1 ), and 3  indicates 

that only the imaginary component of the equation contained within the brackets is 

considered. Finally, e(v) is the complex dielectric function for a Lorentz oscillator, as 

a function of frequency:
v 2

£(v) =  6o + —-----1------------------------------------- (3.2)
Vq -  v 2  -  yvi

which is described in further detail in Pontoppidan et al., 2003a. In my fitting routines 

I only allow h to vary, and fix the other parameters as y =  1.5 cm-1 , vp =  195 cm-1 , 

£o =  1.67, and Vo =  2138.5 cm-1 , as also defined and described in Pontoppidan et al. 

(2003a). Finally, i is the imaginary unit.

The second component of the C -0  stretch fit is the CO.CH3 OH laboratory spec

trum (presented in Cuppen et al., 2011) with a mixture ratio 1:1. While the ratio of 

the ice mixture producing the red component on interstellar ices is almost certainly not
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always 1 :1 , there was no practical way to define the mixing ratio as a free parameter 

because different ratios cause the shapes of the absorption features to change subtly. 

Furthermore, I expect 1:1 to be a good enough simple approximation of the ice ma

trix producing the red component, because of the formation of methanol being closely 

connected to CO. The laboratory data is fitted to observations by means of a single free 

parameter in the form of a multiplier, k , which is fixed in the C -0 stretch fit and car

ried over to be used in fitting additional components to the 3-micron region, where the 

C0 :CH3 0 H mixture also shows absorption features. If a different mixing ratio than 

1 : 1  were to be used, the fitted data would have slightly different line shapes and (more 

importantly) the magnitude of effect the mixture has to the 3-micron region would 

change. If a mixture containing more CO than CH3 OH were to be used, the effect the 

fit (constrained by the C -0  stretch) has on the 3-micron region would be decreased, 

while increasing the amount of CH3 OH relative to CO would cause the strength of the 

fitted features in the 3-micron region to become increasingly pronounced, until they no 

longer fit within the limits of observations.

The specific additional components used to fit the 3-micron O-H stretching mode 

and its associated red wing depend on the model being evaluated, but in each model 

they are all laboratory ice spectra. Four such models are examined. The first one 

(dubbed "Model 1") is the most basic of these models, and its primary purpose is 

to verify the hypothesis of Cuppen et al. (2011) by carrying over the C0 :CH3 0 H fit 

from the C -0  stretch result to the 3-micron region, and fitting pure H2 O ice (Noble 

et al., 2013) to the residual left over when the contribution of the C0 :CH3 0 H fit is 

considered.

The second model (Model 2) adds a third component to the O-H stretch: a pure 

CH3 OH spectrum. This model serves as the simplest method of trying to fit as much 

of the red wing residual as possible, by allowing the C-H stretching features of the pure 

CH3 OH ice to fill in as much of the observed optical depth as possible. This model 

is also the one closest to the post-heating observational scenario presented in Figure

3.3 and discussed in Section 3.2, except with the H2 0 :C0  mixture replaced with a
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Table 3.3: Summary of used fitting components in the O-H stretch band. All models 
used the same fitting components (pure CO and mixed C0 :CH3 0 H) in the C -0  stretch 
band. _____ ____________________________

Model
1 2 3 4

|  CO:CH3OH / / y y
g Pure H20 / y
g Pure CH3 OH
Q CH3 0H:H20 y y

CH3 0 H:C0  mixture.

Model 3 replaces the pure CH3 OH and H2 O components of Model 2 with a mix

ture of CH3 0 H:H2 0  (Dawes et al, in prep.). Four different mixing ratios (expressed 

in terms of N(CH3 0 H)/N(H2 0 ): 17%, 23%, 31%, and 50%) were available for exam

ination. Although unrealistic in terms of our understanding of ice formation (because 

it lacks a pure H2 O component), this model was considered as a test of having a min

imal number of fitting parameters while still trying to fill as much of the 3-micron red 

wing as possible. Furthermore, it serves as a showcase example (which will be further 

illustrated in Section 3.4) of how a mixture of two ices (in this case H2 O and CH3 OH) 

produces a very different line shape than an equivalent linear combination of its re

spective pure ices. Model 4 is the more realistic variant of Model 3, and contains the 

pure H2 O component used Models 1 and 2 in addition to the components of Model 3.

The components used in all four models are summarised in Table 3.3.

3.3.4 Calculation of column densities

One of the objectives sought by my fitting methodology is to allow me to calculate 

N(CO, solid), A(H2 0 , solid), and A(CH3 0 H, solid) towards all the sources consid

ered in this study. The method for calculating the column density is slightly different 

between different components.

Column densities are estimated from the fitted laboratory spectra by applying the 

formula

A!(X) = k - 'fT ( V)dV, (3.3)
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where /  t (v )d v  is the optical depth of the laboratory spectrum integrated over the rele

vant mode (e.g. the O-H stretch) for Ax, which is the band strength or "A-factor" of the 

relevant molecule and mode. Lastly, k is the multiplier of the spectrum acquired from 

the best-fit result. For the O-H stretch of the pure H2 O and the C-H stretches of the pure 

CH3 OH spectra the band strengths are 2 .0 -10- 1 6  cm2  and 5.3 x 10~ 18 cm2, respec

tively (Gerakines et al., 1995). For the mixed spectra (COiCHsOH and CH3 0 H:H2 0 ) 

I used values for ^ T̂ dv (also known as the number of oscillators) instead of the 

band strengths. For the CH3 OH in the CH3 0 H:H2 0  data the oscillator numbers are

9.04 x 1017, 8.95 x 1017, 4.70 x 1017, and 2.66 x 1017 cm - 2  for the mixing ratios 

17, 23, 31, and 50% respectively. For H2 O the oscillator numbers are 9.04 x 1017, 

8.95 x 1017, 4.70 x 1017, and 2.66 x 1017 cm-2 , respectively. For the CO:CH3 0 H 

spectrum, the oscillator number for both CO and CH3 OH is 5.183 x 1017 cm-2 . Un- 

like with the A-factors, column densities calculated using the oscillator numbers are 

not dependent on integrating over a specific feature, but are calculated by simply mul

tiplying the best-fit k with the relevant oscillator number.

For the CDE-corrected Lorentzian representing pure CO, N(CO) is calculated using 

(Pontoppidan et al., 2003a)

N(CO)  =  6.03 cm - 1  X ^eak X^CO’ (3*4)

where Tpeak is the peak optical depth of the fitted CDE-corrected lorentzian function, 

Aco =  1.1 x 10“ 17cm molec- 1  is the A-factor for bulk CO (Gerakines et al., 1995), and 

the leading multiplication factor takes into account the CDE-correction, as described 

by Pontoppidan et al. (2003a).
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Figure 3.6: Fit results to the C -0 stretch of the AKARI data, presented as thumbnails. 
Pure CO is represented by a green line, and the 1:1 COiCFCOH mixture is represented 
by a red line. The observations are represented by the black line and overall fit is 
represented by the dashed blue line.

3.4 Results

3.4.1 The C-O stretch

The fit results to the C -0 stretch of each source are shown in Figures 3.6 and 3.7, 

for the AKARI and VLT data respectively. A closer look at the fit results to a single 

example source in both the AKARI and VLT data sets is presented in Figure 3.8. As is 

seen from the figure, the AKARI data has a much lower resolution than the VLT data, 

but identical fitting methods provide consistent results between them.
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Figure 3.7: Fit results to the C -0 stretch of the VLT data, presented as thumbnails. 
Pure CO is represented by a green line, and the 1:1 COiCF^OFl mixture is represented 
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represented by the dashed blue line.
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Table 3.4: The amount of CH3 OH in CO, as detected in the C -0 stretch fit, in all the 
sources considered in this study.

Source N(CH3OH in CO) 
[1 0 17 cm "2]

Source N(CH3OH in CO) 
[1 0 17 cm-2]

AKARI-02 2.62 ± 0 .26 CRBR 2422 2.93 ± 0 .22
AKARI-03 1.59 ± 0 .32 EC 82 <  1.03
AKARI-04 1.01 ±0 .58 EC 90A 0.91 ± 0 .06
AKARI-05 <  1.79 EC 90B 1.11 ±0 .09
AKARI-07 < 0.73 Elias 32 1.50 ±0.05
AKARI-08 < 0 . 6 6 GSS 30 IRS 1 <  0.28
AKARI-10 < 2 .69 HH 100 1.00 ±0.05
AKARI-11 <2.41 HH 46 4.24 ±0 .07
AKARI-12 <  1.63 IRAS 08375 1.57 ± 0 .12
AKARI-13 < 2 . 0 0 IRAS 08448 1.47 ±0.07
AKARI-14 2.62 ±0.49 IRAS 08470 < 0 .74
AKARI-16 <  1.99 IRS 42 0.27 ±0 .02
AKARI-17 <  1.52 IRS 43 < 0 . 6 8

AKARI-18 < 2 .48 IRS 44 < 0 .6 4
AKARI-19 1.19 ± 0 .40 IRS 46 <  1.07
AKARI-20 < 0 .77 IRS 48 < 0 .4 0
AKARI-22 <2.31 IRS 51 0.63±0.18
AKARI-23 < 0 .8 4 IRS 54 <  1 . 8 6

AKARI-25 <4.91 IRS 63 1.28 ±0.05
AKARI-26 2.65 ±0 .78 L 1489 1.71 ±0.05
AKARI-27 <  1 . 6 8 R Cra IRS 5 A <  1.55
AKARI-28 < 2 .09 R Cra IRS 5B 2.40 ±0.23
AKARI-29 < 0 .9 4 Reipurth 50 2.07 ±0 .05

SVS 4-5 5.77 ± 0 .14
SVS 4-9 2.71 ± 0 .20
TPSC 78 1.31 ± 0 .10
VSSG 1 <0.41
VSSG 17 < 2 .8 0
WL 12 < 0 .5 0
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Table 3.5: The amount of pure CO, as detected in the C -0 stretch fit, in all the sources 
considered in this study.

Source N(Pure CO) 
[1 0 17 cm-2]

Source N(PureCO) 
[1 0 17 cm "2]

AKARI-02 0.75 ±0.11 CRBR 2422 18.05 ± 0 .27
AKARI-03 1.59 ±0 .09 EC 82 1.51 ± 0 .04
AKARI-04 1.82 ± 0 .14 EC 90A 11.92 ±0 .06
AKARI-05 < 2 . 0 0 EC 90B 6.87 ±0 .07
AKARI-07 < 0 .8 2 Elias 32 11.09 ±0.05
AKARI-08 < 0 .73 GSS 30 IRS 1 < 0 .87
AKARI-10 < 3 .0 0 HH 100 8.14 ± 0 .04
AKARI-11 < 2 .69 HH 46 4.29 ± 0 .04
AKARI-12 <  1.82 IRAS 08375 12.27 ±  0.11
AKARI-13 2.30 ±0.41 IRAS 08448 1.46 ±0.03
AKARI-14 3.39±0.21 IRAS 08470 < 0 .99
AKARI-16 < 2 . 2 2 IRS 42 3.31 ±0.01
AKARI-17 2.61 ±0 .78 IRS 43 11.11 ±0 .09
AKARI-18 < 2 .7 7 IRS 44 2.37 ± 0 .04
AKARI-19 1 . 1 2  ±  0.16 IRS 46 <  1.43
AKARI-20 1.36 ±  0.12 IRS 48 0.59 ±0.01
AKARI-22 < 2 .5 8 IRS 51 34.15 ±0.23
AKARI-23 1.76 ±0.11 IRS 54 <  2.48
AKARI-25 < 5 .48 IRS 63 10.26 ±0 .05
AKARI-26 <  1.77 L 1489 3.56 ±0.03
AKARI-27 <  1.87 R Cra IRS 5 A 29.29 ±0 .32
AKARI-28 < 2 .33 R Cra IRS 5B 16.40 ± 0 .26
AKARI-29 2.24 ± 0 .12 Reipurth 50 3.40 ±0.03

SVS 4-5 9.86±0.12
SVS 4-9 17.02±0.21
TPSC 78 0.77 ± 0 .04
VSSG 1 <  0.55
VSSG 17 8.39±0.17
WL 12 5.06 ±0.07
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Figure 3.8: An example fit result of a pure CO (green line) and a 1:1 CO:CH3 0 H
mixture (red line) to the observed C -0 stretch of a source from the AKARI (AKARI- 
03, left) and VLT (EC 90A, right) datasets. The observations are represented by the 
black line and overall fit is represented by the dashed blue line.

As is shown in Table 3.4, the fitting method produced greater than 3o  peaks in the 

fitted CO.CH3OH component in a total of 6  cases of 23 in the AKARI observations 

and in 17 out of 29 cases in the VLT observations. Table 3.5 shows that most of the 

objects which do not produce a CCkCHsOH detection often also lack detection in pure 

CO ice, although the reverse is not always true. These fits also immediately show that 

the red component from Cuppen et al. (2011) works as expected when tested against 

the AKARI and VLT datasets, corroborating their results in the C -0 stretch.

3.4.2 The O -H  stretch

Four each of the four models examined in this study, the total column densities of CO, 

CH3OH, and H2O ices could be calculated, and are presented for each source as a 

ternary plot in Figure 3.9. This plot shows the relative contributions (as percentages) 

of each of the three ices to the total ice column density towards each source.
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#  Modell 
O Model2
#  Model3 
O Model4
V Pontoppidan 
□  Allamandola
O  Gibb

Figure 3.9: A ternary diagram showing the contribution of CO, CH3OH, and H2O to 
the total column density of ice, as defined by the sum of all three molecules, in all the 
sources and models examined in this chapter. Only cases where a non-upper limit value 
could be calculated for all three molecules were included. Models 3 and 4 have been 
calculated using the 23% CH^OHiF^O mixing ratio case. Also featured are values 
from Allamandola et al. (1992), Gibb et al. (2004), Pontoppidan, van Dishoeck, and 
Dartois (2004), and references therein, in cases where column densities for all three 
molecules were reported.
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Figure 3.10: Fit results of Model 1 to the AKARI data, presented as thumbnails. The 
CChCHiOH and pure H2O data are represented by red and cyan lines, respectively. 
The observed data and the overall fit are represented by a black and a dashed blue line.

3.4.2.1 Model 1

The fit results using Model 1 for each source are shown in Figures 3.10 and 3.11, 

for the AKARI and VLT data respectively. A closer look at the fit results to a single 

example source in both the AKARI and VLT data sets is presented in Figure 3.12.

This model is sufficient for fully explaining the observed 3-micron features of ob

jects (such as AKARI-10) where no red wing is present. The CCkCH^OH data does 

not overfit the red wing in any of the objects, showing that the red component fit from 

Cuppen et al. (2011) provides results consistent with the 3 micron features as well, 

but leaves a significant residual to the red wing. This is because the contribution of



3.4. Results 93

5.0
4.0
3.0
2.0 
1.0 
0.0
5.0
4.0
3.0
2.0 
1.0 
0.0
5.0
4.0
3.0
2.0 
1.0 
0.0
5.0
4.0
3.0
2.0 
1.0 
0 .0
5.0
4.0
3.0
2 .0  
1 .0  
0.0
5.0
4.0
3.0
2.0 
1.0 
0.0

-

l i^ C R B R  2422

-TT-T—

EC 82
- 1 1 1 T 'T | ■ « 1 1 _

EC 90A EC 90B

rr >■ ' ' i ■ ' . > _
GSS 30  IRS 1 HH 100

:

r*—'■ i ' ' ' ' r ' ' 1 ■ - 
IRAS 083 7 5

IRAS 084 7 0 IRS 42

■

' r  ’ r . -r i-r-r-r-
IRS 43 IRS 44

IRS 48

S .- , ---1----Xw—d — —

_ .-■» 1 1 1 1 1 1 1 1 1 1 _ 
IRS 51

: / V  ;

. ■ ' I ........... ... 1 ' • 1 _
IRS 54

'  v r * L . — .

IRS 63

R Cra IRS 5A R Cra IRS 5B

:

_ , i , i i , t | . . , . _
R eipurth  50

_ ' 1 IT L

- , < 1  . .

-i—r-|—r i i . _
SVS 4-5

1 ■' ’ T 1 T_I r ■ ■ -
TPSC 78 

--------- :

VSSG 1 VSSG 17 

—

WL 12

: , A = . —

Elias 32

IRAS 084 4 8

IRS 46

L 1489

SVS 4-9

3.0 3.5 4.0

3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0
A [/an]

Figure 3.11: Fit results of Model 1 to the VLT data, presented as thumbnails. The 
C0 :CH3 0 H and pure F^O data are represented by red and cyan lines, respectively. 
The observed data and the overall fit are represented by a black and a dashed blue line.
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Figure 3.12: An example of the fitting results of Model 1 (Section 3.4.2.1) to a single 
source from the (left) AKARI and (right) VLT data examined in my study. These 
sources are the same as those shown in Figure 3.8. The CChCH^OH and pure H2O 
data are represented by red and cyan lines, respectively. The observed data and the 
overall fit are represented by a black and a dashed blue line.

the C-H stretching features of the fitted COiCH^OH ice to the red wing absorption is 

negligible at the considered ice mixing ratio of 1:1. A significant residual is left in the 

red wing, and must be caused by absorption originating from something other than the 

ices considered in Model 1.
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The total contributions of H2 O, CH3 OH and CO to the total ice abundance, are 

represented as red circles in the ternary diagram in Figure 3.9. In it I see that for 

Model 1 the total ice content is mostly dominated by H2 O originating from the pure 

H2 O ice component, though in several cases the total contribution of CO can reach, up 

to 40 % and in one case even exceed 50 %. The contribution of CH3 OH to the total ice 

content varies mostly between 0 and ~  5 %, and in a few cases exceeding 10 %. The 

total column densities of the three ices in all objects, fitted using Model 1, are listed 

in Table 3.6. Table 3.7, which shows the ratio N(CH3 0 H)/N(H2 0 ) in all sources after 

application of Model 1, shows that the C0 :CH3 0 H ice causes a contribution of a few 

% to the reported ratio.

3.4.2.2 Model 2

The fit results using Model 2 for each source are shown in Figures 3.13 and 3.14,

for the AKARI and VLT data respectively. A closer look at the fit results to a single 

example source in both the AKARI and VLT data sets is presented in Figure 3.15.
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Inclusion of a freely varying spectrum which contributes to the C-H stretching 

modes in the red wing causes a much larger part of the red wing to be "filled" by the 

fitted model, as is to be expected. Furthermore, the strong O-H stretching mode of the 

pure CH3 OH spectrum ends up significantly contributing to the overall shape of the 

O-H stretch as well, and thus is also capable of producing (compared to Model 1) a 

slightly better fit to the observed blue wing.
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Figure 3.13: Fit results of Model 2 to the AKARI data, presented as thumbnails. The 
COiCH^OH, pure CH3OH, and pure H2O data are represented by red, green, and cyan 
lines, respectively. The observed data and the overall fit are represented by a black and 
a dashed blue line.
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Figure 3.14: Fit results of Model 2 to the VLT data, presented as thumbnails. The 
COiCH^OH, pure CH3OH, and pure H2O data are represented by red, green, and cyan 
lines, respectively. The observed data and the overall fit are represented by a black and 
a dashed blue line.
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Figure 3.15: An example of the fitting results of Model 2 (Section 3.4.2.2) to a single 
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sources are identical to those shown in Figure 3.8. The CCkCH^OH, pure CH3OH, 
and pure H2O data are represented by red, green, and cyan lines, respectively. The 
observed data and the overall fit are represented by a black and a dashed blue line.
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However, the sharp C-H stretching features of pure CH3 OH end up easily over

fitting the red wing, and conspicuous "bumps" are left in the residual in parts where 

no contribution from C-H stretching is present. As is seen from the green circles of 

Figure 3.9, inclusion of pure CH3 OH to an ice model also causes an increase in the 

contribution of CH3 OH to the total ice column density in the trio of H2 O, CH3 OH 

and CO, in a few cases even causing it to become the dominant contributor. The ratio 

N(CH3 0 H)/N(H2 0 ) (Table 3.7) varies between a few and (in the few outlier cases) 

~ 2 0 % according to this model.

3.4.2.3 Models 3 and 4

The fit results using Model 3 (using the 23% ratio CH3 0 H:H2 0  mixture) for each 

source are shown in Figures 3.16 and 3.17, for the AKARI and VLT data respectively. 

For Model 4 these are shown in Figures 3.18 and 3.19. A closer look at the fit results 

-and with multiple mixing ratios- to a single example source in both the AKARI and 

VLT data sets is presented in Figure 3.20.

Models 3 and 4 are highly degenerate with each other and in many cases end up 

returning identical results in the derived column densities, as the minimization will 

often completely eliminate the pure H2 O component in favour of the CH3 0 H:H2 0  

component.
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Figure 3.16: Fit results of Model 3 to the AKARI data, presented as thumb
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respectively. The observed data and the overall fit are represented by a black and a 
dashed blue line.
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Figure 3.17: Fit results of Model 2 to the VLT data, presented as thumbnails. The used 
mixing ratio for the CFI3OFFH2O mixture is 23%. The CCkCF^OFl, CF^OHiF^O, 
and pure H2O data are represented by red, magenta, and cyan lines, respectively. The 
observed data and the overall fit are represented by a black and dashed blue line.
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Figure 3.18: Fit results of Model 3 to the AKARI data, presented as thumb
nails. The used mixing ratio for the CH^OHiFCO mixture is 23%. The COiCH^OH, 
CFI^OIFF^O, and pure H2O data are represented by red, magenta, and cyan lines, 
respectively. The observed data and the overall fit are represented by a black and a 
dashed blue line.
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Figure 3.20: An example of the fitting results of Models 3 (left pair of columns) and 4 
(right pair) to a single source from the (first and third column; AKARI-02) AKARI and 
(second and fourth column; EC 90A) VLT data examined in my study. These sources 
are the same as those shown in Figure 3.8. Each row represents a fit done using a 
different CH^OFFF^O mixing ratio. From top to bottom, the mixing ratios are 17%, 
23%, 31%, and 50% respectively. The COiCHsOH, CFI3OFFH2O, and pure H2O data 
are represented by red, magenta, and cyan lines, respectively. The observed data and 
the overall fit are represented by a black and a dashed blue line.
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X O o o CM© HH —H i-H O HH O Ĥ o i CMO o CMCMo CM'—I ’-H CM 1
o s © O o o o o o d o o o o o O o o o o o o o o o o o o o o oro
ffi
u

o -H -H +1 -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -Hr~ co Onof On r-~ of r- 00 of t-H ON 00 ON oo 00 o CM— ON NO ooCO 00 CO o NO 00
© : NO NO in q in q . NO in CO in H CO in ’—i NO ON CMof Ono oo q q CMNO CM

X o O CMCMco co CMCO of CMof of —1 CO o CO NO in i> CMin CMo CMCM

c'j ' 1
inco O 00o CMr-o oCMr-o 00O

NO OOo in COo
00 00o ofo

ONCM
NO00

r-© NOo
oof inCO NOo

On ooCM22 NOCM22
/ —s
o £ o o o d d o o o o d o o o o r-o o o o o o o o O o o •rf o o
u o +1 -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H o -H -H
£ o

ooON NO
CM00 r-'~On

00in coof of ofin
',3‘00 COON o00 ooin COq VI or-~

ooq VI ofin t"CM
r- o00 r-of

CONO COf- 00o VI CMCMOf
oCM CMtV CMo ON oo CO CMo CO - CM o ofCO - in oCO oo in in ON CM ON in

c s1
NONO Ofo O OnO OnO o in CMr- in r~~CMOnO

NOCMNOCM-2 NOo
OCM-2 ONo

COCMNOCMCMCO r-~CMONNO oCM00CO ofO CO 00
o £ o d o O O o o o o o O o o o o o o o o o o d o o o o o o o<N
ffi
£

o -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H -H
r-~
"o

inoo CMin ofof CMCMCMr~
ofq ofCMCMO

r-
NO ON

ON00 oCO ©
Onin

OnON CMON NOCM
of ONCMr-Onofq r-CMCOq r-o t"-00 CMON CMCMoco CM NO 00 NO NOCO ON co in OnK NO of CMCO 00 oCMOn ON ' 3 :CM00CMCMNO d l> OO

oo04
HH

oco

oo o  t" ^  r~- co of of 
00 oo oo O O O 
C/2 OO C/2

<  PQm in oc/2 c/2 ̂
p* 04 m  m on
HH HH •£* I I r v l
at S3 3  ^  ̂  U  O  O  -

K 7
oCO O"co rt-r- Tj-q of '3"r- oq NOin ooin inoo CMin co r-of CMNO of inCO NO00 CMCO OnON oNO NOr- of
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The column densities of the ices derived in this way, represented by the (often 

overlapping) blue and yellow circles in Figure 3.9, produce abundance ratios where 

the contribution of CH3 OH to the total ice abundance is usually dominated by the used 

mixing ratio of the CH3 0 H:H2 0 . As can be seen in Table 3.12, Model 3 specifically 

causes a hard lower limit to be placed on the ratio N(CH3 0 H)/N(H2 0 ) at the used 

mixing ratio. Inclusion of a pure water spectrum in Model 4 allows column density 

ratios to once again drop below the mixing ratio.
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3.4.2.4 On the red wing

Throughout all tested models, the red wing of the OH stretch between ~  2600 and ~  

3200 cm - 1  leaves a prominent residual to the fitting results. This residual is suggested 

to possibly arise from light scattering effects by the ice layer (e.g. Noble et al., 2013). 

Another hint at a possible origin arises from energetic processing effects "smoothing 

out" the C-H stretching features in ice mixtures containing CH3 OH, which produces 

(M.E. Palumbo, private communication) a red wing feature reminiscent of what I ob

serve in my spectra. Producing a physical explanation for the red wing is beyond the 

scope of this study, as such an endeavour would be worthy of its own study focused 

on the matter, but it is still of interest to discuss the non-physical methods which can 

be used to fit the red wing and how including such methods to the models described 

above would affect the results.

The fitting model presented in Brooke, Sellgren, and Geballe (1999) is one such 

method, and it was tested on the data set in this study. This method deals with the red 

wing of the O-H stretch by fitting to it a 3rd order polynomial. The residual of the fit 

can then be examined for any residual features. This method also often considers the 

fitting of H2 O to the O-H stretching mode as a separate case from CH3 OH. This was 

tested by fitting the pure CH3 OH spectrum from Model 2 to the red wing residual left 

after performing a polynomial fit in the manner described in the "Brooke method".

Compared to the earlier methods, this method was highly sensitive to the choice of 

fitting range for the flux continuum baseline, with the residual most often being dom

inated by noise. In cases where the bump described in Brooke, Sellgren, and Geballe, 

1999 rises above noise levels and a fit is achieved, considering the contribution of H2 O 

as a separately fitted case will easily cause the O-H stretching mode features to overfit, 

as CH3 OH also contributes to it. This effect is shown in Figure 3.21. The overfit

ting can be prevented by fitting H2 O data to the residual left over from subtracting the 

CH3 OH fit results from the O-H stretch.

When checking how the CO:CH3 0 H data -after being fitted to the C -0 stretch-
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Figure 3.21: The result of attempting to apply the fitting method from Brooke, Sell
gren, and Geballe (1999) to the AKARI data. The featured source is AKARI-21. The 
top plot shows a 3rd order polynomial fit (red-blue line) to the observed flux (black 
line) in the vicinity of the C-H stretches. The middle plot shows a fit of pure CH3OH 
(green; from Method 2) and a gaussian (magenta) to the optical depth (black) derived 
from the continuum fit. The dashed blue line is the sum of the two. The bottom plot 
shows what the fitted CH3OH looks like in the O-H stretching band, with a separately 
done pure H2O (cyan; from Method 1) and the sum (dashed blue) of the separate H2O 
and CH3OH also shown. The red rectangle in the bottom plot shows the approximate 
frequency range plotted in the top and middle plots.
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Figure 3.22: As the middle plot of Figure 3.21, but for the source IRS 63, and with 
only a COiCF^OH component overlaid on the spectrum, after having it separately fit 
to the C -0 stretch of the same source. The strong dip in optical depth at ~  2900 — 
3000cm-1 is caused by gas-phase emission.
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compares with the residual bumps of this method, I find that in several cases the peak 

optical depth of the C-H stretching features from C0 :CH3 0 H roughly match the peak 

optical depth of the residual. An example of this happening is shown in Figure 3.22. 

Using a different C0 :CH3 0 H mixing ratio would stop the serendipitously aligned fea

tures from happening.

The main issue in the applicability of the "Brooke method" is that it completely 

ignores the contribution from the O-H stretch to the red wing features, and thus fitting 

the O-H stretch (with e.g. water) after a separate red wing fit necessarily causes the

O-H stretch to be overestimated. While the methods in this chapter consider both the 

red wing features (specifically the C-H stretching peaks) and the O-H stretch simulta

neously, the Brooke fitting method is not directly compatible with the other methods 

of this chapter because the red wing subtraction in the Brooke method is conducted in 

frequency vs. flux space, while the other methods of this chapter operate exclusively 

in frequency vs. optical depth space.

However, one can apply a method mimicking the Brooke method in the sense of 

using a function to fit the red wing, but instead of doing it separately from the O-H 

stretch fits and in flux space, it is done simultaneously with the other components and 

in optical depth space. A low-order polynomial such as the one employed in the Brooke 

method cannot be used here because it can only describe the shape of the red wing and 

cannot in any useful way fit the rest of the 3-micron feature shapes. Truncating the 

polynomial to be non-zero only at e.g. the range between 2600 and 3100 cm- 1  would 

not work either, as the discontinuity caused by this would produce strong artefacts in 

the total fit when the polynomial is summed together with the other fitted components.

Instead of truncating, one can try tapering the polynomial with the help of a win

dow function which approaches zero towards the edges of where the polynomial is no 

longer expected to apply. Such a windowed function is used in the field of chromatog

raphy, where an "exponential-Gaussian hybrid function" (EGH; Lan and Jorgenson, 

2001) has been used to describe the shape of asymmetric chromatographic peaks. As 

the name implies, this function has some properties of both an exponential and a GaUs-
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Figure 3.23: The effect of the asymmetry parameter 6 to the shape of the exponential- 
Gaussian hybrid function. Figure reproduced from Lan and Jorgenson (2001).

sian function, and can transition in shape smoothly from one to the other with the 

application of control parameters. Though the application of the EGH in chromatog

raphy is irrelevant for the purposes of this chapter, the function itself can be adapted 

to fit most of the red wing features in this study remarkably well. Adapted to my pur

poses, the function can be expressed in optical depth as a function of reciprocal wave 

numbers (in cm-1 ) with

component, 0 describes the steepness of the exponential component, and Vr describes 

the frequency where the unmodified Gaussian peak would be placed. The function 

is constructed in such a way that its shape approaches a pure Gaussian form when 

0 —>• 0, or that it approaches the shape of a truncated exponential when cr —>• 0. This 

asymmetry can be represented as a function of the ratio of the two, as described by

Described in this way 6 can take values between 0 and tt/2 , and will describe the level 

of asymmetry as illustrated by Figure 3.23.

Fits done with the EGH to the red wing reveal that it often takes on a Gaussian 

shape, which suggests that a simple Gaussian fit to the red wing may be just as effective 

as the EGH. Additionally the Gaussian would only have three fitting parameters (peak, 

centroid position and width) as opposed to the four of the EGH. Because of this a

6 = 0 n/16 xc/8 3ti/16 nJ4 5jt/16 3n/8 7tc/16 rc/2

2<72 +  0 ( vr -  V) >  0 

2<72 +  0 (Vr -  V) <  0,
(3.5)

where H  is the peak height of the function, cr describes the width of the Gaussian

0 =  arctan (3.6)
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Figure 3.24: One of the VLT sources (EC 90A) fitted with a modified Model 4,
with an added exponential-Gaussian hybrid (left) or gaussian (right) function to cover 
the red wing. The COiCH^OH, CH^OHiF^O, and pure H2O data are represented by 
red, magenta, and cyan lines, respectively. The observed data and the total fit are 
represented by a black and dashed blue lines. The red wing function is represented by 
the green line.

Gaussian fit was also tested. An example result of both the EGH and Gaussian fits 

to a single VLT source is presented in Figure 3.24. In most cases the EGH takes on 

effectively a Gaussian shape, causing both fit methods to produce identical results.

Regardless of the red wing function used, its addition effectively suppresses any C- 

H stretch- containing components (such as any CH3OH mixture) in the 3 micron band. 

For this reason in almost all cases utilizing a red wing model the only contributor of 

CH3OH to the total ice column density is the CO:CH3 0 H ice, which is fitted separately 

in the C -0 stretch peak. The contribution of this to the C-H stretches in the red wing 

is negligible enough that the red wing model is largely unaffected by it.

3.5 Discussion

The results of my fitting methods can be discussed in the context of how well the mod

els fit the observed data, and how they compare to the fitting methods used by previous 

studies. In addition to fit quality, the column densities derived from the models can
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also be compared with previous studies, both through direct comparison of absolute 

column densities and column density ratios, and through discussion of the results in 

the context of existing knowledge of ice formation and processing.

3.5.1 F it quality

The observations of the C -0 stretch in cases with noticeable CO absorption benefit 

from the inclusion of COiCHsOH as the red component, corroborating the hypothesis 

of Cuppen et al. (2011). In the 3-micron region one can easily "hide" the extra absorp

tion of the mixture under both the O-H stretch and its red wing with the C-H stretches, 

at the expense of replacing some of the H2 O absorption with that of the CH3 OH com

ponent of the C0 :CH3 0 H mixture.

Because no known physical model can be used to reproduce the red wing shape 

of the 3-micron features, any fits done by using it as a constraint are necessarily to 

be considered upper limits at best. The only reliable constraint to fits done in the 

3-micron region is the blue wing of the O-H stretch, which is mostly unaffected by 

features in the red wing. The extent to which the blue wing is affected by the red 

wing arises from preventing the C-H stretches of the CH3 OH containing components 

from overshooting the observed red wing absorption. In the high-resolution VLT data 

this causes a noticeable effect in the calculated % 2  of the blue wing fit in Model 3, 

because the constraint of the red wing prevents the blue wing slopes of the laboratory 

data and observations from aligning optimally, and because the blue wing shape of 

the CH3 0 H:H2 0  mixture data is slightly modified by the mixing ratio. This effect 

becomes more pronounced at higher mixing ratios of CH3 0 H:H2 0 , with the calculated 

X 2 value increasing from ~  1800 with the lowest mixing ratio to ~  5300 with the 

highest mixing ratio. The effect does not persist in Model 4, because of the additional 

blue wing "compensation" provided by the pure H2 O spectrum.

In the context of ice composition in the ISM, these two observations about the blue 

wing suggest that if CH3 OH exists in a mixed ice environment with H2 O in the ISM,



3.5. Discussion 121

its mixing ratio is likely small (< 2 0 %), or that there also exists a significant separate 

quantity of pure H2 O ice in addition to the CHsOHitbO ice mixture.

3.5.2 Comparison with previous studies

The ratio N(CH3 0 H)/N(H2 0 ) in ices is often considered to range between a few % to 

~30%  (e.g. Dartois et al., 1999; Gibb et al., 2004; Oberg et al., 2011a; Pontoppidan, 

van Dishoeck, and Dartois, 2004; Pontoppidan et al., 2003a). Considering CH3 OH to 

exist only in a CHsOHiCO mixture (Model 1) or additionally in a pure form (Model 

2 ) places the derived ratios in the lower end of the cited range, with the ratio rarely 

going above 20%. Allowing CH3 OH to also exist in a mixed environment with H2 O 

(Model 3) causes N(CH3 0 H)/N(H2 0 ) to never drop below the used mixing ratio and 

(e.g. in the case of using the mixing ratio of 23%) often go above 40%. If one also 

allows H2 O ice to exist in pure form in addition to its mixed form (Model 4), the 

ratios (in comparison to Model 3) fall to a range which varies between a few to ~40%, 

rarely dropping below 10%. The variation in the ratio derived in this way is heavily 

dependant on the mixing ratio used for the fitted CH3 0 H:H2 0  mixture. Both Models 3 

and 4 cause a detectable quantity of CH3 OH to be observable towards almost all lines 

of sight considered in this study.

The "Brooke method" (Brooke, Sellgren, and Geballe, 1999; Grim et al., 1991) 

of estimating CH3 OH ice abundances from the red wing of the 3-micron feature does 

not directly contradict with the models, if it is applied simultaneously with a fit of 

appropriate laboratory or analytical spectra to the O-H stretching mode absorption 

feature. Failure to do so in favour of e.g. considering the O-H stretch as a separate 

case will easily cause observed O-H stretching mode absorption to be over-fitted. The 

baseline fits done following the method of Brooke et al. often leaves a residual "bump" 

in the red wing. The peak optical depth of this bump serendipitously corresponds in 

many cases to the peak intensity of the C-H stretch components of a 1:1 mixing ratio 

CO:CH3 0 H spectrum, after it is separately fitted as the red component in the C -0
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stretching feature.

The derived values of the column density of CO ice attributable to the red compo

nent of the C -0 stretch were compared to the values found in Noble et al. (2013) and 

Pontoppidan et al. (2003a) for the AKARI and VLT sources, respectively. The values 

derived here are systematically about a factor of 2-4 lower than the values derived in 

either study. This can be attributed to the different type of red component model being 

used in this study compared to that of Noble and Pontoppidan. The optical depth of the 

fitted red component feature itself is more or less the same for both the methods used 

here and the methods used in both Noble and Pontoppidan (compare Figure 3.8 in this 

chapter to Figures 8  and 3 of Noble et al. 2013 and Pontoppidan et al. 2003a, respec

tively). Of the other studies which simultaneously derived column densities of solid 

H2 O, CH3 OH, and CO only Pontoppidan, van Dishoeck, and Dartois 2004 (and refer

ences therein) had done so of two sources I also examined: SVS 4-5 and SVS 4-9. The 

column densities derived by Pontoppidan towards SVS 4-5 were 5.5 x 101 8 , 2.7 x 1018, 

and 1.9 x 1018 cm - 2  for H2 O, CO, and CH3 OH respectively. For SVS 4-9 they were 

2.5 x 1018, 2.5 x 1018, and 0.64 x 1018 cm-2 . Comparing these to my results of the 

same sources, I find that models 2, 3, and 4 produce reasonable matches regarding 

total N(H2 0 ), N(CO), and N(CH3 0 H); model 1 heavily underestimates N(CH3 0 H). 

Models 2, 3 and 4 all produce lower values of varying degrees (up to 50%) for both 

N(H2 0 ) and N(CH3 0 H) than Pontoppidan.

The summed total column density of all considered molecules (H2 O, CH3 OH, and 

CO) is up to ~50%  lower in my models than the results of Pontoppidan. I attribute the 

difference to the different methods used for calculating column densities. When using a 

ternary diagram (Figure 3.25) to compare the distribution between the three molecules, 

the closest match to the results of Pontoppidan towards SVS 4-5 is produced by model 

3 and 4 (which are identical for this source), and model 2 (although model 4 is not far 

off) towards SVS 4-9.

The AKARI sources have been previously analysed by Noble et al. (2013), in 

which column densities for both H2 O and CO were derived, but the contribution of
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#  Modell 
O  Model2
#  Model3 
O  Model4
V Pontoppidan

Figure 3.25: As Figure 3.9, except only SVS 4-5 and SVS 4-9 are included, for ease 
of comparison. The points enclosed by the ellipses refer exclusively to either SVS 4-5 
or SVS 4-9, as annotated. The used mixing ratios for models 3 and 4 are 23%.
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CH3 OH ice to the observed features was ignored. Because of this only Model 1 of 

this chapter is directly comparable with the results of Noble, since the contribution of 

CH3 OH ice to the fit results of Model 1 is minimal. A comparison between Model 1 

and the results of Noble shows that the derived values of N(H2 0 ) are within ~20%  of 

each other, and in Model 1 the derived values of N(CO) are roughly 50% of the N(CO) 

values of Noble. The differences in N(H2 0 ) can be attributed to the inclusion of ad

ditional absorption from CH3 OH in the C0 :CH3 0 H data, and to the slightly different 

fitting area used between my study and the study of Noble. The differences in N(CO) 

I account to the completely different fitting methods used for the C -0 stretch.

3.5.3 Comparison with ice evolution models

In Section 3.2 and in Figure 3.3 I presented a modelling/laboratory-based scenario 

and an observational (based on predominantly CH3 OH observations) scenario of ice 

evolution during the early stages of stellar evolution. How do these scenarios compare 

to what my fitting results imply?

The most obvious difference comes from the fact that I ignore the effect of C0 :H2 0  

ice, as this ice produces spectroscopic features which are not detectable in my or any

one else’s observations of interstellar ices. Instead I follow the road laid out by Cuppen 

et al. (2 0 1 1 ), and use a C0 :CH3 0 H ice in the same context where a C0 :H2 0  ice would 

have been used in the past. The simplest of my models using this approach -M odel

1- immediately shows that the approach of Cuppen et al. works even when the fit of 

C0 :CH3 0 H constrained by the C -0 stretch is applied to the 3-micron O-H and C-H 

stretches.

In the 3-micron region the unknown nature of the "red wing" causes Models 2-4 to 

be highly degenerate with each other, although all of them agree with previous studies 

of H2 O, CH3 OH and CO ices to a reasonable degree. Model 3 can be disqualified on 

the grounds of water ice almost certainly being expected to be present in a pure form 

in the ISM, and thus the lack of a pure H2 O ice component in Model 3 makes it an



3.5. Discussion 125

unrealistic one. The sharp red wing features of the C-H stretches in Model 2 make it 

behave somewhat erratically within the fitting constraints, while the smooth features 

of the mixed H2 0 :CH3 0 H ice used in Model 4 produces a much better overall fit to 

the red wing. While the degeneracies of the red wing fit mean that the presence of pure 

CH3 OH can not be ruled out, the rest of the discussion will focus on Model 4, which 

produces the best overall fit. In this model the ice components being probed are pure 

H2 O, pure CO, C0 :CH3 0 H, and H2 0 :CH3 0 H. This is of course only a representative 

fit, as the true ice matrix will most likely consist of a multitude of layers containing 

various mixing ratios, including layers with pure ice components for each molecule.

Of the small number of AKARI sources which probe background stars, a small 

number produce spectra which can be fitted with a combination of ice components 

consistent with the pre-YSO phases discussed in Section 3.2. Sources such as AKARI- 

10 and AKARI-12 show no detectable absorption at the 4.7 /im  C-O stretch, and the 

3-micron region consists of a pure O-H stretching feature without a red wing (see 

Figure 3.27). Some of these sources (such as AKARI-12) have very weak features at 

the frequencies where the red wing C-H stretches would be expected to appear, but the 

weakness of these features mean that they may simply be noise artefacts. Regardless, 

these two types of sources seem to be probing cloud conditions where the pure H2 O ice 

layer is still growing, with possibly trace amounts of CH3 OH mixing with the H2 O ice 

as small amounts of CO get trapped in the H2 O ice and get hydrogenated to sometimes 

produce CH3 OH.

Stages of ice evolution following critical freezeout seem to be traced by sources 

such as AKARI-23 and AKARI-14. Both of these sources have a clear pure CO ice 

feature at the C -0  stretch, and AKARI-14 even has a red component in the C -0  stretch, 

allowing for the fitting of the C0 :CH3 0 H mixture. As is evidenced in Figure 3.27, 

both of these sources also contain a detectable red wing feature in the O-H stretch. A 

small amount of a H2 0 :CH3 0 H mixture could be fitted to the red wing of AKARI-23, 

although the minimization of Model 4 did not converge to include the H2 0 :CH3 0 H 

component in AKARI-14. The red wing degeneracies would make it feasible to in-
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Figure 3.26: An overview of ice components detected with Model 4 towards both the 
AKARI and VLT sources. The fits plotted here are of the 3-micron region with the 
23% CF^OFFFLO mixing ratio. The COiCH^OH, CH3 0 H:H2 0 , and pure H2O data 
are represented by red, magenta, and cyan lines, respectively. The observed data and 
the total fit are represented by black arid dashed blue lines. The red circles indicate a 
line of sight with a detection (from the C -0 stretch fit) of pure CO, the green circles in
dicate one with a COiCF^OFI detection, and the yellow circles indicate a F^CFCF^OFI 
detection. Furthermore, the presence of strong gas-phase CO emission (as seen in the 
C -0 stretch spectrum) is indicated by a blue circle in the VLT spectra, where the spec
tral resolution was high enough to visually detect gas-phase lines. The AKARI sources 
marked with an asterisk are YSOs.

elude a minor F^CFCF^OH component even in this source, though. It is interesting 

to note that of the background stars considered in this study, all sources which had 

a detectable C-O stretching component also included a red wing in the 3-micron re

gion. This implies that the critical freezeout of CO is related to the "formation" of the 

3-micron red wing. Forming small amounts of CH3OH through contemporaneous hy

drogenation of CO at the H2O ice surface in the early stages of critical CO freezeout, 

followed by potential mixing happening in the early stages of ice warm up may feasi

bly produce what could be considered a F^CFCF^OH at this stage. The unfitted (by 

Model 4) parts of the 3-micron red wing mean that more than just CH3OH is probably 

being produced in this stage as well.

Ice evolution stages related to the post-YSO (i.e. following the pre-stellar phase 

of stellar evolution) phases discussed in Section 3.2 are expected to be traced by the
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sources classified as YSOs. As evidenced by the summary of ice detections in Figure 

3.26, the fit results to the AKARI sources (despite their low spectral resolution) behave 

consistently with the fits to the VLT ones in this data set; a similar collection of ice 

component detections is found in the YSO set of the AKARI ice observations those 

found in the VLT observations (which are all YSOs). However, the high spectroscopic 

resolution of the VLT data provides us with an additional diagnostic tool in the form 

of the numerous gas-phase lines visible especially in the spectra of the C -0 stretch (as 

was evidenced in Figure 3.7). While all the YSO spectra have prominent 3-micron 

red wings, some of them have no significant C -0  stretch absorption feature. As is 

indicated in the VLT portion of Figure 3.26, the sources (such as GSS 30) which lack 

a C -0 stretch absorption feature also tend to have strong gas-phase emission features 

around the C -0 stretch feature, while the YSO sources (such as EC 90A) which still 

have a noticeable C -0 stretch feature have their gas-phase lines in absorption. In other 

words, the sources without C -0 stretch absorption most likely trace ice evolutionary 

stages following the heating up of the ice and CO ice desorption, as further evidenced 

by the emission of the warm gas along the same line of sight.

From this data combined with our previous understanding of ice evolution (dis

cussed in Section 3.2) I propose a model for the evolution of ice in star-forming re

gions in the stages leading to YSO formation and up to the stages following ice heating 

around a new YSO. The pre-YSO phases of ice evolution (with example spectra for 

each proposed stage) are presented in cartoon form in Figure 3.27 and the post-YSO 

phases of evolution are presented in Figure 3.28.

As with all other ice models, the pre-YSO stages begin with the formation of a sig

nificant layer of H2 O ice. During its formation, however, my analysis of the AKARI 

and VLT data allow for the possiblity of the formation of a minor CH3 0 H:H2 0  ice 

component. This result is very tentative, however, and could easily be a spectral arte

fact caused by noise. After critical CO freezeout, a detectable (from the C -0 stretch 

absorption feature) layer of CO ice has formed. Contemporaneous to this, the appear

ance of the "red wing" in the 3-micron absorption region allows for a CH3 0 H:H2 0  ice
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Figure 3.27: Cartoon diagram illustrating a proposed model of ice evolution (with 
the more advanced stages of evolution being to the right) in the pre-YSO phases of 
star formation. The cartoons at the top row indicate what ice components (of those 
containing CO, CH3OH, and H2O; all others are ignored by this study) are expected to 
be detectable at the proposed stages. The bottom row shows an example spectrum from 
the data set I examined, which I believe to be an example of ice at this evolutionary 
stage. The top spectrum shows the C -0 stretch, and the bottom spectrum shows the 3- 
micron region. The black line indicates observations and the thick blue line indicates 
the fitting result. The first two stages I believe to be representative of ice evolution 
preceding critical CO freezeout, while the last two stages I believe to represent post- 
freezeout evolution before the ice starts heating up. The relative thicknesses of the 
ice layers illustrated here are not representative of the expected relative abundances 
of their respective ice components; the layers only indicate the potentially detectable 
presence of the ice.
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Figure 3.28: Cartoon diagram illustrating a proposed model of ice evolution in the 
post-YSO phases of star formation. The cartoons at the top row indicate what ice 
components (of those containing CO, CH3OH, and H2O; all others are ignored by this 
study) are expected to be detectable at the proposed stages. The bottom row shows an 
example spectrum from the data set I examined, which I believe to be an example of 
ice at this evolutionary stage. The top spectrum shows the C -0 stretch, and the bottom 
spectrum shows the 3-micron region. The black line indicates observations and the 
thick blue line indicates the fitting result. The first stage I believe to be representative 
of the state of the ice immediately preceding ice warm up, while the second stage I 
believe to represent post-CO sublimation state of the ice. The relative thicknesses of the 
ice layers illustrated here are not representative of the expected relative abundances 
of their respective ice components; the layers only indicate the potentially detectable 
presence of the ice.
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component to be fitted with a much higher degree of certainty, with the caveat that it 

may possibly be replaced by any similar component which would produce absorption 

in the 3-micron red wing. This is also the earliest stage at which the COiCHsOH ice 

component can be confidently detected, implying that hydrogenation of the growing 

CO layer creates one or more layers of ice which can be considered to be a COiCHsOH 

mixture.

The post-YSO stages consist of two discernible evolutionary steps: one preceding 

and another following the sublimation of the pure CO ice layer, most likely as a result 

of ice heating caused by YSO ignition. The pre-heating stage shows (when measured 

as different combinations of CO, CH3 OH, and H2 O ices) the greatest chemical com

plexity, with many sources containing detectable components of pure CO, pure H2 O, 

C0 :CH3 0 H, and CHsOHiF^O. The post-heating stage is characterised by the lack of a 

pure CO and COiCHsOH ice components, both of which have most likely sublimated 

from the grain surface and entered the gas phase as CO and CH3 OH.

3.5.4 Caveats

The two main caveats of my fitting method arise from both assumptions made about 

the temperature and structure of the ice being probed, and from assuming a single 

mixing ratio for both the CH3 0 H:C0  and CF^OHiF^O spectra throughout all lines of 

sight.

This study assumes that the observations are probing cold ice, and therefore lab

oratory spectra of ices measured at 10-20 K have been used. Furthermore, the water 

that is probed is assumed to be porous amorphous solid water. Both the temperature 

and structure of ice have effects on the shape of the absorption spectrum, and thus can 

influence especially the high-spectral-resolution VLT fits.

The caveat of CH3 0 H:H2 0  mixing ratio constancy has a dominating effect on the 

derived ratio of N(CH3 0 H)/N(H2 0 ). It is not within the scope of this study to cre

ate a model which allows the mixing ratio to vary as a free parameter, as the study is
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limited by the availability of discrete mixing ratios produced in a laboratory environ

ment, and intermediate ratios can not be easily interpolated due to the complexities of 

changing absorption profile shapes between different ratios. A similar caveat applies 

to the CH3 0 H:C0  spectra used in this study, although the ratio in this case has been 

delibrately left at 1:1, in order to provide consistency with the study of Cuppen et al. 

(2 0 1 1 ), which is being verified in this study.

In the event of e.g. an empirical model of CH3 0 H:H2 0  mixtures with a freely 

varying mixing ratio becoming available, the ratio could be constrained by observing 

the 9-micron silicate/methanol absorption band. This constraining could happen in a 

similar fashion to the constraints on the C0 :CH3 0 H spectrum in the 3-micron features 

with the help of its C -0 peak features. Simultaneous observations of the 3-micron and

9-micron bands will be made possible by future instruments such as the James Webb 

Space Telescope (JWST).

An alternate route for constraining CH3 OH contribution in the 3 micron feature 

would come from producing a physical model capable of explaining the shape and 

origin of the "red wing", which is present as part of the 3-micron features towards 

many lines of sight. Because the red wing directly overlaps with the C-H stretching 

features, the contribution of CH3 OH to the C-H stretches will remain ambiguous until 

the unexplained parts of the red wing are explained.

3.6 Concluding remarks

This work started from the premise that the red component of CO-ice spectra is, as sug

gested by (Cuppen et al., 2011) entirely attributable to CO in a CH3 OH environment, 

rather than CO in a H2 O rich environment (e.g. Pontoppidan et al., 2003a; Tielens et al., 

1991). The question then arose as to whether such a conclusion was consistent with 

other ice features, specifically whether the optical depth of the 3 jixm OH- and CH- 

stretching region CH3 OH bands were consistent with the region where they overlap 

with the strong OH stretch of the H2 O ice band. To examine this effect, C0 :CH3 0 H
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(mixing ratio of 1:1) laboratory spectra from Cuppen et al., 2011 were fitted to a total 

of 52 near-IR spectra observed using both the low-resolution AKARI/IRC and high- 

resolution VLT/ISAAC detectors. The examined near-IR regions were the 4.7 fim  

C -0 stretching mode and the 3 jUm O-H and C-H stretching mode absorption features. 

Other features originating from CO or H2 O in the fitted regions were considered with 

the use of additional analytical or laboratory spectra. Various different combinations 

of analytical and laboratory spectra were tested, as discussed in Sections 3.3.3, and 

3.4.2.1-3.4.2.4.

From the fitting results the following conclusions can be drawn:

•  The results clearly corroborate the hypothesis of Cuppen et al. (2011), confirm

ing that the laboratory spectra of CChCHsOH ( 1 :1 ) ices can effectively fit the red 

component of CO-ice spectra, eliminating the difficulties introduced by C0 :H2 0  

ice mixtures, and the "missing" observational 2152 cm - 1  band (Fraser et al., 

2004).

•  Considering the presence of a C0 :CH3 0 H ice component in the C-O stretch 

results in over half of the examined lines of sight having in them a detectable 

fitted quantity of CH3 OH mixed with CO.

• The red wing often found in the 3 micron absorption feature, while not fully 

reproducible by the models considered here or any other models known to this 

author, can easily conceal significant contributions from CH3 OH ice, either in 

mixed or pure form.

•  A simultaneous fit of pure H2 O, pure CO, and mixed CH3 0 H:H2 0  ices in addi

tion to mixed CH3 OIT.CO constrained by the C -0  peak, i.e. "Model 4", provides 

a good estimate of the CH3 OH ice content towards the lines of sight considered 

in this study, as determined from the 3-micron and C -0  stretch near-IR features.

•  Estimation of N(CH3 0 H) from the 3-micron feature affects estimates of N(H2 0 ), 

and the ratio of the two. The ratio is estimated to vary from a few % to ~40% ,
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based on the measurements presented here. The average ratio is determined from 

the mixing ratio of the CH3 0 H:H2 0  mixture used in the fits.

Finally, a model of pre-YSO and early post-YSO ice evolution is proposed, as dis

cussed in Section 3.5.3, and illustrated in Figures 3.27 and 3.28.

The fitting approach used here takes account of both grain shape effects and ob

servational instrument point spread functions, such that a common fitting rationale can 

be applied across all the data, independent of its source or resolution, to extract CO, 

H2 O and CH3 OH ice abundances. It is a key achievement of this work that the AKARI 

ice abundance extraction methodology presented previously by Noble et al. (2013) is 

entirely transferable to the higher resolution VLT-ISAAC data, consolidating many 

years of careful error analysis on the former data, prior to making any claims of weak 

AKARI ice feature detections.



Chapter 4 

Water and methanol in low-mass 

protostellar outflows1

The previous chapter showed that methanol ice is abundant in the ISM, and that its 

column density ratio against water ice can vary between a few and ~  40% even towards 

lines of sight where it might previously have been observed. These ices will not remain 

in the solid state forever, though, and the grain surfaces around young stellar objects 

(YSOs) are subjected to thermal and non-thermal desorption processes which release 

molecules from the solid state into the gas phase.

In this chapter I have used gas-phase observations of CH3 OH and H2 O to deter

mine what happens to them in shocked regions around low-mass young stellar objects 

(YSOs) where their stellar wind impacts with the inner outflow cavity walls of the sur

rounding cold envelope. By analysing the gas phase line emission ratios, I can show 

that evidence exists for significant high temperature gas-phase (re-)formation of water 

and for the destruction of most of the methanol during its sputtering from the solid 

state to the gas phase.

!This chapter has been published in a shorter format at MNRAS 2014 vol. 440 pp. 1844 (DOI: 
10.1093/mnras/stu406) by the authors: A. N. Suutarinen (me), L. E. Kristensen, J. C. Mottram, H. J. 
Fraser, and E. F. van Dishoeck

134
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4.1 Introduction

Water plays a unique role in probing the physical and chemical conditions of star- 

forming regions. In the cold regions of protostars, water is frozen out as ice covering 

the dust grains, with only trace amounts found in the gas phase (<10-7 ; Caselli et al., 

2012; Herpin et al., 2012; Mottram et al., 2013; Schmalzl et al., 2014). The molecular 

outflows launched by the accreting protostar form an interesting laboratory for study

ing water in protostellar systems: the high water abundances observed in outflows (>

10-6 ; Bjerkeli et al., 2012; Dionatos et al., 2013; Nisini et al., 2010; Santangelo et al., 

2012; Van Loo et al., 2013; Vasta et al., 2012) arise from a combination of sputtering 

of ice mantles and direct gas-phase synthesis, however the relative water abundance 

contributions are unknown. Constraining the relative contributions of these two routes 

is important for using water as a diagnostic of the physical conditions in outflows, as 

well as constraining the chemistry in the various parts of the outflow.

Water formation on dust grains is a complicated process (e.g. Ioppolo et al., 2008; 

Lamberts et al., 2013), but generally involves the repeated hydrogenation of oxygen- 

bearing species such as O, OH and O2  (Tielens and Hagen, 1982). The only efficient 

gas-phase formation route for H2 O is a high-temperature (T > 200 K) neutral-neutral 

reaction chain (e.g. Bergin, Neufeld, and Melnick, 1999; Draine, Roberge, and Dal- 

gamo, 1983; Glassgold, Meijerink, and Najita, 2009; Tielens, 2005):

O —> OH — H20  +  H. (4.1)

Another common grain-surface material, methanol, can be formed on dust grains 

through repeated hydrogenation of CO (e.g. Tielens, 2005; Tielens and Hagen, 1982)

COsurface  ̂HCOsurface >• CH30surface >- CH30Hsurface. (4.2)

Unlike water, gas-phase reactions that produce CH3 OH are very slow compared to 

grain surface chemistry for any of the physical conditions expected within protostellar
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systems (Geppert et al., 2006).

Both water (e.g. Codella et al., 2010; van Dishoeck et al., 2011) and methanol 

(e.g. Bachiller et al., 1995; Kristensen et al., 2010a) have been detected in the gas 

phase of the outflows and shocks of young stellar objects (YSOs). In astrophysical 

environments the grain surface reaction chain leads to grain surface abundances of 

order 10~ 6  — 10- 5  for CH3 OH with respect to gas-phase H2  (e.g. Cuppen et al., 2009; 

van der Tak, van Dishoeck, and Caselli, 2000). This results in relative abundances of 

CH3 OH ice with respect to H2 O ice ranging from a few to ~  30 % (e.g. Boogert et 

al., 2008; Dartois et al., 1999; Gibb et al., 2004; Oberg et al., 201 la; Pontoppidan, van 

Dishoeck, and Dartois, 2004; Pontoppidan et al., 2003b) on lines of sight towards highl

and low-mass YSOs. Models of cold dense clouds by Lee, Bettens, and Herbst (1996), 

which only include gas-phase production, result in gas-phase abundances of CH3 OH 

no higher than between 10“ 10 and 10- 9  on timescales of up to 106  years (Garrou et al., 

2006; Geppert et al., 2006).

In the context of YSOs and their outflows, I assume and expect all of the grain- 

surface formation of H2 O and CH3 OH to have already taken place during the preceding 

dark-cloud and prestellar core phases. Material is liberated from the grain surfaces 

either through thermal desorption, if the temperature of the dust grains rises above 

M 0 0 -1 10 K for water (Brown and Bolina, 2007; Fraser et al., 2001) and ~85 K for 

methanol (Brown and Bolina, 2007) as they journey close to the protostar (Visser et 

al., 2009), or through sputtering in shocks. While photodesorption due to cosmic- 

ray induced UV radiation is expected to be important in the cold conditions found in 

protostellar envelopes (e.g. Caselli et al., 2012; Mottram et al., 2013; Schmalzl et al., 

2014), it is unlikely to be dominant in the conditions found in outflows.

Therefore, any gas-phase CH3 OH observed in outflows will originate from des

orbed ice mantle material, while gas-phase H2 O may originate either in warm shocked 

gas in outflows where the temperature exceeds ~  200 K (Bergin, Neufeld, and Mel- 

nick, 1999; Chamley, 1999) or from the grain mantles. My first objective with this 

study is to test whether there is observational evidence in the emission spectrum o f the
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outflow material fo r  water formation in excess o f what is expected to be seen from only 

ice mantle desorption, i.e. is the gas phase formation route activated?

My method for studying this is to examine the relative gas-phase column density 

variations of CH3 OH and H2 O derived in components of their emission spectra asso

ciated with the outflow and its shocked cavities, as seen towards the source positions 

of three prototypical YSOs. CH3 OH is a particularly good molecule for comparing 

against H2 O as it is a "pure" grain mantle species i.e. it is not formed in any significant 

quantity in the gas phase. Thus, any variations of iV(CH3 0 H )/N (H 2 0 ) 2  are a result of 

independent variations in either iV(CH3 0 H) or N (H2 O).

Before using Af(CH3 0 H)//V(H2 0 ) to study the variations of iV(H2 0 ), I had to 

first consider whether any CH3 OH is destroyed, either by dissociative desorption dur

ing sputtering or in the shock through reactions with H. This latter scenario would be 

somewhat similar to that involving another grain-surface product, NH3 , at positions 

offset from the YSO (Codella et al., 2010; Viti et al., 2011). The second objective 

o f this chapter is to provide observational limits on the extent o f CH3OH destruc

tion in the outflows o f low-mass YSOs. This is accomplished by comparing the col

umn densities to that of a CO line which traces the same gas as H2 O, such as CO 

J=10—9 (Nisini et al., 2013; Santangelo et al., 2013; Tafalla et al., 2013; Yildiz et al., 

2013). The N(CH 3 0 H)/iV(CO) ratio can then be translated into the CH3 OH abun

dance X (CH3 OH) =  N(CH 3 0 H )/N {U 2) by assuming a constant CO abundance in the 

outflow, 1 0 ~4.

This chapter is structured as follows. In Section 4.2 I describe the observations on 

which the science of this chapter is based, and then describe the immediate results in 

Section 4.3. In Section 4.4 I describe the decomposition of the acquired spectra into 

components, and explain which of these I assume to have the same physical origin. I 

will also discuss the likely physical conditions in the outflow, and use them to constrain 

the radiative transfer simulations which allow the observed line intensity ratios to be

2 All the column densities discussed in this chapter in the form of e.g. 7V(H2 0 ) refer to their gas-phase 
column densities, unless explicitly stated otherwise.
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Table 4.1: Observed line parameters.

Line Rest Freq.(a) 
(GHz)

@ m b

(")
L'up /
(K)

n{b)n CT

(cm-3 )

H2 O 2 o2 —  In 987.927 2 1 (C) 1 0 0 . 8

OHX00

CH3 OH 5k - 4 k 2 4 1 -2 4 2 2 1 4 1 -1 3 6 5x  1 0 5

CH3 OH I k  —  6k 3 3 8 -3 3 9 14 6 5 -2 5 6 lx lO 6

CO 1 0 - 9 1151.985 18(c) 304.2 5x  1 0 5

Pickett et al., 1998
Critical density at 200 K; for the CH3OH transitions the values reported are for the highest S/N 

K=0 A transitions.
(^Calculated using equation 3 from Roelfsema et al. (2011).

converted into column density ratios. In Section 4.5 I discuss the acquired column 

density ratios and place them in the context of the arguments and processes outlined 

above. Finally, in Section 4.6 I conclude that gas-phase water formation is indeed 

happening, and that methanol is being destroyed as it is sputtered from the solid state.

4.2 Observations

The data exploited in this chapter consist of spectroscopic observations of water (H2 O), 

methanol (CH3 OH), and carbon monoxide (CO) towards seven Class 0 and six Class I 

YSOs. The details of this sample are given in Table 4.2. Observations of the 2 o2 ~  111 

para-H2 0  and CO 7=10—9 transitions were obtained with the Heterodyne Instrument 

for the Far-Infrared (HIFI; de Graauw et al., 2010, also see Chapter 2) on the Herschel 

Space Observatory (Pilbratt et al., 2010) as part of the “Water in star-forming regions 

with Herschel” key programme (WISH; van Dishoeck et al., 2011). The 7=5—4 and 

7—6 AM adders of CH3 OH were observed with the James Clerk Maxwell Telescope3 

(JCMT) with the RxA and RxB receivers, respectively. A summary of the frequencies, 

beam sizes and upper level energies (£iip) can be found in Table 4.1.

3The James Clerk Maxwell Telescope was operated by the Joint Astronomy Centre on behalf of 
the National Research Council of Canada, (until January 2015) the Science and Technology Facilities 
Council of the United Kingdom, and (until 31 March 2013) the Netherlands Organisation for Scientific 
Research.
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4.2.1 Data reduction

4.2.1.1 Basic reduction

The H2 O and CO data had already been reduced previously -as is discussed further 

in Kristensen et al. (2010a) and Yildiz et al. (2013) respectively-, and was used here 

without further processing. For the CH3 OH data, Maret et al. (2005) had previously 

performed a reduction and analysis for some of the sources. I chose to re-reduce the 

full CH3 OH dataset for all sources, as the raw JCMT data was still available on the 

Leiden Observatory file servers.

I wrote a P y t h o n  script to find and analyse line list files (created by L in e f in d e r , 

programmed by U. A. Yildiz), and collect the locations of all files with potential data 

on relevant lines (the CH3 OH 5-4 and 7-6 lines) into a single master list. A separate 

GILDAS/CLASS4  script was then used to extract the line data, apply a 1st order 

baseline, and time-average the spectra for each source, before exporting the data in 

ASCII table format.

The manual aspect of the reduction involved selecting baseline windows for each 

source, and making sure that no obviously bad data was being included in the time- 

averaging. In cases (such as the NGC1333 sources) where mapping data with multiple 

offsets was available, only the offset closest to zero was included in creating the time- 

averaged spectra. Each spectrum was also divided by the main beam efficiency of the 

telescope at the appropriate frequency band.

4.2.1.2 Noise estimate and resampling

Across all the potential sources for this study, the amount of available useful data varied 

greatly, and as a result some sources had significantly higher noise than others. The 

total integration time per source is listed in Table 4.3.

The uncertainties reported in the rest of this chapter only relate to the intrinsic 

random noise in each spectrum, which is closely related to the integration time. For

4http://www.iram.fr/IRAMFR/GILDAS

http://www.iram.fr/IRAMFR/GILDAS
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Table 4.3: Integration time (only for non-erroneous data) per transition for all observed 
sources. A hyphen indicates lack of useful data._____________________

Object Line integration time [min]
name H20 CH3 OH CH3 OH CO CO

(2 - 1 ) ( 5 - 4 ) ( 7 - 6 ) ( 3 - 2 ) (1 0 -9 )
IRAS 2 18.3 180.3 192.0 4.0 17.8
IRAS4A 18.3 40.0 160.0 1 . 0 17.8
IRAS4B 18.3 175.0 1 1 1 . 0 4.0 8.9
L483 18.3 — 1 2 0 . 0 — —

L723 18.3 — 1 2 0 . 0 — —

L1157 18.3 1 0 . 0 190.0 — —

LI 448 18.3 — 1 2 0 . 0 — —

Elias 29 18.3 1 1 0 . 0 — — —

GSS 30 18.3 155.0 — — —

L1489 18.3 — 1 2 0 . 0 — —

L1551 18.3 285.0 — — —

TMC 1 18.3 1 0 . 0 — — —

TMR1 18.3 — 1 2 0 . 0 — —

the NGC1333 sources, typical O r m s  levels (in channel sizes binned to 1 km s-1 ; see 

next paragraph) for the H2 O, CO and both CH3 OH lines are 0.02,0.17,0.15 and 0.24 K 

respectively. The calibration uncertainty of the HIFI spectra is < 10% (Roelfsema et 

al., 2011) and the calibration uncertainty of the JCMT spectra is ~  20%.

In the remainder of the chapter, when discussing the intensity ratios of the various 

lines included in this study, they have been resampled to fit a common velocity res

olution of 1 km s - 1  which was found to give a good balance between resolution and 

signal-to-noise ratio (S/N). Resampling also improves the S/N of the line wings, which 

are crucial for this study.
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4.2.1.3 Source selection

The reduced spectra for all the sources are presented in Figure 4.1. As the main priority 

of this study was to examine the relative abundances of H2 O and CH3 OH, the quality 

of the data related to them was the deciding factor in choosing which sources to select 

for the rest of the study.

The obvious choices to drop are LI 157 and TMC-1, because they not only have 

missing data but have very noisy CH3 OH 5-4 spectra (due to the low integration time, 

as evidenced in Table 4.3). Similarly L483, L723, L1489, L1551, and TMR-1 are 

disqualified from further study on account of extremely weak to no CH3 OH (and oc

casional P-H2 O) detections. L I448 has a very peculiarly shaped H2 O spectrum due to 

the high-velocity "bullets" of gas ejecta associated with this source (Kristensen et al., 

2011). A weak CH3 OH 7-6 feature is visible, but comparing the shapes of the H2 O and 

CH3 OH spectra indicates that it would be necessary to understand the (non-trivial) pro

cess of disentangling the bullet features seen in the H2 O spectrum from the non-bullet 

emission, in order for a meaningful comparison to be possible with the little CH3 OH 

that is detected. Thus I disqualify L1448 from further study. Both Elias 29 and GSS 30 

show strong detections of H2 O emission, but CH3 OH could not be detected, making it 

impossible to study the ratio between the species.

In the end I was left with three sources: IRAS 2A, and IRAS 4A and 4B. All of 

these have data and also show clear line detections in the H2 O and both CH3 OH bands, 

and thus form the basis for the remainder of this study.

4.2.1.4 Beam dilution correction

As seen in Table 4.1, the lines that are examined in this study have somewhat different 

beamsizes from each other, ranging from 14" with the CH3 OH 5k ~  4k lines to 21" 

with the H2 O 2 o2  — 111 line. These variations in beamsize lead to large variations from 

line to line in the beam dilution of the observed emission, which has to be compensated 

for if I am to make an accurate comparison between the different lines. To do this I
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have applied the differential beam dilution correction method detailed in Appendix B 

of Tafalla et al. (2010) to the line ratios discussed in Sections 4.3.2 and 4.4.3.

The correction method is applied by assuming a simple gaussian beam, where the 

beam dilution factor is proportional to 6 ^ ,  where Omb is the FWHM of the beam 

being examined and a  is a free parameter dependant on the source size and which can 

vary between 0 and 2. Tafalla notes that a  =  2.0 for a point-like source, 1.0 for a one

dimensional source, and 0.0 for a source infinitely extended in two dimensions. In my 

case, applying a beam dilution correction to an observed line intensity ratio between 

molecules 1 and 2 , 2 r,i / 7 r }2 , is given by using the equation:

(^R,i/Tr,2)corrected =  (Zr,i/7r,2) X (0MB,2 / 0MB,l)- ®- (4.3)

In order to apply this correction method to my data I had to first examine which 

value of a  is most appropriate to my case. The effect of accounting for beam dilution, 

or lack thereof, in my case is best seen when comparing the line ratio of the two dif

ferent CH3 OH lines against either the CO lines or the H2 O line studied in this chapter. 

To determine a  I decided to use the CO (10-9) line because it is the one least affected 

by high optical depth. Assuming that emission from both of the CH3 OH lines’ wings 

originate from the same physical region of the YSO I would expect that when beam 

dilution is taken into account correctly, the line ratios of both CH3 OH lines divided by 

the CO (10-9) would yield the same N(CH3 0 H)/N(CO).

Based on this I decided to adopt a  =  1.0 as the beam-size correction exponent for 

all my cases. According to Tafalla et al. (2010) this implies that the emission I am 

probing is extended along one dimension when compared to my beam sizes, which 

makes sense for the edge of an outflow.
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Figure 4.2: The emission of the 5o — 4o (red) and 7o — 6o (green) A-CH3OH, the 10- 
9 (blue) and 3-2 (magenta) CO spectra plotted above the 2o2 — 111 P-H2O spectrum 
(gray), which has been decomposed in the manner discussed in Section 4.5.4; de
composed spectra are shown in black. All spectra have been resampled to a common 
channel size of 1 km s_1, and shifted in velocity so that their rest velocity is at Av =  0 
km s-1 . The CO 10-9 and 3-2 spectra have been scaled with multipliers of 0.25 and
0.04, respectively. The spectra are offset along the y-axis for clarity. The dashed ver
tical lines show the velocity ranges used for selecting the red and blue wings of the 
spectra, as colour-coded by the horizontal lines at the top.

Table 4.4: Velocity cuts for the line wings, relative to the local velocity of the source

Source Red wing (km s 1) Blue wing (kms ])
IRAS 2A + 3 .0 ... +  1 2 .0 - 1 0 .0 .. . - 2 .0

IRAS 4A + 3 .0 ... +  13.0 -1 8 .0 .. . - 3 .0
IRAS 4B + 3 .0 ... +  1 2 .0 -1 5 .0 .. . - 3 .0
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4.3 Results

4.3.1 Line profiles

Figure 4.2 shows the H2 O spectra of IRAS 2A, IRAS 4A, and IRAS 4B, centered at 

their rest velocities, against both CH3 OH and CO spectra. For the wings of IRAS 

2A all profiles are very similar, although the red wing of the H2 O spectrum extends 

to higher velocities than any of the other species by about 5 km s-1 . IRAS 4A is 

characterised by the highly asymmetric profile of the CH3 OH 7-6 spectrum compared 

to the H2 O and CO 10—9 spectra. The H2 O line wings towards both IRAS 4A and 4B 

extend to significantly higher velocities than the CH3 OH and CO 10—9 line wings by 

more than 1 0  km s- 1.

The CO 3—2 line shows a noticeable dip in intensity towards IRAS 2A at very low 

velocities. This is indicative of the low-velocity (i.e. mostly envelope) gas being very 

optically thick and self-absorbing. Previous studies (e.g. Takahashi et al., 2008) have 

shown that the CO 3—2 line can trace the hot outflow gases in star forming regions. 

However, according to Kristensen et al. (2013) low-J (i.e. J<10-9) CO emission does 

not trace the same cloud components as the H2 O 2 o2  — I 11 emission. Furthermore, 

Santangelo et al. (2012) have mapped both CO emission lines towards star-forming re

gions, and found that their distributions do not match. All of this suggests that CO 3-2 

is not a useful transition to compare against the other lines considered in this study be

cause of tracing different gas components, and I have omitted the CO 3-2 observations 

from now on.

Previous studies have found that the observed P-H2 O line profiles are generally 

complex and consist of multiple dynamic components (Kristensen et al. 2010b, 2011, 

2012, 2013; Mottram et al. 2013, 2014). These components are typically associated 

with the envelope, outflowing and shocked gas and trace physical components not 

detected prior to Herschel. CH3 OH profiles, on the other hand, typically consist of just 

two components: one associated with the outflow and one with the envelope. In the 

this study I limit myself to studying the line wings only, and ignore the line centers
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which are typically associated with envelope emission.

The velocity ranges used to define the red and blue wings of each object are indi

cated by the respectively coloured bars at the top of Fig. 4.2. The ranges were selected 

such that any envelope contribution is excluded (typically ±  3 km s" 1 from the source 

velocity) and such that the line wings are completely included. Towards IRAS 4A and 

4B, the red-shifted A-CH3 OH 5o — 4q wing emission starts to overlap with E-CH3 OH 

5_i — 4_i emission at velocities of +  5—10 km s - 1  from the source velocity, which 

therefore sets the upper limit on the range to which I was able to compare the red- 

shifted velocity.

4.3.2 Observed line ratios

The line ratios of the two ground-state 5—4 and 7—6 A-CH3 OH transitions with respect 

to H2 O 2o2 — I 11 and CO 10—9 are presented in Fig. 4.3. The line ratios are measured 

where Av >  3 km s_1(at lower velocities it is not possible to separate outflow emission 

from quiescent envelope emission), and where the S/N ratio is >  1 in both transitions. 

The CO 10—9 line profile towards IRAS 2A shows no blue-shifted emission in spite 

of the high quality of the data.

The CH3 OH / H2 O line ratios show a decreasing trend with increasing velocity 

over the range where CH3 OH is detected. This is particularly visible towards IRAS 

4A in the blue wing, where the ratio decreases by more than a factor of 5. Most other 

line wings show a decrease of a factor of 2—3. In IRAS 2A the (noisy) line wings 

appear to exhibit constant line ratios, although the higher-S/N red 7o — 6 0  CH3 OH line 

wing shows a noticeable decrease in the line ratio with respect to H2 O emission. The 

CH3 OH / CO 10—9 line ratios (Fig. 4.3) exhibit similar trends as the ratios with H2 O, 

consistent with the similarity of the H2 O and CO 10—9 profiles (Yildiz et al., 2013) 

tracing the same gas.
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Figure 4.3: The ratio of the line intensities of two different A-CH3OH lines (5o — 4o 
and 7o -  60 over the line intensity of the 2 o2 — 111 p-H20  transition {top), CO 10—9 
{bottom). The velocity along the x axis is absolute offset with respect to the source 
velocity for the blue and red wings, respectively. Only the velocity range covering the 
line wings tracing emission related to the outflows is included in the line ratios and 
all points where S/N <  1 for either line have been ignored. Some of the line ratios 
were scaled for visibility reasons (marked). The error bars only include measurement 
uncertainties and not relative calibration uncertainties.
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4.4 Analysis

4.4.1 From  emission to abundances: radiative transfer

While the intensity of line emission from a specific molecule can be intuitively con

sidered to be directly related to the number of emitting molecules, and thus the line 

intensity ratios might be directly related to the relative abundances of two molecules, 

reality tends to be much more complicated. In the following subsections I will review 

the physics of radiative transfer -which explains how a line intensity can be translated 

into a molecular abundance- and then apply this method to my case through the use of 

specialized radiative transfer software.

4.4.1.1 The theory of radiative transfer

Consider an infinitesimally small cylinder (bottom surface area dA, length dr) which is 

subjected to radiation coming perpendicularly at the bottom with intensity 7V directed 

at a solid angle Jo).

This cylinder is suspended in a medium which causes the intensity of the incoming 

radiation to change by d lv as it passes the length of the cylinder, dr. In time dt this 

causes the energy contained in the cylinder to change by

This change in energy is caused by both absorption and emission (I ignore scattering 

for my case), so that

The change in intensity due to absorption in the cylinder is directly proportional to 

intensity, and can be expressed as

dE = d lyd A d v  d(Odt. (4.4)

dE  — dEabs -T dEem. (4.5)

^ V , a b s  —  K y l y d r , (4.6)
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where k:v is the absorption coefficient of the material, and represents how much in

coming energy from the solid angle da) gets absorbed by the material at frequency v. 

If I replace d lv in Equation 4.4 with ^//v,abs» I gel the energy change due to absorption:

dEa\)S = Kv Iv drdA dvdcodt. (4.7)

Complementary to Ky , I define the emission coefficient j v to represent how much

energy the material emits into the solid angle dco at frequency v. Thus the energy

change caused by emission is expressed by

dEem = jyd rd A d vd co d t. (4.8)

Placing equations 4.4, 4.7, and 4.8 into equation 4 .5 ,1 can derive

dIv = —lmdr + — . (4.9)7 ITCydr Ky

The ratio ^  is also called the source function, and I will represent it with Sv . Further

more, K y d r  =  d r y , where Tv is called optical depth. Placing these two into Equation

4 .9 ,1 arrive to the basic equation fo r  radiative transfer:

=  —I v + S y  (4.10)
C iT v

Through integration, I can produce the formal solution to the radiative transfer equa

tion:

/„ (TV) =  /v(0)<TTv +  [  e ~ ^ - x)Sv (x)dx. (4.11)
JO

At its most basic level, this equation is at the heart of all discussion about radiative 

transfer. In astronomical terms its first term describes how radiation from behind the 

cloud -represented by Iv (0 ) -  is exponentially attenuated by the optical depth t v of 

the cloud. The second term inside the integral describes emission -from  e.g. excited 

molecular gas- happening in the cloud, also partially attenuated by optical depth.
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4.4.1.2 Radiative transfer in practise: RADEX

Since the source function SVM  in Equation 4.11 is not recoverable, solving Equation 

4.11 requires simplifications, such as the rotational diagram (which applies only in 

Local Thermal Equilibrium or LTE, where the energy populations are assumed to have 

been thermalized to follow the Planck distribution) or iterative solutions such as those 

utilised by the non-LTE excitation software RADEX (van der Tak et al., 2007).

I can not rely the environment I am probing in this chapter to be in LTE, so I 

made use of RADEX to solve molecular abundances from the observed line emission. 

RADEX makes use of the escape probability approximation, which is a method for 

estimating the internal radiation field of a cloud in situations (like mine) where only 

global parameters such as the optical depth and total column density of the cloud are 

interesting. The escape probability approximation requires an assumption regarding 

the geometry of the emitting material, and RADEX provides three options. The plane- 

parallel "slab" geometry of de Jong, Dalgamo, and Chu (1975) is applicable to shocks, 

and thus I make use of it in my simulations.

The iteration process of RADEX starts from calculating the fractional level pop

ulations of the molecule being considered by making use of Statistical Equilibrium

In this /jj represents interactions which excite molecules into level i while repre

being excited or de-excited are indicated by n\ and ny  In general form and Py are 

represented by the equation

where Ay, B\y  and Cjj are the coefficients for spontaneous emission, stimulated emissi

(SE):

(4.12)

sents interactions which de-excite molecules. The populations of the levels which are

Ay +  B\jJy +  Cjj (i >  j) 

B\jJy +  Cjj (i <  j)
(4.13)
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on/photo-absorption, and collisional (de-)excitation, respectively. Jv is the integral of 

the specific intensity Jv over the full frequency range, where

Jv = ^ - [ l vd a .  (4.14)
4 71J

In the above Q. is the solid angle over which the intensity Iv is integrated to get 

specific intensity Jv. From Equation 4.12 RADEX is capable of calculating the popu

lations of the molecular energy levels, given information about Ay, By, and Cy and the 

radiation field. In the first iteration it has little knowledge of the surrounding radiation 

field, though, and will calculate Jv from only background radiation (usually the cosmic 

microwave background). After calculating the population levels, RADEX proceeds to 

calculate the optical depths for all lines using

87Fv3j 1.064AV
<?ux\ xu

. Si
(4.15)

where c is the speed of light, vui is the frequency of the transition, Aui is its Einstein 

A-coefficient, AV  is the line full width at half-maximum (FWHM) in units of velocity, 

Nmo\ is the column density of the molecule being looked at, x\ and xu are the fractional 

populations of the lower and upper energy levels, and gu and g\ are their statistical 

weights. RADEX will also calculate the source function (as a function of transition 

frequency) using
c _  ^uAui /A 1/:^
Svul — D „ 5 (4.16)n\Blu nuBu\

where the nominator describes the emissive (j v) part of the source function, while 

the denominator describes its extinctive (kv) part. In this equation Au\, B\u, and 2?ui 

are the Einstein A- and B-coefficients for their respective transitions. nu and n\ are the 

populations of the molecular energy levels in question. This version of the source func

tion assumes "complete angular and frequency redistribution" of the emitted photons,

i.e. that the emitted photon line profiles are identical to the absorption and stimulated 

emission line profiles.
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The optical depth and source function can then be used to calculate the radiation 

field, which is fed into the population level calculations to calculate a new iteration of 

energy level populations, this time with an added internal radiation field adding to the 

background radiation. In my case, considering the contribution of the internal radiation 

field is where the escape probability approximation becomes relevant:

(4.17)

where 5Vul is the freshly calculated source function, and /3 is calculated using the spe

cific escape probability function, which for the slab model is

1 —
Aslab = -----------• (4.18)

After recalculating the excitation levels, a new t is calculated, and the iteration 

proceeds following the now established pattern, until T reaches adequate convergence 

between subsequent iterations. Convergence is defined by i  changing less than a user- 

defined (small) amount between two iterations. The final value of t is then output by 

the program.

Of course, in my case I am less interested in having t calculated from Amoi than 

getting Amoi from observed 7V. To be even more precise, I care about the ratio of two 

column densities derived from the ratio of two line intensity ratios. I do this instead 

of deriving column densities directly from line intensities because I am faced with a 

problem of severe parameter space degeneracy, and as the next section describes, I can 

use column density ratios to decrease the free parameter count by one.

4.4.2 R A D E X  and the degeneracy of the parameter space

RADEX, in addition to calculating optical depths from column densities, is capable 

of "running in reverse" with the help of PYTHON scripts provided in the software 

package. One of these scripts adds a second layer of iteration on top of RADEX ’s
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normal functionality, by seeking a best-fitting column density which corresponds to a 

set of other freely adjustable simulation parameters which RADEX uses in its normal 

calculations.

The free parameters are the gas density («(H2 )), temperature {T) and either the 

molecular column density (N) or the opacity (t), given a line FWHM Av. In all fol

lowing simulations except those used for generating Figure 4.4 (where line width is 

used to control t )  I set the line width to 1 km s-1 , corresponding to the channel width 

in my data. I assume that the H2 O o/p ratio is 3.0 (Emprechtinger et al., 2013). All 

column densities involving H2 O presented for the rest of the chapter have made use of 

this ratio to convert A(p-H2 0 ) to A(H2 0 ). The molecular line information RADEX 

uses is taken from LAMDA, (Schoier et al., 2005) with information for the individual 

molecules from Rabli and Flower (2010), Yang et al. (2010) and Daniel, Dubemet, and

f r m c i p a n  / 0 O 1  1 ^\ _ i i  v o j  v u i i  i  J- J  •

Constraints must be placed on the parameter space if I am to obtain a non-degenerate 

solution to my data analysis. Since I am only interested in the relative abundance vari

ations of CH3 OH, CO and H2 O, the line intensity ratios must be converted to column 

density ratios. Here I discuss what constraints can be put on the gas density, temper

ature and opacity based on relevant envelope and outflow parameters, and what the 

effect of varying these parameters has on the final column density ratio.

4.4.2.1 Opacity and column density

Yildiz et al. (2013) have previously shown that the CO 10—9 line wings are optically 

thin in the objects of this study. For CH3 OH, observations towards exclusively outflow 

positions, such as LI 157 B1 and B2 (Bachiller et al., 1995), result in inferred column 

densities in the line wings that suggest CH3 OH gas is also optically thin. For the rest 

of this study I assume that this is true towards the protostellar position as well.

Water emission is known to be optically thick towards the protostellar lines of sight 

(Kristensen et al., 2011) with opacities >  10 for the ground-state 557 GHz lio — lot 

transition. However, given the high critical density of water (>  108 cm - 3  for the 987
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GHz transition studied here) compared to the H2 density, the effective critical density 

is given by A ui/(Cu]T) where Au\ is the Einstein A  coefficient, Cu\ is the collisional rate 

coefficient and T is the opacity. Therefore, in the limit where the opacity is high but 

n < ncvit, the emission becomes effectively thin and a photon is lost for each radiative 

decay (Snell et al., 2000), i.e. while the emission may be optically thick it is effectively 

optically thin.
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Figure 4.4: The simulated intensity ratio of CH3OH 5o — 4o (top) and 7o —
60 (bottom) to P-H2O 2 o2 — h i  as contours of t[H 2 0 (2 o2 — In)])  (x axis) and 
log10(A(CH3OH)/A (H 2O)) (y axis). The white contour lines show the maximum 
and minimum observed line intensity ratios for the blue wing of IRAS 4A, as shown 
in Fig. 4.3. The contour levels are logarithmically scaled. The kinetic temperature is 
fixed at 200 K and /i(H2 ) is fixed at 106 cm-3 .

A grid of RADEX simulations was run to study how increasing opacity affects the 

conversion of the observed line intensity ratios into column density ratios (Fig. 4.4).
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As can be seen, the effects of varying the opacity are limited, much less than a factor of 

two. The reason is that although the water emission is optically thick, it is effectively 

thin (see above). I therefore assume for the remainder of this study that the water 

emission is optically thin.

An additional constraint can be placed on the CH3 OH/H2 O column density ratio. 

If the relative gas phase abundances of CH3 OH and H2 O trace the relative ice phase 

abundance of the same molecules, values are expected to range from a few to 30% (e.g. 

Boogert et al., 2008; Dartois et al., 1999; Gibb et al., 2004; Oberg et al., 201 la; Pontop

pidan, van Dishoeck, and Dartois, 2004; Pontoppidan et al., 2003b). Should gas-phase 

water formation be taking place, the gas-phase abundance ratio would be lower than the 

ice phase abundance ratio, and [A(CH3 0 H )/A (H 2 0 )]gas <  [A(CH3 0 H)//V(H2 0 )]jce- 

Using 7kin =  200 K and rc(H2 ) =  106  cm - 3  ensures that the inferred A(CH 3 0 H) <  

a/(H2 G) is always true for my data, even with optical depth effects accounted for.

4.4.2.2 Temperature

Emission from several transitions in both A-CH3 OH and E-CH3 OH can be seen in the 

full spectra. Though most of the lines are very weak and/or overlapping with each 

other, the four strongest lines (The 5o — 4o and 7o — 6 0  transitions of A —CH3 OH, 

and the 5_i — 4_i and 7_i — 6 _i transitions of E — CH3 OH) can be used to construct 

rotational diagrams, which make use of rotational transition lines to illustrate energy 

level populations, and from which it is possible to calculate the rotational temperature 

of the emitting gas.

To construct a rotational diagram one must assume local thermodynamic equilib

rium (LTE), i.e. a state where the energy level populations are thermalized, and where 

the source function can be described by the Planck function:

S v = m  = ^ _ _ ± _ t (4.19)

where h is the Planck constant, c is the speed of light, v is the frequency of the line



4.4. Analysis 157

transition, k is the Boltzmann constant, and T  is the (in this case rotational) tempera

ture of the gas. Furthermore, if an isothermal medium is assumed, this form of Sy  is 

constant within said medium, and Equation 4.11 simplifies to the form

Iv {Ty) = Sy ( \ - e - Tv) = B v ( T ) ( \ - e - tv). (4.20)

The third assumption is that the isothermal medium has very low optical depth, i.e. 

Tv <C 1.0. This further simplifies the intensity to

Iy (Zy)^B y(T)Zy .  (4.21)

The optical depth in this situation can be described by (Goldsmith and Langer, 

1999)

*v =  - ^ N uB ul(ehv/k T - l ) ,  (4.22)

where Nu is the population of the upper level and Bu\ is the Einstein B-coefficient of 

the transition corresponding to frequency v, and AV is the full width half-maximum of 

the line (which is assumed to have a gaussian profile).

Further assuming that the source is uniform and perfectly contained in the beam of 

the detector, I can get the relationship between antenna temperature and intensity:

rA =  ^ / v .  (4.23)

Finally combining equations 4.21, 4.22, and 4.23 I get the upper level population 

as a function of integrated antenna temperature:

87tkv2 [TAd v
N *  =  u ~ 3 a  » ( 4 ' 2 4 )hc*Au\

where Aui is the Einstein A-coefficient, and /  TAd v  is equal to 7aAV in the case out

lined above.

One final step remains to extract the rotational temperatures, remembering that in
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Figure 4.5: Rotational diagrams of CH3 OH for the integrated intensity of both wings 
in IRAS 2A (left), IRAS 4A (middle), and IRAS 4B (right). The solid green line is the 
linear fit to the shown points and the dashed green lines show the uncertainty range of 
the fit as determined by the 1-sigma uncertainties of the fit parameters.

LTE the level populations follow the Boltzmann distribution, in the form:

V, =  ^ g ae-(4.25)
A

where N is the column density of the emitting molecules, Z is their partition function, 

gu is the statistical weight of the upper energy level, and E u is its excitation energy. 

This can be rearranged to the form:

' " ( £ ) ' ^ e- w + i " © ’ 14 261

which can be used as the basis of a linear fit y = ax+ b into the observed data. In this 

case y =  In (calculated from observations), x =  E u (available from databases), 

a  = — j ,  and b =  In (^ ) . To get the rotational temperature, one therefore merely needs 

to fit a straight line to a plot of In against E u and extract the rotational temperature 

from the gradient of the fit, given by — j .

The rotational diagrams constructed in this way are presented in Figure 4.5 for all 

three objects. I calculate Trot =  57.8 ±  4.3 K  for IRAS 2A, Trot =  34.6 ±  1.3K  for IRAS 

4A, and Trot = 53.7 ±  2.OAT for IRAS 4B. It is also possible to construct rotational dia

grams separately for the red and blue wings of the three objects. In doing so one ends
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Figure 4.6: Rotational diagrams of CH3OH for the integrated intensity of the (top row) 
red and (bottom row) blue wings in IRAS 2A (left), IRAS 4A (middle), and IRAS 4B 
(right). The solid green line is the linear fit to the shown points and the dashed green 
lines show the uncertainty range of the fit as determined by the 1 -sigma uncertainties 
of the fit parameters.

up with Trot recj = 52.5 ± 3 .6 K  and Trot^ i ue =  79.9 ± 7 8 .2 ^  for IRAS 2A, Trotred  =  

30.7±0.7/<: and TrotMue =  \6 .1  ± A 3 K  for IRAS 4A, and Trotsed  =  53.7 ±  1.1 and 

Trot.blue =  40.9 ±  2 5  A K  for IRAS 4B. The rotational diagrams used to calculate these 

values are shown in Figure 4.6. The difference in these rotational temperatures com

pared to those calculated with both wings implies that the excitation conditions may 

be different towards the red and blue wing of each object.

Regardless of whether they are calculated from the red wing, the blue wing, or 

both, the rotational diagrams towards the three sources place the CH3OH gas excita

tion temperatures above "normal" cloud temperatures of 10-15 K but below outflow 

temperatures of 100—300 K. The latter range of temperatures is based on a typical 

warm temperature component seen in CO rotational diagrams of low-mass protostars 

(Green et al., 2013; Herczeg et al., 2012; Karskaet al., 2013; Manoj et al., 2013). Since 

the rotational temperatures of CH3OH are a fair amount below this temperature range,
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to CO 1 0 - 9  as contours of 7kjn) (x axis) and log]0(A^(CH3OH)/A^(CO)) (y axis). The 
white contour lines show the maximum and minimum observed line intensity ratios for 
the blue wing of IRAS 4A, as shown in Fig. 4.3. The contour levels are logarithmically 
scaled. n(H2 ) is fixed at 106 cm - 3  and all lines are optically thin.

I conclude that CH3OH must not be at LTE, where T^n =  Trol would apply. The kinetic 

temperature range used in the RADEX simulations is then set at the broad 100—300 

K range.

Figure 4.7 shows that the inferred CH3 OH/CO column density ratio increases by 

a factor of ~  3 from T^n 100 to 300 K at constant density n{H2 ) of 106 cm-3 . The 

CH3OH/H2O column density ratio (Fig. 4.8) shows similar behaviour in the same 

kinetic temperature range.
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4.4.2.3 Density

One way of obtaining estimates of n(H2 ) for the outflow material is to use the ex

pected envelope density at a given distance from the protostar (e.g. Kristensen et al., 

2012; Yildiz et al., 2013). Kristensen et al. (2012) estimated the envelope density as a 

function of distance for all sources in this sample based on fits to the continuum SED 

and sub-mm continuum maps, assuming a power-law density structure. Densities of 

~  5 x 106  cm - 3  were found at a distance of 1000 AU. Further away (2350 AU) the 

density is typically 106  cm-3 . Since the entrained gas in the outflow cavity walls can 

be either compressed by the shocks or expanding into the outflow cavity, I study n(H2 ) 

in the range of 1 0 5 — 1 0 7  cm-3 .

The critical densities were listed in Table 4.1. The envelope densities exceed the 

CH3 OH and CO critical densities, whereas the H2 O critical density is never reached. 

Thus, the CH3 OH and CO level populations are expected to be thermally excited, 

whereas H2 O is sub-thermally excited. For CO and H2 O this conclusion has been veri

fied by Herczeg et al. (2012) using excitation analysis of Herschel PACS observations. 

However, the rotational diagrams created for CH3 OH indicate that it has a rotational 

temperature (~  50 K) a good deal below what the expected gas kinetic temperatures 

(> 100K) are in the outflow. The critical density for CH3 OH is only barely below the 

density of the medium, though, and thus the likely scenario is that its rotational tem

perature does not quite match the kinetic temperature yet. This implies that the likely 

correct kinetic temperature and H2  density are in the lower end of the temperature and 

density range I am exploring.

The effect the density range has on the line intensity ratio to column density ratio 

translation can be examined by running a grid of RADEX simulations in which t  and 

Tkin are kept constant (optically thin and 200 K, respectively) and n(H2 ) and the column 

density ratio are varied to produce line intensity ratios comparable to the observations. 

As both the CH3 OH and CO 10—9 line wings are optically thin (Yildiz et al., 2013, for 

CO), they form a good benchmark for exploring the effects of the physical environment
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Table 4.5: Physical conditions in the RADEX simulations

Parameter Value Range Effect**)
t(H 2 0 ) Optically th in ^ 0 - 2 0 < 0 . 1  dex
^kin 200 K 1 0 0 -3 0 0  K 0.5 dex
n( H2) 1 0 6  cm - 3 1 0 5 — 1 0 7  cm - 3 1.0-1.5 dex*b)
(*) dex is shorthand for "order of magnitude"
(a) The H2O emission is optically thick but effectively thin (see text and Snell et al., 2000). 

rc(H2) has a greater effect on 7V(CH30H)/jV(H20 ) than on7V(CH3OH)/7V(CO)

on the simulated line ratios whilst allowing me to ignore t .  The results of the RADEX 

simulation grid are shown as a contour plot in Figure 4.9, where they are compared 

with the observed ratios of CH3 OH/CO in the blue wing of IRAS 4A.

Figure 4.9 shows that variations of across the assumed range can produce 

changes in the A(CH 3 0 H )/N (C O) ratios up to a factor of 10, but that the increase de

pends only weakly on n(H2 ), as is expected when emission is thermalised and optically 

thin. The same exercise can be made for CH3 OH versus H2 O and the RADEX results 

are presented in Figure 4.10. Since H2 O excitation is sub-thermal, the effect of /i(H2 .) 

on this ratio is greater than for CH3 OH versus CO. The resulting systematic variation 

in this case is ± 1  order of magnitude and varies almost linearly with density.

4.4.3 Molecular column density ratios

With the appropriate range of physical conditions established (summarised in table 

Table 4.5), it is now possible to address my original questions by exploring how the 

observed line intensity ratios translate into column density ratios. The excitation condi

tions are assumed to be constant as a function of velocity. In order to convert V(p-H2 0 ) 

into A(H2 0 ) I have assumed a constant ortho-to-para ratio of 3:1 and thus multiplied 

all calculated P-H2 O column densities by 4. First I examine the CH3 OH/CO column 

density ratio in order to quantify how much CH3 OH from the grains reaches the gas 

phase intact. Second, I looked at the CH3 OH/H2 O ratio, to study how well the ratio of 

methanol to water matches their usual solid-state abundances. The resulting column
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Figure 4.11: Line intensity ratios converted to their corresponding column density 
ratios using the physical parameters presented in Table 4.5. The ratios plotted in the 
two top rows were calculated using both the 5o — 4o (red and blue) and 7o — 6 o (cyan 
and magenta) lines of CH3OH. The dashed line at A i'lsr ~  10 km s_1in the plots of 
the blue wing of IRAS 4A represents the approximate velocity where I see a gradient 
change (compared to lower velocities) in the behaviour of A^CF^OFQ/A^FLO) and 
A(FLO)/7V(CO). The line intensity ratios from which the column density ratios of the 
bottom row are calculated were taken from Yildiz et al. (2013). Velocity is given as a 
magnitude with respect to the source velocity.

density ratios are summarised in Table 4.6.

The CH3OH/CO column density ratios are shown in the middle row of Fig. 4.11. 

Since the line wing emission is assumed to be optically thin, the column density ratio 

is proportional to the line ratio. In all sources, the derived CH3OH/CO column density 

ratio decreases with increasing velocity by up to a factor of five (in the case of the 

blue wing of IRAS 4A). The CH3OH/CO column density ratio is on average ~  10~3. 

I follow the example of Yildiz et al., 2013 and assume a CO/H2 abundance of 10-4 . 

This value may be too high by a factor of a few (Dionatos et al., 2013; Santangelo 

et al., 2013), or too low by a factor of a few (Lacy et al., 1994). When using this 

CO abundance the derived CH3OH abundance is of the order of 10-7 , consistent with 

values reported towards other outflows (e.g. Bachiller et al., 1995; Tafalla et al., 2010).

The CH3OH/H2O column density ratio also decreases with increasing velocity off

set, except towards IRAS 2A (Fig. 4.11 top row). The average column density ratio
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Table 4.6: Column density ratio ranges from the lowest (3 km s J) to highest velocities 
(10—18 km s-1 , depending on source).

Source JV(CH3 OH)/;V(CO)(a) A(CH3 0H)/A(H 2 0 ) ^
3 km s max(y) 3 km s 1 max(i;)

IRAS 2A - blue 2 (—1 ) 2 (—1 )
IRAS 2A - red 1 (—2 ) 1 (—2 ) 2 (—1 ) 2 (—1 )
IRAS 4A - blue 3(—2) 3(—3) 1 (0 ) 8 ( - 2 )
IRAS 4A - red 5 (-3 ) 3(—3) 3(—1) 8 (—2 )
IRAS 4B - blue 1 (—2 ) 4(—3) 2 (—1 ) 3(—2)
IRAS 4B - red 8 (—3) 3(—3) 1 ( - 1 ) 2 (—2 )

a(b) = a x  I0b.

for all objects is ~  10-1 . The A(CH 3 0 H)/iV(H2 0 ) ratios calculated from the two 

different rotational lines of CH3 OH are almost identical in the case of the blue wing 

of IRAS 4A, but noticeably different in the case of the red wing, by about a factor of 

3, although the two transitions show the same trend. Up to 10 km s - 1  the decrease in 

CH3 OH column density with respect to both CO and H2 O match each other closely 

and this is also reflected in the the H2 O abundance being almost constant when com

pared to CO 10—9, as is seen in the bottom row of Figure 4.11. Beyond 10 km s-1 this 

behaviour changes particularly in the blue wing of IRAS 4A and possibly in the red 

wing of IRAS 4B as well, with TV (CH3 OH)/A(H2 O) decreasing slightly more rapidly 

than iV(CH3 0 H)/A(C0 ). The change is also seen in A(H2 0 )/A(C0 ) which begins in

creasing at velocities above 1 0  km s“ 1.

4.5 Discussion

4.5.1 Magnetohydrodynamlc shocks in young stellar objects

Magnetohydrodynamics (MHD) is a specialized area of fluid dynamics, which com

bines the equations of fluid motion with Maxwell’s equations to create equations ca

pable of describing the behaviour of charged fluids (which the ISM can be counted as, 

in this context) in the presence of both an ambient magnetic field and one created by 

the movement of the fluid itself. The full derivations of fluid motion relevant to de-
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Figure 4.12: Clouds condensing behind the bow shock of an F/A-18 fighter jet as it 
accelerates to supersonic speeds. Image source/credit: NASA/Ensign John Gay, USS 
Constellation, U.S. Navy

scribing MHD shocks in YSOs are neither fully relevant nor practical to present within 

the scope of this thesis, but understanding how some of the derived physics works is 

useful in understanding the origin of the line emission I see in the observed spectra.

When speaking of shocks generated when outflows impact ISM envelopes in YSOs, 

an excellent analogy comes from the shock fronts forming in front of aircraft moving at 

supersonic speeds, such as the one shown in Figure 4.12. In this situation the density 

fluctuation in the air pushed along by the jet is trying to move faster than the max

imum density propagation speed (the sound speed), which causes air to "pack" in a 

bow-like shape starting from the tip of the aircraft. The air packed in this way is both 

rapidly heated and compressed in places where the supersonic disturbance meets the 

non-supersonic air, and a bow shock is formed.

A similar event can happen in the ISM, when rapidly moving gas collides with 

slow-moving gas. In the ISM, however, the "Alfven speed" of the material is more
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than the sound speed, and more importantly there are two different Alfven speeds 

which are relevant to ISM shock conditions: one for neutral material, and one for ions. 

The Alfven speed for neutrals is given by

VA,n =  B = , (4.27)
\/47r(pi +  pe +  Pn)

and for ions it is:

Va>* =  / , -  g  - X - (4-28)V 4 ® (p i+ p e)

where B  is the strength of the magnetic field, and pi, pe, and pn are the mass  densities 

of ions, electrons and neutrals in the medium, respectively.

To aid the interpretation of these speeds, the Alfvenic Mach number for the neutrals 

is defined as:

MA,n =  Vs/VA,„, (4.29)

and similarly for the ions as:

MA,i =  V ^ A ,i, (4.30)

where Vs is the velocity of the fast-moving material relative to the material it is hitting,

i.e. the velocity of the material in the shock frame.

In a medium consisting only of neutral material, creating a shock front analogous 

to that of the supersonic aircraft merely requires that MA,n >  1 , which generates con

ditions where information about the oncoming shock wave propagates faster than the 

unshocked material can "prepare" for it. However, environments such as the outflow 

of a YSO contain a noticeable fraction of ions, and they can act as an intermediary for 

"warning" the unshocked material of the incoming shock. This causes the incoming 

shock front to smooth out considerably, and leads to significantly less heating of the 

shocked material as would happen if the Alfven velocity for ions was lower than the 

shock velocity. The smoothed out shock is called a continuous shock or C-shock, and 

the unsmoothed shock is called the jump shock or J-shock. The density, velocity and 

temperature behaviour of these shocks is sketched in Figure 4.13.
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Figure 4.13: A cartoon representation of how the density (blue line), temperature (red 
line) and velocity (black dashed line) of the pre-shock material behaves before (left of 
black dotted line) and after (right of black dotted line) the shock front of a jump (J; top 
figure) or continuous (C; bottom figure) shock. The X axis represents a 1-dimensional 
cut-out of the distance, with the black dotted line representing the point where the neu
tral materials initially collide with each other. Reproduced based on Hollenbach and 
McKee (1989), Draine and McKee (1993), and Kristensen, L.E. (private communica
tion).
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Observations show that most of the mass in the YSO outflow consists of neutral 

material, and that therefore pn Pi- It follows from comparing Equations 4.27 and 

4.28 that Va,ii VA,i and thus it is found that the velocity of the high-velocity material 

will trace three types of interactions with the low-velocity material in YSOs depending 

on the relative velocity difference of the two, Vs:

•  Non-shocked interaction, where Vs <  Va,ii <  Va ,\

•  C-shocked interaction, where VA,n <  Ys <  V^i

•  J-shocked interaction, where Va,ii <  Vaj <  Is

One additional intermediate category of shock that can occur in YSOs is a steady- 

state CJ shock (e.g. Lesaffre et al., 2004), which starts similar to a C-type shock but 

then evolves into a J-type shock. This shock is caused by a specific magnetic field ge

ometry which decelerates the ions in the shock front of a C-type shock, and eventually 

causes an adiabatic shock front to form which eventually transforms the shock into a 

J-type.

Observations by Crutcher et al. (2010) suggest that VA,n can have value ranging 

from ~  0 . 2  kms- 1  to ^  2 . 0  kms-1 , depending on the level of magnetisation of the 

shock. VX,i can be a few thousand to ten thousand times this. If my observations were 

to directly measure the stellar wind which causes J-shocks, the emission from them 

would lie well beyond the velocity range of the spectra shown so far. THerefore I am 

not observing the gas entrained in the shock directly, but rather the gas that has met the 

shock and been deflected by it. To use another analogy, it is not the stream of water 

from the fire hose I am observing, rather I am observing the deflected streams of water 

rebounding from the proverbial wall that is the YSO envelope cavity wall.
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4.5.2 Velocity structure and the origin of the line emission

As shown in Figure 4.14, the protostellar wind and jet interact with the envelope in 

several locations:

1 . the stellar wind around the highly collimated bi-polar jet;

2 . the shocked material where the stellar winds collide with the outflow cavity 

walls;

3. the entrained material of the envelope, swept up but not necessarily shocked by 

the deflected stellar wind material.

The last two of these are the environments most relevant to this study. In a scenario 

reminiscent of bow shocks (Smith, Khanzadyan, and Davis, 2003, also illustrated by 

the middle part of Figure 4.14), the point of impact between the stellar wind and out

flow cavity walls will be dissociative and the shock will be J-type. The stellar wind 

colliding with the envelope material also becomes deflected by the cavity walls and 

sweeps up the surface layers in an entrained flow. The emission from the entrained 

flow is what is traced by the different velocity components of the observed spectra, 

and these components are what I refer to for the remainder of the chapter when dis

cussing velocities. In the absence of other dissociating sources such as UV fields the 

J-shock typically takes place at velocities of ~  25—30 km s - 1  (Flower et al., 2003; 

Lesaffre et al., 2013). Beyond this I see no line emission in any of the sources included 

in this study. Further removed from the impact point the post-shock gas has had time 

to cool down and molecules have had a chance to reform, while at the same time fresh 

molecular material from the envelope is being exposed to lower-velocity (secondary) 

shocks originating in the bow wings of the original shock. Depending on the local 

magnetic field geometry, these shocks may be C-type or non-dissociative J-type (C-J- 

type) shocks. In my observations this corresponds to line emission at velocities greater 

than a few km s_1: the line wings at the lowest velocities (~  3—15 km s-1 ) probe the 

entrained envelope material as well as secondary shocks, and at higher velocities (£
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15 km s-1 ) they probe the directly shocked material. The lowest-velocity material (< 

3 km s-1 ) is only related to the quiescent envelope, and is ignored in my analysis.

The physical conditions prevailing in the shocked regions and entrained flows en

ables a number of chemical and physical processes to happen, two of which are es

pecially relevant to my study and are illustrated in the right part of Figure 4.14. The 

sputtering effects (a) are relevant in entrained material where the gas and dust is not 

utterly destroyed in the process (C-J and C-shocks). Water and methanol ice that is 

sputtered from dust grains is expected to be present in the gas phase in both C-J- and 

C-shocked regions i.e. at velocities below ~25 km s-1 . The gas-phase formation reac

tion of water (b) is expected to activate when sufficiently high temperatures (T > 200 

K) are reached in the shocked regions, and these regions are hypothesized to have an 

excess of water compared to CH3 OH and H2 O gas abundances derived from the solid- 

phase. This temperature threshold is met within the velocity range occupied by the 

C- and C-J-shocked regions and consequently will potentially have water formation 

happening, until the shock velocities exceed the physical conditions where H2 O will 

be dissociated.

This translation of velocity components in the spectra into different physical re

gions in the shock outflow cavity (summarised in Table 4.7) provides sufficient context 

for the rest of this discussion, in which I look at the results of the previous sections to 

answer the two questions I asked at the beginning of this chapter:

1. How much, if any, methanol is being destroyed in the outflows?

2. Is high-temperature water formation taking place in the outflows?
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4.5.3 Molecular destruction in outflows

In dissociative J-type shocks, reactions with H are the most efficient way to destroy 

CH3 OH and other grain products such as water and ammonia. The activation energy 

for methanol reacting with H (~  2270—3070 K, Sander et al. 2011) is even lower than 

that of ammonia which has already been shown to be destroyed in post-shock gas (Viti 

et al., 2011). Destroying water in a similar manner is more inefficient because the 

activation energy is higher (~  104  K), but at shock velocities of 25—30 km s - 1  the 

kinetic temperature is already >  2x 104  K (McKee and Hollenbach, 1980) and so H2 O 

will also collisionally dissociate. I can readily observe this difference in activation en

ergies between CH3 OH and H2 O destruction by H (see Fig. 4.2). In all cases H2 O 

emission in the wings tapers off below the 1 — <7 noise level at significantly higher 

velocities ( A v l s r  > 25 km s-1) than the CH3 OH emission, which drops below noise 

levels at approximately A v l s r  =  10 km s-1 . The exception to this is IRAS 4A, which 

still shows trace methanol emission at up to 18 km s - 1  and water emission at approx

imately 35 km s-1 . In other words, methanol is undetectable beyond these velocity 

ranges most likely because it does not exist there.

The gas-phase CH3 OH abundances derived from the middle row of Figure 4.11 

were compared to the expected solid phase CH3 OH abundances. Assuming that equal 

abundances of envelope CH3 OH gas originate from dust grains in both the low-velocity 

and high-velocity regimes, the data in Figure 4.11 shows that at high velocities, some 

fraction of CH3 OH originating from grain surfaces (90—99%) is "missing" in the gas 

phase. This CH3 OH is either not being sputtered from the grains, or (as is more likely) 

is being destroyed in the sputtering process or in the gas phase.

Sputtering occurs when a neutral species, typically H2 , H or He, collides with the 

ice mantle of a dust grain with enough kinetic energy to release the ice species into 

the gas phase. Sputtering at shock velocities down to 10 km s - 1  predominantly takes 

place in C-type shocks (Flower and Pineau des Forets, 2010), where the negatively 

charged dust grains stream past the neutral gas. At these velocities the kinetic energy
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of each particle is of the order of 1 eV. Sputtering yields have been estimated theoret

ically, but not measured in the laboratory, although 1 eV is significantly higher than 

the desorption energy barrier of CH3 OH or H2 O (both below 0.5 eV, Burke and Brown 

2010; Fraser et al. 2001). However, given the high kinetic energy, it is likely that at 

least some molecules could be destroyed, rather than simply being desorbed by the 

sputtering process. This is more likely for CH3 OH than H2 O, given that the gas-phase 

dissociation energy of CH3 OH to H+ CH2 OH is around 4 eV compared to just over 5 

eV for H + OH (Blanksby and Ellison, 2003). Furthermore, strong evidence exists that 

dissociation barriers are lowered in the condensed phase (Woon, 2002). However, these 

sputtering processes are occurring in the same regions where I also expect methanol 

destruction by high-temperature gas phase reactions with hydrogen atoms. Conse

quently, although my observations cannot distinguish between the two processes, it is 

is clear that as the methanol abundance drops in the line wings, the sputtered methanol 

is being destroyed more readily than the water.

4.5.4 W ater formation in outflows

At the highest outflow velocities, higher than those where I observe any methanol 

emission, water is readily observed. As discussed in Section 4.5.3, any water at even 

higher velocities will be destroyed by the J-shock and this is suggested by the lack of 

detectable H2 O emission beyond ~  25—30 km s-1 . Though the water destroyed in 

the J-shock is expected to eventually re-combine via the high-temperature gas-phase 

reaction, the velocity of the re-formed water is observable only in the “offset" com

ponent directly tracing the shock itself. This component has been removed in the de

composition of the H2 O spectra used in this analysis, and was previously discussed in 

Kristensen et al., 2013. Below J-shock velocities, any water emission observed must 

have originated from H2 O formed through gas-phase synthesis directly in the warm 

shocked gas. In my data the column density ratio of H2 O/CO starts increasing at ve

locities higher than ~  10 km s- 1  with respect to the source velocity. I conclude that the
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shift between water release from the grains and gas-phase water synthesis switches on 

at this velocity, since the water abundance remains constant with respect to CO (Yildiz 

et al., 2013) and CO is not destroyed unless the shocks have significantly higher ve

locities (~80 km s-1 ; Neufeld and Dalgamo, 1989). This is especially apparent in the 

blue wing of IRAS 4A and the red wing of IRAS 4B; the water abundance increases 

by a factor of ~2, due to gas phase formation. Below ~10 km s-1 the data shows that 

the water abundance remains constant with respect to CO and I interpret this to in

dicate that gas-phase water (and methanol) at low velocities originated entirely from 

sputtered ice. There are two possibilities for this low-velocity component: (i) if we 

consider the outflows to be conical shells (e.g. Cabrit and Bertout, 1986, 1990) then a 

part of the cone, when projected onto the plane of the sky, will have a radial velocity 

component close to zero even if the 3D velocity in the cone is not zero anywhere; (ii) 

the post-shock or entrained material has decelerated and cooled down but has not had 

time to freeze out again yet (Bergin, Neufeld, and Melnick, 1998). A combination of 

both possibilities may naturally also be at play. Observations at higher angular resolu

tion are required to break this degeneracy by pinpointing where the emission from the 

lower-velocity line wings originates spatially: inside the outflow cavity (option 1 ) or 

closer to the envelope (option 2 ).

4.6 Concluding remarks

In this chapter observations of H2 O, CH3 OH and CO line emission have been com

bined with RADEX simulations to constrain the gas-phase abundance variations of 

water and methanol towards three low-mass YSOs: IRAS 2A, IRAS 4A and IRAS 4B. 

It was found that:

1. The CH3 OH/CO column density ratio decreases by up to one order of magnitude 

with increasing velocity.

2. The abundance of CH3 OH in the shocked gas is more than 90% lower than that
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reported for CH3 OH ice in the cold envelope. Given that the CO abundance is 

unaffected by shock chemistry across the velocity range investigated, this im

plies that CH3 OH is destroyed either during the ice sputtering process from dust 

grains or through gas-phase reactions with H in the outflow.

3. The H2 O/CO column density ratios increase by ~  a factor of two, with the in

crease beginning at velocities above ~10 km s-1 . This suggests that the gas- 

phase formation of water is active and significant at velocities higher than 1 0  

km s-1 . No discontinuity is observed in the water column density as a function 

of velocity, implying that the transition is smooth and continuous between the 

observed water originating from ice sputtering and gas-phase routes.

4. The column density ratio of CH3 OH/H2 O also decreases with increasing veloc

ity, closely matching the same trend in CH3 OH/CO column density ratio. Based 

on my prior conclusions, this implies that both H2 O and CH3 OH are sputtered 

from ices in these shocks, but that only CH3 OH is being destroyed, and no gas- 

phase H2 O formation is occurring, at least at velocities below 1 0  km s-1 .

5. In the blue wing of IRAS 4A, the CH3 OH/H2 O column density ratio decreases 

more steeply at velocities in excess of M O km s- 1  than the CH3 OH/CO column 

density ratio. This traces the high-temperature gas-phase formation of water in 

this higher velocity regime.

Consequently, gas-phase CH3 OH and H2 O abundances in shocked regions depend 

on the complex interplay between ice sputtering mechanisms, gas-phase destruction 

processes and high-temperature formation reactions. These conclusions hint towards 

future observational and experimental requirements to further constrain the physics and 

chemistry of H2 O and CH3 OH in outflows. In particular, tiying to observe and quantify 

the efficiency of CH3 OH and H2 O ice sputtering by neutrals in a laboratory environ

ment would contribute towards verifying and/or refuting the two main conclusions of 

this work; whether or not the two molecules are sputtered with equal efficiency, and if
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CH3 OH can be destroyed in the sputtering processes. Observations resolving the out

flow spatially close to the protostar, and mapping the variation of physical conditions, 

are also important to further constrain the origins of the line emission.

In the greater context of this thesis, an interesting note can be made by reminding 

ourselves of one of the results of Chapter 3: the CH3 OH ice is much more prevalent in 

the ISM than previously thought, with its abundance relative to H2 O possibly increas

ing as high as 40%. The study based on the chapter just concluded pre-dates the study 

presented in Chapter 3, and thus assumes a lower (~  30%) upper limit of the column 

density ratio of methanol ice to water ice. This means that the actual destruction rate 

of CH3 OH during sputtering is possibly up to ~  30% higher than what was concluded 

above.



Chapter 5

Large-scale ice mapping with AKARI

What becomes clear from the work illustrated in Chapter 4 is that to fully understand 

the gas-dust synergy on spatially resolved scales -where chemistry is affecting star- 

formation processes- requires observations where both the gas emission and ice ab

sorption are concurrently mapped. Moving from the "state of the art" in ice observing 

to the scenario described above is non-trivial, i.e. it is a huge leap between ice map

ping on AU scales and the scenario of detecting interstellar ices on individual lines of 

sight and then statistically combining many such spectra to elucidate ice formation, 

evolution and destruction mechanisms (as illustrated in Chapter 3).

In this Chapter I present the first real attempts at multi-object ice detections, and 

the subsequent ice column density mapping on large (at least 1000 AU) scales. An 

unprecedented volume of ice spectra have been detected during the AKARI mission; 

here I focus on those spectra obtained in the near-infrared (NIR), slitless spectroscopic, 

prism observations in the AKARI open-time ice-mapping programme IMAPE. By the 

end of this Chapter I will show that my research has almost doubled the current count 

of lines of sight along which the column density of water ice is estimated, including 

lines of sight towards a total of 207 sources, of which 12 are low-mass YSOs and 145 

are background stars. This set contains a total of 76 detections and 131 non-detections. 

Upper limits are defined for the non-detections. These data have been combined to 

produce 1 2  ice maps covering 1 0 ' x 1 0 ' regions towards pre- and star-forming cores.

181
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5.1 Introduction

As was discussed in Chapter 1, interstellar ices on the surfaces of dust grains play a 

critical role in the molecular chemistry of the interstellar medium. Material in molec

ular clouds cycles between the gas and solid phases via adsorption (sticking) and des

orption processes, triggered thermally by temperature changes (as stars for example 

ignite -  see e.g. Burke and Brown 2010; Viti et al. 2004) or through non-thermal pro

cesses such as sputtering by electrons, ions or high-energy neutrals (as seen in Chapter 

4) or by photon stimulated desorption (e.g. Fayolle et al., 2011b, 2013; Oberg, van 

Dishoeck, and Linnartz, 2009; Oberg et al., 2009, 2010b). In-between these accre

tion and desorption cycles, species on and in the ices react with each other, forming 

molecules which would not otherwise efficiently form in the gas phase. Consequently, 

one question remaining to be answered is whether obtaining information on both the 

abundances and spatial distribution of solid molecular material in star-forming regions 

simply provides an insight into the global chemical networks in molecular clouds or 

whether it also probes the prevailing physical conditions in the local environment when 

the ices first formed. If the latter is true, it may even differentiate chemical diversity 

across a star-forming region, thereby illuminating the feedback between solid- and 

gas-phase chemistries. This is my motivation for attempting ice-mapping, as it comes 

back to one of the key questions posed at the beginning of this thesis: Where is the 

ice? Ice mapping also allows me to potentially understand how and why ice formation 

is triggered and comment on its spatial distribution. These are the overarching aims of 

this chapter, focused specifically on water ice.

5.1.1 Observing water ice

In the gas-phase, water (H2 O) can only form efficiently at relatively high tempera

tures, typically in post-shocked gas (> 200K; e.g. Bergin, Neufeld, and Melnick, 1999; 

Charnley, 1999; Draine, Roberge, and Dalgarno, 1983; Glassgold, Meijerink, and Na- 

jita, 2009; Tielens, 2005), but a plethora of mechanisms have been shown (in the lab
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oratory at least) to lead to H2 O formation on cold interstellar grain surface analogues 

(e.g. Dulieu et al., 2010; Ioppolo et al., 2008; Lamberts et al., 2013). The first detec

tions of water-ice were reported in the 1970’s (Gillett and Forrest, 1973; Leger et al., 

1979; Merrill, Russell, and Soifer, 1976), and to date water ice has been detected on 

^  300 lines of sight towards high-mass YSOs (e.g. Gibb et al., 2004), low-mass YSOs 

(e.g. Oberg et al., 201 la), background sources probing molecular cloud material (e.g. 

Boogert et al., 2013; Noble et al., 2013), and even extra-galactic regions (e.g. Oliveira 

et al., 2009; Shimonishi et al., 2008, 2010, 2013; Spoon et al., 2002; Yamagishi et al., 

2011, 2013), using both ground-based and space-borne infrared telescopes. This body 

of evidence has proven that H2 O is the most abundant molecular solid in the ISM, and 

typically has abundances in excess of most gas phase molecules (water ice abundances 

relative to H2  tend to hover around 1 0 -5 , while the abundances of most gas phase 

molecules are 2 or more orders of magnitude lower than this; see e.g. van Dishoeck 

and Blake 1998).

The abundances of molecular ices are derived from near- and mid-infrared (NIR 

and MIR) spectroscopic absorption features, attributable to the stretching and bending 

mode vibrations of the intra-molecular bonds in the molecular species that make up the 

ices. In fact, ice abundance calculations rely on a number of involved steps. First the 

observational spectral feature is fitted to a laboratory spectrum, which may or may not 

require additional processing to account for e.g. for grain shape effects. Second a col

umn density of the ice species is derived from the fitting process, and finally -where 

the data is available- this column density is used to calculate an abundance relative 

to N{H2, gas). In practise the process is more complicated. Often N(H2, gas) is not 

known, so ice abundances are usually instead quoted relative to the column density of 

H2 O ice; the inherent uncertainties in calculating column densities from fits between 

laboratory data and observational spectra are known to be up to 30% (mostly limited by 

the laboratory data). Examples of this were discussed in Chapter 3. These are system

atic errors and apply to all known ice data, but nonetheless show the complexities of 

observational ice spectroscopy. Perhaps most importantly, an uncertainty is introduced
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even at the observational stage. In the MIR and NIR wavelength ranges chemists refer 

to the the vibrational mode features (detectable in the ISM through spectroscopy) as 

arising from "functional groups" of atoms.

As was discussed in greater detail Section 1.4.3 of Chapter 1, a functional group 

refers to a set of atoms -e.g. O-H with a specific bond between them within a molecule- 

whose characteristic vibrational frequency occurs at approximately the same wave

length regardless of the molecule in which the atoms are found. So for example the 

OH in water (H2 O) vibrates at around 3300 cm-1 , or 3.05 gm  (e.g. Gibb et al., 2004, 

and references therein). As a result of ice features arising in this way, most molecules 

are traced by features at multiple different frequencies associated to the various bend

ing and stretching modes its constituent atoms can exist in. For example water ice is 

also traced by its H-O-H bending mode vibration at ~  6.02/xm. Many of these ice fea

tures trace at the the same approximate frequency a multitude of different molecules we 

might expect in the ISM ice. An example of this is the 3-micron O-H stretching mode 

mentioned above, which also traces alcohols such as CH3 OH. The C -0 triple-bonded 

stretching mode of CO is an exception to this rule, as it is unique to CO ice alone. 

The shared absorption features tracing multiple different molecules limit the number 

of IR spectral features in ice observations from which I can derive specific molecular 

abundances, and even how many species are unambiguously detectable in interstellar 

ices. Furthermore -since these absorption features are only detected in absorption- a 

background source strong in near-IR emission is required for observations. Common 

targets fitting this description are young stellar objects (which tend to be brighter than 

other stars in the NIR) embedded within molecular clouds, although any background 

star behind the molecular cloud of interest is also a suitable source, with the caveat that 

they are not necessarily very bright in the IR frequency range best suited for ice ob

serving. Observing the 3-micron O-H stretch with ground-based near-IR telescopes is 

further complicated by the L-band cut-off by the water vapour in Earth’s atmosphere. 

These spectral lines partially obstruct the interstellar ice absorption feature; the 6 - 

micron bending mode feature likewise is completely unobservable with ground-based
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telescopes. For this reason most observations water-ice have been made with space- 

based observatories such as the Inrared Space Observatory (ISO), Spitzer, and AKARI. 

Each one of these telescopes had limited lifespans at the low cryogenic temperatures 

necessary for NIR spectroscopy.

In this chapter my work focuses on the prominent water O-H stretching mode fea

ture at ~3  jUm, from which the column density of water ice can be estimated. Whittet 

et al. (1983) first noticed a correlation between the water ice column density (or the 

optical depth T3 ^m, which is presumed to correlate with N ( H2 O, solid)) and visual ex

tinction A y  towards lines of sight where both have been reported. This correlation has 

been repeated by several studies (e.g. Eiroa and Hodapp, 1989; Murakawa, Tamura, 

and Nagata, 2000; Noble et al., 2013; Whittet et al., 1988) since, and a positive cor

relation has always been found. The study by Whittet et al. (1988) also found an "ex

tinction threshold" at A y  «  3.3, below which no water ice was detected. From this it 

was hypothesised that water ice can not form on dust in regions characterised by these 

lower extinctions, possibly due to photo-dissociation and /or photodesorption of the 

water ice in the stronger interstellar radiation field, thus destroying the ice as fast as it 

can be formed. This threshold has been reaffirmed by other studies, although there are 

conflicting estimates on how low the critical A y  is when no more water ice is detected. 

Eiroa and Hodapp (1989) found water to be undetectable below A y  «  5 — 6 and sug

gests the difference arises either due to higher foreground extinction or a difference in 

the UV field in the vicinity of the molecular cloud (Serpens) in question. Murakawa, 

Tamura, and Nagata (2000) reported a scatter in the A y  threshold between 2 and 5 

magnitudes depending on line of sight, and suggested that this is the result of A y  vari

ations caused by a clumpy filamentary cloud structure. It is still unclear if the critical 

A y  is a real physical phenomenon tracing the onset of ice formation, or whether it is 

related to limitations in the detector capability, dependent on source brightness and re

alistic integration times in single-source line-of-sight observations. With this in mind, 

the secondary objective o f  m y research w as to test with the large num ber o f  lines o f  

sight available in the A K A R I data, w hether or not N(¥L20, solid) is subject to a real
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extinction threshold associated  w ith ice fo rm ation  or not.

5.1.2 Ice Mapping

When all of these factors are combined, it is perhaps not surprising -despite over 40 

years since the first water ice detections- that the number of lines of sight on which ice 

observations are reported (and their spatial coverage) is very small in comparison to 

gas-phase maps of star forming regions. As was previously discussed in Chapter 2, it 

has only been with the advent of space-bome sub-mm telescopes -such as Herschel- 

that the prevalence of gaseous water has been established in interstellar regions. How

ever -as was shown in Chapter 4 -  a significant fraction of the H2 O gas now detected 

through observing programmes such as WISH (van Dishoeck et al., 2011) originates 

from interstellar ices. For example, ice must be present in order to explain the de

tection of gas-phase water generated by non-thermal desorption of water ices deep in 

a pre-stellar core (Caselli et al., 2012). Such analysis is reliant on gas-grain models 

with many data inputs, which can be independently changed to influence the output 

gas abundances for comparison with observations. From a solid-state perspective, 

constraining the precise values of ice abundances, morphologies, compositions and 

components, and understanding how solid-state processes are affected by these param

eters is fundamental to explaining the origins of the observed gases, and assisting the 

modelling process. This is another motivation for my attempt at ice mapping.

Of the previous ice mapping studies discussed in Chapter 1 Section 1.5, the AKARI 

ice mapping studies of Noble (2011) and Noble et al. (2013) are most relevant to this 

chapter. Noble et al. (submitted to MNRAS) extended their previous AKARI grism 

ice spectroscopy (Noble et al., 2013) to generate ice maps across the AKARI 1' x V 

field of view towards 4 cores, comparing the resulting ice abundances of H2 O, CO and 

CO2  to existing observational data on gas and dust temperatures and column densities 

in the same dense core regions. They conclude that the ice does not directly trace the 

gas or dust material, and is instead potentially strongly influenced by the kinematics of
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star-forming regions i.e. by the local environment. The ice mapping method has even 

been extended to extra-galactic sources; Yamagishi et al. (2013) showed that H2 O ice is 

widely distribtuted in the nearby star-burst galaxy M82 whilst CO2  ice is concentrated 

towards the galactic centre. While they do so on a very different astronomical spatial 

scale, they also attribute variations in C C ^ t^ O  ice abundance ratios to changes in the 

"local" interstellar environments within the galaxy. Likewise, the same group showed 

that ice distributions of H2 O, CO2  and OCN varied significantly across the edge-on 

galaxy NGC253, and differed significantly from that of the H2  gas and PAH emission 

(Yamagishi et al., 2011). My work compliments these earlier ice mapping attempts, 

but also demonstrates unique qualities which will be vital for translating ice mapping 

observational techniques forwards to the JWST and E-ELT eras, where multi-object 

spectroscopy and IFU (integral field unit) observing are being promoted:

•  I have attempted to construct maps from multi-object slitless spectroscopic de

tections, and therefore all my ice features are derived from data acquired simul

taneously.

•  My field of view is large -up  to 10' x 10 '- and focuses on galactic objects, 

thereby spanning diverse interstellar environments from extra-cloud regions to 

cloud edges and objects embedded within dense cores.

•  I have this data towards multiple different molecular clouds.

Consequently my adopted method of mapping the ices themselves is very challeng

ing from an observational, data reduction, and ice column density calculation view

points. An advantage of this approach is that the solid state material can be observed 

directly. The disadvantages (discussed in further detail in the upcoming sections) are 

the intrinsic limitations arising from how the data was observed and how it needs to be 

reduced. The step-change from one dimensional to two dimensional ice spectroscopy 

makes possible the testing of whether spatial ice abundance differences in a core are 

correlated with localised effects such as dust evolution, heating, density, turbulence,
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Table 5.1: Target fields of view analysed in this chapter.
Core Pointing Number of <2J2000 <5j2000
name observations [deg.] [deg.]
B35A 4120021 2 86.154 +09.170
BHR 59 4121001 1 166.803 -62.096
CB 188 4120004 2 290.065 +11.600
DC 269.4+03.0 4120042 1 140.594 -45.790
DC 274.2-00.4 4120006 2 142.208 -51.601
DC 275.9+01.9 4120008 2 146.691 -51.102
DC 291.0-03.5 4120010 2 164.966 -63.723
DC 300.2-03.5 4121044 2 186.090 -66.202
DC 300.7-01.0 4120011 2 187.886 -63.739
DC 346.0+07.8 4120012 1 249.225 -35.617
L 1165 4120034 2 331.668 +59.100
Mu 8 4121017 1 187.698 -71.041

and varying radiation fields. The spatial scales capable of being traced by the ice maps 

produced in this chapter allow me to focus on scales of a few thousand astronomical 

units.

The remainder of this chapter is structured as follows. First in Section 5.3 I briefly 

discuss the observations on which my work is based, and then proceed to discuss at 

length the detailed reduction and spectrum extraction process. After this -in  Section 

5 .3 .5 -1 utilise methods not dissimilar to those already previously employed in Chapter 

3 to derive water ice column densities. I present ice maps created this way in Section 

5.4, towards a total of 12 star-forming regions. In section 5.5 the data are discussed 

in the context of other ice observations, observable archival data towards the same 

molecular clouds, and finally in terms of the extinction threshold limit at which ices 

can be detected.

5.2 Observations

The main bulk of the data used in this study comes from the AKARI ice mapping 

programme IMAPE (PI: Helen Fraser) which consists of near- and mid-infrared spec

troscopic observations towards a total of 13 molecular clouds. Both grism (NG) and 

prism (NP) observing modes were used for the observing, with 11 of the clouds ob
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served in the NG mode and all 13 clouds observed in the NP mode. An explanation 

of how these observing modes work was provided in Chapter 2, where a full list of 

target cores was also provided in Table 2.2. For the sake of convenience, the NP ob

servations successfully (see below) analysed in this chapter (along with some relevant 

additional information) are also listed in Table 5.1. Analysing the NG observations in 

the 10' x 10' window quickly proved to be fruitless, as the severe confusion between 

the NG spectra makes extraction of useful information very difficult to impossible. 

Worse still, the way NG observations were taken by AKARI required the target coor

dinates to be specified in the centre of the 1' x 1' and as a result it was down to luck 

whether the telescope happened to be at an appropriate roll angle to align the 10' x 10' 

window with the desired cloud. The 1' x 1' window expectedly pointed at the desired 

patch of sky on every observation, but the roll angle of these observations ended up 

in all observations pointing the 10' x 10' window directly away from the molecular 

cloud of interest. As a result even if the spectra on the 10' x 10' NG observations were 

extractable, very few of them would be of the same sources as with their respective 

NP frames (preventing their use for improving the overall signal-to-noise of the obser

vations) and are probing a patch of the sky where there are no molecular clouds and 

ice of any kind is almost certainly completely absent. For this reason the remainder 

of this chapter concerns itself only with the NP observations, which are expected to 

mostly trace H2 O ice at the 3-micron absorption feature. Both CO and CO2  ice fea

tures would be theoretically observable at the NP wavelength range, but its very low 

resolution (R ~  12) makes it unlikely for the narrow C -0  stretching features of CO and 

CO2  to be resolvable towards most lines of sight. Owing to how AKARI observed the 

near-infrared and mid-infrared channels simultaneously, mid-IR data would have also 

been available in addition to the near-IR data analysed in this chapter. This additional 

data was not analysed in this study, owing to the very significant complications (most 

notably the strong zodiacal light present in the mid-IR regime, and its effect on mid-IR 

spectroscopy) that the reduction of the mid-IR data would have introduced. One of the 

NP observations (towards BHR 78) had corrupt astrometry, which made source asso-
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Figure 5.1: An outline of the full reduction process leading from raw AKARI data to 
water ice column densities, split into five main steps. Most of these steps are from the 
point of view of ARF2 split into several smaller steps, to be taken in succession in the 
order described in this chapter. Also listed are the main required inputs and outputs of 
each step.

ciation with c2d data (see Section 5.3.2) impossible for this core. Consequently BHR 

78 was ignored in the analysis, bringing the final number of analysed cores to 12.

N ^ A/Iotlmrl n ln m r
> / • « /  x T x v m v / v i v i v r t  j

Acquiring ice maps from the raw AKARI observations is a non trivial process, involv

ing first some fairly standard processing of IR spectroscopic observational data, some 

reduction steps specific to AKARI, the extraction of ice spectra, and finally reduction 

and analysis of the spectral data to extract the column densities of water ice. The full 

journey from raw AKARI data to ice maps -the description of which will encompass 

most of this chapter and makes use of both of the software utilities detailed in Ap

pendix A - is summarised on the flowchart in Figure 5.1. The first step on this path is 

the reduction and stacking of the raw AKARI data into a format from which spectrum 

extraction is possible.

5.3.1 Reduction of the raw A K A R I data

Each NP mode observation made with AKARI produces a total of 12 FITS files rele

vant to my study:

•  A single imaging frame, taken with the N3 filter (covering a wavelength range 

of 2.7 to 3.8 gm) in the middle of the observing cycle.
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•  Two dark frames, one taken right before the observing cycle and one at the end 

of it.

•  Nine dispersed frames, where the final frame was often obtained during the tele

scope manoeuvre phase and therefore omitted.

Each of these frames consist of two sub-frames: one short (2.3 seconds) and one long 

(51 seconds) exposure version.

The imaging and dispersed frames in their raw form suffer from a number of effects 

(some of which are common to all CCD-equivalent observations, some of which are 

unique to AKARI) which must be accounted and corrected for, before the data is useful 

for scientific analysis. These effects and the order they are accounted for during the 

reduction are as follows:

1. The detector arrays have a number of bad pixels, which produce useless data. 

The locations of these pixels are recorded in a bad pixel mask, which is pro

vided as part of the standard AKARI calibration dataset. The first operation to 

be undertaken with the raw AKARI data is flagging the pixels indicated by the 

bad pixel mask as bad data. Pixels masked in this way are ignored in subse

quent reduction steps, and are written in the final reduced frame as a NaN (Not 

a Number) value.

2. At high (>  1000) number counts the response of the AKARI detector becomes 

non-linear, and must be corrected for in order to make the detected signal from 

especially bright sources correspond more realistically to their true brightness. 

This is corrected for by applying the formula

2 3 4
^corr ^1 ̂ rep ^2^rep ^3^rep ^4^rep  ̂)

to all pixels where the reported signal is higher than the threshold value of 

1000. In this equation %ep is the reported signal, ncon is the corrected sig

nal, a x =  1.0288217, a2 =  -4.0339674 x 10"5, a2 =  1.3556758 x 10"8, a3 =
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— 1.5086542 x 10 12, and =  5.9679544 x 10 17. This equation is adapted to 

ARF2 from the official AKARI data reduction pipeline1.

3. At even higher number counts the reported signal suffers from a wrap-around 

effect, where a signal with a reported value that should be greater than 32768 

instead flips back to negative numbers, counting up from -32768. This effect 

-more commonly referred to as arithmetic overflow- is symptomatic of the de

tected number counts being stored as 16-bit signed integers either before be

ing written into FITS format, or by the software creating the original FITS 

files. As a result all arithmetic operations where the end result would be greater
o 16

than — 32768 -the highest positive number representable by signed 16-bit 

integers- flip around to -32768, the highest negative number representable by 

16-bit integers. Although it would be possible to convert the wrap-around val

ues useful numbers by adding 65536 to them, non-linearity effects already make 

data with this high number counts useless, and thus they are simply masked out 

instead. This was done by flagging all pixels where nTep <  —10000 as bad data.

4. The frames need to have a flat-field correction performed on them, to account 

for variations in the detector sensitivity between different parts of the frame. A 

master flat-field frame is provided as part of the standard AKARI calibration 

package. This flat-field image was first divided by its own mean (to normalize 

its effects on detected flux), followed by dividing the frame being processed by 

the normalized flat-field.

5. As with all detectors, the AKARI detector array suffers from dark current, which 

needs to be corrected for with a dark frame. Each pointing used its own master 

dark frame, which was constructed from a median of the two dark frames taken 

during their respective observation cycle. Also, separate dark frames were used 

for the short and long exposure versions of the data. The dark correction was

A vailable from h ttp : //w w w . i r . i s a s . j  axa. j p/ASTRO-F/Observation/DataReduction/ 
IRC/
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performed by subtracting the dark frame from the flat-fielded data.

An additional step is also taken in the reduction of the NP frames. These frames 

are stacked together, to create an image with a much improved signal-to-noise ratio 

compared to an individual frame. The stacking is done by averaging the images to

gether, pixel by pixel. However, before this can be done the jittering of the individual 

frames has to be accounted for. Between each of the exposures of the NP frames the 

field of view of the telescope shifts noticeably, without the shift being reported in the 

astrometry of the FITS header. If this is not corrected for, the averaged NP frames 

would show several "ghost" images of the sources in the field of view close to but ob

viously not aligned with each other, making the averaged NP frame useless. To correct 

for this, the first NP frame is taken as a reference frame and a pixel shift is automati

cally determined to best align the other NP frames with the reference. The best shift 

is determined by subtracting the pixel values in a small area close to the center of the 

reference frame from the subsequent frames, as the frames are shifted along the x and y 

axes relative to the reference frame. The allowed range of motion which is explored is 

±10 pixels along both the x and y axes, and the shift which produces the smallest sum 

of the absolute residual values is declared as the shift which aligns the reference frame 

with the other frame. This is repeated for each of the 7 frames following the reference 

frame, and they are cropped in the appropriate way as determined by the shift values, 

so that they will align pixel-by-pixel with the reference frame. After the shifts have 

been determined and the images cropped (causing loss of tiny amounts of data at the 

edges of the frame) to align with the reference frame, they are averaged to produce the 

final NP frame.

As was described in Chapter 2, the full AKARI frame contains both the 1' x 1' and 

10' x 10' windows in the same image, with a large blank space (reserved for dispersing 

the spectra into) surrounding both the 1' x 1' window and the slit connecting the 1' x 1' 

and 10' x 10' windows. The noise in this blank area would interfere with the source 

extraction being done to the 10' x 10' window, so the image was cropped to contain 

nothing but the 10' x 10' window, which is the focus of this study. With this cropping
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Figure 5.2: An example of a reduced N3 (left) and NP (right) short exposure frame 
towards DC300.7-01.0. The greyscale bar scales are in arbitrary digital units (ADUs).

done and the reduction steps above completed, the reduced images could be written to 

files and be ready for further processing. An example of a reduced N3 and NP frame 

are shown in Figure 5.2. Central to understanding the shapes of the features seen in 

the NP frame is the response calibration function of the AKARI prism disperser. This 

experimentally determined (by the AKARI mission scientists) function is used to con

vert the emission of an extracted AKARI spectrum into physical units. It also serves 

a second purpose of being highly useful in both pinpointing the location of a specific 

source on the NP frame, and also in providing information about the wavelength cal

ibration of the spectrum. It does this through a very prominent peak in brightness (a 

result of 0th order diffraction) it exhibits at 2.4 gm. The response calibration function 

is shown in Figure 5.3.

In an ideal situation this further processing would be the spectrum extraction itself, 

but one final issue of the AKARI telescope has to be corrected for before extraction is 

possible: the field distortion.

5.3.2 Correcting for field distortion in the A K A R I frames

One of the main challenges of spectrum extraction from the AKARI NP frames in the 

10' x 10' window comes from selecting the sources to extract. In a crowded field the
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Figure 5.3: The AKARI NP response calibration function. On the x axis is the wave
length of the function in microns, and on the y axis is its response against time- 
normalized ADUs. Notice the very prominent peak in repsonse at ~2.4 jum. This 
peak is used to both locate sources on the AKARI NP frame, and in the wavelength 
calibration of extracted spectra.
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Figure 5.4: An example of the effects of distortion on the reduced AKARI N3 frame 
at different parts of the same field of view towards DC300.7-01.0. The middle image 
shows the entire 10 ' x 10 ' field of view, while the left and right images show a zoomed 
in part at opposite sides of the full FoV, as indicated by the rectangles. The zoomed 
images have the locations of c2 d sources indicated by red circles, with a larger circle 
meaning higher K-band flux according to c2d. Notice how the c2d sources are offset 
from their N3 locations down and to the right on the left image, while the c2d sources 
are offset up and to the left on the right image.

the large frame can easily contain hundreds of IR bright sources, which makes it im

practical for them to manually selected, and thus requires the application of automatic 

methods. In the case of normal imaging frames such as the N3 frame, which contains 

mostly point-like sources, a utility such as S E X T R A C T O R  (Bertin and Arnouts, 1996) 

can be used to automatically find the source locations to a high degree of certainty. 

However, the dispersed light of the NP frame confuses these conventional methods 

and an alternate approach is required. An alternate automatic method is to rely on 

existing catalogues of sources towards the cores I am probing, and automatically se

lect sources to extract based on the proximity of a local maximum towards a predicted 

catalogue source location. The c2d Spitzer Legacy catalogue (Evans et al., 2003) is 

perfectly suited for this job, because the target selection for IMAPE was originally 

made so that the AKARI observations were selected from c2d target regions.

With such a catalogue readily available one would expect that finding sources to 

extract from the NP frame is a matter of overlaying the catalogue sources on top of 

the NP frame and performing the source extraction based on these locations. The 

reality, however, is not this simple. The AKARI frames suffer from field distortion, 

the effects of which are illustrated in Figure 5.4. The field distortion causes source 

locations to change in a non-linear fashion towards different regions of the AKARI
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CCD field, making simple corrections such as pixel offsets insufficient to translate the 

source locations of e.g. the c2d catalogue to align with AKARI sources. Furthermore, 

the effects of field distortion are different between the AKARI N3 and NP frames, 

because of prism optics introducing additional distortion to the path of the light.

The AKARI field distortion has been found (e.g. Helen Davidge private comm.; 

Lorente et al., 2007; Noble, 2011) to behave in a manner which can be modeled with a 

2-dimensional polynomial warping function. A single un-warped point at coordinates 

(x,y) can be warped with an nth order 2D polynomial to a point with coordinates (x7, / )  

with the help of the equations

=  L L
i=0 j=0

y ' = L L & yy ,
i=0j=0

(5.2)

(5.3)

where Pij  and Q ij  are the two sets of 2-dimensional polynomial coefficients (with 
n x n  elements each) required for calculating x! and / ,  respectively. The matrix-like 
nature of Pij  and Q ij  in the above equations hint at the relevancy of matrix algebra 
in the matter, and it is indeed possible to generalise the above to a pair of matrix 
transformations applied to an arbitrary point collection with k amount of (x,y) pairs to 
produce their nth order polynomially warped equivalent x! coordinates with:
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In these equations the equivalent warped coordinate of the unwarped points are de

scribed by the jd and /  values on the diagonal of the matrices on the right hand side
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of the equations, i.e. the warped equivalent of point (xi,yi) is Otjjj/j j),  for (^2 ,^2 ) it 

is anc* so on- The off-diagonal values in the matrices on the right hand side

of the equations are of unknown relevance in the generalised case, but seem to have no 

utility at least in my situation.

My situation requires the construction of two sets of P  and Q coefficient matrices: 

one for distorting between the c2d data and the N3 frames, and another for distorting 

between coordinates of the sources in the N3 frames to match with those found in 

the NP frames; in effect I am warping the real (c2d) data to align with the distorted 

AKARI coordinates. The conversion was chosen to be done this way around because 

the primary objective in the distortion correction is to automatically find sources to 

extract from the NP frame. The sources visible in the NP frames can all be found 

by applying SEX TR A CTO R  to the N3 frames, the coordinates of which can then be 

distorted to align with the NP frame. The association between N3 and NP sources 

happens by finding the local maximum (equivalent to the ~  2.4 jLtm sensitivity peak in 

the spectra; see Figure 5.3) inside a 3 x 3 pixel box on the NP frame, centered where 

the distortion from the N3 to NP predicts the S E x t r a c t e d  source to be. Most of the 

N3 sources can also be assigned with a c2d source identifier by distorting the pixel 

coordinate equivalents of their sky coordinates to align with the N3 frame souces, and 

then automatically associating the closest c2d/N3 source pairs together.

The distortion correction was performed as follows:

1. Correct for large-scale shifts between the c2d, N3 and NP coordinates by se

lecting a single source triplet (the same source found in c2d, N3 and NP) close 

to the center of each pointing. The (x,y) coordinate of this source is stored for 

each case, with the c2d (x,y) coordinate being represented using the world co

ordinate system of the N3 frame header. This triplet of coordinates is used to 

align this single source in each frame before further distortion corrections are 

performed, eliminating the large-scale shift and making it easier to characterize 

the small-scale distortion.
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2. Manually associate a number of source pairs (c2d/N3 or N3/NP) in a single 

pointing with each other.

3. Evaluate the first iteration of the de-warping coefficient matrices for a 5th order

k k2D polynomial by minimizing £  ixi ~  ■*/) and L  (,yi — y'i) (with and y\ cal-
i = i  / =  l

culated with Equations 5.4 and 5.5) separately using a modified Powell’s method 

(Powell, 1964).

4. Use the minimized P  and Q to try and automatically guess the source pair as

sociations in a new field of view, and correct them by hand in cases where a 

mis-association is noticed by visual inspection.

5. Minimizing the square-sum of the differences between the warped and un-warped 

coordinates again, using the increased number of coordinate pairs to improve the 

estimates for P  and Q.

6. Repeat the last two steps until all fields of view have been evaluated twice.

7. Use the final P  and Q estimates to warp the c2d source coordinates to N3 coordi

nates, and N3 source coordinates to NP coordinates and automatically associate 

the sources in the manner described in the previous paragraph.

The final number of the lines of sight (often having the same associated source mul

tiple times between different sub-pointings) used in this iteration was 5496, although

at ~  1000 sources it was found that manual correction of the automatically associated 

sources was no longer necessary, as the automatic association algorithm was associ

ating sources between the three systems at an accuracy comparable or superior to a 

human being, with vastly improved speed. The final number of mis-associations is 

estimated to be less than 5%, based on how rarely any mistakes made by the algorithm 

had to be corrected. Vector field maps of the calculated distortions are presented in 

Figure 5.5.

These distortion maps could be used to automatically find the extraction targets 

in the NP frames, allowing me to move on to the spectrum extraction phase of the
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Figure 5.5: Vector fields represtenting the final distortion maps used in the automatic 
source association between the c2d catalogue and the N3 imaging frames (left image), 
and between the N3 frames and the NP dispersed frames (right image). The plotted 
sizes of the vectors have been normalized for clarity; the maximum x-axis and y-axis 
distortions on the left image are 6.34 and 7.78 pixels respectively. For the right image 
the maximum x and y distortions are 10.39 and 3.99 pixels, respectively. The red 
circles show the coordinates of the reference sources used for correcting for large- 
scale shifts between the three sets of data. The arrowheads of the very short vectors 
have been removed, for clarity.

reduction.

5.3.3 Spectrum extraction

The spectrum extraction is the most important part of the reduction process, and also 

the one most sensitive to errors. A successful extraction relies on keeping track of 

several factors:

•  The correct detection of all strong spectrum-generating sources in the field of 

view

• Identifying the pixel coordinates of each part of the spectrum of each source.

•  Decomposing the emission of multiple overlapping spectra where possible and 

masking out the confused parts of the spectra in places where decomposition is 

impossible.
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•  Taking properly into account non-linear gain and saturation in spectra where the 

source emission is very strong.

•  Correct wavelength calibration of the extracted spectra

•  Detecting and masking out bad data and artifacts from the extracted spectra

The sheer volume of data being analysed means that this all has to be done al

most entirely automatically, as it is not practically feasible for a human to manually 

extract and reduce the spectra from the thousands of sources which are detected in the 

full AKARI IMAPE data set. This subsection describes the logic and methods which 

were used in going from the reduced AKARI frames and source detections to extraced 

spectra.

I first use the NP source locations detected by the N3/NP cross-associations to 

form the basis of the spectra to be extracted. Each source is designated an "extraction 

path" which describes the pixels associated with the spectrum of each source. The 

source location is the local emission maximum at low wavelengths, but this is not the 

beginning of the spectrum. The spectrum is seen to start 3 pixels before (in terms of 

offset along the dispersion axis) this, and it ends 58 pixels after the peak. This makes 

the full length of the extraction path longer than the one reported in Ohyama et al. 

(2007), because it was found that including the emission that has spilled over from 

the ends of the extraction path makes it easier to determine the precise pixel offset of 

especially the 2.4 f im transmission peak, which is useful in calibration. From close 

inspection of the dispersion, it was determined that there is a tiny offset of 0.417 pixels 

in the end point of the extraction path along the axis perpendicular to the dispersion 

axis. If I define the dispersion axis as the x axis and the non-dispersed axis as the y 

axis, I can then define the extraction path of each source to start at deltaX=-5 px and 

end at deltaX=+58 px and deltaY=+0.417 px relative to the source coordinates. The 

extraction path itself is the line drawn between these two points, and the pixels which 

fall on this line.
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With the extraction paths thus defined, I can look at the extraction itself. The default 

JAXA AKARI pipeline does the extraction by defining a box (usually 6 pixels wide 

along the y axis) around the (non-confused) source in question, and summing the pixels 

inside the box, along each point of the JAXA pipeline equivalent of the extraction path. 

This method will work adequately, as long as no other sources are inside the "extraction 

box" causing confusion. Noble (2011) improved upon this method in the case of the 

grism-dispersed (NG) spectra by -instead of defining a box- performing a PSF fit on 

each slice of the image containing dispersed emission from the soure(s) of interest. 

This PSF is fitted to a slice of the full image on the y axis, and takes the shape of a 

twin gaussian, as it was determined to be an adequate approximation of the grism PSF 

along the non-dispersed axis (Noble, 2011). This method proved to be very effective at 

extracting small numbers of grism-dispersed spectra out of the lx l arc minute AKARI 

field of view, and the results were later published in Noble et al. (2013).

The true problem in my case, however, arises in the form of the computational 

cost of applying this method in a situation where I can have dozens of extraction paths 

forming a chain of overlapping PSFs. The least-squares method -which is the standard 

approach for solving cases such as that of the partially overlapping PSFs- involves op

erating on matrices which have a number of elements in them that is the square of the 

number of parameters being fitted. This also means that a computation time needed 

to solve a least-squares problem increases as a square of the number of parameters 

being fitted. Thus, increasing the number of extractable sources by multiple orders of 

magnitude will quickly cause the total computation time to explode to a point where 

the extraction will no longer be feasible in reasonable timescales. An extraction of 3-5 

sources takes approximately two minutes of computation time on the test computer. If 

I increase the source count from 5 sources to 500 sources (approximately the number 

of sources being extracted from a single frame in the "worst-case" scenario), the com

putation time multiplies by a factor of (500/5)2 =  10000, causing a full extraction of 

some of the more crowded AKARI frames take about a week of uninterrupted calcu

lations per frame. All of the 19 pointings which contain the spectra I am interested in
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would thus take up to several months of computations to extract. As it will inevitably 

be necessary to repeat this extraction several times for debugging and extraction algo

rithm fine-tuning purposes, an iteration cycle of weeks (assuming only a single field 

of view is extracted during testing) to months (assuming full extraction) during such 

testing would be highly impractical.

The time bottleneck posed by the formidable computational requirements moti

vated the search for alternate solutions. First, let us consider the nature of the PSF 

degeneracy problem. The PSF degeneracy only poses a problem in cases where two 

extraction paths cross within a few full width half-maximums of each other. In most sit

uations any single extraction path has only a few other paths interfering it. While these 

interfering paths may also have additional other paths interfering with them, these ad

ditional paths are unlikely to have a significant effect on the emission of the first path. 

I could thus try to look at "clusters" of about ten paths, with only a single path in the 

middle of these being the one which a spectrum is extracted from. This could then be 

repeated for each spectrum in the data set separately. However -while it would take 

significantly less time than the simultaneous fitting of all spectra- this method will 

still take about one minute per extracted spectrum on an average computer. When we 

consider that this process would have to be repeated for each of the thousands of ex

traction paths, the full extraction process would still easily end up taking several weeks 

of uninterrupted computations.

The nature of the spectrum extraction problem is essentially one of deconvolution, 

and thus the search for a time-efficient solution to it lead to looking at existing deconvo

lution algorithms. The CLEAN algorithm (Hogbom, 1974) is a deconvolution method 

often used in e.g. the aperture synthesis of radio interferometry. CLEAN operates in 

roughly the following manner:

1. Input un-CLEANED image, list of expected source positions and a normalized 

PSF to the algorithm.

2. Find maximum point of emission in the image.
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3. Find which source is closest to the emission maximum.

4. Align the peak of the PSF to match with that of the emission maximum.

5. Subtract from the image the PSF multiplied by a small fraction (e.g. 10%) of the 

emission maximum.

6. Add the subtracted intensity to a number representing the intensity of the source 

corresponding to the maximum.

7. Find the new maximum of the image.

8. Is the new maximum above a set threshold (e.g. a multiple of the image RMS)?

(a) If YES, go to 3.

(b) If NO, output list of source intensities as the CLEANed data.

With a few modifications, this method can also be applied to my case of spec

trum extraction. Like with the Gaussian fit method, I stick to operating on a single 

1-dimensional slices of the image, taken perpendicular to the dispersion axis. This 

slice will show features from any extraction path crossing through it, in the form of 

1-dimensional PSF shapes of varying height. In each pointing, I find a single extrac

tion path which is both strong and well separated from any other paths, and define the 

1-dimensional PSF for the pointing from this path. The CLEAN algorithm is applied 

to the slice of the full image, with the PSF being the one defined above and the source 

positions being replaced by the points of the various extraction paths crossing the slice 

being CLEANed. The algorithm then gradually subtracts the 1-dimensional PSF from 

the slice while adding the subtracted intensities to the appropriate parts of the extrac

tion paths. Because of the extraction paths sometimes pass very close to each other, 

it is sometimes not possible to deconvolve the emission from two sources with each 

other. It is during the assignment of the CLEANed flux when an attempt is made to 

combat this by checking the relative brightnesses of two potentially confused sources. 

In instances where there are multiple candidates for assignment of CLEANed flux, the
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Figure 5.6: A flowchart describing the CLEAN process, as it is applied to my data. 
This process is repeated for each reduced NP frame, with short and long exposure 
versions treated as separate cases. The algorithm can be roughly separated into 4 
general processes: CLEAN preparation, frame CLEANing, vertical slice CLEANing 
and CLEAN finalization. These are colour-coded with different backgrounds on the 
flowchart.
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strongest of the candidates must be at least four times as bright (defined by the esti

mated flux of the source at its brightest point in the NP frame) as any other candidate. 

If such a source exists among the candidates, the CLEANed flux is assigned to its spec

trum. If no such candidate exists, the CLEANed flux is not assigned to any spectrum. 

While this can sometimes cause potentially valid sources to be discarded as irrevo

cably confused (see Figure 5.9), it was found to most of the time adequately prevent 

confused sources from contaminating the data set with false spectral features. After a 

single slice has been CLEANed, I move on to the next slice of the image and repeat 

the process. This is repeated until each slice of the image has been CLEANed. At the 

end I have produced the spectrum for each source in the field of view. A flowchart 

of the CLEAN process -as applied to my case- is shown in Figure 5.6 and a screen 

capture of ARF2 in the middle of the CLEANing process is shown in Figure 5.7, and 

examples of the residuals left after CLEANing are shown in Figure j .o.

The CLEAN algorithm proved to be an extremely time-efficient method of extract

ing spectra from the NP frames, with each frame taking approximately half an hour 

to fully extract. A number of caveats have to be kept in mind when looking at the 

spectra extracted in this way. The most significant factor is that I am completely ig

noring the effect of the PSF blurring the emission in the direction along the dispersion 

axis. Instead I am assuming that all the emission applicable to a specific point along 

the extraction path of a specific source are spread out to pixels only perpendicular to 

the dispersion axis. This is not a valid assumption, because the various optics of the 

telescope and its instrumentation will inevitably cause blurring along both axes of the 

images captured.

The PSF along the axis perpendicular to the dispersion axis is something that can be 

characterised by looking at the shape of a well-separated spectrum along this axis, as 

was done with my CLEAN algorithm. The PSF of the emission along the dispersion 

axis, however, is a combination of a blurring effect likely similar to that seen along 

the perpendicular axis and an additional wavelength-dependent effect caused by the 

dispersion element itself. These two effects could not be separated from each other in
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Figure 5.7: A screen capture of ARF2 in the middle of running the CLEAN algorithm 
on one of the NP frames. The left window shows the short-exposure NP frame with 
source extraction target locations and extraction paths overlaid with pale yellow dots 
and cyan lines. The vertical blue line indicates the current slice being CLEANed. 
The right window shows the slice of the short exposure NP frames being CLEANed. 
On this slice the blue circles indicate the locations of the extraction paths crossing 
the active slice, and the vertical red line indicates the last part of the slice which had 
a partial PSF subtracted from it. Close to the baseline is also a horizontal red line, 
which indicates the RMS level below which all points on the slice must drop for the 
algorithm to consider the slice properly CLEANed. Although this screen shot shows 
only the short frame being CLEANed, the CLEANing of the short and long exposures 
happens concurrently.

Figure 5.8: Examples of the residual images left after the CLEAN process, towards DC 
300.7-01.0. The left image shows the residual of the short exposure image, while the 
right image shows the residual of the long exposure version. Notice the deep negative 
residuals around bright sources, especially in the long exposure frame.
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a length of time which is feasible for this study, and thus the PSF along the dispersion 

axis is ignored in this study. What results from this is that each point in each extracted 

spectrum is likely to contain extra emission from its neighbouring pixels. In effect 

each spectrum is blurred to have a spectral resolution less than what is indicated by the 

AKARI NP specifications.

A second caveat with the spectrum extraction arises from the uncertainty of the 

1-dimensional PSF which is used in the CLEANing. This PSF is constructed from a 

twin Gaussian fit based on a single source in the frame being CLEANed. The twin 

Gaussian is described by the function

where a\ and a2 are the peak heights of the two Gaussian components, p \  is the po-

to the first. w\ and W2 are the full width half-maxima of the two components. Each 

of these parameters is allowed to vary within a constrained space. Most notably, p\  is 

allowed to vary only ± 2  pixels from its initial guess (the source location) and Api  is 

only allowed to vary between — 1 and +1. Both w\ and W2 are allowed to vary between

0.5 and 5.0, and <22 is never allowed to be higher than a\.

This PSF -while reasonably accurate towards most sources in its field of view- is 

occasionally wider or narrower than the PSFs of other sources in the same FoV which 

are significantly brighter or dimmer than the source the prototype PSF was constructed 

from. The residual generated at the end of the CLEANing process with these other 

sources will often leave behind artifacts of negative emission, which is indicative that 

too much emission was subtracted from some sources. Much like the issue of the 

unknown dispersion axis PSF, this can not be improved upon much without a lengthy 

study focused solely on characterising the PSF of the AKARI NP observing mode. I 

can, however, characterise the uncertainty caused by the imperfect PSF by making use 

of the artifacts of negative emission. By calculating the RMS of the pixels surrounding

y(x) =  a\ exp x - P  1
W \

+  a2 exp (5.6)

sition of the first component while Api is the offset of the second component relative
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each part of each extraction path at the end of the CLEANing, I can estimate the 

uncertainty for each point of each extracted spectrum. Those parts of the spectra which 

have artifacts in the CLEAN image resulting from an imperfect PSF will this way 

result in a much higher reported uncertainty, allowing them to be considered with the 

appropriate-sized grain of salt.

As far as the author is aware, the CLEAN algorithm has never been applied to the 

extraction of spectra from a slitless multi-object spectroscopy field such as the AKARI 

NP fields. The novelty of the method combined with the caveats discussed above 

call for a healthy degree of skepticism on whether the method works as intended. To 

benchmark the method, it is compared with the results of the "Gaussian" extraction 

methodology, which has previously been proven to be effective in Noble et al. (2013). 

Although the Gaussian extraction is extremely time-inefficient in most fields of view 

considered in this chapter, it could be performed in a reasonable amount of time for the 

pointings towards B35A. Extracting sources from B35A with the Gaussian extraction 

method is time-efficient because it contains very few sources compared to the other 

studied cores and thus the Gaussian extractor does not become overwhelmed in its 

minimizations. The first of such benchmarks can be performed right after the spectrum 

extraction, by comparing the raw extracted spectra from both methods. Both extractors 

produced spectra from several same sources, and examples of such spectra are shown 

in Figure 5.9. Comparing spectra between the two methods, most differences between 

CLEANing and Gaussian extraction falls to those seen in spectrum 5.9a. The spectra 

extracted through CLEANing tend to exhibit a slightly (by ~  20 — 30%) higher base

line flux, and the x axes of the spectra from the two methods are offset by a few pixels. 

The stronger CLEANed spectra can be explained by the CLEAN method picking up 

more of the background emission from the frame and assigning it to spectra, and -as 

will be seen when discussing the same comparisons between fully reduced spectra- 

wavelength calibration eliminates the x axis offset between the extracted spectra from 

the two methods.
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Figure 5.9: A collection of spectra towards B35A showing some spectra extracted 
from the NP frame using the (blue spectra) CLEAN and the (red spectra) Gaussian 
extraction method. These spectra illustrate both typical extracted spectra of varying 
quality, and the differences caused by the two different extraction methods. Spectrum 
(a) is a typical fairly high-quality spectrum procduced with both methods, showing a 
strong water absorption feature at x «  12 and a CCL ice feature at x «  36. Spectrum (b) 
shows another strong water absorption feature in the gaussian-extracted spectrum but 
noise in the CLEANed spectrum. This is a result of the confusion filtering happening 
during the operation of the CLEAN method, causing it to (sometimes overzealously, 
such as in this case) ignore the majority of the emission from this spectrum because 
it runs too close to another strong spectrum. The gaussian extraction has no such 
filtering implemented, and will thus extract the spectrum even with potential confusion 
causing issues. Spectrum (c) shows another strong water absorption feature, with the 
Gaussian-extracted and CLEAN-extracted spectra strongly disagreeing with each other 
at x >  20. Such an effect is most likely the result of the CLEAN extraction picking up 
background emission (which is fairly strong in B35A, and could not be fully removed) 
and assigning it to a spectrum. The Gaussian method will tend to better ignore such 
emission, as it does not conform well to an expected Gaussian-shaped PSF. Spectrum 
(d) shows a case where the extraction has apparently failed (most likely due to a weak 
or misplaced source) with both methods, resulting in what is effectively noise as the 
extracted spectrum.
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At this stage the differences between the CLEAN and Gaussian extraction meth

ods seem acceptable, and I can proceed to the reduction and analysis of the CLEAN- 

extracted spectra. The benchmarking is not yet over, though, and more comparisons 

will be performed at the end of the spectral reduction phase.

5.3.4 Reduction and calibration of the extracted spectra

After the spectra have been extracted, a number of steps are still necessary to perform 

on them in order to have them be useful for analysis:

1. A number of data points exist in several of the extracted spectra which are clearly 

artifacts caused by bad data in the NP frames or glitches in the extraction process. 

These outliers must be filtered out of the spectra.

2. Most spectra are duplicated in both the short and the long exposure versions of 

the NP frames. Each long and short exposure spectrum corresponding to the 

same source has to be merged together, while paying special attention to filter 

out or correct data points where saturation and non-linear effects in the long 

exposure produce data inconsistent with the short exposure.

3. Many of the targets were observed twice in a row, in two "sub-pointings". This 

means that several sources can have their S/N increased by merging their respec

tive spectra from these two observations.

4. The spectra at this point are expressed with a pixel offset from the source location 

on the x axis, and the pixel value (in arbitrary digital units or ADUs) at this offset 

on the y axis. The x axis values need to be converted to physical units, through 

the application of wavelength calibration.

5. After wavelength calibration, the y axis data can then be converted to physical 

units (flux) as well, through the application of response calibration.

6. At the end of the reduction and calibration, a final pass is made on the spectra
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in order to crop out bad data. The data is also convolved in order to improve the 

S/N ratio at the expense of some spectral resolution.

The reduction process begins with the outlier-filtering. In this phase all the data 

which returned error codes (because of e.g. missing data) during the extraction process 

is filtered out. Also all data points where the S/N < 1.0 are filtered out. Finally each 

data point is compared to the median of a set number consisting of itself and its adjacent 

points. If the data point under scrutiny is greater than three times this median, it is 

considered an outlier (most likely caused by a cosmic ray that was missed during the 

image reduction process) and is filtered out. All data points filtered out in this way 

have both their x and y values removed, and the data filtered in this way is written into 

files, ready for the next step: merging the short and long exposures.

The second step is the merging together of the short and long exposure spectra 

for each source. The exposure times for the short and long exposures are listed as 

2.3 seconds and 51.0 seconds, respectively. To merge the short and long exposures 

together, the data in both cases is first divided by the exposure time, after which a 

weighted average of the two is taken. The weight is calculated by the formula

*exP /c
W =  TTT+ \7 ’ (5-7)(Ay/ / e x p )

where /exp is the exposure time, and Ay is the uncertainty of the data. As mentioned 

previously the long exposure time data becomes unreliable at very high intensities, 

due to a combination of saturation and unaccounted-for detector non-linearity. It was

empirically found that the time-normalized long exposure data ceases to align cor

rectly with the short exposure data at points where the short exposure exceeds ~  150 

ADUs. All long exposure data points where this condition is fulfilled were masked 

out, effectively causing these parts of the spectra to contain signal only from the short 

exposure data. An additional consideration with the exposure time merger is that, on 

visual inspection, the time-normalized short and long exposures do not align with each 

other even at the points where non-linearity effects or saturation is expected to happen.
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Figure 5.10: Time-normalized short and long exposure spectra of SSTc2d
J054430.9+090826. The time-normalized short exposure version is plotted with a red 
line, and the long exposure version is plotted with a green line. The blue line is the 
time-normalized short exposure spectrum after it has been multiplied by a factor of 3 
in an attempt to compensate for the unknown mismatch between the short and long 
exposures.

Through testing it was discovered that the time-normalized short exposure is too dim 

(or the long exposure too bright) by approximately a factor of 3. The precise cause of 

this discrepancy is unknown, but it can be corrected for by multiplying the signal in 

the time-normalized exposure data by 3 before performing the weighted averaging of 

the short and long exposures. After this correction -an example of the results of which 

is shown in Figure 5.10- the signal from the time-normalized short and long exposure 

spectra agree to a reasonable degree with each other in all places where they are ex

pected to agree i.e. in parts of the spectrum not belonging to the 0th order diffraction 

regime.

The third step was that of merging spectra of the same source taken in two different 

sub-pointings together. In this step the c2d source association was made use of. Spectra
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in two different sub-pointings which had been associated with the same c2d object were 

declared to be two observations of the same source, and a weighted average (with the 

weight set as the inverse of the uncertainty) of the spectra was taken and passed on for 

further processing. Several spectra merged in this way were visually inspected, and 

found to have indeed have shapes similar enough to plausibly originate from the same 

source. No contradictory spectra were found among those merged; another testament 

to the effectiveness of the automatic source association algorithm.

The fourth step is where the wavelength calibration is performed. This step is 

closely related to the sixth step -the response calibration- as the response curve was 

made use of in the wavelength calibration step, and an accurate response calibration 

requires an accurate wavelength calibration. The transformation of delta-pixel values 

along the spectrum extraction path can be handled through the application of a 3rd 

order polynomial, such as the one presented in Tsumura et al. (2013). With this poly

nomial the relation between the delta-x values and wavelength can be expressed in the 

form

Ax =  a A Argf +  b A Aj-gf +  c —a A Apeak — b AApeak — c (5.8)

=  a (AAref — AApeak) +  b (AAj-ef — AApeak) (5.9)

where AApeak =  Apeak — Aref is the difference between the selected thoroughput max

imum and the reference wavelengths. AAref =  A — A ^  is the difference between the 

calibrated wavelength equivalent of Ax and the reference wavelength. The reference 

wavelength is set to be 3.5 fim, which is the wavelength at which dispersion of the 

prism in the NP filter is well defined. The peak wavelength is nominally supposed to 

be at approximately 2.4 jum. This peak is also found in the response calibration curve 

(further described in the sixth step), and its immediately adjacent data points have the 

same general shape as the peaks found in the uncalibrated spectra. Both the response 

calibration curve and many of the extracted spectra show a second, weaker but clearly 

detectable, local maximum at approximately 3.8jum. The local peaks of the response
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curve at 2.4 and 3.8 jum were compared by hand with the peaks found at fully extracted 

but otherwise featureless spectra to find values for the parameters of the wavelength 

calibration polynomial in order to cause the peaks of the extracted (and wavelength 

calibrated) spectra to line up with the peaks in the response calibration spectrum. 

The set of parameters which achieve this are Apeak =  2.57 jum, a =  4.63 and 

b =  1 7 .8 4 ^ . The parameter c, while set during the calibration, does not affect the 

calibration results.

The fifth step -as previously mentioned- was the response calibration step. Once 

the wavelength calibration has been performed, the data is compatible for converting 

its ADU flux units to millijanskys. This is made possible by a wavelength calibration 

function, adapted from Tsumura et al. (2013). The data from the fifth step was divided 

by the response function provided as part of the standard AKARI calibration package, 

producing the response calibrated spectra which are ready for finalization.

The sixth and final step is where the spectra are finalized for analysis. At the end 

of the last step it was noticed that the reduced data is generally of very poor quality at 

wavelengths lower than 2.5 fim and higher than 4.6 jum. Additionally, it was decided 

that the noise in the data at this point was still significantly high, and could be improved 

upon at the expense of spectral resolution. For this reason the spectra were convolved 

with a gaussian kernel with a standard deviation of 3 units along the x axis. This 

phase also performs a final check on the spectrum, to determine whether it may be of 

appropriate quality for further analysis. If no part of the spectrum increases above 5 

mJy flux, the spectrum is considered to be below the sensitivity limit of AKARI and is 

considered pure noise. After the cropping and convolution, the finalized spectra were 

written to files. These files form the basis of the remainder of the analysis, in which 

the ice maps are created.

These reduction steps were performed not only on the CLEAN-extracted spectra 

but also the spectra extracted from B35A using the Gaussian extraction method. An 

example of how the spectrum of a single source (SSTc2d J054430.9+090826, also 

featured in its raw form in Figure 5.9c) behaves throughout the reduction process in
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Figure 5.11: The spectrum of the source SSTc2d J054430.9+090826 in its (blue) 
CLEAN-extracted and (red) Gaussian-extracted form, at various stages of the reduc
tion process. Spectrum (a) shows the spectra immediately after the outlier-filtering 
step. Spectrum (b) is after the time-merging phase. Spectrum (c) is after the pointing- 
merging phase. Spectrum (d) is after the wavelength calibration phase. Spectrum (e) 
after the response calibration phase. Spectrum (f) is the final version, ready for anal
ysis. The spectra presented preceding the time-merging phase are those of the short 
exposure version, and the spectra presented preceding the pointing-merging phase are 
from subpointing 1.
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Figure 5.12: A comparison between the (blue) CLEAN-extracted, (red) Gauss- 
extracted, and (green) JAXA-pipeline extracted spectra towards a small number of 
sources in B35A.

both its CLEAN-extracted and Gaussian-extracted forms is presented in Figure 5.11. 

As is seen from this, the offset on the x axis between the two versions is eliminated 

with the wavelength calibration.

At this point it also becomes possible to compare the reduced spectra with the spec

tra produced by the official JAXA reduction pipeline. A collection of such comparisons 

is presented in Figure 5.12. The JAXA pipeline is in some cases capable of producing 

spectra of similar quality to the CLEAN-extracted spectra, but it can do so towards 

only very few lines of sight and in many situations just returns obviously incorrect 

data. However, in a future versions of ARF2 it may be beneficial to reverse-engineer 

parts of (undocumented parts of) the JAXA spectroscopy pipeline in order to improve 

the calibration quality of the CLEANed spectra.
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5.3.5 Creation of the ice maps

With the extracted, reduced and calibrated spectra at the ready, I am finally able to 

create the ice maps from the data. This process can be split into two major steps: the 

conversion of the flux units in the spectra to optical depth units, and the determination 

of ice column densities.

Before I do any of this, however, I must first choose what ice components I am 

interested in. I know from other observations that the major expected features in this 

frequency range arise mainly from CO, CO2  and H2 O, from wavelengths of 4.67,4.27, 

and 3.0 jum, respectively (e.g. Gibb et al., 2004). A visual examination of the reduced 

spectra shows signs of the O-H stretching feature (which is responsible mainly for wa

ter, though see Chapter 3) in several cases. The features associated with CO and CO2  

are intermittently visible, but very rare. The lack of these features is suspected to be a 

result of the very poor S/N ratio and outright missing data at the relevant frequencies. 

Regardless, these two molecules lack a sufficient number of detections for the creation 

of any kind of meaningful map, due to lack of data points. For this reason I stick to 

creating a map of water ice in the observed pointings.

In calculating the optical depth the primary objective is to fit continuum baseline 

around the 3-micron O-H stretching feature, visible in many of the extracted spectra. 

The continuum was calculated as a 2nd order polynomial fit to the data, fitted to the 

wavelength ranges 2.5-2.7, 3.5-4.3, and 4.47-4.55 {im. These ranges were selected so 

as to make the baseline fit avoid any of the ice and other features noticed in the data. 

A second order polynomial fit was chosen as the continuum instead of a third order 

one because a third order fit was found to behave more erratically with the relatively 

small number of occasionally very noisy datapoints available in the fitting range. The 

weakness of the second order polynomial fit is that it sometimes does not describe the 

continuum very well especially at long wavelengths, but after testing it was still used 

because it describes the continuum adequately at 3 microns, where the H2 O ice feature 

of interest to this study is found. The continuum baseline allowed the calculation of
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the optical depth spectra, by applying

T =  In (/cont) — (Tabs)} (5.10)

where /cont is the fitted continuum flux of the source, while 70bS is its observed flux. At 

the end of this I had successfully converted the flux spectra to optical depth spectra. 

At the end of this step, a visual inspection was performed on the resulting spectra, and 

cases with an irrecovably bad baseline fit were dropped from the data set, to avoid false 

detections.

To calculate the column density of water ice, a laboratory water ice spectrum from 

Noble et al. (2013) was fitted to the optical depth spectra using O m n i f i t . From the 

fit results N(H20,solid) was calculated in the manner previously described in Section 

1.4.3 of Chapter 1. In these calculations the non-CDE corrected A for water ice col

umn density calculated from the 3-micron O-H stretch is 2 .0 -10~16 cm molecule-1 

(Gerakines et al., 1995).

Figure 5.13 highlights four of the most imporant stages of a single extracted spec

trum on its journey to a water ice column density estimate. Application of the column 

density calculations to the fitted water ice spectra bring me to the results of this chapter: 

the ice maps.

5.4 Results

5.4.1 W ater ice maps

The feature which was most detectable in the final spectra was the O-H stretching 

mode at 3 microns, which is most often attributed to H2 O ice. Using this feature, it 

was possible to estimate the column density of water ice towards 207 lines of sight, 

consisting 131 non-detections and 76 detections. The criterion for choosing between 

a detection and non-detection lied in the 2cr noise threshold. Any estimate of column 

density based on data with an absorption feature rising above the 2cr noise level was
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Figure 5.13: The spectrum of a single source (SSTc2d J054430.9+090826, from 
B35A) in various stages of reduction. Spectrum (a) shows the raw spectrum (the short 
exposure version, from subpointing 1), immediately following extraction. Spectrum 
(b) shows the spectrum after it has been merged with the second subpointing. Spec
trum (c) is the final reduced spectrum, fully calibrated and ready for analysis. This 
spectrum also shows with a solid blue line a second order polynomial fit, which is used 
in calculating the optical depth spectrum. Spectrum (d) shows the laboratory water 
ice spectrum fit results (as a solid blue line) to the O-H stretch of the optical depth 
spectrum of the source.
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considered a good detection. Any feature staying below this threshold was classified 

as a non-detection, and an upper limit was calculated instead. The column densities 

towards all lines of sight are presented in Tables 5.2 to 5.13. When such information 

was available from the c2d catalogue, these tables also indicate whether the sources 

being observed are classified as background sources or YSOs. There is a total of 145 

background stars in the final data set, and only 12 sources are YSOs. The remaining 

50 sources could not be classified because of missing information. These observations 

contain no sources classified as galaxies by c2d.

Table 5.2: Ice mapping results towards DC274.2-00.4. 

Sources named "Unknown" could not be automatically as

sociated with a c2d catalogue source.

Source Type «J2000 $12000 N(H2 0 , solid)

name [deg.] [deg.] [1018cm-2]

SSTc2d J092824.7-513432 Unknown 142.103 -051.576 < 0 .7 6

SSTc2d J092828.7-513615 Star 142.119 -051.604 < 2 .13

SSTc2d J092859.3-513403 Star 142.247 -051.567 <  0.56

Unknown-1 Unknown 142.338 -051.584 1.40 ±0.43

Unknown-2 Unknown 142.120 -051.642 < 0 .28

Unknown-3 Unknown 142.078 -051.594 < 0 .58

Unknown-4 Unknown 142.150 -051.655 1.09 ±0.31

Unknown-5 Unknown 142.254 -051.675 0.28 ±0.13

Unknown-6 Unknown 142.117 -051.615 1.05 ±0 .49

Unknown-7 Unknown 142.305 -051.555 < 4 .45
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Table 5.3: Ice mapping results towards DC275.9+01.9. 

Sources named "Unknown" could not be automatically as

sociated with a c2d catalogue source.

Source Type <*J2000

oo8CO5 jV(H20 , solid)

name [deg.] [deg.] [1018cm“ 2]

SSTc2d J094636.0-510326 Star 146.650 -051.057 <0.81

SSTc2d J094653.0-510628 Star 146.721 -051.108 < 0 .4 4

SSTc2d J094657.3-510728 Star 146.739 -051.124 < 0 .5 7

Unknown-8 Unknown 146.579 -051.108 < 0 .7 2

Unknown-9 Unknown 146.737 -051.131 < 6 .5 0

Unknown-10 Unknown 146.661 -051.146 0.41 ±0.21

Table 5.4: Ice mapping results towards DC291.0-03.5.

Source Type <*J2000 <5j2000 jV(H20 , solid)

name [deg.] [deg.] [1018cm -2]

SSTc2d J105857.2-634311 Star 164.738 -063.720 0.51 ± 0 .22

SSTc2d J105905.0-634206 Star 164.771 -063.702 0.49 ±0.21

SSTc2d J 105906.8-634245 Star 164.778 -063.713 7.21 ±3.41

SSTc2d J105918.8-634144 Star 164.828 -063.696 <  1.36

SSTc2d J 105922.3-634417 Star 164.843 -063.738 < 0 .6 8

SSTc2d J105923.8-634045 Star 164.849 -063.679 0 .69± 0 .17

SSTc2d J105928.3-634118 Star 164.868 -063.688 <  1.60

SSTc2d J 105929.3-634419 Star 164.872 -063.739 < 0 .8 9

SSTc2d J105932.5-634737 Star 164.885 -063.793 0.77 ±0.21

SSTc2d J 105934.9-634438 Star 164.895 -063.744 < 0 .7 9

Continued on next page
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Table 5.4 -  continued from previous page

Source Type «J2000 $F2000 A^(H2 0 , solid)

name [deg-] [deg.] [1018cm-2]

SSTc2d J 105936.0-634744 Star 164.900 -063.796 <  1.26

SSTc2d J105936.1-634813 Star 164.900 -063.804 < 0 .48

SSTc2d J105937.9-634639 Star 164.908 -063.778 <  1.62

SSTc2d J105938.5-634306 Star 164.911 -063.718 < 0 .3 0

SSTc2d J 105942.0-634918 Star 164.925 -063.822 1.21 ±0.47

SSTc2d J105948.9-634749 Star 164.954 -063.797 < 0 .87

SSTc2d J105950.1-634914 Star 164.959 -063.820 0.42 ± 0 .19

SSTc2d J105951.3-633840 Star 164.964 -063.645 1.83 ± 0 .50

SSTc2d J105952.5-634229 Star 164.969 -063.708 0.72 ± 0 .20

SSTc2d J105955.2-634418 Star 164.980 -063.738 < 0 .87

SSTc2d J105956.0-634459 Star 164.983 -063.750 <  1.87

SSTc2d J105959.6-634628 Star 164.998 -063.774 0.24 ±0.13

SSTc2dJl 10000.1-634117 Star 165.000 -063.688 <0.91

SSTc2dJl 10000.7-634511 Star 165.003 -063.753 0.62 ± 0 .28

SSTc2dJl 10001.1-633741 Star 165.005 -063.628 0.88 ± 0 .22

SSTc2d J110007.5-634023 Star 165.031 -063.673 0.43 ± 0 .24

SSTc2dJl 10010.8-634736 Star 165.045 -063.793 < 0 .73

SSTc2dJl 10011.7-634404 Star 165.049 -063.734 < 0 .7 2

SSTc2dJl 10012.2-634724 Star 165.051 -063.790 < 0 .6 0

SSTc2dJl 10012.7-634558 Star 165.053 -063.766 <  1.27

SSTc2dJl 10018.9-634546 Star 165.079 -063.763 < 0 .9 2

SSTc2d J110020.4-634528 Star 165.085 -063.758 <0.61

SSTc2dJl 10023.0-634447 Star 165.096 -063.746 1.43 ±0 .37

SSTc2dJl 10025.8-634138 Star 165.108 -063.694 < 0 .3 7

SSTc2dJl 10039.6-634310 Star 165.165 -063.720 < 0 .2 9

Continued on next page
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Table 5.4 -  continued from previous page

Source Type <XJ2000 <5j2000 N(H20 , solid)

name [deg.] [deg.] [1018cm“ 2]

SSTc2dJl 10041.3-634416 Unknown 165.172 -063.738 < 0 .8 8

SSTc2dJl 10048.9-634428 Star 165.204 -063.741 < 0 .6 0

Table 5.5: Ice mapping results towards DC300.7-01.0.

Source Type &J2000 $12000 A(H20 , solid)

name [deg.] [deg.] [1018cm“ 2]

SSTc2d J 123046.9-634458 Unknown 187.695 -063.750 < 0 .4 9

SSTc2d J123055.4-634241 Star 187.731 -063.711 < 0 .3 7

SSTc2d J123058.0-634559 Star 187.742 -063.766 < 0 .63

SSTc2d J 123102.4-634724 Star 187.760 -063.790 1.18 ± 0 .52

SSTc2d J123105.9-634320 Star 187.775 -063.722 < 0 .7 8

SSTc2d J123106.5-634424 Star 187.777 -063.740 1.30 ±0 .45

SSTc2d J 123122.4-634020 Star 187.843 -063.672 <  0.76

SSTc2d J 123123.4-634640 Star 187.847 -063.778 < 0 .7 2

SSTc2d J 123129.6-634050 YSO 187.873 -063.680 <  1.34

SSTc2d J 123129.6-634706 Star 187.873 -063.785 <  1.21

SSTc2d J123129.9-634235 Star 187.875 -063.710 0.59 ± 0 .24

SSTc2d J 123131.9-634935 Star 187.883 -063.826 < 0 .5 4

SSTc2d J123140.5-633940 Star 187.919 -063.661 < 0 .5 0

SSTc2d J123141.5-634510 Star 187.923 -063.753 1.29 ± 0 .64

SSTc2d J123142.6-634619 Star 187.928 -063.772 1.24 ±0.51

SSTc2d J123144.6-634900 Star 187.936 -063.817 < 0 .3 2

SSTc2d J123147.4-634142 Star 187.947 -063.695 < 0 .4 6

Continued on next page
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Table 5.5 -  continued from previous page

Source Type tfJ2000 £j2 0 0 0 N(H20 , solid)

name [deg.] [deg.] [1018cm -2]

SSTc2d J123157.6-634217 Star 187.990 -063.705 < 0 .5 4

SSTc2dJl 23159.4-634334 Star 187.997 -063.726 < 0 .43

Table 5.6: Ice mapping results towards DC346.0+07.8.

Source Type 2000 <5j2000 7V(H20 , solid)

name [deg.] [deg.] [1018cm -2]

SSTc2dJl 63633.7-353853 Unknown 249.141 -035.648 0.89 ± 0 .12

SSTc2d J 163636.4-354057 Star 249.152 -035.682 < 0 .37

SSTc2dJl 63636.8-353743 Unknown 249.153 -035.628 <  1.25

SSTc2d J163639.5-354025 Star 249.165 -035.674 0.88 ±0.23

SSTc2d J163639.8-353746 Unknown 249.166 -035.629 <0.91

SSTc2dJ163641.7-353541 Unknown 249.174 -035.595 0.55 ± 0 .22

SSTc2d J163643.0-354055 Star 249.179 -035.682 < 0 .78

SSTc2d J163643.6-353815 Star 249.182 -035.638 <  1.29

SSTc2d J163647.9-353403 Star 249.200 -035.567 <  1.41

SSTc2d J163650.2-353539 Star 249.209 -035.594 < 0 .65

SSTc2d J163650.4-353314 Star 249.210 -035.554 0.45 ±0.13

SSTc2d J163652.6-353744 Star 249.219 -035.629 1.44 ±0.31

SSTc2d J 163654.4-353614 Star 249.227 -035.604 < 0 .9 0

SSTc2dJ163655.1-353413 Star 249.230 -035.570 0.80±0.17

SSTc2d J163701.7-353732 Star 249.257 -035.626 < 0 .4 8

SSTc2dJl 63709.3-353947 Unknown 249.289 -035.663 < 0 .5 0

SSTc2dJ163711.5-354009 Unknown 249.298 -035.669 < 0 .8 8

Continued on next page
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Table 5.6 -  continued from previous page

Source Type <*J2000 <5j2000 A(H20 , solid)

name [deg.] [deg.] [1018cm-2]

SSTc2d J 163713.2-353825 Unknown 249.305 -035.640 <  1.11

Table 5.7: Ice mapping results towards B35A. Sources 

named "Unknown" could not be automatically associated 

with a c2d catalogue source.

Source Type <*12000 $12000 A(H20 , solid)

name [deg.] [deg.] [1018cm -2]

SSTc2d J054417.2+091439 Star 086.072 +009.244 < 0 .53

SSTc2d J054419.2+091235 Star 086.080 +009.210 0.38± 0.18

SSTc2d J054420.2+090557 Star 086.084 +009.099 <20.13

SSTc2d J054422.8+091415 Star 086.095 +009.237 0.26 ±0.13

SSTc2d J054422.9+091035 YSO 086.095 +009.176 < 0 .3 0

SSTc2d J054426.9+091042 Star 086.112 +009.178 <  0.95

SSTc2d J054430.0+090857 YSO 086.125 +009.149 2.96 ±1.41

SSTc2d J054430.6+091306 Star 086.127 +009.218 0.63 ±0.13

SSTc2d J054430.9+090826 YSO 086.129 +009.141 1.12±0.33

SSTc2d J054431.3+091203 Star 086.130 +009.201 <  12.72

SSTc2d J054433.5+091138 Star 086.139 +009.194 0.76 ± 0 .38

SSTc2d J054436.7+091322 Star 086.153 +009.223 0.72 ± 0 .3 0

SSTc2d J054438.4+090842 YSO 086.160 +009.145 0.99 ± 0 .29

SSTc2d J054443.8+091133 Star 086.182 +009.192 0.72 ± 0 .27

SSTc2d J054443.8+090819 Star 086.182 +009.139 0.32 ± 0 .16

SSTc2d J054446.6+091122 YSO 086.194 +009.189 < 0 .4 6

Continued on next page
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Table 5.7 -  continued from previous page

Source Type aj2000 <5j2000 N {H20 , solid)

name [deg.] [deg.] [1018cm-2]

SSTc2d J054449.0+091307 Star 086.204 +009.219 < 0 .47

SSTc2d J054452.0+091030 Star 086.217 +009.175 < 0 .44

SSTc2d J054452.8+091305 YSO 086.220 +009.218 0.74 ± 0 .42

Unknown-11 Unknown 086.157 +009.182 <  25.95

Table 5.8: Ice mapping results towards LI 165.

Source Type tfj2000 <5j2000 jV(H20 , solid)

name [deg.] [deg.] [1018cm-2]

SSTc2d J220548.7+590542 Star 331.453 +059.095 1.07 ±0 .39

SSTc2d J220606.6+590514 Star 331.528 +059.087 < 0 .5 6

SSTc2d J220621.2+590352 Star 331.588 +059.064 0.98 ± 0 .44

SSTc2d J220621.4+590730 Star 331.589 +059.125 <  0.70

SSTc2d J220629.6+590301 Star 331.623 +059.050 < 0 .37

SSTc2d J220629.9+590517 Star 331.625 +059.088 0.83 ±0.21

SSTc2d J220631.5+590827 Star 331.631 +059.141 <  1.56

SSTc2d J220632.0+590936 Star 331.633 +059.160 < 0 .87

SSTc2d J220634.4+590558 Star 331.643 +059.100 < 0 .58

SSTc2d J220637.7+590452 Star 331.657 +059.081 1.14 ±  0.21

SSTc2d J220641.0+590147 YSO 331.671 +059.030 <  1.19

SSTc2d J220641.8+590600 Star 331.674 +059.100 1.06 ± 0 .44

SSTc2d J220642.4+590527 Star 331.677 +059.091 1.21 ± 0 .46

SSTc2d J220643.4+590238 Star 331.681 +059.044 <  0.44

SSTc2d J220649.8+591040 Star 331.707 +059.178 < 0 .93

Continued on next page
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Table 5.8 -  continued from previous page

Source Type «J2000 <5j2000 A(H20 , solid)

name [deg.] [deg.] [1018cm-2 ]

SSTc2d J220652.0+590201 Star 331.717 +059.034 5.42 ± 1 .95

SSTc2d J220703.9+590900 Star 331.766 +059.150 <  1.10

SSTc2d J220729.7+590612 Star 331.874 +059.103 < 0 .5 9

Table 5.9: Ice mapping results towards DC269.4+03.0.

Source Type «J2000 <5j2000 A(H20 , solid)

name [deg.] [deg.] [1018cm“ 2]

SSTc2d J092213.1-454722 Star 140.554 -045.789 2.00 ± 0 .96

SSTc2d J092220.1-454926 Star 140.584 -045.824 0.38± 0 .19

SSTc2d J092231.7-454358 Star 140.632 -045.733 < 0 .7 3

SSTc2d J092233.0-455158 Star 140.638 -045.866 < 0 .5 3

SSTc2d J092245.6-454825 Star 140.690 -045.807 < 0 .4 0

SSTc2d J092253.5-454628 Unknown 140.723 -045.775 <  1.76

Table 5.10: Ice mapping results towards BHR59. Sources 

named "Unknown" could not be automatically associated 

with a c2d catalogue source.

Source Type <*J2000 &T2000 A(H20 , solid)

name [deg.] [deg.] [1018cm-2 ]

SSTc2dJl 10655.1-620435 Star 166.730 -062.076 < 0 .2 2

Continued on next page
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Table 5.10 -  continued from previous page

Source Type OCj2000 £j2000 N(H20 , solid)

name [deg.] [deg.] [1018cm -2]

SSTc2dJl 10704.9-620401 Star 166.770 -062.067 <  1.65

SSTc2dJl 10713.0-620350 YSO 166.804 -062.064 0.68 ± 0 .27

SSTc2d J110727.6-620748 Star 166.865 -062.130 < 0 .5 6

Unknown-12 Unknown 166.891 -062.065 < 0 .37

Unknown-13 Unknown 166.813 -062.022 <  1.39

Unknown-14 Unknown 166.934 -062.114 < 0 .5 9

Table 5.11: Ice mapping results towards Mu8.

Source Type &J2000 <5j 2000 JV(H20 , solid)

name [deg.] [deg.] [1018cm-2]

SSTc2d J122950.9-710242 Star 187.462 -071.045 < 0 .6 7

SSTc2d J 123008.8-710459 Star 187.537 -071.083 < 0 .23

SSTc2d J123012.1-710456 Star 187.550 -071.082 <  2.01

SSTc2d J 123020.4-710430 Star 187.585 -071.075 0.54 ± 0 .29

SSTc2d J 123023.9-710443 Star 187.599 -071.079 < 0 .87

SSTc2d J123024.6-710554 Star 187.602 -071.098 0.80 ± 0 .32

SSTc2d J 123030.9-710324 Star 187.629 -071.057 0.81 ± 0 .14

SSTc2d J 123044.2-710235 Star 187.684 -071.043 0 .78±0.16

SSTc2d J 123049.6-710419 Star 187.707 -071.072 < 0 .3 8

SSTc2dJ123115.3-710442 Star 187.814 -071.078 0 .68±0.19

SSTc2d J 123121.3-710059 Star 187.839 -071.017 <0.91

SSTc2d J123142.1-710355 Star 187.925 -071.065 0.77 ± 0 .17

SSTc2d J123159.8-710219 Unknown 187.999 -071.039 0.44 ± 0 .12
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Table 5.12: Ice mapping results towards CB188. Sources 

named "Unknown" could not be automatically associated 

with a c2d catalogue source.

Source Type <*12000 <5j2000 A(H20 , solid)

name [deg.] [deg.] [1018cm-2]

SSTc2d J 192002.1+113611 Star 290.009 +011.603 < 0 .5 6

SSTc2d J 192004.2+113237 Unknown 290.017 +011.544 2.65 ± 1 .27

SSTc2d J 192004.6+113126 Star 290.019 +011.524 < 0 .2 5

SSTc2d J192010.5+113529 Star 290.044 +011.592 0.48 ± 0 .34

SSTc2d J192012.5+113748 YSO 290.052 +011.630 1.14±0.13

SSTc2d J192013.9+113718 Star 290.058 +011.622 < 0 .4 4

SSTc2d J192014.9+113540 YSO 290.062 +011.595 1.38 ± 0 .39

SSTc2d J192016.2+113629 Star 290.068 +011.608 1.56 ±  0.17

SSTc2d J192020.1+113206 Star 290.084 +011.535 < 0 .3 3

SSTc2d J192026.7+113822 Unknown 290.111 +011.639 0.53 ± 0 .22

SSTc2d J 192028.1+113860 Star 290.117 +011.650 <0.51

SSTc2d J192028.7+113616 Unknown 290.120 +011.604 0.60 ± 0 .08

SSTc2d J192029.2+113616 Unknown 290.122 +011.604 0.49 ± 0 .15

SSTc2d J 192030.8+113351 Star 290.128 +011.564 < 0 .5 8

Unknown-15 Unknown 290.133 +011.650 0.80 ± 0 .26

Unknown-16 Unknown 290.115 +011.669 <0.51

Unknown-17 Unknown 289.990 +011.638 0 .53± 0 .14

Unknown-18 Unknown 289.988 +011.637 0.46 ± 0 .18

Unknown-19 Unknown 290.131 +011.649 0.70 ± 0 .3 0

Unknown-20 Unknown 289.983 +011.621 0.40 ± 0 .16

Unknown-21 Unknown 289.981 +011.620 < 0 .2 6

Continued on next page
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Table 5.12 -  continued from previous page

Source Type 092000 &F2000 N (H20 , solid)

name [deg.] [deg.] [1018cm-2 ]

Unknown-22 Unknown 290.138 +011.595 0.49 ± 0 .24

Unknown-23 Unknown 290.117 +011.670 <  0.44

Unknown-24 Unknown 290.102 +011.666 < 0 .55

Table 5.13: Ice mapping results towards DC300.2-03.5. 

Sources named "Unknown" could not be automatically as

sociated with a c2d catalogue source.

Source Type «J2000 &T2000 //(H 2 O, solid)

name [deg.] [deg.] [1018cm-2]

SSTc2d J122353.2-661346 Unknown 185.971 -066.229 <  1.89

SSTc2d J122354.2-661160 Star 185.976 -066.200 <  1.08

SSTc2d J122358.6-661110 Star 185.994 -066.186 < 0 .53

SSTc2d J 122401.4-661224 Star 186.006 -066.207 0.55 ± 0 .22

SSTc2d J122405.5-661220 Star 186.023 -066.206 <  1.68

SSTc2d J122415.2-661011 Star 186.063 -066.170 < 0 .4 6

SSTc2d J122426.3-661347 Star 186.110 -066.230 < 0 .4 6

SSTc2d J122434.5-661243 Star 186.144 -066.212 < 3 .1 6

SSTc2d J 122445.1-661200 Star 186.188 -066.200 0.57 ± 0 .18

SSTc2d J 122453.6-661050 Star 186.224 -066.181 <0.31

Unknown-25 Unknown 186.253 -066.196 < 0 .65

Unknown-26 Unknown 186.306 -066.208 < 0 .4 2

Unknown-27 Unknown 185.983 -066.158 <  1.93

Unknown-28 Unknown 186.220 -066.228 0.23 ±0.11

Continued on next page
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Table 5.13 -  continued from previous page

Source Type <*12000 <5j2000 jV(H20 , solid)

name [deg.] [deg.] [1018cm-2]

Unknown-29 Unknown 186.257 -066.224 <  1.43

Unknown-30 Unknown 186.084 -066.275 <  1.55

Unknown-31 Unknown 186.220 -066.227 < 0 .2 6

Unknown-32 Unknown 185.949 -066.150 < 0 .4 4

Unknown-33 Unknown 186.241 -066.162 < 0 .9 9

Getting a good idea on the meaning behind this cornucopia of column densities is 

difficult with the help of only a collection of tabulated values, and thus alternate ways 

of looking at them are required.

One way is to produce maps of the ice column density in each core. The method of 

presenting the maps was chosen to be in the form of bubble plots, i.e. scatter plots of 

the field of view where the size of the symbol represents the calculated column density 

and its location represents the originating line of sight. This is an effective visualization 

method in a case such as mine, with sparsely and unevenly sampled values spread out 

over several separate fields of view. An overview of all the ice maps created in such a 

way is presented in Figures 5.14 and 5.15.

Figures 5.16 to 5.21 offer a more detailed view towards each core, with addi

tional information about uncertainties and lines of sight towards which there were 

non-detections. To help understand the shape of the cloud, these bubble plots are 

also overlaid on top of supplementary data from either Spitzer or Herschel. Several 

of the cores had either Herschel/SPIRE Photometer Short Wavelength (PSW; 250 jUm, 

traces mainly cold dust) or Spitzer/IRAC 8 f im  (traces mostly polyaromatic hydrocar

bons or PAHs) maps available for public use and these were used when possible, with 

Herschel maps prioritized over SPITZER maps. In cases where neither Herschel nor
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Spitzer maps fully covering the 10' x 10' window were available, AKARIN3 data was 

used as the background image. The choice of background image is detailed in the 

captions of the maps.

From the tabulated values and ice maps I see that N(H20, solid) tends to usually 

stay at values close to ~  1018cm-2 , with the lowest detections being slightly below 

~  5 x 1017cm-2 and the highest column densities occasionally rising up to ~  7 x 

1018cm-2 . The spatial variation in the ice column density within each field of view 

is usually small, but a few exceptions can be noticed towards e.g. DC291.0-03.5 and 

B35A, where the column density exhibits a sharp increase towards individual lines of 

sight, sometimes less than an arc minute away from a much lower estimate.

5.4.2 The presence of CO 2 ice

The 4.3 jum CO2  ice absorption feature was detected towards a small number of objects 

in the ice final spectra. An example of the feature in my spectra is shown in Figure 5.22. 

Though easy enough to identify when present, features such as this are identifiable in 

less than a dozen of the reduced spectra, and thus were not analysed for the purposes 

of mapping. The presence of a CO2  ice feature also seems to be accompanied by a 

H2 O ice detection.

5.5 Discussion

The primary purpose of this study was to map the prevalence of H2 O ice towards as 

many lines of sight as can be extracted from the AKARI NP data. A large number 

of lines of sight yielded such estimates, and thus the logical next step is to compare 

them with other H2 O ice estimates in the literature, and to also study any possible 

(non-)correlations between the ice column densities and anything else that is publicly 

available towards the examined line of sights. Before any of these can be discussed, 

though, the quality of both the spectra and the ice fits done on them is a necessary topic 

to address.
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Figure 5.14: An overview of the H2O ice mapping results towards 6  of the 12 cores 
studied in this chapter, expressed as bubble plots. The name of the core is indicated in 
the title on top of its respective map. The size of the bubble (legend on the bottom left 
corner applies to each of these maps) is proportional to the H2O ice column density 
on the line of sight towards its centre. Only detections are plotted in these maps. The 
background images are the AKARI N3 frames towards their respective cores.
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Figure 5.15: An overview of the H2O ice mapping results towards 6 of the 12 cores 
studied in this chapter, expressed as bubble plots. The name of the core is indicated in 
the title on top of its respective map. The size of the bubble (legend on the bottom left 
corner applies to each of these maps) is proportional to the H2O ice column density 
on the line of sight towards its centre. Only detections are plotted in these maps. The 
background images are the AKARI N3 frames towards their respective cores.
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Figure 5.16: Bubble plots representing the distribution of H2O ice towards (upper 
figure) DC300.7-01.0 and (lower figure) BHR59. The size of the circles represent the 
column densities detected towards their center, as indicated by the figures’ respective 
legends. The blue circles represent the measured amount, with the concentric cyan 
circles representing its uncertainty. The red circles represent lines of sight classified as 
non-detections, towards which only upper limits could be estimated. The background 
image is an AKARI N3 frame towards the core.
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Figure 5.17: Bubble plots representing the distribution of H2O ice towards (upper fig
ure) CB 188 and (lower figure) Mu 8. The size of the circles represent the column den
sities detected towards their center, as indicated by the figures’ respective legends. The 
blue circles represent the measured amount, with the concentric cyan circles represent
ing its uncertainty. The red circles represent lines of sight classified as non-detections, 
towards which only upper limits could be estimated. The background image is an 
AKARI N3 frame towards the core.
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Figure 5.18: Bubble plots representing the distribution of H2O ice towards (upper fig
ure) DC275.9+01.9 and (lower figure) DC300.2+03.5. The size of the circles represent 
the column densities detected towards their center, as indicated by the figures’ respec
tive legends. The blue circles represent the measured amount, with the concentric cyan 
circles representing its uncertainty. The red circles represent lines of sight classified as 
non-detections, towards which only upper limits could be estimated. The background 
image is an AKARI N3 frame towards the core.
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Figure 5.19: Bubble plots representing the distribution of H2O ice towards (upper fig
ure) DC291.0-03.5 and (lower figure) DC269.4+03.0. The size of the circles represent 
the column densities detected towards their center, as indicated by the figures’ respec
tive legends. The blue circles represent the measured amount, with the concentric cyan 
circles representing its uncertainty. The red circles represent lines of sight classified as 
non-detections, towards which only upper limits could be estimated. The background 
image is a Spitzer/IRAC 8 jum image towards the core.
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Figure 5.20: Bubble plots representing the distribution of H2O ice towards (upper fig
ure) DC274.2-00.4 and (lower figure) DC346.0+07.8. The size of the circles represent 
the column densities detected towards their center, as indicated by the figures’ respec
tive legends. The blue circles represent the measured amount, with the concentric cyan 
circles representing its uncertainty. The red circles represent lines of sight towards 
classified as non-detections, towards which only upper limits could be estimated. The 
blue dots indicate lines of sight towards which spectrum extraction was attempted by 
ARF2. The background image is a Herschel/SPIRE 250ium map towards the core.
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Figure 5.21: Bubble plots representing the distribution of H2O ice towards (upper fig
ure) LI 165 and (lower figure) B35A. The size of the circles represent the column den
sities detected towards their center, as indicated by the figures’ respective legends. The 
blue circles represent the measured amount, with the concentric cyan circles represent
ing its uncertainty. The red circles represent lines of sight classified as non-detections, 
towards which only upper limits could be estimated. The blue dots indicate lines of 
sight towards which spectrum extraction was attempted by ARF2. The background 
image is a Herschel/SPIRE 250 jUm map towards the core.
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Figure 5.22: An example of a CO2 ice 4.3 jitm absorption feature detected towards one 
of the lines of sights (SSTc2d J054430.9+090826) towards the core B35A. The feature 
in question is highlighted with a red ellipse.
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5.5.1 The quality of the data

The spectroscopy mode for AKARI was originally intended to be applied for situa

tions with only one or very few well-separated sources per observation. Some of the 

pointings I have analysed contain hundreds of simultaneous sources, pushing the capa

bilities of the spectroscopy mode on AKARI to its limits or beyond. This is reflected 

in the high rate of attrition in the number of spectra left after each reduction step, as 

the number dwindles from 8280 raw spectra, through 4436 time- and pointing-merged 

spectra to 1353 finalized spectra. Of these spectra only 207 remained useful for esti

mating the presence and column density of water, split between 1 2  distinct fields of 

view. Of the column density estimates 76 cases register as having a higher than 2a  

uncertainty, with any signals falling below this being classified as either an upper limit 

or a non-detection. It is important to emphasize that the large number of the final spec

tra not yielding column density estimates is not indicative of the column density of 

H2 O ice being low enough to be undetectable towards nearly a thousand lines of sight, 

but that it rather indicates missing data towards them. Most of the spectra lacked a 

sufficient number of data points in the vicinity of the 3-micron feature and thus it was 

not possible to fit an adequate continuum baseline around the O-H stretch for optical 

depth estimates to be possible.

The confusion between spectra is by far the largest individual factor causing the low 

number of final water ice detections. It causes several spectra to be outright dropped 

from the data set, and for even larger numbers of spectra to be masked to the point of 

uselessness for producing a good enough continuum baseline fit in order to produce 

optical depth spectra. The attrition caused by the confusion filtering is especially bad 

in highly crowded fields such as CB 188 and DC300.7-01.0, meaning that "more is 

less" when it comes to analysing AKARI spectroscopic observations in the 10 x 10 

arc minute field of view. Despite the efforts of the automatic confusion detection al

gorithm, some cases of confused spectra remain. These could be visually identified 

by an anomalous peak appearing in a spectrum, showing a similar shape to what the
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Figure 5.23: A map (towards B35A; pointing 4120021) visualizing the effect of the ’at
trition’ that the reduction process has on the number of analysed sources. The sources 
marked with red circles are targets which were ignored by the extraction process, most 
likely becaue of either confusion or a weak signal. The blue circles are sources which 
were extracted successfully from the NP frame, but which were dropped during the 
several reduction steps leading to the final reduced spectra, marked with cyan squares. 
This map also shows with a yellow square the source SSTc2d J 192014.9+113540, 
which is featured in many other figures and in the discussion as a benchmarking case.
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2.4 jUm peak shows in the part of the spectrum where it is expected to appear. These 

spurious confused (but not identified as such) parts of the spectra are usually the result 

of ARF2 not having detected a weak source in its source identification phase. The lack 

of detection means that ARF2 could not create an extraction path for the interfering 

source, and could thus not account for its confusing other sources appropriately. Cases 

with obvious interference from such sources were manually removed from the final 

data set -when noticed- before proceeding with calculating ice column densities.

In cases where bad confusion was detected, the most common result of the mask

ing out of confused parts meant that either a large part of the red or the blue end of 

the spectrum would get masked. This usually meant that the spectrum would have 

insufficient data points left in it for an adequate baseline estimate, and is the most sig

nificant deciding factor in why a large part of the finalized spectra could not be used 

for column density estimates. Even the spectra from which column densities could be 

estimated were highly sensitive to the exact method used for the continuum baseline 

fits, and suffer from (see next section) an up to factor of 3 uncertainty as a result.

As evidenced by the inconsistent short and long exposure time spectra, the non- 

linearity correction parameters provided as part of the official AKARI pipeline and 

adapted to ARF2 fail at high enough fluxes. This meant that only the short-exposure 

version (where the observed counts did not reach high enough numbers for non-linearity 

to be an issue) of the data could be used in most cases, and that the S/N ratio at the 

part of the spectrum where the O-H stretch feature is usually observed is weaker than 

it could be if the non-linearity correction could be performed adequately. Defining the 

non-linearity parameters to make the long exposure useful at higher fluxes would need 

an examination of the calibration data of standard sources, which is beyond the scope 

of this study.

The PSF used in the CLEAN algorithm had to be re-defined for each individual 

pointing, suggesting that there is an unaccounted-for effect changing it between obser

vations. Distortion effects could be one reason for this discrepancy, and performing the 

spectrum extraction on a fully de-warped image might be a solution. This, however,
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Figure 5.24: An example of the effects of distortion correction attempts on one of the 
NP frames, specifically pointing 4120021-001 (B35A). The blue-shaded colours show 
the non-corrected frame, while the red-shaded colours show the corrected frame. The 
middle image shows the full 10  x 10  arc minute field of view, and the left and right 
images show zoomed in parts of it showing how spectra on the distortion-corrected 
image divert and even slightly tilt in different directions on opposite sides of the field 
of view. The middle of the field of view being mostly purple with no separate blue or 
red regions indicates that the middle is mostly unaffected by the distortion correction.

brings with it additional complications as de-warping the NP frames warps the extrac

tion paths, meaning that they can no longer be defined as consistent straight lines. This 

is evidenced by Figure 5.24, which shows how the extraction path changes in different 

parts of the de-warped image. Another way to improve the PSF accuracy is to find 

appropriate calibration data from the AKARI archives, and build a model based on 

this data. Such an examination is, again, beyond the immediate scope of this study. As 

it stands, I content myself with defining the uncertainty caused by the imperfect PSF 

based on the CLEAN residuals, as explained in Section 5.3.3.

Based on the benchmarking done against the Gaussian extraction method, however, 

it is found that the CLEAN extraction algorithm works adequately by comparison, and 

should thus be considered a valid way of deconvolving spectra in cases such as the 

AKARI NP fields. Improving the quality of the final data is thus contingent upon 

improving the quality of the calibrations. With this in mind I feel content in comparing 

the data against other similar studies and supplementary data of relevance.
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5.5.2 Comparison with other studies of water ice

Water ice has been detected by a multitude of studies (e.g. Aikawa et al., 2012a; 

Boogert et al., 2011; Chiar et al., 1994; Eiroa and Hodapp, 1989; Leger et al., 1979; 

Merrill, Russell, and Soifer, 1976; Murakawa, Tamura, and Nagata, 2000; Noble et 

al., 2013; Oberg et al., 2011a; Oliveira et al., 2009; Pontoppidan, van Dishoeck, and 

Dartois, 2004; Shimonishi et al., 2008, 2010, 2013; Tanaka et al., 1990; Whittet et al., 

1988; Yamagishi et al., 2011, 2013) through its 3-micron feature towards lines of sight 

ranging from YSOs, background stars and even extragalactic sources.

Many of the previous studies report the abundance of water ice only in terms of 

the peak optical depth of its corresponding 3-micron feature. The range of variation in 

peak optical depth consists of most lines of sight having t(3  fim) < 0.2, with a small 

number of sources exceeding T(3jUm) «  1.5. A similar trend is noticed in my study: 

most lines of sight where the 3-micron feature is detectable show its peak optical depth 

at ~0.5, with a small number of lines of sight having the peak go as high as ~2.0.

The various methods for calculating the column density of ISM ices were discussed 

in Chapter 1 Section 1.4.3. The method employed for calculating A(H 2 0 , solid) in 

this chapter is a simplified version of the one which was used for estimating ice col

umn densities in Chapter 3. In this chapter I fitted a CDE-corrected pure H2 O ice 

laboratory spectrum to the observed blue wing of the 3-micron feature, and calculated 

A(H 2 0 , solid) from the fitting result.

Estimates of A(H 2 0 , solid) in the literature vary between ~  0.5 x 101 8 cm - 2  on 

the low end and a fewx 101 8 cm - 2  on the high end. A similar range of variation was 

detected in my results, with the lowest water ice column density estimate being ~  

0.2 x 1018 cm - 2  and the highest estimate being ~  7.2 x 1018 cm-2 .

An especially interesting set of data to compare mine with is from the study pre

sented in Noble et al. (2013), which used AKARI NG spectroscopy to calculate a small 

number of water ice column densities towards many of the same cores which were 

looked at in my study. In principle my study looked towards all the same sources as No
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ble, but the significant attrition of lines of sight during spectrum reduction means that in 

the end only a small number of matching sources could be found between my study and 

that of Noble; two sources towards B35A and one towards L 1165. The two sources 

in B35A are SSTc2d J054430.9+090826 and SSTc2d J054430.0+090857 which cor

respond to sources 4 and 3 respectively in Noble. The calculated water ice column 

density estimate in the first source disagrees by about a factor of 3 (1.2 x 101 8 cm - 2  

for me, 3.1 x 101 8 cm - 2  for Noble) between mine and Noble’s study and the second 

source is estimated to have about a 10% lower column density (3.0 x 1018 cm - 2  for me,

3.3 x 101 8 cm - 2  for Noble) than what Noble estimates. The source in L 1165 is iden

tified as SSTc2d J220641.8+590600 in my study and marked as source 29 in Noble. 

The estimates for this source differ between me and Noble by about 80%, with my es

timate being 1 . 1  x 101 8 cm-2 , and Noble’s estimate being 1.8 x 101 8 cm-2 . The close 

proximity of another source (source 28 in Noble) to this source means that this may be 

a potential case of confusion, however, and that I am reporting the water ice column 

density for that source instead. Noble et al reports A(H 2 0 , solid) to be ~  2.1 x 1018  

in source 28. This estimate thus differs even more from my estimate than the one for 

source 29. These differences stand as testament of how much uncertainty is introduced 

to my column density calculations from especially the high degree of uncertainty in 

the calibration.

5.5.3 Correlation with other measurables

The c2d catalogue provides both sub-millimetre photometry and visual extinction esti

mates against which my ice column density estimates (towards the lines of sight asso

ciated with c2d catalogue sources) can be correlated. Additionally, the Galactic Dust 

Reddening and Extinction service (DUST) of IPAC2  was queried to access low spatial 

resolution data (~ a  few arc minutes) on E(B — V) reddening, 100 micron intensity and 

dust temperature towards the lines of sight I measured in my study.

2Schlegel, Finkbeiner, and Davis (1998); h t tp : / / ir s a .ip a c .c a lte c h .e d u /a p p lic a t io n s /  
DUST/

http://irsa.ipac.caltech.edu/applications/
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Figure 5.25: Two versions of the ice map towards B35A, with background images 
from different sources and a CO gas-phase column density contour. The top figure 
uses a SPITZER/IRAC 8 -micron continuum map (traces polyaromatic hydrocarbons 
i.e. PAHs) and the bottom figure uses a Herschel/SPIRE 250-micron continuum map 
(commonly used to trace cold dust) as its background image. The ice abundances and 
the approximate field of view of the AKARI frame are shown in the same way as in 
Figures 5.16-5.21. Additionally the column density of gas-phase 12CO calculated via 
its 3 — 2 transition (A. Craigon, private communication) is represented via contours. 
The five increasing contour levels represent the isolines of 12CO column densities of 
0.0, 1.32 • 1017, 2.65 • 10 17, 3.97 • 1017, and 5.29 • 1017 cm-2 , respectively.
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Figure 5.26: Two versions of the ice map towards B35A, with background images 
from different sources and a CO gas-phase column density contour. The top figure 
uses a WISE 3.4-micron continuum map (traces PAHs) and the bottom figure uses a 
WISE 12-micron continuum map (traces warm dust, and YSO envelopes and discs) 
as its background image. The ice abundances and the approximate field of view of 
the AKARI frame are shown in the same way as in Figures 5.16-5.17. Additionally 
the column density of gas-phase 12CO calculated via its 3 — 2 transition (A. Craigon, 
private communication) is represented via contours. The five increasing contour levels 
represent the isolines of l2CO column densities of 0.0, 1.32 • 1017, 2.65 • 1017, 3.97 • 
1017, and 5.29 • 1017 cm-2 , respectively.



5.5. Discussion 251

The c2d catalogue contains standard J, H, and K- band photometry in addition 

photometry acquired using SPITZER/IRAC in 3.6, 4.5, 5.8, and 8.0 microns. The 

catalogue also contains A y  extinction values calculated in the manner described in the 

c2d data delivery document3. The extinction values are of greatest interest to me here, 

because several studies (e.g. Eiroa and Hodapp, 1989; Murakawa, Tamura, and Nagata, 

2000; Noble et al., 2013; Whittet et al., 1988) have found a positive correlation between 

A y  and either 7V(H2 0 , solid) and/or t(3 gm ). Therefore my data was also correlated 

against the A y , towards sources which had been cross-matched with c2d. Finally, a 

small number (see Figures 5.20 and 5.21) of the observed cores have publicly available 

Herschel SPIRE photometric data towards them. The highest spatial resolution data is 

from the 250-micron PSW band, which usually traces cold dust emission. These maps 

can be used to acquire 250 micron intensities towards select lines of sight.

The first pair to be correlated was A(H 2 0 , solid) from my ice mapping against 

A y  from the c2d data. This correlation plot is presented in Figure 5.27. An al

ternately scaled version of the same plot is shown in Figure 5.28, where the y axis 

has been scaled logarithmically in order to highlight some interesting variation in the 

low A(H 2 0 , solid) regime. These plots also show the correlations from several other 

sources (Bergin et al., 2005; Broekhuizen, Kumar, and Abbatt, 2004; Chiar et al., 

2011; Murakawa, Tamura, and Nagata, 2000; Noble et al., 2013; Shuping et al., 2000; 

Whittet et al., 1988, 2007). Some of the sources in the literature only had the opti

cal depth of the 3-micron feature listed instead of the water ice column density. For 

such cases the 3-micron optical depth was converted to water ice column density using 

(Murakawa, Tamura, and Nagata, 2000)

Ar(H2 0 , solid) =  T (3 /im )^ p  (5.11)

where i  is the optical depth, A f  =  360cm-1 is the usual FWHM, and A  =  2 • 10“ 16 cm 

is the band strength of the water ice feature. Among the first things to notice in either

3h ttp :/ / i r s a . ip a c . c a lte c h . edu/data/SPITZER/c2d/doc/c2d_del_document.pdf

http://irsa.ipac.caltech.edu/data/SPITZER/c2d/doc/c2d_del_document.pdf
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Figure 5.27: The water ice column densities (from my ice maps; y-axis) plotted as 
(good detections) dark gray circles and (upper limits) light gray triangles against the 
visual extinction (from c2 d; x-axis) towards lines of sight where data from both sources 
was available. The cross at the top right of the figure shows the mean uncertainty on 
both axes for my data. Also plotted in this figure as red circles is several data points 
gathered from several sources (Bergin et al., 2005; Broekhuizen, Kumar, and Abbatt, 
2004; Chiar et al., 2011; Murakawa, Tamura, and Nagata, 2000; Noble et al., 2013; 
Shuping et al., 2000; Whittet et al., 1988, 2007) in the existing literature.
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Figure 5.28: The logarithm of the water ice column densities (from my ice maps; 
y-axis) plotted as (good detections) dark gray circles and (upper limits) light gray tri
angles against the visual extinction (from c2d; x-axis) towards lines of sight where 
data from both sources was available. The cross at the top right of the figure shows 
the mean uncertainty on both axes for my data. Also plotted in this figure are several 
data points gathered from several sources (Bergin et al., 2005; Broekhuizen, Kumar, 
and Abbatt, 2004; Chiar et al., 2011; Murakawa, Tamura, and Nagata, 2000; Noble 
et al., 2013; Shuping et al., 2000; Whittet et al., 1988, 2007) in the existing literature. 
These are plotted as green squares for Whittet et al. (1988), blue circles for Murakawa, 
Tamura, and Nagata (2000), and red circles for everything else.
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of these figures is that the A y  distribution in my data dips below zero for a number of 

data points. Such (impossible) extinction values serve as testament on the uncertainty 

of the extinction estimates available from the c2d catalogue. The c2d data delivery 

document4  comments that offsets of 1-2 magnitudes are expected in the A y , because 

of the used SED fitting process and the systematic uncertainties in the intrinsic colours 

of the observed stars. In order to see if the c2d data Ay values could be improved upon, 

an alternate path of estimating A y  was explored. This alternate method makes use of 

the E(B-V) colour excess values acquired from IPAC. Visual extinction values can 

be calculated from colour excess values using the formula (Weingartner and Draine, 

2001)

A y = R y E ( B - V ) ,  (5.12)

where Ry  is the ratio of visual extinction to reddening. To be consistent with c2d 

data, I  used the same ratio - R y  =  5 .5- as they did for their extinction calculations. 

An alternate version of Figure 5.27 with A y  values calculated from the IP A C  data is 

presented in Figure 5.29. From this figure I  can see that the IP A C  data is heavily 

binned along the x-axis, owing to the very low spatial resolution (several arc minutes; 

compared to the very narrow "pencil beams" effectively used in ice mapping) of the 

colour excess data available. Thus the c2d A y  values will continue being used, despite 

the inherent uncertainty in them.

Generally speaking, the distribution of my data agrees with the distribution re

ported in other pieces of literature. There is a disagreement, however, at low extinction 

values, especially when the distribution at this range is highlighted in the logarith

mic plot shown in Figure 5.28. Particularly the data from Whittet et al. (1988) and 

Murakawa, Tamura, and Nagata (2000) show a steep decline in H2 O ice column den

sity at around A y  «  2 ...5 , while my data occupies a wide distribution of A y  and 

A(H 2 0 , solid) in the same general A y  range.

When comparing my data against data from other sources, it is however good

4Available from h ttp : /  /  i r s a . ip a c . c a lte c h . edu/data/SPITZER/c2d/doc/c2d_del_
document.pdf
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Figure 5.29: The water ice column densities (from my ice maps; y-axis) plotted as 
(good detections) dark gray circles and (upper limits) light gray triangles against the 
visual extinction (calculated based on E(B-V) values acquired from IPAC/DUST with 

=  5.5; x-axis) towards lines of sight where data from both sources was available. 
The cross at the top right of the figure shows the mean uncertainty on both axes for 
my data. Also plotted in this figure as red circles are several data points gathered from 
several sources (Bergin et al., 2005; Broekhuizen, Kumar, and Abbatt, 2004; Chiar 
et al., 2011; Murakawa, Tamura, and Nagata, 2000; Noble et al., 2013; Shuping et al., 
2000; Whittet et al., 1988, 2007) in the existing literature.
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to keep in mind that (as shown in Figure 5.28) most of the low A y  correlation data 

in the literature is from Whittet et al. (1988) and Murakawa, Tamura, and Nagata 

(2000). These data sets consist of observations exclusively towards the Taurus Molec

ular Cloud (TMC), which has been found (Oberg et al., 2011a) to have an unusual 

distribution of ices compared to other molecular clouds. This difference between the 

Taurus data compared to other ice data can also be noticed when comparing correlation 

coefficients calculated for the A y /A ^ O , solid) pairs. The correlation coefficient/? is 

very high for the Taurus sources, with R «  0.94 for Whittet et al. (1988) and R «  0.97 

for Murakawa, Tamura, and Nagata (2000). By contrast, if the same correlation co

efficient (A y  versus 7V(H2 0 , solid)) is calculated for the combined non-Taurus data in 

the literature (from Bergin et al., 2005; Broekhuizen, Kumar, and Abbatt, 2004; Chiar 

et al., 2011; Noble et al., 2013; Shuping et al., 2000; Whittet et al., 2007), I get a 

diminutive value of R «  0.08. If the Taurus data is combined with all the literature data 

I get/? «  0.66. My data alone has R «  0.25, and if combined with the literature data 

points I get R 0.58.

The non-Taurus data from the literature seems to have a similar (non-)correlation 

that my data does, while the individual cloud of Taurus correlates very well in the two 

sets of data published on it. What if this correlation is cloud dependent? To study 

this, I correlated the detections in each of my studied molecular clouds individually 

in cases where a cloud had at least four (because correlating with fewer makes little 

sense with the uncertainties in my data) such detections. Of the clouds I studied 7 

had enough data points to make this possible, and these correlations are presented 

in Figures 5.30 and 5.31. Three of the clouds -B35A, DC 346.0+07.8, and LI 165- 

show a comparatively strong correlation when studied in this way. The sources used 

for these correlations are mostly background sources, but also contain a few YSOs. 

The remaining 4 clouds with poor correlation either contain a very flat distribution of 

points, where A ( H 2 0 ,  solid) does not seem to vary noticeably with A y  and/or contain 

individual outliers with considerably high A(H 2 0 , solid) detections compared to other 

lines of sight in the same set. If the outliers were to be ignored in the data containing
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Figure 5.30: A correlation of A y  (x-axis; from c2d) against A(H 2 0 , solid) (y-axis) 
on a per-cloud basis towards 4 of the 7 clouds (the other 3 are shown in Figure 5.31) 
towards which more than 3 non-upper limit detections existed. The name of each cloud 
is indicated at the top of each plot, in addition to the correlation coefficient R for the 
plotted points and the mean uncertainties being shown in the left and right comers of 
the plots, respectively. Background stars are indicated by circle-shaped markers, and 
YSOs are indicated by star-shaped markers.



258 Chapter 5. Ice mapping with AKARI

B35A L 1165

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
20 50 6040 10 20 30 40

Mu 8
1.2

sr i-o

0.8

0.6

0.4

0.2

Mean 
uncerta inty '

Mean
uncertainty

Mean
•uncertain ty

5 10 15 20 25
A v [m ag]

Figure 5.31: A  correlation of A y  (x-axis; from c2d) against A (H 2 0 ,  solid) (y-axis) 
on a per-cloud basis towards 3 of the 7 clouds (the other 4 are shown in Figure 5.30) 
towards which more than 3 non-upper limit detections existed. The name of each cloud 
is indicated at the top of each plot, in addition to the correlation coefficient R for the 
plotted points and the mean uncertainties being shown in the left and right comers of 
the plots, respectively. Background stars are indicated by circle-shaped markers, and 
YSOs are indicated by star-shaped markers.
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them, the result would be a more or less flat (within the y-axis error bars) distribution. 

While the small number of data points per cloud leaves room for doubt, all of this 

seems to imply that the correlation between extinction and water ice column density 

varies from cloud to cloud.

Another potentially interesting correlation pairing is possible: the far infra-red dust 

optical depth is (e.g. Schlegel, Finkbeiner, and Davis, 1998; Suutarinen et al., 2013) 

to be closely related to A y . Given a map of observed far-IR intensity at wavelength X 

and another map of dust temperatures 7dUSt» the FIR optical depth can be calculated 

from the approximation

(5-13)^A (Adust)

where ^(^dust) *s Planck’s law for black-body emission at wavelength X given tem

perature r dust. This equation applies when the dust can be assumed to be optically thin; 

a common assumption in the literature which I will also make use of.

The two sets of data from which I could calculate T were the 100-micron maps 

from the IPAC/DUST data, and the Herschel/SPIRE PSW maps which were available 

towards a few of the cores considered in this study. The Herschel maps available from 

the Herschel Science Archive come in two forms: a map calibrated for point-sources 

and another calibrated for extended sources. The dust temperatures necessary for cal

culating black-body emission were taken from the (very low spatial resolution, with an 

approximately degree-sized effective beam) IPAC/DUST data. The correlation plots 

created for Tioo/im and T25oium are presented in Figures 5.32 and 5.33, respectively. The 

effect on the correlation coefficient arising from the usage of low-resolution (IPAC/- 

DUST) versus high-resolution (c2d or Herschel) data is seen in these two correlation 

plots as well, much like they were seen in the A y  correlation plots. The 100-micron 

correlation was created using low-resolution data and suffers from the same type of 

binning as the extinction correlation plot (Figure 5.29) created from IPAC colour ex

cesses.

The 250-micron correlation was calculated based on significantly higher-resolution
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Figure 5.32: The water ice column densities (from my ice maps; y-axis) plotted as gray 
circles against the 1 0 0 -micron optical depth (calculated from 1 0 0 -micron intensities 
and dust temperatures acquired from IPAC/DUST; x-axis) towards lines of sight where 
data from both sources was available. The value presented on the top left of the figure 
is the correlation coefficient for the data, and the cross at the top right shows the mean 
uncertainty on both axes.
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Figure 5.33: The water ice column densities (from my ice maps; y-axis) plotted against 
the 250-micron optical depth (calculated from 250-micron intensities acquired from 
Herschel/SPIRE PSW and dust temperatures acquired from IPAC/DUST; x-axis) to
wards lines of sight where data from both sources was available. Dark gray symbols 
indicate proper detections, while light gray ones represent upper limits. The circles 
represent background stars and the star symbols represent YSOs. Two sources falling 
beyond the axis limits are indicated by the arrows, with an annotation of their approx
imate plot coordinates. The error bars on the top left comer indicate the mean x and y 
uncertainties of the plotted data.
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Figure 5.34: The correlation of The water ice column densities (from my ice maps; 
y-axis) plotted against dust temperature (from IPAC/DUST; x-axis). The mean uncer
tainty on both axes is shown in the top right comer.

Herschel maps, and its correlation coefficient is R «  0.35. While the optical depth also 

depends on dust temperature, the very low spatial resolution dust temperature data I 

am using effectively smooths out any short-scale variations in dust temperature. This 

is best illustrated with a correlation plot of water ice column density against the dust 

temperature I am using. As is seen from Figure 5.34, no discernible pattern is to be 

found in the small temperature range ocupied by my datapoints.

As a final point of interest, the 250-micron optical depth correlation plot can be 

split between three separate cores where a sufficient number of datapoints exists for 

correlation estimates to make sense. The three cores which could be looked at indi

vidually were L 1165, B35A, and DC 346.0+07.8. Containing the same number of 

datapoints as they did when correlating against Ay in this way, their correlation coef

ficients are moderately high: 0.89, 0.72, and 0.61, respectively. This further reinforces 

the idea that water ice column density correlations may vary from cloud to cloud.
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All these correlations come with the caveat that water ice column density has in 

the past mostly been correlated against extinction towards young stellar objects, while 

my sources are mostly background stars. It is entirely possible that a different type of 

correlation is to be expected in my case, compared to the correlations seen in YSO- 

dominated data.

5.6 Concluding remarks

In this chapter the most recent results of the AKARI ice mapping project are presented, 

the number of water ice column density estimates in the literature are increased by 76 

detections and 131 upper limits. Most of these estimates are towards lines of sight not 

previously observed, and they cover a total of 1 2  molecular clouds, covering a patch of 

the sky approximately 10' x 10' in each. Furthermore, these observations are mostly 

toward background stars instead of the much more commonly studied young stellar 

objects.

Based on comparison with other studies done with more high-precision observ

ing methods, the column density estimates in this chapter suffer from a high degree 

(~  50%) of uncertainty. This uncertainty is largely caused by incomplete calibration 

data, most notably the lack of an adequate point spread function for the AKARI NP 

observations, and the apparent inaccuracy of the NP flux response function at high 

wavelengths. These two factors together lead to a high degree of uncertainty in the 

continuum fit performed on the data.

Despite the uncertainties in the results, they are still precise enough to be correlated 

with supplementary data to a moderate degree of confidence. The presence of an ex

tinction threshold remains ambiguous based on my data, but I find that the correlation 

between water ice column density and both visual extinction and (at least) 250-micron 

optical depth may vary from cloud to cloud.



Chapter 6

Conclusions and further work

How is ice distributed in star forming regions?

How is ice affected by star formation processes?

These are the two questions asked at the beginning of this thesis and these are 

the two questions which have been answered. Water ice is truly ubiquitous in the 

ISM, and can be found in a wide range of physical environments. Methanol ice is 

far more common that previously believed, its formation happening in a water-ice- 

rich environment and its nearly complete destruction happening in the violent outflow 

environment of young stellar objects.

The work presented in this thesis has looked at the life cycle of ice in the interstellar 

medium, with a special emphasis on water and methanol. The results shed new light on 

the formation and destruction processes of ice layers in the ISM. Additionally the first 

ever set of large scale ice mapping data is presented, and two software utilities (ARF2 

and O m n i f i t ) written in P y t h o n  are showcased. This chapter will summarise all 

of this, followed by a discussion on the future applicability and interesting research 

avenues pointed at by the results this thesis.

264
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6.1 New discoveries

The discoveries made in the research of this thesis can be summarised as follows:

(i) Thanks to the research done in Chapter 3, our understanding of CH3 OH ice is 

enhanced.

•  Based on observations of the 3-micron ice feature, CH3 OH ice is detected 

on most lines of sight ranging from low mass YSOs to background stars. 

The relative abundance of CH3 OH against H2 O ice ranges from a few to 

~  40%, even on lines of sight where it had not previously been observed.

•  CH3 OH ice occurs predominantly in CO-rich ice environments (as opposed 

to a H2 0 -rich ice), which is consistent with observed 3-micron ice absorp

tion features and an earlier hypothesis of Cuppen et al. (2011).

(ii) In Chapter 4 we gained greater understanding of the formation and destruction 

of water and methanol in young stellar objects.

•  In the outflows of low-mass young stellar objects, where the stellar wind 

of the YSO impacts with its envelope, the post-shock gas shows evidence 

of gas-phase H2 O formation reactions. This happens in a region of the out

flow associated by velocity with secondary CJ- and C- type shocks, and en

trained envelope material. The gas-phase formation mechanism enhances 

the abundance (relative to CO) of H2 O in these regions by roughly a factor 

of 2 .

•  In these same shocked regions, there is evidence of CH3 OH destruction 

during the sputtering of methanol ice from dust grains. Up to ~  90 — 99% 

of CH3 OH is destroyed in this way. The extent of this destruction may 

be even greater than what was concluded in Chapter 4, which assumes 

methanol ice abundance estimates pre-dating the study done in Chapter 3.
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6.2 New ice maps

The AKARI ice mapping programme discussed in Chapter 5 has -using a novel spec

trum extraction and analysis technique- produced new H2 O ice maps towards a total 

of 1 2  star-forming regions, with each region covering an approximately 1 0 ' x 1 0 ' patch 

of the sky. This data consists of 76 H2 O ice detections and 131 upper limits. When 

added to the existing number of H2 O ice estimates in the literature, this new data al

most doubles the number of lines of sight towards which the abundance H2 O ice is 

estimated. Most (145) of my lines of sight are towards background stars, a source cat

egory towards which H2 O ice abundances have been very rarely estimated as most of 

the literature H2 O ice estimates are towards YSOs. Comparing my ice abundance es

timates to supplementary archival data, I found iV(H2 0 ice) to possibly correlate with 

dust opacity at 250 microns. I also found signs suggesting that the correlation be

tween the water ice column density iV(H2 0 ice) and both visual extinction A y  and dust 

opacity K̂ sojum may varY from cloud to cloud.

6.3 New,utilities

To facilitate the research done in this thesis, two major pieces of software were cre

ated: ARF2 and Omnifit. Documented in Appendix A and exploited in Chapters 3 

and 5, these two utilities have been created with future applicability in mind. ARF2 is 

intended as a general-purpose reduction and analysis tool for AKARI slitless spectro

scopic data, utilising a variation of the CLEAN (Hogbom, 1974) algorithm to decon

volve partially overlapping spectra from a dispersed field of view. Omnifit is intended 

to make the fitting methodology between laboratory and observational ice spectra de

scribed in Chapter 3 simple to reproduce with any arbitrary wavelength range of spec

troscopic observations, assuming it is provided with the necessary laboratory data to 

fit against.

Both utilities are in the process of being prepared for public open source release.
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6.4 Further work

Already mentioned in passing in their respective chapters, the research done in this 

thesis hints at interesting future avenues of study. These avenues can be categorized 

between the observational, theoretical and experimental.

6.4.1 Observational

The results of my research of water and methanol gas-phase abundances in YSOs pre

sented in Chapter 4 depend on a number of assumptions associated with the physical 

conditions and kinematics of the outflow material. Specifically, the number density of 

molecular hydrogen -N (H2 ) -  and the kinetic temperature -T^n-  of the gas could play 

a significant role, if they were found to vary spatially within the observed line of sight. 

Furthermore, the location from which H2 O emission originates is assumed based on 

our current understanding of the kinematics of how YSO outflows link to the velocity 

profile of the emission.

Given a detector of suitably high spatial and spectral resolution and access to the 

appropriate frequency ranges, direct high-resolution observations of of the YSO sys

tem would potentially help constrain both the physical conditions around the outflow 

and the precise origin of the H2 O emission. The latter is difficult to achieve with 

any existing or planned sub-mm observatories, as the appropriate H2 O emission line 

is attenuated by absorption in the Earth’s atmosphere and thus observations with a 

sufficient spatial resolution (~milliarcsecond-scale) would require a space-bome sub- 

mm interferometer. Evaluating the physical conditions in the YSO outflow may be 

plausible with telescopes such as ALMA (Atacama Large Millimeter Array) or PdBI/- 

NOEMA (Plateau de Bure Interferometer/NOrthem Extended Millimeter Array); both 

of which are submm range interferometer arrays. Further in the future, the Square 

Kilometer Array (SKA) is a radio frequency interferometer which is set to begin con

struction in 2018. It is scheduled to become active in 2 phases between 2020 and 

2030. ALMA, PdBI, and SKA are all capable of imaging at the spatial scales required
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to examine the outflow structure of YSOs. Examining the physical conditions is thus 

a matter of locating a suitably positioned nearby young stellar object, and deciding 

upon appropriate tracers of kinetic temperature and H2  density. Kinetic temperature is 

commonly (e.g. Juvela et al., 2012; Kirsanova et al., 2014; Walmsley and Ungerechts, 

1983) traced with low-J gas-phase NH3 emission which is detectable at radio frequen

cies. It may be useful in this role at probing the kinetic temperature of YSO systems 

as well. The density of molecular hydrogen is much more difficult to probe without 

making several assumptions about the geometry of the system and both the excitation 

conditions (which we are trying to learn more about!) applying to a potential tracer 

molecule and the way it traces n(H2 ). A likely better route for estimating n(H2 ) varia

tions would be magnetohydrodynamic models of YSO systems.

When it comes to ices, the James Webb Space Telescope (JWST) is set to bring 

with it numerous discoveries. The MIRI and NIRSPEC instruments of the JWST bring 

with them the potential to observe both the near-IR and mid-IR ice features of any line 

of sight concurrently, and also to create spectroscopic data cubes (such as the ones 

used to create the Spitzer ice map of Sonnentrucker et al. 2008) of the entire field of 

view. This would allow for the abundances of CO, H2 O, CH3 OH and more ices to be 

determined from even more features (such as the 9-micron feature tracing e.g. silicates 

and CH3 OH) than the two features used in Chapter 3. Usage of multiple features may 

help remove some of the degeneracies of the fitting, and help further understand the 

distribution of ices in the ISM. In anticipation of JWST, however, it is ice maps such as 

the ones presented in Chapter 5 which help us decide which regions should be observed 

first.

6.4.2 Theoretical

An alternate (or more likely supplementary) approach to constraining the physical con

ditions of YSO outflows comes from simulations. A magnetohydrodynamics simula

tion of the shocked region consistent with observations would help further constrain
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the H2  density and kinetic temperature of the gas contained therein.

Further development of the software created for this thesis also counts as an avenue 

of future theoretical study. Most importantly determining a good point spread function 

(PSF) to use in the spectrum extraction process in Chapter 5 would play a critical role 

in improving the quality of the extracted near-IR spectra and thus both improve the 

reliability of the ice mapping data and most likely also add more H2 O ice detections 

to each field of view. There is also further untapped AKARI data left to analyse, most 

notably the mid-IR data, which covers the wavelength range between 5.4 and 12.9 

jiim. The most significant additional complication of this data arises from the complex 

background emission which is present in the mid-IR waveband. Also, there exists 

near-IR spectroscopy from Phase 3 (the post-helium phase) of AKARI, towards the 

same star-forming regions as were looked at in Chapter 5. This data - i f  the significant 

noise in it can be handled properly- can potentially be used to increase the S/N ratio 

of the existing observations, and possibly add some extra data points to most observed 

star-forming regions.

In Chapter 3 the nature of the so far unexplained "red wing" of the 3-micron ice 

absorption feature was also studied to some extent. It is under this feature where most 

of the additional CH3 OH ice detected in Chapter 3 can be "hidden". As is discussed 

in the chapter, most of the absorption in the red wing is ignored by previously used ice 

abundance estimation methods. This ignored residual in the red wing takes the shape 

of a gaussian (or possibly a lopsided gaussian adapted from Lan and Jorgenson 2001) 

distribution. The nature of the red wing remains a mystery, but may be associated 

with either light scattering effects and/or the products of energetically processed ices. 

If light scattering effects are the reason for the shape of the red wing, an avenue of 

future study would be to replace the CDE model (used in Chapter 3 for modifying the 

shape of laboratory spectra) with a more sophisticated model taking into account light 

scattering and polarization effects on coated dust grains.
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6.4.3 Experimental

The destruction of CH3 OH in YSO outflows would be verifiable by constructing a 

laboratory experiment which emulates the interaction between CH3 OH ice and neutral 

species (most notably hydrogen) in a controlled setting. This would help either confirm 

or refute the conclusion regarding CH3 OH at the end of Chapter 4. The second likely 

effects for reproducing the red wing discussed in Chapter 3 is the energetic process

ing of ices. Energetic processing of methanol has been previously found (Palumbo, 

Castorina, and Strazzulla, 1999) to change the shape of the red wing towards what is 

observed in the ISM, and thus further experimentation in this direction may be the key 

to understanding the origin and shape of the red wing in astronomical spectra.

6.5 Closing words

Many of the new discoveries in science arise from places where multiple fields meet, 

and this thesis is no exception. The results presented in the preceding chapters have 

been made possible through the cooperation of most notably astronomy, physics and 

chemistry, with the data enabling the analysis having acquired through observations, 

laboratory experiments and computer models. Methods originating from computer 

science and statistics have been used to perform the analysis.

As discussed in this chapter, the journey ahead is also one where cooperation be

tween multiple fields is required. The ice observations acquired from the JWST -which 

tell us where the ice is - would be worthless without the struggles of laboratory astro- 

chemists in helping us put the observations in the right context, and computer models 

are then required to build the larger chemical picture around this single snapshot on 

an astronomical timescale. This picture can then be extrapolated into both the past 

and future through computational astrochemical models and magnetohydrodynamical 

simulations, which will give us information about where the gas and ice came from 

and what lies in store for it in the future. It is this cooperation and collaboration which 

allows us to understand the process of star formation, and possibly even life itself.
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And with that in mind, we continue mapping the frozen void.



Appendix A

Software documentation

A large part of modem astronomy -regardless of sub-field- involves programming in 

its many forms. Specialized software and scripts are often created as part of every

day research but they are rarely produced in a way that they can be efficiently re-used 

for follow-up research based on the original work they were created for. One of the 

reasons why such software and scripts never see public release is their lack of docu

mentation; an extra effort which is necessary to make the program useful for those who 

did not create it. The purpose of this appendix is to document the two major pieces of 

software created during the research done for this thesis: ARF2 and O m n ifit. ARF2 

is intended to work as a general-purpose AKARI slitless spectroscopy extraction and 

reduction tool (used in Chapter 5), and O m n ifit is an ice spectroscopy fitting library 

for applying the fitting methodology presented in Chapter 3 to an arbitrary set of spec

troscopic observations. Both of these pieces of software (written in P y th o n )  have 

been designed to be useful in not only reproducing the results of their respective chap

ters but also to help anyone wishing to do so conduct follow-up studies (such as those 

suggested in Chapter 6) of the research in those chapters. The documentation in this 

chapter is intended to provide a starting point for such endeavours.

272
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A.l AKARI Reduction Facility 2

A .l.l Introduction

The AKARI Reduction Facility 2 (ARF2) is an evolution of the first AKARI Reduc

tion Facility (ARF1; Noble, 2011), with an emphasis on being able to reducing and 

analysing the 10 x  10.0 arcmin field of view AKARI prism spectroscopy data in the 

near-infrared. ARF2 has been designed to be capable of the following:

•  Parse the directory trees used in storing raw AKARI data, and locate the inter

esting files (dark frames, frames taken using a specific filter etc.) in it.

•  Perform basic reduction steps (dark subtraction, outlier subtraction, flat-fielding, 

stacking etc.) on the raw data in order to produce a set of reduced prism (NP), 

grism (NG) and imaging (N3) frames for each pointing and sub-pointing.

•  Locate the sources detected in the N3 frame and extract their pixel coordinates.

•  Parse catalogue data towards the observed fields of view, and acquire pixel coor

dinates of the catalogue sources in the reduced frames.

•  Cross-match the extracted N3 sources with the catalogue sources, and create 

a distortion map for converting pixel coordinate information between the N3 

frames and catalogue data.

•  Estimate the pixel coordinates of the sources in the NP frames.

•  Cross-match the NP pixel coordinates with the N3 pixel coordinates, and create 

a distortion map between the two.

•  Locate "extraction paths" for the spectra of each cross-matched source in the NP 

frames and evaluate where two extraction paths overlap to a sufficient degree to 

count as confused.

•  Extract spectra from the NP frames along the non-confused parts of the extrac

tion paths.
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•  Perform the necessary reduction steps (wavelength and sensitivity calibration, 

continuum baseline fitting) to the extracted raw spectra to make them useful for 

evaluation the column density of H2 O ice in them.

•  Evaluate N(H20,solid) from the extracted spectra.

•  Create maps of H2 O ice towards the observed fields of view, based on the N(H20) 

data.

The reasoning, algorithms and subtleties behind these steps were further elaborated 

upon in Chapter 5, while this section focuses on the practicalities of operating ARF2 

and how the intermediate data generated during the steps on the way to producing 

ice maps are stored, organized and accessed. While the scripts were created with the 

primary purpose of reducing and analysing the data from the IMAPE ice mapping 

survey, ARF2 itself and its scripts are generic enough that the software can be with 

little trouble modified to suit the reduction and analysis any AKARI near-IR NP filter 

spectroscopy. With a little extra trouble ARF2 would also be suitable for reducing and 

analysing other AKARI filters, including the NG and mid-IR spectroscopy filters and 

even the noisy "phase 3" data taken close to the end of the AKARI mission.

A.1.2 System requirements

ARF2 has been designed to run under PYTHON 2.7 and has been tested to work 

under at least Debian-like Linux distributions. A number of additional python li

braries are required for ARF2 to operate. Firstly, OMNlFlT(see Section A.2) is re

quired and thus naturally all its requirements (Section A.2.2) are also needed. The 

M ySQ L functionality of ARF2 is handled by the M y S Q L -P y th o n  library, avail

able at h t tp : / /m y s q l - p y th o n .s o u r c e f o r g e .n e t / . The handling of FITS files 

and world coordinate system (WCS) transformations is handled through A s tr o p y  

(Astropy Collaboration et al., 2013, tested to work with version 0.3.x).

Additionally, the third party point-source extraction program SEXTRACTOR (Bertin 

and Amouts, 1996) is required by ARF2 in its extraction of astrometric and photo

http://mysql-python.sourceforge.net/
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metric information from the N3 frames. ARF2 makes use o f the PYSEXTRACTOR1 

P y th o n  wrapper for interfacing with S E x t r a c t o r .

A.1.3 Basic usage

ARF2 is called from the command line with the python interpreter by using the com

mand:

python arf2.py <startup options>

where <startup options> are the strings for optional startup options, described below. 

Running ARF2 without any options launches ARF2 in fully interactive mode, after 

reading and parsing the settings from arf2.cfg.

When calling ARF2 from the command line, a number of options are available, 

which will change how ARF2 behaves. The first option is "silent mode", which is 

toggled on by starting ARF2 with the option "-s" or "-silent". This suppresses most 

printed output from ARF2. The second possible option is "-i <path>" or "-includedir 

<path>" which allows the user to override the default ARF2 program path (./include/) 

with a custom path as indicated by <path>. ARF2 will look for the commands used 

by both interactive and non-interactive mode in the new include directory. The third 

option, "-c <path>" or "-config <path>" allows the user to override the default config

uration file (Jarf2.cfg) with a path to another file as described by <path>. Finally, "-r 

<path>" or "-script <path>" will prevent ARF2 from launching in interactive mode 

and cause it to instead run the set of commands described in the file found at <path>.

A.l.3.1 Interactive mode vs. non-interactive mode

When running ARF2 in interactive mode, i.e. without the "-script" parameter, the 

user is presented with an interactive mode command prompt. This mode allows the 

user to manually enter commands to ARF2. Interactive mode accepts a few built- 

in commands and any number of commands it has located in the "include directory"

’h ttp s:/ /g i to r io u s . org/pysextractor

https://gitorious.org/pysextractor
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as defined by the "-include" parameter. The built-in commands "quit" and "exit" both 

cause A R F2 to exit back into the command prompt, and "list" will display the available 

commands, including those found in the include directory.

The commands found in the include directory can be called in interactive mode by 

inputting the (case sensitive) name of their respective files without the ".py" extension, 

e.g. "extract_CLEAN.py" can be run by inputting "extract_CLEAN" into the prompt. 

These commands often allow for custom parameters passed to them, when using a 

specific syntax. The function of the custom parameters can range from e.g. choos

ing a specific pointing to be used or for overriding the usage of previously generated 

iterated data and re-starting the iterations from scratch. To pass custom parameters 

to a command, the user must input the pipe symbol "|" immediately after the com

mand, followed by a set of variable names and values contained within curly brackets 

in the style of a PYTHON dictionary. For example, to call extract_CLEAN with custom 

parameters, one should write the calling command in the form

extract_CLEAN|{’pointing*:’412®021-®®1’,’k_limit’:3.5}

This will cause extract_CLEAN to adopt ’4120021 -001 ’ and 3 .5  as the values for the 

variables pointing and kjim it. Only certain variables can be set in this way, as de

fined in the command (see next subsection), and all such variables have a default value 

which will be used in the case of no custom parameters being passed. For instance, 

extract_CLEAN has the default values of ’ALL’ and 2 .0  for the variables pointing and 

kjim it. In addition, in the above example a third parameter named x jim it will re

tain its default value of -7 due to no custom parameter by that name being passed to 

the command. If an unidentified parameter is defined when calling the command, an 

exception (error) will be raised by ARF2.

A.l.3.2 Writing your own commands

The command files callable through both interactive or non-interactive modes are nor

mal P ython  scripts, with a few extra options and considerations that the user should
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keep in mind.

The first consideration is that the script should contain two lines for the purposes 

of parsing input parameters, as explained above. These two lines follow the style

defaultPars = {’parlname’:parlvalue,’par2name’:par2value} 

cmdPars = verify_arfpars(cmdPars,defaultPars)

The first line defines both the list of acceptable input parameters and their default 

values in the form of a P y th o n  dictionary, with the keys forming the names of the 

parameters. The second line compares the input parameters with the default parame

ters, and stores the combination of input parameters and default parameters (when no 

relevant input parameter was given) into a new dictionary pointed at by the variable 

cmdPars.

Second, the user has by default access to all the libraries imported by A R F2 during 

startup. These libraries are:

•  matplotlib.pyplot (for plotting; imported as pit)

•  numpy (handling of numerical arrays; np)

•  astropy.wcs (world coordinate system transformations; w cs)

•  astropy.io.fits (FITS file handling; fits)

•  o s  (operating system interface)

•  sy s  (access to objects related to the P y th o n  interpreter)

•  shutil (advanced shell commands)

•  copy (variable copying)

•  re (regular expression parsing)

•  httplib (accessing the world wide web)

•  MySQLdb (interfacing the M y SQL database;db)
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Third, there are a number of functions and variables in ARF2 that will likely be of 

use. What follows is a listing of these.

arfmessage (function)

Description

Used to print out messages in a fashion that respects the -s ilen t flag. 

Input

msg = string to be printed

yell = if set to true, ignores the -silen t flag Default:False 

Output 

None

progressbar (function)

Description

Produces a general ASCII progress bar, which can be used for tracking 

the progress of large computations.

Input

current = number representing e.g. the number of steps taken so far in 

the current computation

target = target value to which the variable "current" will be compared 

Output 

None

db_cursor (class instance)

Description

a MySQLdb cursor instance, which can be used for interfacing with 

the ARF2 M y SQL  database.
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There exist also a number of variables pointing to directory paths which are relevant 

for the operation of ARF2. These are described below.

A.l.3.3 The configuration file

The configuration file of ARF2 -located by default at ./arf2.cfg relative to the ARF2 

root directory- contains a number of default settings used by several of the commands 

utilised with ARF2. The configuration file is formatted in a way to be readable with 

the C o n fig P a r se r  library built into P y th o n , and is split into several sections.

The first section, General, contains parameters relevant to the general operations 

of ARF2. The parameters are:

silent (boolean) -  Another way of setting whether ARF2 runs in silent or non- 

silent mode.

omnifit_path (string) -  The absolute to the directory in which the OMNIFIT li

brary is located.

The second section, SQL, contains information which is used for logging to and 

accessing the M ySQL  database which is used by ARF2 for keeping track of its data. 

The parameters are:

sq ljio s t (string) -  Host name or address of the M ySQ L server. If the server is 

located on the machine running A R F2, this can be either localhost or 127.0.0.1.

schema_name (string) -  Name of the M ySQL database/schema containing the 

tables used by ARF2.

sql_user (string) -  Username with which to log in to the M ySQL database. 

This user should have full read and write access to the database/schema being 

operated on.

sql__password (string) -  The password of the logging into the M ySQ L database.
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The third section, File system, contains parameters relating to the locations of 

various directories used by ARF2 in its operations. The parameters are:

root_datadir (string) -  The root directory used for storing ARF2 data. Most of 

the other directories are defined relative to this directory.

tempdir (string) -  A directory in which various temporary files will be stored in 

by ARF2. This directory will be automatically emptied at the beginning of each 

new ARF2 session.

raw_datadir (string) -  The directory which contains the raw AKARI data.

calibdir (string) -  The directory which contains the various calibration data used 

especially during the reduction phases of ARF2.

reduced_dir (string) -  The directory which will be used for storing the reduced 

data.

graph_dir (string) -  The directory which will contain the variety of figures gen

erated during the operations of ARF2.

sextractor_dir (string) -  The directory which will contain the files generated by 

S E x t r a c t o r ,  including the "check" images and raw extracted lists.

The fourth section, Field of view, contains parameters used in cropping sub-frames 

from the full AKARI frames. The parameters are:

bigfov_xmin (integer) -  The minimum pixel x coordinate which will be used for 

extracting the "big" 10' x 10' field of view from the full AKARI frame.

bigfov_xmax (integer) -  As bigfov_xmin, but specifies the maximum x coordi

nate.

bigfovjymin (integer) -  As bigfov_xmin, but on the y axis. 

bigfov_ymax (integer) -  As bigfov_xmax, but on the y axis.
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smallfov_xmin (integer) -  As bigfov_xmin, but for specifying the "small" V x V 

field of view.

smallfov_xmax (integer) -  As smallfov_xmin, but specifies the maximum x co

ordinate.

smallfov_ymin (integer) -  As smallfov_xmin, but on the y axis. 

smallfov_ymax (integer) -  As smallfov_xmax, but on the y axis.

A.1.4 Database description

ARF2 uses a M ySQL  database to manage and organize the large amounts of files and 

data it creates during its various reduction and analysis stages. The purpose of this 

section is to give a description of all the tables and their columns, as used by ARF2. 

The purpose of each table is described individually, as are the purposes and types of 

the data they can contain.

A.l.4.1 raw_info

Description

Stores various kinds of information about AKARI observations, as acces

sible from the raw data files.

Columns

pointing_id (int 11) -  Unique numerical identifier of the pointing, as gen

erated by M ySQL

pointing (varchar 11) -  The full name of the pointing, expressed in the 

numerical format xxxxxxx-yyy

mainpointing (int 11) -  The identifier of the "main" part of the pointing, 

i.e. the xxxxxxx part.
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subpointing (int 11) -  The identifier of the "sub" part of the pointing, i.e. 

the yyy part.

proposal (varchar 5) -  The abbreviated name of the observing proposal 

object (varchar 45) -  The name of the object being observed 

observer (varchar 45) -  Name of the PI of the observing proposal 

comment (text) -  Additional comments on the entry, if applicable

A.l.4.2 raw_files

Description

Stores information about the raw FITS files 

Columns

file_id (int 11) -  Unique numerical identifier of the file, as generated by 

M y SQL

pointing_id (int 11) -  The numerical identifier of the pointing the file is 

relevant to

file_name (varchar 45) -  Name of the FITS file 

file_path (varchar 256) -  Full path to the file

filter_name (varchar 8) -  Name of the AKARI filter (e.g. N3, NP, NG etc.) 

used in the observation responsible for the file

filter_type (varchar 45) -  Type of filter used (image, grism or prism)

comment (text) -  Additional comments on the entry, if applicable

A.l.4.3 akari_external

Description

Like raw_info, except for the entire AKARI archive, and with download 

information.
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Columns

extemal_id (int 11) -  Unique numerical identifier of the pointing, as gen

erated by M ySQL

intemal_id (int 11) -  pointing_id of the entry in raw_info, if the entry exists 

there as well

pointing (varchar 11) -  The full name of the pointing, expressed in the 

numerical format xxxxxxx-yyy

mainpointing (int 11) -  The identifier of the "main" part of the pointing, 

i.e. the xxxxxxx part.

subpointing (int 11) -  The identifier of the "sub" part of the pointing, i.e. 

the yyy part.

proposal (varchar 5) -  The abbreviated name of the observing proposal

instrument (varchar 3) -  The AKARI instrument (IRC or FIS) used in the 

observing

aot (varchar 5) -  Observing mode used in the observation 

obstime (datetime) -  The date of observation

A.l.4.4 reduced_pointing_files

Description

Contains information about the reduced AKARI files.

Columns

file_id (int 11) -  Unique numerical identifier of the file, as generated by 

M y SQL

pointing_id (int 11) -  Identifier of the AKARI pointing of the observation

exposure (varchar 8) -  Indicates whether the reduction was performed on 

the short or long exposure observation or a combination of both
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field (varchar 8) -  Indicates whether this is the file for "big" or "small" field 

of view frame

filter_name (varchar 8) -  Name of the AKARI filter 

file_name (varchar 45) -  Name of the FITS file 

file_path (varchar 256) -  Full path to the file

comment (varchar 45) -  Additional comments on the entry, if applicable

A.l.4.5 extracted_catalogue

Description

Contains information about sources extracted with S E x t r a c t o r  

Columns

object_id (int 1 1 )-  Unique numerical identifier of the extracted source, as 

generated by M y SQL

pointing_id (int 11) -  Numerical identifier of the pointing (in raw_info) 

from which the source was extracted

x (double) -  Pixel x coordinate of the source

y (double) -  Pixel y coordinate of the source

mag (double) -  Photometric magnitude of the source. Note that this has 

not been calibrated to conform with any common scale

delta_mag (double) -  Uncertainty of the photometric magnitude

exposure (varchar 8) -  Indicates whether the extraction was performed on 

the short or long exposure observation

field (varchar 8) -  Indicates whether the "big" or "small" field of view of 

the frame was used in the extraction

comment (varchar 45) -  Additional comments on the entry, if applicable
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A.l.4.6 c2d_catalogue

Description

Contains information from the C2D catalogue (Evans et al., 2003) towards 

the AKARI fields of view.

Columns

object_id (int 11) -  Unique numerical identifier of the source, as generated 

by M y SQL

ra (double) -  The J2000 right ascension of the source

de (double) -  The J2000 declination of the source

pointing (varchar 45) -  The AKARI pointing towards which this source is 

found

c2d_id (varchar 45) -  C2D catalogue identifier for the source

c2d_name (varchar 45) -  Name of the source in the C2D catalogue

type (varchar 45) -  Type of source, as categorized in the C2D catalogue

AV (double) -  Ay of the source, in magnitudes

delta_AV (double) -  Uncertainty of the Ay

J (double) -  J-band flux of the source in mJy

delta_J (double) — Uncertainty of the J-band flux

H (double) -  H-band fluxof the source in mJy

delta_H (double) -  Uncertainty of the H-band flux

K (double) -  K-band fluxof the source in mJy

delta_K (double) -  Uncertainty of the K-band flux

II (double) -  IRAC1 flux of the source in mJy

delta_Il (double) -  Uncertainty of the IRAC1 flux
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12 (double) -  IRAC2 flux of the source in mJy 

delta_I2 (double) -  Uncertainty of the IRAC2 flux

13 (double) -  IRAC3 flux of the source in mJy 

delta_I3 (double) -  Uncertainty of the IRAC3 flux

14 (double) -  IRAC4 flux of the source in mJy 

delta_I4 (double) -  Uncertainty of the IRAC4 flux 

M l (double) -  MIPS1 flux of the source in mJy 

delta_Ml (double) -  Uncertainty of the MIPS1 flux

comment (varchar 45) -  Additional comments on the entry, if applicable

A.l.4.7 frame_shift_info

Description

Contains information about the relative pixel shifts between the N3, NP 

frames and the C2D catalogue.

Columns

shift_id (int 11) -  Unique numerical identifier of the shift, as generated by 

M y SQL

pointing_id (int 11) -  The identifier of the AKARI pointing towards which 

this shift is performed.

obsX (double) -  x axis coordinate of the source in the extracted N3 cata

logue

obsY (double) -  y axis coordinate of the source in the extracted N3 cata

logue

prismX (double) -  x axis coordinate of the source in the NP frame 

prismY (double) -  y axis coordinate of the source in the NP frame



A. 1. AKARI Reduction Facility 2 287

catX (double) -  x axis coordinate of the source in the N3 frame, according 

to astrometry from the C2D catalogue

catY (double) -  y axis coordinate of the source in the N3 frame, according 

to astrometry from the C2D catalogue

A.l.4.8 N3_object_association

Description

Contains information about associating sources between the extracted N3 

catalogue and the C2D catalogue

Columns

assoc_id (int 11) -  Unique numerical identifier of the association, as gen

erated by M y SQL

pointing_id (int 11) -  Identifier of the AKARI pointing towards which the 

association takes place

obs_id (int 11) -  Identifier of the source in the extracted N3 catalogue 

cat_id (int 11) -  Identifier of the source in the C2D catalogue 

comment (varchar 45) -  Additional comments on the entry, if applicable

A.l.4.9 NP_object_association

Description

Contains information about associating sources between the extracted N3 

catalogue and their estimated NP frame positions

Columns

assoc_id (int 11) -  Unique numerical identifier of the association, as gen

erated by M ySQL
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pointing_id (int 11) -  Identifier of the AKARI pointing towards which the 

association takes place

obs_id (int 11) -  Identifier of the source in the extracted N3 catalogue

object_x (double) -  Estimated x axis coordinate of the source in the NP 

frame

object_y (double) -  Estimated y axis coordinate of the source in the NP 

frame

comment (varchar 45) -  Additional comments on the entry, if applicable

A.l.4.10 raw_spectra

Description

Contains information about the raw extracted spectra.

Columns

spectrum_id (int 1 1 )- Unique numerical identifier of the spectrum, as gen

erated by M y SQL

pointing_id (int 11) -  Identifier of the AKARI pointing towards which the 

spectrum was extracted

assoc_id (int 11) -  Identifier of the NP association of the spectrum

field (varchar 8) -  Indicates whether the "big" or "small" field of view of 

the frame was used in the extraction

object_x (double) -  x axis coordinate of the source in the frame

object_y (double) -  y axis coordinate of the source in the frame

filter_type (varchar 45) -  Name of the AKARI filter using which the frame 

was taken

method (varchar 45) -  The name of the extraction method that was used
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file_path (varchar 256) -  Full path to the CSV file

comment (varchar 45) -  Additional comments on the entry, if applicable

A.l.4.11 reduced_spectra

Description

Contains information about the extracted spectra in various stages of re

duction.

Columns

spectrum_id (int 11) -  Unique numerical identifier of the spectrum, as gen

erated by M y SQL

raw_id (int 11) -  Identifier of the raw spectrum

reduced_state (varchar 45) -  The last reduction step performed on the spec

trum

file_path (varchar 256) -  Full path to the CSV file

comment (varchar 45) -  Additional comments on the entry, if applicable

A.l.4.12 od_spectra

Description

Contains information about the optical depth spectra generated after base

line fitting

Columns

spectrum_id (int 11) -  Unique numerical identifier of the spectrum, as gen

erated by M ySQL

c2d_id (int 11) -  Identifier of the C2D catalogue source associated with the 

spectrum
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fit_badness (int 11) -  Numerical indicator of the fit badness. This is 0 

by default, and will be incremented by 1 each time a "bad fit" condition is 

fulfilled, i.e. a bigger number indicates a worse fit. In the current version of 

ARF2 the only bad fit condition of this type is if any of the fitting windows 

lack data points.

mainpointing (varchar 11) -  The identifier of the "main" part of the pointing 

primary_pointing_id (int 1 1 )- Identifier of the 001 -subpointing in raw_info 

object_x (double) -  x axis coordinate of the source in the frame 

object_y (double) -  y axis coordinate of the source in the frame 

comment (varchar 45) -  Additional comments on the entry, if applicable

A.l.4.13 co!umn_densities

Description

Contains information about the (ice) column densities derived from the 

optical depth spectra.

Columns

coldens_id (int 11) -  Unique numerical identifier of the column density 

entry, as generated by M y SQL

origin_spectrum_id (int 11) -  Identifier of the optical depth spectrum from 

which the column density was derived

molecule (varchar 45) -  Name of the molecule of which the column density 

was calculated

column_density (double) -  The column density, in units of cm-1 

uncertainty (double) -  Uncertainty of the column density 

is_upper_limit (tinyint 1) -  If 1, the column density is an upper limit 

comment (varchar 45) -  Additional comments on the entry, if applicable
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A.1.5 Description of default A R F2 commands

What follows is a description of the commands used by ARF2 to perform the tasks it 

was designed to do. Each entry describes what the command is intended to do, what its 

input parameters and data are, which M y SQL  tables it accesses and what it is expected 

to produce in the end.

A.l.5.1 parse_rawdata

Purpose

Crawls through raw_datadir to find the raw AKARI data and populates the 

database with information found therein.

Input parameters

None

Input data

A collection of decompressed raw AKARI data in raw_datadir

Database access

raw_info (write) 

raw_files (write) 

calibration_files (write)

Output

Populates the database with information about raw N3, NP and NG frames, 

and their dark frames.

A.l.5.2 find_default_calibrators

Purpose
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Finds the default "2007Feb"2 calibrator files in calibdir and adds them to 

the database.

Input parameters

None

Input data

The default calibration data files, located at CALIBDIR.2007Feb under 

<calibdir>.

Database access

calibration_files (write)

Output

Populates the calibration_files table with information on the default cali

brator files.

A.l.5.3 create_master_darks

Purpose

Combines all the observed dark frames for a master dark frame for long 

and short exposures separately.

Input parameters

proposal (string) = Limits creation of master dark frames to AKARI pro

posals only of this name (default: ’IMAPE’)

Input data

2While the name "2007Feb" implies calibrator files originating from February 2007, this name is 
merely a directory name employed by the official JAXA AKARI pipeline to store all the calibration data. 
The actual data contained in this directory is much more recent, where updated calibration information 
is available.
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The observed dark frames from each pointing being processed.

Database access

raw_info (read) 

calibration_files (read+write)

Output

Creates master dark frames for each pointing in <calibdir>/master/

A.l.5.4 exclude_darks

Purpose

Used to remove bad dark frames from the database through the use of man

ual inspection

Input parameters

set (string) = Limits inspection to dark frames belonging only to a specific 

set. If ’ALL’ is selected, all sets are inspected, (default:’ALL’)

Input data

Dark frames belonging to selected set.

Database access

calibration_files (read+write)

Output

Removes dark frames from calibration files based on user selection.
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A.l.5.5 create_master_pixel_mask

Purpose

Combines the outlier mask from the default calibrator data with outliers 

found in the master dark frames of each pointings, to create a master pixel 

mask for each pointing.

Input parameters

clip (float) = The threshold multiplier fed to the sigma-clipping routine 

which finds outliers in the dark frames (default:5.0)

iters (integer) = Number of iterations performed by the sigma-clipping rou

tine (default:3)

proposal (string) = Limits creation of master pixel masks to AKARI pro

posals only of this name (default:’IMAPE’)

Input data

The pixel mask from the "2007Feb" calibration dataset, and the master dark 

frames of each pointing belonging to the given proposal.

Database access

calibration_files (read+write)

Output

Creates outlier masks for each pointing in <calibdir>/master/

A.l.5.6 find_external_akari_data

Purpose

Clones a part of the full AKARI database found on the JAXA servers into 

the local database.
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Input parameters

verify_url (boolean) = If set to true, verifies that the raw observational data 

actually exists and is accessible on the JAXA servers, before adding an 

entry on it to the local database. This is a very slow process. (default:False)

Input data

Plaintext dumps3 of the contents of the M y SQL  databases located on the 

JAXA servers, in the form of the files AKARI_PROGRAM.1 .txt, 

AKARI_PKGINF0.1 .txt, and AKARI_OBSLOG.1 .txt located under 

<root_datadir>/misc/

Database access

akari_extemal (write)

Output

Populates akari_external with information about the entire AKARI archive.

A.l.5.7 reduce_N3_frames

Purpose

Performs full reduction on the raw N3 frames.

Input parameters

proposal (string) = Limits creation of master dark frames to AKARI pro

posals only of this name, (default:’IMAPE’)

flat (string) = Type of flat field frame to use in the reduction, (default: 

’2007Feb’)

Input data

downloadable from h ttp : / /d a r ts . i s a s . jaxa . jp /ir /a k a r i/p o in tin g . ta b le s .html
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The raw N3 frames for all the pointings, and their corresponding calibration 

files.

Database access

calibration_files (read) 

raw_info (read) 

raw_files (read) 

reduced_pointing_files (write)

Output

6 reduced N3 frames per pointing. The reduced frames are of the small and 

large fields of view, with separate files for the short, long and combined 

exposures.

A.l.5.8 reduce_NP_frames

Purpose

Performs full reduction on the raw NP frames.

Input parameters

proposal (string) = Limits creation of master dark frames to AKARI pro

posals only of this name (default:’IMAPE’)

flat (string) = Type of flat field frame to use in the reduction, (default: 

’2007Feb’)

Input data

The raw NP frames for all the pointings, and their corresponding calibration 

files.

Database access
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calibration_files (read) 

raw_info (read) 

raw_files (read) 

reduced_pointing_files (write)

Output

6 reduced NP frames per pointing. The reduced frames are of the small and 

large fields of view, with separate files for the short, long and combined 

exposures.

A.l.5.9 reduce_NG_frames

Purpose

Performs full reduction on the raw NG frames.

Input parameters

proposal (string) = Limits creation of master dark frames to AKARI pro

posals only of this name (default:’IMAPE’)

flat (string) = Type of flat field frame to use in the reduction, (default: 

’2007Feb’)

Input data

The raw NG frames for all the pointings, and their corresponding calibra

tion files.

Database access

calibration_files (read) 

raw_info (read) 

raw_files (read)
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reduced_pointing_files (write)

Output

6 reduced NG frames per pointing. The reduced frames are of the small 

and large fields of view, with separate files for the short, long and combined 

exposures.

A.l.5.10 extract_N3_sources

Purpose

Uses S E x t r a c t o r  to extract the source locations from all the big FoV N3 

frames. Requires manual input for filtering of false positives.

Input parameters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

threshold (float) = Sets the ’detect_thresh’ parameter of SEXTRACTOR (de

fault: 3.0)

filter (string) = 3 parameters separated by commas, which set the SEX

TRACTOR PARAMETERS ’filter’, ’filter_name’, and ’filter_thresh’ respec

tively. (default:’N,default.conv,’)

Input data

sex.conf.template and sex.param from <sextractor_dir>, and the reduced 

N3 frame(s) being processed.

Database access

reduced_pointing_files (read) 

raw_info (read)
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extracted_catalogue (write)

Output

Populates extracted_catalogue with pixel coordinates and (uncalibrated) 

photometric magnitudes of the extracted sources

A.l.5.11 find_c2d_data

Purpose

Populates the M y SQL  database with data from the C2D files.

Input parameters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

Input data

The C2D data files located at <root_datadir>/C2D_CAT/

Database access

c2d_catalogue (write)

Output

Populates c2d_catalogue with the data contained in the C2D catalogue 

files

A.l.5.12 jitter_correction

Purpose

Manually correct for large-scale jitter/warping by locating a shared source 

in the C2D catalogue and the N3 and NP frames.

Input parameters
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pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

Input data

The N3 and NP frames of the relevant pointing(s) and the C2D data asso

ciated with it/them.

Database access

raw_info (read) 

reduced_pointing_files (read) 

extracted_catalogue(read) 

c2d_catalogue (read) 

frame_shift_info (write)

Output

Populates frame_shift_info with the manually located associations.

A.l.5.13 distortion_correction

Purpose

Perform iterative construction of a "distortion matrix" between the extracted 

N3 sources and the C2D data by association.

Input parameters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

"warp_info" (string) = Path to the file containing information about the 

distortion matrix. If file does not exist, it will be created after the first 

iteration, (default:’<calibdir>/warp_info.npz’)



A. 1. AKARI Reduction Facility 2 301

preview (boolean) = If set to true, the latest iteration of the distortion vec

tors will be shown between each iteration. (default:True)

re-associate (boolean) = If set to true, an existing w arp jn fo  file will be 

ignored and the iteration will start from scratch. (default:False)

Inpu t data

The source locations from both c2d_catalogue and extracted_catalogue, 

and their respective N3 frames to act as a visual aid. If the w arp jn fo  file 

already exists, it will be used as the starting point of the iterations.

D atabase access

raw jn fo  (read) 

reduced_pointing_files (read) 

extracted_catalogue(read) 

c2d_catalogue (read) 

frame_shiftJnfo (read)

O utput

The file pointed to by w arp jn fo  will be created/updated to contain distor

tion information between the C2D and N3 catalogues.

A.l.5.14 distortion_correction_NP

Purpose

Perform iterative construction of a "distortion matrix" between the extracted 

N3 sources and estimate of source locations in the NP data by association.

Inpu t param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)
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"warp_info" (string) = Path to the file containing information about the 

distortion matrix. If file does not exist, it will be created after the first 

iteration, (default: ’<calibdir>/warp_info.npz’)

re-associate (boolean) = If set to true, an existing w arp jn fo  file will be 

ignored and the iteration will start from scratch. (default:False)

Input data

The source locations from both extracted_catalogue, and their respective 

N3 frames to act as a visual aid. The NP frame for estimating source loca

tions in it. If the w arp jn fo  file already exists, it will be used as the starting 

point of the iterations.

D atabase access

raw J n fo  (read) 

reduced_pointing J ile s  (read) 

extracted_catalogue(read) 

c2d_catalogue (read) 

frame_shiftJnfo (read)

O utput

The file pointed to by w arp jn fo  will be created/updated to contain dis

tortion information between the N3 catalogue and estimates of NP source 

locations.

A.l.5.15 N3_source_association

Purpose

Uses the previously created distortion information between the extracted 

N3 sources and the C2D data to associate the sources in their respective 

catalogues.
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Input param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

"warp_info" (string) = Path to the file containing information about the 

distortion matrix, (default:’<calibdir>/warp_info.npz’)

re-associate (boolean) = If set to true, any pre-existing source associations 

will be ignored, and instead be re-estimated using the distortion calcula

tions. (default:False)

Input data

The source locations from both c2d_catalogue and extracted_catalogue, 

and their respective N3 frames to act as a visual aid. The file pointed to by 

w arp jn fo  contains the information about the distortion.

D atabase access

raw J n fo  (read) 

reduced_pointing_files (read) 

extracted_catalogue(read) 

c2d_catalogue (read) 

frame_shift J n fo  (read)

N3_object_association (write)

Output

N3_object_association will be populated with information on associations 

between the two catalogues.
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A.l.5.16 NP_source_association

Purpose

Uses the previously created distortion information between the extracted 

N3 sources and estimates of NP source locations to create associations be

tween the two sets.

Input param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

"warp_info" (string) = Path to the file containing information about the 

distortion matrix. (default:’<calibdir>/warpJnfo_NP.npz’)

re-associate (boolean) = If set to true, any pre-existing source associations 

will be ignored, and instead be re-estimated using the distortion calcula

tions. (default:False)

Input data

The source locations from both c2d_catalogue and extracted_catalogue, 

and their respective N3 frames to act as a visual aid. The file pointed to by 

w arp jn fo  contains the information about the distortion.

D atabase access

raw J n fo  (read) 

reduced_pointing_files (read) 

extracted_catalogue(read) 

frame_shiftJnfo (read)

NP_object_association (write)

Output
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NP_object_association will be populated with information on associations 

between the N3 and NP sources.

A.l.5.17 visualize_distortion

Purpose

Produces a visualization of the distortion between the C2D and N3 data. 

Input param eters

"warp_info" (string) = Path to the file containing information about the 

distortion matrix, (default:’<calibdir>/warp Jnfo .npz’)

gridstep (integer) = Grid size in pixels used to generate the vector field 

representing the distortion. Smaller number creates a finer field with more 

vectors, (default: 15)

Input data

The file pointed to by w arpjnfo  contains the information about the distor

tion.

D atabase access

frame_shift J n fo  (read)

O utput

Plots and shows a savable figure representing the distortion.

A.l.5.18 visualize_distortion_NP

Purpose

Produces a visualization of the distortion between the N3 and NP data.

Input parameters
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"warp_info" (string) = Path to the file containing information about the 

distortion matrix, (default:’<calibdir>/warp_info_NP.npz’)

gridstep (integer) = Grid size in pixels used to generate the vector field 

representing the distortion. Smaller number creates a finer field with more 

vectors, (default: 15)

Input data

The file pointed to by w arp jn fo  contains the information about the distor

tion.

Database access

frame_shiftJnfo (read)

Output

Plots and shows a savable figure representing the distortion.

A.l.5.19 extract_manual

Purpose

Manual spectrum extraction of selected sources from the NP frames. Ex

tracts only one spectrum at a time, using the Gaussian fit method.

Input param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

k J im it (float) = K flux limit of the C2D data. Sources with flux lower than 

this will not be extracted. (default:2.0)

x J im it (float) = Magnitude limit of source extracted N3 data. Sources with 

magnitude higher than this will not be extracted. (default:-7.0)
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Input data

The NP frames to be used in the extraction.

D atabase access

frame_shift_info (read) 

raw_info (read) 

reduced_pointing_files (read)

NP_object_association (read)

N3_object_association (read) 

extracted_catalogue (read) 

c2d_catalogue (read) 

raw_spectra (write)

Output

raw_spectra will be populated with data about extracted spectra, and the 

extracted spectra will be placed in CSV files under subdirectories in <re- 

duced_dir>.

A.I.5.20 extract_CLEAN

Purpose

Automatic extraction of all spectra from the NP frames. Extraction is per

formed using a 1-dimensional variant of the CLEAN (Hogbom, 1974) al

gorithm.

Inpu t param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)
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k_limit (float) = K flux limit of the C2D data. Sources with flux lower than 

this will not be extracted. (default:2.0)

x_limit (float) = Magnitude limit of source extracted N3 data. Sources with 

magnitude higher than this will not be extracted. Note that these are (by 

default) uncalibrated magnitudes and not representative of true N3 magni

tudes of the sources, (default:-7.0)

Input data

The NP frames to be used in the extraction.

D atabase access

frame_shift_info (read) 

raw_info (read) 

reduced_pointing_files (read)

NP_object_association (read)

N3_object_association (read) 

extracted_catalogue (read) 

c2d_catalogue (read) 

raw_spectra (write)

Output

raw_spectra will be populated with data about extracted spectra, and the 

extracted spectra will be placed in CSV files under subdirectories in <re- 

duced dir>.

A.l.5.21 plot_raw_spectra

Purpose

Creates plots of the raw extracted spectra.
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Input param eters

pointing (string) = Name of the pointing to be plotted. If set to ’ALL’, all 

pointings will be plotted, (default:’ALL’)

method (string) = Only spectra extracted with this method will be plotted, 

(default: ’CLEAN’)

Inpu t data

The raw extracted spectra.

D atabase access

raw_info (read) 

raw_spectra (read)

Output

Plots of the raw spectra will created in <graph_dir>.

A.l.5.22 filter_spectra_outliers

Purpose

Removes outliers from the extracted spectra.

Input param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

method (string) = Only spectra extracted with this method will be pro

cessed. (default: ’ CLEAN’)

plot (boolean) = If set to true, plots of the outlier-filtered spectra will be 

created in <graph_dir> (default:True)

Input data
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The raw extracted spectra.

D atabase access

raw_info (read) 

raw_spectra (read) 

reduced_spectra (write)

O utput

reduced_spectra will be populated with data about outlier-filtered spectra, 

and the reduced spectra will be placed in CSV files under subdirectories in 

<reduced_dir>.

A.l.5.23 merge_spectra_time

Purpose

Merges the long and short exposure spectra together.

Input param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

method (string) = Only spectra extracted with this method will be pro

cessed. (default:’CLEAN’)

plot (boolean) = If set to true, plots of the time-merged spectra will be 

created in <graph_dir> (default: True)

Input data

The outlier-filtered spectra.

D atabase access

raw_info (read)
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raw_spectra (read) 

reduced_spectra (read+write)

Output

reduced_spectra will be populated with data about time-merged spectra, 

and the reduced spectra will be placed in CSV files under subdirectories in 

<reduced_dir>.

A.l.5.24 fiIter_confused_spectra

Purpose

Detects and filters out confused parts of the time-merged spectra.

Input param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

plot (boolean) = If set to true, plots of the confusion-filtered spectra will be 

created in <graph_dir> (default:True)

Inpu t data

The time-merged spectra.

D atabase access

raw_info (read) 

raw_spectra (read) 

reduced_pointing_files (read) 

reduced_spectra (read+write)

Output
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reduced_spectra will be populated with data about confusion-filtered spec

tra, and the reduced spectra will be placed in CSV files under subdirectories 

in <reduced_dir>.

A.l.5.25 merge_spectra_pointings

Purpose

Merges the spectra of each sub-pointing within an AKARI pointing to

gether.

Input param eters

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

plot (boolean) = If set to true, plots of the pointing-merged spectra will be 

created in <graph_dir> (default:True)

Input data

The confusion-filtered spectra.

D atabase access

raw_info (read) 

raw_spectra (read)

N3_object_association (read)

NP_object_association (read) 

extracted_catalogue (read) 

raw_spectra (read) 

reduced_spectra (read+write)

Output
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reduced_spectra will be populated with data about pointing-merged spec

tra, and the reduced spectra will be placed in CSV files under subdirectories 

in <reduced_dir>.

A.l.5.26 manual_wavelength_calibration

Purpose

Used for manually determining the optimal parameters used in the spectral 

wavelength calibration step. See Chapter 5 Section 5.3.4 for more infor

mation about the manual wavelength calibration.

Input param eters

file_path (string) = Path to the pointing-merged spectrum which will be 

used as the template against which to perform the calibration. Needs to be 

manually set. (default:None)

lam_peak (float) = Wavelength in microns at which the local peak in uncal

ibrated intensity is expected to happen (default:2.4)

poly_a (float) = Multiplier for the second-order term of the calibration poly

nomial (default:4.82)

poly_b (float) = Multiplier for the first-order term of the calibration poly

nomial (default: 17.33)

poly_c (float) = Multiplier for the zeroth-order term of the calibration poly

nomial (default:221.59)

Input data

A single pointing-merged spectrum, and the NP response function found in 

the "2007Feb" calibration set.

Database access
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None

Output

None, but interactively shows the shape of the response function against 

the manually wavelength-calibrated spectrum, and shows which parame

ters were used to produce the produced calibration.

A.l.5.27 wavelength_calibration

Purpose

Performs wavelength calibration on the pointing-merged spectra.

Input parameters

plot (boolean) = If set to true, plots of the wavelength-calibrated spectra 

will be created in <graph_dir> (default: True)

drop-notglobalmax (boolean) = If set to true, spectra where the peak at the 

local peak close to ~  2.4 p m  is not the global maximum of the spectrum 

will cause the spectrum to be flagged as bad data. (default:True)

drop-fewpoints (boolean) = If set to true, spectra where the final number of 

datapoints is less than 4 will cause the spectrum to be flagged as bad data. 

(default:True)

Input data

The pointing-merged spectra.

Database access

reduced_spectra (read+write)

Output
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reduced_spectra will be populated with data about wavelength-calibrated 

spectra, and the reduced spectra will be placed in CSV files under subdi

rectories in <reduced_dir>.

A.l.5.28 response_calibration

Purpose

Performs response calibration on the wavelength-calibrated spectra.

Input param eters

plot (boolean) = If set to true, plots of the wavelength-calibrated spectra 

will be created in <graph_dir> (default:True)

Input data

The wavelength-calibrated spectra.

D atabase access

reduced_spectra (read+write)

Output

reduced_spectra will be populated with data about response-calibrated 

spectra, and the reduced spectra will be placed in CSV files under sub

directories in <reduced_dir>.

A.l.5.29 finalize_spectra

Purpose

Creates final reduced versions of the spectra by cropping the response- 

calibrated spectra.

Input parameters



316 Appendix A. Software documentation

plot (boolean) = If set to true, plots of the finalized spectra will be created 

in <graph_dir> (default:True)

Input data

The response-calibrated spectra.

D atabase access

reduced_spectra (read+write)

Output

reduced_spectra will be populated with data about the finalized reduced 

spectra, and the reduced spectra will be placed in CSV files under subdi

rectories in <reduced_dir>.

A.l.5.30 create_od_spectra

Purpose

Creates optical depth spectra from the finalized reduced spectra, by fitting 

a 2nd order polynomial baseline to them. This fit is designed to produce an 

adequate 3-micron O-H stretch feature.

Input param eters

plot (boolean) = If set to true, plots of the optical depth spectra will be 

created in <graph_dir> (default:True)

pointing (string) = Name of the pointing to be processed. If set to ’ALL’, 

all pointings will be processed, (default:’ALL’)

Input data

The optical depth spectra.

Database access
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raw_info (read) 

reduced_spectra (read) 

raw_spectra (read) 

extracted_catalogue (read)

N3_object_association (read)

NP_object_association (read) 

od_spectra (write)

Output

od_spectra will be populated with data about the optical depth spectra, 

and the spectra will be placed in CSV files under subdirectories in <re- 

duced_dir>.

A.l.5.31 calculate_NH20

Purpose

Calculates V(H20, solid) from the fetures detected in the optical depth 

spectra.

Input param eters

plot (boolean) = If set to true, plots of the fit results will be created in 

<graph_dir> (default:True)

Inpu t data

The optical depth spectra.

D atabase access

od_spectra (read) 

column_densities (read)
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Output

column_densities will be populated with data about A(H 2 0 , solid).

A.l.5.32 map_NH20

Purpose

Creates bubble plot maps of A(H20, solid).

Input param eters

None

Input data

N (H2O, solid) from column_densities.

Database access

reduced_pointing_files (read) 

od_spectra (read) 

column_densities (read)

Output

Bubble plot maps of A(H20, solid) will be created under <graph_dir>.

A.l.5.33 map_NH20_spline

Purpose

Creates split-interpolated maps of A(H20, solid).

Input param eters 

None 

Input data
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A(H 2 0 , solid) from column_densities.

D atabase access

reduced_pointing_files (read) 

od_spectra (read) 

column_densities (read)

O utput

Spline-interpolated maps of iV(H20, solid) will be created under 

<graph_dir>.

A.l.5.34 p!ot_NH20_vs_AV

Purpose

Creates a plot of A(H20, solid) versus Ay.

Input param eters  

None 

Input data

N (H20, solid) from column_densities and A y  from c2d_catalogue

D atabase access

c2d_catalogue (read) 

od_spectra (read) 

column_densities (read)

Output

A  plot of iV(H20, solid) versus Ay is created under <graph_dir>.
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A.l.5.35 plot_NH20_vs_EBV

Purpose

Creates plots of A(H20, solid) versus E(B — V), 100 p m  dust emission and

^dust-  

Input parameters 

None 

Input data

N{H2 O, solid) from column_densities and E(B — V), 7(100 pm )  and 7dust 

fetched from IPAC4.

Database access

c2d_catalogue (read) 

od_spectra (read) 

column_densities (read)

Output

Plots of iV(H20, solid) versus E(B — V), 100 p m  dust emission and 7dust 

are created under <graph_dir>.

A.2 The Omnifit ice spectroscopy fitting utility

A.2.1 Introduction

Om n ifit  was originally created to be an easy to use and modify implementation of 

the multi-component ice fitting method presented in Noble et al. (2013). The basic 

features offered by the utility are as follows:

4h ttp :/ / i r s a . ip a c .ca ltech . edu/cgi-bin/DUST/nph-dust

http://irsa.ipac.caltech.edu/cgi-bin/DUST/nph-dust
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•  Is capable of importing and handling empirical (observational or laboratory) 

spectra in a single unified data structure.

•  Match the resolution of two spectra through interpolation.

•  Perform a least-squares fit of an arbitrary number of other spectra to a (usually 

observational, but does not have to be) target empirical spectrum.

•  The fitted spectra can be either empirical spectra, or be defined through a math

ematical function.

•  The possible fit parameters for an empirical spectrum is a multiplier and a shift 

(although the shift is not used for the analysis done in this thesis).

• The fit parameters for non-empirical spectrum depend on the nature of the math

ematical function used to define it.

•  The fit can either be performed on the full spectral range available in the data, 

or be restricted to use only specific sub-spectral windows in its optimizations in 

cases where e.g. a part of the spectrum is known to be invalid.

•  Any fit parameter can be allowed to vary freely or constrained within a set range.

•  Estimate with a (non-reduced) %2 value the quality of the fit in either the full 

fitting range or only within specific fitting windows.

• The fit results can either be plotted into a M a t p l o t l ib  axis entity, or exported 

to a set of human and machine- readable files for analysis with other utilities.

While the utility was originally constructed to work with AKARI as the target spec

trum for the fits, it has been made generic enough that it should be capable of handling 

any spectroscopic data with little difficulties. Indeed, in Chapter 3 I showed that it 

is capable of handling data from the VLT/ISAAC instrument as well. Furthermore, 

though the utility was designed with ice absorption spectroscopy in mind, it should be 

capable of handling any type of 1-dimensional spectroscopic data where a fit of either 

empirical data or mathematical functions is desirable.



322 Appendix A. Software documentation

A.2.2 System requirements

The program has been written using Pyth o n  2.7 and tested to work under both 

Debian-like and Fedora-like Linux distributions. Omnifit makes use of a few exter

nal libraries without which it will not function. The non-linear least-squares fitting

package LMFIT5 is used for the constrained fits. Scientific python6 (SCIPY; also re

quired by LMFIT) is used for handling the various numerical arrays used by OMNIFIT, 

and M atplotlib7 is used for the plotting functions.

A.2.3 Example session

What follows is the code listing of a short session in which two sets of data, one 

observational (optical depth versus wavelength; I assume the continuum fit has already 

been performed and that flux has been turned to optical depth) and one laboratory 

(optical constants versus frequency) are loaded into omnifit, followed by fitting the 

laboratory data along with a single gaussian to the observational data. The fit results 

are plotted and exported to files.

f rom o m n i f i t  i m p o r t  *

i m p o r t  numpy as np

i m p o r t  m a t p l o t l i b  . p y p l o t  as p i t

o bs _w l  , o bs _o d  = np . l o a d t x t  ( ’ . / o b s d a t a  . dat  ’ , d ty p e  = f l o a t  , u s e c o l s  = ( 0  , 1 ) ) .  

l ab_wn , l ab_n  , l a b _ k  = n p . l o a d t x t ( ’ . / l a b d a t a . d a t ’ , d t y p e = f l o a t  , u s e c o l s  = ( 0 , 1 , 2 ) )  

o b s _ s p e c  = s p e c t r u m  ( w l2 wn (  o b s _ w l ) , obs_od  , s p ec n am e =  ’ O b s e r v e d ^ d a t a  ’ , x U n i t =  ’ Wave^number ’ 

, y U n i t = ’ O p t i c a l LJde p th  ’ ) 

l a b _ s p e c  = l a b S p e c t r u m ( l a b _ w n  , l ab _n  , l ab _k  , s p e c n a m e = ’ L a b o r a t o r y ^ d a t a  ’ ) 

i n t e r p _ l a b  = l a b _ s p e c . i n t e r p o l a t e ( o b s _ s p e c )

f i t t e r _  e x a m p l e  = f i t t e r ( o b s _ s p e c . x ,  o b s _ s p e c  . y , mode l name= ’ Exampl e^  f  i t ’ ) 

l a b _ p a r  = P a r a m e t e r s  ( )

# (Name, Val ue ,  Vary,  Min,  Max, Expr)

l a b _ p a r  . add_many ( ( ’ mul ’ , 0 . 5 ,  T r u e ,  0 . 0 ,  No ne ,  N o n e ) )

f i t t e r _ e x a m p l e .  a d d _ l a b  ( i n t e r p _ l a b  , l a b_ p a r  , f un c na me =  ’ E x a m p l e ^ l a b ^ f u n c t i o n  ’ ) 

t h e o r y _ p a r  = P a r a m e t e r s  ( )

#  (Name, Val ue ,  Vary,  Min,  Max, Expr)

t h e o r y _ p a r . add_many ( (  ’ peak ’ , 2 . 5 ,  T r u e ,  0 . 0 ,  N o ne ,  N o n e ) ,

5h ttp :/ / l m f i t . github. io /lm fit-p y /
6h ttp : / /numpy.org/
7h ttp ://m a tp lo tlib .org/

http://lmfit.github.io/lmfit-py/
http://numpy.org/
http://matplotlib.org/
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( ’ p o s ’ , 3 0 0 0 . ,  T r u e ,  3 0 0 0 . —2 0 0 . ,  3 0 0 0 . +  2 0 0 . ,  N o n e ) ,

( ’ f wh m’ , 5 0 . 0 ,  T r u e ,  0 . 0 ,  N o ne ,  N o n e ) ,

)

f i t t e r _ e x a m p l e  . a d d _ t h e o r y  ( ’ g a u s s i a n  ’ , t h e o r y _ p a r  , f u nc n ame =  ’ E x a m p l e ^ g a u s s i a n  ’ ) 

f i t t e r _ e x a m p l e  . p e r f o r m _ f i t ( )

f i t t e r _ e x a m p l e  . f i t r e s u l t s _ t o f i l e  ( ’ e x a m p l e _ f i t r e s  ’ )

f i g  = p i t  . f i g u r e  ( )

ax = f i g  . a d d _ s u b p l o t  ( 1 1 1 )

f i t t e r _ e x a m p l e  . p l o t _ f i t r e s u l t s  ( a x )

p i t  . s a v e f i g (  ’ e x a m p l e _ f i t r e s  . p d f ’ )

p i t  . c l o s e  ( f i g  )

In this, line 1-3 imports OMNIFIT, NUMPY and MATPLOTLIB. Strictly speaking, 

importing n u m py  and matplotlib is not necessary because Om nifit already im

ports them, but this way we prevent any ambiguity when calling either package in this 

example session. Lines 4 and 5 involve reading the observational and laboratory datas 

into their respective arrays. On the observational data file, columns 1 and 2 contain the 

wavelength and optical depth, respectively. For the laboratory data file columns 1-3 

contain the frequency (in cm-1 ), and n and k values respectively. Line 6 initializes the 

observational spectrum in the spectrum class, while line 7 calculates a CDE-corrected 

spectrum of the laboratory data. Line 8 creates a version of the laboratory spectrum 

which is interpolated to match the spectral resolution of the observation spectrum. Line 

9 initializes the fitter class with the x (wavenumber) and y (optical depth) data of the 

observational spectrum. Lines 10-13 add the interpolated laboratory spectrum to the 

collection of fittable functions with an initial guess of the multiplier at 0.5. Lines 14-20 

add a Gaussian to the function collection, with initial guesses of 2.5, 3000.0, and 50.0 

for the peak, centroid position and full width half-maximum of the function, and with a 

constraint on the centroid position which permits it to deviate only up to 200cm -1 from 

the initial guess. Line 21 performs the actual fit, and line 22 saves the fit results to two 

files starting with "example_fitres". The files created are "example_fitres.xml" which 

contains various information (such as the best-fit parameters) and "example_fitres.csv" 

which contains the x,y information of the target data and the best-fitted data each sep

arated to their own columns. Finally, lines 23-27 plot and save the fit results to the file
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"exam ple_fitres.pdf".

A.2.4 Command reference

O m n if it  can  b e  broadly  sp eak in g  separated into tw o  c la sse s  (the spectrum  and fitter) 

and a sm all num ber o f  supporting fu n ction s. T he operation  o f  both  c la sse s  and the  

supporting fu n ction s are deta iled  in th is section .

A.2.4.1 Supporting functions 

wl2wn

Description

Converts input from frequency (in jUm) to wave number (in cm-1 ). 

Input

iWavelength = input wavelength 

Output

w avelen gth  converted  to frequency

wn2wl

Description

Converts input from frequency (in cm-1 ) to wavelength (in pm ). 

Input

iWavenumber = input frequency 

Output

frequency converted  to w avelen gth  

cde_correct

Description
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Turn given optical constants into CDE-corrected optical depths.

Input

wn = input frequency in cm-1 

n = real part of the complex refractive index 

k = imaginary part of the complex refractive index 

O utput

the list [cabs_vol,cscat_vol], where

cabs_vol = average absorption cross section 

cscat_vol = average scattering cross section

A.2.4.2 Class: spectrum 

spectrum (class)

D escription

The generic class for describing a 1-dimensional spectrum. 

Constructor function  input

iX = x axis data (usually wavelength or frequency, but can be other) 

iY = y axis data (usually flux or optical depth) 

specname = Name of the spectrum. D efau lt:’Unknown spectrum ’ 

xUnit = name of the units used on the x axis. D efault: ’Unknown ’ 

yUnit = name of the units used on the y axis. D efa u lt:’U nknow n’ 

nonData = variable names which contain no array data. It should not 

be necessary to set this manually. D efault:[]

sort (function of spectrum )

D escription

Automatically sort all the array data in the spectrum to go in increasing 

order of x. Automatically called after initializing the class.
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Input

None.

Output

None.

dropbad (function of spectrum )

D escription

Iterate through all the array data in the spectrum, and automatically 

drop elements containing non-finite data. Automatically called after 

initializing the class.

Input

None.

Output

None.

plot (function of spectrum )

D escription

Plot the x,y data contained in the spectrum. Plotting defaults to x and 

y values defined during initialization, but variable choice can be over

ridden with optional parameters.

Input

iAx = MATPLOTLIB axis instance on which the plot should be drawn, 

plotstyle = a string which MATPLOTLIB can interpret into a colour- 

linestyle combination. D efault: ’k - ’

drawstyle = name of plotting style with which MATPLOTLIB should 

draw the plot. Default: *steps-m id’
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x = if set, name of variable which should be plotted on the x axis. 

Default'.None

y = if set, name of variable which should be plotted on the y axis. 

Default'.None

Output

None.

subspectrum (function of spectrum )

D escription

Create a new, cropped version of the spectrum.

Input

minX = Inclusive minimum x axis value on which to crop the spec

trum.

maxX = Inclusive maximum x axis value on which to crop the spec

trum.

Output

A new cropped spectrum instance 

interpolate (function of spectrum )

D escription

Create a new spectrum which is this spectrum interpolated to match 

the spectral resolution of a target spectrum.

Input

targSpectrum = spectrum instance with desired spectral resolution. 

Output

A new interpolated spectrum instance with resolution matching that of 

targSpectrum
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yat (function of spectrum )

D escription

Get value of y at a specific value of x in the spectrum.

Input

x = value of x which is of interest 

Output

value of y at x (interpolate when necessary) 

convolve (function of spectrum)

D escription

Perform a convolution to the y data in the the spectrum with a given 

point spread function (PSF)

Input

psf = Point spread function with which to convolve the spectrum 

Output 

None

gconvolve (function of spectrum )

D escription

Perform a convolution to the y data in the the spectrum using a PSF 

which is a Gaussian with a designated full width half-maximum

Input

fwhm = Desired full width half-maximum of the Gaussian PSF in units 

of the x axis

Output

None
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gpsf (function of spectrum )

D escription

Generate a Gaussian PSF for the gaussian convolution function.

Input

fwhm = Desired full width half-maximum of the Gaussian PSF 

O utput

Point spread function which is usable by the convolution function 

smooth (function of spectrum )

D escription

Smooth the data with a specified smoothing window. Available op

tions are: flat (moving average), hanning, hamming, bartlett, black- 

man. Function adapted from the guide posted by Kyle Brandt at h t t p : 

/ / b i t . l y / l p j j l v 3 .

Input

window_len = Size of the smoothing window. Default: 11 

window = Type of smoothing window to be used. Default: ’hanning  ’ 

Output 

None

baseline (function of spectrum )

D escription

Fit and subtract a specified polynomial baseline from the spectrum. 

Can also write fitted baseline to a file or, if said file already exists and 

its use is not overridden by the input parameters, use the fit parameters 

in that file to perform a baseline subtraction from the data without per

forming a new fit. The baselining also defines the noise in the spectrum 

data and stores it in the class instance.
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Input

degree = Degree of polynomial to be fitted Default:1

windows = One or more windows within (or outside of, depending

on exclusivity flag) which to perform the polynomial fit. Default:

[[0.0,1.0e6]]

exclusive = If set to True, given windows are ignored by the baseline

fit instead of used for performing it. Default: False

useFile = Path to file which will either (if it does not yet exist) be

written to contain the fitted baseline. If the file already exists and a

new baseline is not forced, the baseline designated by the file will be

used in the baseline subtraction instead of a newly fitted polynomial.

Default:None

overwrite = If set to True and a file already exists in the path des

ignated by useFile, the data contained in the file will be ignored and 

overwritten with a newly fitted baseline. Default:False

Output

None

shift (function of spectrum)

Description

Shifts the data along the x axis by a set amount.

Input

amount = The amount (can be positive or negative) by which to shift 

the x axis values, in units of the x axis.

Output

None

max (function of spectrum)
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D escription

Returns either the global maximum of the spectrum y axis, or a local 

maximum within a specified range.

Input

checkrange = If set, the maximum is calculated within the specified 

window [minX,maxX] instead of the full spectral range. Default'.None

O utput

Global or local maximum, depending on whether checkrange is set or 

not.

min (function of spectrum)

D escription

Returns either the global minimum of the spectrum y axis, or a local 

minimum within a specified range.

Input

checkrange = If set, the minimum is calculated within the specified 

window [minX,maxX] instead of the full spectral range. Default'.None

Output

Global or local minimum, depending on whether checkrange is set or 

not.

info (function of spectrum)

D escription

Prints out a summary of the spectrum.

Input

None

Output
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None, but prints out assorted information about the spectrum. 

absorptionSpectrum (child class of spectrum )

D escription

A spectrum child class with additional internal variables which contain 

optical depth- specific information.

Constructor function  input

iWn = x axis data in wavenumbers

iOd = y axis data in optical depth

specname = Name of the spectrum. D efau lt:’Unknown absorption  

spectrum  ’

nonData = variable names which contain no array data. It should not 

be necessary to set this manually. D efault:[]

plotod (function of absorptionSpectrum )

D escription

Plots an optical depth spectrum.

Input

iAx = MATPLOTLIB axis instance on which the plot should be drawn. 

in_wl = If True, plot x axis in units of wavelength instead of wave 

numbers. Default:False

Any parameters which would normally be accepted by spectrum.plot 

Output 

None

labSpectrum (child class of absorptionSpectrum )

D escription
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An absorptionSpectrum child class which is capable of performing 

CDE-correction on given laboratory data containing the complex re

fractive index of the material.

C onstructor function  input

iWn = x axis data in wavenumbers

iN = the real part of the complex optical refractive index

iK = the imaginary part of the complex optical refractive index

specname = Name of the spectrum. D efault: ’ Unknown CD E-corrected

laboratory spectrum  ’

plotnk (function of labSpectrum )

D escription

Plots the real and imaginary parts of the complex optical refractive 

index as a function of wave number.

Input

xrange = if set, x axis range in which to plot the refractive indices. 

D efault:None

Output

None

A.2.4.3 Class: fitter 

fitter (class)

D escription

The class which handles the fitting of the different spectra together, 

and the plotting and exporting of the fit results.

Constructor fu nction  input
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iX = x axis data of the target function to which other functions are to 

be fitted.

iY = y axis data of the target function to which other functions are to 

be fitted.

dY = l - c  uncertainty of the y axis data of the target function. Will be 

used in weighted calculation of the residuals. If not defined, all data 

points have equal weight.

modelname = name of the fitted model. D efault: ’Unknown m o d e l’ 

psf = point spread function of the target data, if known. D efault:N one  

fitrange = list of x axis ranges to which the fitting is to be done. If not 

defined, the full x axis range will be used. D efault:None  

color = colour of the target function in the plotted fit results. D e

fau lt:  ’blue ’

customfunctions = whether to allow the fitting of un-tested analyti

cal functions. Currently tested functions are a Gaussian and a CDE- 

corrected Lorentzian (see Chapter 3. Support f o r  o ther functions  is 

still experimental. Default:False

add_lab (function of fitter)

D escription

Adds given "laboratory" data (though it can be any type of empirical 

data) to the total collection of functions to be fitted.

Input

iSpectrum = the spectrum instance which will be added 

iParams = first guess of the fitting parameters, defined by an Imfit Pa

rameters instance. Desired parameter is ’mul’. 

funcname = name of the function to be fitted. If not set, uses name of 

spectrum as defined in the spectrum instance. D efault:N one
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color = colour of the spectrum which will be plotted in the fit results. 

D efa u lt:’red '

Output

None

add_theory (function of fitter)

D escription

Adds given analytical function to the collection of functions to be fitted 

to the target data.

Input

iShape = name of the function to be called. Unless customfunctions 

is activated in the fitter instance, only ’gaussian’ and ’Lorentzian’ are 

valid choices.

iParams = first guess of fitting parameters, defined by an Imfit Param

eters instance. Desired parameters vary depending on iShape. 

funcname = name of the function to be fitted. Default: ’Unknown fu n c 

tion ’

color = colour of the spectrum which will be plotted in the fit results. 

D efault: ’red ’

O utput

None

perform_fit (function of fitter)

D escription

Perform a least-squares fit of all previously given functions to the tar

get function, and store the results in the fitter instance. Raises an ex

ception if the fitting fails.
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Input

None

Output

None

fit_residual (function of fitte r)

D escription

Calculate the residual of the fittable functions against the target func

tion, given specific set of fitting parameters. This function is mostly 

used internally by the class, and should rarely be called manually.

Input

iPar = Input fitting parameters, as generated by extract_pars 

custrange = Override parameter for the fitting range. If not set, fitting 

range defined during class instance initialization is used. D efault:N one

Output

The residual function

chisq (function of fitter)

D escription

X 2 value of the fit results, either in the full fitting range defined during 

initialization, of in a custom range defined during function call.

Input

custrange = Override parameter for the fitting range used for calculat

ing x 2 • If not set, fitting range defined during class instance initializa

tion is used. D efault:None

Output

The x 2 value of the fit results.
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plot_fitresults (function of fitter)

D escription

Plots the fit results to a given MATPLOTLIB axis instance.

Input

iAx = The m a t p l o t l ib  axis instance to which the fit results will be 

plotted.

autorange = toggles whether or not the x-axis of the axis instance will 

be automatically scaled to match the data range of the fitted functions. 

D efault: True

drawstyle = name of the plotting style with which MATPLOTLIB should 

draw the plot. D efault .'’s teps-m id’

legend = toggles whether or not a legend detailing which line repre

sents which fitted component is generated in the axis. Default:True

Output

None, but axis instance pointed to by iAx will be modified to contain 

the plot.

fitresults_tofiIe (function of fitter)

D escription

Export fit results to two output files. First file is filename.xml, which 

contains information about both the best-fit parameters and of function 

names etc. Second file is filename.csv, which contains x and y data of 

the fitted models, as would be visualized in a plotted fit result. First 

column of csv is the x value, which is shared by all models. Second 

column is y value of data that was being fitted to. Third column is 

total sum of fitted models. Fourth to Nth columns are the individual 

models, in the order described in filename.xml.
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Input

filename = path with name (without suffix) of the file with which the 

two files "filename.xml" and "filename.csv" will be created.

O utput

None, but the designated files will be created, 

lowsigma (function of fitter)

D escription

Returns dictionary indicating whether the total fit result or any of the 

individual fitted components fall below a noise threshold defined as a 

multiplier of the noise level.

Input

sigma = Multplier of the noise below which the fit result(s) must fall 

to be considered weak. Default: 1.0

Output

Dictionary containing a boolean value for each of the fitted function 

and their total sum. If the peak of any of the functions or their sum fall 

below the noise level multiplied by the input parameter, their respec

tive return value is set to True.

fit_results (function of fitter)

D escription

Returns the fit results as a dictionary containing a separate entry for 

each fitted function.

Input

None

Output
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A dictionary containing an entry for the fit results (including uncer

tainty of fit) of each function, under entries designated by the function 

names.

fit_result (function of fitter)

Description

Returns the fit result of a specific fitted function, as indicated by the 

input value. This is usually only used internally by the fitter instance; 

it is simpler to request fit results from the fitter by using the function 

fit_results.

Input

indFunc = The index of the fitted function, as defined by the inter

nal function storage system. Usually 0 returns the first function to be 

added to the pool of fittable functions, 1 returns the second and so on.

Output

The fit results, including uncertainties, for the requested function. 

parse_function (function of fitter)

Description

Parse the internally stored function type/function parameter combina

tion in a way for it to be useful to the LMFIT minimization algorithms. 

This function is intended to be used internally by the fitter class, and it 

should not usually be necessary to call it manually.

Input

iPar = the Parameters instance corresponding to the function described 

in iFunc

iFunc = a dictionary information about the function being parsed. Usu

ally generated internally by the fitter class during addition of a new
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fittable function.

Output

The output of the function defined by iFunc when called with the pa

rameters defined by iPar.

extract_pars (function of fitter)

Description

Extract the paramers from the internal function list so they can be ma

nipulated by the residual minimization routines of the fitter class. Used 

internally by the fitter class and rarely necessary to call manually.

Input

None

Output

an LMFIT Parameters instance containing all the parameters needed for 

performing a fit of all the input functions into the target data

func_ident (function of fitter)

Description

Returns a string capable of uniquely identifying a specific function. 

Used internally by the fitter class and rarely necessary to call manually.

Input

indFunc = the index of the function as it is contained by the internal 

function list in the fitter class instance

Output

a string which acts as a unique identifier for the function pointed to by 

indFunc
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A.3 Concluding remarks

Both ARF2 and O m n if it  have been created in a way to allow them to be poten

tially useful in any future research involving the reduction of AKARI slitless spec

troscopy and analysis of ice absorption features. This documentation applies to ARF2 

and O m n if it  in the forms they have taken at the conclusion of this thesis, but on

going development is planned for both pieces of software and they are intended to 

be eventually released as open source. Consequently the documentation presented 

in this chapter is also liable to undergo changes and will likely no longer apply to 

future versions. Updated versions of this documentation -split into separate docu

ments for ARF2 and O m n if it -  will be provided with its respective software. Fu

ture inquiries about the state of the software and its documentation can be sent to 

a l e k s i . s u u ta r in e n @ ik i. f i .
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